HENDRIK LORENTZ \& HIS NEW BEST FRIENDS

WHAT SYMMETRY TRANSFORMATIONS ARE ALLOWED?

We want to preserve

$$
d s^{2}=(c d t)^{2}-d x^{2}-d y^{2}-d z^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

which implies

$$
\eta_{\mu \nu} d x^{\mu} d x^{\nu}=\eta_{\mu \nu} d x^{\mu \mu} d x^{\prime \nu}
$$

We then have the constraint for $x^{\mu}=f^{\mu}\left(x^{\nu}\right), \operatorname{det}\left(\partial f^{\mu} / \partial x^{\nu}\right)= \pm 1$ and

$$
\eta_{\mu \nu} \frac{\partial f^{\nu}}{\partial x^{\rho}} \frac{\partial^{2} f^{\mu}}{\partial x^{\sigma} \partial x^{\alpha}}=0
$$

This implies all second derivatives vanish. Thus,

$$
f^{\mu}\left(x^{\nu}\right)=L_{\nu}^{\mu} x^{\nu}+a^{\nu}
$$

with $\operatorname{det}(L)= \pm 1$

SUBGROUPS \& COSETS

In general, we expect spacetime to be invariant under boosts, rotations, space translations, and time translations. This leads to a total of 10 independent parameters known as the Poincaré group. If we only consider the inhomogenous transformations, we are left with the 6 parameter Lorentz group with four disconnected cosets.

Coset	Rep.		
L	$\operatorname{diag}(1,1,1,1)$	$\operatorname{det}=1$	$\Lambda_{00} \geq 1$
$P L$	$\operatorname{diag}(1,-1,-1,-1)$	$\operatorname{det}=-1$	$\Lambda_{00} \geq 1$
$T L$	$\operatorname{diag}(-1,1,1,1)$	$\operatorname{det}=-1$	$\Lambda_{00} \leq-1$
$P T L$	$\operatorname{diag}(-1,-1,-1,-1)$	$\operatorname{det}=1$	$\Lambda_{00} \leq-1$

The coset containing the identity is a subgroup called the proper Lorentz group.

COMPACTNESS

The proper Lorentz group is a non-compact Lie group. To see this we note that $\Lambda_{00} \geq 1$ implies that this coefficient is undbounded in Euclidean space. Thus the Lie group is not compact.

Theorem: A faithful finite dimensional representation of a non-compact Lie group cannot be unitary.

The unbounded parameter boost parameter β. We can use the relationship

$$
\tanh \beta=\frac{v}{c}
$$

to express this now as a bound parameter, but it is still not closed in Euclidean space

FUNDAMENTAL REPRESENTATION

To find the generators we start by looking for elements close to the identity

$$
\Lambda_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}
$$

We now search for generators such that
which yields

$$
x^{\prime \mu}=\left(1-\frac{1}{2} i \omega^{\lambda \rho} J_{\lambda \rho}\right)^{\mu \nu} x_{\nu}
$$

$$
\left(J_{\lambda \rho}\right)_{\nu}^{\mu}=i\left(\delta_{\lambda}^{\mu} g_{\rho \nu}-g_{\lambda \nu} \delta_{\rho}^{\mu}\right)
$$

FUNDAMENTAL REPRESENTATION

$$
\begin{gathered}
J_{01}=\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
J_{23}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right) \\
\exp \left(-i \beta J_{01}\right)=\left(\begin{array}{cccc}
\cosh \beta & -\sinh \beta & 0 & 0 \\
-\sinh \beta & \cosh \beta & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \exp \left(-i \theta J_{23}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right)
\end{gathered}
$$

ALGEBRA

$$
\begin{array}{ccc}
{\left[J_{\mu \nu}, J_{\lambda \rho}\right]=-i\left(g_{\mu \lambda} J_{\nu \rho}-g_{\mu \rho} J_{\nu \lambda}-g_{\nu \lambda} J_{\mu \rho}+g_{\nu \rho} J_{\mu \lambda}\right)} \\
\mathscr{J}_{1}=J_{23} & \mathscr{J}_{2}=J_{31} & \mathscr{J}_{3}=J_{12} \\
\mathscr{K}_{1}=J_{01} & \mathscr{K}_{2}=J_{02} & \mathscr{K}_{3}=J_{03} \\
{\left[\mathscr{J}_{i}, \mathscr{J}_{j}\right]=i \epsilon_{i j k} \mathscr{J}_{k}} & {\left[\mathscr{K}_{i}, \mathscr{K}_{j}\right]=-i \epsilon_{i j k} \mathscr{J}_{k}} & {\left[\mathscr{J}_{i}, \mathscr{K}_{j}\right]=i \epsilon_{i j k} \mathscr{K}_{k}} \\
\uparrow^{S O(3) \text { subalgebra }} & &
\end{array}
$$

ALGEBRA

$$
\mathscr{N}_{i}^{ \pm}=\frac{1}{2}\left(\mathscr{J}_{i} \pm i \mathscr{K}_{i}\right)
$$

$$
\left[\mathscr{N}_{i}^{+}, \mathscr{N}_{j}^{+}\right]=i \epsilon_{i j k} \mathscr{N}_{k}^{+}
$$

$S U(2)$ subalgebra

$$
\left[\mathscr{N}_{i}^{+}, \mathscr{N}_{j}^{-}\right]=0
$$

$$
S U(2) \text { subalgebra }
$$

Though the proper Lorentz group shares the same algebra as $S U(2) \times S U(2)$, they are not the same group. Locally, the Lorentz group is isomorphic to $S L(2, \mathbb{C})$.

REPRESENTATION THEORY

We can extend the enumeration on representations of $S U(2)$ to the Lorentz group. As we would label a representation of $S U(2), j$, with it's $(2 j+1)$ degrees of freedom, we can label a representation of the Lorentz group $\left(j_{1}, j_{2}\right)$ by the corresponsing representations of j_{1} and j_{2} in $S U(2)$.

Useful representations:

- $(0,0)$ the trivial representation
- $\left(\frac{1}{2}, 0\right)$ the Weyl representation used to describe neutrinos
- $\left(\frac{1}{2}, 0\right) \bigoplus\left(0, \frac{1}{2}\right)$ Dirac representation used to describe charged leptons
- $\left(\frac{1}{2}, \frac{1}{2}\right)$ the defining representation of $S O(3,1)$
- $(1,0) \bigoplus(0,1)$ tensor representation used to describe electromagnetism

REPRESENTATION THEORY

Theorem: The complex conjugate of the $\left(j_{1}, j_{2}\right)$ representations of the Lorentz algebra is the $\left(j_{2}, j_{1}\right)$ representation.

Representations of the form $\left(j_{1}, j_{1}\right)$ and $\left(j_{1}, j_{2}\right) \bigoplus\left(j_{2}, j_{1}\right)$ are real

EXTENDING THE ALGEBRA

In the differential representation

$$
J_{\mu \nu}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)
$$

The algebra can be extended to include the generators for translations

$$
\begin{gathered}
P_{\mu}=-i \partial_{\mu} \\
{\left[J_{\mu \nu}, J_{\lambda \rho}\right]=-i\left(g_{\mu \lambda} J_{\nu \rho}-g_{\mu \rho} J_{\nu \lambda}-g_{\nu \lambda} J_{\mu \rho}+g_{\nu \rho} J_{\mu \lambda}\right)} \\
{\left[J_{\mu \nu}, P_{\rho}\right]=-i\left(g_{\nu \rho} P_{\mu}-g_{\mu \rho} P_{\nu}\right)}
\end{gathered}
$$

EXTENDING THE ALGEBRA

Further, we can add dilations

$$
x^{\prime \mu}=e^{\lambda} x^{\mu}
$$

Their generator

$$
\begin{gathered}
D=-x^{\mu} \partial_{\mu} \\
{\left[D, P_{\mu}\right]=i P_{\mu}}
\end{gathered}
$$

EXTENDING THE ALGEBRA

Additionally, we can include special conformal transformations of the form

$$
x^{\prime \mu}=\frac{x^{\mu}-x^{2} b^{\mu}}{1-2 b \cdot x+x^{2} b^{2}}
$$

The corresponding generators

$$
\begin{gathered}
K_{\mu}=-i\left(x^{2} \partial_{\mu}-2 x_{\mu} x^{\nu} \partial_{\nu}\right) \\
{\left[J_{\mu \nu}, K_{\rho}\right]=-i\left(g_{\nu \rho} K_{\mu}-g_{\mu \rho} K_{\nu}\right)} \\
{\left[P_{\mu}, K_{\nu}\right]=-2 i\left(J_{\mu \nu}-g_{\mu \nu} D\right)} \\
{\left[D, K_{\mu}\right]=-i K_{\mu}}
\end{gathered}
$$

CONFORMAL ALGEBRA

Together these new generators create the conformal algbra. We can extend these arguments to d dimensional Minkowski space and index our new generators with indices ranging from -1 to d

$$
\begin{gathered}
J_{M N}= \begin{cases}J_{\mu \nu}, & \mu, \nu=0, \ldots, d-1 \\
J_{-1, d}=D & \\
J_{-1, \mu}=\frac{1}{2}\left(P_{\mu}-K_{\mu}\right), \mu=0, \ldots, d-1 \\
J_{d, \mu}=\frac{1}{2}\left(P_{\mu}-K_{\mu}\right), \mu=0, \ldots, d-1\end{cases} \\
{\left[J_{M N}, J_{P Q}\right]=-i\left(g_{M P} J_{N Q}-g_{M Q} J_{N P}-g_{N P} J_{M Q}+g_{N Q} J_{M P}\right)}
\end{gathered}
$$

Isomorphic to $\mathfrak{s o}(2, d)$

REFERENCES

- Group Theory in Physics A Practitioner's Guide by Rutwig Campoamor-Stursberg and Michel Rausch de Traubenberg
- Groups, Representations and Physics, Second Edition by H F Jones
- Group Theory for Physicists, Second Edition by Zhong-Qi Ma
- A Physicists Introduction to Algebraic Structures by Palash B. Pal
- Relativity, Groups, Particles by Roman U. Sexl and Helmuth K. Urbantke

