The Lie algebra $\mathfrak{s u}(n)$ consists of the set of traceless $n \times n$ anti-hermitian matrices. Following the physicist's convention, we shall multiply each matrix in this set by i to obtain the set of traceless $n \times n$ hermitian matrices. Any such matrix can be expressed as a linear combination of $n^{2}-1$ matrix generators that form the basis of the $\mathfrak{s u}(n)$ Lie algebra.

It is convenient to define the following n^{2} traceless $n \times n$ matrices,

$$
\begin{equation*}
\left(F_{\ell}^{k}\right)_{i j}=\delta_{\ell i} \delta_{k j}-\frac{1}{n} \delta_{k \ell} \delta_{i j} \tag{1}
\end{equation*}
$$

where $i j$ indicates the row and column of the corresponding matrix (here i and j can take on the values $1,2, \ldots, n$), and k and ℓ label the n^{2} possible matrices F_{ℓ}^{k} (where $k, \ell=1,2, \ldots, n)$. Note that

$$
\begin{equation*}
\sum_{\ell} F_{\ell}^{\ell}=0 \tag{2}
\end{equation*}
$$

which means that of the n^{2} matrices, F_{ℓ}^{k}, only $n^{2}-1$ are independent. These $n^{2}-1$ generators will be employed to construct the basis for the $\mathfrak{s u}(n)$ Lie algebra. The corresponding commutation relations are easily obtained,

$$
\begin{equation*}
\left[F_{\ell}^{k}, F_{n}^{m}\right]=\delta_{n}^{k} F_{\ell}^{m}-\delta_{\ell}^{m} F_{n}^{k} \tag{3}
\end{equation*}
$$

The matrices F_{ℓ}^{k} satisfy

$$
\begin{equation*}
\left(F_{\ell}^{k}\right)^{\dagger}=F_{k}^{\ell} . \tag{4}
\end{equation*}
$$

Thus, we can use the F_{ℓ}^{k} to construct $n^{2}-1$ traceless $n \times n$ hermitian matrices by employing suitable linear combinations.

In these notes, we are interested in the $\mathfrak{s u}(3)$ Lie algebra. Setting $n=3$ in the equations above, we define the eight Gell-Mann matrices, which are related to the F_{ℓ}^{k} ($\ell, k=1,2,3$) defined in eq. (1) as follows: ${ }^{1}$

$$
\begin{array}{ll}
\lambda_{1}=F_{1}^{2}+F_{2}^{1}, & \lambda_{2}=-i\left(F_{1}^{2}-F_{2}^{1}\right), \\
\lambda_{4}=F_{1}^{3}+F_{3}^{1}, & \lambda_{5}=-i\left(F_{1}^{3}-F_{3}^{1}\right), \\
\lambda_{6}=F_{2}^{3}+F_{3}^{2}, & \lambda_{7}=-i\left(F_{2}^{3}-F_{3}^{2}\right), \\
\lambda_{3}=F_{1}^{1}-F_{2}^{2}, & \lambda_{8}=-\sqrt{3} F_{3}^{3}=\sqrt{3}\left(F_{1}^{1}+F_{2}^{2}\right), \tag{5}
\end{array}
$$

where we have used eq. (2) to rewrite λ_{8} in two different ways. In defining the GellMann matrices above, we have chosen to normalize the $\mathfrak{s u}(3)$ generators such that

$$
\begin{equation*}
\operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b} \tag{6}
\end{equation*}
$$

This explains the appearance of the $\sqrt{3}$ in the definition of λ_{8} in eq. (5).

[^0]The Gell-Mann matrices are the traceless hermitian generators of the $\mathfrak{s u}(3)$ Lie algebra, analogous to the Pauli matrices of $\mathfrak{s u}(2)$. Using eq. (1) with $n=3$ and eq. (5), the eight Gell-Mann matrices are explicitly given by:

$$
\begin{array}{lll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & \lambda_{5}=\left(\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), & \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
\lambda_{7}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), & \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

The Gell-Mann matrices satisfy commutation relation,

$$
\left[\lambda_{a}, \lambda_{b}\right]=2 i f_{a b c} \lambda_{c}, \quad \text { where } a, b, c=1,2,3, \ldots, 8,
$$

where there is an implicit sum over c, and the structure constants $f_{a b c}$ are totally antisymmetric under the interchange of any pair of indices. The explicit form of the non-zero $\mathfrak{s u}(3)$ structure constants are listed in Table 1.

Table 1: Non-zero structure constants ${ }^{1} f_{a b c}$ of $\mathfrak{s u}(3)$.

$a b c$	$f_{a b c}$	$a b c$	$f_{a b c}$
123	1	345	$\frac{1}{2}$
147	$\frac{1}{2}$	367	$-\frac{1}{2}$
156	$-\frac{1}{2}$	458	$\frac{1}{2} \sqrt{3}$
246	$\frac{1}{2}$	678	$\frac{1}{2} \sqrt{3}$
257	$\frac{1}{2}$		

$1_{\text {The }} f_{a b c}$ are antisymmetric under the permutation of any pair of indices.

The following properties of the Gell-Mann matrices are also useful:

$$
\operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b}, \quad\left\{\lambda_{a}, \lambda_{b}\right\}=2 d_{a b c} \lambda_{c}+\frac{4}{3} \delta_{a b} \mathbf{I}
$$

where \mathbf{I} is the 3×3 identity matrix and $\{A, B\} \equiv A B+B A$ is the anticommutator of A and B. It follows that

$$
f_{a b c}=-\frac{1}{4} i \operatorname{Tr}\left(\lambda_{a}\left[\lambda_{b}, \lambda_{c}\right]\right), \quad d_{a b c}=\frac{1}{4} \operatorname{Tr}\left(\lambda_{a}\left\{\lambda_{b}, \lambda_{c}\right\}\right) .
$$

The $d_{a b c}$ are totally symmetric under the interchange of any pair of indices. The explicit form of the non-zero $d_{a b c}$ are listed in Table 2.

Table 2: Non-zero independent elements of the tensor ${ }^{2} d_{a b c}$ of $\mathfrak{s u}(3)$.

$a b c$	$d_{a b c}$	$a b c$	$d_{a b c}$
118	$\frac{1}{\sqrt{3}}$	355	$\frac{1}{2}$
146	$\frac{1}{2}$	366	$-\frac{1}{2}$
157	$\frac{1}{2}$	377	$-\frac{1}{2}$
228	$\frac{1}{\sqrt{3}}$	448	$-\frac{1}{2 \sqrt{3}}$
247	$-\frac{1}{2}$	558	$-\frac{1}{2 \sqrt{3}}$
256	$\frac{1}{2}$	668	$-\frac{1}{2 \sqrt{3}}$
338	$\frac{1}{\sqrt{3}}$	778	$-\frac{1}{2 \sqrt{3}}$
344	$\frac{1}{2}$	888	$-\frac{1}{\sqrt{3}}$

${ }^{2}$ The $d_{a b c}$ are symmetric under the permutation of any pair of indices.

Using the explicit form for the structure constants $f_{a b c}$, one can construct the Cartan-Killing metric tensor, ${ }^{2}$

$$
g_{a b}=f_{a c d} f_{b c d}=3 \delta_{a b},
$$

and the inverse metric tensor is $g^{a b}=\frac{1}{3} \delta^{a b}$. The latter can be used to construct the quadratic Casimir operator in the defining representation of $\mathfrak{s u}(3)$,

$$
C_{2}=\frac{3}{4} g^{a b} \lambda_{a} \lambda_{b}=\frac{1}{4} \sum_{a}\left(\lambda_{a}\right)^{2}=\frac{4}{3} \mathbf{I},
$$

where \mathbf{I} is the 3×3 identity matrix and the overall factor of $\frac{3}{4}$ is conventional.
One can define C_{2} for any d-dimensional irreducible representation R of $\mathfrak{s u}(3)$. We shall denote the the corresponding traceless hermitian generators in representation R by R_{a}. The normalization of the matrix generators in the defining representation of $\mathfrak{s u}(3)$ will be fixed by $\operatorname{Tr}\left(R_{a} R_{b}\right)=\frac{1}{2} \delta_{a b}$. Thus, in the defining representation of $\mathfrak{s u}(3)$, we identify $R_{a}=\frac{1}{2} \lambda_{a}$ [cf. eq. (6)]. In the adjoint representation of $\mathfrak{s u}(3)$, we may identify $\left(R_{a}\right)_{b c}=-i f_{a b c}$.

[^1]For any irreducible representation R of $\mathfrak{s u}(3)$, the Casimir operator is defined by

$$
\begin{equation*}
C_{2}(R)=3 g^{a b} R_{a} R_{b}=\sum_{a}\left(R_{a}\right)^{2}=c_{2 R} \mathbf{I}_{\mathbf{d}} \tag{7}
\end{equation*}
$$

where $\mathbf{I}_{\mathbf{d}}$ is the $d \times d$ identity matrix. Indeed, by using $\left[R_{a}, R_{b}\right]=i f_{a b c} R_{c}$, it is straightforward to prove that,

$$
\left[R_{a}, C_{2}\right]=0, \quad \text { for } a=1,2,3, \ldots, 8
$$

Since C_{2} commutes with all the $\mathfrak{s u}(3)$ generators of the irreducible representation R, it follows from Schur's lemma that C_{2} is a multiple of the identity, as indicated in eq. (7). As an example, in the adjoint representation A where $\left(R_{a}\right)_{b c}=-i f_{a b c}$, it follows that

$$
C_{2}(A)_{c d}=f_{a b c} f_{a b d}=g_{c d}=3 \delta_{c d}
$$

which yields $c_{2 A}=3$.
For an irreducible representation of $\mathfrak{s u}(3)$ denoted by (n, m), corresponding to a Young diagram with $n+m$ boxes in the first row and n boxes in the second row, ${ }^{3}$ the eigenvalue of the quadratic Casimir operator is given by,

$$
c_{2}=\frac{1}{3}\left(m^{2}+n^{2}+m n\right)+m+n
$$

The $d_{a b c}$ can be employed to construct a cubic Casimir operator in the defining representation of $\mathfrak{s u}(3)$,

$$
C_{3} \equiv \frac{1}{8} d_{a b c} \lambda_{a} \lambda_{b} \lambda_{c}=\frac{10}{9} \mathbf{I},
$$

where all repeated indices are summed over. The overall factor of $\frac{1}{8}$ is conventional.
For any d-dimensional irreducible representation R of $\mathfrak{s u}(3)$, the cubic Casimir operator is defined by

$$
\begin{equation*}
C_{3}(R) \equiv d_{a b c} R_{a} R_{b} R_{c}=c_{3 R} \mathbf{I}_{\mathbf{d}} \tag{8}
\end{equation*}
$$

As before, it is straightforward to prove that,

$$
\left[R_{a}, C_{3}\right]=0, \quad \text { for } a=1,2,3, \ldots, 8
$$

Since C_{3} commutes with all the $\mathfrak{s u}(3)$ generators of the irreducible representation R, it follows from Schur's lemma that C_{3} is a multiple of the identity, as indicated in eq. (8).

For an irreducible representation of $\mathfrak{s u}(3)$ denoted by (n, m), corresponding to a Young diagram with $n+m$ boxes in the first row and n boxes in the second row, the eigenvalue of the cubic Casimir operator is given by:

$$
c_{3}=\frac{1}{2}(m-n)\left[\frac{2}{9}(m+n)^{2}+\frac{1}{9} m n+m+n+1\right] .
$$

In particular, the eigenvalue of cubic Casimir operator in the adjoint representation vanishes.

[^2]It is convenient to rewrite the commutation relations of the generators of the $\mathfrak{s u}(3)$ Lie algebra in the Cartan-Weyl form. Defining $T_{a} \equiv \frac{1}{2} \lambda_{a}$, and using the F_{ℓ}^{k} of eq. (1) [with $n=3$], it follows from eq. (3) that,

$$
\begin{array}{lll}
{\left[T_{3}, F_{1}^{2}\right]=F_{1}^{2},} & & {\left[T_{3}, F_{2}^{1}\right]=-F_{2}^{1},} \\
{\left[T_{8}, F_{1}^{2}\right]=0,} & {\left[T_{8}, F_{2}^{1}\right]=0,} \\
{\left[T_{3}, F_{1}^{3}\right]=\frac{1}{2} F_{1}^{3},} & {\left[T_{3}, F_{3}^{1}\right]=-\frac{1}{2} F_{3}^{1},} \\
{\left[T_{8}, F_{1}^{3}\right]=\frac{1}{2} \sqrt{3} F_{1}^{3},} & & {\left[T_{8}, F_{3}^{1}\right]=-\frac{1}{2} \sqrt{3} F_{3}^{1},} \\
{\left[T_{3}, F_{2}^{3}\right]=-\frac{1}{2} F_{2}^{3},} & & {\left[T_{3}, F_{3}^{2}\right]=\frac{1}{2} F_{3}^{2},} \\
{\left[T_{8}, F_{2}^{3}\right]=\frac{1}{2} \sqrt{3} F_{2}^{3},} & & {\left[T_{8}, F_{3}^{2}\right]=-\frac{1}{2} \sqrt{3} F_{3}^{2} .}
\end{array}
$$

These commutation relations can be rewritten in the following notation,

$$
\left[T_{i}, F_{\boldsymbol{\alpha}}\right]=\alpha_{i} F_{\boldsymbol{\alpha}}
$$

where $i=3,8$ and $F_{\alpha}=\left\{F_{1}^{2}, F_{2}^{1}, F_{1}^{3}, F_{3}^{1}, F_{2}^{3}, F_{3}^{2}\right\}$. Using the explicit form of the commutation relations given above, we can read off the six root vectors corresponding to the six generators F_{α},

$$
(1,0), \quad(-1,0), \quad\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right), \quad\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) .
$$

Thus, the root diagram of the complexified $\mathfrak{s u}(3)$ Lie algebra [that is, $\mathfrak{s l}(3, \mathbb{C})$] is

Figure 1: The root diagram for $\mathfrak{s l}(3, \mathbb{C})$.

[^0]: ${ }^{1}$ Using eq. (4), one can easily check that the Gell-Mann matrices are hermitian as advertised.

[^1]: ${ }^{2}$ Since we are employing the physicisit's convention in which the $\mathfrak{s u}(3)$ generators $\frac{1}{2} \lambda_{a}$ are hermitian, the Cartan-Killing metric tensor is positive definite. This is in contrast with the mathematician's convention of anti-hermitian generators, where the corresponding Cartan-Killing metric tensor of $\mathfrak{s u}(3)$ is negative definite.

[^2]: ${ }^{3}$ In particular, $(1,0)$ is the defining representation and $(1,1)$ is the adjoint representation of $\mathfrak{s u}(3)$.

