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What is Crystallography



Crystallography

Figure 1: Quartz Crystal - Quartz is a
simple cystal structure comprised of
silicon–oxygen tetrahedral, SiO4 [2].

Figure 2: Ice - Ice has hexagonal Crystal
structure built up from H2O [5].
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Crystals in Nature

What is a crystal?

Definition: Crystals are homogeneous, anisotropic, solid states whose build-
ing blocks are strictly three dimensional and periodically ordered.

Crystals:

• Quartz,
• Diamond,
• Ice,
• Snowflake.

Non-cyrstals (Amorphous):

• Plastic,
• Wood,
• Glass,
• Wool.

Divides solid states physics into two categories.
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Structure of Glass

Figure 3: Chemical Structure of Glass - The chemical structure of glass is not
periodically ordered [4].
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Anistropy

Definition: Anisotropy is the directionality of a materials properties.

Possible anistropic properties
include:

• Conductivity,

• Magnetization,

• Strength.

Figure 4: Graphite - Graphite’s electrical
conductivity and strength has anistropic
properties [1].
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Correspondence Principle i

There exists a relationship between the inner structure of a crystal and its
outer shape.

(a)
(b)

Figure 5: Quartz and its Interior Structure - (a) A macroscopic depiction of quartz
crystal [2] next to (b) a depiction of its internal symmetry [3].
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Correspondence Principle ii

Figure 6: Anistropy of Integrity - This crystal has anistropy in structural integrity
arising from the inner structure [3].
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Basic Mathematical Structure



Crystal Patterns

Figure 7: Crystal Pattern - A basic crystal pattern in R2 [6]

Definition: A crystal pattern is a set of points in Rn where the set translations
leaving it invariant from a lattice in Rn.

8



Affine Mapping

Definition: An affine mapping on Rn is a composition of a linear transforma-
tion and a translation.

Consider linear transformation, g ∈ Mn(R), and translation, t ∈ Rn,

t ◦ g = {g|t}. (1)

For v ∈ Rn,
{g|t}(v) = gv+ t. (2)

“Seitz notation”
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Affine Group

Consider
An :=

{
{g|t} : Rn → Rn|g ∈ GLn(R), t ∈ R

}
. (3)

• Identity element: ∀{g|t} ∈ An, {1|0} ◦ {g|t} = {g|t} = {g|t} ◦ {1|0};
• closure: Consider v ∈ Rn. Notice ∀g,h ∈ GLn(R) and ∀t, s ∈ Rn, we have

{g|t} ◦ {h|s}(v) = {g|t}(hv+ s) = g(hv+ s) + t,
= (gh)v+ (gs+ t) = {gh|gs+ t}(v).1

(4)

Notice gh ∈ GLn(R and gs+ t ∈ Rn, thus {gh|gs+ t} ∈ An;
• inverse: For {g|t} consider {g−1| − g−1t}. As a result of computation 4
we determine {g|t} ◦ {g−1| − g−1t} = {1|0} = {g−1| − g−1t} ◦ {g|t}.
Thus {g−1| − g−1t} = {g|t}−1!

1An immediate consequence of this rule is that An ∼= GLn(R) ⋉ Rn .
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Space Group

Consider
G := {{g|t} ∈ An|g is an isometry} . (5)

Definition: An isometry is a transformation that preserves distances.

Definition: A space group is a group of isometries which leave a crystal pattern
invariant.
Lemma: A linear map g is an isometry if and only if g is orthagonal, that is
gT = g−1.

The Euclidean group is thus

εn :=
{
{g|t} ∈ An|gT = g−1

}
(6)
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Translation Group and Point Group

Consider mapping from a space group Π : G→ GL(n) given by

Π : {g|t} 7→ g (7)

We define

• The translation group, T := ker Π = {{1|t} ∈ G} (normal in An), and
• The point group, P := Π(G) ∼= G/T.
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Lattices and Basis

Example: Z2

Figure 8: Integer Lattice -
Visual depiction of the
set Z2 [7].

Definition: A lattice in Rn is a set L defined as

L :=
{∑

i≤n
xivi
∣∣∣ xi ∈ Z, vi ∈ B

}
(8)

with respect to a basis B = {vi}i≤n of Rn. The
set B is called the basis lattice.

Let G be a space group with translation group
T = ker Π. The translation lattice of G is then

L =
{
v ∈ Rn|{1|v} ∈ T

}
. (9)
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Unit Cell

Definition: Let L ⊂ Rn be a lattice with basis B = {vi}i≤n. The unit cell is the
set, C, defined as

C :=
{∑

i≤n
xivi
∣∣∣ xi ∈ [0, 1), vi ∈ B

}
. (10)

“Fundamental Domain”

(a) (b)

Figure 9: Unit Cells - (a)
The unit cell for the
crystal pattern in figure 7
[6] and the unit cell for
quartz from figure 5 [3].

The unit cell also fully describes stoichiometry of a crystal.
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Example: The Space Group G = p2gg i

Notation: The space group element {g|t}(v) can be described by an
augmented matrix

{g|t}(v) 7→




g11 g12 . . . g1n

g21
. . .

...
gn1 gnn



t1
...
tn



0 . . . 0 1





v1
...
vn

1



=

(
g t⃗
0 1

)(
v⃗
1

)
=

(
g⃗v
0

)
+

(⃗
t
1

)
=

(
g⃗v+ t⃗
1

)
(11)
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Example: The Space Group G = p2gg ii

Consider basis

S =


1 0 0
0 1 0
0 0 1

 ,

1 0 1/2

0 −1 1/2

0 0 1

 ,

−1 0 1/2

0 1 1/2

0 0 1

 ,

−1 0 0
0 −1 0
0 0 1


 .

(12)
We want to determine the orbit of a “molecule” at point x = (0.2, 0.15). Let
G = 〈S〉. An equivalent notion to the unit cell is the Dirichlet cell,

C =
{
w ∈ Rn∣∣ |w| ≤ |w− v|, ∀v ∈ L

}
. (13)

Recall from equation 9, the vector latice, L, is given by

L = {v ∈ R2|{1|v} ∈ ker Π}, where ker Π := {{g|t} ∈ G}|{g|t} 7→ 1} (14)
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Example: The Space Group G = p2gg iii

Figure 10: Crystal patter p2gg - Crystal pattern generated by the orbit of x = (0.2, 0.15)
under the space group generated by S in equation 12. The unit cell is in the dashed
lines [6].
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