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Symmetry Operations

• Consider a symmetry operation R that transforms coordinates r to r′ as

r′ = Rr. (1)

• A scalar function ψ transforms to another function ψ′. We want to describe the
operation PRψ = ψ′ in terms of R.

• The value of the function at every point in space is invariant. This requires

ψ′(r′) = ψ(r) =⇒ PRψ(r
′) = ψ(r) = ψ(R−1r′)

• Upon dropping the primes, we reach the definition of the operator PR on the
function space

PRψ(r) = ψ(R−1r) (2)
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Symmetry Operations
• Restricting ψ(r) to be a wavefunction of a quantum mechanical system requires PR

to be a unitary operator to preserve the inner product between two functions

⟨ϕ(r), ψ(r)⟩ =
∫
ϕ∗(r)ψ(r)d3r, (3)

which means ⟨PRϕ, PRψ⟩ = ⟨ϕ, ψ⟩

• Let T be a quantum mechanical operator that transforms to T′ upon the operation
R. The requirement

⟨ϕ, Tψ⟩ = ⟨PRϕ, T
′PRψ⟩ =⇒ ⟨PRϕ, PRTψ⟩ = ⟨PRϕ, T

′PRψ⟩
• The above equality holds for arbitrary functions only when

T′ = PRTP
−1
R =⇒ T− T′ = [T, PR]P

−1
R , (4)

which defines the transformation law for operators. It also show that T is invariant
under PR iff [T, PR] = 0.



4/27

Symmetry Operations
• Restricting ψ(r) to be a wavefunction of a quantum mechanical system requires PR

to be a unitary operator to preserve the inner product between two functions

⟨ϕ(r), ψ(r)⟩ =
∫
ϕ∗(r)ψ(r)d3r, (3)

which means ⟨PRϕ, PRψ⟩ = ⟨ϕ, ψ⟩
• Let T be a quantum mechanical operator that transforms to T′ upon the operation
R. The requirement

⟨ϕ, Tψ⟩ = ⟨PRϕ, T
′PRψ⟩ =⇒ ⟨PRϕ, PRTψ⟩ = ⟨PRϕ, T

′PRψ⟩

• The above equality holds for arbitrary functions only when

T′ = PRTP
−1
R =⇒ T− T′ = [T, PR]P

−1
R , (4)

which defines the transformation law for operators. It also show that T is invariant
under PR iff [T, PR] = 0.



4/27

Symmetry Operations
• Restricting ψ(r) to be a wavefunction of a quantum mechanical system requires PR

to be a unitary operator to preserve the inner product between two functions

⟨ϕ(r), ψ(r)⟩ =
∫
ϕ∗(r)ψ(r)d3r, (3)

which means ⟨PRϕ, PRψ⟩ = ⟨ϕ, ψ⟩
• Let T be a quantum mechanical operator that transforms to T′ upon the operation
R. The requirement

⟨ϕ, Tψ⟩ = ⟨PRϕ, T
′PRψ⟩ =⇒ ⟨PRϕ, PRTψ⟩ = ⟨PRϕ, T

′PRψ⟩
• The above equality holds for arbitrary functions only when

T′ = PRTP
−1
R =⇒ T− T′ = [T, PR]P

−1
R , (4)

which defines the transformation law for operators. It also show that T is invariant
under PR iff [T, PR] = 0.



5/27

Hamiltonian Symmetry

• For the rest of the presentation, I will refer to PR as R, but it is understood that it’s
the operator that acts on the wavefunction space.

• A Hamiltonian is invariant under a symmetry operation R if

RHR−1 = H,

or equivalently [H, R] = 0.

• Consider the set G of all symmetry operations {R1, R2, . . . } with the binary
operation RiRj. G satisfies:
– Closure: (RiRj)H(RiRj)

−1 = H =⇒ RiRj ∈ G
– Associativity: since they are quantum mechanical operators.
– Identity: because εHε−1 = H.
– Unique inverse: since RHR−1 = H =⇒ H = R−1HR =⇒ R−1 ∈ G

Then G is a group.
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Eigenstates and Representation

• Now consider a Hamiltonian H that has a d-fold degenerate subspace V with energy
level E. This subspace can be spanned by basis ϕn, which are also eigenstates of H

Hϕn = Eϕn, n = 1, 2, . . . , d (5)

where ⟨ϕn, ϕm⟩ = δnm.

• A symmetry operation R ∈ G commutes with H so Eq. (5) transforms to

H(Rϕn) = E(Rϕn) =⇒ Rϕn ∈ V =⇒ Rϕn =

d∑
m=1

ϕmDmn(R)

where Dmn(R) = ⟨ϕm, Rϕn⟩ are the elements of a matrix D(R).
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Eigenstates and Representation

• The matrices D(R) form a representation of the group G.

D(R1R2)mn = ⟨ϕm, R1R2ϕn⟩ =
∑
k

Dkn(R2)⟨ϕm, R1ϕk⟩

=
∑
k

Dkn(R2)Dmk(R1) =
(
D(R1)D(R2)

)
mn

• The eigenstates belonging to a degenerate subspace of a Hamiltonian H form a
representation D of the symmetry group G of the Hamiltonian.

• The representation D is irreducible [1].

• Example: Degenerate sub-spaces of a spherically symmetric Hamiltonian have
eigenstates given by spherical Harmonics Ylm(θ, ϕ). These are the basis for irreps
Dl with dim Dl = 2l+ 1.
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Lattice
• A Lattice (Bravais Lattice) is a space-filling array of points generated by three
primitive lattice vectors t1, t2, and t3. A general point in the lattice could be
represented by a vector

tn = n1t1 + n2t2 + n3t3 (6)

where n = (n1, n2, n3) and ni ∈ Z. tn are called primitive translation vectors.

• In general, a lattice can have rotational symmetry. However, the compatibility of
this symmetry with the translation symmetry in Eq. (6) imposes restrictions on the
rotational symmetry of a lattice.
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Possible Bravais Lattices
• An arbitrary primitive translation vector tn rotated to αtn must also be a primitive
lattice vector to satisfy the translation symmetry. This forces the rotation angle to
be 2π/n for an integer n.

• If one considers a vector T1 and its successive rotations T2, . . . , Tn shown in Fig. 9,
we see that the vector

∑
i Ti is parallel to the axis of rotation Cn. Hence, any

rotation axis is also a primitive translation vector.

[1]
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Possible Bravais Lattices
• In addition, all vectors Ti − Tj are perpendicular to the axis of rotation.

• Pick the shortest vector T that is perpendicular to the axis of rotation of Cn. The
rotation around that axis and it’s inverse are shown in Fig. 2. It follows that

CnT+ C−1
n T = 2T cos (2π/n) =⇒ cos(2π/n) =

integer
2

This restricts the rotation angles to be for n = 1, 2, 3, 4, 6.

[1]
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Possible Bravais Lattices
The condition on n gives only 14 distinct lattices. These are shown in Fig. 3

[1]
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Reciprocal Lattice
• For a periodic function f(r) = f(r− tn), the Fourier series expansion in terms of
plane waves gives a condition on k due to the periodicity. Namely,

f(r) =
∑
k

f̃ke
ik·r =⇒ eik·tn = 1

• This shows that the space k is also periodic and the its basis {ki} satisfy the
condition ki · tj = 2πδij. This condition is solved by

ka =
2pi
Ω

(tb × tc)

where (a, b, c) are permutations of (1, 2, 3), andΩ = t1 · (t2 × t3) is the volume
of the unit cell in the spatial lattice. A general vector in this space is given by

km = m1k1 + m2k2 + m3k3

• The unit cell of this lattice is called the Brillouin zone.
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Space Group
• The point group and translation symmetry operations that keep the crystal
invariant form a group called the space group [2]. A general element of a space
group is written as

{R|tn}
where R is a point group element and tn is the translation operations of the crystal.
The action on coordinate r is

r′ = {R|tn}r = Rr+ tn

• The multiplication law for the group is given by

{R2|tm}{R1|tn} = {R2R1|R2tn + tm}
• The inverse of an element according to the multiplication law is

{R|tn}−1 = {R−1| − R−1tn}
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Space Group
• Some operations in the space group are compound operations. There are 2 kinds
of compound operations, which are shown in Fig. 4

[2]
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Remarks
• The translation group is an invariant (normal) subgroup of the space group

• The space group is the semi-direct product of the translation group and the point
group.

• There are 230 space groups generated by placing atoms on the distinct Bravais
lattices.
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Bloch’s Theorem

For aHamiltonianH that is invariant under translation by any primitive lattice
vector, the eigenfunctions of the equation

Hψ(r) = Eψ(r)

are of the form
ψnk(r) = e−ik·runk(r)

where n are different energy bands, k is a vector in the 1st Brillouin zone,
and unk(r) is a function with the same translation symmetry as H.
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Proof of Bloch’s Theorem
• A translation operation can be expressed as

{ε|niti} = {ε|n1t1}{ε|n2t2}{ε|n3t3}

Due to the commutativity of translations. Hence, T = T1 ⊗ T2 ⊗ T3.

• If we impose periodic boundary conditions

{ε|N1t1} = {ε|N2t2} = {ε|N3t3} = {ε|0}

where Ni is the number of lattice points along the direction of ti. This allows us to
study the bulk properties of the lattice and ignore the surface effects.

• Since Ti is an abelian group, all its irreducible representations are 1-dimensional.
Therefore

D ({ε|N1t1}) = D({ε|t1})N1 = 1 =⇒ Dp1({ε|t1}) = e2πip1/N1
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Proof of Bloch’s Theorem
• Therefore, there irreps of the group Ti are labeled with and integer pi.

• A triplet of integers (p1, p2, p3) will determine an irrep of the group T, which the
group of all the 3-dimensional translations of the lattice.

• Define the vector k = 2πpiki
Ni

, and every irrep of T will be labeled by

Dk
(
{ε|tn}

)
= eik·tn

Replacing k by k+ km from the primitive translation vectors of the reciprocal lattice
keeps the representation unaffected; hence, we can confine k to the first Brillouin
zone.
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Proof of Bloch’s Theorem
• According to the transformation law in Eq. (2) on any function ψ(r)

{ε|tn}ψ(r) = ψ(r− tn)

• So for the basis function ψk(r), we have

{ε|tn}ψk(r) = eik·tnψk(r) = ψk(r− tn)

• Finally, plugging ψk(r) = e−ik·ruk((r)) into the above equality, one gets the the
condition that

uk(r) = uk(r− tn) = {ε|tn}uk(r),

which complete the proof by shown that uk(r) has the same symmetry as the
Hamiltonian.
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A Chain of Finite Square Wells
Let

U(x) =

{
−V0, |x| ≤ a

0, otherwise
(7)

be the potential of a square well that is centered at the origin. Thus, the periodic
potential we would like to solve can then be written as

V(x) =
∞∑

s=−∞
U(x− s(2a+ b)) (8)

Where b is the separation between the edges of the wells.



21/27

A Chain of Finite Square Wells
Such a periodic potential can be solved using Bloch’s theorem, which gives the
solutions as

ψn,k(x) =
∞∑

r=−∞
ϕn(x− r(2a+ b))eirk(2a+b) (9)

where ϕn(x) is the nth eigenstate of the potential U(x), and k is some crystal wave
vector.
Schrodinger equation now reads

Ĥψn,k(x) = En,kψn,k(x) (10)

where

Ĥ =
p̂2

2m
+ V(x) =

p̂2

2m
+ U(x) +

∑
s ̸=0

U(x− s(2a+ b))
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A Chain of Finite Square Wells
Using Dirac (bracket) notation, and multiplying both sides by ⟨ϕn|

⟨ϕn|Ĥ|ψn,k⟩ = En,k⟨ϕn|ψn,k⟩

Notice that

⟨ϕn|
p̂2

2m
+ U(x)|ψn,k⟩ = En⟨ϕn|ψn,k⟩

Where En is the nth eigenvalue of the potential U(x), hence

En,k = En +
⟨ϕn|

∑
s ̸=0 U(x− s(2a+ b))|ψn,k⟩

⟨ϕn|ψn,k⟩
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A Chain of Finite Square Wells
Starting with the denominator, note that this is the probability of finding the particle
in the central well, given that it’s in the state ψ(x). Each term of the summation
calculates the probability of finding the particle in a specific well given that it’s in the
central well. This probability decreases drastically as the distance between the two
wells increase. Thus, it suffices to include only the nearest neighbors of the central
well.

⟨ϕn|ψn,k⟩ =
∞∑

r=−∞
eirk(2a+b)

∫ ∞

−∞
ϕn(x− r(2a+ b))ϕ∗n (x)dx

≈ 1 + 2γ̄n cos
(
k(2a+ b)

) (11)

Where

γ̄n =

∫ 2a+b

−a
ϕn(x− (2a+ b))ϕ∗n (x)dx
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A Chain of Finite Square Wells
And the numerator

⟨. . . ⟩ =
∫ ∞

−∞
ϕ∗n (x)

(∑
s ̸=0

U(x− s(2a+ b))
)(∑

r

ϕn(x− r(2a+ b))eirk(2a+b)
)
dx

≈ −2γn cos (k(2a+ b))
(12)

where

γn = V0

∫ 3a+b

a+b
ϕn(x− (2a+ b))ϕ∗n (x)dx

and we made use of the fact that ϕn(x) = ϕn(−x). Therefore, the energy bands are
then

En,k = En −
2γn cos (k(2a+ b))

1 + 2γ̄n cos (k(2a+ b))
≈ En − 2γn cos (k(2a+ b)) (13)

because we expect γ̄n ≪ 1.
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Questions?



26/27

References
T. Inui, Y. Tanabe, and Y. Onodera, Group theory and its applications in physics,
vol. 78.
Springer Science & Business Media, 2012.

M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory: application to the
physics of condensed matter.
Springer Science & Business Media, 2007.



27/27

Thank You!
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