DUE: TUESDAY, May 16, 2023

1. (a) A homomorphism from the vector space \mathbb{R}^{3} to the set of traceless Hermitian 2×2 matrices is defined by $\overrightarrow{\boldsymbol{x}} \rightarrow \overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{\sigma}}$, where $\overrightarrow{\boldsymbol{\sigma}}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices. First, show that $\operatorname{det}(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{\sigma}})=-|\overrightarrow{\boldsymbol{x}}|^{2}$. Second, prove the identity:

$$
x_{i}=\frac{1}{2} \operatorname{Tr}\left(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{\sigma}} \sigma_{i}\right) .
$$

This identity provides the inverse transformation from the set of traceless 2×2 Hermitian matrices to the vector space \mathbb{R}^{3}.
(b) Let $U \in \mathrm{SU}(2)$. Show that $U \overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{\sigma}} U^{-1}=\overrightarrow{\boldsymbol{y}} \cdot \overrightarrow{\boldsymbol{\sigma}}$ for some vector $\overrightarrow{\boldsymbol{y}}$. Using the results of part (a), prove that an element of the rotation group exists such that $\overrightarrow{\boldsymbol{y}}=R \overrightarrow{\boldsymbol{x}}$ and determine an explicit form for $R \in \mathrm{SO}(3)$. Display a homomorphism from $\mathrm{SU}(2)$ onto $\mathrm{SO}(3)$ and prove that $\mathrm{SO}(3) \cong \mathrm{SU}(2) / \mathbb{Z}_{2}$.
(c) The Lie group $\mathrm{SU}(1,1)$ is defined as the group of 2×2 matrices V that satisfy $V \sigma_{3} V^{\dagger}=\sigma_{3}$ and $\operatorname{det} V=1$. (Note that V is not a unitary matrix.) The Lie group $\mathrm{SO}(2,1)$ is the group of transformations on vectors $\overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{3}$ (with determinant equal to one) that preserves $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}$. Display the homomorphism from $\operatorname{SU}(1,1)$ onto $\operatorname{SO}(2,1)$ and compare with part (b).
2. The Möbius group is defined as the set of linear fractional transformations:

$$
M=\left\{m(z)=\frac{a z+b}{c z+d}, \quad a d-b c=1\right\}
$$

where a, b, c, d and z are complex numbers.
(a) Show that the mapping $f: \mathrm{SL}(2, \mathbb{C}) \rightarrow M$ defined by:

$$
f:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto m(z)
$$

is a group homomorphism. [HINT: the multiplication law on M is defined by the composition of functions.]
(b) Prove that M is not simply connected and identify its universal covering group.
3. In class, we showed that the invariant measure on a Lie group manifold is given by

$$
\begin{equation*}
d \mu(g)=|\operatorname{det} c(\overrightarrow{\boldsymbol{\xi}})| d \xi_{1} d \xi_{2} \cdots d \xi_{n} \tag{1}
\end{equation*}
$$

where the the matrix elements $c_{j k}(\overrightarrow{\boldsymbol{\xi}})$ are the coefficients of the Lie algebra element $A^{-1} \partial A / \partial \xi_{k}$ with respect to some basis, and $A(\overrightarrow{\boldsymbol{\xi}})$ are elements of the corresponding Lie group that is
parameterized by the coordinates $\overrightarrow{\boldsymbol{\xi}}$. That is, given an n-dimensional Lie group G, the corresponding real Lie algebra \mathfrak{g} consists of real linear combinations of basis vectors $\mathcal{A}_{j} \in \mathfrak{g}$. Since $A^{-1} \partial A / \partial \xi_{k} \in \mathfrak{g}$ for any $A \in G$, one can therefore write,

$$
\begin{equation*}
A^{-1} \frac{\partial A}{\partial \xi_{k}}=\sum_{j=1}^{n} c_{j k}(\overrightarrow{\boldsymbol{\xi}}) \mathcal{A}_{j} \tag{2}
\end{equation*}
$$

which defines the coefficients $c_{j k}(\overrightarrow{\boldsymbol{\xi}})$ needed in the determination of the invariant measure.
(a) An element of $\mathrm{SO}(3)$ can be parameterized by $\overrightarrow{\boldsymbol{\xi}}=(\alpha, \beta, \gamma)$, where α, β and γ are the three Euler angles defined in Appendix E of the class handout entitled Properties of Proper and Improper Rotation Matrices. Using the Euler angle parameterization of the $\mathrm{SO}(3)$ group manifold, compute the invariant integration measure $d \mu(g)$ for $\mathrm{SO}(3)$.
(b) The $\mathrm{SO}(3)$ group manifold can be also be described as a ball of radius π with antipodal points identified. A point in the $\mathrm{SO}(3)$ group manifold is specified by a vector $\overrightarrow{\boldsymbol{\xi}}$ with $|\overrightarrow{\boldsymbol{\xi}}| \leq \pi$. Thus, the $\mathrm{SO}(3)$ manifold is parameterized by $\overrightarrow{\boldsymbol{\xi}}=(\xi, \theta, \phi)$, where (θ, ϕ) are the spherical angles (such that $0 \leq \theta \leq \pi$ and $0 \leq \phi<2 \pi$) and ξ is the magnitude of the vector $\overrightarrow{\boldsymbol{\xi}}$. [NOTE: This is equivalent to the angle-and-axis parameterization where the rotation angle is ξ and the rotation axis, $\hat{\boldsymbol{\xi}}$, is specified by a polar angle θ and an azimuthal angle ϕ.]

Show that the the matrix elements of $c(\overrightarrow{\boldsymbol{\xi}})$ defined in eq. (2) are given by,

$$
\begin{equation*}
c(\overrightarrow{\boldsymbol{\xi}})_{n k}=\frac{1}{2} \epsilon_{\ell n j} R_{\ell i}^{-1} \frac{d R_{i j}}{d \xi_{k}} \tag{3}
\end{equation*}
$$

and $R_{i j} \equiv R_{i j}(\overrightarrow{\boldsymbol{\xi}})$ is the $\mathrm{SO}(3)$ matrix given in problem $7(\mathrm{~b})$ of problem set 2 .
(c) [EXTRA CREDIT] Using eqs. (1) and (3), evaluate the invariant integration measure $d \mu(g)$ for the angle-and-axis parameterization of $\mathrm{SO}(3)$ and show that

$$
d \mu(\overrightarrow{\boldsymbol{\xi}})=2(1-\cos \xi) \sin \theta d \theta d \phi d \xi
$$

HINT: First evaluate $d \mu(\overrightarrow{\boldsymbol{\xi}})$ in terms of Cartesian coordinates ξ_{1}, ξ_{2} and ξ_{3}. Convert to spherical coordinate (ξ, θ, ϕ) at the very end of the calculation.
4. Consider a Lie group of transformations G acting on a manifold M. That is, for every $g \in G$, we have $g x=y$ for some $x, y \in M$.
(a) Let H be the set of all transformations in G that map a given point $x \in M$ into itself. Show that H is a subgroup. H has at least three names in the mathematical literature: the little group, the isotropy group, or the stability group of the point x.
(b) Consider the submanifold of M defined by $\{g x \mid g \in G\}$, for fixed $x \in M$. This is called the orbit through x with respect to G. Show that there is a one-to-one correspondence between the points of the orbit and the set of left cosets of H. Explain why we may conclude that $\{g x \mid g \in G\}=G / H$. Show that the coset space G / H is a homogeneous space.
(c) Prove that $S^{n-1}=\mathrm{SO}(n) / \mathrm{SO}(n-1)$ by considering the action of the rotation group on the point $(1,0,0, \ldots, 0) \in \mathbb{R}^{n}$.
(d) Prove that $S^{2 n-1}=\mathrm{U}(n) / \mathrm{U}(n-1)$ by considering the action of the $\mathrm{U}(n)$ matrices on the point $(1,0,0, \ldots, 0) \in \mathbb{C}^{n}$.
(e) Complex projective space $\mathbb{C P}^{n}$ is defined as the space of complex lines in \mathbb{C}^{n+1} through the origin. That is, $\mathbb{C P}^{n}$ consists of the set of nonzero vectors in \mathbb{C}^{n+1} where we identify $\left(z_{0}, z_{1}, \ldots, z_{n}\right) \sim \lambda\left(z_{0}, z_{1}, \ldots, z_{n}\right)$, for any nonzero complex number λ. Without loss of generality, we can restrict our considerations to the vectors $\overrightarrow{\boldsymbol{v}} \in \mathbb{C}^{n+1}$ such that $\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{v}}^{*}=1$. Show that $\mathrm{U}(1) \otimes \mathrm{U}(n)$ is the little group of the point $z=(1,0,0, \ldots, 0) \in \mathbb{C P}^{n}$, and that $\mathbb{C P}^{n}$ is the orbit through z with respect to $\mathrm{U}(n+1)$. Conclude that $\mathbb{C P}^{n}=\mathrm{U}(n+1) / \mathrm{U}(1) \otimes \mathrm{U}(n)$.
(f) Real projective space $\mathbb{R P}^{n}$ can be defined analogously to $\mathbb{C P}^{n}$ of part (e) by replacing the field of complex numbers with the field of real numbers. What coset space can be identified with $\mathbb{R P}^{n}$?
(g) In parts (c)-(f), check that $\operatorname{dim}(G / H)=\operatorname{dim} G-\operatorname{dim} H$.
(h) $\left[E X T R A\right.$ CREDIT] $\mathbb{C P}^{n}$ is a manifold of n complex (or $2 n$ real) dimensions. $\mathbb{C P}^{1}$ is homeomorphic to which well-known two-dimensional real manifold? Justify your answer.
5. Let A be an even-dimensional complex antisymmetric $2 n \times 2 n$ matrix, where n is a positive integer. We define the pfaffian of A, denoted by pf A, by:

$$
\begin{equation*}
\operatorname{pf} A=\frac{1}{2^{n} n!} \sum_{p \in S_{2 n}}(-1)^{p} A_{i_{1} i_{2}} A_{i_{3} i_{4}} \cdots A_{i_{2 n-1} i_{2 n}} \tag{4}
\end{equation*}
$$

where the sum is taken over all permutations

$$
p=\left(\begin{array}{cccc}
1 & 2 & \cdots & 2 n \\
i_{1} & i_{2} & \cdots & i_{2 n}
\end{array}\right)
$$

and $(-1)^{p}$ is the sign of the permutation $p \in S_{2 n}$. If A is an odd-dimensional complex antisymmetric matrix, the corresponding pfaffian is defined to be zero.
(a) By explicit calculation, show that ${ }^{1}$

$$
\begin{equation*}
\operatorname{det} A=(\operatorname{pf} A)^{2} \tag{5}
\end{equation*}
$$

for any 2×2 and 4×4 complex antisymmetric matrix A.
(b) Prove that the determinant of any odd-dimensional complex antisymmetric matrix vanishes. As a result, the definition of the pfaffian in the odd-dimensional case is consistent with the result of eq. (5).
(c) Given an arbitrary $2 n \times 2 n$ complex matrix B and complex antisymmetric $2 n \times 2 n$ matrix A, use the definition of the pfaffian given in eq. (4) to prove the following identity:

$$
\operatorname{pf}\left(B A B^{T}\right)=\operatorname{pf} A \operatorname{det} B
$$

[^0](d) A complex $2 n \times 2 n$ matrix S is called symplectic if $S^{\top} J S=J$, where S^{\top} is the transpose of S and J is a $2 n \times 2 n$ matrix which is given in block matrix form by
\[

J \equiv\left($$
\begin{array}{rr}
\mathrm{O} & \mathbb{1} \\
-\mathbb{1} & \mathbb{O}
\end{array}
$$\right)
\]

where $\mathbb{1}$ is the $n \times n$ identity matrix and \mathbb{O} is the $n \times n$ zero matrix. Prove that the set of $2 n \times 2 n$ complex symplectic matrices, denoted by $\operatorname{Sp}(n, \mathbb{C})$, is a matrix Lie group ${ }^{2}$ [i.e., it is a topologically closed subgroup of GL $(2 n, \mathbb{C})]$.
(e) Prove that if S is a symplectic matrix, then $\operatorname{det} S=1$.

HINT: It is very easy to prove that $\operatorname{det} S= \pm 1$ by taking the determinant of the equation $S^{\top} J S=J$. To prove that there are no symplectic matrices with $\operatorname{det} S=-1$, use the result of part (c).
(f) Using the results of parts (d) and (e), prove that the matrix Lie groups $\operatorname{Sp}(1, \mathbb{C})$ and $\mathrm{SL}(2, \mathbb{C})$ are isomorphic.
6. The two-dimensional Poincaré group $\mathrm{P}(2)$ is the group consisting of two-dimensional Lorentz transformations [i.e., transformations on 2-vectors $\binom{c t}{x}$ that preserve $x^{2}-c^{2} t^{2}$] and translations in time and space. $\mathrm{P}(2)$ can be represented by 3×3 matrices acting homogeneously on the column vector, $\left(\begin{array}{c}c t \\ x \\ 1\end{array}\right)$, in analogy with the two-dimensional Euclidean group, $\mathrm{E}(2)$, worked out in class.
(a) Find the infinitesimal generators (i.e., differential operators) of the corresponding Lie algebra, $\mathfrak{p}(2)$. Work out the commutation relations of $\mathfrak{p}(2)$.
(b) Compute the Cartan-Killing form. Show that $\mathrm{P}(2)$ is noncompact and non-semisimple.
(c) Express the Lie algebra $\mathfrak{p}(2)$ as a semidirect sum of two abelian subalgebras.

[^1]
[^0]: ${ }^{1}$ In fact, eq. (5) holds for all complex antisymmetric $2 n \times 2 n$ matrices, where n is any positive number. A general proof will be provided in a class handout.

[^1]: ${ }^{2}$ Warning: many authors denote the group of $2 n \times 2 n$ complex symplectic matrices by $\operatorname{Sp}(2 n, \mathbb{C})$.

