DUE: TUESDAY, JUNE 13, 2023

FINAL PROJECTS ALERT: The presentations of the final projects will take place on Thursday June 1 from 11:45 am-1:15 pm and on Wednesday June 14 from $4-7 \mathrm{pm}$ in ISB 231. You are strongly encouraged to attend both sessions. The slides from your presentations will be posted to the class website.

1. (a) Show that the Lie algebra of $\mathrm{U}(n)$ can be written as a direct sum, $\mathfrak{u}(n) \cong \mathfrak{s u}(n) \oplus \mathfrak{u}(1)$.
(b) As for the corresponding Lie groups, show that $\mathrm{U}(n) \cong \mathrm{SU}(n) \otimes \mathrm{U}(1) / \mathbb{Z}_{n}$.

HINT: Consider the homomorphism of $\left(A, e^{i \theta}\right) \longmapsto e^{i \theta} A$, where $A \in \mathrm{SU}(n)$ and $e^{i \theta} \in \mathrm{U}(1)$. What is the kernel of this homomorphism?
2. This problem concerns the Lie group $\mathrm{SO}(4)$ and its Lie algebra $\mathfrak{s o}(4)$.
(a) Work out the Lie algebra $\mathfrak{s o}(4)$ and verify that $\mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.

HINT: Show that there is a choice of basis for $\mathfrak{s o}(4)$ consisting of 4×4 antisymmetric matrices that contain precisely two non-zero entries: 1 and -1 . Evaluate the commutation relations of these $\mathfrak{s o (4)}$ generators. Then, by choosing a new basis consisting of sums and differences of pairs of the original $\mathfrak{s o}(4)$ generators, show that the resulting commutation relations are isomorphic to the commutation relations of the Lie algebra $\mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
(b) What is the universal covering group of $\mathrm{SO}(4)$? What is the center of $\mathrm{SO}(4)$? Identify the adjoint group $\operatorname{Ad}(\mathrm{SO}(4))$.
(c) Calculate the Killing form of $\mathfrak{s o}(4)$ and verify that this Lie algebra is semisimple and compact.
(d) Consider the complexification of the corresponding Lie algebras of part (a). Show that $\mathfrak{s o}(4, \mathbb{C}) \cong \mathfrak{s o}(3, \mathbb{C}) \oplus \mathfrak{s o}(3, \mathbb{C})$. Do the conclusions of part (c) still hold? If not, explain how these conclusions are modified?
(e) Using the methods used in part (a), show that $\mathfrak{s o}(3,1) \cong \mathfrak{s l}(2, \mathbb{C})_{\mathbb{R}}$, where $\mathfrak{s l}(2, \mathbb{C})_{\mathbb{R}}$ is the realification of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$. By complexification of this result, show that one recovers the result of part (d).
REMARK: Note the Lie algebra isomorphisms, $\mathfrak{s o}(3) \cong \mathfrak{s u}(2)$ and $\mathfrak{s o}(3, \mathbb{C}) \cong \mathfrak{s l}(2, \mathbb{C})$. The latter is obtained from the former via complexification.
3. A Lie algebra \mathfrak{g} is defined by the commutation relations of the generators,

$$
\left[e_{a}, e_{b}\right]=f_{a b}^{c} e_{c}
$$

Consider the finite-dimensional matrix representations of the e_{a}. We shall denote the corresponding generators in the adjoint representation by F_{a} and in an arbitrary irreducible representation R by R_{a}. The dimension of the adjoint representation, d, is equal to the dimension of the Lie algebra \mathfrak{g}, while the dimension of the representation R will be denoted by d_{R}.
(a) Show that the Cartan-Killing metric $g_{a b}$ can be written as $g_{a b}=\operatorname{Tr}\left(F_{a} F_{b}\right)$.
(b) If \mathfrak{g} is a simple real compact Lie algebra, prove that for any irreducible representation R,

$$
\operatorname{Tr}\left(R_{a} R_{b}\right)=c_{R} g_{a b}
$$

where c_{R} is called the index of the irreducible representation R.
HINT: Choose a basis where $g_{a b}$ is proportional to $\delta_{a b}$. Then the $f_{a b}^{c}$ are antisymmetric in all three indices. Show that $\operatorname{Tr}\left[R_{a}, R_{b}\right] R_{c}=\operatorname{Tr} R_{a}\left[R_{b}, R_{c}\right]$ and argue that this implies that $\operatorname{Tr} R_{a} R_{b}$, viewed as the $a b$ element of a $d \times d$ matrix, commutes with all Lie algebra elements in the adjoint representation. Finally, invoke Schur's lemma. ${ }^{1}$
(c) The quadratic Casimir operator is defined as $C_{2} \equiv g^{a b} e_{a} e_{b}$ where $g^{a b}$ is the inverse of $g_{a b}$. Recall that C_{2} commutes with all elements of the Lie algebra. Hence, by Schur's lemma, C_{2} must be a multiple of the identity operator. Let us write $C_{2}=C_{2}(R) \mathbf{I}$ where \mathbf{I} is the $d_{R} \times d_{R}$ identity matrix and $C_{2}(R)$ is the eigenvalue of the Casimir operator in the irreducible representation R. Show that $C_{2}(R)$ is related to the index c_{R} by

$$
C_{2}(R)=\frac{d c_{R}}{d_{R}}
$$

where d is the dimension of the Lie algebra \mathfrak{g}. Check the above formula in the case that R is the adjoint representation.

HINT: The matrix elements of the R_{a} are $\left(R_{a}\right)_{i j}$, where $i, j=1, \ldots, d_{R}$. If you keep the matrix element indices explicit, then the derivation of the above result is straightforward.
(d) Compute the index of an arbitrary irreducible representation of $\mathfrak{s u}(2)$.
(e) Compute the index of the fundamental (defining) representation of $\mathfrak{s u}(3)$. Generalize this result to $\mathfrak{s u}(n)$.
4. Various subalgebras of $\mathfrak{s u}(3)$ may be identified with specific subsets of the $\mathfrak{s u}(3)$ generators.
(a) Show that the Gell-Mann matrices λ_{1}, λ_{2}, and λ_{3} generate an $\mathfrak{s u}(2)$ subalgebra.

[^0](b) Show that the Gell-Mann matrices λ_{2}, λ_{5}, and λ_{7} generate an $\mathfrak{s o}(3)$ subalgebra. (Why do you think I called this an $\mathfrak{s o}(3)$ subalgebra rather than an $\mathfrak{s u}(2)$ subalgebra?)
(c) Decompose (if necessary) the three-dimensional irreducible representation of $\mathfrak{s u}(3)$ into representations that are irreducible under the subalgebras of parts (a) and (b).

5. Consider the simple Lie algebra \mathfrak{g} generated by the ten 4×4 matrices: $\sigma_{a} \otimes \mathbf{I}, \sigma_{a} \otimes \tau_{1}$, $\sigma_{a} \otimes \tau_{3}$ and $\mathbf{I} \otimes \tau_{2}$, where $\left(\mathbf{I}, \sigma_{a}\right)$ and $\left(\mathbf{I}, \tau_{a}\right)$ are the 2×2 identity and Pauli matrices in orthogonal spaces. For example, since $\tau_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, we obtain in block matrix form:

$$
\sigma_{a} \otimes \tau_{3}=\left(\begin{array}{c|c}
\sigma_{a} & \mathbf{0} \\
\hline \mathbf{0} & -\sigma_{a}
\end{array}\right), \quad(a=1,2,3)
$$

where $\mathbf{0}$ is the 2×2 zero matrix. The remaining seven matrices can be likewise obtained. Take $H_{1}=\sigma_{3} \otimes \mathbf{I}$ and $H_{2}=\sigma_{3} \otimes \tau_{3}$ as the generators of the Cartan subalgebra. Note that if A, B, C, and D are 2×2 matrices, then $(A \otimes B)(C \otimes D)=A C \otimes B D$.
(a) Find the roots of \mathfrak{g}. Normalize the roots such that the shortest root vector has length 1 . What is the rank of \mathfrak{g} ?
(b) Determine the simple roots and evaluate the corresponding Cartan matrix. Deduce the Dynkin diagram for this Lie algebra and identify it by name.
(c) The fundamental weights \boldsymbol{m}_{i} are defined in terms of the simple roots $\boldsymbol{\alpha}_{j} \in \Pi$ such that

$$
\frac{2\left(\boldsymbol{m}_{i}, \boldsymbol{\alpha}_{j}\right)}{\left(\boldsymbol{\alpha}_{j}, \boldsymbol{\alpha}_{j}\right)}=\delta_{i j}, \quad \text { for } i, j=1,2, \ldots, r
$$

where $r \equiv \operatorname{rank} \mathfrak{g}$. Using the results of part (b), determine all the fundamental weights of \mathfrak{g}. HINT: Expand the \boldsymbol{m}_{i} as a linear combination of the simple roots and solve for the coefficients.
(d) $[E X T R A$ CREDIT] Each of the r fundamental weights is the highest weight for an irreducible representation of \mathfrak{g}. Collectively, these are called the fundamental (or basic) representations of \mathfrak{g}. For each fundamental representation of \mathfrak{g}, compute the complete set of weights and draw the corresponding weight diagrams. ${ }^{2}$ What are the corresponding dimensions of the fundamental representations of \mathfrak{g}.

HINT: In this example, all weights of the fundamental representations of \mathfrak{g} appear with multiplicity equal to one. The complete set of weights for the irreducible representations of $\mathfrak{s p}(2, \mathbb{C}) \cong \mathfrak{s o}(5, \mathbb{C})$ corresponding to the highest weights \boldsymbol{m}_{1} and \boldsymbol{m}_{2}, respectively, can be obtained by the method of block weight diagrams given in Robert N. Cahn, Semi-Simple Lie Algebras and Their Representations (Dover Publications, Inc., Mineola, NY, 2006). ${ }^{3}$ Note that the Cartan matrix employed by Cahn is the transpose of Cartan matrix defined in class.

[^1]
[^0]: ${ }^{1}$ Note that by complexifying the simple real compact Lie algebra, one can easily show that the above result also holds for any simple complex Lie algebra.

[^1]: ${ }^{2}$ The weight diagrams should be plotted on a two dimensional plane, where the axes correspond to the diagonalized generators normalized such that the shortest root vector has length 1.
 ${ }^{3}$ A link to an electronic copy of this book can be found on the Physics 251 course webpage.

