CHAPTER 1

Introductory Concepts

At the present time, physicists find it convenient to try to describe the real
world in terms of mathematics. Before we also explore the properties of the
real world, we must have a firm grasp of the kinds of mathematical concepts
that have been useful for physicists. These fundamental building blocks!—3
are presented in this chapter, together with examples.

I. Basic Building Blocks

1. SET. A setis a collection of objects that do not necessarily have any
additional structure or properties. For example, a collection of n oranges or
bananas constitutes a set. So do n people. So do n points. The archetypical
example of a set containing n (possibly infinite) objects is the set of n points.

2. GROUP. A group G is:
(@) asetgy,gs, ..., 9, €G
together with

() an operation, called group multiplication ()

such that

1. g;€G,g;eG=g;°9;€G closure
2. gi°lg; ogi) = (gi °g 1) ° gk associativity
3. 91°:i=9:i=6:°91 for allg; existence of identity
4. grogi=9,°9x =91 unique inverse g, = g, ' (1.1)
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2 INTRODUCTORY CONCEPTS

Example 1. The collection of all possible permutations of the points 1, 2,
3, 4 constitutes a group with 4! elements, or operations, called P,

1 2 3 4 Before group

o o o o operation
1 2 4
>8< l g=(2 31 4) (12)
° ° ° ° After group
operation

Example 2. The collection of rotations of the circle through multiples of
2n/n radians constitutes a group with n
distinct operations. Such a (finite)
A group is said to be of order n.

(&

Example 3. The collection of rotations of the circle through an angle 6
(0 < 0 < 2r) is an example of a contin-
uous group. The group operations g(6)
A exist in 1-1 correspondence with points
on the interval 0 < 6 < 27.

()

Example 4. The set T, of rigid translations of the straight line through a
distance a is another example of a con-

Oﬁ tinuous group. The group operations
"a exist in 1-1 correspondence with the
/--\2 points on the line — o0 < a < + 0.

Example 5. The set of real numbers, excluding 0, forms a group under
the operation of multiplication. So do the complex numbers, provided we
exclude 0. The identity operation in both groups is 1. But under the opera-
tion of addition, both the real and complex numbers form groups with
identity element 0.

Example 6. The set of real n x n nonsingular matrices under matrix
multiplication forms a group called GI (n, r). The subset of these matrices
with determinant +1 forms a (sub)group called SI (n, r). The collection of
n x n unitary matrices U(n) also forms a group under matrix multiplication.
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Comment. For the groups discussed in Examples 2 to 5, the order in
which the group operations are applied is immaterial. A group that obeys a
fifth postulate in addition to the four just listed is called an abelian or
commutative group:

5 gicg;=g;°0; all  g;,9;€G commutativity (1.17)

In an abelian group it is customary to denote the group multiplication
operation as + instead of o. The groups of Examples 1 and 6 are not abelian.

3. FIELD. A field F is
(a) a set of elements fy, f1, f3, ---,
together with two operations:

() + called addition
(B) o called scalar multiplication

such that Postulates 4 and B hold.

Postulate A. F is an abelian group under +, with f, the identity.

Postulate B

1. fiof;eF o closure
2. fioficf) =(ficf)efe o associativity
3. fiel ~ =1lof,=f o identity
4. fiofit=1 =flof,fi+fo o inverse, except for f,
5. fielfi+f) =fiefi+fioh

(fi+f)ofe =fioh+fiof distributive law (1.3)

If Postulate B-6 is also obeyed

6. fiofi=1f;of; commutativity (1.3

we say the field is commutative.

Only three fields are generally used by physicists. These are the real and
complex numbers and the quaternions. The properties of the real numbers
are assumed to be familiar.

Every complex number can be represented in the form

c=al +ib
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where the units 1 and i (=\/ii) obey .
1-1=1
i-l=1i=i
ivi=—1 (14)

and a, b are arbitrary real numbers. Then we have

¢y + ¢, =(a;1+iby) + (a1 + ib,)

= (a; + ay)l + (by + by)i (1.5)
ciep = (ar 1+ byi)(ay1 + byi)
= (aja; — by by)1 + (ay b, + bya,)i (1.6)
Every quaternion can be represented in the form
g=4qol +q14; + q2A2 + q343 (1.7)

where the g; (i =0, 1, 2, 3) are real numbers and the A; have multiplicative
properties defined by
Aohi = Ao = A; i=01,23
Aidi= —Ao
Ay = —Aydy = A3
12}*3 = "/?-3)«2 = /11
Azhy = —A1A3 =4, (1.8)
The sum and the product of two quaternions p and q are
p+q=(po+ Clo)lo + (P + 411)'11
+ (P2 + q2)A2 + (P53 + q3)43 (1.9)
and
pq = (Poqo — P141 — P292 — P3d3)Ao
+ (Poq1 + P1qo + P293 — P3q2)
+ (Pod2 + P290 + P3q1 — P143)A2
+ (Pogs + P3do + P1d2 — P241)As (1.10)
The set of eight elements +4,; forms a noncommutative group.

Complex conjugation can be defined for quaternions just as for complex
numbers. Defining

(Ros A1y Az, A3)* = (+40, =41, =43, —43) (1.11q)
in direct analogy to
(1, ))* = (+1, —i) (1.11c)
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we easily see

3
q*q = 10( Y qiz)
i=0

(1.12)

The product of a quaternion with its conjugate is a real number which is
> 0. Also, g*q = 0 implies that g is zero, in exact analogy with complex

numbers.

4. LINEAR VECTOR SPACE. A linear vector space V consists of

(a) a collection vy, vy, V4, ..., € ¥, called vectors
(b) a collection f;, f5, ..., € F, a field

together with two kinds of operations

() vector addition, +
(B) scalar multiplication, o

such that Postulates 4 and B hold.
Postulate A. (V, +) is an abelian group.

v, V;eV=v, +v,eV
Vit (Vi + V) =(vi+ V) + v
Vo+Vi=V,=V;+ v,

Vit (=v)=vo= (=) + v,
Vit V;=V;+V;

BAEb S e

Postulate B

1. fieF,vieV=fyv,eV

2. fie(fiew) = (fiofy)ow

3. lovyy=v;,=vy;0l

4. fio(w+v)=fievi+fioy
(fi+f)eovi=fiovi+fiow

closure
associativity
identity
inverse
commutativity

closure’
associativity’
identity’
bilinearity
(1.13)

Example 1. The most primitive example of a vector is “something that

points in some direction.”

v =xle; + x%e, + x’e,

(1.14)
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Example 2. If we associate V with F in the definition of a linear vector
space, we see that the real and complex numbers and quaternions are linear
vector spaces. The complex numbers form a vector space over the field of
real numbers (basis 1, i) or complex numbers (basis 1); the quaternions form
a vector space over the field of real numbers (bases ¢, 41, 4,, 43) or the
quaternion field itself (basis 1).

Example 3. Let ¥ be any linear differential or integral operator:

Loy + Bos) = aZ(d1) + BL(¢2) (1.15)
Then if ¢, and ¢, are solutions to the equation
Z($)=0 (116)
so also is any linear combination. The set of all solutions to the equation
ZL(p)=0 (1.17)

is a linear vector space. Since a large class of the differential and integral
operators of mathematical physics has this linearity property, a study of
linear vector spaces and their properties is directly relevant for the physicist.

Example 4. The set of functions f(¢) defined on the circle (0 < ¢ < 27)
forms a linear vector space

f(¢)= :rioame"""” (1.18)

where m is an integer.
For that matter, the set of functions defined on any set of points (either
finite or infinite) forms a linear vector space.

Example 5. The set of all N x M matrices forms a vector space under
matrix addition. In particular, the sets of N x 1 and 1 x N matrices form
vector spaces, Vy and V}.

At this point it is convenient to introduce several concepts that are useful
for describing the properties of vector spaces.

Definition. The vectors v, v,, ..., v, are linearly independent if
Yav=0=>0=0 i=12..n (1.19)
In Examples 1 and 4 above, we have

x'e; + x%e, + x%; =0=x' =x2=x3=0 (1.20)

+ o0
Z a,e™ =0=aq, =0 m=0, +1, +£2,..., (1.21)

m= — o
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Therefore, the vectors e; are linearly independent, as are the vectors e™?,
0<¢ <2n

Definition. A vector space is N-dimensional if it is possible to find a set of
N nonzero linearly independent vectors v, v,, ..., vy, but every set of
N + 1 nonzero vectors is linearly dependent.

Definition. Any such maximal set of vectors is called a basis, or coordin-
ate system.

Then any vector v can be expanded in terms of a basis. For if

N
Bv+ Y dv;=0 (1.22)
i=1

i

there is a nontrivial solution.

1. If B is zero,
Yav=0=0 =0

and this is the trivial solution.
2. Therefore f + 0, and

-3 (-2, a2

is the unique expansion of v in terms of the basis v;.

By a fundamental* theorem of algebra, all N-dimensional vector spaces
over the same field are isomorphic to each other. In particular, they are
isomorphic to the canonical* N-dimensional vector space of N x 1 matrices,
with basest

1 0 0
0 1 0
e = ; ey = —en= | (1.24)
: : 0
0 0 1

Therefore, we can learn all the properties of any N-dimensional vector space
merely by studying its faithful canonical representation V. The foregoing
vector spaces with bases e;, e,, ..., ey, over the field of real numbers,
complex numbers, and quaternions, are denoted Ry, Cy, and Qy,
respectively.

* Canonical means standard. A canonical form is one that has been standardized through

use or convenience.
T The term “bases” is used in place of “basis vectors” whenever no confusion will result.
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5. ALGEBRA. A linear algebra A consists of .

(a) a collection v, , v,, ..., € V, called vectors
(b) a collection fi, f5, ..., € F, a field,

together with three kinds of operations

() vector addition, +
(B) scalar multiplication, o
(y) vector multiplication, ]

such that we can state Postulates 4 to C.

Postulate A. Postulates A1 to A5 for a vector space hold.
Postulate B. Postulates Bl to B4 for a vector space hold.

Postulate C.

1. vy, v,eV=v, Ov,eV closure” (1.25)
2 (vi+vy)Ova=v, Ovs+v, v
vi OV +v3)=v, Ovy + v, Vs bilinearity’  (1.26)

Different varieties of algebras may be obtained, depending on which addi-
tional postulates are also satisfied.

3. (vyOvy)Ovs=v, O(v, Ovs) associativity”

4. vidl=v, existence of identity”;
in general, this identity
is not equal to the
identity under + or o

symmetric under
5. v v, = tv v . -
1Ove=dv2 vy {anusymmetrw}1nterchange
6. viO(v,Ovs)=(vy Ovy)Ovs derivative property

+v, O(v; Ovs)

Example 1. The set of real n x n matrices forms a real n2-dimensional
vector space under matrix addition and scalar multiplication by real num-
bers. If we adjoin to this vector space the additional operation defined
simply by matrix multiplication

j=1
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this space becomes an associative algebra. The identity vector under + is 0,
the identity vector under [] is the unit matrix /

(D =
The identity under o is 1.

In addition to the postulates for an algebra, Example 1 satisfies Postulates
C-3 and C-4; it is called a linear associative algebra with identity.

Example 2. The set of n x n real symmetric matrices, which obey
is a linear subspace of the vector space discussed in Example 1. However, if
we adjoin the multiplication operation of Example 1, we do not satisfy
Postulate C-1 for an algebra. That is, the product of two symmetric matrices
is not in general a symmetric matrix:
(STY =(T)(S)=TS+ ST
(Sij Tjk)t = Tkiji F Skj T; (1-29)
However, if we define the operation [] by
SOT=|[S,T], =ST+ TS
[S, o} + BT]+ = ofS, 1]+ + BIS, T5]- (1.30)

then both postulates C-1 and C-2 are satisfied. The real symmetric n x n
matrices form an algebra under symmetrization, or anticommutation.

Example 3. The set of n x n real antisymmetric matrices
A'=—A
A= —A

ij

(1.31)

Ji
is not closed under matrix multiplication either. But if we define the combin-
atorial operation [] by antisymmetrization,
AOB=[A4,B]= AB — BA
[4, BB + yC] = B[4, B] + 74, C] (1.32)

postulates C-1 and C-2 are satisfied and this system forms an algebra.

It is easily verified that this algebra in general has no identity, nor is it
associative:

AO(BOC)=ABC — ACB— BCA + CBA

H M
(AQB)[0C = ABC — BAC — CAB + CBA (1.33)
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An algebra with the antisymmetric multiplication defined by the commu-
tation relations (1.32) is called a Lie algebra, provided this combinatorial
operation also obeys Postulate C-6:

AOBOC)=(A0BOC+BO(ADOC)
This property, called a derivation, may be written more familiarly as
[4,[B, C]] =[[4, B], C] + [B, [4, C]]
or
[4,[B, C]] +[C, [4, B]] + [B,[C, A]] =0 (1.34)

The latter form is called Jacobi’s identity.

The process of accreting additional structure and complexity in going
from a set to an algebra is shown schematically in Table 1.1. In general, the
more highly structured a system is, the more we can prove about it. On the
other hand, results that are true for a less structured system are also true,
whenever applicable, in more highly structured systems.

TABLE 1.1

THE INCREASING COMPLEXITY OF THE VARIOUS MATHEMATICAL SYSTEMS OF USE TO A PHYSICIST

Number and Kinds of Operations

1 2 3
0 Group Multiplication Group Multiplication Abelian Addition +,
Number for Abelian Groups + Scalar Multiplication o,
and Kinds (Vector Addition); Algebraic Multiplication [J
of Elements Scalar Multiplication o
1 Set  Group Field
Section 1.2 Section 1.3
Postulates 1-4 Postulates A1-A45

Postulates B1-BS

2 Vector Space Algebra
Section 1.4 Section 1.5
Postulates 41-A45 Postulates A1-A5
Postulates B1-B4 Postulates B1-B4

Postulates C1, C2

II. Bases

Bases have been introduced in conjunction with linear vector spaces. This
is a matter of convenience, since it is much easier to keep track of a small
number of basis vectors than it is to account for every possible vector within
a vector space.



