CHAPTER 10

INTRODUCTION TO GROUP THEORY

INTRODUCTION

Thus far in this book we have discussed objects (vectors) which combine in a
way that is essentially additive, i.e., they combine commutatively. In investi-
gating the properties of these objects we were led in a natural way to consider
transformations which changed one vector into another. We observed that these
transformations themselves could be considered as constituting a vector space.
However, since the transformations took one vector into another, they could
also be combined in a way which was essentially multiplicative in nature; i.e.,
the commutative law did not in general hold. In this concluding chapter we
want to introduce some of the techniques by which one can study collections of
objects which are characterized in terms of their multiplicative properties. Such
a collection is called a group.

10.1 AN INDUCTIVE APPROACH
Let us first recall the definition of a group given previously in Chapter 3:
Definition 10.1. A group, G, is a collection of objects which can be com-
bined via a closed operation, which we will denote by a dot. By a closed
operation we mean one such that if @, b€ G, then a-b€ G. The operation
must furthermore satisfy the following three axioms:
1) a-(b-¢c) = (a-b)-c (associative law)
2) there exists an identity element, e, such that a-e = a for alla€G.
3) forevery a € G, there exists an inverse element, a™', such thata-a™' =e,.
Note that in this definition we have required that the identity be only a right
identity and that the inverse be only a right inverse. However, because of the
other group properties, it follows that e is also a left identity (¢e-a = a) and a~!
is also a left inverse (a™'-a = ¢).
To show this we note that since a~' € G, it must have an inverse, which we
denote by (a~')~'. According to axiom (3),
@ (@' =e. (10.1)
But by Axioms (1), (2), and (3) we may write Eq. (10.1) as
e=a @) = (a0 @) = [a a-a]- a)
=[(@a"a)-a”']-(a7")"" = (a7"-a)-[a"" (@) 7'].

580
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Using Eq. (10.1) again, we have
e=(a"a)-e=a'(ae.
By Axiom (2), a-e = a, so finally we obtain
e=a'a. (10.2)

Hence a™' is a left inverse as well as a right inverse. This result contrasts with
the situation for general linear operators, where the existence of a right inverse
does not necessarily imply the existence of a left inverse.

Using this result, we can immediately see that e must be a left identity. By
Axiom (2), e is a right identity, that is,

ae=a,

but according to Eq. (10.2), this is equivalent to

a-(a'a) =a.

Using Axioms (1) and (3), we find that
a=a(a'a) =(aa')a=e-a,

that is, we have

so e is also a left identity.

Definition 10.2. A group, G is said to be abelian if a-b = b-a for any
a, beG,

Definition 10.3. A group with n elements is called a group of order n.

In the first three sections of this chapter, we shall consider only finite groups
(n < oo) in order to fix our thinking on the most basic aspects of group theory.
In subsequent sections, we shall have some occasion to mention infinite groups;
when we do, we shall always state explicitly that this is the case.

Let us now introduce a few groups, starting with the simplest ones.

Example 10.1. The most uncomplicated group which one can imagine is the
one element group: {e}. It obviously satisfies all the requirements of Definition

10.1. It is not a particularly interesting group.

Example 10.2. Next we have the group with two distinct elements: {e, a}.
Now a-a must belong to this group according to Definition 10.1. Thus we
must have either a-a = a or a-a = e. The former is immediately ruled out by
the fact that since a has an inverse, a-a = a implies that a = e. This contradicts
the assumption that the group has two distinct elements. Thus a-a = e. The
integers {1, — 1} form a group with this structure if they combine via ordinary
arithmetical multiplication (¢ = 1, a = —1). Also, the integers {0, 1} form a
group with addition modulo two as the rule of combination: 040 =20, 0 +
1=1,140=1,14+1=0. In this case, e = 0, a = 1. Another structure
of this type is the group of permutations of two objects; e is the permutation
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which leaves the order of the objects unchanged, and a is the permutation which
interchanges them.
This last example leads naturally to the following definition.

Definition 10.4. Two groups are said to be isomorphic if there exists a one-
to-one operation-preserving correspondence between them. That is, sup-
pose that G has elements a, b, ¢, - - -, and G’ haselements a’, b/, ¢/, --- If
{a-b)! = (a’ X b') forall a, b€ G and a’, b’ € G, then the groups {G, -} and
{G’, X} are said to be isomorphic.

Evidently the three groups mentioned in Example 10.2 are isomorphic to
each other: once we know everything about any one of them, we know every-
thing about all of them.

Example 10.3. Let us now move on to groups with three distinct elements,
which we denote by {e, a, b}. From the axioms we see immediately thata-b =
e, forif a-b = a or a-b = b, then the existence of an inverse would imply b = e
in the first case and a = e in the second case, which is contrary to our assump-
tion that this group has three distinct elements. What about the product a-a?
Clearly, a-a = a implies that a = e, so either a-a = e or a-a = b. But

aa=e=——7a{ab)=b—a=0b,

since a-b = e. But this, too, is impossible because we have assumed three dis-
tinct elements. Thus @a-a = b. Similarly b-b = a. Adopting the obvious no-
tation for quantities like a-a, we may write our three element group as {e, a, a?},
with @*> = e. This is the only possibility for the three-element group. The pos-
tulates of Definition 10.1 restrict us to just one form. A simple example of this
group is the set of three cube roots of unity, under ordinary multiplication of
complex numbers.
Clearly, it is always possible to construct a group of the form {e, a, a?, a°,
.-, a"'} for any n; the basic model of such a group is the set of n nth roots
of unity. In general, consider an arbitrary group, {G, -} and let a€ G. Form
the sequence a® = e, a, a* ---,a’, - - -, and let n be the smallest nonzero integer
such that a" = e. Then the element a is said to be of order n (if n is infinite,
we say that a is of infinite order). In this case, all the elements 4°, d', @?, - - -,
a"~! are distinct, for if @' = a’ (i < n, j < n), then a"~/' = e. But since 0 <
i< nand 0 < j< n,li —j| < n, which contradicts our assumption that n was
the smallest nonzero integer for which a" = e.

Definition 10.5. A group whose elements can be written as {e, a, a?, - - -,
a""'} is called a cyclic group (of order n).

Thus far, all our groups have been of the cyclic type, so it is natural to ask:
Are all groups cyclic? The answer is provided by the following example.

Example 10.4. We apply the methods already used to the possible groups of
order four, which we denote by {e, a, b, c}. Let us begin by assuming a* = b;
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then we can write the corresponding group as {e, a, %, ¢}. By an argument used
before, a-c must equal either e or a>. If a-¢c = a*, we conclude that ¢ = ¢,
which contradicts the assumption of four distinct elements. Thus a-¢c = e, so
it begins to look like we are obtaining a cyclic group. We therefore look at a’.
Suppose that a®* = e; then @® = a-c, so a* = ¢, which is impossible. If a* = a,
then a*> = e, which again is impossible. Similarly, if a® = &?, a = e, which is
impossible. Thus @®> = ¢, and we indeed have found a cyclic group of order
four: {e, a, @®, a’}, with a* = e.

The same result is obtained if we assume that a* = ¢, except that it then
follows by the same reasoning as above that b = a®. As mentioned above, a* =
a is not permissible. However, there remains the possibility that a* = e. Clearly,
either a-b = eora-b =c. If a-b = e, then a*-b = a; since a* = e, we have
a = b, which isimpossible. Thusa-b = ¢. By the same process of elimination,
we find that b-a =c¢,a-c =b and cca = b. Since a-b =c and b-a = ¢, we
have

(b-a)-(a-b) =c-c=b-a*-b=c.

But a* = e, so we have immediately b* = ¢?, which means that ¢? cannot equal
b or c. Thus either ¢ = e or ¢ = a. We first examine the case ¢> = a. Then
a-c* =a’* =e, but a-c = b so we have b-c = e, which gives us explicit expres-
sions for the products of all elements of the group. We summarize by writing

a=e, V=c=a,
bc=cb=e,
a-b=b-a=c, ac=ca=hb. (10.3)

We now want to know if this group of order four is different from the cyclic
group of order four which we have already found several times. A very con-
venient way of analyzing simple finite groups is by means of a multiplication
table. We illustrate it by using the cyclic group of order four:

alal|blcle (10.4)

The meaning of this table is simple: in the ij-box one writes the product of
the ith element of the group times the jth element. The reader can check for
himself that this table represents accurately the fourth-order cyclic group first
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discussed in Example 10.4. Now what about the group whose multiplicative
properties are given by Egs. (10.3)? We have for the multiplication table

alale|c|bd (10.5)

This looks completely different from the table for the fourth-order cyclic group.
However, it may nevertheless be isomorphic to the fourth-order cyclic group.
This will be the case if we can relabel the elements in such a way that the
multiplication table is the same as that of the fourth-order cyclic group. If in
Table (10.5) we redefine the elements according to

e—>e, a—b',
b—a, c—>c,

then Table (10.5) becomes

el el al bl cl

a |\b | |¢ (10.6)

Since Table (10.6) is the same as Table (10.4), we still have not found a group
with a multiplicative structure different from that of the cyclic group of order
four.

However, in the class of four-element groups, one possibility remains. We
have been forced to conclude that a* = e, a-b =¢, b-a=c,a-c =b,c-a=0>b,
and b* = ¢*. When we let b* = ¢* = a, we were led back to the cyclic group.
There remains, however, the choice * = ¢* = e. Then

ab=c=—a b =cb=—cb=a,
and similarly

ba=c=—ba=bc=bc=a.
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This completes the multiplication table:

alalelc|b (10.7)

b|lb|lcle|a

clecjblale

The reader can check that there is no rearrangement of these elements which
will give the Table (10.4). Thus we have finally found a noncyclic group.
Note, however, that it is an abelian group; this is reflected in the fact that the
array in Table (10.7) is symmetric with respect to the diagonal. This group is
called the four-group. A simple realization of the four-group is the set of all
transformations of a rectangle which leave the rectangle’s orientation in space
unchanged (remember that in a rectangle the right and left sides are indistin-
guishable, as are the top and bottom sides). If the rectangle sits on an xy-plane
with its center at the origin, there are four such transformations: (i) the identity
transformation, (ii) rotation through 180° about an axis perpendicular to the
rectangle and passing through its center, (iii) reflection through the x-axis, and
(iv) reflection through the y-axis. Note that we omit rotations through 360°,
540°, etc., since they just duplicate the transformations (i) and (ii) above.
Figure 10.1 illustrates the configuration. We leave it to the reader to show
that this is indeed a group and that its multiplication table is the same as that
given in Table (10.7).

From Table (10.7) it also appears that the elements {e, a} of the four-group
form a group by themselves (e-e = e, e-a =a, a-e = a, a-a = ¢), as do {e, b}
and {e, ¢}. This leads to the following definition.

Definition 10.6. A set of elements H, which is contained in G, is said to

be a subgroup of G if

i) the product of any pair of elements in H is in H,
ii) if a€ H, then a™'€ H.

_____ R U S
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Any subgroup is also a group because its elements are already in G, and
hence obey the associative law; moreover, a, a~' € H implies that a-a~' = e also
belongs to H. Clearly any group is a subgroup of itself, and the identity ele-
ment is a subgroup of any group. As mentioned above, the four-group has
{e, a} as a subgroup, as well as isomorphic subgroups {e, b} and {e, c}. Clearly,
in any group, G, the collection {e, a, @, - - -, a"~'}, where n is the order of a
and a € G, is an abelian subgroup of G.

Another interesting feature of Table (10.7), which it shares with all the
other multiplication tables written above, is the fact that each row (or column)
contains each element of the group once and only once. This is not accidental;
we have in fact the following result.

Theorem 10.1. If G is a group of order n, with elements e, a,, a3, - -+, a,,
then every element of G occurs once and only once in the sequence

eaiv aa;, *+ -, aa;,
for any i, and similarly for
ae, aa,, *+-*,ad,.

Note that in the statement of this theorem we have omitted the dot in de-
noting the product of group elements. We shall do this throughout the chapter,
except when this omission might cause confusion.

Proof. 1f some element occurred twice, we would have a,a, = a,a;; this would
imply a, = a,, contrary to our assumption of distinct group elements. Since
there are n elements in the sequence and no element occurs twice, each element
occurs once and only once. This explains the above mentioned structure of the
group multiplication table. This very simple looking theorem is actually of
central importance in the proof of most of the results of this chapter.

One could continue inductively, in the manner of this section, developing
the groups of order five, order six, etc., but this would not be very instructive.
We may remark, however, that not all groups are abelian like the ones which
we have discussed so far; at order six one finds the first nonabelian group, the
group of permutations of three objects. It should also be emphasized that not
all groups have a finite number of elements. For example, the integers under
addition (e = 0, n~' = —n) form an (abelian) group of infinite order; the set
of all unitary n X n matrices is an infinite nonabelian group.

10.2 THE SYMMETRIC GROUPS

By way of further illustrating group structure, we now discuss one of the most
important groups of mathematics and physics, the group of permutations on n
objects, called the symmetric group, S,. The structure of the groups S, is extra-
ordinarily rich, and in this section we will consider only the simplest aspects of
these groups.
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There are n! permutations of n objects, so S, is of order n!. A typical one
of these n! elements will be denoted by

_(1 2 3 - n)
p'_‘ ’
m m, ms; --- m,

where the set {m,, m,, ms, - - -, m,} is some arrangement of the first n integers.
This symbol means that 1 is replaced by m,, 2 by m,, etc. For example, the

permutation
p:<1 2 3 45 6)
6 5 4 3 2 1/

acting on the arrangement {1 2 3 4 5 6} produces the arrangement {6 5 4 3
2 1}; pactingon {2 5 3 4 6 1} produces {5 2 4 3 1 6}. In this example, 1
and 6 go into each other in a closed manner: 1 is replaced by 6, and 6 is re-
placed by 1. Such a structure is called a cycle and will be written simply as
(16). Similarly, the above example contains the cycles (25) and (34). We can
thus write

(123456

6 S 4 3 2 1)2(16)(25)(34)'

When we perform such a factorization, we say that we factor the given permu-
tation into disjoint cycles, or cycles having no elements in common.

Of course, not all cycles contain only two elements. A cycle containing /
elements is called an /-cycle, or a cycle of length /. For example, the permuta-

tion
(l 2 3 45 6)
6 4 1 2 5 3
can be written as a disjoint product of a three-cycle, a two-cycle, and a one-
cycle:
1 2 3 4 5 6)
= (163)(24)(5) .
<6 4 1 2 5 3 (163)(24)(3)

The three-cycle, (163), is to be read as “1 is replaced by 6, 6 is replaced by 3
and 3 is replaced by 1.” This structure closes on itself just like a two-cycle.
Note that

(163) = (316) = (631) ,
but
(163) =+ (136) .
Thus as the name “cycle” suggests, if one writes the elements of a cycle clock-
wise around a circle, one can start performing the sequence of replacements at

any element and proceed clockwise back to the starting point. However, if one
proceeds in a counterclockwise direction, one gets a different permutation.
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The two-cycles, usually referred to as transpositions, are especially impor-
tant because any cycle (and hence any permutation) can be written as a product
of two-cycles (which are not, in general, disjoint). For example,

(163) = (13)(16) ,

since when (163) acts on say {136}, it produces {613}, and (16) acting on {136}
produces {631}, which in turn becomes {613} when acted on by (13). Here we
adopt the convention that when a string of cycles is written, the one on the right
acts first, and the one on the left acts last. If the cycles are disjoint, it clearly
makes no difference in which order they act, but if they are not disjoint, the
order is crucial. For example,

(163){136} = (13)(16){136} = {613},
whereas

(16)(13){136} = {361} = (136){136} .
Also, the decomposition into two-cycles is not unique. In the above case,

(163) = (13)(16)
and
(163) = (316) = (36)(31) .
In general, a decomposition of an n-cycle into transpositions can be written as
123 -« n=01An(1 n—1) .- (13)(12),

as may be readily verified. The parity of a permutation is defined to be (—1)¥,
where N is the number of transpositions in a given permutation. If Nis odd, we
speak of an odd permutation; if N is even, we speak of an even permutation.

If now by a product of permutations, we mean simply the two permutations
carried out successively, then obviously the product of two permutations is
another permutation. All the other group axioms are trivially satisfied so the
collection of all permutations on n objects is a group, and this group will con-
tain n! elements. By our above discussion, it is easily seen that only S, and S,
are abelian groups. S, (n > 3) is nonabelian. For example, (12) and (13) be-
long to Sy, and (12)(13) = (13)(12).

Note that in our convention for writing a permutation, we have quite a bit
of freedom in ordering; in the permutation symbol, only the vertical relation-
ship matters, not the horizontal. Thus

(123456>=<654321=426315
6 5 4 3 2 1 1 2 3 4 5 6 351 4 6 2/°

Also, we have used numbers in our symbols merely for convenience (there is an
arbitrarily large number of them). One could equally well use apple, pear,
orange, - - -, or Greek, Russian, French, .- -, instead of one, two, three, - - -
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Example 10.5. Thesimplest symmetric groups are Sy, which contains the single
element e, and S;, which contains the elements e and (12). More interesting is
S;. Its six elements are

e, (12), (13), (23), (123), (321) .

As the reader can easily show, the multiplication table for S; is

e | (12| 13)| @3] (123 (321)

e e (12)| (13)] (23)| (123)| (321)

(12)| (12)] e | @21](123)] @3] (3)

(13)| (13)| (123)| e | (321){ (12)] (23)

23) @3] @2n] 23] e (13)] (12)

(123) | (123)| (13)] (23)] (12)]| (321)| e

G2y [ G2 | (23| 2| a3)| e | (123

If we make the identifications e =1, (12) = 4, (13) =B, (23) =C, (123) =D,
(321) = F, then this table is identical to the one given in Table (3.4). Note
that this group has quite a few subgroups. Clearly {e, (12)} is a subgroup of
order two, and {e, (13)} and {e, (23)} are isomorphic to it. {e, (123), (321)} is
a subgroup of order three, which is isomorphic to the cyclic group of order
three discussed in Example 10.3. Inspection of the multiplication table shows
that S; is a nonabelian group.

One of the most remarkable facts about S, is embodied in the following
theorem of Cayley.

Theorem 10.2. Every group G of order n is isomorphic to a subgroup of
Sh.

Proof. The proof of this result is based on Theorem 10.1. Call the elements
of G ay, a;, a3, - -+, a,. Let a, be any element of G. Then according to Theorem
10.1, the collection {aa,, ajaz, - -+, a;a,} is a rearrangement of {a;, a,, - -+, a,}
in which every element occurs once and only once. Therefore, let us make the
correspondence, which is clearly one-to-one,

a:—>Pa,=<al G4 e a").
a;a, a;a, * -+ a,a,
Similarly, for a; € G,

PN _ ( a a, -+ a, )
J aj = .
J a,a, q;a, * -+ aa,
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For the element of G which is given by the product a;a;, we will have

aa;—> P, :( “ @ v d )
a,a;a, a,a;a, - -+ a,a;a,
The crucial point in demonstrating that we have an isomorphism is to show
that P, P, = P, .. This result is easily obtained—it is merely an exercise in
notation. The reader should keep this in mind as he plows through the mani-
pulations which follow.

We have already remarked that the horizontal ordering of permutation
symbols is unimportant. For example,

(m a, ay - an>_(a; a, a - az)
a;a, a;a; a;as - -+ a,a, a;as a;a, a;a, * -+ a;a;

In other words, we can rearrange the top row in any way we please provided
we make a similar rearrangement of the bottom row. Therefore, since {a;a,,

a;a, -, a;a,} is a rearrangement of {a,, a,, - - -, a,}, we may write
Pg___(a, a; -+ a,,>=<aja, aa, - a,a,,)
! a,a, a;a, -+ - aa, a;(a;a) a;(a;a,) -+ a;(a;a,)
:<a,-a| aa, --+ aa, )
a,a;a, a;a;a, -+ a;a;a,
Thus
P, P, :_(al'al aa, -+ aa, ><al a :--- a, )
i J
! a;aa, a;a;a, - - a;a;a,/ \a;a, a;a, -+ aa,
__< a; a, -:-+ a, )
- ’
a,a;a, a;a;a, - aaa,
since the multiplication can now be determined simply by inspection. Thus
Pﬂ’- aj = Paiﬂ/ ’

and the proof of isomorphism is complete.

This result encompasses the remark made in Example 10.5, where it was
noted that Sy has a subgroup {e, (123), (321)} which is isomorphic to the group
of order three. Regarding the groups of order four, we take first the four-group.
Using the multiplication table of Table (10.7), we find immediately the corre-

spondence
r=( ). oe=(° ).
e c a b

P00 ), po(t e,
b e a c b e

by using the rule of correspondence of Cayley’s theorem. In the compact cycle
notation, these can be written as

o 8 8 R
o O O
Q o 8

[SES RS TS

P, =e, P, = (ea)(bc) , P, = (eb)(ac) , P, = (ec)(ab) .
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It is a simple matter to check that the multiplication table of Table (10.7) is
obeyed.

In the case of the cyclic group of order four, we find, using Table (10.4),

P = (e a b c) P = (e a b c)
¢ e a b ¢/’ ‘ a b ¢ e’
P — (e a b c) P = (e a b c)
b b ¢ e a/’ ¢ c e a b/’
As above, this can be written as
P,=e, P, = (eabc) , P, = (eb)(ac) , P, = (echa) .

This case gives us our first example of a four-cycle.

In looking at these two illustrations, one notes that except for the identity,
all the permutations leave no symbol unchanged. A subgroup of S, with this
property is called a regular subgroup or a subgroup of regular permutations. It
is clear from the construction used in proving Theorem 10.2 that every group of order n is
isomorphic to a regular subgroup of S,,.

We close this section with a few results about the regular subgroups of S,,.

Lemma. In a regular subgroup, no two elements take a given symbol into
the same symbol.

Proof. Suppose that p, and p, (p; # p,) belong to a regular subgroup and that
both p, and p, take a into b. But then p,p,™' (* e) leaves b unchanged. How-
ever, p,p,”" also belongs to the regular subgroup (since the subgroup is closed),
which contradicts the assumption that the subgroup is regular and hence that
every element (except the identity) changes all the symbols.

Lemma. In a regular subgroup, if we decompose a given permutation into
disjoint cycles, then each cycle must have the same length. For example,
in S, (12) (345) could not belong to a regular subgroup.

Proof. Suppose that p is an element of a regular subgroup which can be de-
composed into two cycles of length /, and /, with I, < [,, Now since a cycle of
length / must satisfy (a,a, -+ - a)' = e, p"t leaves all the symbols contained in
the first cycle unchanged. However, p't must change some of the symbols con-
tained in the second cycle (all of them, in fact), since if we have a cycle of
length 2 > [, then (a,a, - - - a;)"" # e. Hence p't, which is a permutation belong-
ing to the subgroup containing p, changes some symbols, but not others. This
contradicts our assumption that p belongs to a regular subgroup.

This lemma is illustrated by the results just obtained for the regular sub-
groups of S, corresponding to the four-group and to the cyclic group of order
four. Using thislemma, we can also prove the following very powerful theorem.

Theorem 10.3. Every group {G, -} of order n is cyclic if n is a prime
number.
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Proof. By the previous lemma, the subgroup of S, to which G is isomorphic
must contain elements which are either a product of n one-cycles or just one n-
cycle, since n is prime. The identity is a product of n one-cycles, so G consists
of an identity, plus n — 1 elements which correspond isomorphically to n-cycles.
Call these elements a,, as, - - -, a,. Now since q, corresponds to an n-cycle, each
element of the sequence {a,, d?, aj}, - - -, a}~'} is distinct (note that a} = e), since
if the elements were not all distinct, say af = a}, then we would have af" = e for
m < n, which is impossible because a, corresponds to an n-cycle. Thus the dis-
tinct elements {e, a;, a3, - - -, @]~} exhaust all elements of the group. That is,
we have a cyclic group of order n. Clearly this argument works for any ele-
ment a;.

For example, the group of order three is isomorphic to the subgroup {e,
(123), (321)} of S;. It is easily checked that

(123)' = (123) (123)2 = (321), (123)* =e,
so we could write our group as
{e, (123), (123)% .
But also,
(321)' = (321), (321)% = (123), (321)* =e,
so we could equally well reorder the group and write it as
{e, (321), (321)% .

Theorem 10.3 tells us, among other things, that although we might be tempted
to imagine that for n large the number of groups of order n is also large, this
is in fact not the case. There is only one group of order 97, namely, the cyclic
group.

10.3 COSETS, CLASSES, AND INVARIANT SUBGROUPS

Having discussed in some detail a special category of finite groups, let us now
look at some of the most important general properties which are common to
all groups.

Definition 10.7. Let 4 be a subgroup of G, with elements e, a,, a3, -+ -, an
(m < n, where n is the order of G) and let b€ G, but b¢ 4. Then the m
distinct elements be = b, ba,, ba,, - - -, ba,, form a left coset of A, which we
denote symbolically by bA4. Similarly, b, a,b, asb, - -, ayb form a right
coset, Ab.

The notation b4 is just a shorthand for the collection of objects formed by
multiplying every element of 4 on the left by b. Note that a coset is not a sub-
group, since it clearly cannot contain the identity element. If ba, = e, then
b = a;!, which implies b € 4, contrary to the assumption in Definition 10.7.
In fact, b4 contains no elements of A4 at all, for if ba, = a,, then b = a;a;’,
and hence b € A, again contrary to assumption.
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Lemma. Two left cosets of a subgroup A either contain all the same ele-
ments or else have no elements in common.

Proof. Let xA be one coset of 4 and yA4 be another. Suppose that xa; = ya;;

then y~'x = a,a;’", so y~'x € A. Thus y~'x applied to the group 4 must just be
a rearrangement of A4, according to Theorem 10.1. Hence 4 can be written

s {y~'xa,, y~'xa,, -+, y“'xa,}, and the collection {y(y~'xa,), y(y~'xa;), -+,
y(y~'xa,)} must be identical with yA4 (the ordering of the elements of yA is im-
material). But this collection is just {xa,, xa,, - - -, xa,}, so it is equal to xA4.

Hence x4 and yA4 are the same, and we conclude that if two cosets have one
element in common, they have all elements in common. This is what we set
out to prove.

Theorem 10.4 (Lagrange’s theorem). The order, g, of the group G is an
integral multiple of the order of any subgroup, 4.

Proof. Consider all the distinct cosets of 4, which we denote by b4, b4, - -+,
b, 1A. (It is purely for convenience that we take the number of cosets to be
¢ — 1.) Let h be the order of A; thus there are /& elements in each coset. But
every element of G must occur either in 4 or in one of its ¢ — 1 distinct cosets,
and no element can appear more than once. Hence A+ (¢ — 1)h = ph = g,
which is what was to be shown.

We call g the index of the subgroup 4. From this result it is apparent
that the order of any element of a group must be an integral divisor of the order
of the group, since each element, a, of order v generates a subgroup {e, a, &%,

-, a"""} of order v. This leads us to conclude again, as in Theorem 10.3, that
the groups of prime order must be cyclic.

Example 10.6. Consider S;, whose elements are e, (12), (13), (23), (123), and
(321). The left cosets of the subgroup {e, (12)} = 4 are:

(13)4 = {(13), (13)(12)} = {(13), (123)} ,
(23)4 = {(23), (23)(12)} = {(23), (321)} ,
(123)4 = {(123), (123) (12)} = {(123), (13)} ,
(321)4 = {(321), (321)(12)} = {(321), (23)}

Thus there are two distinct left cosets of 4:
(13)4 = {(13), (123)}, (23)4 = {(23), (321)} .
We may write symbolically
Sy =4+ (13)4 + (23)4
or equivalently,
Sy = A+ (123)4 + (321)4
Note that the right cosets of 4 are not the same as the left cosets:
A4(13) = {(13), (12)(13)} = {(13), (321)},
4(23) = {(23), (12)(23)} = {(23), (123)},
and similarly for 4(123) and 4(321).
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Another subgroup of S;is B = {e, (123), (321)}. Its left cosets are:

(12)B = {(12), (12)(123), (12)(321)}
= {(12), (23), (13)} 5

(13)B and (23)B must equal (12)B according to the previous lemma. It also
follows from that lemma that the right coset B(12) is equal to (12) B. Thus there
is only one distinct coset of B. In this case we may write symbolically

S, =B+ (12)B.

An important relationship which can exist between group elements is that
of conjugacy.

Definition 10.8. An element b€ G is said to be conjugate to a € G if there
exists some x € G such that

b = xax"'.

This relationship of two group elements is analogous to that of similarity
between matrices, which was discussed in Chapter 3. According to this defi-
nition, a is clearly conjugate to itself and if a is conjugate to b, then b is con-
jugate to a. We also have the following simple result.

Lemma. If a is conjugate to b and b is conjugate to ¢, then a is conjugate
to c.

Proof. Since a is conjugate to b, there exists x € G such that a = xbx™'; simi-

larly, there exists y € G such that b = ycy~!. Combining these two results, we
find that

a = x(ycy )x7' = xycy~'x7! = (xy)e(xy)”',
since (xy)~' = y~'x7' as may be checked by direct multiplication. But xy € G,
SO a is conjugate to ¢, as required.
Thus the relation of conjugacy is reflexive, symmetric, and transitive. This
suggests the following definition.

Definition 10.9. All the elements of a group which are conjugate to each
other form an equivalence class, referred to hereafter simply as a class.

According to this definition any two elements of a class must be of the same
order. For suppose that a is of order n (a" = e) and that b is conjugate to a
(b = xax~' for some x€ G). Then b" = (xax™')" = xax~' xax™' - - xax™' =
xa"x™' = xex™' = e. We also have b™ = xa"x~' for any m < n. Now if b" =
e, it follows that a" = e, which is impossible since a is of order n and m < n.
Thus n is the smallest integer for which " = e; that is, b is also of order n.
Obviously, the identity forms a class by itself. For any other group element,
a, we form the sequence

eae”' = a, a,aa;', ayaay', - -+, a,aa;’ .
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The elements of this sequence are all conjugate to each other (of course some
elements may occur more than once), and hence form a class. In this manner,
the elements of any group can be divided into classes. For abelian groups, this
procedure is very simple: every element constitutes a class by itself, since all
the elements commute.

Example 10.7. Consider once again the group S;: {e, (12), (13), (23), (123),
(321)}. The respective inverses are e, (12), (13), (23), (321) and (123). Of
course, e constitutes a class by itself. Now let us conjugate (12) by all the ele-
ments of S;:

) e(12)e”! = (12),

—

i) (12)(12)(12)" = (12),

iii) (13)(12)(13)~" = (13)(12)(13) = (13)(132) = (13)(321)
= (13)(31)(32) = (23),

iv) (23)(12)(23)7" = (23)(12)(23) = (23)(21)(23) = (23)(231)
= (23)(312) = (23)(32)(31) = (13),

v) (123)(12)(123)~" = (123)(12)(321) = (13)(12)(12)(321)

= (13)(321) = (13)(31)(32) = (23),
vi) (321)(12)(321)"' = (321) 1 (123) = (321)(12) (231)
(21)(2

2)(
3) = (321)(23) = (31)(32)(23)

Il
—
w
[\
—
—_

= (13) .

The above calculations illustrate some of the techniques that are useful in
the manipulation of cycles. In particular, we have repeatedly made use of two
important properties of cycles: (1) that the square of any two-cycle gives the
identity element; and (2) that one can order a three-cycle (or generally, an n-
cycle) in more ways than one to suit a given situation. Thus we conclude that
(12), (13), and (23) form a class. This leaves only (123) and (321) to place in
classes. We have

e(123)e™! = (123)
(12)(123)(12) 7" = (12)(13)(12)(12) = (12)(13) = (132) = (321) .
We need go no further, since we see that (123) and (321) are conjugate to each
other. They are therefore in the same class. Since this exhausts the elements

of the group, we have determined all the classes of S;, We summarize as
follows:

c1=e,
= {(12), (13), (23)},
= {(123), (321)} .
We remark here without proof that in the case of the permutation groups, the

division into classes corresponds always to the division according to cycle struc-
ture, just as in the above case. That means, for example, that in the case of
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S, the 4! = 24 elements fall into the classes:

XK
[

II

{( 2), (13), (14), (23), (24), (34)} ,

{(123), (321), (124), (421), (134), (431), (234), (432)} ,
{(12)(34), (13)(24), (14)(23)} ,

% = {(1234), (1243), (1324), (1342), (1423), (1432)} .

H

Now let H be a subgroup of G. The set H' = aHa™', where a € G, is also
a subgroup of G. For if x€ Hand y € H, axa~' and aya™' are two elements of
H’, But

(axa™')(aya™") = a(xy)a™

and since xy € H, a(xy)a™'€ H'. This proves that H’ is closed; the other group
properties of H’ may readily be verified. Evidently, if a € H, then H’ is just a
one-to-one mapping of H onto itself. H’ = aHa™' is said to be a conjugate sub-
group of Hin G.

Definition 10.10. If for all a € G, aHa™' = H, H is said to be an invariant
subgroup.

Under these circumstances, aH = Ha, so we arrive at an alternative formu-
lation: H is an invariant subgroup if the left and right cosets formed with any
a € G are the same. Thus the subgroup B of S; discussed in Example 10.6 is an
invariant subgroup. The subgroup 4 of S; is not invariant. Clearly, in any
group, the identity is an invariant subgroup, as is the whole group itself,

Definition 10.11. A group which has no invariant subgroups save the
whole group and the identity is a simple group.

Lemma. If His a subgroup of G, H is invariant if and only if it contains
the elements of G in complete classes; that is, if H contains one element of
a class, then it must contain them all.

Proof. Assume first that H is invariant; then forany x€ Hand a€ G, axa™'€
H. Hence if & is a class which contains x, all members of & are also in H,
by Definition 10.9. By the same argument, if y ¢ &’ (¥’ # &), all members
of &/ must also be in H. Thus H contains only complete classes and may con-
tain more than one class. In fact, since e always constitutes a class by itself,
only the most trivial invariant subgroup (the group consisting of the identity
alone) will contain just one class. Conversely, suppose that H contains only
complete classes. Then every x € H belongs to some class & ; furthermore,
every element of & is contained in H. This means that for any a € G, axa™' €
H. Since this argument holds for any x, H is invariant.

One of the most interesting results of group theory is that the cosets of an
invariant subgroup themselves constitute a group!
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Theorem 10.5. The collection consisting of an invariant subgroup H and
all its distinct cosets is itself a group, called the factor group of G, usually
denoted by G/H. (Remember that the left and right cosets of an invariant
subgroup are identical.) Multiplication of two cosets aH and bH is defined
as the set of all distinct products z = xy, with x€ aH and y € bH; the
identity element of the factor group is the subgroup H itself.

Proof. Consider any coset aH. Then since HH = H,
(aH)H = aHH = aH ; H(aH) = HaH = aHH = aH ,

so H is indeed the identity. Here we have used aH = Ha, which follows from
the fact that H is invariant. Now take any two cosets aH and bH. We have

(aH)(bH) = aHbH = abHH = abH ,

so the product of two cosets yields another coset. Finally, the inverse of aH is
clearly a~'H, since H is the identity and

(aH)(a™'H) = aa"'HH = HH = H .

This completes the proof that G/H is indeed a group.

A simple illustration of this theorem is provided by S.. We have already
noted that B = {e, (123), (321)} is an invariant subgroup. Its coset can be
written as (12)B. Thus the factor group S;/B consists of two elements:

E=B=1l, (123), (321)}, 4= (12)B = {(12), (13), 23)} ,

with 4> = E. In discussing the factor group we will use capital letters to denote
factor group elements. When multiplying two such elements we will denote
group multiplication by a dot to avoid possible confusion with matrix multi-
plication.

From another point of view, the factor group is a mapping of one group
G onto another group G’. This mapping preserves group products, but is not
necessarily one to one. Such a map is called a homomorphism; it is to be con-
trasted with the isomorphism, which is a product-preserving, one-to-one map.
We say that G is homomorphic to G’. In the example under discussion we can
consider e, (123) and (321) as being mapped onto E, the identity; and (12), (13)
and (23) as being mapped onto 4 (4> = E). According to the proof of Theorem
10.5, this mapping must preserve products. For example, (13)(12) is an element
of the product of 4 by A. Since (13)(12) = (123), this product belongs to E,
as it should since 4-4 = E. Similarly, (123)(12) € E- 4, which is again as it
should be since (123)(12) = (13), which belongs to 4. The reader can check
that all the multiplications work out as they are supposed to according to
Theorem 10.5. We also leave it to the reader to show that in any homomorphic
mapping of G onto G’, the elements of G which are mapped onto the identity
of G/ must form an invariant subgroup of G. The other elements of G’ then
must be the images of the cosets of the invariant subgroup.
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Example 10.8. To illustrate further some of the ideas of this section and also
to look at a slightly more complicated group than we have examined so far,
let us analyze the group S,. As mentioned earlier, S, can be divided into five
classes according to cycle structure:

RAR
I

’

e
(12), (13), (14), (23), (24), (34) ,

(123), (124), (134), (234), (321), (421), (431), (432) ,
(

(

(
12) (34), (13)(24), (14)(23) ,
1234), (1243),

H

II

H

H

(1324), (1342), (1423), (1432) .

We would like to determine whether there are any nontrivial invariant sub-
groups of S,. Since we know that such an invariant subgroup can contain only
complete classes and since furthermore the order of the subgroup must be an
integral divisor of the order (4! = 24) of S,, there are, according to the previous
lemma only two possibilities:

H= & + %, H =g+ &+ %.

H is of order four and H’ is of order twelve. Both these orders are integral
divisors of 24; H' = &, + %, for example, is excluded since 24/7 +* integer.
In addition, H’/ is not even a subgroup. Now H’ is just the subgroup of even
permutations. Since any coset must have as many elements as the related sub-
group, A’ can have only one coset, the set & of all odd permutations (note
that this is not a subgroup). In particular, the left and right cosets must be
identical, so H’ is indeed an invariant subgroup. The factor group S,/H’ (con-
sisting of the two sets H' and &) is isomorphic to the two-element cyclic group.
It is obvious that the two-element cyclic group is a factor group of any S,, since
half the elements of S, are even permutations and half are odd permutations.

That H is also a group is seen by noting that according to the discussion
following the proof of Theorem 10.2, this collection of four elements is iso-
morphic to the four-group. Now what are the cosets of H? The computation
is tedious but straightforward. We have

(12)H = {(12), (34), (1324), (1423)} ,
(13)H = {(13), (24), (1234), (1432)} ,
(23)H = {(23), (14), (1243), (1342)} .

According to the first lemma of this section, we must also have

(12)H = (34)H = (1324)H = (1423)H ,
(13)H = (24)H = (1234)H = (1432)H ,
(23)H = (14)H = (1243)H = (1342)H .

Now consider (123)H. We find that
(123)H = {(123), (134), (432), (421)} .
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This contains half of &, so we know (why?) that (321)H must be the only
remaining coset of H. In fact,
(321)H = {(321), (234), (124), (431)}
This collection of six objects, {H, (12)H, (13)H, (23)H, (123)H, (321)H}, is iso-
morphic to S5, and by inspection we may make the identifications:
H—e, (12H—(12), (13)H— (13),
23)H— (23),  (123)H— (123),  (321)H— (321) .
For example, (1324) € (12)H and (1234) € (13)H. A simple calculation gives
(1324)(1234) = (4132)(1234) = (42)(43)(41) (14)(13)(12)
= (42)(43)(13)(12) = (432)(123) = (324)(312)
= (34)(32)(32)(31) = (34)(31) = (314) = (431),
which belongs to (321)H. Since (12)(13) = (132) = (321), we see that the iso-
morphism holds:
[(12H][(13)H] = (321)H  and  (12)(13) = (321).

10.4 SYMMETRY AND GROUP REPRESENTATIONS

The role of group theory in physics is intimately related to the symmetries of
the world around us. The importance of such symmetries as translational and
rotational invariance in giving rise to conservation of linear and angular mo-
mentum has long been known and is familiar to the student from classical
mechanics. With the development of quantum mechanics, in which the physi-
cal world is separated from us by the intermediary of the “wave function,”
group theory became particularly significant. To see why this is the case, we
must first say precisely what is meant by such phrases as “translational invari-
ance” and “rotational invariance.”

Suppose that we have a group, G, of operators, U,, U,, U;, - - -, which can
act on elements, x, of a vector space, V. By a group of operators we simply
mean a collection of operators on ¥V which obeys the group axioms of Definition
10.1. The results of U,, U,, Us, - - - acting on x will, as usual, be denoted by
Ux, Uyx, Usx, - - - In three-dimensional space an example of such a group is
the collection {T,}, where a is any three-dimensional vector, and T, acts on
vectors according to the rule

Tar=r—a. (10.8)

Thus T, is a translation operator. Note that there is an infinitude of such
operators, since a can be any vector. The entire collection is clearly a group;
closure follows because the product of any two translations is again a trans-
lation. In fact, from the defining equation, we see that this group is abelian
since

TaTb = Ta+b = Tng .
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Obviously, such operators can be generalized to any number of dimensions.
Now we suppose further that on this vector space we have defined functions,
f, & -+, which assign to each vector some complex number. In three-dimen-
sional Euclidean space, f(r) = x* + y* + z* is an example of such a function.
In general, we denote the action of a function f on a vector x in ¥ by f(x).
Let U; be any element of the group of transformations written above. What
can we say about the action of f on the transformed vector U;'x? Let us define
an operator %4 which acts on functions of x in such a manner that for all f

7 f(x) = f(U'x) .
Now consider the quantity 7/ %;f(x). We have from the above equation
% %S x) = AU 'x) = flU7'U7'x) = fLU;U;]7') .

Thus, if U;U; = Uy, then % % = Z, so that the elements {, %5, - -+ form
a group, ¥, which is isomorphic to G.

To illustrate what we have in mind, let us extend the example of the {74},
defined in Eq. (10.8), a bit further. We ask: Is it possible to find an operator
Za such that

Faflr) = f(Ta'r) = flr + a)?

In general, it will be necessary to say something about the functions f(x), g(x),
-+ - before we can obtain an explicit expression for _&,. For the sake of sim-
plicity, suppose that we take our functions to be analytic. Then we can write
a Taylor series for f(r + a):

o

fle+a) = Yl VISl

n=0

Symbolically, this can be written as

fle + a) = e*7 flr) ,

so we see that

T = vV, (10.9)
If one were quantum-mechanically minded, one would write this as

Ta =P, (10.10)
where p = —iAV is the quantum-mechanical momentum operator.

Similarly, if one consider rotations, R%, of a coordinate system about the
z-axis, so that (r, 8, ¢) — (r, 0, ¢ — a), then the corresponding operator would
be

L = en 0 — glaLih (10.11)

where L, = —i#id/0¢ is the quantum-mechanical operator for the z-component
of angular momentum. For rotation through angles B and y about the y-axis



10.4 SYMMETRY AND GROUP REPRESENTATIONS 601

and x-axis respectively, one has
Ry = et Ty = eThIm (10.12)

Groups of the type characterized by the collection { 77} or { 7} are called
transformation groups. Both of these examples involve infinite groups. We
have been able to parametrize the translation group by a (= a,, a,, a,), and the
group of rotations about the z-axis by «. The parameters in question vary con-
tinuously, and the groups are therefore called continuous groups.

Now we make contact with our work in earlier chapters. Suppose that the
functions which we have been discussing above belong to a vector space, H, and
that acting on H we have some linear operator, 4,. Acting on any f(x) € H,

A, gives another vector g(x) € H:
Af(x) = glx) . (10.13)
The subscript x on 4 serves to remind us that A4, is an operator on a space of

functions whose action depends on the point at which the function is evaluated.
For example, we might have

A=V o > o2

ox? 5y_’ 072
Let 2/ € & act on Eq. (10.13). Then we find that
ZAf(x) = Zglx) = g(U™'x) .
Since %' % = I, we have equivalently,
VA Yf(x) =g(U'x),

or
A7 f(U™'x) =g(U'x) .
But since A, f(x) = g(x), we have also
Ay f(U'x) = g(U'x) ,
so we conclude that
VA fU'Y) = A1 f(U™'x)
for any f€ H, or
YAY ™" = Ay-e.

VA, /7" is called the transformed operator; the above equation tells us
that the transformed operator at the point x is equal to the untransformed oper-
ator at the point U~'x. It is often simpler to find the transformed operator by

evaluating A,., where x’ = U ~'x, rather than %4, % ~'. Now if it happens

that the transformed operator at the point x equals the untransformed operator
at the point x, that is, if

YA = A
for all /€ &, then we say that A4, is invariant under the action of the group
& Similarly, if for all Z€ &, Zf(x) = f(x), then we say that f is invariant
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under & Note that the criterion for the invariance of 4, can also be written

as
Ay = A

In other words, if all & € ¥ commute with 4,, then A, is invariant under &.

It is easily seen that the operator

_ 2 aZ 62 aZ
4=V -ax2+8y2+azz
is invariant under _; for all a, where .7, is defined by Eq. (10.9). This follows
simply from the fact that the partial derivatives with respect to x, y and z
commute with each other, and hence exp(a-V) commutes with V2. Thus we
may say that the Laplacian is translation invariant. A similar situation prevails
for the rotation operators 2%, .92} and 25 as defined by Egs. (10.11) and
(10.12). According to Eq. (5.89) V? is simply related to L*= L + L} + L},
and since L,, L, and L, all commute with L? (why?), we see that the rotation
operators will also commute with L? and hence with V2. Thus, V? is rotational-
ly invariant.

As an example of a function which is rotationally invariant we mention
f({r) = g(r), where g is any function and r is the magnitude of r. This follows
immediately from the fact that L,, L, and L, depend only on the angles 8 and
¢ which specify the orientation of r and not on the magnitude of r [see Egs.
(5.87)1.

To get a feeling for how the above formalism works, it is useful to examine
an operator which is not invariant under some group. For example, let us con-
sider the operator X, defined by X, f(x) = xf(x). We shall investigate how this
operator transforms under the x-translation operators T,(T,x =x — a, for all
x). We can compute the transform of X, in two ways. The simplest method
is to make use of the relation

T X T = Xroix.

Since T, 'x = x + a, we see immediately that
T X, T =X +a.
We can also proceed by letting 7, X, .7, ' act on an arbitrary function:
T X, T2 %) = T X fTux) = Ta X, fx — a)

= Joxflx —a) = (x + a)fx)

= (X, + a) flx) .
This is exactly the result obtained above; clearly the operator X, is not invariant
under the group of translations. For a slightly more complicated example of

the transformation of operators, the reader should look at Problem 10.10.
Now let us look at the eigenvalue problem

A flx) = Af(x) . (10.14)

We assume that we have a physical problem in mind, so that A, is self-adjoint,
and we also assume that A4, is invariant under some group of operators &, a
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typical element of which we denote by %. The question now arises: If the
operator A, is invariant under &, are its eigenvectors invariant under & ? To
answer this question we let % operate on both sides of the above equation to
obtain

VASx) = 27f(x) .
Since VA, = A, %,
A/ f(x) = A /f(x) .

This equation tells us that if f(x) is an eigenfunction of A, belonging to 4, then
so is #/f(x). This does not mean that f(x) = %/f(x). However, if 2 is a non-
degenerate eigenvalue, then we conclude that %/f(x) is just a simple multiple of

fx):
Zf(x) = D(U) f(x) ,
where we write D(U) to emphasize that the value of D may depend on which

element of the group G is being used.
If, however, 4 has multiplicity g, then we must write

Axf/(x):Zf,(x), i=1,2,--,pu,
AX?/ﬁ(x)217/ﬁ(x)v i:‘l.z."'vﬂ.
In this case, we must conclude that Z/f;(x) is a linear combination of the ele-
ments of the set {f;(x)}:

u

Zfilx) =) DU . (10.15)

i=1

Now let us consider 7 75fi(x), where %, % € %. By the previous equa-
tion we have

U S (x —?/}:D,, U) f;(x ZD,. U) % f5(x) .

Since
% fi(x Z Dy (U) filx)
we have
% WS i(x Z ZDk, U) Dy (U filx) -
But also,

U WS i(x Z D (U\U)) fi(x) .

Combining these last two equations gives the result

Z::':D“(U‘UZ i D,;(U\) D;;(U,) ]fk(x) =0.
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But the set {fx(x): k = 1,2, ---, p} is linearly independent, so
n
D(U\U;) = Y, Di(U1) Du(Uy)
j=1

foralli,k = 1,2, -, u. Thus the matrices D(U,), D(U,), - - - form a group
which is homomorphic to the group G and the group & Such a collection of
matrices is called a representation of the group G. A representation of a group
G is just a homomorphic mapping of G onto a collection of finite-dimensional
matrices.

Thus we see that there is a very close relationship between symmetries and
degeneracy in physical eigenvalue problems. For example, in quantum me-
chanics it is often the case that the Hamiltonian which describes some physical
system is rotationally invariant. We would then expect the eigenfunctions
corresponding to some degenerate energy level to transform among themselves
under rotations and thus give rise to a representation of the rotation group.
Since degeneracy tends to be the rule rather than the exception in the eigenvalue
problems of physics, it is not surprising that the study of group representations
has come to play a very important role in physics. It is to the study and classifi-
cation of such representations that we now turn our attention.

10.5 TRREDUCIBLE REPRESENTATIONS

Let us begin with a few general inferences about the possibility of finding re-
presentations of groups. Clearly, for any group there is always one available
homomorphism, namely, the mapping which assigns the one-dimensional
matrix, 1, to every element of the group. All group properties are trivially
satisfied, but this representation is not very useful. However, it is elways a
possible representation and cannot be neglected when we classify representations.
Also, if we can find some n-dimensional representation, then a related one-
dimensional representation may always be obtained by mapping each element
of G into the determinant of its representative matrix. This follows immediately
from the relation

det (4B) = (det A4)(det B) .

Another possibility arises when the group, G, has an invariant subgroup,
H, whose associated factor group, G/H, has known representations. Since the
factor group is homomorphic to G, we can find representations of G by assign-
ing to each element U€ G the matrix representative of that element of G/H
onto which U is mapped.

A third interesting representation can be obtained from the group table
itself. This is called the regular representation and we will make use of it later
in this chapter. The basic idea is contained in Theorem 10.1: If we take some
element of G, say U,, and multiply every group element by U,, we rearrange
the group elements. Symbolically,

v, =U, (10.16)
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where i and j run through all the group elements. We translate this ordering
into matrix form by saying that U, will be represented by a g X g matrix,
D,;;(U,), where g is the order of the group. Each column will contain all zeroes
except for one “1,” the position of the “1” being determined from Eq. (10.16)
as follows: If U,U; = U, then the ij-element of D(U,) is 1 and all other ele-
ments of the ith row and jth column are zero. This rule is consistent since if
U,U; = U; we cannot also have U, U, = U; unless j = k and, similarly, if
U,U; = U, we cannot also have U,U; = U, unless i = k. In this representation
the identity is given by the g X g unit matrix, and all the other elements of G
are represented by matrices which have only zeroes on the diagonal.

We now show that this is indeed a product-preserving mapping. Consider
the matrix equation

M = D(U,)D(U,) .

In components this is

Zle Dk/ )v irj:lyzv"'rg'

It follows directly from the nature of matrix multiplication that M must be the
same type of matrix as D(U,) and D(U,); that is, each row and column of M can
have only one nonzero element, which must equal 1. Therefore, we need only
check that this one nonzero element is in the proper place. Hence suppose that
M,;; = 1. Therefore, for some unique k,

D,-k(U”) = 1, ij(Ull) — l .
These equations, in turn, mean that

U,,.Uk:(/,', U/‘UI’Z Uk.
Hence

uuUu; =0,
which says that the ij-element of D(U,U,) is unity. Thus we can identify M,;
with D,;(U,U,), for all i and j. Hence
D(U,U,) = D(U.)D(U,) ,

so we have a representation, as claimed above.

As an example, we consider the cyclic group of order four, whose multi-
plication table is given in Table (10.4). We find that if we call a, = e, a; = a,
a, = b =a* a;, = ¢ = a’, then, for example,

aa, = ae = a =a,,
aa, = aa = b = a,,
aa, = aa* =c = a,,

aa, = aa’ = e = q,,

so that the 21-, 32-, 43- and 14-elements of D(a) are equal to 1, and all the
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other elements vanish. A similar calculation gives D(b) and D(c). Dle) is, of
course, just the unit matrix. We list the results below :

M 0 0 07 0 0 0 17
0 01 0O 01 0 O
0 0 0 1] 10 0 1 0]
(0 0 1 07 0 1 0 07
0 0 0 1 0 01 0
—_ 2\ = —_— a3 —
Db =ad) = 1 0 0 ol Dic =a%) = 00 0 1l]° (10.17)
0 1 0 0 1 0 0 0

This demonstrates the existence of a representation which is not one-
dimensional; the reader can easily prove that these four matrices satisfy Table
(10.4). Moreover, since each matrix is distinct, the mapping from the cyclic
group is an isomorphism; such a representation is said to be faithful. Unfortu-
nately, several problems seem to arise from this example. For one thing, we
can use this regular representation to generate many more representations by
using similarity transformations, or by using the Kronecker (or direct) product
introduced in Section 3.11,

The situation regarding similarity transforms is as follows: If D(U)) is a
representation of G, then for any nonsingular matrix, S, of the same dimen-
sionality as D(U;), we define

D(U) = S~'D(U)S,
where the tilde does not indicate the transpose of a matrix, but is merely a label.
We then have
D(U)D(U)) = S7'D(U)SS~'D(U))S = S™'D(U)D(U,)S = S~'D(UU)S ,
since D(U)) is a representation. Thus
D(u)D(U)) = D(U,U)) ,

so D(U,) is also a representation.
In Section 3.11, we showed that if we denote the direct product of A and

B by AQ B, then
(A4, @ B))(A, R By = (4,4) & (BiBy) , (10.18)
if 4, and 4, (and B, and B,) are of the same dimensionality. This suggests that

given any two representations of a group G, say D(U;) and D'(U,), another re-
presentation can be obtained by the identification

U,' —_— D(U,) ® DI(U,) .
This preserves products, since by Eq. (10.18)

[D(U) @ D’'(U)1 (D)) @ D'(Uj)] = [D(U)D(U)]1Q [D'(U) D' (U))]
= D(U,U) @ D'(UU)) .
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Thus we have indeed constructed another representation whose dimension will
be the product of the dimensions of D and D’. Since we have already found
one specific multidimensional representation, the regular representation, we can
use direct products to generate an arbitrarily large number of other representa-
tions. Hence the problem of classifying representations would appear to be
hopeless.

Before we accept such a pessimistic conclusion, however, it is a good idea
to look at the problem from a different point of view. Let us start with some
simple representations and then try to work up to more complicated ones. First,
we must decide how to go about finding representations. In the previous section
we have already seen that one way of constructing them is to find a collection of
linearly independent functions which transform among themselves under the
action of the group, that is, a collection of functions {f;(x)} which satisfy

Zfilx) = Z D;,(U) f;(x)

forall %€ &

Now the only problem is to decide how to find a set of functions which
has this nice property of transforming into itself under the action of a group
of operators. One possible way would be just to pick an arbitrary function f(x)
and operate on it with all the 7/ € & In this way we find a set {f;(x)}, where

filx) = 24 f(x) .
By the group property, this set satisfies the basic requirement of closure:
wfilx) =22 fx) = Zflx) = filx),
where i is determined by the multiplication table. If all elements of the set

{fi(x)} are linearly independent, then we have succeeded in our aims. In this
case,

2 fi(x) = Z Dki(Uu)fk(x) ,
where
Dk}(Un) = 5ik ’

i being determined by % % = %;. Looking back a few paragraphs, we find
that this is just the regular representation. However, this is by no means the
only possibility. It might well happen that the f;(x) are not linearly independ-
ent. Then we must pick out a linearly independent subset which will, of course,
also be invariant under the group operations (Why?). Carrying out the above
process, we obtain in this case a representation of smaller dimension than the
regular representation. Of course, it is often not necessary to do this, for one
may well be able to spot a set of functions which transform among themselves
without recourse to this unintuitive formalism.

Example 10.9. A particularly straightforward example is the group of rotations
about the z-axis. This is an infinite, continuous group, but that is no reason to
be daunted. It is, in fact, very easy to analyze this group.
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Now when one talks about angles and rotations, the functions which come
to mind are sines and cosines. Denoting a rotation through @ by R, (R.$ =
¢ — «), we consider f(¢) = cos ¢ and f,(¢) = sin¢. Then

fi(RI'P) = cos (¢ + a) = cos afi(P) — sin afy(¢) ,
f2(RZ*¢) =sin (¢ + a) = sin afi(¢) + cos afy(¢) .
From this we conclude, using Eq. (10.15), that
D" (R,) = (cos a sin a)
* —sina cosa/

(We use the superscript to distinguish between various representations of this
group.) A simple multiplication of matrices shows that

D™ (R)D" (Rg) = D™ (Ra,p) = D™ (Rg) D" (R,) = D™ (R.Rs) ,

so we have found a two-dimensional representation.

Of course, cos ¢ and sin ¢ are not the only choice of functions we could
have made. For instance, e = f(¢#) is such that

f(R;1¢) = glWta) — iagit — e“ flg) .

Thus we obtain a one-dimensional representation:

D?(R,) = €.
Similarly, if we choose g(¢) = e=¢, we find that
D®(R,) = e7'®,

In fact it is clear that the function f(¢) = e'™ leads directly to a representation
D(R,) = ™. We choose m to be a positive or negative integer (or zero) so
that D(R,) = D(R,,). Now since the functions fi(¢) = e" and f3(¢) = e~ '* are
linearly independent we can use them together to form a set {f;}. Thisleads to
the two-dimensional representation

D“(R,) = ("’m 0 ) :

0 e '®

This example brings us to the heart of the basic problem of representation
theory. The two-dimensional representation D“(R,) is clearly just two one-
dimensional representations joined together. In some sense, we would not want
to call this a basic representation since it is compounded out of representations
of lower dimensionality. The situation is complicated further if we look back
at D' (R,). This does not, on the surface of things, look much like D (R,),
but if we diagonalize D'V, we find that

sorRys = (0 0)=DUR)
0 e’
where
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is a matrix independent of @. Thus we have a similarity transformation which
will bring D(R,) to exactly the form of D*(R,), and this can be done simul-
taneously for all R,. Thus, even D" (R,) is essentially a sum of the two one-
dimensional representations, D and D®.

This can also be the case for more complicated situations. For example,
the four matrices composing the regular representation of the four-element
cyclic group [Eq. (10.17)] can be diagonalized simultaneously by the matrix

1111
S N R

S =
11 -1 -1
-1 1 =i

Therefore D(e), D(a), D(b), and D(c) are each sums of four one-dimensional
representations.

We can generalize this as follows: If we find a representation D(U;) which
can be brought to the form

D™ (U,) o)
D(U) = SD(U)S! = U® (D))

. (10.19)

O D®(U)

where S is the same for all U;, then we will not consider it as a basic represen-
tation, but rather as a sum of representations.

In terms of the functions f;(x), this means that although we have found a
linearly independent set {f;}, the elements of which transform among them-
selves, there are actually smaller subsets which also transform into themselves
under the group in question.

Representations of the type of Eq. (10.19) are called reducible representa-
tions; those which cannot be reduced in this manner are called irreducible re-
presentations. It is clearly the irreducible representations of groups that we
should study, since other representations are simply built up out of them. How-
ever, even among irreducible representations we do not want to count the simi-
larity transformation of a representation as a separate representation. Two
representations which are related by a similarity transform are said to be equiva-
lent. Thus, in Eq. (10.19), assuming D™, D®, and D® to be irreducible and
inequivalent, we would write symbolically

D(U’) — D(l)(UI) EB D(Z)(Ul_) @ D(J)((]i)

for all U;€G. In practice, when we reduce a representation to this form, a
given irreducible representation may occur more than once. Thus we would
write generally

D(U) = a""D"(U) @ a®D®*(U) D --- P a™D™(U),  (10.20)
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where a® is the number of times the irreducible representation D* (U;), or any
representation equivalent to it, appears in the decomposition.

A very useful characterization of a representation which is the same for all
equivalent representations, is given by the trace of the representative matrices.
The trace of D(U) is denoted by x(U) and is called the character of U in the
representation in question. Since

tr [CT'D(U)C] = tr [D(U)] = (V) ,

the character of U is the same for all equivalent representations. When we are
dealing with an irreducible representation, D* (U), we will write for the corre-
sponding character ¥ (U). Now within a given representation, many of the
characters will be the same. In fact, consider a class, &%, of conjugate elements
of the group G. "Then if U,, U, € &, there exists some U, € G such that

U, = Uu,Ur".

This means that
D(U,) = D(U,)D(U,)D(U;") ,
and hence
x(U,) = tr [D(U,)] = tr [D(U,) D(U,)D(U;Y)]
= tr [D(U;7')D(U) D(U,)] = tr [D(U,)] = X(Uﬂ) ’

that is, all elements of &, have the same character. For this reason one can,
with no ambiguity, refer to x{ as the character of the ith class in the vth ir-
reducible representation, thereby removing the necessity of referring explicitly
to the group elements. Thus in a group with k classes, for a given representa-
tion, v, there are k characteristic numbers,

Ay (U 1

to be determined. These k constants, in fact, provide a surprisingly large amount
of information about the group, as we will see in the following sections.

10.6 UNITARY REPRESENTATIONS, SCHUR’S LEMMAS, AND
ORTHOGONALITY RELATIONS

In this section we will develop the main results of representation theory, which
will enable us to determine irreducible representations. To begin, we prove a

theorem which restricts tremendously the possible forms which a representation
can take.

Theorem 10.6. Every representation of a finite group is equivalent to a
unitary representation.

Proof. The first step is to construct an inner product in the n-dimensional vec-
tor space, V, of the representation and show that the representation is unitary
with respect to this inner product. For x, y € ¥, we denote the usual inner pro-
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duct of x and y by the familiar (x, y); in terms of this inner product, we define
a new inner product as follows:

x,y} = Y (D(U)x, D(V)y), (10.21)
UEG
where D is any representation of G. It is easy to check that since ( , ) is an
inner product and since D~'(U) exists for all Ue G, { , } will also satisfy all
the inner-product axioms. Consider now any D(U’). We want to show that
{D(U")x, D(U")y} = {x, y} .
From Eq. (10.21), we have

(DY, DU} = 3 (D)D), D)D)
UEG
= >, (D(UU)x, D(UV")y) . (10.22)
UEG

But as U runs through all the elements of G, so does UU’, according to Theorem
10.1. Of course, the ordering may be different, but that is immaterial. Hence

2 (DUU)x, DUU")y) = 3 (DWO)x, DO)y) = {x,} . (10.23)

veG UeG

Combining Eqgs. (10.22) and (10.23), we get

{D(U")x, D(U")y} = {x, y}

for any U’ € G, as required.

But to say that D(U’) is unitary with respect to some special inner product
is simply to say that we have written D(U’) in an inconvenient basis. By a
similarity transformation we can easily correct this difficulty and make D uni-
tary with respect to the original inner product. Let {£} be a complete ortho-
normal basis with respect to the inner product ( , ) and let {»} be a complete
orthonormal basis with respect to the special inner product { , }. We define a
linear operator S on V by

no=S&, i=12 -,n. (10.24)
Note that with this definition for any x, y€ V
{Sx, Sy} = (x, ), (10.25a)
or
(S7'x, S7Y) = {x,y} . (10.25b)

This follows by expanding x and y in the {£;} basis:

x=zn:a,~6,~, y=ibi§i-

i=1

Then

{Sx, Sy} = > arb,{SE,, &} = D atb,m, v}

/=1 hi=1
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by use of Eq. (10.24). Since the 7, form an orthonormal set with respect to
{,}, we have

{Sx, Sy} = Z atb0;; = Z a*b; = (x,y),
i=1

which is just Eq. (10.25a). S is precisely the operator we need to transform
the original representation.
For any U€ G, we define

D(U) = S'D(U)S .
Consider
(D(U)x, D(U)y) = (S~'D(U)Sx, S~'D(U)Sy) .
By Eq. (10.25b), we have immediately
(D(U)x, D(U)y) = {D(U)Sx, D(U)Sy} .
But with respect to { , } D( ) is unitary, so
(D(U)x, D(U)y) = {Sx, Sy} .
Finally, Eq. (10.25a) gives

(B(U)x, D(U)y) = (x, )

so D(U) is unitary with respect to the original inner product.

According to this theorem, we can restrict ourselves to unitary matrices in
our search for irreducible representations. Note that although we have stated
this theorem for finite groups, we have made very little use of the finite order
of G, using it only in Eq. (10.21) to write the sum over all U€ G. This sum is
finite since it contains only a finite number of terms. For many infinite groups,
it is possible to make the transition from discrete sums to integrals over a con-
tinuous parameter; for example, in the case of continuous groups such a possi-
bility is evident. However, even if it is possible to replace sums over group
elements by integrals over group elements, it may be that the integral formula-
tion of Eq. (10.21) will not be meaningful because the integrations run over an
infinite range and are divergent. Nevertheless, there are many groups, such as
the rotation groups, where this does not happen, and for them Theorem 10.6 is
valid, the proof being identical to the one presented here, save for the presence
of integrals instead of summations.

The fact that the matrices in a representation are equivalent to unitary
representations is a very powerful result. From it follows the two main theorems
of representation theory, the first and second lemmas of Schur. The proof of
these two important group theoretical results hinges on the following lemma,
which has nothing to do with group theory.

Lemma. If a matrix, M, commutes with a unitary matrix, U, and if we
write M = M, + iM_, where M, = (M + M") /2 and M_ = (M — M")/2i,
then both M, and M_ commute with U.
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Proof. If
UM = MU, (10.26)
then
MUt = UMt
Multiplying on the left by U, we get
UM'Ut = UU'M' = M,

since U is unitary. Multiplying this last equation on the right by U, we find
that

UM'U'U = M'U .

Thus, using the unitarity of U once more,

UM' = MU . (10.27)
Combining Egs. (10.26) and (10.27), we readily obtain
t t
U[M+ M] = [M+ M ]U, (10.28a)
2 2
— M _ M
U’:M M] - [M M :IU, (10.28b)
2i 2i

or

UM, = M, U, UM_ =M_U,
as required.

With this lemma at our disposal, we now prove the main result of this
section.

Lemma (Schur). If D(U) is an element of an irreducible representation of
G and if D(U)M = MD(U) for all UE G, then M must be a multiple of the
unit matrix.

Proof. According to the previous lemma, if MD(U) = D(U)M for all UE G
and if we write

M=M, +iM_, (10.29)
then since the representation can be taken to be unitary,
M,D(U) = D(U)M, and M_D({U) = D(U)M.

foralUeG. M, = (M + M")[2and M_ = (M — M?")/2i are both self-adjoint,
so let us begin by considering the eigenvalue problem associated with M, :

iy — (i) | —
M+xn,) - ann' [ = 1) 2’ e, My,

where m, is the multiplicity of 4,. Since M, is Hermitian, the set of all x{”
spans the N-dimensional space of the representation. For all U€ G, we have

D(U)M,x\? = 2,D(U)x}" .
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But [D(U), M,] = 0, so this is just
M. [D(U)x{"] = A[D(U)x] .

Since D(U)x{” is an eigenvector of M, belonging to 4,, it must be a linear
combination of the x{” (i = 1,2, ---,m,):

x = Z au xh (10.30)

for all UE G. Let us compute the matrix D in the space spanned by the eigen-
vectors of M,. We take n = 1 first. Using Eq. (10.30), we find that

(xi", D(U)x{") Z a;(U) (x{", x") = ay(U), i,1=1,2,---,m,
(10.31a)
for all Ue G. For any n # 1, Eq. (10.30) tells us directly that
", DU)xP) =05 I1=1,2,---,m,, i=1,2,---,m, (10.31b)

for all U€ G, since the eigenvectors belonging to different eigenvalues of an
Hermitian operator are orthogonal. Similarly, for n # 1, we also have from
Eq. (10.30)

x®, DU)x®) =0;  I=1,2,---,m, i=1,2--,m,. (10.3lc)
Equations (10.31a), (10.31b), and (10.31c) mean that the matrix D(U) looks
like

m; X m, \ 0
D(U) = .
0 (N_mI)X(N_mI)

for all U€ G, where N is the dimension of the representation. The m, X m,
matrix in the upper left-hand corner has elements which are given by the a,;(U)
defined in Eq. (10.30). But the representation is assumed to be irreducible, so
this can only be the case if m, = N; that is, the multiplicity of 2, must be equal
to N, the dimensionality of the representation. The only Hermitian matrix
having an eigenvalue whose multiplicity equals the dimension of the matrix is a
real constant times the unit matrix. Thus M, = ¢, 1. Similarly, M_ = c_I, so
we obtain from Eq. (10.29) M = (¢, + ic_)I, and the proof is complete.

As an immediate corollary (really no more than a restatement) of this
lemma, we have:

Corollary. If there exists a matrix which commutes with every element of
a representation and is not a multiple of the unit matrix, then the represen-
tation is necessarily reducible,

At this point it is perhaps a good idea to say a word about a more abstract
way of looking at irreducible representations which may clarify the situation,
as well as boil down the preceding pages into a few words.
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As a careful reading of the previous section shows, we can characterize the

irreducible representations of a group, G, of order g in a more abstract manner
as follows. Let

'.(//={D(UI')’ i=1v2v "'!g}

be a group of linear operators on an n-dimensional vector space, ¥, and let this
group of operators be homomorphic to G, that is, & is a representation of G.
% is said to be an irreducible representation of G if no proper subspace of V is
left invariant (i.e., mapped into itself) under all D€ & (The proper subspaces
of V are all subspaces of V except for V itself.) It may of course happen that
some subset of & leaves invariant some proper subspace of ¥, but if we have
anirreducible representation, then & in its entirety must leave only ¥ invariant.
Obviously, if we look just at one unitary D(U) € &, then it will have n invari-
ant subspaces, defined by the n orthonormal eigenvectors of D(U).

In light of this, Schur’s first lemma has a very simple meaning: If there is
a matrix which commutes with D(U) for all U€ G, the linearly independent
eigenvectors of this matrix define a collection of subspaces of ¥ which are in-
variant under D(U) for all U€ G. The only admissible invariant subspace is V'
itself, and the only matrix which has every vector in V as an eigenvector is the
unit matrix or a multiple thereof.

A simple, but very useful, consequence of Schur’s first lemma is the fact
that an abelian group can have only one-dimensional irreducible representations!
This follows immediately from the statement that if G is abelian, then for any
Uec G, D(U) commutes with all elements of the representation D. Thus, by
Schur’s first lemma, for all U€ G,

D(U) = C(U)I,

where C(U) is a constant which can depend on U. The unit matrix is irreducible
only when it is the one-dimensional unit matrix. Thus, for an abelian group,
all irreducible representations must be one-dimensional.

Schur’s second lemma gives an analogous result for two different represen-
tations.

Lemma. LetD(U)and D’ (U) beirreducible representations. If forall UEG,
D(U)M = MD’(U), then either D and D’ are equivalent or else M = 0.

Proof. In general, Dand D’ will have different dimensions, so that M need not
be a square matrix. If Dis n X nand D’ is m X m, then M must be n X m.
The proof starts out in the same direction as that of the first lemma. As before

D(U)M = MD'(U) (10.32)
for all U € G implies that
M'DY(U) = D'N(U)M?

for all U€ G, where M' is an m X n matrix, (M"),; = M}. Taking D(U) to
be unitary, we find that

M'D(U-Y) = D' (U-)M" . (10.33)
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Multiplying Eq. (10.33) from the left by M, we get
MMD(UY) = MD'(U-")M" . (10.34)
But by Eq. (10.32),
MD' (U-YM' = D(U-")MM?" ,
so Eq. (10.34) becomes
MMD(U-Y) = D(U-") MM!

for all U€ G. The previous lemma (and the uniqueness of inverses) tells us
straightaway that

MMt =cI.

We leave it to the reader to show in the same way that multiplying Eq. (10.33)
on the right by M leads to

MM =cI.

It should be observed that the matrices MM?' and M'M have different dimen-
sions, the former being n X n, the latter m X m.
We now consider three cases separately:

(if m = n. Then if ¢ = 0, we have MM' = 0, which means that for all i,
(MM, =0 =3 M,;(M"); = > |M,|*.
=1 j=1

Thus, for all i,

Z lMiilz =0,

J=1
so we conclude that M;; = 0, for alli and j, and M = 0. (For a slightly stronger
result see Problem 3.14) If, on the other hand, ¢ # 0, then

det (MM 0,
so det M # 0, and M is invertible. Thus according to Eq. (10.32),

D(U) = MD'(U)M™!

for all U€ G, therefore D and D’ are equivalent representations.

(if) n > m. In this case, we make M into a square matrix by filling in n — m
columns of zeros. Calling the new matrix N, we have

—m—>1—n —m-> I «—n——-—>
I

wo \ b
N = M 0 n, Nt = l
1

I L A
)
: l 0 n l

It is clear that MMt = NN', so MM' = cI implies that NN' = cI. Now
det (NNY) = ¢" = (det N) (det N) ,
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but from the form of N, we see that det N = 0, so the constant, ¢, must vanish.
Thus

NN' =0 = MM!
and, just as in case (i), we conclude that M = 0.

(iii) m > n. In this case, we must add m — n rows of zeros to M to turn it
into a square matrix. Again denoting the new matrix by N, we have

«—m—> I “——n—>m — n—
|
M n | T
N = ) . N'= Mt : 0 m
0 m—T— n l l
y |

In this case, NNt = MM?, but we do have NIN = M'M. Thus, using the rela-
tion MM = cl instead of MM' = cI, we see that the new matrix N satisfies

NN =cl;

as in case (i), we conclude that N = 0. Hence M = 0 as well, and the proof
of the lemma is complete.

Note that in proving these lemmas, we have not made direct reference to
the number of elements in the group G. We have actually proved these results
for any finite-dimensional unitary representation. Of course, Theorem 10.6 tells
us that for a finite group the representations can always be chosen to be unitary.
But Schur’s two lemmas hold also for the important class of infinite groups
which have finite-dimensional unitary representations.

The reason that these two lemmas are so important is that it turns out to
be rather easy to find matrices, M, which satisfy the conditions of the lemmas.
These matrices in turn provide us with a vast amount of information about the
irreducible representations and their characters. One simple example of a matrix
which satisfies the conditions of Schur’s first lemma is defined by

MP =" D*(U) . (10.35)
ve ¢

M{” is just the sum of all representative matrices of the elements of the class &
in the vth irreducible representation. Now let U’ be any element of G and con-
sider the quantity

D™ (U’)M}")D(”) (U’) -1 .

We have
D(")(U’)lel’)D(")(U/)—l — Z D(D)(UI)D(M)(U)D(D) (Ul—l)
ve &,
= > D (U'UU).
7]

But by the definition of a class, if U€ &, then U'UU'~'€ &,. Since a simi-
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larity transformation just rearranges the elements of &, we have from the
previous equation

D (U'YM® D™ (U")-" = Z D‘”’(f]) =M™ .
UVET;
Thus, for all U’ €G,

D™ (U’) Mlgv) — M;H)D(v) (Ul) ,
so M{” satisfies the requirements of Schur’s first lemma. We conclude that
MY =1,

The constant ¢/ can be readily evaluated. We have, calling the dimension of
the vth representation n,,
tr M = ¢'n, . (10.36)
But
tr M = Z tr DV (U x" (U

UEe, UED;

The trace of all the representative matrices in a given class is the same, as was

pointed out at the end of the last section. Hence using the notation established
there, we have

tr M = g, (10.37)

where g; is the number of elements in the class ¢%. Combining Eqs. (10.36)
and (10.37), we obtain

cf =By
ny,
Therefore
MP =8iyop, (10.38)
n,

that is, the sum of all the representative matrices in a given class is a simple
multiple of the unit matrix. We shall soon have occasion to make use of this
result.

A more fruitful example of a matrix which fulfills all the requirements of
Schur’s lemmas is the following:

M= Z D(v) XD(#) E D(») XD(#)( ) ,
UeG veG
where D and D" are irreducible representations and X is an arbitrary matrix,
although in order for this expression to have any meaning, X must have n,
rows and n, columns. Multiplying on the left by D*’(U’) and on the right by
D" (U")~', we find that
DV (U YMD™(U')-! = Z D® (U'YD™ (U)XD"(U)~'D* (U")"!
UEG
=, DU (U'U)XD" (U~'U'T) .

veeG
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Calling U = U’U and remembering that U~' = U~'U’~!, we have
D(u)(U/)MD(m(U/)-l —_ Z D‘"’(U)XD“"(U)“‘ . (10.39)
TeG

But as U runs through the entire group, so does U = U’ U, although in a dif-
ferent order. Thus the right-hand side of Eq. (10.39) is just equal to M, and

D¥ (U')M = MD® (U’ (10.40)

for all U’ € G. Assuming that D is not equivalent to D* (in the case n, =
n,), we have by Schur’s lemmas

M=cX)D,, .

In other words, M = 0 if the representations have different dimensionality
{Schur’s second lemma) and M = cI if they have the same dimensionality
(Schur’s first lemma). The value of the constant depends, of course, on the
choice of X. Thus we arrive at the result

D DY (U) XD (U)™" = ¢(X)I3,, . (10.41)
UEG

If D® and D" are chosen to be unitary, this can also be written as
Y DV (U)XDWHU) = c(X) 16, . (10.42)
UEG

To exploit this equation, let us write it in component form:
D> D0 DEU) Xy, [D¥NU) )iy = ¢(X)Bu8p -
veaG i, 1’

Now suppose that we choose the matrix X so that all its elements are zero except
for the jk-element. Denoting the related c(X) by ¢, we have

Z D(v) [D(F)Y(U)]kl - C]kallalll) . (10.43)
UEG
Since
(At)kl == Al:'l‘( ’
we obtain from Eq. (10.43)
Z D(Il)* D(") ) = C,‘kailalw ’ (10.44)
UeG

foralli, j, k, I, p, and v.
All that remains is to determine ¢;x. To do this, we set g =v, I =i and

sum on {. Thus

Z Z D,(:)*( )Dl(jv) - c/k Z 5:! - Cjknu .

UEG i
But since D® is unitary, the sum on i on the left-hand side of this equation is
just equal to d,;. Hence

Cikhy = Z O = 80

UeG
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where g is the order of the group. Therefore

Cix = E'ajk ’

v

and we have finally from Eq. (10.44) the remarkable orthogonality theorem,

Z DP*(U)DY (U) = L6010, , (10.45)
UEG h,
foralli, j, k, I, p, and v.

Now let us see what this means in simple terms. The sum on the left-hand
side of Eq. (10.45) looks very much like an inner product of two vectors, except
that the sum is over the elements of a group rather than a conventional subscript.
However, there is no law against indexing the components of a vector by using
the elements of a group. We may say, therefore, that Eq. (10.45) is an ortho-
gonality relationship for the inner product of two g-dimensional vectors, each
vector being identified by three labels. Equation (10.45) says that if, from any
irreducible representation we pick the ij-element of the representative matrices,
then this gives us a g-dimensional vector which is orthogonal to the g-dimen-
sional vector obtained from any other element, say the i/j’-element, and also to
any vector obtained in this way from any other representation. Thus in the g-
dimensional space we have n} 4 n2 + .. + n¥ orthogonal vectors, where N
is the number of inequivalent irreducible representations. Since the number of
orthogonal vectors in a g-dimensionad space cannot exceed g, we must have

N

D om<g. (10.46)

v=1
Thus we arrive at the important result that a finite group can have only a finite
number of inequivalent irreducible representations, all of which must have di-
mension less than +/g.

From Eq. (10.45) it is a simple matter to obtain an orthogonality relation
for the characters of a representation. In Eq. (10.45), if one sets k =/ and
sums on /, one finds that

Z Z D(Il)* (v) 5“ Z 5”5,] — lwa

UeG I=1

But
Z DP*(U) = tr DP*(U) = y“*(U) , (10.47)

!
SO

Z Y O*(U)DP (U) = iaﬂuau .
UEG n,
Finally, setting / = j and summing on j, we find that

Z YWO*(U Z DY (U ;I_g.aw 2”5” = g0 .
v j=1

UeG
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Using Eq. (10.47) once more, we arrive at

> XU U)LP (U) = g0 . (10.48)
UEG
Since all the members of a given class have the same character, we can convert
the sum on U€ G in Eq. (10.48) into a sum on the classes. If g equals the
number of elements in %7, and if k denotes the number of classes, Eq. (10.48)
becomes

k
D& = g0, . (10.49)
i=1

Equation (10.49) tells us that the N nonequivalent irreducible representations
provide us with N k-dimensional orthogonal vectors via the class characters.
Since in a k-dimensional space there cannot be more than k orthogonal vectors,
we conclude that

N<k. (10.50)

In the case of abelian groups, Eq. (10.50) has the same content as Eq.
(10.46). Since abelian groups have only one-dimensional representations, we
have

So Eq. (10.46) becomes

On the other hand, for an abelian group every element forms a separate class.
Thus k = g, and Eq. (10.50) becomes

N<g.

Hence both Egs. (10.46) and (10.50) lead to the same inequality for an abelian
group.

It is also worth noting that in deriving the orthogonality relations of Egs.
(10.45) and (10.49), we have been writing sums on group elements quite freely.
However, there are, as mentioned before, cases involving infinite groups where
the sum can be replaced by an integration. Furthermore, for certain groups,
integrals over the entire group will be convergent, and the proofs of this section
will hold virtually unchanged. As a simple example, we look briefly at the
group of rotations about the z-axis. We have already found the one-dimensional
representations

D™ (@) = e'™ (10.51)

The logical candidate for integration variable for this group is clearly «,
with infinitesimal element da. For this case, we expect > yc¢ to be replaced
by [3*da. In particular, since

g=2 1,

veG
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we expect g to be replaced by

2z
S lda = 2x
0

in this case. For groups of this type we refer to g as the volume of the group.
According to the above speculations, we would expect Eq. (10.45) to read

2r
S D™ *(a) D" (a)dot = 27 0y » (10.52)
0

since the dimension of all representations is 1. We see that if D" (a) is given
by Eq. (10.51), then Eq. (10.52) is obeyed. Similar considerations can be
applied to other continuous groups, such as the rotation group and the unitary
groups. However, there are exceptions to this simple-minded type of extension
of the theory of finite groups, the most significant one being the Lorentz group.

10.7 THE DETERMINATION OF GROUP REPRESENTATIONS

In this section we want to apply the major theorems proved thus far to the
problem of actually finding group representations. In doing so, we shall also
be able to sharpen slightly the orthogonality relations obtained in the previous
section so that they become completeness relations.

First, we note that the characters of a representation, D, which is not ir-
reducible can be simply written in terms of those of the irreducible representa-
tions. If D is written in the form of Eq. (10.19)—as it always can be by use of

a similarity transformation—then the character, y;, of a given class will have
the form

vo=a"" + a®y® + - + a""’ (M) — Z a” ™ . (10.53)

This follows directly from the definition of the characters in terms of the trace
of the representative matrices. a® is just the number of times the vth irreducible
representation occurs in the decomposition of D given by Eq. (10.20). Multi-

plying Eq. (10.53) on both sides by g;x{*'*, summing on /, and using the ortho-
gonality relation Eq. (10.49), we get

N k N

(Il)* — (v) (n) (v — u)

z g8 = E a E g ¥y = E ga"d,, = ga"
v=1 i=1 v=|

Hence

a® = - Z T (10.54)

so the number of times a given irreducible representation occurs in an arbitrary
representation is readily determined from the characters of that representation.
Thus if two representations have the same characters they must be equivalent,
since the a" will then be the same for all of them.
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As an example, let us apply Eqs. (10.53) and (10.54) to the regular rep-
resentation discussed in Section 10.5. This special case will lead to several use-
ful results. The characters of the regular representation are easily determined.
Since its dimensionality is g (the number of elements of G), the character y, of
the identity class will be equal to the trace of the g-dimensional unit matrix:

NH=2g. (10.55)

All other characters vanish, since all other representative matrices have only
zeros on the diagonal, as was pointed out in Section 10.5. Hence

v=0, i#l. (10.56)
Thus Eq. (10.53) becomes, for i =1,

N
— 2: (0) ()
g = a xl o
v=1

But in any representation of dimension n,, the character of the identity class is
just n,, the trace of the n,-dimensional unit matrix. Thus

N
g= . a%n,. (10.57)
v=1

On the other hand, using Egs. (10.55) and (10.56) together with the fact that
g =1, we find from Eq. (10.54) that

a® = ng;m*x = y"* =n,, (10.58)
so Eq. (10.57) becomes

N
g=>y n. (10.59)
v=1

Equation (10.58) says that in the regular representation every irreducible
representation occurs precisely as many times as its dimensionality. Equation
(10.59) is a much stronger result than Eq. (10.46). It tells us that the D{}'(U)
provide us with exactly g orthogonal vectors (because g = X nZ) in the g-
dimensional vector space generated by the g group elements via their irreducible
representations. Thus the D (U) (U € G) are a complete set of vectors for this
space. Normalizing in the manner required by Eq. (10.45), we may say that
the “representation vectors” whose g components are

D (U, /"2 DP(U, -+, /% DP(U,) (10.60)
g g g

forv=1,2,---,N;i,j=1,2,---,n, form a complete orthonormal set in
the g-dimensional complex vector space. Using a cumbersome, but minimal
notation we may express this completeness properly as

fy By

Z 22 J D (U) '%ED:?*(U') = dyur
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where 0,4 is a Kronecker d-symbol which is equal to 1 if U = U’ and is zero
otherwise. This may be written more simply as

Z Z Z L D@ (U)YDP*(U') = byu. . (10.61)
v=1 i=1 j=1
Having strengthened the orthogonality properties of the D’s in this manner,
we are led naturally to conjecture that a similar strengthening can be achieved
for the characters. To see that this is indeed the case, let us sum both sides of
Eq. (10.61) over all U€ & and all U’ € &,. We find that

ny

Z Z 2 n (3 o ))( 2, DU (V))=¢Y ¥ - (106

UE g, Ve, UE® V€D,

The right-hand side of this equation vanishes unless & = &, for otherwise
U+ U. If $ = &,, then each term with U = U’ will contribute 1 to the
sum and all other terms will contribute zero. There are g, contributing terms
if g, is the number of elements in &, so in the case & = %,, the right-hand
side of Eq. (10.62) equals gg,. But according to the definition of Eq. (10.35),

>, D"(U) = M .
ve g
Hence Eq. (10.62) becomes
N ny ny
Z Z Z n, [M):,[MR ] = 880m - (10.63)
v=1 i=1 j=1
Now by Eq. (10.38),
M), = Eyo,,  (MPY, =Sy,

so Eq. (10.63) reduces to

530 5 Ly, = Lo,

where we have made use of the fact that %, = d,;. Carrying out the sum on i
and j, we obtain finally

N

Do Ak = =£5,. (10.64)

v=1 m
Thus if we consider the N constants obtained from the characters of the /th class
in each irreducible representation as components of a vector in N-dimensional
space, then this vector is orthogonal to the vector obtained in a similar way by
using the mth class. Therefore, we have k orthogonal vectors in an N-dimen-
sional space, and we conclude that

k< N.
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Combining this result with Eq. (10.50), we get
k=N. (10.65)

Hence the number of irreducible representations is equal to the number of
classes in the group! Combining Eqgs. (10.49) and (10.64), we may say that the
“character vectors” whose k elements are

\/%xf”’.\/g}zxi”" ""\/%Xk“’ (10.66)

forv=1,2, .-, Nform a complete orthonormal set in k-dimensional space.
We now summarize all the basic results in their final form:

a) f:l n=g, (10.59)

b) k=N, (10.65)

c) " Dip*(U) ;_;D,-‘}"(U) = 0.0k,0, (10.45)
UEG 4 g

d) Z Z Z "”D‘"’ %D.‘f’*(U’) =0yur , (10.61)

¢) Z? Y T J =0, (10.49)

N — —
f) > \/éj i \/& 1 =9, . (10.64)
v=1 g g

Here g is the order of the group, g; is the number of elements in the ith class,
k is the number of classes, N is the number of irreducible represgntations and
n, is the dimensionality of the vth representation.

With this arsenal at our disposal, we can easily determine the characters
and representations of some of the basic finite groups. We start with the simplest
group, namely, the one-element group consisting of the identity. Since there is
only one class, there is only one representation which is one-dimensional. Thus
the problem is solved:

D"V(e) =1.
Consider now the two element group, {e, a}. The classes are
ci=e, ¢1=a,

so there are two representations. Since the group is abelian, these must be one-
dimensional. Thus we expect to find

inﬁ:Z.
v=1
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Since n, = 1 for both v = 1 and v = 2, this relation is obeyed. For one-

dimensional representations, the characters are the same as the representations,
so we can concentrate on the characters. It is useful to make a table of the

form
y

1 1 a (10.67)

2 1 B

where i labels the class and v labels the representation. The ivth element of the
square array is just y/”’. Since the character of the identity class is equal to the
dimensionality of the representation, we have filled in the first column in Eq.
(10.67) accordingly (in what follows we shall always label the identity class by
i = 1). Since in the case of one-dimensional representations the characters are
equal to the representation matrices, they must obey the multiplication table of
the group. Since a> = e, we have in thiscase a’> =1, 2 =1, a = %1, 8 =
=+ 1. Thus the two distinct representations form the character table

\ 1 2
Y

1 1 1 (10.68)

2 1 —1

Note that the “character vector” (1, 1) is orthogonal to the “character vector”
(1, —1), as it should be according to Eq. (10.49).
The three element group, {e, a, a’} with @’ = e, has three classes

& =e, & =a, & =a,

and therefore three one-dimensional representations. Note that Eq. (10.59) is
satisfied in this case. Using the multiplication table for the group, which says
that the square of element two is equal to element three, we can write im-
mediately for the character table

i
\ 1 2 3

1 1 a a?
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and «® = B = y* = 1. Thus a, B, and 7 can take on three possible values, 1,
€3 and e**. The three distinct representations are therefore

i
DR ERE

1 1 1 1

(10.69)
2 1 € €
3 1 € €

with € = /3, The three resulting “character vectors,” (1, 1, 1), (1, €, €) and
(1, €, €) are mutually orthogonal, as the reader may readily verify.

At the fourth order, we find two groups awaiting our attention, the cyclic
group of order four and the four-group. For the cyclic group, we shall just
remark that by our treatment of the previous three cyclic groups, it should be
clear to the reader that the characters of the cyclic group of order n are generated
in an obvious way by the n nth roots of unity. Thus the character table for the
fourth-order cyclic group looks like

N 1 2 3 4
1 1 1 1 1
2 1 b o2 R
3 1 92 1 o
4 1 & & )

where = e*/"* = j and we have used the fact that §* = 1 to simplify the array.
The generalization to the cyclic group of order n is obvious.

For the four-group, if we denote the elements as usual by {e, a, b, ¢}, then
the discussion in Section 10.3 makes it clear that {e, a} is an invariant subgroup.
The factor group is

E = e, a}, A=1{b,c}.

Thus representations of {E, 4} [see Eq. (10.68)] can be transferred to the four-
group by assigning the representative of E to both e and a and the representative
of A to both b and c¢. The character assignment y(E) = 1, x(d4) = 1 gives y(e)
=1, y(a) =1, x(b) = 1 and y(c) = 1. Theassignment y(E) =1, y(4) = —1
gives y(e) = 1, y(@) =1, x(b) = —1 and x(c) = —1. Similarly, the invariant
subgroup {e, b} gives rise to two assignments for the four-group. One of these
is the trivial representation (all characters equal unity) which we have already
obtained from {e, a}; the other is y(¢) = 1, y(a) = —1, x(b) = 1 and y(c) =
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—1. Finally, the invariant subgroup {e, ¢} gives rise to one new set of charac-
ters, y(e) =1, x(a@) = —1, x(b) = —1, and %(c) = 1. Thus the character table
of the four-group looks like

N 1 2| 3| 4
v
1|1 11|
2 | 1| -1 | =1 (10.70)
31 [ =1 ] 1| =1
4 | 1 | =1 =1 1

Once again, the orthogonality relations are all satisfied.

Since five is a prime number, the only group of order five is the cyclic group
which is dealt with by extension of our discussion of the cyclic group of order
four. The same remark applies to the cyclic group of order six, which brings
us to S;, the six-element group of permutations on three objects. This is the
smallest nonabelian group. We know that it has three classes,

gr=e, & ={(12),(13),023}, & ={(123), (321)},

with corresponding characters y;, y2, and x;. The number of elements in each
classis gy = 1, g, = 3, and g, = 2. Since there are three classes, there must be
three irreducible representations. Hence by Eq. (10.59)

)

ni==6.

v=1
The only way to add three squares to obtain the value six is if n, = 1, n, = 1,
and n; = 2. Thus for the first time we will have a two-dimensional represen-
tation. Using the facts above, we can start our character table as follows:

N 1| 2| 3
v

1 1 1 1

2 1 a b

3 2 c d

We have put in the trivial representation directly and have used the fact that
21" = n,. Now by Eq. (10.49)

3
> s =0,
i=1



10.7 THE DETERMINATION OF GROUP REPRESENTATIONS 629

that is
14+3a+4+2b=0. (10.71)

Similarly, from

3
g =0,
; iXi "X

we conclude that
3c+2d4+2=0. (10.72)
Using Eqgs. (10.71) and (10.72), we simplify the character table to

i
N 1 2 3
1 1 1 1
2 1 a _datl
2
3 2 c 3¢+ 2
2

We can now use other orthogonality properties of the characters [Eq. (10.61)]
to write

3

() %k, () —
E:XI X2 =0,
v=1

3

v (v —
2 :Xf’*xf’ =0.
v=1

These both lead directly to
a+2c+1=0,

so the character table now contains only one unknown:

\ 1 2 3

v
1 1 1 1
2 1 —1—=2c 1 + 3¢
3 2 c —1— 3¢

A simple way of tying down the value of ¢ is to note that {123)® = e and
(123)2 = (321). Therefore in the one-dimensional representation y3 = 1 and
also ¥} = 3, since (123) and (321) both belong to the same class. Thus y; = 1,
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and this implies that 1 + 3¢ = 1, or ¢ = 0. The character table now takes its

final form:
i
x 1 2 | 3

1 1 1 1
2 1 —1 1
3 2 0 —1

The second irreducible representation is the so-called antisymmetric re-
presentation, obtained by representing odd permutations by —1 and even ones
by + 1. It clearly exists for all S,. The reader should check that the six nor-
malization conditions implied by Eqs. (10.49) and (10.61),

3
Z g’,x’f")*xlf”) = 6 ’ V= ly 2v 3 ’
=1

and

3
S =6lg,  i=1,2,3,
v=|

are also satisfied. It should be emphasized that this is by no means the fastest
way of obtaining the character table for S;. For example, the fact that ¢ and
¢4 combine to form an invariant subgroup whose factor group is isomorphic to
{e, a} enables one to write the two one-dimensional representations immediately
from Eq. (10.68). Then the character vector of the two-dimensional represen-
tation is uniquely determined by orthogonality requirements, as the reader can
show.

The characters of the two one-dimensional representations are, of course,
exactly equal to the corresponding one-dimensional representation matrices:

D"U) =1,
for all U€ S;, and
D®(e) = D?(123) = D?(321) = 1,
D®(12) = D®(13) = D®(23) = —1,
However, the two-dimensional representation requires some additional work to

obtain the representative matrices. The identity element is no problem. We
have

DO (e) = ((1) ?) . (10.74)

As for the matrix D®(12), let us choose it to be diagonal, since one can always
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pick one element of a representation to be diagonal in addition to the unit

matrix (why?). Thus
D (12) = (" O).

0 b
But (12) € &3, so by the character table, 4 = 0, that is, the trace of D (12)
is zero. Hence b = —a. Also, since (12)* = e, we must have a> = 1. Thus
choosing a = 1,
1 0
D (12 :( ) 10.75
w2 =(, _° (10.75)
Note that if we had taken a = — 1, we would have found a different matrix,

but one which is related to the matrix of Eq. (10.75) by a similarity transfor-
mation. Now what about D®(13) and D™ (23)? Clearly, since (13)* = e,

D¥(13) = D®(13)". (10.76)
But since we need consider only unitary representations,

DY (13)t = D¥(13)7",
and combining this with Eq. (10.76), we get

D¥(13) = D¥(13),

that is, D®(13) is Hermitian. Similarly, D (23) is Hermitian. Thus, using the
fact that the trace of both D®(13) and D®(23) is zero, we may write in com-
plete generality

DO (13) = (Z* _5) , po3) = (7, _i) (10.77)
where @ and 7 are real. But by Egs. (10.35) and (10.38),
M® = D" (12) + D®(13) + D®(23) = %X?)I: 0,
3
since y§¥ = 0. Thus using Eqs. (10.75) and (10.77), we have
<l+a+r B+ >:<O O)

B* + o* —l—a—7 o 0/’

so that the matrices D (13) and D®(23) take the form
D®(13) = <a B ) , D®(23) = <_(0’ + 1) —B > .

p* —a —B* (@ +1)

Finally, we use the unitarity conditions:

D™ (13)'D™(13) = (aH(—) o o +0|p|2> - <(l) (1)> '

3 ® _ (le+ 1)+ |BI 0 _(1 0
DO (23)'D® (23) = ( A ot |ﬂ|’> - (0 1) .
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These yield the two equations

a+|pP=1, (a+ 1)+ |p’=1,
which are readily solved to give @ = —4§, 8 = (v/3/2)e’, where ¢ is arbitrary.
Thus
1 {3l
D¥(13) = (ﬁ:_w 2 ) , (10.78)
b z
D®(23) = ( —3 = ?ew) (10.79)
TN\ Beid 1 ) )
b1 H

Now (123) = (13)(12), so
D®(123) = D®(13)D¥(12) = (J;% Jaew) (1 )

_ 3 —Pe’
—<J§e_,,¢ 2 ) (10.80)
2 2
Also, (321) = (123)!
1 Y3l
D®(321) = D®(123)~' = D (123)! =( e 2 1) ., (10.81)
—wet —3

which completes the determination of the representative matrices except for ¢.
However, it is always possible, without loss of generality, to choose ¢ = 0, since
a simple multiplication shows that any matrix of the form

( a be'
ce ' d

G 2

c d

when similarity transformed by the unitary matrix
e't 0
( 0 1) )

This fact, along with Egs. (10.74), (10.75), (10.78), (10.79), (10.80), and
(10.81), enables us to write finally

ro=( 9. = D o =(3 D).

2 2
— V3 1 V3
D™ (23) :( = ) . DO(123) = ( p ) . (10.82)

2

po(321) =( 7% ?)
-3 1 '

is reduced to the form

S o=
L )
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We have already written these matrices in Eq. (3.5), where we pointed out that
they were isomorphic to the group of permutations of three objects. Here we
have started with S; and relentlessly derived these isomorphic matrices.

It is interesting to note that in this case, when the representation matrices
are not all equal to characters, Eq. (10.45) is not equivalent to Eq. (10.49) as
it is for purely one-dimensional cases. For example, the i = 1, j = 1 element
of all the matrices of the two-dimensional representation [see Eq. (10.82)] gives
a “representation vector” which is, according to Eq. (10.60),

N CTRS S N Y
V3 272 22
On the other hand, the i = 1, j = 2 element gives
1 (0,033, -3, 23,93,

V3 2 272
These two vectors are normalized to unity and are mutually orthogonal, as they
should be according to Eq. (10.45). The nontrivial one-dimensional represen-
tation gives the “representation vector”
'—1= (l! _11 _11 _11 11 1) ’
V6
which is normalized correctly to unity and is orthogonal to each of the two

“representation vectors” written above. The reader may want to check the
remaining orthonormality relations implied by Egs. (10.45) and (10.61).

10.8 GROUP THEORY IN PHYSICAL PROBLEMS

Now that we know how to obtain the characters and representations of groups,
we can indicate some of the ways in which group theory can be used to increase
our understanding of certain basic physical processes.

As a particularly simple illustration of what we have in mind, consider the
problem of a quantum-mechanical system which has various eigenstates which
are degenerate because of the existence of some symmetry of Schrédinger’s
equation. As we mentioned in Section 10.4, the collection of eigenfunctions
belonging to some degenerate eigenvalue will transform into itself under any
transformation belonging to the symmetry group in question. According to Eq.
(10.15), if € &, and U€ G, then

%ﬂbm E Dm m ¢m’ )

where D(U) (U€ G) is a representation of the group G. Now suppose that we
apply to the system a weak perturbation having a smaller symmetry group than
the original system. For example, we might have an atom, which in its natural
environment in free space is a rotationally invariant system, but which when
put in, say, the lattice of a cubic symmetric crystal feels a potential which has
the symmetry of the cube. The symmetry of the cube is obviously much smaller



634 INTRODUCTION TO GROUP THEORY 10.8

than that of complete rotational invariance; in fact, the infinite-element sym-
metry group of all rotations in three dimensions is replaced by the 24-element
symmetry group of the cube (this group is isomorphic to the group, S,, of per-
mutations on four objects).

When the atom finds itself in this new cubic potential, the energy levels
will be modified in such a way that the degenerate eigenvectors belonging to
the new energy levels will transform among themselves according to the repre-
sentations of the group, (7, of symmetries of the cube. In other words, a p-fold
degenerate level of the rotationally invariant system must break up into M sets
of degenerate levels belonging to (7, with multiplicities g, g, - - -, pas. Clearly,
ot oy =

The proper framework for a discussion of these questions is provided by
degenerate perturbation theory (Section 4.12). If the reader will look back at
that section, he will see that the important objects in the discussion of pertur-
bation theory are the so-called matrix elements of the perturbing operator be-
tween states of the unperturbed system. To be precise, let us suppose as in
Section 4.12, that A4, is the linear operator governing the unperturbed system:

A0¢n,u,i == Zn,u ¢n.u,i .

Here we have chosen the indices to conform to the group theoretical facts which
we have learned in this chapter. v labels the irreducible representation which
tells us how the eigenfunction transforms under the symmetry group, Gy, of 4,
and i is the column of the representation to which ¢, ; belongs. That is, in
standard terminology,

ny

?/‘Sbn.u,i = Z D;;J)(V)Sbu.u.i s (10.833)

V is any element of G, (7 is the corresponding element of &) and n denotes
any additional labels which may be necessary to specify uniquely the eigenvalue
under consideration. For example, the vth representation may be of relevance
more than once as we run through the entire spectrum of 4,.

We now imagine that the perturbation 4, is invariant under each element,
U, of the symmetry group G, and that ¢, , ; is a set of functions which trans-
form according to the vth representation of G,:

ny

Yuvi = D, DR (U, (10.83b)

j=1

where Z € &. We wish to consider matrix elements of the form
Mll,l‘,i;n’,[l,] = (¢n,u.h Al¢n’.p,i) . (10'84)
Since Z/'% = %%t = I, we may write Eq. (10.84) as

Mn.u.l;n’.u./ = (¢n.u,iv %T%Al //T%gbn'.[l.i)
= (?/(;bn.u.iv %Al%—l%ﬁbn,n.l) .
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Using the transformation properties of the ¢, ., we may write this as
"y ny
Mn.U,i;n’,/z j (Z D(D) n v,k [Z/Al?/ l] Z DU‘) 'l ﬂ.l) ’
or

ny ny

Mn,u,i,n’,ﬂ,j == Z Z D(U)* D(#) U) (¢n,u,kv [?/A17/—1]¢,,/./,,/) . (10'85)

But since we have assumed 4, to be invariant under G,,

?/Al7/_l = Al ’
so Eq. (10.85) becomes
ny np
Mysiivns = 9, 9 DZ*(U)DY(U) (fuuier Aiprus) - (10.86)
k=1 =1

Now the crucial step is to sum both sides of Eq. (10.86) over all U€ G, so we
will be able to take advantage of the orthogonality relation of Eq. (10.45) on
the right-hand side. On the left-hand side, since M does not depend on U [see
Eq. (10.84)], we get just gM, where g is the order of G,. Thus

ny ny

M, i = D 3 D DI UDY (U) Mo - (10.87)
k=1 1=1 U€G,
But the main part of this sum involving the representation elements can be
evaluated immediately by using the orthogonality theorem [Eq. (10.45)] which
tells us directly that

3 D) D (U) = £5,0,0, .
n,

UEG,
Inserting this into Eq. (10.87), we obtain

ny

M, i = nl()‘,,,,d,-, M, ,iww - (10.88)
v =1

Thus we see that matrix elements of this type vanish unless the eigenfunctions

belong to the same representation and, furthermore, to the same column of this

representation. This result can often be helpful in perturbation calculations by

severely limiting the number of eigenfunctions which can occur in the pertur-

bation-theory sums [see, e.g., Eq. (4.60)].

On the most elementary level, Eq. (10.88) tells us that a perturbation, 4,
with the same symmetry group as the dominant operator, A4,, cannot split de-
generacies in first order, since, in computing the matrix of 4, between the de-
generate states belonging to some eigenvalue of 4,, we will find only diagonal
elements [ = j in Eq. (10.88)], and all the diagonal elements are equal. Hence
by Eq. (4.65b), all the first-order energies will be equal, and there is no splitting
of the degeneracy. This is not surprising since if A4, has the same symmetry as
Ao, then the operator 4 = A4, + €A, will also have the same symmetry as A,.
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Therefore, according to the general arguments of Section 10.4, the degenerate
levels of A4, belonging to some irreducible representation of G, can never split
since these new levels of 4 would have a smaller multiplicity than the original
level. This in turn would mean that there exist several linear combinations of
eigenfunctions of the original degenerate level which transform among them-
selves under Gy,. The original level must therefore give rise to a reducible rep-
resentation of Gy, contrary to assumption. Thus no splitting can occur.

A more useful application of Eq. (10.88) is found by considering the case
where A4, has a symmetry lower than that of 4, and where the group G,, under
which A4, is invariant is a subgroup of the larger group G,, under which 4, is
invariant. The key fact is that in such a case the representations D™ (V) (V €
G,) of G, will give rise to representations of G, by associating D" (V) with the
Ue€ G, which corresponds to V€ G,. In general, this representation will be
reducible. For example, the group {e, (12)} is a subgroup of S; = {e, (12}, (13),
(23), (123), (321)}. Now, in the two-dimensional representation of S;, e is
represented by the unit matrix while (12) is represented by

(o 1)
0 —1/°
Thus for the group {e, (12)} the representation

O R R PR

is perfectly acceptable, but it is obviously reducible into the sum of two one-
dimensional representations. In a more complicated case, where the decom-
position is not so obvious, the number of times an irreducible representation
of G; is contained in a representation of G, induced by G, can be calculated
simply by knowing the characters of the irreducible representations of G, and
using Eq. (10.54).

With this point of view clearly in mind, it is easy to see what happens when
we split a degeneracy by applying a perturbation 4,, which is invariant under
G,, to a system A4,, which is invariant under G,. A given degenerate level of 4,
belongs to an irreducible representation D* of Gy, i.e., the eigenfunctions of
this level transform among themselves under the action of G, according to D®,
However, we can also consider this level as belonging to a reducible representa-
tion of G,; that is, certain sets of linear combinations of wave-functions belong-
ing to this level transform into themselves under the action of G,.

We can see this as follows. Suppose D(V) is some irreducible representation
of G,. If we restrict ourselves to the subset of ¥’s which are also elements of
G, and denote a typical element of this subset by U, then D(U) is in general a
reducible representation of G,. Therefore there exists some matrix S (inde-
pendent of U) such that for all U€ G,,

STD(U)S = D'(U) or  D(U) = SD'(U)S™*.
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D’(U) has the same form as the matrix shown in Eq. (10.19), that is, it has
square matrices (irreducible representations of G,) on its diagonal, with all other
elements equal to zero. Suppose that { f;} is a set of functions which transform
among themselves under G, according to the irreducible representation D(V).
Then if we restrict our attention to those elements, U, which also belong to G|,
we may write

=20

= Z [SD'(U)S™'Y; 5
- Z S/kam [S l]ml.f;

This last relation can be written as
% Sufi= D, SuDL(U
i ik

If we write

& = Z Su fi then 4= Z D, (U

Looking at the form of D’(U) [see Eq. {10.19)] we can pick out by inspection
the sets of g’s which transform among themselves according to the irreducible
representations of G, on the diagonal of D’(U).

If we now apply degenerate perturbation theory to the perturbing operator
A,, using the linear combinations of degenerate eigenfunctions appropriate to
G\, then according to Eq. (10.88) there will be no nonzero matrix elements of
A, which connect different irreducible representations of G,, and within an ir-
reducible representation of G, the diagonal elements will give the only non-
vanishing contributions. These diagonal elements are all equal within a given
irreducible representation. Thus the matrix of A, calculated between appro-
priately chosen linear combinations of eigenfunctions belonging to a degenerate
level of A4,, might appear as follows:
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In this case, a thirteenfold degenerate level of A,, belonging to a thirteen-
dimensional representation of G,, has been split into three levels—fourfold,
threefold, and sixfold degenerate—belonging to three different irreducible rep-
resentations of G,. (The reader should note that we are assuming that a given
irreducible representation of G, occurs only once in the decomposition. What
would the matrix of 4, look like if some irreducible representation occurred
twice?) Of course, one would not often know in advance the correct linear
combination of wave-functions, so the above diagonal array would in practice
look like a complicated 13 X 13 matrix, which would take the above form
after being similarity transformed (diagonalized). The similarity transform
would also give the correct linear combinations of the original wave-functions
in the manner explained in Section 4,12,

To illustrate the ideas contained in the above discussion, we consider the
example mentioned at the beginning of this section, namely, a rotationally
invariant system (an atom in free space) placed in a weak, cubic-symmetric
potential (in a crystal with cubic symmetry). Before we can solve the problem,
we must first obtain the characters of the irreducible representations in question.
Let us take the rotation group first. This is a continuous group, and therefore
strictly speaking lies outside the framework developed in the preceding sections.
However, if we are interested only in characters, we may proceed as follows.
We know from elementary considerations (see Section 5.8} that the (2/ 4 1)

spherical harmonics Y;,,(0, ¢) (m = —I, —I + 1, ---, 1 — 1, ]) are eigenfunc-
tions of the rotationally invariant operator L? and all belong to the single eigen-
value I(/ + 1) { =0,1,2, --+). These degenerate functions must therefore

transform among themselves according to a representation of the rotation group
(which can be shown to be irreducible).

We know that a general rotation can be brought by a unitary transforma-
tion to the form of a simple rotation about an axis. Let us call the angle of
rotation about this axis ®. Since all rotations through an angle & are unitarily
equivalent, such rotations form a class which can be labeled by ®. To obtain
the character of such a class, we need consider only a simple rotation through
® about the z-axis. Such a rotation takes Y, (8, ¢) into e™*Y,,(0, ¢) (see Sec-
tion 5.8). Thus the matrix representing this rotation will be

e—-il'b O
e—i(l—l)@
ei(l—l]‘h

O ol
The trace is readily computed; we find that
! .

. sin (/ + 3)P

x(l) (@) = Z, eim® — s(in (g)ﬁ) ’ (10.89)

where we have evaluated the sum by using the formula for summing a geometric
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series. Note that the dimension, n,, of the /th representation is

lim sin (I + 3)P

=241,
o sin 3

as we should expect since @ = 0 corresponds to the identity transformation.
When / =0, we find the trivial one-dimensional transformation in which every
rotation is represented by 1. When / = 1, we obtain the three-dimensional
representation which should be familiar from classical mechanics; it is given,
as a function of the Euler angles, by Eq. (1.25).

(a) (b) (c)

Fig. 10.2 The axes of symmetry of a cube.

Having found the class characters for all the representations of the group of
three-dimensional rotations, let us now move to more familiar ground and find
the representations and characters of the group ¢7 of symmetries of the cube.
This group contains 24 elements in five classes, being isomorphic to S,. The
class 7 is the identity class. Figure 10.2(a) shows the axes of rotation which
are relevant for the classes %5 and &, %, consists of the six rotations through
+n/2 radians about each of the x, y, and z axes; the class & consists of the
three elements corresponding to rotation through z radians about the x-, y-,
and z-axes. Figure 10.2(b) shows the axes relevant to the class %%, which con-
sists of rotations through z radians about each of these six axes. Finally, the
class # consists of rotations through +2#/3 radians about each of the four
axes shown in Fig. 10.2(c). We have labeled these classes in this particular
manner so they will correspond to the class assignments for S, given in Section
10.3. Justas with S,, the classes %} and %, combine together to give an invariant
subgroup ¥, the factor group of which is isomorphic to S;. Thus, in the manner
illustrated in the previous section, we can lift representations of S; onto S, (and
hence onto 7). Since /” has 24 elements and five classes, we must have

m+ni+ nl+nk+ nk=24,

where n, is the dimension of the yth representation. The only possible collec-
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tion of n, which can satisfy this relation is n, =1, n, =1, n, =2, n, = 3,
and ns; = 3.

According to our previous remarks, the first, second, and third representa-
tions (with n, = 1, n, = 1, and n, = 2) will correspond to those of S; = S,/V.
Thus, in usual manner, we can fill in a large part of the character table for /:

N 1 2 3| 4 5
Y
1 1 1 1 1 1
2 1| =1 1 1| =1
(10.90)
3 2 0o | -1 2 0
4 3 a b | ¢ d
5 3 o B 7 0

Since g, =1, 8 =6, g5 =28, g =3, and g = 6, we can use Eq. (10.49) to
obtain
6a + 8 + 3¢+ 6d = —3,
—6a+ 8+ 3¢ —6d=—3,
—8b + 6¢c = —6.
The equations for a, B, 7, and d are identical to the above three. These equa-

tions are readily solved to give b =0, ¢c = —1, d = —a; similarly § =0,
= —1,0 = —a. Thus Table (10.90) becomes

N 1 2 3 4 5
y
1 1 1 1 1 1
2 1 —1 1 1 —1
3 2 0 —1 2 0
4 3 a 0 —1 —a
5 3 a 0 —1 —a

The normalization condition implied by Eq. (10.49) gives a* = 1 = a?, that is,
a= +1and a = +1. The two distinct choices atre a = 1, a = —1 or a =
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—1, @ = 1. These lead to the same character table except for an interchange
of the last two rows. Thus the character table takes its final form:

X 1 2 3| 4 5
v
1 1 1 1 1 1
2 | 1 | =1 1 T .
(10.91)
3 | 2 o l—-11 2] o
4 | 3 1o | =1 |~1
s | 3 | =1 ] o= 1

In this case, the representation matrices can also be readily obtained. For
the first three representations, the matrices are just those previously obtained
for S;. The three-dimensional representations are obtained in a simple manner
from the three-dimensional representation of the rotation group. Since we will
not need these matrices here, we will omit a detailed analysis of them.

With all the routine work out of the way, we can see what happens when
a rotationally invariant atomic system is put into a weak cubic-symmetric en-
vironment. First, we note that the various representations of the rotation group
induce representations of (7. Consider, for example, the / = 1 representation
of the rotation group. The classes of the cubic group correspond to the follow-
ing angles of rotations (in radians):

0, & — /2, & — t2x/3, Gi—m, &

The characters corresponding to these rotations are obtained from Eq. (10.89).
We find that

X1=3, =1, =0, w=—1, Xs=‘1-

By looking at the character table of ¢ [Table (10.91)], we see that this has given
us an jrreducible representation of ¢, corresponding to the fourth row of the
character table. Thus an eigenvalue of the rotationally invariant system be-
longing to the / = 1 representation of the rotation group will not be split when
subjected to a perturbation of cubic symmetry.

Moving to the / = 2 representation and using Eq. (10.89), we find that

XI:51 r=-1, Bn=-—1, =1, Xs=1

for the characters of the representation of ¢ induced by the rotation group.
Now, to determine the number of times a given irreducible representation of (7
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is contained in this reducible representation, we use Eq. (10.54). We find that

a“’——Zg,xf"x,——[5—6—8+3+6]——0
m__.Eg,x,(2>x,=ilz[5+6—8+3——6]:0,
a<3>:—-Zg,x,‘”x,_—_2—14[10+0+8+6+0]=1,
a“’:-—-Zg,xf"x, —212[15-—6—%0—3——6]:0,
aw=—23¢%575w+6+0—3+ﬂ=

Thus the third and fifth irreducible representations of ¢7 occur in the reducible
representation induced by the / = 2 representation of the rotation group. There-
fore the fivefold degenerate state corresponding to an / = 2 representation of the
rotation group will split in a cubic symmetric field into a twofold degenerate
state and a threefold degenerate state.

The lifting of degeneracy in the problem follows completely from the sym-
metry of the problem without any knowledge of the explicit form of the inter-
actions! Such effects have been verified in innumerable experiments on the
spectra of atoms in solids, providing one of the most beautiful examples of the
power of group theoretical techniques in physics. In recent years, similar group
theoretical methods have been used in elementary particle physics to obtain
information about the relationship between the masses of various elementary
particles, using only certain assumptions about the symmetry of the “unper-
turbed” elementary particle Hamiltonian and about the nature of the perturba-
tion term which breaks the symmetry.

As a final illustration of the utility of group theoretical techniques in phys-
ics, we shall modify Eq. (10.85) slightly to obtain an interesting result con-
cerning the transitions between quantum-mechanical states. We have already
considered the case where 4, is invariant under all %/ € ;. Suppose now that
A, transforms under &, according to some irreducible representation of &;. This
would be the case if A, were one of a collection of operators, which we might
write as {A*™, m = 1,2, - -+, nj}, where 2 indicates the irreducible represen-
tation under which the set of 4{*™ transform; i.e.,

%M%“—Zmu A

m’'=1
Thus we would rewrite Eq. (10.85) as

ny ny na

Ml(ll,;l’,"l), n' p,j - Z Z Z Dl(r‘:)*(U)Dl(f)(U)Dr(rf’)m(U) (¢n,v,kr Af'z'm,)sbn’,ﬂ,l) ) (10-92)
k=1 I=1 m'=1
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where we have defined
Mr(r{:al,"i); n'pu,j = (¢n,u,iv A{Lm)gb"’./hi) *
Thus Eq. (10.92) takes the form
ny ny ny
M ey =D D0 D D*U)DY (U) DR (U) M ey - (10.93)
k=1 [I=1 m'=l
What can we say about the product Di¥' (U) D, (U)? According to Eq. (3.60)
this is equal to the /m’, jm-element of the direct product of D* and D®:

[D(”)(U) ® D(D(U)]lm’.im = Dl(;”(U)Dl(lf')nl(U) .
Thus Eq. (10.93) becomes

ny "y ny

M s = 2 D0 D0 D*(U)D (U) @ DV (U) Jime, i M it -
k=1 I=1 m'=I
(10.94)

Now since the direct product of two representations is again a representa-
tion, the quantity in square brackets in Eq. (10.94) will be a representation
matrix element, but even though D'® and D" are irreducible, their direct product
will usually be reducible. The number of times that an irreducible representa-
tion of G occurs in the direct product is easily determined [by Eq. (10.54)] if
we know the characters of the irreducible representations, since the character
of U corresponding to D (U) @ D*(U) is just y(U) = x*(U)x**(U), accord-
ing to Eq. (3.61). Let us label the irreducible representations occurring in D"
& D by the elements p, of a set R;, of integers. Then we can write

"p
[DY(U) @ D (U) wijm = D, D, @istfmiae DR (U) . (10.95)
PERI” o, t=1
Putting Eq. (10.95) into Eq. (10.94) and, as before, summing both sides of Eq.
(10.94) over all U€ G, we find that

ME s =2 3 00 S Al i MO (10.96)
My p€R KT
Without any further work, we can see that unless v € R;, the expression in Eq.
(10.96) vanishes. In other words, unless the direct product of D® and D"
contains the irreducible representation D*’, the quantity M{*" . ,, must equal
zero for any choice of #, j, and m.

The usefulness of this result can most easily be seen by considering the rate
of transitions between two quantum-mechanical states of a system which is
invariant under some symmetry group. Suppose the levels belong respectively
to the vth and pth representations of the symmetry group. It is known from
quantum mechanics that if 4, is the operator which induces the transition, then
the transition rate is proportional to

I (¢lr.u.iv Al¢n’.ll./'> |2 '
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where we label the wave functions in the usual manner. If A4, transforms ac-
cording to some representation A of the symmetry group in question, we see
that unless the vth representation is contained in the direct product of the pth
representation times the Ath representation, the transition cannot occur. This
restriction follows purely from the symmetry of the problem.

The theory of selection rules of quantum mechanics follow from these con-
siderations. For example, a rotationally invariant atomic (or nuclear) system
has energy levels which, as we have seen, can be classified according to the ir-
reducible representations of the rotation group. Now the operator which induces
electric dipole transitions between atomic levels is proportional to the electronic
position vector r which transforms according to the / = 1 representation of the
rotation group, as we saw in Chapter 1. Thus for a transition to take place
from a level labeled by / to a level labeled by //, the I’ representation of the
rotation group must occur in the direct product of the /-representation times
the 1-representation. The study of the decomposition of the direct product of
representations is thus very important for the applications of group theory to
physics, since such a study leads to a direct determination of the selection rules
which play a central role in atomic, nuclear, and elementary particle physics.

PROBLEMS

1. Consider the plane of Fig. 10.3, where the objects at 4, B, and C are fixed to the
circular loop. This figure is clearly invariant under rotation through 120° and
240° and under reflection through the lines a, b, and ¢. Show that these five oper-
ations plus the identity form a group. Write out the group multiplication table.
What are the classes into which the various group elements fall?

Fig. 10.3

2. Consider the group built up from the unit matrix and the Pauli spin matrices.
The elements of this group are x£1, *iox, *ioy, and *ic,, where

a=(° 1) U=<0—i> e o>
*7\1 o)’ PT\i o)’ T\o -1/

What is the multiplication table? Find all subgroups and classes. Are there any
invariant subgroups?

3. Find the symmetry group, including only rotations, of a square, rectangular
parallelepiped (i.e., square on the top and bottom and rectangular on the sides).
Show that this group is isomorphic to the symmetry group of the square which
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includes both rotations and reflection. What are the classes? Show that there is
an invariant subgroup. Find the factor group associated with this invariant sub-
group.

. Determine all the elements of the group of rotational symmetries of the regular

tetrahedron (i.e., a tetrahedron whose sides are equilateral triangles). Put these
elements into the classes to which they belong. Find all the subgroups. Are there
any invariant subgroups?

. Consider an arbitrary group, G, with a subgroup, H. Show that if H is of index

two, then H is invariant. Remember that the index of a subgroup is the ratio of
the order of the group to the order of the subgroup.

. Find the subgroup of Ss to which the cyclic group of order five is isomorphic.

Demonstrate the isomorphism explicitly by performing all the relevant multipli-
cations of the elements of Ss.

Let (123 - -/) be a cycle of length /. Prove that if 2 < [ then (123 .-/)? # e, while
(123---) = e.

. Let G and G’ be two groups. Show that in a homomorphism of G onto G’ the

elements of G which are mapped into the identity of G’ form an invariant sub-
group, H, of G.

. Show that the group G’ of the previous problem is isomorphic to the factor group

G/H, where H is as defined in the previous problem.

a) By direct calculation, show that

0? 02 92

ox? _a? 022
is invariant under rotation through the Euler angles a, f and y. To refresh your
memory about Euler angles, see Section 1.4.

[Hint: Note that the most general rotation is built up from three simpler rota-
tions.]

b) Determine how the three components of the quantum mechanical angular
momentum [see Eqs. (5.86)] transform under the group of rotations about the
z-axis.

Show that the set P, = [1, x, x2, - -+, x"!] transforms into itself under the action

of the translation group in one dimension. Denoting a translation through a

distance a by T, (that is, Tex = x — a)- find the n-dimensional representation of

the group of all one-dimensional translations which is provided by the set of
functions P,. Is this representation equivalent to a unitary representation? Show
explicitly for the case of the three-dimensional representation that ToTs = Tays.

Show that the following three sets of functions, [cos 38], [sin 36] and [cos 46,

sin 40], transform among themselves under the elements of the group discussed

in Problem 10.1. What are the representations and characters which are obtained
from these three sets of functions? Are they irreducible representations? What
can you say about the representation provided by [cos 58, sin 561 ?

Show that if C; is a class containing S\, S, - -+, S;; and Cr is the collection of

elements consisting of Sy, S;!, -+, S;l.‘, then Cy- is also a class. Show that for a

general irreducible representation, i.e., one which is not necessarily unitary,

1
Do EUY = gom,  an= D gl
i i

V=
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where a, is the number of times the pth irreducible representation occurs in the
representation (not necessarily irreducible) whose characters are ;.

. Show that any 2 X 2 matrix which commutes with the three Pauli matrices given

in Problem 10.2 must be a multiple of the unit matrix.

[Hint: Show that any 2 X 2 matrix can be written as a linear combination of the
unit matrix and the Pauli matrices.]

Show that the most general 2 X 2 unitary matrix whose eigenvalues are 1 and

— 1 can be written as
U= <cos(9 sin 0e‘¢>
sinfe " —cosf/’

Find the characters and irreducible representations of the group discussed in
Problem 10.3.

[Hint: For the two-dimensional representation, the result of Problem 10.15 may
be useful.]

Using the three-dimensional representation of the rotation group, given, for
example, by Eq. (1.25), find the matrices for a three-dimensional representation of
the symmetry group, ¢, of the cube. We saw in Section 10.8 that there were two
three-dimensional representations of (. Give a simple prescription for finding
the matrices belonging to the second three-dimensional representation (i.e., the
one not given by the rotation group).

Using the results of Problem 10.4, find the characters and representations of the
group of rotational symmetries of the regular tetrahedron.

Suppose that we have a linear operator with cubic symmetry, and we apply a
small perturbation having the symmetry of a rectangular parallelepiped. Making
use of the results of Problem 10.16 and the work of Section 10.8, find how the
various possible degenerate states of cubic symmetry break up when this pertur-
bation is applied.

Consider a linear operator, 4y, with rotational symmetry. Suppose that a small
perturbation having the symmetry of a regular tetrahedron is applied. Using the
results of Problem 10.18 and of Section 10.8, find how the four states of 4, with
the lowest degeneracies (onefold, threefold, fivefold, and sevenfold) break up when
this perturbation is applied.

Consider all possible representations of the cubic group, ¢/, formed by taking the
direct product of the various irreducible representations of (7. Find out how many
times the irreducible representations of ¢ occur in these product representations.

In quantum mechanics one defines an electron spin wave function using « for spin
“‘up’’ and B for spin ‘“‘down’’; @« and g8 are orthonormal. For a system of three
electrons we can form product wave functions of the form a(1)a(2)a(3), a(1)a(2)A(3),
etc., there being 2 = 8 such products. Clearly, these eight functions transform
among themselves under the action of the elements of S3, and they are mutually
orthogonal. They therefore form a set of basis functions for a representation of
S3. Find how many times the various irreducible representations of 53 occur in
this representation. Is any representation missing? Why? Can you relate some
of the objects you’re dealing with to physics ?
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Suppose that all the eight product spin functions of the previous problcim arc
degenerate eigenfunctions of some linear operator, 4o. Let Ay be perturbed by an
operator of the form Ay = APy, + BP;3 + CPu, where Pi; transforms coo.dinate
i into coordinate j and vice versa. For example,

Pia(1)p(2)a(3) = a(2)f(1a(3) .

Show that the matrix which must be diagonalized to obtain the first-order correc-
tions to the eigenvalue of 4, to which the product functions belong can be written
in the form

rE 0 0 O O O 0 0"
0O E 0 0 0o O 0 o0
0O 0 E 0 O o0 0 o0
o 0 0 E 0 O O o
0 0 O O E, E» 0 0 |’
0 0 O O E2 En O O
0O 0 0O 0 O O E Ep
LO 0 0 O O 0 E. E;]

where E=A+B+C, En=A— (B+ C)2, E.=4/3B— C)/2 and E; =
— E,y, if we use the representation of S; given in Section 10.7.

If in the previous problem we had used a different (but unitarily equivalent) two-
dimensional representation of Si;, we would have found different values for Ei,
Eyz, and E». Would the eigenvalues of the matrix of Problem 10.23 be different ?

Why ?
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