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Enumerating subgroups of the symmetric group

Derek F. Holt

Abstract. We announce our successful computation of a list of representa-
tives of the conjugacy classes of subgroups of Sn for n ≤ 18, including the
7 274 651 classes of subgroups of S18.

1. Introduction

Early attempts to enumerate complete lists of primitive subgroups and tran-
sitive subgroups of the symmetric group Sn for low values of n, up to conjugacy
in Sn, began with Ruffini in 1799 and continued until about 1912. We refer the
reader to [11] for details and references.

There was little further work on this problem until about 1970 when, with the
assistance of computers, Sims [12] compiled a list of primitive permutation groups of
degree up to 20. More recently, primitive permutation groups of degree up to 4095
have been enumerated [4,10] as have transitive group of degree up to 32 [6,7]. The
lists of groups (currently with primitive groups up to degree 2499 and transitive
groups up to degree 31) are available as libraries in GAP [5] and Magma [1]. With
libraries of this kind containing large numbers of groups, it would be desirable to
have some kind of compact storage method that allowed easy reconstruction, but
for small-degree permutation groups one cannot do much better than store minimal
sized generating sets for each group.

The problem of listing representatives of all conjugacy classes of subgroups of Sn

has received relatively little attention. Lists for n ≤ 12 and also of the subgroups
of An for n ≤ 13 are available from the website of Götz Pfeiffer [9], although the
subgroups of S13 can now be computed routinely in Magma in a few hours simply
by calling the function Subgroups(Sym(13)).

The purpose of this note is to announce the author’s enumeration of represen-
tatives of the conjugacy classes of Sn for n ≤ 18. The computations were carried
out in Magma on a 2.40GHz Intel PC with 4GB of memory. These lists are cur-
rently available from the author on request, although it is to be hoped that they
will eventually be accessible from GAP and Magma.

In the table below, we list the numbers of conjugacy classes of primitive, tran-
sitive, and all subgroups of Sn in the first three columns. Note that the number of
classes of subgroups of Sn that act fixed-point-freely can be obtained by subtracting
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Degree Primitive Transitive All (classes) All (total)
1 1 1 1 1
2 1 1 2 2
3 2 2 4 6
4 2 5 11 30
5 5 5 19 156
6 4 16 56 1455
7 7 7 96 11 300
8 7 50 296 151 221
9 11 34 554 1 694 723
10 9 45 1593 29 594 446
11 8 8 3094 404 126 228
12 6 301 10 723 10 594 925 360
13 9 9 20 832 175 238 308 453
14 4 63 75 154 5 651 774 693 595
15 6 104 159 129 117 053 117 995 400
16 22 1954 686 165 5 320 744 503 742 316
17 10 10 1 466 358 125 889 331 236 297 288
18 4 983 7 274 651 7 598 016 157 515 302 757
19 8 8
20 4 1117
21 9 164
22 4 59
23 7 7
24 5 25 000
25 28 211
26 7 96
27 15 2392
28 14 1854
29 8 8
30 4 5712
31 12 12
32 7 2 801 324

the number for Sn−1 from that of Sn. The final column contains the total number
of subgroups of Sn.

It might be possible with a considerable amount of effort and large-scale use
of computer power to extend the enumeration to degree 19 or perhaps even to
degree 20 in the foreseeable future, but it is doubtful to what extent this would be
worthwhile given the very large number of groups that are likely to be involved,
and it seems highly unlikely that it could be extended much further than this.

In the following section we describe briefly the methods used to enumerate
the subgroups of Sn, and then in the final section we discuss an application that
motivated the author to undertake these computations.

2. Methods used

The problem of listing representatives of the conjugacy classes of subgroups
of Sn subdivides naturally into a large number of subproblems, each of which can
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be dealt with independently, so the main problem is highly parallelizable. Since we
can assume that the subgroups of Sm are already known for m < n, and subgroups
of Sn that fix n−m points are conjugate in Sn if and only if they are conjugate in Sm,
we can restrict our attention to the fix-point-free subgroups H. The lengths of the
orbits of H defines a partition of n in which no component is 1, so we can handle
the different partitions individually. The transitive subgroups are already known
and available in Magma for n ≤ 18, so we need consider only nontrivial partitions.

Furthermore, for each such partition n = n1 + n2 + · · · + nk with k > 1 and
1 < n1 ≤ n2 ≤ · · · ≤ nk, the induced action of H on the i-th orbit is a transitive
subgroup of Sni . So each choice of transitive subgroups Hi of Sni gives rise to the
subproblem of enumerating those H for which the induced action on the i-th orbit
is Hi. Of course, if some of the ni are equal – say nj = nj+1 = · · · = nk then, since
we are enumerating subgroups up to conjugacy in Sn, we only consider one of the
possible orderings of each choice of subgroups Hi for j ≤ i ≤ k.

So we have to solve the following type of subproblem. Given a partition of n,
n = n1 + n2 + · · · + nk, and transitive subgroups Hi of Sni

as above, let P be
the direct product of the Hi. Then we must find the conjugacy classes in Sn of
subdirect products of P ; that is, the subgroups of P that project onto each of the
factors Hi. The conjugacy test for subgroups can be carried out in an appropriate
wreath product of symmetric groups. More precisely, if H1 = H2 = · · · = Hi1 ,
Hi1+1 = Hi1+2 = · · · = Hi2 , . . . , Hil−1+1 = · · · = Hil

with no other equalities
between the Hi, then the conjugacy test takes place in the direct product of the
permutation wreath products Snij

o Smj
for 1 ≤ j ≤ l, where mj = ij+1 − ij .

The author tried two methods of finding the subdirect products of P . The more
straightforward was to compute maximal subgroups repeatedly using the algorithm
described in [3], where we keep only those subgroups that project onto each Hi, and
at each stage we remove any subgroups that are conjugate to one that is already
on the list. For the second method, we employ the algorithm presented in [2] for
finding all subgroups of a permutation group. This involves the initial computation
of a series of normal subgroups 1 < P1 < P2 < · · · < Pk < P of P in which Pk is
the solvable radical of P , and each factor group Pj/Pj−1 is elementary abelian. We
then find the subgroups of P/Pk, P/Pk−1, . . . , P/P1, P successively, where at each
stage we remove those subgroups that do not project onto each HiPj−1/Pj−1.

Testing subgroups for conjugacy can be inherently slow in large permutation
groups, since all currently known methods involve the use of backtrack searches
with potentially exponential complexity. The advantage of the second method is
that the lifting process of finding the subgroups of P/Pj−1 from those of P/Pj in-
volves no explicit conjugacy testing of subgroups. This is replaced by an equivalent
orbital computation on the vectors of a vector space over a prime field, which is
still theoretically of exponential complexity, but is much faster in practice. So we
generally used the first method described above to find the subgroups of the top
layer P/Pk and then used the second method for the lifting process.

These techniques proved adequate for finding the subgroups of Sn for n ≤ 17.
The process times in seconds for n = 13, 14, 15, 16, and 17 were respectively 105,
653, 1190, 20 234, and 26 640.

Unfortunately, they failed to cope with a few of the partitions of 18 within the
memory constraint of 4GB RAM. The problem arose from the direct products P
having elementary abelian quotients of order 29, which gave rise to inordinately
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large numbers of subgroups during the lifting process. The difficult cases all involved
partitions with n1 = 2, and we devised more specialized techniques for dealing
with those.

Consider, for example, the partition 3× 2 + 3× 4 of 18. Other partitions were
handled in similar fashion, with minor variations. Rather than start with a direct
product of six transitive groups, we start with P = H1 × H2, where H1 ≤ S6

and H2 ≤ S12 are groups from the lists that we have already computed in degrees
6 and 12, and whose orbits lengths form the partitions 2 + 2 + 2 and 4 + 4 + 4
respectively. Since H1 is elementary abelian, a subdirect product of H1 and H2 has
the form {(h1, h2) | φ1(h1) = φ2(h2)}, where φ1, φ2 are epimorphisms of H1 and
H2 onto an elementary abelian 2-group of order at most 23.

We proceed as follows. Before considering the different possible groups H1

and H2, for each e with 0 ≤ e ≤ 3, let E be elementary abelian of order 2e and
pre-compute a complete list of subdirect products D of E × E with |D| = 2e.
Then consider each pair H1,H2 in turn, and let Ni be the normalizer of Hi in the
symmetric group for i = 1, 2. Now, for each e with 0 ≤ e ≤ 3 and i = 1, 2, we
find representatives, up to conjugation in Ni, of the normal subgroups Ki of Hi in
which Hi/Ki is elementary abelian of order 2e. For each of our subgroups D in
the precomputed list described above, we can now define a subdirect product H of
H1 ×H2 that contains K1 ×K2 as a subgroup of index 2e with H/(K1 ×K2) = D.
For fixed K1 and K2, we test the resulting list of groups (one for each subgroup D)
for conjugacy under the action of NN1(K1)×NN2(K2). It is not hard to show that
this results in the required list of groups for this partition.

The complete calculation of the 5 808 293 fixed-point-free subgroups of S18 using
these techniques took approximately four cpu-days.

3. An application

The support s(g) of a permutation g is the set of points moved by g. The
minimal degree m(G) of a permutation group G ≤ Sn is defined by:

m(G) = min
{
|s(g)|

∣∣ 1 6= g ∈ G
}
.

So, for example, m(Sn) = 2 for n ≥ 2, m(An) = 3 for n ≥ 3, and if all elements
of G act fixed-point-freely then m(G) = n.

Large groups with large minimal degrees are interesting and give rise to poten-
tial applications to quantum computing and coding theory. There are, however, a
number of results saying that very large groups G (i.e. those whose order is expo-
nential in the degree n) must have small minimal degrees. A recent result of this
type, proved in [8], is that if m ≤ log2 n then |G| ≤ n10n/m, whereas if m ≥ log2 n
then |G| ≤ 210n.

To answer the more specific question, given n and m ≤ n, what is the largest
subgroup G of Sn with m(G) ≥ m, there appears to be no approach other than to
carry out an exhaustive search of all possible G. So the lists described in this paper
now enable us to answer this question for n ≤ 18. We list some examples in which
the largest such G is unusually large in the table below. Note that the example
L2(8) :3× L2(7) :2 ≤ S17 is intransitive on its support, which demonstrates that it
is not sufficient to restrict our attention to transitive groups.
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n m Group Order
8 4 23 :L3(2) 1344
9 6 L2(8) :3 1512

11 8 M11 7920
12 8 M12 95040
16 12 24 :A7 40320
17 6 L2(8) :3× L2(7) :2 508032
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