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1. Consider the set R2 consisting of pairs of real numbers. For (x, y) ∈ R2, define scalar
multiplication by: c(x, y) = (cx, cy) for any real number c, and define vector addition and
multiplication as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (1)

(x1, y1) · (x2, y2) = (x1x2, y1y2) . (2)

(a) Is R2 a group?

It is straightforward to check the group axioms and show that R2 is a group under addition
[as defined in eq. (1)]. R2 is not a group under multiplication. For example, (0, 0) does not
possess a multiplicative inverse.

(b) Is R2 a field?

R2 is not a field. Recall that all elements of a field, excluding the additive inverse, must
possess a multiplicative inverse. In the case of R2, the additive inverse is (0, 0). However,
for any x 6= 0 and y 6= 0, (x, 0) and (0, y) also do not possess multiplicative inverses.

(c) Is R2 a linear vector space (over R)?

It is straightforward to check the axioms that define a linear vector space and show that R2

is a linear vector space over R.

(d) Is R2 a linear algebra (over R)?

It is straightforward to check the axioms that define a linear algebra and show that R2 is a
linear algebra, where the vector multiplication law is given by eq. (2).

Suppose that the multiplication law given by eq. (2) is replaced by

(x1, y1) · (x2, y2) = (x1x2 − y1y2 , x1y2 + x2y1) . (3)

Do any of the results obtained in parts (a)–(d) above change? Identify a well know mathe-
matical object that is isomorphic to R2 if eq. (2) is replaced by eq. (3).

The only result that changes is part (b) above. If we employ eq. (3) instead of eq. (2)
for the multiplication rule, then all the axioms for a field are satisfied. For example, the
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multiplicative identity as (1, 0), since (x, y) · (1, 0) = (x, y). One can now show that the
multipicative inverse of (x, y) is given by,

(x, y)−1 =

(

x

x2 + y2
, − y

x2 + y2

)

, for any (x, y) 6= (0, 0).

Indeed, it is a simple exercise to check that (x, y)−1 · (x, y) = (1, 0) using the multiplicative
law given by eq. (3).

In light of the addition and multiplication laws specifed by eqs. (1) and (3), we can
identify R2 ∼= C, which is the field of complex numbers. That is, the map f : R2 −→ C

defined by f(x, y) = x+iy is an isomorphism. In particular, one can easily check that eqs. (1)
and (3) are preserved by this map, since complex addition and multiplication is given by,

(x1 + iy1) + (x2 + iy2) = x1 + x2 + i(y1 + y2) ,

(x1 + iy1) · (x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1) .

2. Consider the possibility that a set G of n × n matrices forms a group with respect to
matrix multiplication.

(a) Prove that if G is a group and if one of the elements of G is a non-singular matrix
then all of the elements of G must be non-singular matrices. Conclude that all the elements
of G are either non-singular matrices or singular matrices.

Let G = {A0, A1, A2, . . .} be a group of n× n matrices, where e ≡ A0 is the group identity
element.1 First, suppose that the identity element A0 is a non-singular matrix, in which case
detA0 6= 0. Then consider

AiBi = A0 , for i 6= 0 (no sum over i) , (4)

where Bi is the group inverse of Ai. Taking the determinant of both sides of eq. (4), it follows
that detAi 6= 0 and detBi 6= 0, since the determinant of an n× n matrix is finite. That is,
Ai is a non-singular matrix for all i. Hence, if the identity element is a non-singular matrix,
then all the elements of G are non-singular matrices.

Next, suppose that the identity element A0 is a singular matrix, in which case detA0 = 0.
Since A0 is the group identity element, it follows that

AiA0 = Ai , for any i 6= 0 . (5)

Taking the determinant of both sides of eq. (5), it follows that detAi = 0 for all i. Hence, if
the identity element is a singular matrix, then all the elements of G are singular matrices.

1The group G may be a discrete or continuous group of matrices.
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REMARKS:

1. In the case where all elements of G are non-singular matrices, then we can multiply
both sides of eq. (5) by the matrix inverse A−1

i to conclude that A0 = 1n×n, where 1n×n is
the n × n identity matrix. In the case where all the elements of G are singular matrices,
then A0 cannot be the identity matrix (since 1n×n is non-singular).

2. One can shorten the above proof by proving directly that if any element of G is
singular then all elements of G are singular. Suppose x ∈ G is a singular matrix, in which
case det x = 0. Consider any other element y ∈ G where y 6= x. Then by writing

y = x(x−1y) , (6)

and taking the determinant of both sides of eq. (6), it follows that

det y = det x det(x−1y) = 0 .

Hence, if any element of G is a singular matrix then all elements of G are singular matrices.
An immediate consequence of this result is that if any element of G is a non-singular matrix
then all elements of G must be non-singular matrices.

(b) Consider the set of 2× 2 singular matrices G of the form

(

x x
x x

)

, (7)

where x ∈ R and x 6= 0. Prove that G is a group with respect to matrix multiplication.
Determine the matrix corresponding to the identity element of G. Determine the inverse of
the element specified in eq. (7).

Observe that
(

x x
x x

)(

y y
y y

)

=

(

z z
z z

)

, where z = 2xy .

This demonstrates that the elements of G satisfy closure on matrix multiplication. Next, we
note that

(

x x

x x

)(

1
2

1
2

1
2

1
2

)

=

(

x x

x x

)

,

which implies that

e =

(

1
2

1
2

1
2

1
2

)

, (8)

is the identity element. Finally,

(

x x

x x

)(

1
4x

1
4x

1
4x

1
4x

)

=

(

1
2

1
2

1
2

1
2

)

,
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which implies that the group inverse of the element specified in eq. (7) is

(

1
4x

1
4x

1
4x

1
4x

)

. (9)

(c) The group defined in part (b) is isomorphic to a well known group. Identify this
group.

Consider the function from G→ R∗ that maps the elements
(

x x
x x

)

7−→ 2x , for all x ∈ R
∗ , (10)

where R∗ ≡ R0 − {0} is the group of non-zero real numbers with respect to multiplication.
This map is an isomorphism. It is easy to check that the group multiplication law is preserved,
since

(

1
2
x 1

2
x

1
2
x 1

2
x

)(

1
2
y 1

2
y

1
2
y 1

2
y

)

=

(

1
2
xy 1

2
xy

1
2
xy 1

2
xy

)

7−→ (x)(y) = xy ,

is in one-to-one correspondence with multiplication in R∗. Moreover, the identity [eq. (8)]
maps to 1, which is the identity of R∗. Finally, the inverse given in eq. (9) is mapped by
eq. (10) to 1/(2x), which is the inverse of 2x in R∗. We conclude that G ∼= R∗.

We can see the isomorphism more explicitly by considering the equivalent representation,

S−1

(

x x
x x

)

S , where S =
1√
2

(

1 −1
1 1

)

,

A straightforward computation yields

1

2

(

1 1
−1 1

)(

x x
x x

)(

1 −1
1 1

)

=

(

2x 0
0 0

)

.

Thus, the matrix representation given in eq. (7) is completely reducible and is the direct
sum of two one dimensional representations. We can simply discard the zeros, which leaves
a one-dimensional representation that is isomorphic to R∗ with the map given by eq. (10).

3. Consider the dihedral group D4.

(a) Write down the group multiplication table.

The elements of D4 are defined by:

D4 = {1, r, r2, r3, d, rd, r2d, r3d} ,
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where the elements satisfy the relations,

r4 = d2 = 1 and dr = r3d . (11)

We have used the notation e ≡ 1 to define the identity element of D4.

Using eq. (11), the group multiplication table is immediately obtained:

1 r r2 r3 d rd r2d r3d
1 1 r r2 r3 d rd r2d r3d
r r r2 r3 1 rd r2d r3d d
r2 r2 r3 1 r r2d r3d d rd
r3 r3 1 r r2 r3d d rd r2d
d d r3d r2d rd 1 r3 r2 r
rd rd d r3d r2d r 1 r3 r2

r2d r2d rd d r3d r2 r 1 r3

r3d r3d r2d rd d r3 r2 r 1

(b) Enumerate the subgroups, the normal subgroups and the conjugacy classes.

There are eight proper subgroups of D4:

{1, r2} ∼= {1, d} ∼= {1, rd} ∼= {1, r2d} ∼= {1, r3d} ∼= Z2 ,

{1, r, r2, r3} ∼= Z4 ,

{1, r2, d, r2d} ∼= {1, r2, rd, r3d} ∼= D2 .

Among these subgroups, four are normal subgroups:

{1, r2} ∼= Z2 , {1, r, r2, r3} ∼= Z4 , and {1, r2, d, r2d} ∼= {1, r2, rd, r3d} ∼= D2 .

Finally, we enumerate the classes:

C1 = {1} , C2 = {r, r3} , C3 = {r2} , C4 = {d, r2d} and C5 = {rd, r3d} . (12)

REMARK:

One can prove that if a finite group G possesses a subgroup H that contains exactly half
the number of elements of G, then H is a normal subgroup of G.

Suppose that O(H) = 1
2
O(G). Then, there must exist some a ∈ G, a /∈ H such that

G = H ∪ aH , since any finite group is the union of distinct cosets that are disjoint and
possess the same number of elements. Likewise, there must exist some b ∈ G, b /∈ H such
that G = H ∪Hb. There are two possibilities. Either Ha = H or Ha = Hb. But Ha = H
means that there exist h1, h2 ∈ H such that h1 = h2a. In particular, a = h−1

2 h1 ∈ H , which
contradicts the assumption that a /∈ H . Hence, it follows that G = H ∪ aH = H ∪ Ha or
equivalently, Ha = aH . More generally, Hg = gH for all g ∈ G since either g ∈ H (in which
case Hg = gH = H) or g ∈ aH = Ha. Hence, the left cosets and right cosets of G coincide.
That is, H is a normal subgroup of G.
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(c) Identify the factor groups. Is the full group the direct product of some of its sub-
groups?

Using the results of part (b), the possible factor groups are:

D4/Z2
∼= D2 , D4/Z4

∼= Z2 , D4/D2
∼= Z2 . (13)

The last two factor groups are identified uniquely as Z2, since this is the only group of
two elements. The identification of the first factor group is non-trivial, since there are two
possible groups of order four—D2 and Z4. Note that D2 is not a cyclic group, whereas Z4 is
a cyclic group. However, it is clear that D4/Z2 is not a cyclic group. In particular, writing
out the left cosets,

D4/Z2 =

{

{1, r2} , {r, r3} , {d, r2d} , {rd, r3d}
}

,

and identifying {1, r2} as the identity element of D4/Z2, it is straightforward to check that
the squares of all the other elements of D4/Z2 yields the identity element, which is not in
general satisfied by the elements of Z4.

In light of eq. (13), the only possible candidates for writing D4 as a direct product of
its subgroups are Z2 ⊗ D2 or Z2 ⊗ Z4. But the latter two are direct products of abelian
groups, which imply that the corresponding direct product groups are abelian, whereas D4

is a non-abelian group. Hence, D4 is not a direct product of some of its subgroups. On the
other hand, D4 can be expressed as a semi-direct product of its subgroups in two different
ways,

D4
∼= Z4 ⋊ Z2

∼= D2 ⋊ Z2 . (14)

If we take D2 = {1, r2, rd, r3d}, then we identify Z2 = {1, d} in both semi-direct products of
eq. (14).2 Note that D4 cannot be written as Z2⋊D2, since the first group of the semi-direct
product is the normal subgroup. But, with Z2 = {1, r2}, we see that one does not obtain all
elements of D4 in the form of g1g2, with g1 ∈ Z2 = {1, r2} and g2 ∈ D2.

4. The center of a group G, denoted by Z(G), is defined as the set of elements z ∈ G that
commute with all elements of the group. That is,

Z(G) = {z ∈ G | zg = gz , ∀ g ∈ G} .

(a) Show that Z(G) is an abelian subgroup of G.

To prove that Z(G) is a subgroup of G, we must prove that:

(i) z1, z2 ∈ Z(G) =⇒ z1z2 ∈ Z(G),

(ii) e ∈ Z(G), where e is the identity,

(iii) z ∈ Z(G) =⇒ z−1 ∈ Z(G).

2If D2 = {1, r2, d, r2d} then we identify Z2 = {1, rd} in the second semi-direct product in eq. (14).
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To prove (i), we note that z1, z2 ∈ Z(G) means that

z1g = gz1 , for all g ∈ G, (15)

z2g = gz2 , for all g ∈ G. (16)

Multiply eq. (15) on the right by z2 to obtain

z1gz2 = gz1z2 . (17)

Then, use eq. (16) to write z1gz2 = z1z2g. Then, eq. (17) can be rewritten as

z1z2g = gz1z2 ,

which means that z1z2 commutes with any element g ∈ G. Hence, z1z2 ∈ Z(G).
The proof of (ii) is trivial since e commutes with all elements of G. Finally to prove (iii)

we note that z ∈ Z(G) means that zg = gz for all g ∈ G. Multiplying this equation on the
left by g−1 and on the right by g−1 yields

g−1z = zg−1 , for all g ∈ G . (18)

Taking the inverse of eq. (18) yields

z−1g = gz−1 , for all g ∈ G .

Hence, z−1 ∈ Z(G). Thus, we have succeeded in showing Z(G) is a subgroup of G.
Finally, it should be clear that Z(G) is an abelian subgroup. As previously noted, for

any z1, z2 ∈ Z(G), eq. (15) is satisfied. In particular, choosing g = z2 in eq. (15), it follows
that z1z2 = z2z1. This arguments continues to hold for any choice of z1,z2 ∈ Z(G). Thus,
we conclude that Z(G) is an abelian subgroup of G.

(b) Show that Z(G) is a normal subgroup of G.

To show that Z(G) is a normal subgroup, one must show that for any z ∈ Z(G) and g ∈ G,
we have gzg−1 ∈ Z(G). By definition, if z ∈ Z(G) then gz = zg for all g ∈ G. Hence, for
any z ∈ Z(G), we have gzg−1 = zgg−1 = z ∈ Z(G) for all g ∈ G, as required for a normal
subgroup.

(c) Find the center of D4 and construct the group D4/Z(D4). Determine whether the
isomorphism D4

∼= [D4/Z(D4)]⊗ Z(D4) is valid.

The multiplication table for D4 was given in part (a) of problem 4. Inspection of the
multiplication table reveals that:

Z(D4) = {e, r2} ∼= Z2 ,

where the identification of the center follows from the fact that any finite group of two
elements must be isomorphic to Z2.
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The left cosets of D4 with respect to the Z2 subgroup are:

Z2 = {e, r2} ,
rZ2 = {r, r3} ,
dZ2 = {d, r2d} ,
rdZ2 = {rd, r3d} ,

which exhausts all the elements of D4. We identify the quotient group

D4/Z2 =

{

{e, r2} , {r, r3} , {d, r2d} , {rd, r3d}
}

.

From the multiplication table for D4, one can construct the multiplication table for D4/Z2,

{e, r2} {r, r3} {d, r2d} {rd, r3d}
{e, r2} {e, r2} {r, r3} {d, r2d} {rd, r3d}
{r, r3} {r, r3} {e, r2} {rd, r3d} {d, r2d}
{d, r2d} {d, r2d} {rd, r3d} {e, r2} {r, r3}
{rd, r3d} {rd, r3d} {d, r2d} {r, r3} {e, r2}

This is clearly not a cyclic group with one generator. Hence, it is not isomorphic to the
cyclic group Z4, which leave only one remaining possibility, D2. Indeed, one can check that
the multiplication table above is equivalent to that of D2. Hence,

D4/Z2
∼= D2 .

Finally, if the isomorphism D4
∼= [D4/Z(D4)]⊗ Z(D4) were valid, then

D4

?∼= D2 ⊗ Z2 .

But this identification is incorrect. In particular, D4 is a nonabelian group, whereas both
D2 and Z2 are abelian groups. Thus, it follows that D2 ⊗ Z2 is abelian, which means that
this group cannot be isomorphic to the nonabelian group D4.

5. An automorphism is defined as an isomorphism of a group G onto itself.

(a) Show that for any g ∈ G, the mapping Tg(x) = gxg−1 is an automorphism (called an
inner automorphism), where x ∈ G.

To show that Tg(x) = gxg−1 is an automorphism, we must show that it is a homomorphism
from the group G to itself that is one-to-one and onto. To prove that Tg is a homomorphism,
one must verify that

Tg(x)Tg(y) = Tg(xy) , for all x, y ∈ G . (19)
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That is, Tg(x) preserves the group multiplication table. The computation is straightforward:

Tg(x)Tg(y) = (gxg−1)(gyg−1) = gxyg−1 = Tg(xy) .

To see that Tg(x) = gxg−1 is one-to-one and onto (i.e. it is an isomorphism), we can
invoke the rearrangement lemma. Multiplication on the left and/or on the right by a fixed
element of G simply reorders the group multiplication table.3 Hence, we conclude that Tg is
an isomorphism from G −→ G. That is, Tg is an automorphism of the group G.

(b) Show that the set of all inner automorphisms of G, denoted by I(G), is a group.

Define I(G) = {Tg | g ∈ G}. Since Tg is an automorphism, we can introduce a group
multiplication law that consists of the composition of two maps. In particular,

Tg1Tg2(x) = Tg1(g2xg
−1
2 ) = g1g2xg

−1
2 g−1

1 = (g1g2)x(g1g2)
−1 = Tg1g2(x) ,

which holds for any x ∈ G. Hence, the composition of two maps is given by:

Tg1Tg2 = Tg1g2 . (20)

It follows that I(G) satisfies the axioms of a group by virtue of the fact that the group G
satisfies the group axioms. In particular, eq. (20) implies that I(G) is closed with respect
to the group multiplication law. Moreover, associativity is guaranteed because g1(g2g3) =
(g1g2)g3 implies that

Tg1(Tg2Tg3) = (Tg1Tg2)Tg3 = Tg1g2g3 .

The identity of I(G) is Te (where e is the identity element of the group G) since

TgTe = TeTg = Tge = Teg = Tg .

The inverse of Tg is Tg−1, since

TgTg−1 = Tg−1Tg = Tgg−1 = Tg−1g = Te .

Thus, the group axioms are satisfied, which implies that I(G) is a group.

3One can also prove the one-to-one and onto properties directly. To prove that the homomorphism is
one-to-one, one must show that

Tg(x) = Tg(y) =⇒ x = y .

But, Tg(x) = Tg(y) implies that gxg−1 = gyg−1. Multiplying this equation on the left by g−1 and on the
right by g then yields x = y. To prove that the homomorphism is onto, one must show that for all y ∈ G,
there exists an x ∈ G such that Tg(x) = y. In this case, it is sufficient to choose x = g−1yg. Evaluating
Tg(x) for this choice,

Tg(g
−1yg) = g(g−1yg)g−1 = y ,

as required. Thus, for any choice of y ∈ G, we have explicitly determined the required x, namely x = g−1yg,
such that Tg(x) = y. That is, the homomorphism maps G onto itself.
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(c) Show that I(G) ≃ G/Z(G), where Z(G) is the center of G.

The kernel of the map f : G −→ G ′ is defined by

K ≡ ker f = {g ∈ G | f(g) = e′} ,

where G ′ is the image of f and e′ is the identity element of G ′. Introduce the two homo-
morphisms,

φ : G −→ G/K given by φ(g) = gK ,

ψ : G/K −→ G ′ given by ψ(gK) = f(g) .

It follows that ψ ·φ(g) = f(g). It is straightforward to show that ψ is an isomorphism, in
which case we can identify

G ′ ∼= G/K . (21)

This result can be represented diagrammatically by:

G G ′

G/K

f

φ ψ

Consider the homomorphism, f : G −→ I(G), given by f(g) = Tg. Note that f is onto,
i.e. I(G) is the image of f . The kernel of f is

K = {g ∈ G} | f(g) = Te} ,

where Te is the identity element of I(G), i.e. Te(x) = x. Thus, K consists of all elements of
G satisfying Tg = Te, or equivalently, gxg

−1 = x , which implies that gx = xg for all x ∈ G.
We recognize this as the center of G, denoted by Z(G) in problem 4. Using eq. (21), it
follows that

I(G) ∼= G/Z(G) . (22)

(d) Show that the set of all automorphisms of G, denoted by A(G), is a group and
that I(G) is a normal subgroup. (The factor group A(G)/I(G) is called the group of outer
automorphisms of G.)

Let A(G) be the set of all automorphisms of G. To show that this is a group, we must define
the group multiplication law. As in the case of part (b), we define

A1A2(g) = A1(A2(g)) , for A1, A2 ∈ A and g ∈ G .
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That is the multiplication law is simply the composition of maps. It is straightforward to
verify that the group axioms are satisfied. Note that since an automorphism is one-to-one
and onto, each element of A(G) possesses a unique inverse. Next, we demonstrate that the
set of inner automorphisms, {Tg | g ∈ G}, is a normal subgroup of A(G). To do this, one
must show that ATgA

−1 ∈ I(G), for all A ∈ A(G). Consider,

ATgA
−1(x) = ATg(A

−1(x)) = A(gA−1(x)g−1)

= A(g)A(A−1(x))A(g−1) = A(g)xA−1(g)

= TA(g)(x) , (23)

where we have used the fact that A is a homomorphism, which therefore satisfies

A(g1g2) = A(g1)A(g2) and A(g−1) = A−1(g) , for any g, g1, g2 ∈ G . (24)

It follows that
ATgA

−1 = TA(g) ∈ I(G) .

6. Consider an arbitrary orthogonal matrix R, which satisfies RRT = 1 (where 1 is the
identity matrix).

(a) Prove that the possible values of detR are ±1.

Using the fact that detRT = detR, it follows that

det(RRT) = (detR)(detRT) = [detR]2 = 1 , (25)

since RRT = 1 implies that det(RRT) = det1 = 1. Taking the square root of eq. (25) yields
detR = ±1.

(b) The group SO(2) consists of all 2 × 2 orthogonal matrices with unit determinant.
Prove that SO(2) is an abelian group.

Suppose that Q ∈ SO(2). If we parameterize

Q =

(

a b
c d

)

,

then we can find relations among the parameters a, b, c and d by imposing the conditions
QTQ = 1 and detQ = 1. That is,

(

a c
b d

)(

a b
c d

)

=

(

a2 + c2 ab+ cd
ab+ cd b2 + d2

)

=

(

1 0
0 1

)

,
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and det Q = ad − bc = 1. Hence, the relations among the parameters a, b, c and d are
determined by the following conditions,

a2 + c2 = b2 + d2 = 1 , ab+ cd = 0 , ad− bc = 1 . (26)

We now consider two cases. First if c 6= 0, it follows that d = −ab/c. Inserting this result
back into eq. (26) yields

1 = ad− bc = −a
2b

c
− bc = −b

c

(

a2 + c2
)

= −b
c
,

after using eq. (26). That is, c = −b. It immediately follows that d = −ab/c = a, and we
conclude that the most general SO(2) matrix is given by

Q =

(

a b
−b a

)

.

In light of eq. (26), c = −b yields a2 + b2 = 1, which implies that −1 ≤ a, b ≤ 1. Thus, it
is convenient to parameterize a and b by defining a = cos θ and b = sin θ. Hence, the most
general SO(2) matrix is given by

Q =

(

cos θ sin θ
− sin θ cos θ

)

, (27)

where 0 ≤ θ < 2π.
Next, we examine the case of c = 0. In this case, eq. (26) yields a2 = 1, ab = 0, and

ad = 1. It follows that b = 0 and a = d = ±1. Hence the form for Q in this case (where
a = d = ±1 and b = c = 0) is consistent with eq. (27).

It is now a simple matter to show that SO(2) is a group and any two elements of SO(2)
of the form given in eq. (27) commute. In particular,

(

cos θ1 sin θ1
− sin θ1 cos θ1

)(

cos θ2 sin θ2
− sin θ2 cos θ2

)

=

(

cos θ1 cos θ2 − sin θ1 sin θ2 sin θ1 cos θ2 + cos θ1 sin θ2
− sin θ1 cos θ2 − cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1 sin θ2

)

=

(

cos(θ1 + θ2) sin(θ1 + θ2
− sin(θ1 + θ2) cos(θ1 + θ2)

)

. (28)

The form of the group multiplication law given above exhibits closure. The identity cor-
responds to taking θ = 0 in eq. (27), and the inverse of Q is obtained by taking θ → −θ.
The multiplication law for real matrices is associative. Finally, if we interchange θ1 and θ2 in
eq. (28), we recover the same result. Hence, all products of SO(2) elements are commutative,
and we conclude that SO(2) is an abelian group.
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(c) The group O(2) consists of all 2 × 2 orthogonal matrices, with no restriction on the
sign of its determinant. Is O(2) abelian or non-abelian? (If the latter, exhibit two O(2)
matrices that do not commute.)

The matrix Q given in eq. (27) is also an element of O(2). An element of O(2) that is not
an element of SO(2) is

(

1 0
0 −1

)

.

But this matrix does not commute with Q. In particular,

(

cos θ sin θ
− sin θ cos θ

)(

1 0
0 −1

)

=

(

cos θ − sin θ
− sin θ − cos θ

)

,

whereas
(

1 0
0 −1

)(

cos θ sin θ
− sin θ cos θ

)

=

(

cos θ sin θ
sin θ − cos θ

)

.

Hence, we conclude that O(2) is a non-abelian group.

REMARK:

Note that SO(2) is a normal subgroup of O(2). To prove this result, consider the ho-
momorphism, f : O(2) −→ {+1 , −1}, which is defined by f(A) = detA, for A ∈ O(2).
The kernel of f is SO(2), since the latter corresponds to the set of all elements of O(2)
with determinant equal to one. Hence, O(2)/kef f ∼= {+1 , −1}. Since we can identify
Z2 = {+1 , −1} where the group operation is ordinary multiplication, we can conclude that
O(2)/SO(2) ∼= Z2.

However, it does not follow that O(2)∼=SO(2)⊗Z2. Indeed, O(2) is a nonabelian group
whereas SO(2)⊗Z2 is an abelian group. Nevertheless, it is true that O(2) is a semi-direct
product,

O(2) ∼= SO(2)⋊ Z2 .

To show this, we simply need to exhibit a Z2 subgroup of O(2) such that SO(2)∩Z2 = {e},
where e is the identity element of O(2). A possible choice for the Z2 subgroup of O(2) that
satisfies this requirement is,

Z2 =

{(

1 0
0 1

)

,

(

1 0
0 −1

)}

.

One can easily verify that this Z2 subgroup is not a normal subgroup of O(2). In particular,
gZ2g

−1 6= Z2 for all g ∈O(2), as one can easily check.
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