Physics 251 Spring 2023

The Cartan-Killing Form

1. The Cartan metric tensor

We begin by introducing a metric tensor and a scalar product on a real Lie algebra g.
Suppose that X, Y € g. We first define a linear operator, adx : g — g, such that

ady(Y) = [X,Y]. (1)

Then, the scalar product of two elements of the Lie algebra, called the Killing form (also called
the Cartan-Killing form in the literature), is defined as

(X,Y) = Tr(adx ady). (2)

One can evaluate (X, Y) explicitly by choosing a basis for the Lie algebra, {4;}, which satisfies
the commutation relations,

[As, Aj] = [ A, (3)

where the structure constants Z’; are real and 7,5,k = 1,2,...,dim g.! Any element of X € g
is a real linear combination of the basis vectors, Ay, i.e., X = 2°A; with 2' € R. With respect
to the basis, {A4;}, the matrix elements of the linear operator ad,, are easily obtained by
noting that,

ady, (A)) = [Ai, Aj] = fEA, (4)
from which it follows that the matrix elements of ad 4, are given by,?
(ada,)*; = fh . (5)

Hence, it follows that adx (A;) = [X, A;] = o' [A;, Aj] = fEa' Ag, which yields

(adx)"; = fia". (6)

]

We can not compute the trace in eq. (2),

(X,Y) = (adx)*;(ady )’y = f5 fla'y’. (7)
ik

!That is, the dimension of the Lie algebra g (denoted by dim g) is equal to the maximal number of linearly
independent basis vectors spanning the Lie algebra.

Recall that using bra and ket notation, one can write T'|5) = >, |k) (k| T |j). Equivalently, T'|5) = T*; |k)
where the T*; = (k| T'|j) are the matrix elements of the operator T' with respect to the basis {|i)} and there
is an implicit sum over the repeated index k.



We now introduce the Cartan metric tensor of the Lie algebra, g;. For X = z'A; and
Y = y'A;, we define the metric tensor in terms of the scalar product in the usual way,

(X,Y) = giea'y" . (8)
Comparing egs. (7) and (8) then yields an explicit expression for the Cartan metric tensor,
Gie = ﬁ;—fé@- (9)
Equivalently, one can write,
gie = (Ai, Ag) = Tr(ady,, ady, ), (10)

where the {A;} are a basis for the Lie algebra g. Note that the metric tensor is a symmetric
covariant tensor, since . .

goi = fgk] ,]k = fgkf!; = Git » (11)
after relabeling 7 — k and k — j.

The expression for the Cartan metric tensor is basis-dependent. Recall that given a Lie
group G, the basis vectors of the corresponding Lie algebra g are defined by

4 - dA(a(t))

= (12)

t=0

where the coordinates of the Lie group element, A € GG are specified by @. The analytic curve,
a(t), passes through the identity element at ¢ = 0, which corresponds to the origin of the
coordinate system on the Lie group manifold. If we make a change of coordinates, @’ = a'(a)
on the Lie group manifold, then the basis vectors of g are changed to

OA(d'(t
w = 2AE@) (13)
da't |,_,
Employing the chain rule,
8A(6’) B 8A(6’(&)) da’ (14)
oa't  Oal da't
Setting t = 0, it follows that ’
A= (27 4 (15)
¢t \9a 0 7

Using eq. (3) and the corresponding commutation relations of the transformed basis vectors,
[A}, Al = fIF AL, it follows that

da'* da* da™
1k n
fi' - <aan aa/iaa/j)tzo fém : (16)

where da’/da’ is the inverse Jacobian defined by,

da't dat

dan da’t b (17)
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In particular, the structure constants change if one performs a linear transformation,
ad = M a" (18)

where M is a nonsingular matrix (j labels the rows and & labels the columns). In this case, it
follows that .
Ai= (M7 A, fiF = ME(MTY (M (19)

()

Using egs. (9) and (19), it follows that g, = f/* 2] is related to gy as expected for a rank two
covariant tensor,

Gig = (M) (M) gjum - (20)

If we define the matrix S = M~!, then we can rewrite eq. (20) in matrix form,
G =57Gs, (21)

where G is a real symmetric matrix whose matrix elements are given by g;,,,. Using Sylvester’s
theorem (see Appendix A), a real invertible matrix S exists such that,

¢'=87GS =diag(1,1,...,1, =1,-1,...,-1,0,0,...,0), (22)
r S t

where r, s and t are non-negative integers such that r + s + ¢t = dim g. Moreover, if G is
positive definite then s = ¢ = 0 and (STGS);; = d;;. Likewise, if G is negative definite then
r=t=0and (STGS);; = —d;;.
2. Properties of the Killing form
Recall that for XY € g,2
(expadx)Y =eXY2 X cg. (23)
We therefore introduce the notation,
Ad, =expady, where g=e". (24)
Since g = eX € G, this allows us to rewrite eq. (23) as,
Ad,(Y)=gYg". (25)
The following identity, which is equivalent to the Jacobi identity, is notable. For X,Y € g,
ad(x,y) = [adx, ady], (26)
To prove this result, consider the action of both sides of eq. (26) on Z € g.
adixy)(Z2) = [[X,Y], Z] = [2,[Y. X]], (27)

3See Theorem 1 in the class handout entitled, Results for Matriz Exponentials and Logarithms.
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and lady, ady](Z) = (ady ady — ady ady)(Z) = adx([Y, Z]) — ady ([X, Z])

=[x, v, 2] - [V X, Z]]
= —[X,[2,Y]] - [V,[X, 2], (28)
after using the antisymmetry of the commutator. Hence, eqgs. (26)—(28) yields,
(2, v, X]] + [X,[2.Y]] + [V.[Xx, Z]] = 0, (29)
which is the Jacobi identity. Note that if we put X = A; and Y = A; in eq. (26), we obtain
[ad 4, ada,] = ada, 4, = fijada, , (30)

after using eq. (3).* Hence, {adx | X € g} constitutes the adjoint representation of g, with
basis vectors {ad 4, }.
Finally, we prove one additional identity,

adAdg(X) = Adg adx(Adg)_l . (31)
First, we note that Ad, Ad,—1(Y) = Ady(¢g7'Yg) = g(¢97'Yg)g~' =Y, which implies that
(Ady)™" = Ad,-1 . (32)

Then, by using the definitions of the operators ad and Ad, it follows that for X,Y € g and
g€G,

Adyadx Ad,-1(Y) = Adyadx(97'Yg) = Ady([X,97'Yq]) = 9([X, g 'Vyglg~"
=gXg'Y —YgXg ' =[9Xg Y] = adyx,1(Y) = adaq,x)(Y). (33)

Combining egs. (32) and (33) yields eq. (31).
For X|Y,Z € g and g € G, the Killing form, (X,Y) = Tr(adX ady), satisfies the following
four properties:

1. bilinearity: (X +pY,Z)=a(X,2)+ 5(Y,Z2), (34)
2. symmetry: (X,Y)=(V,X), (35)
3. antisymmetric: (adz(X),Y) = —(X,adz(Y)), (36)
4. orthogonal: (Ady(X),Ad,(Y)) = (X,Y), (37)

where «, § € R.

The proofs of egs. (34)—(37) are straightforward. Bilinearity of the Killing form follows from
the linearity of the operator ad and the linearity of the trace. The symmetry of the Killing
form follows from the identity Tr(AB) = Tr(BA). Eq. (36) is a consequence of the Jacobi

4Observe that adx = kadx for k € R, since [cf. eq. (1)], adpx (V) = [kX,Y] = k[X,Y] = kadx(Y), for
X, Y €gand k eR.



identity [cf. egs. (26)—(29)]. To show this, consider the identity, [A, BC| = [A, B]C + B[A, C].
it then follows from eq. (26) that
[adz, adX ady] = [adz, adX] ady + adX [adz, ady]
= ad[Z,X] ady + adX ad[Z’y] . (38)

Taking the trace of both sides of eq. (38) and using the fact that the trace of a commutator
vanishes, one obtains

(12.X1.Y) + (X.12.Y]) =0, (39)
which is equivalent to eq. (36) in light of eq. (1). Finally, we use eq. (31) to compute,
(Adg(X), Adg(Y)) = Tr{adAdg(X) adAdg(y)} = TI"{Adg adx(Adg)_l Adg ady(Adg)_l}
=Tr(adx ady) = (X,Y), (40)

using the invariance of a trace under a cyclic permutation of its arguments. Thus, we have
confirmed eq. (37).

It is instructive to examine eqs. (36) and (37) by expressing X = 2 A, and y = y* A, with
respect to a basis { A} of the Lie algebra g. We introduce the matrix elements of the operators
Ad, and ady, which are henceforth denoted by A7) and By, respectively [cf. footnote 2],

Ady(Ai) = gArg ™ = AL A; (41)
adx (Ax) = [X, A] = B/ A;. (42)

Writing X = 2FA;, € g, it follows that
Ady(X) =2 A%LA; ad(X) = 2"Bi, A, . (43)

Then, eqs. (8) and (37) yield,
gty = gyatyt AL AL (44)
Since eq. (44) is valid for any choice of X,Y € g, it follows that
ke = giinkAjZ- (45)

In matrix notation, where G is a real symmetric matrix whose matrix elements are given by
gjm and A = Ad,, we can rewrite eq. (45) as

G=ATGA. (46)
Similarly, egs. (8) and (36) yield,

9iiB 'y’ = —gua' B*jy’ . (47)

Since eq. (47) is valid for any choice of X,Y € g, it follows that
9i; B’ = —guB*; . (48)
In matrix form, eq. (48) can be written as GB = —(GB)" = —BT(G, after using G = G'.

Equivalently, one can write,

B=-G"'B'G. (49)



3. Killing form of a real semisimple Lie algebra

In this section, we prove two theorems concerning the Killing form of a real semisimple Lie
algebra g.

Theorem 1: If g is a semisimple Lie algebra, then the Killing form is nondegenerate and
conversely.

Proof: Suppose that g is non-semisimple. Then, g possesses a nonzero abelian ideal a. By
definition, an ideal a satisfies the condition that for all X € a and Y € g, we have [X,Y] € a.
If {A,} is a basis for g, then a subset of {A,} will span the ideal a. Suppose that 4; € a and
Aj € g. Then, we can conclude that [A;, A;] € a. Since [A;, A;] = fE A € a, it follows that

Z-’} = 0 unless Ay is in the set of basis vectors that span a. Moreover, if both A; and A; are in
the set of basis vectors that span a then [A;, A;] € a must vanish (since a is abelian), which
implies that f} = 0 for all k.

Consider the Cartan metric tensor, g, = f{} fgk, in the case where its indices ¢ and ¢ run
over values corresponding to the basis vectors of a. The argument presented above implies
that because a is an ideal, the index k runs only over values corresponding to the basis vectors
of a (since otherwise Z’; = 0). Finally, because a is an abelian ideal, it follows that when the
indices ¢ and k run over values corresponding to the basis vectors of a, then fgk = 0. Hence,
we conclude that g;; = 0, when the indices ¢+ and ¢ run over values corresponding to the basis
vectors of a. Consequently, det G = 0, or equivalently, the Killing form is degenerate.

Conversely, if the Killing form is degenerate, then {X |(X,Y) = 0 forall Y € g} is a
nonzero solvable ideal of g. Thus, g is non-semisimple.® Details can be found in the references.

Theorem 2: If g is a compact semisimple Lie algebra, then for any nonzero X € g, it follows
that (X, X)) < 0 and conversely.

Proof: Since Ad, (for ¢ € G) is the adjoint representation of the Lie group G, it follows
that the matrix elements of the adjoint representation satisfy eq. (46). Moreover, in light of
eq. (22), one is always free to choose the coordinates on the Lie group manifold such that

G =diag(1,1,...,1, —=1,—1,...,—1), (50)

v~ v~
T

where n = r + s is the dimension of the Lie algebra g. Note that in light of Theorem 1
above, the Killing form is nondegenerate, which implies that det G # 0 and hence t = 0 in the
notation of eq. (22). Recall that the matrix Lie group O(r, s) is defined by®

O(r,s) = {A € M, (R)| ATG = GA™'}, (51)

5Given a Lie algebra a, one can define a sequence of derived ideals, a®) = [a,qa], a® = [a(V),a'], etc. By
induction and with the aid of the Jacobi identity, one can show that a(™ is an ideal of a for any value of n.
Then a is solvable if a positive integer k exists such that a(®) = [a*~1) q(k=1] = {0}. Tt follows that a(*~1) is

an abelian ideal of a. Hence, if g is non-semisimple then it possesses a nonzero solvable ideal, which implies
that it also possesses a nonzero abelian ideal.

6See, e.g., the class handout providing a table of the real Lie algebras corresponding to the classical matrix
Lie groups, taken from J.F. Cornwell, Group Theory in Physics: An Introduction (Academic Press Inc., San
Diego, CA, 1997).



where M, s(R) is the set of all (r+ s) x (r +s) real matrices and G is given in eq. (50). Thus,
it follows from eq. (46) that the adjoint group corresponding to the matrices of the adjoint
representation of G must be a subgroup of O(r, s).

Likewise, since ady is the adjoint representation of the Lie algebra g, it follows that the
matrix elements of the adjoint representation satisfy eq. (49). Recall that the matrix Lie
algebra so(r, s) is defined by [cf. footnote 6],

so(r,s) = {B € M,,,(R)| BTG = —~GB} . (52)

Thus, it follows from eq. (49) that the matrices of the adjoint representation of g must be a
subalgebra of so(r, s).
Consider the special case where G = +1I, where I is the n x n identity matrix. In this case,
egs. (46) and (49) yield,
ATA=T, B"=-B. (53)

In particular, the adjoint group corresponding to the matrices of the adjoint representation of
G constitute a subgroup of O(n) and the matrices of the adjoint representation of g constitute
a subalgebra of s0(n). Moreover, for X € g,7

(X,X) =Tr(adyady) = TrB* = ~Tr(BB") = - Y _B;;B; <0, (54)

1,J

unless B = 0 (or equivalently, unless adx = 0). In particular, (A;, A;) < 0 [no sum over i,
which in light of eq. (10) means that g;; < 0. Thus, we conclude that in the special case under
consideration, G = —I. Hence, a negative definite Killing form implies that the adjoint group
corresponding to the matrices of the adjoint representation of G constitutes a closed subgroup
of O(n), which implies that the Lie group G is compact. Conversely, an indefinite Killing form
implies that the adjoint group constitutes a subgroup of O(r, s) where neither r nor s is zero.
In this case, GG is a noncompact group.

4. The Killing form of a complex semisimple Lie algebra

Although the Cartan metric and the Killing form defined in Section 1 were presented
under the assumption that the Lie algebra g was real, the same definitions can be applied to a
complex Lie algebra. However, it is possible that some of the structure constants of a complex
Lie algebra are complex. In such a case, the matrix G that appears in eq. (21) is a complex
symmetric matrix, in which case Sylvester’s theorem does not apply. Regarding the results of
Section 3, Theorem 1 and its proof apply both to real and complex Lie algebras. In contrast,
Theorem 2 is only relevant for real Lie algebras. In particular, in the case of a complex Lie
group, we showed in class that any compact complex Lie group is abelian. Thus, any compact
semisimple Lie group (and its corresponding Lie algebra) must be real.

Given a complex Lie algebra g, it is interesting to ask whether a basis exists in which all
of the structure constants are real. If the answer is yes, then one can analyze the complex

"Note that when gij X i, then there is no distinction between covariant and contravariant indices, and
one can write all tensor quantities with lowered indices.
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Lie algebra starting from this real basis,® in which case all the results of Section 1-3 apply.
However, one can show that there exist complex Lie algebras that do not possess a real
basis. For example, consider the following Lie algebra obtained by modifying one of the three
commutators that defines the Lie algebra of the Fuclidean group in two dimensions:

[-Al ; -AQ} = 0> [Al ) A3} = _-A2> |:-A2a -A3} = 7'-’41 . (55)

Denoting the corresponding structure constants by i’j, it is easy to show that no basis trans-
formation of the form

A = M;* A, (56)

exists such that the structure constants in the transformed basis satisfy Z’Jk € R.
Nevertheless, there is a remarkable theorem that applies to complex semisimple Lie alge-

bras.

Theorem 3: If g is a complex semisimple Lie algebra, then a basis exists in which all the
structure constants are real.

The proof of this theorem is rather involved. This theorem was originally obtained as a
consequence of the classification or real simple Lie algebras by Cartan. Subsequently, Weyl
provided a proof based on the detailed structure theory of semisimple Lie algebras. Proofs
that avoid the more elaborate algebraic machinery employed by Cartan and Weyl can be found
in Refs. 9 and 10. Note that this result implies that a basis exists in which the Cartan metric
is real and symmetric, which ensures that a basis exists in which eq. (50) is satisfied.

5. Complex semisimple Lie algebras and their real forms

In general, the structure constants of a complex Lie algebra are complex. However, in light
of Theorem 3 above, one can always transform the basis of a complex semisimple Lie algebra
to a new basis in which the structure constants are real. Conversely, starting from eq. (3)
[where the structure constants are real], one can complexify a real Lie algebra g by writing
X = 2'A; with 2° € C. This process is called complezification. We shall denote the resulting
complex Lie algebra by gc.

Given a complex semisimple Lie algebra, gc, with basis vectors satisfying [A;, A;] = fi’;-Ak
with Z’j € R, one can restrict 2° € R to obtain a real semisimple Lie algebra, gr, with the
same commutation relations.” The Lie algebra ggr is an example of a real form of gc. More
generally, a real form of g¢ is defined as any real Lie algebra whose complexification yields gc.
Note that dim¢ gc = dimg gr. That is, given a complex semisimple Lie algebra of complex
dimension n, the corresponding real forms have real dimension n. In particular, the maximal
number of linearly independent basis vectors is n for both g¢ and gg.

8Here, we have defined a real basis to mean a choice of generators for the complex Lie algebra in which all
structure constants are real.

9In contrast, not every complex non-semisimple Lie algebra has a real form. For example, the Lie algebra
defined by eq. (55) does not possess a real basis. Hence no real form can exist for this Lie algebra. In addition,
see Example 5.1.24 on p. 88 of Ref. 7 or Example 5 on p. 19 of Ref. 8.



If gc is semisimple, then its Killing form is non-degenerate (in light of Theorem 1). Hence,
the corresponding real form, which has the same Cartan metric tensor, is also semisimple.
Indeed, one can always transform the original basis of g to a new basis in which the Cartan
metric tensor is of the form given by eq. (50). However, this new basis is not unique. For
example, one can always choose to multiply some of the basis vectors by 7 as long as all
the structure constants remain real. In particular, it is always possible to find a basis for a
semisimple g¢ such that G = —I, in which case the corresponding real form is compact.

Indeed, there exists a simple algorithm to derive various possible real forms of gc. The
algorithm consists of first choosing a basis for g¢ such that the Cartan metric tensor is of the
form given by eq. (50). Next, we consider all possible ways of multiplying a subset of the
basis vectors { Ay} of gc each by ¢ such that Z’; € R. The resulting commutation relations
will differ in some cases from the original one by some signs. Nevertheless, complex linear
combinations of the new basis vectors, z'A; (z* € C), still generate gc. After all possibilities
for the {A;} are considered, one now restricts the 2’ to be real in each case in order to
obtain the corresponding real forms. Note that among all possible real forms obtained in this
way, only one of them is compact, corresponding to the basis in which G = —I. Other real
forms obtained by the algorithm above necessarily possess an indefinite Killing form, and thus
correspond to noncompact real Lie algebras.

A simple example demonstrates the procedure for finding real forms of gc. Consider the
commutation relations of sl(2, C),

[Ai> -Aj] = EijkAk ) (57)

where the indices i, 7, k run over 1,2 and 3. The corresponding Cartan metric tensor is negative
definite,'°

Git = €rij€ion = —20i - (58)
If we restrict 2 € R, then we obtain the real compact Lie algebra, su(2) = so0(3). Consider
what happens if we redefine A; — A, and Ay — iA,, while leaving A3 unchanged. The new
commutation relations of sl(2, C) are now given by,

[Ah AQ] = _A3 ) [A27 A3] = Al ) [A37 Al] = AQ . (59)
In this case, the Cartan metric is now indefinite,
gie = f5 f}, = diag(2,2,-2) . (60)

Thus, if we now restrict 2 € R, the resulting real Lie algebra is noncompact. Indeed, the
commutation relations given in eq. (59) correspond to those of sl(2,R) = su(1,1) = so(2,1).
Note that any other redefinition of a subset of the basis vectors via multiplication by %, such
that the structure constants remain real, will yield Lie algebras that are isomorphic to one of
the two possible classes of real forms identified above.

It is straightforward to show that real forms of a simple Lie algebra are simple. However,
the complexification of a real simple Lie algebra can yield either a simple or a semisimple real

10We can normalize the basis vectors appropriately such that g;; = —d;, (although it is not necessary for
this discussion).



algebra. For example, the complexification of the real simple Lie algebra so(3,1) yields the
semisimple complex Lie algebra so(4, C) = s((2,C) & sl(2,C).

There is another way of obtaining a real Lie algebra from a complex Lie algebra called
realification. Starting from the basis vectors, {Ax}, of the complex Lie algebra, the elements
of gc are of the form 2% A4;, with 2 € C. One can now construct a real Lie algebra that is
given by real linear combinations of the basis vectors {A,iA4,}. We shall denote this real
Lie algebra by (gc)r.'! Note that if dime gc = n, then dimg (gc)r = 2n. As an example of
this construction, the realification of s[(2, C) yields s[(2, C)g = s0(3,1). This isomorphism is
important in the study of the Lie algebra of the Lorentz group.

One can now consider the complexification of the 2n-dimensional real Lie algebra, (gc)g,
which will be denoted by (gc)g. Note that dimc (gc)i = 2n. One can easily verify that,

(9c)r = 9c @ gc- (61)

Thus, in our previous example, the complexification of sl(2, C)g is sl(2,C) & s((2,C). Since
the complexification of s0(3,1) is so(4,C), it then follows that so(4,C) = sl(2,C) & sl(2,C).
In particular, s[(2, C)g [or equivalently, s0(3,1)] is one of real forms of so(4, C).

6. A completely antisymmetric third rank tensor

Using the Cartan metric tensor, one can construct a completely antisymmetric third rank
tensor that is related to the structure constants of the Lie algebra g,

Jijk = gkeff;' . (62)

To prove that f;j; is a completely antisymmetric third rank tensor, we employ eqgs. (9) and
(30) to write,

fijk = ff;-Tr(adAk adAZ) = Tl”( f] adAk adAZ) = Tr(adAk [ESLd_AZ.7 adAj]) y (63)
after using the linearity of the trace. That is,
fijk =Tr (adAk adAi adAj - adAk adAj adAi) y (64)

which is manifestly antisymmetric under the interchange of any pair of indices ¢, j and k due
to the invariance of the trace under a cyclic permutation of its arguments.

Note that in the special case where g is a compact semisimple Lie algebra, we can choose
a basis in which g;; = —d;;. For this basis choice, it follows that the structure constants of g,

Z-l} = — fijk, are completely antisymmetric under the interchange of any pair of indices.

"Tn the literature, the subscript R is sometimes omitted. One then says that the complex Lie algebra g of
complex dimension n can be regarded as a real Lie algebra of real dimension 2n.
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APPENDIX A: Sylvester’s Theorem

In this appendix we prove the following theorem, often called Sylvester’s law of inertia.'?

Sylvester’s Theorem: Consider an n x n hermitian matrix M = M. Then there exists an
invertible matrix S such that

STMS = diag(1,1,...,1, =1,—1,...,—1,0,0,...,0), (65)
v M b

where 7, s and t are non-negative integers such that r + s + ¢ = n. That is, STMS is a
diagonal matrix whose elements consist of 1 repeated r times, —1 repeated s times and 0

repeated t times along the diagonal. Moreover, if M is positive definite then s = ¢t = 0 and
(STMS);; = d;;. Likewise, if M is negative definite then r =¢ = 0 and (STMS);; = —d;;.

Proof: Since M is hermitian, it follows that the eigenvalues of M are real. Moreover, M is
unitarily diagonalizable. That is, a unitary matrix U exists such that

U'MU = diag(A1, ., Ay Adetts - -5 A, 0,0, ..., 0) (66)
N—_——
t
where the eigenvalues Ay, ..., A\, are all positive real numbers, the eigenvalues \,y1,..., A\ris

are all negative real numbers, and there are zero eigenvalues with multiplicity t. We can
therefore define a diagonal matrix,

D = diag(v/ M, - oo VA V= Aits oA Mg, 1,1, 1) (67)

Setting S = UD™!, it follows that,

STMS = diag(1,1,...,1, =1,-1,...,-1,0,0,...,0), (68)

3
W Vo Vo
r s t

which completes the proof. Recall that a positive (negative) definite matrix is an hermitian
matrix whose eigenvalues are positive (negative). Thus, if M is positive definite, it follows
that s = ¢ = 0 and (STMS);; = d;;. Likewise, if M is negative definite then r = ¢ = 0 and
(STMS)ZJ - _5ZJ

Corollary 1: Consider an n x n real symmetric matrix G = GT. Then there exists an
invertible real matrix R such that

R'GR = diag(1,1,...,1, =1,-1,...,-1,0,0,...,0), (69)
v v M

where r, s and t are non-negative integers such that r + s + ¢t = n. Moreover, if G is positive
definite then s = ¢ = 0 and (R'TGR);; = d;;. Likewise, if G is negative definite then r =t =0
and (RTGR)Z] = —5”

12Gee, e.g., Howard Eves, Elementary Matriz Theory (Dover Publications, Inc., Mineola, NY, 1980) pp. 237~
245.
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Proof: Since G is a real symmetric matrix, its eigenvalues are all real and it is diagonalizable
by a real orthogonal matrix. That is, a real orthogonal matrix () exists such that

QTGQ = diag(A1, ..., Ay Mgty - -5 Args, 0,0,...,0) (70)
t
where the eigenvalues, A1,..., A\r [Ari1,. .., Aris), are all positive [negative] real numbers and

the zero eigenvalues of G have multiplicity ¢t. We again define the diagonal matrix D by
eq. (67). Setting R = QD' (which is a real matrix) then establishes eq. (69). Note that if
G is is invertible then det(RTGR) # 0, which implies that ¢ = 0. If in addition G is positive
[negative| definite, then s =0 [r = 0].

Corollary 2: Consider an n x n real symmetric matrix G = GT.

invertible complex matrix S such that

STGS:diag(1>17"'vl797()’"'?0)? (71)

-

Then there exists an

Vo Vo
m t

where m and ¢ are non-negative integers such that m 4 ¢t = n. Moreover, if GG is nonsingular
(i.e., invertible) then (STGS);; = ;.

Proof: Using the result of Corollary 1, it suffices to multiply eq. (69) on the left and on the
right by the matrix diag(1,1,...,1,4,2,...,2, 1,1,...,1). That is,
ght by 8( )

r s t
diag(1,1,...,1,4,4,...,4, 1,1,...,DRTGRdiag(1,1,...,1, i,i,...,i,1,1,...,1)
e N N—— e N N——
T s t T s t
= diag(1,1,...,1,0,0,...,0). (72)
s M

Thus, we have succeeded in deriving eq. (71), where m = r + s and

S =Rdiag(1,1,...,1,4,4,...,4, 1,1,...,1). 73
8( ) (73)
T s t
Note that if G is is invertible then det(STGS) # 0, which implies that ¢ =0 and STGS =L
Remarkably, Corollary 2 is also valid for an n x n complex symmetric matrix. However
this result requires a separate proof (which is provided in Appendix B), since not all complex
symmetric matrices are diagonalizable via a similarity transformation.

APPENDIX B: An extension of Sylvester’s Theorem

Theorem: Consider an n X n complex symmetric matrix M = MT. Then there exists an
invertible complex matrix S such that

STMS = diag(1,1,...,1,0,0,...,0), (74)

) Y
-
e e

m t

where m and t are non-negative integers such that m +t = n. Moreover, if M is nonsingular
(i.e., invertible) then (STMS);; = d;;.
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Proof: We shall employ the Autonne-Takagi factorization of a complex symmetric matrix,
which states that a unitary matrix U exists such that

UTMU = diag(oy,09,...,0m,0,0,...,0), (75)
N—_——
t
where the singular values o4, ..., 0,, are all positive real numbers, and there are zero singular

values with multiplicity ¢. Note that
(UTMU)Y(UTMU) = UN(MTM)U = diag(o?,03,...,0%,0,0,...,0). (76)

t

That is, the singular values of M correspond to the positive square roots of the eigenvalues of
M*TM. A proof of the Autonne-Takagi factorization of a complex symmetric matrix is given
in Appendix C.

We can therefore define a diagonal matrix,

D = di TS L1, 1) 77
iag(v/a1, /03, - /m ) (77)

t

Setting S = UD™!, it follows that,

STMS = diag(1,1,...,1,0,0,...,0), (78)
” b

which completes the proof. Moreover, if M is invertible then detM # 0, which implies that
det(STMS) # 0. Tt then follows that ¢ = 0, which implies that STMS =L

APPENDIX C: The Autonne-Takagi factorization of a complex symmetric matrix

Theorem: Given a complex symmetric matrix M, the Autonne-Takagi factorization states
that a unitary matrix U exists such that!?

UTMU =D, (79)

where D is a diagonal matrix with nonnegative entries. The diagonal elements of D correspond

to the singular values of M, which are defined to be the positive square roots of the eigenvalues
of MTM.

Proof of the Autonne-Takagi factorization of a complex symmetric matrix M:
Since MTM is positive semidefinite, there exists a unitary matrix V such that

VIMIM)V =D, (80)

13A comprehensive treatment of the Autonne-Takagi factorization of a complex symmetric matrix can be
found in Ref. 11. The derivation provided in this appendix is based on proof provided in Ref. 12.
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where D is a diagonal matrix with real nonnegative entries. Consider the matrix
B=VTMV. (81)

Since M is a complex symmetric matrix, it follows that B is a complex symmetric matrix as
well (BT = B). Moreover, BB = (VIMV)(VTMV) = VI(M'M)V = D is a real diagonal
matrix with nonnegative entries. Next, we define the hermitian matrices Br and By,

Br=3(B+ B, Br = —1i(B-BY). (82)

Note that B = By + iB;. Moreover, since BT = B, it follows that Bf = B*. Hence, Br and
By are also real symmetric matrices. Moreover, B and B; commute, since'4

D =B'B=(Bgr+iB;)(Br +iB;) = B% + B} +i(BrB; — B;Bg) . (83)

But D, Bi and B; are real matrices, which implies that Im (B'B) = BxB; — B;Br = 0.
Since Bg and B are commuting real symmetric matrices (and hence diagonalizable), we

can simultaneously diagonalize Br and B;. In particular, there exists a real orthogonal matrix
W such that WTBgrW and WTB;W are both diagonal. Hence,

D=WT"(Bg+1iB)W = W'BW (84)
is a diagonal matrix. We can now define the unitary matrix X = VW to obtain:
XTMX =W (VTMV)YW =WTBW =D, (85)
after making use of egs. (81) and (84). The most general form for D is given by:
D = diag(o1e, 52¢" ... ome® . 0,0,...,0), (86)
—

where the o; are real positive numbers and 0 < 6; < 27. Thus, we can define the unitary
matrix,
U = X diag(e /2 e72/2  =®m/2 11,...1). (87)
N—_——
t

Then, egs. (85) and (86) yield the Autonne-Takagi factorization of the complex symmetric
matrix M,
UTMU = diag(o1, 02, .. .,0m,0,0,...,0), (88)
———
t

where the o; are identified as the nonzero singular values of M in light of eq. (76).

141t is tempting to avoid the introduction of the complex symmetric matrix B. Instead, suppose one defines
Mp = (M +M') and M; = —3i(M — M?1). Since M is symmetric, Mg and M; are real symmetric matrices.
However, in general MM is not a real matrix, in which case Mz and M; do not commute [cf. eq. (83)]. It
follows that Mz and M7 are not simultaneously diagonalizable. In contrast, the complex symmetric matrix B
is diagonalizable as shown in eq. (84), which can then be used to establish the Autonne-Takagi factorization
of M.
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