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Introduction

Basic outline of the topics that will be presented:

▶ O(n)

▶ SU(n)

▶ Explicit Examples
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O(n)

O(n)

▶ Characterize the generators and Lie algebra of the group

▶ Vector Representation

▶ 2nd-rank symmetric tensor
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O(n): Generators/Algebra

O(n) has 1
2n(n− 1) generators, and they can be represented

by;

Lij = Xi
∂

∂Xj
−Xj

∂

∂Xi
, i, j = 1, ..., n.

The commutation relation follows as,

[Lij , Lkj ] = δjkLil + δilLjk − δikLjl − δjlLik.
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O(n): Vector Representation

O(n) : Vector Representation

M. Grant Roberts Final Presentation June 16, 2023 4 / 34



O(n): Vector Representation Continued...

The transformation law is given by,

ϕi −→ ϕi + ϵijϕj , ϵij = −ϵji

The covariant derivative Dµϕ is defined as,

∂µϕi − gWµ
ijϕj ,

where Wµ
ij is the vector gauge boson. From the transformation

law, we can write down a generic invariant potential (µ, λ are real
and λ > 0),

V (ϕ) = −1

2
µ2ϕiϕi +

1

4
λ (ϕiϕi)

2 .
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O(n): Vector Representation Continued...

The minimum of the potential is given by,

∂V

∂ϕi
= (−µ2 + λϕjϕj)ϕi = 0, i = 1, ..., n.

The solution is given by ϕjϕj = µ2/λ. We are free to pick the
components of the vector, so we can choose a representation
where there are n− 1 zero components, and 1 non-zero
component, i.e., ϕ = (0, 0, ..., µ2/λ). There is then a subgroup
that maintains the O(n) type symmetry, but there are n− 1
components, so the subgroup has a symmetry of O(n− 1).
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O(n): Vector Representation Continued...

Note that this symmetry breaking is ultimately because the
invariant potential depends only on the magnitude of the vector,
which is why we can pick any component representation that we
wish. Suppose that we had two vector representations in our
theory, then the potential can only depend one ϕiiϕ

i
1, ϕ

j
2ϕ

j
2, and

ϕiiϕ
i
1ϕ

j
2ϕ

j
2, i.e., |ϕ⃗1|, |ϕ⃗2|, and |ϕ⃗1 · ϕ⃗2|. If we choose the first

vector in the above way, and we choose the second vector to have
two non-zero components, this will satisfy the above allowed
terms, which means that the symmetry will be reduced from O(n)
to O(n− 2).

−→ Thus we can easily break the symmetry to any order we
wish.
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O(n): 2nd-rank Symmetric Tensor Representation

O(n) : 2nd− rank Symmetric Tensor Representation
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O(n): 2nd-rank Symmetric Tensor Representation

The infinitesimal transformation law is given by,

ϕij −→ ϕij + ϵikϕkj + ϵjkϕik, ϵij = −ϵji

The covariant derivative Dµϕ is defined as,

∂µϕij − gWµ
ikϕkj − gWµ

jkϕik,

From the transformation law, we can write down a generic invariant
potential (µ, λ1, λ2 are real), with ϕij = ϕji, T r(ϕ) = 0,

V (ϕ) = −1

2
µ2ϕijϕij +

1

4
λ1 (ϕijϕji)

2 +
1

4
λ2 (ϕijϕjkϕklϕli) ,
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O(n): 2nd-rank Symmetric Tensor Representation

Following Ling-Fong Li, the condition for the minimum of the
potential is given by:

∂V

∂ϕi
= −µ2ϕi + λ1

 n∑
j=1

ϕ2j

ϕi + ϕ2ϕ
3
i − g = 0, i = 1, ..., n

with
∑

i ϕi = 0, where g is a Lagrange multiplier. While it is
possible to solve the above equation (See Ling-Fong Li appendix
B), for our purposes it is not necessary as we can simply be
content knowing that a third order polynomial has at most 3
solutions, ϕ1, ϕ2, ϕ3 which can be written in the form
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O(n): 2nd-rank Symmetric Tensor Representation

ϕ =



ϕ1
. . .

ϕ1
ϕ2

. . .

ϕ2
ϕ3

. . .

ϕ3


There are n1, n2, and n3 of each ϕi respectively, under the
constraint that n1 + n2 + n3 = n. Thus, in general, we can say
that the symmetry is broken along
O(n) −→ O(n1)×O(n2)×O(n3).
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O(n): 2nd-rank Symmetric Tensor Representation

However, doing the calculation much more carefully, there are two
cases to consider:

λ1 > 0, λ2 > 0 :

O(n) −→ O(n1)×O(n− n1), where n1 =
1
2n if n is even or

n1 =
1
2(n+ 1) if n is odd.

λ1 > 0, λ2 < 0 :

O(n) −→ O(n− 1)
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SU(n)

SU(n)

▶ Characterize the generators and the Lie algebra of the group

▶ Vector Representation

▶ 2nd-rank Symmetric Tensor

▶ Toy Model with n = 3
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SU(n): Generators/Algebra

SU(n) has n2 − 1 generators that obey the relation U i
j =

(
U j
i

)†
,

and have a commutation relation of the form:[
U j
i , U

l
k

]
= δkjU

l
i − δliU

j
k
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SU(n): Vector Representation

SU(n) : Vector Representation
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SU(n): Vector Representation Continued...

The infinitesimal transformation law is given by,

ψi −→ ψi + iϵjiψj , ψ
i = (ψi)

∗ , ϵji =
(
ϵji

)∗

The covariant derivative Dµψ is defined as,

∂µψi − igW j
µiψj ,

where W j
µi is the vector gauge boson. From the transformation

law, we can write down a generic invariant potential (µ, λ are
real),

V (ψ) =
1

2
µ2ψiψ

i +
1

4
λ
(
ψiψ

i
)2
.
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SU(n): Vector Representation Continued...

We can find the minimum of this potential,

∂V

∂ψi
=

(
−µ2 + λ ψkψ

k
)
ψi = 0, i = 1, ..., n

Solving for the new minimum we get, ψkψ
k = µ2/λ. We are free

to pick the components of the vector, so we can choose a
representation where there are n− 1 zero components, and 1
non-zero component, i.e., ψ = (0, 0, ..., µ2/λ). There is then a
subgroup that maintains the SU(n) type symmetry, but there are
n− 1 components, so the subgroup has a symmetry of
SU(n− 1).
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SU(n): Vector Representation Continued...

We may then ask ourselves how many massive gauge bosons will
there be due to the symmetry breaking of SU(n) −→ SU(n− 1)?
Consider some group G with subgroup H. The dimension of the
quotient group, G/H, will tell us exactly this property
(dim(G/H) = dim(G)− dim(H)). Let G = SU(n) and
H = SU(n− 1):

dim(SU(n)/SU(n− 1)) = dim(SU(n))− dim(SU(n− 1))

dim(SU(n)/SU(n− 1)) = n2 − 1−
(
n2 − 1

)2
+ 1 = 2n− 1

Thus, there will be 2n− 1 massive gauge bosons after the breaking
from SU(n) to SU(n− 1), which tells us how many generators of
the original symmetry are broken.
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SU(n): Vector Representation Continued...

A quick example:
Consider SU(3) −→ SU(2), there will be 2 · 3− 1 = 5 massive
bosons, 3 generators will be unbroken: SU(2) symmetry.

Going forward, suppose that we had two vectors in our potential,
as in the O(n) case we would break the symmetry from SU(n) to
SU(n− 2). Meaning that to fully break the symmetry we would
need n− 1 vector representations.
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SU(n): 2nd-rank Symmetric Tensor Representation

SU(n) : 2nd− rank Symmetric Tensor Representation
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SU(n): 2nd-rank Symmetric Tensor Continued...

The infinitesimal transformation law is given by,

ψij −→ ψij + iϵki ψkj + iϵkjψik, ψij =
(
ψij

)∗
, ψij = ψji

The covariant derivative Dµψ is defined as,

∂µψij − igW l
µiψlj − igW l

µjψil,

where W j
µi is the vector gauge boson. From the transformation

law, we can write down a generic invariant potential (µ, λ1, λ2 are
real as before),

V (ψ) =
1

2
µ2ψijψ

ij +
1

4
λ1

(
ψijψ

ij
)2

+
1

4
λ2

(
ψijψ

jkψklψ
li
)
.
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SU(n): 2nd-rank Symmetric Tensor Continued...

We can find the minimum of this potential,

∂V

∂ψij
= −µ2ψij +

1

2
λ1

(
ψlmψ

lm
)
ψij +

1

2
λ2

(
ψjkψklψ

li
)
= 0,

where i, j = 1, ..., n. Following Ling-Fong Li, we define the
Hermitian matrix X defined such that Xk

l ≡ ψlmψ
mk. This allows

us to write the above minimum condition as:

−µ2ψij + λ1(X
l
l )ψ

ij + λ2(X
j
l )ψ

li = 0.
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SU(n): 2nd-rank Symmetric Tensor Continued...

Because X is Hermitian, we can always diagonalized via a unitary
transformation so we can write,

[
−µ2 + λ1

n∑
k=1

Xk + λ2Xi

]
ψij = 0, j = 1, ..., n

For λ2 > 0:
The solution to this equation is given by X = α2In×n, where
α2 = µ2/(λ1n+ λ2). From Appendix C of Ling-Fong Li, it can be
shown that the form of ψ is given by ψij = αδij , i.e., ψ = αIn×n.
But what specific symmetry is this? It is O(n) because
ψ −→ UTψU = UTUψ = ψ if U is orthogonal. So in the case of
the λ2 > 0, the symmetry breaks from SU(n) −→ O(n).
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SU(n): 2nd-rank Symmetric Tensor Continued...

For λ2 < 0:
The solution for X is given by,

X = d2 =


1

0
. . .

0

 , d2 =
µ2

λ1 + λ2
, λ1 + λ2 > 0

which gives ψ to be ψ = d


1

0
. . .

0

.

Mimicking the vector representation, this is clearly an explicit
SU(n− 1) symmetry. So in this case, the symmetry breaks from
SU(n) −→ SU(n− 1).
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SU(n): Toy Model of SU(3) −→ SU(2)

SU(n) : Toy Model of SU(3) −→ SU(2)
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

Consider the following Lagrangian for a complex scalar field in the
fundamental representation of a global SU(3) symmetry:

L = (∂µϕ)
† (∂µϕ)−

(
ϕ†ϕ− 1

2
v2
)2

.

The potential is V (ϕ) =
(
|ϕ|2 − 1

2v
2
)2
. The minimum of the

potential gives a vev of ϕ = 1√
2
(0, 0, v)T . Clearly the first two

component have SU(2) symmetry and the last component has
broken the SU(3) into SU(2). We know that from our simple
calculation of the dimension of G/H, that there should be 2n− 1
massive bosons in the end (5 in our case) and 3 generators will
remain unbroken. But which ones are they?
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

Note that the generators of SU(3) are the Gell-Mann matrices, λa

for a = 1, 2, ..., 8. The unbroken generators are those that satisfy
the following condition: λa ⟨ϕ⟩ = (0, 0, 0)T . In our case, a = 1, 2, 3
satisfy this relation, explicitly these generators are:

λ1 =

0 1 0
1 0 0
0 0 0

, λ2 =

0 −i 0
i 0 0
0 0 0

, λ3 =

1 0 0
0 −1 0
0 0 0
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SU(n): Toy Model of SU(3) −→ SU(2)

SU(n) : A more interesting Toy Model of SU(3) −→ SU(2)
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

Consider the following gauged version of the previous
Lagrangian,

L = (Dµϕ)
† (Dµϕ)−

(
ϕ†ϕ− 1

2
v2
)2

− 1

4
F a
µνF

µν
a ,

where the covariant derivative and the Fµν tensor are defined:
Dµ = ∂µ + igAa

µλa, and F
a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAµbAµc. Let

us find the actual masses of the 5 massive particles that get
created in the breaking of the SU(3) −→ SU(2) symmetry.
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

We already know the minimum of this potential from the previous
example, so if we use it the only relevant terms of the Lagrangian
are the covariant derivative and the potential. Plugging in our
solution for ϕ we find,

L ⊃ 1

2
g2Aa

µλa
(
0 0 v

)
Aµ

b λ
b

0
0
v

 =
1

2
g2Aa

µA
µ
b

(
0 0 v

)
λaλ

b

0
0
v


From the previous example we know that a, b = 1, 2, 3 get
annihilated so that means we must consider only the values
a, b = 4, 5, 6, 7, 8. These non-zero terms will be,

L =
1

2
g2v2Aa

µA
µ
b λaλ

b.
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

We can simplify this by using the identity,

λaλb =
1

2
([λa, λb] + {λa, λb}) =

1

2

(
2

3
δab + dabcλc

)
,

where dabc take the values given below. Rewriting our Lagrangian
we have, L = 1

2g
2v2Aa

µA
µ
b
1
2(

2
3δab + dabcλc),

L = 1
6g

2v2Aa
µA

µ
a + 1

4g
2v2Aa

µA
µ
b d

abcλc.

The non-zero values of dabc are as follows:

d118 = d228 = d338 = −d888 = 1√
3

d448 = d558 = d668 = d778 = − 1
2
√
3

d146 = d157 = −d247 = d256 = 1
2

d344 = d355 = −d366 = −d377 = 1
2
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

For a = b ̸= c we have d448, d558, d668, d778 = − 1
2
√
3
and for

a = b = c we have −d888 = 1√
3
, all other values are not relevant

because they have a < 4 or b < 4.
a = b ̸= c :

L =

1

6
g2v2 − 1

4
g2

(
0 0 v

) λ8

−2
√
3

0
0
v

Aa
µA

µ
a

where λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

, this gives us, L = 1
4g

2v2Aa
µA

µ
a ,

which we can read off the mass term directly, mA = 1
2gv for

a = 4, 5, 6, 7.
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SU(n): Toy Model of SU(3) −→ SU(2) Continued...

a = b = c = 8 :

L =

1

6
g2v2 − 1

4
g2

(
0 0 v

) λ8

−
√
3

0
0
v

Aa
µA

µ
a

this gives us, L = 1
3g

2v2Aa
µA

µ
a , which we can read off the mass

term directly, mA = 1√
3
gv for a = 8.

So not only have we generated the 5 massive bosons, we also have
a Lagrangian that generates different masses.

M. Grant Roberts Final Presentation June 16, 2023 33 / 34



Conclusion/References

Thank you for your time and attention, there is obviously much
more about symmetry breaking that I was not able to cover in this
talk. Here are a few references I used heavily:

▶ Group theory of the spontaneously broken gauge symmetries -
Ling-Fong Li (1973)

▶ Comment on ”Group theory of the spontaneously broken
gauge symmetries” - Victor Elias, Shalom Eliezer, and Arthur
R. Swift (1975)

▶ An Introduction to Quantum Field Theory - Peskin &
Schroeder

▶ Lecture Notes - Stefania Gori
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