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Subgroups and normal subgroups of dihedral
group up to isomorphism

Abstract: In this paper, we count the number of subgroups in a dihedral group from D3
to D8 and then evaluate the number of subgroups in a generalized way by using basic
geometry, group theory, and number theory. We prove by a different approach that the
total number of subgroups in a dihedral group is τ(n) + σ(n), where τ(n) is the number
of positive divisors of a positive integer n, and σ(n) is the sum of positive divisors of n.
Further, we investigate the number of normal subgroups of D8 and D9 and the structure
of those normal subgroups up to isomorphism.
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1 Introduction

In [4] a dihedral groupD2n is the group of symmetries of a regular n-gon. A regular n-gon
can be rotated or reflected to get back to the n-gon. The groupD2n is the group generated
by the reflection y and the rotation x by the angle 2π

n .
The set of rotations forms a cyclic group of order n, given in [5]. There is a much

less spectacular way to think about Dn. Namely, let x denote the rotation by
2π
n , and let

y be a reflection in Dn. We know that xn = e (the identity element) and y2 = e. Further,
we can deduce from our discussion of composition of rotations and reflections above
that yx = xn−1y. We say that x and y are generators of Dn and the equations x

n = e = y2,
yx = xn−1y are relations for these generators. With this in mind, the dihedral groups can
be thought of just as the abstract group

D2n = {x
iyj | i = 1, . . . , n − 1, xn = e, y2 = e, yx = xn−1y}.

2 Properties of dihedral group

1. Dn is a non-Abelian group of order 2n, n ≥ 3 [6].
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2. The number of elements of order two in Dn is n if n is odd (n reflections) and n + 1 if
n is even (n reflections, 1 rotation) [3].

3. The number of elements of order k ̸= 2 in Dn is ϕ(k), provided that k|n (where ϕ(k)
is the Euler function) [4].

4. The largest possible order of any element in Dn is n [4].
5. For each k|n, Dn has a cyclic group of order k [3].
6. If k|n, then Dk is isomorphic to a subgroup of Dn [6].
7. ℤn is isomorphic to the set of all rotations of Dn [6].
8. The class equation of Dn is o(Dn) = 2.n = 1 + n + 2 + 2 + ⋅ ⋅ ⋅

n−1
2 times if n is an odd

number, [4].
9. The class equation of Dn is o(Dn) = 2.n = 1 + 1 +

n
2 +

n
2 + 2 + 2 + 2 + ⋅ ⋅ ⋅

n−2
2 times if n

is an even number [4].

3 Subgroups of dihedral group

3.1 Structures of subgroups of D3 to D8
There are two types of symmetries of a regular polygon, the rotational symmetry and the
line symmetry. The rotational symmetries will be denoted by some power of x, whereas
the line symmetries will be denoted by power of x times y, and when the vertices of the
regular polygon are in their original circular order, that is represented by e.

Now we will first try to identify the subgroups of some dihedral group by the trial-
and-error method because we should be clear about the regular polygons, the elements
in Dn, the operation table, and the lattices of the subgroups for Dn.

The set of subgroups of D3, D4, D5, D6, D7, and D8 are {D3, {x, x
2, e}, {x2y, e}, {e}},

{D4,{x
2, y, x2y, e},{e, x, x2, x3},{x2, xy, x3y, e},{x2y, e}, {y, e}, {y, e}, {e, y2}, {xy, e}, {x3y, e}, {e}},

{D5, {e, x, x
2, x3, x4}, {y, e}, {xy, e}, {x2y, e}, {x3y, e}, {x4y, e}, {e}}, {D6, {x

3, x4, y, x2y, x4y, e},
{x, x2, x3, x4, x5, e}, {x2, x4, xy, x3y, x5y, e}, {x3, y, x3y, e}, {x3, xy, x4y, e}, {x3, x2y, x5y, e},
{x2, x4, e}, {y, e}, {x3y, e}, {x3, e}, {xy, e}, {x4y, e},{x2y, e},{x5y, e},{e}}, {D7, {x, x

2, x3, x5, x6, e},
{y, e},{xy, e},{x2y, e},{x3y, e},{x4y, e},{x5y, e}, {x6y, e}, {e}}, {D8, {x

2, x4, x6, y, x2y, x4y, x6y, e},
{x, x2, x3, x4, x5, x6, x7, e}, {x2, x4, x6, xy, x3y, x5y, x7y, e}, {x4, y, x4y, e}, {x4, x2y, x6y, e}, {x2,
x4, x6, e}{x4, xy, x5y, e}, {x4, x3y, x7y, e}, {y, e}, {x4y, e},{x2y, e},{x6y, e},{x4, e},{xy, e},{x5y, e},
{x3y, e}, {x7y, e}, {e}}, respectively.

Knowing the sets of subgroups of D3 to D8, it is trivial to find families of subgroups
of a dihedral group associated with a regular polygon with a smaller number of edges.
However, when it comes to find the number of subgroups for a Dihedral group associ-
ated with a regular polygon with a large number of sides, then its quite tiresome. So we
provide a method to find the number of subgroups of a dihedral group associated with
a regular polygon with any number of sides. Note that Dn always contain the subgroups
Dn and {e} and the subgroups spanned by x

a, a ∈ ℕ. If k is coprime to n (the number of
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sides of the regular n-gon), then no subgroups can be spanned by xk . Modular arithmetic
demonstrates that a relatively prime number generates every number contained in the
set created by mod(n); therefore each subgroup corresponds to a factor of n.

Let us investigate the subgroups for D4 and D8. Note that the factors of 4 are 1, 2,
and 4. The subgroups of D4 are as follows: D4, {x

2, y, x2y, e}, {e, x, x2, x3}, {x2, xy, x3y, e},
{x2y, e}, {y, e}, {y, e}, {e, y2}, {xy, e}, {x3y, e}, {e}. Now we will first break these subgroups
into two groups, the subgroups that contain only rotations and the subgroups that con-
tain reflections.

Looking at the three subgroups that contain rotations of the square, x will span the
subgroup only containing rotations generated by a π

2 clockwise rotation, x2 will span
the subgroup of rotations generated by a π clockwise rotation, and x4 or e will generate
the last subgroup generated by a 2π clockwise rotation. Thus we can conclude that the
number of subgroups of D4 that only contain rotations is equivalent to the number of
factors of 4.

Wewill nowfind the subgroups that contain rotations and reflections. The subgroup
spanned by x and y produces the entire group Dn. The subgroup spanned by x

2 and y
produces {x2, y, x2y, e}. The subgroup spanned by x2 and xy produces {x2, xy, x3y, e}. The
subgroups spanned by e and each reflection are {y, e}, {xy, e}, {x2y, e}, and {x3y, e}. By
considering all these we are able to find that the number of subgroups of D4 is equal to
3 + 1 + 2 + 4. This is equal to the number of factors of 4 plus each factor of 4.

Now we will explore D8, where there are a total of 19 subgroups. So we will exam-
ine two types of subgroups, namely the subgroups that only contain rotations and the
subgroups that have reflections. Identifying how each subgroup of D8 is generated will
reveal the formula for the number of subgroups of D8.

InD8 the only subgroups that contain only the rotations are {x, x
2, x3, x4, x5, x6, x7, e},

{x2, x4, x6, e}, {x4, e}, and {e}. The subgroup {x, x2, x3, x4, x5, x6, x7, e} represents the sub-
group of rotations spanned by x, {x2, x4, x6, e} is the subgroup of rotations spanned by
x2, {x4, e} is the subgroup spanned by x4, and {e} is the subgroup spanned by e. So we
can conclude that D8 has four subgroups that only contain rotations. Notice that 8 has
four factors of 1, 2, 4, and 8.

The subgroups that contain both rotations and reflections are D8, {x
2, x4, x6, y, x2y,

x4y, x6y, e}, {x2, x4, x6, xy, x3y, x5y, x7y, e}, {x4, y, x4y, e}, {x4, x2y, x6y, e}, {x4, xy, x5y, e},
{x4, x3y, x7y, e}, {y, e}, {x4y, e}, {x2y, e}, {x6y, e}, {xy, e}, {x5y, e}, {x3y, e}, {x7y, e}. The sub-
group {x2, x4, x6, y, x2y, x4y, x6y, e} is spanned by x2 and y, and {x2, x4, x6, xy, x3y, x5y,
x7y, e} is spanned by x2 and xy. Notice that x2 span two subgroups that contains reflec-
tions. The subgroup {x4, y, x4y, e} is spanned by x4 and y, {x4, xy, x5y, e} is the subgroup
generated by x4 and xy, {x4, x2y, x6y, e} is the subgroup spanned by x4 and x2y, and
{x4, x3y, x7y, e} is the subgroup spanned by x4 and x3y. Therefore x4 spans four sub-
groups that contain reflections. The remaining subgroups that contain reflections and
identity are {y, e}, {xy, e}, {x2y, e}, {x3y, e}, {x4y, e}, {x5y, e}, {x6y, e}, and {x7y, e}. Notice
that x8 spans eight subgroups that contain reflections. So we can conclude that D8 is
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equal to 4 + 1 + 2 + 4 + 8, which is a total of 19 subgroups. Hence the total number of
subgroups of D8 is equivalent to the number of factors of 8 plus all factors of 8.

By the above explanation, a question arises if for any dihedral group does the num-
ber of subgroups is equivalent to the number of factors of the number of sides of the
regular polygon plus all factors of the number of sides of the regular polygon. So we
need to verify that for any dihedral group associated with a regular polygon.

Suppose Dn is a dihedral group, where n ∈ ℕ. Then by the fundamental theorem
of arithmetic we have the prime factorization n = pk11 p

k2
2 . . . p

kr
r of n > 1. So the positive

divisors of n are of the form d = pa11 p
a2
2 . . . p

ar
r , where 0 ≤ a1 ≤ ki, where i = 1, 2, . . . , r.

Therefore d spans the subgroup of rotations xd , x2d , . . . , e, a subgroup of Dn, fromwhich
we can calculate the number of subgroups of Dn.

3.2 Counting technique for subgroups of a dihedral group in
generalized form

Let us verify that the total number of subgroups in Dn is equal to τ(n)+σ(n), where τ(n)
is the number of positive divisors of n, and σ(n) is the sum of the positive divisors of
n [1].

Lemma 1. Total number of subgroups in Dn is equal to τ(n) + σ(n).

Proof. The proof has be done by Cavior [2], but here we give it by a different approach.
By definition, τ(n) denotes the number of positive divisors of a positive integer n. Let d
and n be positive integers such that d is a divisor of n, which implies that there exists
a positive integer m = n

d such that x
d spans the closed set {xd , x2d , . . . , xn} of rotations.

Now this set is a subgroup as it contains all the inverses for each element [7]. Hence this
clarifies that every power of x that is a divisor of n spans a subgroup of rotations, any
multiple of d that is not a divisor of n spans the same subgroup as xd , and any power
of x that is coprime to n spans the same subgroup as x. So we can conclude that the
number of subgroups of Dn that only contain rotations is equivalent to the number τ(n)
of divisors of n.

We now claim that σ(n) represents the number of subgroups that contain reflec-
tions. Let q, n, and d be positive integers such that d is a divisor of n, σ(n) = q + d, and
0 ≤ ai ≤ d, where ai = 1, 2, . . . , d. The subgroups spanned by x

d and xaiy are as follows;
{xd , x2d, . . . , e, y, xdy, x2dy, . . .}, {xd , x2d, . . . , e, xy, xd+1y, . . .}, and {xd , x2d , . . . , e, xd−1y, . . .}.
Each subgroup spanned by xd and xaiy contains a particular element of the set {y, xy, x2y,
. . . , xd−1y}. This set has d elements, which implies that xd and xaiy span d subgroups that
contain reflections. Hence the number of subgroups containing reflections is equivalent
to the sum of the divisors of n.

From the above it is clear that the number of subgroups of Dn is τ(n) + σ(n).
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4 Normal subgroups in D8 and their structures up to
isomorphism

Consider D8 = {x0, x, x
2, x3, x4, x5, x6, x7, y, xy, x2y, x3y, x4y, x5y, x6y, x7y}, where x is the

rotation at π4 angle, y is the reflection about the line of symmetries, and x0 is the rotation
at 0 angle and is the identity element in D8.

The possible orders of elements in D8 are 1, 2, 4, 8, and 16. The number of elements
of orders 1, 2, 4, 8, and 16 in D8 are 1, 9, 2, 4, and 0, respectively. The subgroup of order 1
in D8 is isomorphic to ℤ1 and is unique. So it is normal in D8.

The subgroup of order 2 in D8 is isomorphic to ℤ2, and there are 9 such subgroups.
The structures of those subgroups are H1 = {x0, y}, H2 = {x0, xy}, H3 = {x0, x

2y}, . . . ,H8 =
{x0, x

7y}, H9 = {x0, x
4}. Here Cl(y) = {y, x2y, x4y, x6y}, which is not a subset of H1, H3, H5,

H7, respectively. Similarly, Cl(xy) = {xy, x
3y, x5y, x7y} is not a subset of H2, H4, H6, H8,

respectively. So H1,H2, . . . ,H8 are not normal in D8. However, Cl(x
4) = {x4} ⊂ H9 and

Cl(x0) = {x0} ⊂ H9. Therefore H9 is normal in D8.
The subgroups inD8 of order 4 up to isomorphismareℤ4 andD2 ≅ K4. The subgroup

of D8 isomorphic to ℤ4 is unique, and hence it is normal in D8. The subgroups in D8
isomorphic to D2 are H

′
1 = {x0, x

4, y, x4y}, H′2 = {x0, x4, xy, x5y}, H′3 = {x0, x4, x2y, x6y},
H′4 = {x0, x4, x3y, x7y}. Here Cl(y) is not a subset of H′1 and H′3 , and Cl(xy) is not a subset
of H′2 and H′4. Therefore H′1 , H′2 , H′3 , and H′4 are not normal in D8.

The subgroups in D8 of order 8 in D8 up to isomorphism are ℤ8 and D4. Here the
subgroup of D8 isomorphic to ℤ8 is unique, and hence it is normal in D8. There are two
subgroups isomorphic to D4, G1 = {x0, x

2, x4, x6, y, x2y, x4y, x6y} and G2 = {x0, x
2, x4, x6,

xy, x3y, x5y, x7y}, and both have the index 2. Therefore both G1 and G2 are normal in D8.
So there are 7 normal subgroups of D8.

5 Normal subgroups of D9 and their structures up to
isomorphism

To find the normal subgroups of D9 and their structures up to isomorphism, we first
check the possible orders of the subgroups of D9, that is, 1, 2, 3, 6, 9, and 18, and the
number of elements of orders 1, 2, 3, 6, 9, and 18 are 1, 9, 2, 0, 6, and 0, respectively.

The subgroups of order 1, 2, 3, 6, 9, and 18 are isomorphic to ℤ1, ℤ2, ℤ3, D3, ℤ9, and
D9, respectively. The number of subgroups isomorphic to ℤ1, ℤ2, ℤ3, D3, ℤ9, and D9 are
1, 9, 1, 3, 1, and 1, respectively. Since subgroups of D9 isomorphic to ℤ1, ℤ3, ℤ9, and D9
are unique, they are normal. So till now we have four normal subgroups of D9. Let us
further investigate other normal subgroups.
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Now we check whether the subgroups of D9 isomorphic toℤ2 are normal. The sub-
groups isomorphic to ℤ2 are H1 = {e, y}, H2 = {e, xy}, H3 = {e, x

2y}, . . . ,H9 = {e, x
8y}.

Clearly, Cl(y) = {y, x2y, x4y, x6y, x8y, xy, x3y, x5y, x7y} is not a subset of H1,H2, . . . ,H9. So
we can conclude that there are no normal subgroups of D9 isomorphic to ℤ2.

Now we further check whether the subgroups of D9 isomorphic to D3 are normal.
There are a total of three subgroups of D9 isomorphic to D3: H

′
1 = {x

3, x6, e, y, x3y, x6y},
H′2 = {x3, x6, e, xy, x4y, x7y}, H′3 = {x3, x6, e, x2y, x5y, x8y}. Clearly, Cl(y) = {y, xy, x2y, x3y,
x4y, . . . , x8y} is not a subset of H′1 , H′2 , and H′3 . So we can conclude that there are no
normal subgroups of D9 isomorphic to D3. Hence D9 has four normal subgroups.

Bibliography
[1] David Burton, EBOOK: Elementary Number Theory, McGraw Hill (2010).
[2] Stephan R. Cavior, The subgroups of the dihedral group, Math. Mag., 48(2) (1975), 107.
[3] David Steven Dummit and Richard M. Foote, Abstract Algebra, vol. 3, Wiley, Hoboken (2004).
[4] Joseph A. Gallian, Contemporary Abstract Algebra, Chapman and Hall/CRC (2021).
[5] Israel N. Herstein, Topics in Algebra, John Wiley & Sons (2006).
[6] Vijay K. Khanna and S. K. Bhamri, A Course in Abstract Algebra, Vikas Publishing House (2016).
[7] Charles C. Pinter, A Book of Abstract Algebra, Courier Corporation (2010).


