
Physics 251 Spring 2023

Local properties of a Lie group

1. The group manifold near the identity

Consider the element A,B ∈ G, where G is a real Lie group of dimension n. We shall
parameterize the points on the group manifold such that the coordinates of A on the group
manifold are ~a = (a1, a2, . . . , an) and the coordinates of B are ~b = (b1, b2, . . . , bn). It is
convenient to define the coordinates on the group manifold such that the identity element
(henceforth denoted by E) lies at the origin; i.e., the coordinates of E are ~0 = (0, 0, . . . , 0).
The group multiplication law, C = AB, will be expressed in terns of the corresponding
coordinates,

~c = ~m(~a,~b) . (1)

If A and B lie close to the identity element of G, then we can expand,

mi(~a,~b) = ai + bi + αi
jka

jak + βi
jkb

jbk + cijka
jbk + . . . , (2)

where we are employing the Einstein summation convention in which repeated indices of
different heights are summed over. The ellipsis indicates that we have dropped terms cubic
or higher in the coordinates. Note that AE = A and EB = B imply that mi(~a, ~0) = ai and

mi(~0,~b) = bi. It then follows that αi
jk = βi

jk = 0 so that

mi(~a,~b) = ai + bi + cijka
jbk + . . . (3)

In particular, we can identify,

cijk =
∂2mi(~a,~b)

∂aj∂bk

∣∣∣∣
~a=~b=0

. (4)

We next investigate the implications of an associative group multiplication law, C(AB) =
(CA)B. In terms of the coordinates,

~m
(
~c, ~m(~a,~b)

)
= ~m

(
~m(~c, ~a),~b

)
. (5)

Differentiating eq. (5) with respect to ck and employing the chain rule on the right hand side
yields

∂mi
(
~c, ~m(~a,~b)

)

∂ck
=

∂mi
(
~m(~c, ~a),~b

)

∂mj(~c, ~a)

∂mj(~c, ~a)

∂ck
. (6)

To examine the local behavior of the associative group multiplication law near the identity,
we introduce the quantity,

Θi
j(~a) ≡

∂mi(~c, ~a)

∂cj

∣∣∣∣
~c=0

. (7)
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Taking the ck → 0 limit of eq. (6) and using mi(~0, ~a) = ai, we obtain,

Θi
k( ~m) =

∂mi(~a,~b)

∂aj
Θj

k(~a) . (8)

where the argument of Θi
k in eq. (8) is ~m ≡ ~m(~a,~b).

The matrix Θi
j(~a) is nonsingular. This can be easily understood by writing bi ≡ mi(~c, ~a).

By holding ~a fixed, we can view this latter relation as a change of coordinates on the group
manifold from ~c to ~b. That is, we are changing coordinates on the group manifold by
right multiplication by a fixed element A ∈ G. The Jacobian matrix of this coordinate
transformation is ∂bi/∂cj . Since this coordinate change is nonsingular, the inverse Jacobian
matrix, ∂cj/∂bi exists at all points in the group manifold. Hence, it follows that the inverse
Θ−1 j

k (~a) exists and satisfies
Θj

k(~a)Θ
−1 k
ℓ (~a) = δjℓ . (9)

A more direct proof that Θj
k is invertible goes as follows (see, e.g. Ref. 4). Let us denote the

coordinates of A−1 by ~ı(~a). The identity ABB−1 = A in coordinates reads,

mi
(
~m(~a,~b),~ı(~b)

)
= ai . (10)

Taking the derivative with respect to aj and employing the chain rule yields,

∂mi
(
~m(~a,~b),~ı(~b)

)

∂mk(~a,~b)

∂mk(~a,~b)

∂aj
= δij . (11)

Eq. (11) implies that ∂mk(~a,~b)/∂aj is nonsingular. A similar argument starting from

A−1AB = B implies that ∂mk(~a,~b)/∂bj is nonsingular. Of course, these results are a conse-

quence of the fact that the transformations ~r(~a) ≡ ~m(~a,~b) with ~b fixed and ~r(~b) ≡ ~m(~a,~b)
with ~a fixed are necessarily invertible.

Having established that the inverse Θ−1 j
k (~a) exists, we can now multiply eq. (8) by

Θ−1 k
ℓ (~a) to obtain,

∂mi(~a,~b)

∂aℓ
= Θi

k( ~m)Θ−1 k
ℓ (~a) . (12)

As a check of eq. (12), let us take the limit of ~a → ~0. Then, Θ−1 k
j (~0) = δkj and ~m(~0,~b) = ~b,

in which case eq. (12) yields

Θi
j(
~b) =

∂mi(~a,~b)

∂aj

∣∣∣∣
~a=0

. (13)

which is consistent with the definition given in eq. (7).
Starting with eq. (12), we shall impose the integrability condition,

∂mi(~a,~b)

∂aℓ∂aj
=

∂mi(~a,~b)

∂aj∂aℓ
. (14)

It follows that
∂

∂aℓ
[
Θi

k( ~m)Θ−1 k
j (~a)

]
=

∂

∂aj
[
Θi

k( ~m)Θ−1 k
ℓ (~a)

]
, (15)
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where ~m ≡ ~m(~a,~b). Expanding out eq. (15) yields,

Θi
k( ~m)

(
∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
= Θ−1 k

ℓ (~a)
∂

∂aj
Θi

k( ~m)−Θ−1 k
j (~a)

∂

∂aℓ
Θi

k( ~m) . (16)

The derivatives on the right hand side above are evaluated with the help of the chain rule.
For example,

∂

∂aj
Θi

k( ~m) =
∂mn

∂aj
∂

∂mn
Θi

k( ~m) = Θn
p ( ~m)Θ−1 p

j (~a)
∂

∂mn
Θi

k( ~m) , (17)

where we have used eq. (12) in the final step to evaluate ∂mn/∂aj . We can now insert eq. (17)
(and a similar result with the index j replaced by ℓ) back into eq. (16). Our strategy is to
manipulate the resulting equation so that variables depending on ~a appear on the left hand
side whereas variables depending on ~m appear on the right hand side. To accomplish this,
we multiply eq. (16) by Θ−1 r

i ( ~m)Θℓ
s(~a)Θ

j
t (~a) on both sides of the equation. The end result

is,
(

∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
Θℓ

s(~a)Θ
j
t(~a)

=

[
Θn

t ( ~m)
∂

∂mn
Θi

s( ~m)−Θn
s ( ~m)

∂

∂mn
Θi

t( ~m)

]
Θ−1 k

i ( ~m) . (18)

We have succeeded in the separation of variables technique. Thus, we can conclude that
both sides of eq. (18) must be equal to some constant, which we henceforth denote by fk

st.
These are the structure constants of the Lie group. In particular,

fk
st =

(
∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
Θℓ

s(~a)Θ
j
t(~a) . (19)

Due to the separation of variables in eq. (18), fk
st is a constant, independent of ~a. Thus,

we are free to take the limit of ~a → ~0 on the right hand side of eq. (19) without changing
the values of fk

st. That is, we can assume that the group elements A and B are close to the
identity E and employ eqs. (3) and (7) to evaluate,

Θℓ
s(~a) ≃ δℓs + cℓsna

n , Θ−1 k
j (~a) ≃ δkj − ckjna

n , (20)

where we have dropped terms quadratic in the coordinates. Plugging these results back into
the right hand side of eq. (19) and taking ~a → ~0 at the end of the computation yields,

fk
st = (ckℓj − ckjℓ)δ

ℓ
sδ

j
t = ckst − ckts . (21)

Note that eqs. (18) and (19) imply that

Θn
t (~a)

∂Θi
s(~a)

∂an
−Θn

s (~a)
∂Θi

t(~a)

∂an
= fk

stΘ
i
k(~a) . (22)

In obtaining eq. (22), we have replaced the dummy variable ~m by ~a.
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2. Properties of the structure constants

The structure constants of a Lie group are given in eq. (21). One immediate consequence
is that fk

st is antisymmetric under the interchange of its two lower indices,

fk
st = −fk

ts . (23)

In particular, for a one-dimensional Lie group (i.e., n = 1), it follows that f = 0.
A second important property of the fk

st can be obtained as follows. We first rewrite
eq. (19) as,

fk
stΘ

−1 s
ℓ (~a) Θ−1 t

j (~a) =

(
∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
. (24)

Taking a derivative of eq. (24) with respect to ap and multiplying the resulting expression
by Θp

xΘ
j
wΘ

ℓ
v yields,

Θp
xΘ

j
wΘ

ℓ
v

[
∂2

∂aℓ∂ap
Θ−1 k

j −
∂2

∂aj∂ap
Θ−1k

ℓ

]
= fk

sw Θp
xΘ

ℓ
v

∂

∂ap
Θ−1 s

ℓ + fk
vs Θ

p
x Θ

j
w

∂

∂ap
Θ−1 s

j . (25)

Note that we have replaced the dummy index t with s in the last term on the right hand side
of eq. (25). Next, we rewrite eq. (25) by making the following index interchanges, x ↔ v
and p ↔ ℓ, and then subtracting the resulting equation from eq. (25). The end result is,

Θp
xΘ

j
wΘ

ℓ
v

[
∂2

∂aj∂aℓ
Θ−1k

p −
∂2

∂aj∂ap
Θ−1 k

ℓ

]
= fk

sw Θp
x Θ

ℓ
v

(
∂

∂ap
Θ−1 s

ℓ −
∂

∂aℓ
Θ−1 s

p

)

+fk
vs Θ

p
x Θ

j
w

∂

∂ap
Θ−1 s

j − fk
xsΘ

ℓ
v Θ

j
w

∂

∂aℓ
Θ−1 s

j , (26)

after noting that the mixed partial derivatives satisfy ∂2/∂aℓ∂ap = ∂2/∂ap∂aℓ. Likewise, we
can rewrite eq. (25) by making the following index interchanges, x ↔ w and p ↔ j, and
then subtracting the resulting equation from eq. (25). The end result is,

Θp
xΘ

j
wΘ

ℓ
v

[
∂2

∂aℓ∂ap
Θ−1 k

j −
∂2

∂aℓ∂aj
Θ−1 k

p

]
= fk

vs Θ
p
xΘ

j
w

(
∂

∂ap
Θ−1 s

j −
∂

∂aj
Θ−1 s

p

)

+fk
sw Θp

xΘ
ℓ
v

∂

∂ap
Θ−1 s

ℓ − fk
sx Θ

j
w Θℓ

v

∂

∂aj
Θ−1 s

ℓ . (27)

Adding eqs. (26) and (27) and employing eqs. (19) and (23) yields,

Θp
xΘ

j
wΘ

ℓ
v

[
∂2

∂aℓ∂ap
Θ−1 k

j −
∂2

∂aj∂ap
Θ−1 k

ℓ

]
= fk

swf
s
xv + fk

vsf
s
xw + fk

xsf
s
wv

+fk
vs Θ

p
xΘ

j
w

∂

∂ap
Θ−1 s

j + fk
sw Θp

x Θ
ℓ
v

∂

∂ap
Θ−1 s

ℓ . (28)

Finally, after subtracting eq. (25) from eq. (28), we end up with

fk
swf

s
xv + fk

vsf
s
xw + fk

xsf
s
wv = 0 . (29)

That is, the structure constants, fk
sw, satisfy the Jacobi identity.
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3. Basis vectors of the Lie algebra and their commutators

We now demonstrate that the fk
sw are the structure constants of the Lie algebra g cor-

responding to the Lie group G. Consider an analytic curve, A(t), that lies in the group
manifold and passes through the identity, A(t = 0) = E. The analytic curve A(t) is param-
eterized by t ∈ R, where ~a(t) =

(
a1(t), a2(t), . . . , an(t)

)
are the coordinates of A, such that

~a(t = 0) = (0, 0, . . . , 0) are the coordinates of E. The elements of a Lie algebra are tangent
vectors at the identity element of the group manifold. In particular, a tangent vector A ∈ g

is identified by the value of the slope of an analytic curve A(t) ≡ A
(
~a(t)

)
at t = 0. For any

element A ∈ g, we can employ the chain rule to write,

A =
d

dt
A
(
~a(t)

)∣∣∣∣
t=0

=
n∑

i=1

∂A(~a)

∂ai
∂ai

∂t

∣∣∣∣
t=0

=
n∑

i=1

viAi , (30)

where vi ≡ (∂ai/∂t)t=0 are the components of A, and the basis vectors of the Lie algebra are
given by,

Ai =

(
∂A(~a)

∂ai

)

~a=0

. (31)

Associativity of the group multiplication in G implies that

A(~c)A
(
~m(~a,~b)

)
= A

(
~m(~c, ~a)

)
A(~b) . (32)

We now differentiate eq. (32) with respect to ck and then ~c = 0. In light of eq. (31),

Ak A
(
~m(~a,~b)

)
=

(
∂A
(
~m(~c, ~a)

)

∂mi

∂mi(~c, ~a)

∂ck

)

~c=0

A(~b) . (33)

after employing the chain rule of differentiation. Using eq. (7) and ~m(~0, ~a) = ~a, it follows
that

Ak A
(
~m(~a,~b)

)
=

∂A(~a)

∂ai
Θi

k(~a)A(
~b) . (34)

Hence,
∂A(~a)

∂ai
A(~b) = Ak Θ

−1 k
i (~a)A

(
~m(~a,~b)

)
. (35)

Our strategy going forward is similar to the analysis that yielded eq. (19). Namely impose
an integrability condition and then look to separate variables. The integrability condition is
this case can be expressed as an equality of mixed partial derivatives,

∂2A(~a)

∂ai∂aj
A(~b) =

∂2A(~a)

∂aj∂ai
A(~b) . (36)

Then, eq. (35) yields,

Ak

∂

∂aj

(
Θ−1k

i (~a)A
(
~m(~a,~b)

))
= Ak

∂

∂ai

(
Θ−1 k

j (~a)A
(
~m(~a,~b)

))
. (37)
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Using the product rule for derivatives,

Ak

(
∂

∂aj
Θ−1k

i (~a)−
∂

∂ai
Θ−1 k

j (~a)

)
A
(
~m(~a,~b)

)

= Ak

(
Θ−1 k

j (~a)
∂

∂ai
A
(
~m(~a,~b)

)
−Θ−1 k

i (~a)
∂

∂aj
A
(
~m(~a,~b)

))
. (38)

Multiplying the above result on the right by A−1
(
~m(~a,~b)

)
Θj

ℓ(~a) Θ
i
n(~a), we end up with,

Ak

(
∂

∂aj
Θ−1k

i (~a)−
∂

∂ai
Θ−1 k

j (~a)

)
Θj

ℓ(~a) Θ
i
n(~a)

=

(
Aℓ Θ

i
n(~a)

∂

∂ai
A
(
~m(~a,~b)

)
−AnΘ

j
ℓ(~a)

∂

∂aj
A
(
~m(~a,~b)

))
A−1

(
~m(~a,~b)

)
.

(39)

Using eq. (19), we recognize that the right hand side of eq. (39) is given by fk
ℓnAk. Hence, it

follows that
(
AℓΘ

i
n(~a)

∂

∂ai
A( ~m)−AnΘ

j
ℓ(~a)

∂

∂aj
A( ~m)

)
A−1( ~m) = fk

ℓnAk , (40)

where ~m ≡ ~m(~a,~b). We can simplify the right hand side of eq. (40) with the help of the
chain rule. In particular, note that

Θi
n(~a)

∂

∂ai
A( ~m) = Θi

n(~a)
∂A( ~m)

∂mk

∂mk(~a,~b)

∂ai
= Θi

n(~a)
∂A( ~m)

∂mk
Θk

p( ~m) Θ−1 p
i (~a)

=
∂A( ~m)

∂mk
Θk

n( ~m) , (41)

where we have used eq. (12) in the penultimate step above. Consequently, we can rewrite
eq. (40) as follows:

(
Aℓ Θ

k
n( ~m)

∂A( ~m)

∂mk
−AnΘ

k
ℓ ( ~m)

∂A( ~m)

∂mk

)
A−1( ~m) = fk

ℓnAk . (42)

The separation of variables is complete. The left hand side of eq. (42) depends on ~m whereas
the right hand side is independent of ~m. This implies that eq. (42) is consistent only if the
left-hand side of eq. (42) is actually independent of ~m. Hence, to evaluate the left hand
side of eq. (42), we are free to take the limit ~m → 0. Using eq. (31) and noting that
A(~0) = A−1(~0) = E and Θk

n(~0) = δkn [cf. eq. (20)], we see that eq. (42) reduces to

AℓAn −AnAℓ = fk
ℓnAk . (43)

That is, [
Aℓ , An

]
= fk

ℓnAk . (44)

Indeed, the fk
ℓn are the structure constants of the Lie algebra g.
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4. Lie group action on a manifold

Lie groups can act on manifolds. We define a Lie transformation group by the action of
a Lie group G on a manifold M . It is convenient to consider a left action in which the group
G acts from the left on M . In this section, we assume that the group action is effective. This
means that the only group element whose action on M has no effect on any of the points of
M is the identity element of G. The left group action is given by

x′ i = Φi(~a ; ~x) , (45)

where A, with coordinates ~a = (a1, a2, . . . , an) ∈ G acts on ~x ∈ M from the left and sends
the latter to ~x′ ∈ M . The index i takes on m possible values, where m is the dimension of
the manifold M . Note that m need not be the same as n = dim G.

The function Φ which represents the group action has the following properties:

1. Φi(~0 ; ~x) = xi , (46)

2. Φi
(
~b ; ~Φ(~a ; ~x)

)
= Φi

(
~m(~b, ~a) ; ~x

)
. (47)

One often applies a shorthand notation by writing ~x′ = A~x for the (left) group action. The
group G acts effectively on the manifold M if A~x = ~x for all ~x ∈ M implies that A = E
(where E is the identity element of G). The two properties above correspond to E~x = ~x
and A(B~x) = (AB)~x, respectively, for ~x ∈ M and A,B ∈ G.

If we differentiate the second property above with respect to bk and employ the chain
rule, we obtain,

∂Φi
(
~b ; ~Φ(~a ; ~x)

)

∂bk
=

∂Φi( ~m(~b, ~a) ; ~x)

∂mj

∂mj

∂bk
, (48)

where mj ≡ mj(~b, ~a) and there is an implicit sum over the repeated index j. It is convenient
to introduce the matrix,

ui
k(~x) =

∂Φi(~b ; ~x)

∂bk

∣∣∣∣
~b=0

. (49)

Note the similarity between this definition and that of eq. (7). Indeed, if in the special
case where the manifold M is taken to be the group manifold G, then ui

k = Θi
k. However,

in contrast to Θi
k, one cannot assume that the matrix ui

k(~x) is nonsingular for the general

case where M is an m-dimensional manifold.1 If we now set ~b = 0 in eq. (48) and employ
~m(~0, ~a) = ~a, it follows that

ui
k(~Φ) =

∂Φi(~a ; ~x)

∂aj
Θj

k(~a) , (50)

after using eq. (7), where ~Φ ≡ ~Φ(~a ; ~x). Since Θj
k(~a) is nonsingular as discussed below

eq. (7), we end up with2

∂Φi(~a ; ~x)

∂aℓ
= ui

k(~Φ)Θ−1 k
ℓ (~a) , (51)

1Indeed, the proof that Θi
k is invertible given below eq. (9) does not apply to ui

k in the case of a Lie group
action on a generic manifold.

2Eq. (51) corresponds to Lie’s first theorem in Ref. 6. The converse to this theorem is also valid and is
proven in Ref. 3.
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We now follow the same analysis employed following eq. (12). Starting with eq. (51), we
shall impose the integrability condition,

∂Φi(~a ; ~x)

∂aℓ∂aj
=

∂Φi(~a ; ~x)

∂aj∂aℓ
. (52)

It follows that
∂

∂aℓ
[
ui
k(~Φ)Θ−1 k

j (~a)
]
=

∂

∂aj
[
ui
k(~Φ)Θ−1 k

ℓ (~a)
]
, (53)

where Φ ≡ Φ(~a ; ~x). Expanding out eq. (53) yields,

ui
k(~Φ)

(
∂

∂aℓ
Θ−1k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
= Θ−1 k

ℓ (~a)
∂

∂aj
ui
k(~Φ)−Θ−1 k

j (~a)
∂

∂aℓ
ui
k(~Φ) . (54)

The derivatives on the right hand side above are evaluated with the help of the chain rule.
For example,

∂

∂aj
ui
k(~Φ) =

∂Φn

∂aj
∂ui

k(
~Φ)

∂Φn
= un

p (~Φ)Θ−1 p
j (~a)

∂ui
k(
~Φ)

∂Φn
, (55)

where we have used eq. (51) in the final step to evaluate ∂Φn/∂aj . We can now insert eq. (55)
(and a similar result with the index j replaced by ℓ) back into eq. (54). Hence, eq. (54) yields,

ui
k(~Φ)

(
∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)

= un
p (~Φ)Θ−1 p

j (~a)Θ−1 k
ℓ (~a)

∂ui
k(
~Φ)

∂Φn
− un

p(~Φ)Θ−1 p
ℓ (~a)Θ−1k

j (~a)
∂ui

k(
~Φ)

∂Φn
. (56)

Multiplying both sides of the above equation by Θℓ
s(~a)Θ

j
t (~a), we end up with

ui
k(~Φ)

(
∂

∂aℓ
Θ−1 k

j (~a)−
∂

∂aj
Θ−1 k

ℓ (~a)

)
Θℓ

s(~a)Θ
j
t(~a) = un

t (~Φ)
∂ui

s(~Φ)

∂Φn
− un

s (~Φ)
∂ui

t(~Φ)

∂Φn
. (57)

Employing the definition of fk
st given by eq. (19) in eq. (57) yields

un
t (~Φ)

∂ui
s(~Φ)

∂Φn
− un

s (~Φ)
∂ui

t(~Φ)

∂Φn
= fk

stu
i
k(~Φ) . (58)

Since ~Φ is a dummy in the above equation, one can simply change variables to ~x to obtain

un
t (~x)

∂ui
s(~x)

∂xn
− un

s (~x)
∂ui

t(~x)

∂xn
= fk

stu
i
k(~x) . (59)

Note that one can consider the action of the Lie group G on its group manifold consisting
of group multiplication from the left. In this case, the manifold M = G and we can identify
ui
k = Θi

k. For example, in this special case, eq. (59) reduces to that of eq. (22).
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5. Generators of infinitesimal Lie group transformations

Consider a function f(~x), where ~x ∈ M . The action of G on ~x ∈ M is given by

~x′ = ~Φ(~a ; ~x) [cf. eq. (45)]. It then follows that under the action of G, the function is
transformed,

f ′(~x′) = f(~x) . (60)

This simply means that the action of the Lie transformation group is to redefine the coor-
dinate ~x, such that ~x and ~x′ represent the same physical point. In this way of thinking,
the action of the Lie transformation group is a passive transformation in which the physical
points do not move, but the coordinates of a given point change because the “axes” that
define the coordinates of a given point have been transformed.

In the physics literature, one typically writes ~x′ = A~x and

f ′(A~x) = f(~x) , for A ∈ G and ~x ∈ M . (61)

One can rewrite eq. (61) equivalently as

f ′(~x′) = f(A−1~x′) . (62)

Since ~x′ is a dummy variable, we can simply drop the primes and write

f ′(~x) = f(A−1~x) . (63)

This equation indicates how the function f must change under the action of the Lie trans-
formation group.

Consider the case in which A ∈ G is close to the identity E. We shall write A = E + δA,
where the coordinates of A are given by δ~a = (δa1, δa2, . . . , δan), and the δai are small
quantities. To first order in the small quantities, it follows that A−1 ≃ E−δA, or equivalently,
the coordinates of A−1 are given by −δ~a = (−δa1,−δa2, . . . ,−δan). Working to first order,
it follows that

(A−1~x)i = Φi(−δ~a ; ~x) ≃ Φi(~0 ; ~x) + (−δak)

(
∂Φi(~b ; ~x)

∂bk

)

~b=0

= xi − δak ui
k(~x) , (64)

after employing eqs. (46) and (49). Plugging the above result into eq. (63) and expanding
to first order,

f ′(~x) = f
(
xi − δak ui

k(~x)
)
≃ f(~x)− δak ui

k(~x)
∂f

∂xi
. (65)

Hence, we can write,
f ′(~x)− f(~x) = δak Xk(~x)f(~x) , (66)

where

Xk(~x) = −ui
k(~x)

∂

∂xi
, (67)

is called the generator of infinitesimal Lie group transformations. The name derives from
the fact that the differential operator Xk determines how the function f(~x) changes due to
the action of the Lie group G on the manifold M .
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The commutator of two Lie group generators is notable. We calculate,

[
Xj(~x) , Xk(~x)

]
f = uℓ

j(~x)
∂

∂xℓ

(
ui
k(~x)

∂f

∂xi

)
− uℓ

k(~x)
∂

∂xℓ

(
ui
j(~x)

∂f

∂xi

)

= uℓ
j(~x)u

i
k(~x)

∂2f

∂xℓ∂xi
− uℓ

k(~x)u
i
j(~x)

∂2f

∂xℓ∂xi
+ uℓ

j(~x)
∂ui

k(~x)

∂xℓ

∂f

∂xi
− uℓ

k(~x)
∂ui

j(~x)

∂xℓ

∂f

∂xi
.

(68)

Since the mixed second order partial derivatives commute, we see that after an index rela-
beling,

uℓ
j(~x)u

i
k(~x)

∂2f

∂xℓ∂xi
− uℓ

k(~x)u
i
j(~x)

∂2f

∂xℓ∂xi
= uℓ

j(~x)u
i
k(~x)

(
∂2f

∂xℓ∂xi
−

∂2f

∂xi∂xℓ

)
= 0 . (69)

It then follows that

[
Xj(~x) , Xk(~x)

]
f =

(
uℓ
j(~x)

∂ui
k(~x)

∂xℓ
− uℓ

k(~x)
∂ui

j(~x)

∂xℓ

)
∂f

∂xi
. (70)

Employing eqs. (59) and (67), it follows that

[
Xj(~x) , Xk(~x)

]
f = −fn

jku
i
n(~x)

∂f

∂xi
= fn

jkXn(~x)f . (71)

This result is true for any function f . Thus, the following operator equation is satisfied,3

[
Xj , Xk

]
= fn

jkXn , (72)

where we have suppressed the arguments of the generators. Comparing with eq. (44), we
see that the commutation relations satisfied by the generators of the infinitesimal Lie group
transformations are identical to the commutation relations satisfied by the basis vectors of
the Lie algebra. One can view the generators Xk defined in eq. (67) as a differential operator
representation of the Lie algebra basis vectors. Colloquially, it is common to refer to the
basis vectors of the Lie algebra as the generators of the Lie algebra, although one should
keep in mind the distinction between these two objects as described above.

One can also introduce the generators of infinitesimal Lie group transformations consist-
ing of group multiplication from the left on the group manifold. In this case, we can use all
the results obtained in this section by replacing ui

k with Θi
k. The corresponding generators

are

Xk(~b) = −Θi
k(
~b)

∂

∂bi
. (73)

These generators also satisfy eq. (72), as the derivation is identical to the one given above
after replacing ui

k with Θi
k.

3Eq. (72) is called Lie’s Second Theorem in Ref. 6.
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6. Example: the Lie algebra so(3)

It is instructive to study the Lie group SO(3) to illustrate the results presented in these
notes. The group SO(3) acts on the manifold R

3 by rotations. That is, ~x′ = R~x, where4

Rij = ninj + (δij − ninj) cos θ − ǫijknk sin θ . (74)

Rij describes a rotation by an angle θ about an axis pointing along the unit vector n̂. For
an infinitesimal rotation,

Rij ≃ δij − ǫijkθ
k , (75)

where we have chosen the coordinates θk ≡ θnk to parameterize the infinitesimal rotation.
That is, the SO(3) group manifold is parameterized in a neighborhood of the identity by

coordinates ~θ = (θ1, θ2, θ3).
To compute the basis for the so(3) Lie algebra, we note that an infinitesimal rotation

given in eq. (75) can be written in matrix form,

R(~θ) ≃




1 −θ3 θ2

θ3 1 −θ1

−θ2 θ1 1


 . (76)

Using eq. (31), we identify the basis vectors of so(3) by

Ai =

(
∂R(~θ)

∂θi

)

~θ=0

. (77)

Inserting eq. (75) into the above equations yields the three generators of so(3),

(Ai)jk = −ǫijk . (78)

Equivalently, one can insert eq. (76) into eq. (77) to obtain,

A1 =



0 0 0
0 0 −1
0 1 0


 , A2 =




0 0 1
0 0 0

−1 0 0


 , A3 =



0 −1 0
1 0 0
0 0 0


 . (79)

One can check that [
Ai , Aj

]
= ǫijkAk . (80)

Next, we compute the generators of infinitesimal rotations. In the notation of eq. (45),5

x′

i = Φi(~θ ; ~x) ≃ (δij − ǫijkθ
k)xj = xi − ǫijkθ

kxj . (81)

Using eq. (49),

ui
k(~x) =

(
∂Φi

∂θk

)

~θ=0

= −ǫijkx
j . (82)

4See eq. (13) of the class notes entitled, Properties of Proper and Improper Rotation Matrices.
5In Euclidean space, there is no distinction between raised and lowered indices.
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Hence, eq. (67) yields,

Xk(~x) = ǫijkx
j ∂

∂xi
. (83)

Explicitly, the generators of infinitesimal rotations are given by,

X1 = x3
∂

∂x2
− x2

∂

∂x3
, X2 = x1

∂

∂x3
− x3

∂

∂x1
, X3 = x2

∂

∂x1
− x1

∂

∂x2
. (84)

One can check that the generators satisfy the commutation relations of the so(3) Lie algebra,6

[
Xi , Xj

]
= ǫijkXk . (85)

As anticipated, the commutation relations satisfied by the generators of infinitesimal rota-
tions and the basis vectors of so(3) are identical.

Finally, let us consider the action of SO(3) on its group manifold via left group multipli-
cation. In order to determine the generators of infinitesimal transformations on the group
manifold, we need to determine the explicit form of Θi

k defined in eq. (7). However, this
requires an explicit form for the SO(3) group multiplication law. Employing the angle-and-
axis parameterization of SO(3), one must determine the dependence of (n̂3, θ3) in terms of
(n̂1, θ1) and (n̂2, θ2) from the equation R(n̂3, θ3) = R(n̂1, θ1)R(n̂2, θ2), under the assumption
that |θ1| ≪ 1. Given the complexity of the corresponding expressions, this is not a practical
strategy for evaluating Θi

k.
Instead, I will take an approach inspired by Ref. 4 in which two different coordinate

systems are employed for the SO(3) group manifold. In the neighborhood of the identity, we

parameterize the SO(3) group manifold by (θ1, θ2, θ3) employed above, where R(~θ) is given
by eq. (76). For a generic point of the SO(3) group manifold, we will use the Euler angle
representation of the rotation matrix,

R(α, β, γ) =



cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β


 ,

(86)
where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π, as described in Appendix E of the class handout
entitled, Properties of Proper and Improper Rotation Matrices. If the matrix elements of Rij

are known, then the Euler angles can be determined from the following relations,

tanα =
R23

R13

, cos β = R33 , tan γ = −
R32

R31

. (87)

Eq. (86) leaves the quadrants of the angles α and γ ambiguous, but these can be fixed from
the signs of R23 and R32, respectively, which determine the respective signs of sinα and sin γ
(in light of the fact that 0 ≤ sin β ≤ 1).

6Note that in the physicist’s conventions, the generators of three dimensional infinitesimal rotations are
chosen to be Li ≡ iXk, which satisfy [Li, Lj] = iǫijkLk. Indeed, we recognize the Lk as the orbital angular
momentum operators of quantum mechanics (in units where ~ = 1).
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Thus, we take ~b = (b1, b2, b3) = (α, β, γ) and ~a = ~θ = (θ1, θ2, θ3) in the calculation of

Θi
j(
~b) =

∂mi(~a,~b)

∂aj

∣∣∣∣
~a=0

, (88)

and ~m(~a,~b) = (α′, β ′, γ′). Consider the product, R(α′, β ′, γ′) = R(~θ)R(α, β, γ). To compute
Θi

1
(α, β, γ), we can immediately set θ2 = θ3 = 0. Hence, we examine,



1 0 0
0 1 −θ1

0 θ1 1





R11 R12 R13

R21 R22 R23

R31 R32 R33


 =




R11 R12 R13

R21 − θ1R31 R22 − θ1R32 R23 − θ1R33

θ1R21 +R31 θ1R22 +R32 θ1R23 +R33


 .

(89)
In light of eq. (87),

tanα′ =
R23 − θ1R33

R13

, cos β ′ = θ1R23 +R33 , tan γ′ = −
θ1R22 +R32

θ1R21 +R31

. (90)

Hence, it follows that

(sec2 α′)~θ=0
Θ1

1
(α, β, γ) = −

R33

R13

= −
cos β

cosα sin β
, (91)

−(sin β ′)~θ=0
Θ2

1
(α, β, γ) = R23 = sinα sin β , (92)

(sec2 γ′)~θ=0
Θ3

1
(α, β, γ) =

R32R21 − R31R22

R2

31

=
cosα

sin β cos2 γ
. (93)

Since we set ~θ = 0 when evaluating Θi
1
(α, β, γ), we can drop the primes on the left hand

side of eqs. (91)–(93). That is, (α′, β ′, γ′)~θ=0
= (α, β, γ). Thus, we end up with

Θ1

1
(α, β, γ) = −

cosα cos β

sin β
, Θ2

1
(α, β, γ) = − sinα Θ3

1
=

cosα

sin β
. (94)

Likewise, to compute Θi
2
(α, β, γ), we can immediately set θ1 = θ3 = 0. Consider




1 0 θ2

0 1 0
−θ2 0 1





R11 R12 R13

R21 R22 R23

R31 R32 R33


 =




R11 + θ2R31 R12 + θ2R32 R13 + θ2R33

R21 R22 R23

−θ2R11 +R31 −θ2R12 +R32 −θ2R13 +R33


 .

(95)
In light of eq. (87),

tanα′ =
R23

R13 + θ2R33

, cos β ′ = −θ2R13 +R33 , tan γ′ =
θ2R12 − R32

−θ2R11 +R31

. (96)

Hence, it follows that

(sec2 α′)~θ=0
Θ1

2
(α, β, γ) = −

R23R33

R2

13

= −
sinα cos β

cos2 α sin β
(97)

−(sin β ′)~θ=0
Θ2

2
(α, β, γ) = −R13 = − cosα sin β (98)

(sec2 γ′)~θ=0
Θ3

2
(α, β, γ) =

R31R12 − R32R11

R2

31

=
sinα

sin β cos2 γ
. (99)
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Thus, we end up with

Θ1

2
(α, β, γ) = −

sinα cos β

sin β
, Θ2

2
(α, β, γ) = cosα Θ3

2
=

sinα

sin β
. (100)

Finally, to compute Θi
3
(α, β, γ), we can immediately set θ1 = θ2 = 0. Consider




1 −θ3 0
θ3 1 0
0 0 1





R11 R12 R13

R21 R22 R23

R31 R32 R33


 =



R11 − θ3R21 R12 − θ3R22 R13 − θ3R23

θ3R11 +R21 θ3R12 +R22 θ3R13 +R23

R31 R32 R33


 .

(101)
In light of eq. (87),

tanα′ =
θ3R13 +R23

R13 − θ3R23

, cos β ′ = R33 , tan γ′ = −
R32

R31

. (102)

Hence, it follows that

(sec2 α′)~θ=0
Θ1

3
(α, β, γ) =

R2

13
+R2

23

R2

13

=
1

cos2 α
(103)

−(sin β ′)~θ=0
Θ2

3
(α, β, γ) = 0 , (104)

(sec2 γ′)~θ=0
Θ3

2
(α, β, γ) = 0 . (105)

Thus, we end up with

Θ1

3
(α, β, γ) = 1 , Θ2

3
(α, β, γ) = 0 Θ3

3
= 0, . (106)

Collecting the above results, we have computed the matrix elements Θi
j(α, β, γ). Regard-

ing j as indexing the rows and i as indexing the columns of a 3× 3 matrix,

Θi
j(α, β, γ) =



− cosα cot β − sinα cot β 1

− sinα cosα 0
cosα csc β sinα csc β 0


 . (107)

The generators of infinitesimal SO(3) transformations on the group manifold are given by

X1(α, β, γ) = cosα cot β
∂

∂α
+ sinα

∂

∂β
− cosα csc β

∂

∂γ
, (108)

X2(α, β, γ) = sinα cotβ
∂

∂α
− cosα

∂

∂β
− sinα csc β

∂

∂γ
, (109)

X3(α, β, γ) = −
∂

∂α
. (110)

It is straightforward to check that
[
Xi , Xj

]
= ǫijkXk, as expected.
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