
A P P E N D IX  I I I

GROUP ALGEBRA AND THE REDUCTION 
OF REGULAR REPRESENTATION

This appendix serves two purposes: (i) it gives a systematic introduction to the 
group algebra and the regular representation, to supplement the very brief treatment 
of Sec. 3.7; (ii) it provides the mathematical framework for the construction of 
irreducible representations of the symmetric groups studied in Chap. 5 and 
Appendix IV.

Given a finite group G =  {g (; i = l,2 ,...,w G} and the group multiplication rule 
9i9j =  9k> we introduced the regular representation matrices A by g ^ j  = gmA™ 
(Sec. 3.7). The right-hand side was interpreted as a “ formal sum”, since the original 
definition of a group does not involve the operation of taking linear combinations. 
In order to explore the detailed structure of the regular representation, it is 
necessary to be more precise about what we do.

I I I . l  Group Algebra

Although in “ pure” group theory one only deals with a single operation— the 
group multiplication— it is natural to introduce the idea of linear combinations o f 
group elements in group representation theory because the representation operators 
{U(g)} have such an algebraic structure. This can lead to powerful techniques for 
constructing irreducible representations.

Definition I I I . l :  For a given finite group G, the group algebra G is defined to
consist of all formal linear combinations of gh r =  g f ,  where g( e G and {r1} are 
complex numbers. Linear combinations of elements of the algebra are formed 
according to the obvious rule: mr +  fig =  g^ccr1 -f fiq') where a, ft are arbitrary 
complex numbers. In addition, multiplication of one element of the algebra (q) by 
another (r) is given by rq =  g ^ j r'q j  = grk(A j/V ) , where A^ are determined by the 
group multiplication rule as indicated.

The group algebra so defined has the mathematical structure of a ring. With 
respect to the operation of taking linear combinations, a group algebra obviously 
constitutes a linear vector space. In order to make this aspect of its properties 
explicit, we sometimes adopt the Dirac vector notation for elements of the algebra: 
\r )  e G. By definition, the original group elements {grf} form a basis on this vector 
space. It is possible to define an inner product on this vector space, <r|?> =  r fq 1 
for r ,q e G . With respect to this scalar product, the basis {#,} is by definition 
orthonormal. We shall not need to make use of this scalar product in what follows.

Let G =  {grf},jand r e G; the element r induces a natural mapping on the group 
algebra space G by the rule of group multiplication. This can be seen most 
clearly using the vector notation for elements of the algebra and interpreting the
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identity rgt =  g jg j i  =  gk rJ Akjt [cf. Eq. (3.7-1)] as 

( I I I - l- l)  r\g i y =  \gky r^A kji .

In general, for any q e G,

( I I I .1-2) r\q> =  r\g i ) q i =  \gk> [r^ A kj i qi]  .

Therefore, every element of the group algebra r also plays the role of an operator on 
the vector space G.

The dual role played by the elements of the group algebra— as vectors and 
operators— is the key feature of the regular representation and is primarily 
responsible for its remarkable properties.

Definition III.2 : A representation o f the group algebra G is a mapping from G
to a set of linear operators {U }  on a vector space V which preserves the group 
algebra structure (Def. III. 1): if g , reG, and U(q\ U(r) are their images, 
then U(aq +jftr) =  oiU(q) -I- /?G(r), and U(qr) =  U(q)U(r). An irreducible repre
sentation of G is one which does not have any non-trivial invariant subspace in V.

_ Because, by definition, elements of the group G form a basis in the group algebra 
G, it is straightforward to establish the following theorem.

Theorem I I I . l :  (i) A representation of G is also a representation of G, and vice 
versa; (ii) An irreducible representation of G is also irreducible with respect to G, 
and vice versa.

The construction of irreducible representations of the group algebra is facilitated 
by the possibility of taking linear combinations of group elements to form the 
appropriate projection operators.

III.2  Left Ideals, Projection Operators

The vector space of the regular representation D R is the group algebra space G 
itself. We know that every inequivalent irreducible representation D* is contained 
in Dr np times, where n  ̂ is the dimension of the //-representation [Theorem 3.8]. 
Therefore, G can be decomposed into a direct sum of irreducible invariant subspaces 
L£ where a =  1 ,2 ,...,n^. It is, in principle, possible to find basis vectors of G such 
that the first one lies in L} (always of dimension 1), the next n2 lie in L j ,... etc. With 
respect to such a basis, the regular representation matrices appear in block-diagonal 
form as shown, where all unfilled blocks consist of zero elements:

D 2

D "c

D"c /
\  n2 blocks * • • nc blocks /
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In the group algebra space G, the subspaces discussed above are invariant 
under left multiplication, i.e. L consists of those elements {r} such that p|r> = 
|pr> g  L for all p g  G provided |r> g  L. Hence, they are also called left ideals. Left 
ideals which do not contain smaller left ideals are said to be minimal. Clearly, 
minimal left ideals correspond to irreducible invariant subspaces. I f  one can iden
tify the minimal left ideals of the group algebra, all the inequivalent irreducible 
representations can be easily found.

A powerful method to identify the minimal left ideals is to find the corresponding 
projection operators. In Chap. 4 we discussed irreducible projection operators in 
general. However, the definition there requires knowledge of the irreducible 
representation matrices [cf. Theorem 4.2], hence it is not useful in the construction 
of these representations. We shall identify characteristic properties of projection 
operators on the group algebra space G, which can guide us in the construction of 
such operators for specific groups, such as the symmetric group S„ as discussed in 
Chap. 5.

If we denote the projection operator onto the minimal left ideal L£ by P£, then we 
anticipate the following:

(i) P£ | r> g  L£ for all r g  G, in short, P£ G = Ma

(ii) if |q) g  L£, then P£|q) =  \q>; hence

(iii) P£ r = r P£ for all r g  G; and

(iv) Y>»n =  ^ K bn

The commutativity condition (iii) can be established by applying each side of the 
equation to an arbitrary element of the algebra |s> g G  with |s> written in its 
fully decomposed form |s> = X|s£>, sJ g LJ, and comparing the results. The

\,b
other properties follow from the definition of projection operators.

In the following, we shall also denote the direct sum of all left ideals L£ with 
the same p by (recall that there are n^ such minimal left ideals), and the 
corresponding projection operator by P .̂ We have, therefore, G =  £  and

L" = Z L 2 .
a

III.3  Idempotents

The dual role of the group algebra elements as vectors and operators permits 
a particularly elegant realization of the projection operators discussed above. 
Let e be the identity element of the group G. Since e g  G, it has a unique 
decomposition e =  £  ê  where e L^.

Theorem III.2 : The projection operator P^ is realized by right-multiplication with 
e^ i.e. if we define P^|r)  =  \re f) for all r g  G, then P^ has all the properties 
discussed in the previous section.

Proof: (i) One must first show that P^ |r> = | r ^ )  defines a linear operator. This is 
left as an exercise.
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(ii) Let r e  G, then

r =  Y^rn where r f le h fi
n

r =  re =  =  £ re „

where re^ e because is a left ideal. Since the decomposition of r is unique, we 
conclude, P*r =  refl =  r^. This coincides with the definition of the required 
projection operator.

(iii) Let us compare the two operators P^q and qP^ for any q e G by observing 
their action on an arbitrary |r> e G,

P"q|r> = P"|gr> =  | (qr)e„) =  | q re ^

qP"|r> =  qlre^y =  |<?(re„)> = | qre„)

Therefore P“q =  qP" for all q e G.
(iv) Comparing the decomposition of ev, ev =  0 + •• • +  ev + 0 + •• • + 0, with 
ev =  eve =  ev E  en =  e*ei + "  ‘ +  e*ev +  evev+i + '» and making use of the
uniqueness of the decomposition again, we conclude evê  =  b^e^. This condition 
implies that P"PV = < 5 ^ .  QED

Definition III.3 : Elements of the group algebra ê  which satisfy the condition
e^ev =  b^e^ are called idempotents. Those which satisfy the above relation up to 
an additional normalization constant are said to be essentially idempotent.

The above discussion only required use of the uniqueness of the decomposition into 
direct sums and the fact that L/* are left ideals. Therefore, the theorem also applies to 
projection operators P£ (for the minimal left ideals) defined as right-multiplication 
by the corresponding identity operators e*.

Definition III.4 : An idempotent which generates a minimal left ideal is said to be a
primitive idempotent.

How can we tell whether a given idempotent is primitive or not? The following 
theorem provides the answer.

Theorem III.3 : An idempotent e{ is primitive if and only if e{re{ =  2re, for all reG ,
where Xr is some number (which depends on r).

Proof: (i) Assume that e is a primitive idempotent. Then the left ideal L = {re; 
r e G j  is a minimal ideal. Hence, the reajization of the group algebra on L is 
irreducible. Now, define an operator R on G by R \q) =  |qere) for all q e G. Clearly 
R \q) e L  and Rs =  sR for all s e G. Therefore R represents a projection into L; and, 
according to Schur’s Lemma, in the subspace L it must be proportional to the unit 
operator. We conclude that ere =  Are.

(ii) Assume ere =  Are for all re G ,  and e =  e' +  e" where e' and e" are both 
idempotents. We shall prove this leads to a contradiction. First, we have, by

(III.3-1)

We also have 
(II I .3-2)
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definition, ee' =  e'. Multiplying by e on the right, we get ee'e =  e\ hence e' =  Xe by 
our assumption. Using the last result in the defining condition for an idempotent, we 
obtain e' =  e'e' = /fee  =  X2e. Therefore X2 =  X, which implies X =  0 or X =  1. I f  
/  =  0, then e =  e if /  =  1, then e =  e'. In either case, e is not decomposable as 
assumed. QED

Finally, we need a criterion to distinguish among primitive idempotents those 
which generate inequivalent representations.

Theorem III.4 : Two primitive idempotents ex and e2 generate equivalent irre
ducible representations if and only if  exre2 ^  0 for some re G .

Proof: Let L x and L 2 be the two minimal left ideals generated by ex and e2,
respectively.

(i) I f  exre2 =  s 0 for some r e G , then consider the linear transformation 
qx e L i- ^ - » q 2 =  Qis e L 2. Clearly, for all peG ,  Sp\qx}  =  S\pqx> = \(pqx)s> = 
\p(Qis)} =  P\ths} =  pS\qx}. Therefore, acting on L 1? Sp =  pS for all p e G. 
According to Schur’s Lemma, the two representations D l (G) and D 2(G) (realized 
on L x and L 2 respectively) must be equivalent.
(ii) I f  the two representations are equivalent, then there exists a linear trans
formation S such that SDl (p) =  D 2(p)S (or, as linear mappings from L x to L 2, 
Sp =  pS) for all p e G. Now, |s> = e L 2, and = S\el el }  =  Sex\exy = 
exS\ex)  =  ex\s} =  l^ ^ ) .  Therefore s = exs. Since se  L 2, we also have s =  se2. 
Combining the two, we obtain exs =  se2 =  s, hence s = exse2. QED

Example: The Reduction of the Regular Representation of C3.

This will turn out to be a long-winded way of deriving the irreducible represen
tations of C3. But it is useful to work through a concrete example to gain a firm 
grip on the general technique. Since G = C3 is abelian, all the irreducible represen
tations are one-dimensional, and each occurs in the regular representation just 
once. The three elements of the group are (e,a,a~l ) and the group multiplication 
table is given in Table 2.2 (with b =  a~l ).

(i) The idempotent ex for the identity representation is, as always,

ex =  -(e  +  a +  a~l )

It is straightforward to show that gex =  exg =  ex for any g e G, exex =  ex, and 
hence exgex =  ex for all g e G. Thus if r =  g{r l e G, then exrex =  ex = Xrex.
(ii) Let e2 =  xe +  ya +  za~l be a second idempotent, then we must have 
exe2 =  ex(x +  y +  z) =  0, and e2e2 =  e2 =  xe +  ya +  za~l =  (x2 -I- 2yz)e + 
(2xy  -I- z2)a -I- (2zx -I- y2)a~l . Therefore, (a) x + y + z = 0, (b) x =  x 2 2yz, 
(c) y = z2 + 2xy, and (d) z = y2 + 2zx. Combining (a) arid (b), we obtain y2 + z2 + 
4yz -I- y -I- z =  0; whereas combining (d) and (c), we obtain 3( y — z)( y + z) + 
( y - z )  =  0 .
Three solutions emerge:

(1) x = 2/3 y = z = - 1 / 3
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(2 ) x =  1/3 y =  ( l /3)e l2*/3 z =  ( l /3)e~i2*/3

(3) x =  1/3 y =  ( l /3)e " l2*/3 z =  (l /3)e i2*/3

Do all these solutions correspond to primitive idempotents? Let us first check on 
e' =  (2 e — a — a " 1) /3: e'e =  ee' =  e\ e'a =  ae' =  ( — e + 2a — a " 1) /3, e'a~l =
a~l e' =  ( — e — a + 2a- 1)/3, e'ee' =  e\ and e'ae' =  ( — ee' + 2ae' — a~l e')/3 =  e'a.
The last result indicates that e' is not a primitive idempotent (cf. Theorem III .3). 

Next, let us try
e+ =  1/3 [e +  ael2n/3 + a~l e~l2n,3~\ ee+ =  e+e =  e+ 

ae+ =  e+a =  [ee~l27t/3 + a + a- 1el27t/3]/3  = e~l2n,3e+ 

e+a~l =  a~l e+ =  [ et l2n/3 + ae~l2n/3 + a-1] / 3 = ei2n,3e+ 

e+ee+ =  e+ e+ae+ =  e~l2n,3e+e+ =  e~i2n,3e+ 

e+a~l e+ =  &2n,3e+e+ =  ei2n/3e+

Thus e+ is a primitive idempotent. Similarly, one can show that =  (e +  ae~l2n/3 +
a~ i e*2tt/3^/3 is a primitive idempotent.

Do e+ and generate equivalent representations?

Applying Theorem III.4, we find: e+ee_ = e+e_ = 0 , e+ae_ =  t~ i2n,3e+e- =  0, 
and e+a~l e_ = el2*/3e+e_ =0 .  Hence, e+, generate inequivalent representa
tions. Now, let us evaluate the representations. The left ideal L 2 is spanned by 
e+; hence e\e+) =  \e + ) l, a\e+) =  \ae+) =  \e+)e~ i2n/3, and a~1\e+) =  \a~l e+} =  
|e+>ei27t/3. Thus, the representation elements corresponding to (e,a,a~l ) are 
( l,e " i27t/3, el27r/3). Similarly, the left ideal L 3 spanned by e_ gives rise to the 
representation (e,a,a~l ) -► ( l,e l2*/3, e~l27t/3). To summarize, we exhibit the results 
in Table III. 1.

Table I I I . l  IR R ED U C IBLE  
REPRESENTATIONS OF 

THE GROUP C 3

n e a f l " '

1 1 1 1

2 1 e -«2n/3 g«2n/3

3 1 g«2n/3 e -«2n/3

It is straightforward to verify that these representation elements satisfy the 
orthonormality and completeness relations [Theorems 3.5 and 3.6] as they should. 
We note in passing that the non-primitive idempotent e' encountered earlier is equal 
to e+ -he-. It is therefore indeed decomposable.

III.4  Complete Reduction o f the Regular Representation

Let us summarize the situation: (i) the group algebra can be decomposed into 
left ideals L M with p running over all inequivalent irreducible representations of
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the group; (ii) each 1/  is generated by right multiplication with an idempotent e 
which satisfies the conditions, e^ev =  d^e^, Y ,en =  ^  0*0  each ^  (and the cor-

responding ef) can be decomposed into nfl minimal left ideals LJ, a =  l , . . . ,n^,  
with^ associated primitive idempotents e£ which satisfy e% r =  dab Xr e* for all 
r e d .  Therefore, the problem of the complete reduction of the regular represen
tation of a group G is reduced to that of identifying all the inequivalent primitive 
idempotents. In Chap. 5 and Appendix IV, this technique is applied to the sym
metric group S„ to derive all the inequivalent irreducible representations.

In closing, we mention that the left ideals I / ^  =  £ L j J  which are associated

with definite irreducible representations p are, in fact, minimal two-sided ideals. A 
two-sided ideal T is a subspace of G such that if  r e T then qrs e T for all q ,seG . 
A minimal two-sided ideal is one which does not contain smaller two-sided 
ideals. I f  T is a minimal two-sided ideal and it contains a minimal left ideal L£, 
then it contains all the other minimal left ideals corresponding to the same /i, and 
only these. This interesting property is a natural consequence of Theorem III.4 
as can be seen from the following observation. I f  L£ and Lg correspond to 
equivalent irreducible representations then there exists an element of Gs ^  0 such 
that s =  e^sel (cf. part (ii) of the proof of Theorem III.4). Thus if  r e  L£ and 
L£ is in T, then rs =  rse£ is both in L£ and in T. It  follows then that L£ is in 
T. Conversely, if L£ and L vb are both in T, there exists an s such that Lgs =  L£ 
and they generate equivalent representations. (Show that if  s does not exist, then 
T cannot be minimal.) We see, therefore, the complete reduction of the regular 
representation corresponds to decomposing G first into minimal two-sided ideals 
I / ,  one for each inequivalent irreducible representation, and then reducing LM into 
minimal left ideals LJ.


