
Physics 251 Solution Set 2 Spring 2023

1. The matrix group O(n) consists of real orthogonal n×n matrices (n is a positive integer),
and SO(n) consists of the subgroup of O(n) matrices with determinant equal to one.

(a) Show that SO(n) is a normal subgroup of O(n).

A normal subgroup H of G has the property that for for all h ∈ H and g ∈ G, it follows
that ghg−1 ∈ H . Applying this result to G = O(n) and H = SO(n), we note that

det(ghg−1) = det h = 1 ,

after employing the well-known properties of the determinant, det(AB) = detA detB and
detA−1 = (detA)−1 [the latter being true for any invertible matrix A]. Since det h = 1, it
follows that that ghg−1 ∈ SO(n) for all g ∈ O(n) and h ∈ SO(n), as required if SO(n) is a
normal subgroup of O(n).

ALTERNATIVE PROOF: Consider the map, f : O(n) −→ {In , −In}, defined by

f(A) = In detA, for A ∈ O(n) ,

where In is the n× n identity matrix. Clearly f is an onto map. Moreover, we can identify
Z2

∼= {In , −In} since both groups possess the same group multiplication table. Finally,
the kernel of the map is kerf = SO(n). Using the theorem proved in class that states that
if f : G → G′ then ker f is a normal subgroup of G, it follows that SO(n) is a normal
subgroup of O(n). Note that we can identify the image of the map as im f = Z2. Thus, by
the isomorphism theorem proved in class which states that im f ∼= G/ker f , it follows that
O(n)/SO(n) ∼= Z2.

(b) If n is odd, show that Z2
∼= {In , −In} is a normal subgroup of O(n), where In is

the n × n identity matrix. Prove that O(n) can be written as an internal direct product,
O(n) ∼= SO(n)⊗ Z2.

Consider g ∈ O(2) and k ∈ {In , −In} . Since ±In commute with all n × n matrices, it
follows that gkg−1 = k for g ∈ O(n) and k ∈ {In , −In}. By identifying Z2

∼= {In , −In},
it immediately follows that Z2 is a normal subgroup of O(n). This result is valid for both
even and odd n.

However, an important distinction between the case of even and odd n is revealed by the
observation that det(−In) = −1 if n is odd, whereas det(−In) = +1 if n is even. When n
is odd, it is instructive to consider a function g : O(n) −→ SO(n) defined by,

g(A) = A detA, for A ∈ O(n).

Following the alternative proof given in part (a), we note that in this case, ker g = {In , −In},
and it follows that ker g ∼= Z2 is a normal subgroup of O(n). Moreover, the image of the
map is im g = SO(n), which implies that O(n)/Z2

∼= SO(n).
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Having identified Z2
∼= {In , −In}, we have shown in parts (a) and (b) above that SO(n)

and Z2 are normal subgroups of O(n) and that O(n)/SO(n) ∼= Z2 and O(n)/Z2
∼= SO(n).

Moreover,
SO(n) ∩ Z2 = {In} , (1)

since det(−In) = −1 for odd n as previously noted. Finally, any O(n) matrix (with n odd)
can be generated by {hk | h ∈ SO(n) , k ∈ Z2}. Hence, by the results obtained in class, it
follows that for odd n, O(n) ∼= SO(n)⊗ Z2.

(c) Explain why the results of part (b) do not apply to the case of even n. Show that if
n is even then O(n) can be written as a semidirect product, O(n) ∼= SO(n) ⋊ Z2. Identify
explicitly the subgroup of O(n) appearing in this semidirect product that is isomorphic to Z2.

When n is even, det(−In) = +1 so that eq. (1) is no longer valid, in which case one of the
critical conditions for the direct product employed in part (b) does not hold. Thus, we need
to identify a Z2 subgroup of O(n) for even n such that eq. (1) is satisfied. Let us introduce
a matrix B ∈ O(n) with the properties that B2 = In and detB = −1. It follows that
Z2

∼= {In, B}, since both groups possess the same group multiplication table. Moreover,
with this definition of Z2, we have SO(n) ∩ Z2 = {In}, in light of the fact that detB = −1.

However, Z2
∼= {In, B} is not a normal subgroup of O(n). In particular, it is not true

that gBg−1 ∈ {In, B} for all g ∈ O(n). This result can be proven by using the properties of
B stated above. Here, we shall demonstrate this result by adopting a particular choice for
the matrix B,

B = diag(−1, 1, 1, , . . . , 1) . (2)

That is B is a diagonal matrix whose diagonal elements are given by B11 = −1 and Bii = +1
for i = 2, 3, . . . , n. Consider the SO(n) matrix given in block diagonal form,

C =

(

C2 0
0 In−2

)

,

where In−2 is the (n− 2)× (n− 2) identity matrix, and C2 is the 2× 2 matrix defined by,

C2 =

(

cos θ − sin θ
sin θ cos θ

)

.

A simple computation shows that CBC−1 6∈ {In, B} if θ 6= 1
2
mπ (for integer m).

Nevertheless, we can construct a map, f : O(n) −→ {In, B}, defined by

f(A) = diag(detA, 1, 1, . . . , 1) , for A ∈ O(n).

The kernel of this map is ker f = SO(n) and the image is im f = Z2
∼= {In, B}. Hence,

it follows that SO(n) is a normal subgroup of O(n) and O(n)/SO(n) ∼= Z2. Finally, any
O(n) matrix (with n even) can be generated by {hk | h ∈ SO(n) , k ∈ Z2}. These results,
taken together with SO(n) ∩ Z2 = {In} are sufficient to identify the semidirect product,
O(n) ∼= SO(n)⋊ Z2.

2



2. A finite group G can be decomposed into conjugacy classes Ck.

(a) Construct the set C′
k ≡ gCkg

−1, which is obtained by replacing each element x ∈ Ck
by gxg−1. Prove that C′

k = Ck.

The elements of a finite group G (consisting of n + 1 elements) will be denoted by G =
{e, g1, g2, . . . , gn} where e is the identity element. If x ∈ Ck, then the elements of Ck are given
by:

Ck = {x, g1xg
−1
1 , g2xg

−1
2 , . . . , gnxg

−1
n } , (3)

where we keep only distinct elements in the set Ck and discard any duplicate elements. The
set of elements in C′

k ≡ gCkg
−1, for a fixed element g ∈ G, is then given by:

C′
k = {gxg−1, gg1xg

−1
1 g−1, gg2xg

−1
2 g−1, . . . , ggnxg

−1
n g−1}

= {gxg−1, gg1x(gg1)
−1, gg2x(gg2)

−1, . . . , ggnx(ggn)
−1}

= {x, g1xg
−1
1 , g2xg

−1
2 , . . . , gnxg

−1
n }

= Ck ,

after using the rearrangement lemma in the penultimate step to reorder the elements of C′
k.

(b) Suppose that D(i)(g) is the ith irreducible (finite-dimensional) matrix representation
of the finite group G. For a fixed class Ck, prove that

∑

g∈Ck

D
(i)
jℓ (g) =

Nk

ni

χ(i)(Ck)δjℓ , (4)

where ni is the dimension of the ith irreducible representation of G, Nk is the number of
elements in the kth conjugacy class and χ(i)(Ck) is the irreducible character corresponding
to the kth conjugacy class.

Define the matrix
A

(i)
k ≡

∑

g̃∈Ck

D(i)(g̃) . (5)

Then,

D(i)(g)A
(i)
k =

∑

g̃∈Ck

D(i)(g)D(i)(g̃) =
∑

g̃∈Ck

D(i)(gg̃) =
∑

g̃∈Ck

D(i)(gg̃g−1)D(i)(g) ,

where we have used the fact that the matrix representation D(i)(g) must obey the group
multiplication law, D(i)(g1g2) = D(i)(g1)D

(i)(g2). Using the result of part (a), it follows that

∑

g̃∈Ck

D(i)(gg̃g−1)D(i)(g) =
∑

g′∈C′

k

D(i)(g′)D(i)(g) = A
(i)
k D(i)(g) ,

after noting that C′
k = Ck and g′ is a dummy summation variable.
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Thus, we have established that for any i and k,

D(i)(g)A
(i)
k = A

(i)
k D(i)(g) , for all g ∈ G.

Hence, Schur’s second lemma applies, and it follows that

A
(i)
k = λ

(i)
k I , (6)

for some complex constant λ
(i)
k (which can depend on i and k), where I is the identity matrix.

Using eq. (5), we can rewrite eq. (6) as

∑

g∈Ck

D
(i)
jℓ (g) = λ

(i)
k δjℓ . (7)

To determine the constant λ
(i)
k , we set j = ℓ in eq. (7) and sum over j, which yields:

Nkχ
(i)(Ck) = niλ

(i)
k ,

where Nk, ni and χ(i)(Ck) are defined in the statement of the problem. Solving for λ
(i)
k then

completes the derivation of eq. (4).

(c) Starting from the completeness result that is satisfied by the matrix elements of
the irreducible matrix representations of G and using the result of part (b), derive the
completeness relation for the irreducible characters,

Nk

O(G)

∑

i

χ(i)(Ck)[χ
(i)(Cℓ)]

∗ = δkℓ , (8)

where O(G) is the order of the group G (i.e. the number of elements of G), and the sum is
taken over all inequivalent (finite-dimensional) irreducible representations.

The completeness relation is given by:

1

O(G)

∑

i

∑

m,n

niD
(i)
mn(g)D

(i)
mn(g

′)∗ = δgg′ , (9)

where O(G) is the order of the group G (i.e., the number of elements of G). The sum over i
runs over all inequivalent unitary irreducible representations of G. We now sum eq. (9) over
g ∈ Ck and g′ ∈ Cℓ and make use of eq. (4), which yields:

1

O(G)

∑

i

∑

m,n

ni
Nk

ni
χ(i)(Ck)

Nℓ

ni
χ(i)(Cℓ)

∗δmnδmn = Nkδkℓ , (10)

since there are Nk elements in the class Ck. Noting that δmnδmn = δmm = ni, it follows
that the factors of ni cancel in eq. (10). Thus, after summing over m and n, we obtain the
completeness relation for the irreducible characters given in eq. (8).
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(d) Using the orthogonality and the completeness relations satisfied by the irreducible
characters, prove that the number of inequivalent irreducible representations of G is equal
to the number of conjugacy classes.

The orthogonality relation satisfied by the irreducible characters was derived in class,

1

O(G)

nc
∑

k=1

Nk[χ
(i)(Ck)]

∗χ(j)(Ck) = δij . (11)

The completeness relation derived in part (c) is given by

Nk

O(G)

nirr
∑

i=1

χ(i)(Ck)[χ
(i)(Cℓ)]

∗ = δkℓ . (12)

If we set i = j in eq. (11) and sum over i, we obtain

nirr =

nirr
∑

i=1

1 =
nc
∑

k=1

Nk

O(G)

nirr
∑

i=1

[χ(i)(Ck)]
∗χ(i)(Ck) =

nc
∑

k=1

1 = nc ,

after interchanging the order of the summation and using eq. (12). Hence, the number of
inequivalent irreducible representations of G is equal to the number of conjugacy classes.

The same conclusion can be obtained by regarding the characters as vectors in “class”
space, whose dimension is given by the number of distinct classes, nc. Different vectors are
labeled by i. The orthogonality relation then implies that there are nirr mutually orthogonal
vectors living in the nc-dimensional class vector space, where nirr are the number of inequiv-
alent irreducible representations. But, the completeness relation implies that any vector in
the class space can be expressed as a linear combination of the nirr class vectors. That is, the
nirr class vectors form a complete set of mutually orthogonal vectors, which span the class
space. It then immediately follows that nirr = nc, since the number of vectors in a complete
set of mutually orthogonal vectors is equal to the dimension of the vector space.

3. Consider the transformations of the triangle that make up the dihedral group D3. The
elements of this group are D3 = {e, r, r2, d, rd, r2d} , with the group multiplication law de-
termined by the relations r3 = e, d2 = e and dr = r2d, where e is the identity element. In
class, the following two-dimensional representation matrices for r, d ∈ Dn were given,

r =

(

cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)

, d =

(

1 0
0 −1

)

. (13)

Setting n = 3, one can construct a two-dimensional matrix representation of D3.

(a) Consider the six-dimensional function space W consisting of polynomials of degree 2
in two real variables (x, y):

f(x, y) = ax2 + bxy + cy2 + dx+ ey + h , (14)
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where a, b, . . . , h are complex constants. We can view (a, b, . . . , h) as a six-dimensional vector
that lives in a vector space which is isomorphic to W . If we perform a transformation of
(x, y) under D3 according to the two-dimensional representation obtained from eq (13) with
n = 3, then the polynomial f(x, y) given by eq. (14) transforms into another polynomial.
That is, the vector (a, b, . . . , h) transforms under D3 according to a six-dimensional repre-
sentation. Compute the 6× 6 matrices that represent the elements of D3. Determine which
irreducible representations of D3 are contained in this six-dimensional representation and
their corresponding multiplicities.

One can rewrite eq. (14) as
f(x, y) = zTAz + zTB + h ,

where

z =

(

x

y

)

, A =

(

a 1
2
b

1
2
b c

)

, B =

(

d

e

)

.

Under a D3 transformation, z → D(g)z, where D(g) is the corresponding 2 × 2 matrix
obtained by using the two dimensional matrix representation given in eq. (13) with n = 3.
It follows that under a D3 transformation,

f(x, y) −→ zTA′z + zTB′ + h ,

where
A′ = D(g)TAD(g) , B′ = D(g)TB .

In particular, if

D(g) =

(

d11 d12
d21 d22

)

,

then we find after some algebra,
















a
b
c
d
e
h

















=

















d211 d11d21 d221 0 0 0
2d11d12 d11d22 + d12d21 2d21d22 0 0 0
d212 d12d22 d222 0 0 0
0 0 0 d11 d21 0
0 0 0 d12 d22 0
0 0 0 0 0 1

































a
b
c
d
e
h

















,

under the action of D3. Using the specific matrices given in eq. (13), we obtain the following
six-dimensional representation of D3,

e =

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

























, r =



























1
4

−
√
3
4

3
4

0 0 0
√
3
2

−1
2

−
√
3
2

0 0 0

3
4

√
3
4

1
4

0 0 0

0 0 0 −1
2

√
3
2

0

0 0 0 −
√
3
2

−1
2

0

0 0 0 0 0 1



























,
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r2 =



























1
4

√
3
4

3
4

0 0 0

−
√
3
2

−1
2

√
3
2

0 0 0

3
4

−
√
3
4

1
4

0 0 0

0 0 0 −1
2

−
√
3
2

0

0 0 0
√
3
2

−1
2

0

0 0 0 0 0 1



























, d =

























1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

























,

rd =



























1
4

√
3
4

3
4

0 0 0
√
3
2

1
2

−
√
3
2

0 0 0

3
4

−
√
3
4

1
4

0 0 0

0 0 0 −1
2

−
√
3
2

0

0 0 0 −
√
3
2

1
2

0

0 0 0 0 0 1



























, r2d =



























1
4

−
√
3
4

3
4

0 0 0

−
√
3
2

1
2

√
3
2

0 0 0

3
4

√
3
4

1
4

0 0 0

0 0 0 −1
2

√
3
2

0

0 0 0
√
3
2

1
2

0

0 0 0 0 0 1



























.

We know that D3 possesses one two-dimensional and two inequivalent one-dimensional
irreducible representations. To compute the number of times a given irreducible represen-
tation appears in the six-dimensional representation obtained above, we make use of the
formula derived in class,

ni =

nc
∑

k=1

χ(i) ∗(Ck)χ(Ck)
Nk

O(G)
, (15)

where the sum is taken over the nc possible classes of D3, Nk is the number of elements in
the kth class, and O(G) is the number of elements of G (the order of the group). We can
read off the irreducible characters, χ(i)(Ck) from the character table of D3

∼= S3 obtained in
class:

i dimension C1 = {e} C2 = {d, rd, r2d} C3 = {r, r2}
1 1 1 1 1
2 1 1 −1 1
3 2 2 0 −1

where i labels one of the three possible irreducible representations of D3. For the six-
dimensional matrix representation obtained above,

χ(C1) = 6 , χ(C2) = 2 , χ(C3) = 0 .

Applying eq. (15), it follows that:

n1 = 2 , n2 = 0 , n3 = 2 .

That is, the six-dimensional representation of D3 obtained above contains the trivial repre-
sentation twice and the two-dimensional irreducible representation twice.
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(b) Identify the irreducible invariant subspaces of W under D3. Check that your result
is consistent with the results of part (b).

The irreducible invariant subspaces are easily identified. The space spanned by (0 0 0 0 0 1)
clearly corresponds to the trivial representation.1 By inspection of the six-dimensional rep-
resentation matrices given above, it follows that the space spanned by (0 0 0 1 0 0) and
(0 0 0 0 1 0) corresponds to the irreducible two-dimensional representation given in eq. (13).

The final task is to decompose the remaining three-dimensional subspace into its irre-
ducible components. Recall that

A′ = D(g)TAD(g) , where A =

(

a 1
2
b

1
2
b c

)

.

Then, if we choose a = c and b = 0, it follows that A′ = A since in this case A = aI, where
I is the 2 × 2 identity matrix.2 Thus, it follows that (1 0 1 0 0 0) spans an invariant space,
which is thus one-dimensional. We can now construct two linearly independent vectors that
are orthogonal to the four vectors already identified. By inspection, these vectors can be
chosen to be (1 0 − 1 0 0 0) and (0 1 0 0 0 0). In light of the result of part (b), these two
vectors must also span an invariant subspace under the action of D3. This is indeed the case,
as one can easily check by applying the six 6× 6 matrices that represent the elements of D3

to an arbitrary linear combination of (1 0 − 1 0 0 0) and (0 1 0 0 0 0).
Thus, we have explicitly identified two one-dimensional and two two-dimensional irre-

ducible subspaces of the vector space C6 under the action of the six-dimensional representa-
tion of D3 obtained above.

4. Consider the dihedral group D4 treated in problem 4 of Problem Set 1. The elements of
this group are D4 = {e, r, r2, r3, d, rd, r2d, r3d} with the group multiplication law determined
by the relations r4 = e, d2 = e and dr = r3d, where e is the identity element.

(a) Write out the conjugacy class multiplication table.

Using the results of problem 4(b) of Solution Set 1, the conjugacy classes of D4 are

C1 = {1} , C2 = {r, r3} , C3 = {r2} , C4 = {d, r2d} and C5 = {rd, r3d} . (16)

Using the multiplication table of D4, previously obtained in the solution to part (a) of
problem 4 of Solution Set 1, one immediately obtains the following class multiplication
table.

C1 C2 C3 C4 C5
C1 C1 C2 C3 C4 C5
C2 C2 2C1 + 2C3 C2 2C5 2C4
C3 C3 C2 C1 C4 C5
C4 C4 2C5 C4 2C1 + 2C3 2C2
C5 C5 2C4 C5 2C2 2C1 + 2C3

1To save space, all vectors will henceforth be specified by row vectors rather than the usual column vectors
2Since DT = D−1 for the representation given in eq. (13) and A = aI, we have A′ = D−1aID = aI = A.
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(b) Determine explicitly the matrices of the regular representation.

We rewrite the group multiplication table, previously obtained in the solution to part (a) of
problem 4 of Solution Set 1, so that the group elements are listed in the first column and
the corresponding inverses are listed in the first row.

1 r3 r2 r d rd r2d r3d
1 1 r3 r2 r d rd r2d r3d
r r 1 r3 r2 rd r2d r3d d
r2 r2 r 1 r3 r2d r3d d rd
r3 r3 r2 r 1 r3d d rd r2d
d d rd r2d r3d 1 r3 r2 r
rd rd r2d r3d d r 1 r3 r2

r2d r2d r3d d rd r2 r 1 r3

r3d r3d d rd r2d r3 r2 r 1

The matrix of the regular representation corresponding to the element g ∈ D4 is then
obtained from the multiplication table above by replacing every appearance of g with 1, and
filling up the rest of the corresponding matrix with zeros. That is,

1 =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























, r =

























0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

























,

r2 =

























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

























, r3 =

























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

























,

d =

























0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

























, rd =

























0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

























,
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r2d =

























0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

























, r3d =

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























.

(c) Using the two dimensional matrix representation given in eq. (13) with n = 4, verify
that the group multiplication table of D4 is preserved. Prove that this representation is
irreducible.

For n = 4, eq. (13) yields:

1 =

(

1 0
0 1

)

, r =

(

0 −1
1 0

)

, r2 =

(

−1 0
0 −1

)

, r3 =

(

0 1
−1 0

)

,

d =

(

1 0
0 −1

)

, rd =

(

0 1
1 0

)

, r2d =

(

−1 0
0 1

)

, r3d =

(

0 −1
−1 0

)

.

(17)
One easily checks that the representation matrices exhibited in eq. (17) satisfy the D4 group
multiplication table.

To show that eq. (17) is an irreducible representation of D4, we must prove that there
is no basis in which the above matrices are reduced to block diagonal form. If such a basis
existed, then we could simultaneously diagonalize the matrices that represent r and rd. But
these elements do not commute and thus are not simultaneously diagonalizable.

For completeness, I now provide two other proofs that the above two-dimensional repre-
sentation exhibited in eq. (17) is irreducible.

(i) In class, we proved that a necessary and sufficient condition for a representation D(g)
with characters χ(Ck) ≡ TrD(g) [for g ∈ Ck] to be irreducible is

nirr
∑

k=1

Nk|χ(Ck)|
2 = O(G) , (18)

where Nk is the number of elements in conjugacy class Ck, nirr is the number of inequivalent
irreducible representations of G, and O(G) is the order of the group G. Employing eqs. (16)
and (17), we can immediately enumerateNk and the χ(Ck) for the two-dimensional irreducible
representation of D4,

C1 C2 C3 C4 C5
Nk 1 2 1 2 2

χ(Ck) 2 0 −2 0 0

and check that eq. (18) is satisfied with O(D4) = 8.
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(ii) One can check explicitly that if AD(g) = D(g)A for all g ∈ D4, then A is a multiple
of the identity. For this problem, it is enough to check that for an arbitrary 2× 2 matrix A,
if Ar = rA and Ad = dA, with r and d given by the 2 × 2 matrices listed in eq. (17), then
A = c12×2 for some complex number c (where 12×2 is the 2× 2 identity matrix). Hence, by
Schur’s second lemma, D(g) is an irreducible representation of D4.

(d) Construct the character table for the irreducible representations of D4.

First, we need to specify all the irreducible representations ofD4. We already have identified a
two-dimensional irreducible representation in part (c). Moreover, the trivial one-dimensional
representation in which all elements of the group are represented by the 1× 1 matrix (1) is
always present. We now make use of Part 1 of Burnside’s theorem,

nirr
∑

i=1

n2
i = O(G) , (19)

where ni is the dimension of the ith inequivalent irreducible representation, and Part 2 which
states that nirr = nc, where nirr the number of inequivalent irreducible representations and nc

is equal to the number of conjugacy classes. Applying Burnside’s theorem to D4, we have
O(D4) = 8, and it follows that D4 must have four inequivalent one-dimensional representa-
tions.3 The possible one-dimensional representations can be determined by inspection. In
particular, we know that d2 = 1 and dr = r3d. Since d and r are represented by 1 × 1
matrices, it follows that as matrices, d and r commute. Then dr = r3d implies that r2 = 1.
Thus, the four one dimensional representations correspond to:

r = (1) , d = (1) , r = (1) , d = (−1) , r = (−1) , d = (1) , r = (−1) , d = (−1) .
(20)

The character of a representation is equal to the trace of the corresponding representation
matrix. Moreover, the character of all elements of a given class are equal. Thus, we can
immediately write down the character table:

dimension C1 C2 C3 C4 C5
1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 −1 1 1 −1
1 1 −1 1 −1 1
2 2 0 −2 0 0

The zeros in the last row of the character table are easy to understand. One can obtain
equivalent two-dimensional irreducible representations by multiplying the irreducible repre-
sentation exhibited in eq. (17) by either ±1 according to the sign of r and d given by the
four possible choices given in eq. (20). Since the characters of equivalent representations
are equal, the characters of the two-dimensional irreducible representation corresponding to
classes C2, C4 and C5 must be equal to their negatives, and hence must be zero. One can also
check this character table by verifying that the class orthogonality relations are satisfied.

3By definition, all inequivalent one-dimensional representations of a group are irreducible.
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5. Suppose that D is an irreducible n-dimensional representation of a finite group G, and
D(1) is a (nontrivial) one-dimensional representation of G. Prove that the direct product
D ⊗D(1) is an irreducible representation of G.

I will provide two different proofs.

Proof 1: Suppose that D(i) is an irreducible representation and D(j) is a one-dimensional
irreducible representation. Then, no invertible matrix S exists such that

SD(i)(g)S−1 =

(

A(g) B(g)
0 C(g)

)

.

Consider the matrix representation, D(i⊗j) ≡ D(i)(g)D(j)(g) . SinceD(j)(g) is one-dimensional,
we see that D(j)(g) is simply a (complex) number. Recalling that all matrix representations
of a finite group are equivalent to unitary representations, it follows that D(j)(g) must be a
complex number of unit modulus (since all complex numbers commute). That is,

|D(j)(g)| = 1 . (21)

Thus, we conclude that no invertible matrix S exists such that:

SD(i⊗j)(g)S−1 = D(j)(g)SD(i)(g)S−1 =

(

D(j)(g)A(g) D(j)(g)B(g)
0 D(j)(g)C(g)

)

.

It immediately follows that D(i⊗j)(g) is irreducible.

Proof 2: Using eq. (21), it follows that any one-dimensional representation D(j) of a
finite group must satisfy:

|χ(j)(g)| = |D(j)(g)| = 1 ,

where χ(i)(g) ≡ TrD(i)(g) is the character of g ∈ G for the ith irreducible representation.
We also showed in class that for a direct product representation,

χ(i⊗j)(g) = χ(i)(g)χ(j)(g) .

Hence, if D(j) is a one-dimensional representation,

|χ(i⊗j)(g)| = |χ(i)(g)| . (22)

The necessary and sufficient condition for a representation of a finite group to be irre-
ducible is that

nirr
∑

k=1

Nk|χ(Ck)|
2 = O(G) , (23)

where Nk is the number of elements in class Ck and O(G) is the order of the group. If the χ(i)

satisfy eq. (23), then the χ(i⊗j) must also satisfy eq. (23) in light of eq. (22). Hence D(i⊗j)

must be an irreducible representation of G.
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6. (a) Display all the standard Young tableaux of the permutation group S4. From this result,
enumerate the inequivalent irreducible representations of S4 and specify their dimensions.

All the standard Young tableaux for S4 are listed below, where each irreducible representation
corresponds to a different Young diagram.

standard Young tableaux dimension

1 2 3 4 1

1 2 3
4

1 3 4
2

1 2 4
3 3

1 2
3
4

1 3
2
4

1 4
2
3 3

1 2
3 4

1 3
2 4 2

1
2
3
4 1

There are five possible Young diagrams involving four boxes, corresponding to five pos-
sible partitions of 4:

4 , 3 + 1 , 2 + 1 + 1 , 2 + 2 and 1 + 1 + 1 + 1 .

Hence there are five inequivalent irreducible representations of S4. The number of standard
Young tableaux corresponding to a given Young diagram is equal to the dimension of the
corresponding irreducible representation. As a check, we can use eq. (19) to verify that

12 + 32 + 32 + 22 + 12 = 24 = 4! ,

which is equal to the order of the group S4 as required.

(b) Show that the normal subgroup {e, (12)(34), (13)(24), (14)(23)} of S4 is isomorphic
to D2. Using this result, prove that D3

∼= S4/D2.
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The multiplication table for {e, (12)(34), (13)(24), (14)(23)} is given by:

e (12)(34) (13)(24) (14)(23)
e e (12)(34) (13)(24) (14)(23)

(12)(34) (12)(34) e (14)(23) (13)(24)
(13)(24) (13)(24) (14)(23) e (12)(34)
(14)(23) (14)(24) (13)(24) (12)(34) e

We recognize this as the multiplication table of the group D2
∼= Z2 ⊗ Z2.

4 One can
check that D2

∼= {e, (12)(34), (13)(24), (14)(23)} is a normal subgroup of S4. That is, for
any element h ∈ D2 and g ∈ S4, one can verify that ghg−1 ∈ D2.

Next, we examine the cosets of the form gD2, for g ∈ S4. First, we have

eD2 = D2 = {e , (12)(34) , (13)(24) , (14)(23)} . (24)

Using the multiplication table of D3, it then follows that:

(123)D2 = {(123) , (134) , (243) , (142)} , (25)

(132)D2 = {(132) , (234) , (124) , (143)} , (26)

(12)D2 = {(12) , (34) , (1324) , (1423)} , (27)

(13)D2 = {(13) , (24) , (1234) , (1432)} , (28)

(23)D2 = {(23) , (14) , (1243) , (1342)} . (29)

All other cosets coincide with one of the six specified above.
Since D2 is a normal subgroup of S4, it follows that S4/D2 is a group of six elements.

There are only two possible groups of six elements: Z6 which is an abelian cyclic group and
D3

∼= S3 which is non-abelian. It is straightforward to check that the group multiplication
law of the cosets given above is non-abelian. Since the multiplication rule of the cosets is
given by (g1D2)(g2D2) = g1g2D2, it follows that

[(12)D2][(13)D2] = (12)(13)D2 = (132)D2 , (30)

[(13)D2][(12)D2] = (13)(12)D2 = (123)D2 , (31)

so that [(12)D2][(13)D2] 6= [(13)D2][(12)D2]. Hence, S4/D2 is non-abelian, and we conclude
that D3

∼= S4/D2

One can also verify directly that D3
∼= S4/D2 by checking that there exists a one-to-one

correspondence of the multiplication table of the cosets,

S4/D2 = {eD2 , (123)D2 , (132)D2 , (12)D3 , (13)D2 , (23)D2} ,

and the multiplication table of D3
∼= S3 = {e, (12), (13), (23), (123), (132)}. Indeed, one can

identify the elements of D3 with those of S4/D2 as follows. Recall that D3 can be formally
defined as:

D3 = {dkrℓ | d2 = e , r3 = e , dr = r2d} .

4There are only two possible finite groups of four elements: Z4 and D2
∼= Z2⊗Z2. Note that Z4 is a cyclic

group with one generator. However, the multiplication table for {e, (12)(34), (13)(24), (14)(23)} is clearly
not a cyclic group with one generator. By the process of elimination, the only possible conclusion is that
the multiplication table corresponds to the group D2

∼= Z2 ⊗ Z2.

14



Thus, we can identify d = (12)D2 and r = (123)D2. In particular,

(12)(12) = e , (123)(123)(123) = e , (12)(123) = (123)(123)(12) ,

where we have chosen the simplest representative elements from the cosets (12)D2 and
(123)D2. It then follows that

r2 = (132)D2 , rd = (13)D2 , r2d = (23)D2 ,

and of course e = eD2. This completes the explicit identification of the elements of D3 with
the cosets gD2.

(c) Using the two-dimensional irreducible representation ofD3 given in class and the result
of part (b), construct a two-dimensional representation of S4 and determine its characters.
Is the latter an irreducible representation of S4?

HINT: Show that given a normal subgroup N of a group G and a representation DG/N of
the factor group G/N , one can construct a representation DG of the group G by defining
DG(g) ≡ DG/N(gN) for all g ∈ G.

In light of the hint provided above, we first prove that DG(g) is a representation of G. That
is, we must show that

DG(g1)D
G(g2) = DG(g1g2) . (32)

This result follows from the definition, DG(g) ≡ DG/N (gN) In particular, recall that the
group multiplication law for G/N is:

(g1N)(g2N) = g1g2N .

Thus, if DG/N is a representation of G/N , it follows that:

DG/N(g1N)DG/N (g2N) = DG/N(g1g2N) . (33)

Hence, it follows that:

DG(g1)D
G(g2) = DG/N(g1N)DG/N (g2N) = DG/N(g1g2N) = DG(g1g2) ,

which confirms eq. (32).5

In part (b), we showed that D3
∼= S4/D2. In light of the hint, we can employ a represen-

tation of D3 to obtain an unfaithful representation of S4. In particular, the two-dimensional
representation of D3 is given by eq. (13) with n = 3,

e =

(

1 0

0 1

)

, r =

(

−1
2

−
√
3
2

√
3
2

−1
2

)

, r2 =

(

−1
2

√
3
2

−
√
3
2

−1
2

)

,

d =

(

1 0

0 −1

)

, rd =

(

−1
2

√
3
2

√
3
2

1
2

)

, r2d =

(

−1
2

−
√
3
2

−
√
3
2

1
2

)

.

5One can also check that D(e) = I and DG(g−1) = [DG(G)]−1. For example, since DG/N is a representa-
tion of G/N and eN = N is the identity of the subgroup G/N , it follows that DG(e) = I. Likewise, using the
fact that the inverse of gN is g−1N , it follows that DG(g−1) = DG/N (g−1N) = [DG/N (gN)]−1 = [DG(g)]−1 .
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Note that r corresponds to an active counterclockwise rotation by 2π/3 radians about an
axis perpendicular to the rotation plane.

The representation of S4 obtained from the representation of D3 (following the hint)
is unfaithful, since four elements of S4 are mapped into the same matrix. In particular,
eqs. (24)–(29) yield,

e , (12)(34) , (13)(24) , (14)(23) −→

(

1 0

0 1

)

, (34)

(123) , (134) , (243) , (142) −→

(

−1
2

−
√
3
2

√
3
2

−1
2

)

, (35)

(132) , (234) , (124) , (143)) −→

(

−1
2

√
3
2

−
√
3
2

−1
2

)

, (36)

(12) , (34) , (1324) , (1423) −→

(

1 0

0 −1

)

, (37)

(13) , (24) , (1234) , (1432) −→

(

−1
2

√
3
2

√
3
2

1
2

)

, (38)

(23) , (14) , (1243) , (1342) −→

(

−1
2

−
√
3
2

−
√
3
2

1
2

)

. (39)

The characters are obtained by taking the trace of the corresponding representation matrices.
Since elements of the same conjugacy class possess the same characters, we first determine

the conjugacy classes of S4. Recall that all elements of Sn of a given conjugacy class possess
the same cycle structure (which are in one-to-one correspondence with the possible Young
diagrams). Hence,

C1 = {e} ,

C2 = {(12) , (13) , (23) , (14) , (24) , (34)} ,

C3 = {(123) , (132) , (124) , (142) , (134) , (143) , (234) , (243)} ,

C4 = {(12)(34) , (13)(24) , (14)(23)} ,

C5 = {(1234) , (1243) , (1324) , (1342) , (1423) , (1432)}

Comparing the elements of the conjugacy classes with the cosets given in eqs. (24)–(29), it
follows that:

elements of eD2 belong to classes C1 and C4 ,

elements of (123)D2 belong to class C3 ,

elements of (132)D2 belong to classes C3 ,
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elements of (12)D2 belong to classes C2 and C5 ,

elements of (13)D2 belong to classes C2 and C5 ,

elements of (23)D2 belong to classes C2 and C5 .

Thus, using the two-dimensional representation of S4 obtained in eqs. (34)–(39), it follows
that the corresponding characters are given by:

χ(C1) = χ(C4) = 2 , χ(C3) = −1 , χ(C2) = χ(C5) = 0 . (40)

We can check whether the two-dimensional representation of S4 obtained in eqs. (34)–
(39) is irreducible by employing the theorem that states that a representation is irreducible
if and only if

nirr
∑

k=1

Nk|χ(Ck)|
2 = O(G) ,

where Nk is the number of elements in class Ck and O(G) is the order of the group. For S4,
we have O(G) = 4! = 24 and N1 = 1 , N2 = 6 , N3 = 8 , N4 = 3 , N5 = 6. The representation
given by the matrices in eqs. (34)–(39) is irreducible if:

1 · 22 + 6 · 0 + 8 · (−1)2 + 3 · 22 + 6 · 0
?
= 24 .

Indeed, 4 + 8 + 12 = 24, so that we conclude that the irreducible (simple) characters corre-
sponding to the two-dimensional irreducible representation of S4 are given by eq. (40).

(d) Using the known one-dimensional representations of S4 and the results of parts (a)
and (c), construct the character table for the group S4. Determine any unknown entries in
the character table by using the orthonormality and completeness relations for the irreducible
characters. Using this technique, all entries of the character table can be uniquely determined
up to a sign ambiguity in some of the entries.

Using all known information (up to this point), the character table for S4 is given by:

irreps C1 C2 C3 C4 C5
1 1 1 1 1

1 −1 1 1 −1

2 0 −1 2 0

3 a b c d

3 e f g h

Note that the dimension d of the irreducible representation (irrep) is equal to the char-
acter of the identity element, which corresponds to conjugacy class C1, since the matrix
representation of the identity is the d × d identity matrix. Moreover, the totally symmetric
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one-dimensional representation corresponds to representing each permutation by 1, and the
totally antisymmetric one-dimensional representation corresponds to representing each per-
mutation by (−1)p, which is +1 for even permutations (i.e., classes C1, C3 and C4), and −1
for odd permutations (i.e., classes C2 and C5). This immediately yields the first two lines of
the character table above. The third line of the character table was obtained in eq. (40).

The numbers a, b,. . . ,h represent the presently unknown entries of the character table,
which we shall determine by employing the orthogonality and completeness relations for the
simple characters,

nc
∑

k=1

Nkχ
(i) ∗(Ck)χ

(j)(Ck) = O(G)δij ,

nirr
∑

i=1

χ(i) ∗(Ck)χ
(i)(Cℓ) =

O(G)

Nk
δkℓ ,

where k = 1, 2, . . . , nc labels the conjugacy classes, Nk is equal to the number of group
elements in conjugacy class Ck, i = 1, 2, . . . nirr labels the irreps, and O(G) is equal to the
number of elements in the group G.

According to a theorem proved in class, the simple characters of Sn are all real. Thus,
we can ignore the complex conjugation in the orthogonality and completeness relations.
First, we make use of the orthogonality of row 4 with rows 1, 2 and 3, respectively. Using
N1 = 1 , N2 = 6 , N3 = 8 , N4 = 3 and N5 = 6, we obtain three relations,

3 + 6a+ 8b+ 3c+ 6d = 0 ,

3− 6a+ 8b+ 3c− 6d = 0 ,

6− 8b+ 6c = 0 .

Solving these three equations yields d = −a, c = −1 and b = 0. Next, we make use of the
orthogonality of row 5 with rows 1, 2 and 3, respectively. By an identical analysis, we obtain
h = −e, g = −1 and f = 0. Next, we make use of the orthogonality of rows 4 and 5 to
obtain

9 + 6ae+ 8bf + 3cg + 6dh = 0 .

Using the relations previously obtained, it follows that ae = −1. Finally, we make use of the
completeness relation for columns 1 and 2, which yields:6

1− 1 + 0 + 3a+ 3e = 0 ,

which implies that a = −e. Combining this with ae = −1 yields a2 = e2 = 1. Hence,
a = −e = ±1, where the sign ambiguity is not yet resolved.7 Thus, the character table of S4

is given at the top of the next page.

6We could also make use of the orthogonality relation for row 4 (or 5) by itself. This yields a2 = e2 = 1,
which when combined with ae = −1 yields a = −e = ±1.

7Note that the completeness relation for column 2 (or 5) alone yields, 1+1+0+a2+e2 = 24

6
. Combining

this with a = −e, it again follows that a2 = e2 = 1.
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irreps C1 C2 C3 C4 C5
1 1 1 1 1

1 −1 1 1 −1

2 0 −1 2 0

3 ±1 0 −1 ∓1

3 ∓1 0 −1 ±1

The sign ambiguity above will be resolved in part (e) of this problem.

(e) Resolve the sign ambiguity of part (d). One possible approach is to construct the
matrix representative of the transposition (1 2) corresponding to the three-dimensional ir-
reducible representation of S4. By taking the trace of this matrix, complete the character
table of S4.

Using the method discussed in class, I shall determine an explicit irreducible three-dimensional
matrix representation for the element (1 2) ∈ C2. The Young element corresponding to

1 2
3
4 (41)

is given by

Y =
[

e+ (1 2)
][

e+ (1 3 4) + (1 4 3)− (1 3)− (1 4)− (3 4)
]

= e + (1 3 4) + (1 4 3)− (1 3)− (1 4)− (3 4)

+(1 2) + (1 3 4 2) + (1 4 3 2)− (1 3 2)− (1 4 2)− (1 2)(3 4) . (42)

Since eq. (41) corresponds to a three-dimensional irreducible representation of S4, we need
to find two additional elements of the group algebra of S4 that span the irreducible three-
dimensional subspace of the regular representation. Since (2 3) and (2 4) do not appear in
eq. (42), two other possible elements of the group algebra that span the irreducible three-
dimensional subspace of the regular representation are:

(2 3)Y = (2 3) + (1 2 3 4) + (1 4 2 3)− (1 2 3)− (1 4)(2 3)− (2 3 4)

+(1 3 2) + (1 2)(3 4) + (1 4 2)− (1 2)− (1 4 3 2)− (1 3 4 2) , (43)

and

(2 4)Y = (2 4) + (1 3 2 4) + (1 2 4 3)− (1 2 4)− (1 3)(2 4)− (2 4 3)

+(1 4 2) + (1 2)(3 4) + (1 3 2)− (1 2)− (1 3 4 2)− (1 4 3 2) . (44)
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Thus, we choose the basis,
{

Y , (2 3)Y , (2 4)Y
}

, for the irreducible three-dimensional
subspace of the regular representation corresponding to eq. (41). We represent these basis
vectors by

Y =





1
0
0



 , (2 3)Y =





0
1
0



 , (2 4)Y =





0
0
1



 .

With respect to this basis choice, any element g ∈ S4 can be represented by the matrix

D[g] =



 gY g(2 3)Y g(2 4)Y



 , (45)

where the three respective columns of the matrix representation of g are indicated above.
We now compute the three-dimensional matrix representation of g = (1 2). Using

(1 2)(2 3) = (1 2 3) , (1 2)(2 4) = (1 2 4) ,

all we need to compute is:

(1 2)Y = (1 2) + (1 3 4 2) + (1 4 3 2)− (1 3 2)− (1 4 2)− (1 2)(3 4)

+e+ (1 3 4) + (1 4 3)− (1 3)− (1 4)− (1 3 4)

= Y ,

(1 2)(2 3)Y = (1 2 3)Y = (1 2 3) + (2 3 4) + (1 4)(2 3)− (2 3)− (1 4 2 3)− (1 2 3 4)

+(1 3) + (3 4) + (1 4)− e− (1 4 3)− (1 3 4)

= −Y − (2 3)Y ,

(1 2)(2 4)Y = (1 2 4)Y = (1 2 4) + (2 4 3) + (1 3)(2 4)− (2 4)− (1 3 2 4)− (1 2 4 3)

+(1 4) + (3 4) + (1 3)− e− (1 3 4)− (1 4 3)

= −Y − (2 4)Y .

That is,

(1 2)Y =





1
0
0



 , (1 2)(2 3)Y =





−1
−1
0



 , (1 2)(2 4)Y =





−1
0

−1



 .

Thus, eq. (45) yields:

D[(1 2)] =





1 −1 −1
0 −1 0
0 0 −1



 .

The trace of D[(1 2)] yields the character, χ(C2) = Tr D[(1 2)] = −1, for the three-
dimensional irreducible representation corresponding to the Young diagram,
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That is, in the notation of part (e), we have e = −1 and therefore a = 1. The character
table for S4 is now complete:

irreps C1 C2 C3 C4 C5
1 1 1 1 1

1 −1 1 1 −1

2 0 −1 2 0

3 1 0 −1 −1

3 −1 0 −1 1

7. (a) Derive the following properties of the Pauli matrices ~σ ≡ (σ1 , σ2 , σ3):

(i) σiσj = Iδij + iǫijkσk ,

(ii) σ2 ~σ σ2 = −~σ
∗ ,

(iii) exp(−iθn̂·~σ/2) = I cos(θ/2)− in̂·~σ sin(θ/2) ,

where I is the 2× 2 identity matrix.

By direct calculation, σ2
1 = σ2

2 = σ2
3 = I, where I ≡ ( 1 0

0 1 ). Moreover,

σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 .

These results are summarized by one equation,

σiσj = Iδij + iǫijkσk , (46)

where there is an implicit sum over the repeated index k. Next, it is a simple exercise
of matrix multiplication to show that σ2 ~σ σ2 = −~σ

∗ by verifying that σ2σiσ2 = −σ∗
i for

i = 1, 2, 3.
Finally, we compute

e−iθn̂·~σ/2 =
∞
∑

k=0

1

k!

(

−iθn̂·~σ

2

)k

.

Using eq. (46), it follows that (n̂·~σ)2 = n̂in̂jσiσj = I, since n̂ is a unit vector. Thus, for any
positive integer k, (n̂·~σ)2k = I and (n̂·~σ)2k+1 = n̂·~σ. Hence,

e−iθn̂·~σ/2 = I

∞
∑

k=0

1

(2k)!

(

iθ

2

)2k

− n̂·~σ =

∞
∑

k=0

1

(2k + 1)!

(

iθ

2

)2k+1

= I cos(θ/2)− in̂·~σ sin(θ/2) .
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(b) In the angle-and-axis parameterization of SO(3), a rotation by an angle θ about
an axis that points along the unit vector n̂ is represented by an SO(3) matrix given by

Rij(n̂, θ) = exp(−iθn̂·
~J )ij, with (n̂·

~J )ij ≡ −iǫijknk. By convention, we assume that
0 ≤ θ ≤ π, and the axis n̂ can point in any direction. Evaluate Rij explicitly and show that

Rij(n̂, θ) = ninj + (δij − ninj) cos θ − ǫijknk sin θ . (47)

To evaluate the 3× 3 matrix R(n̂, θ), we compute

R(n̂, θ) = e−iθn̂·
~J =

∞
∑

k=0

1

k!
(−iθn̂·

~J)k , (48)

where (n̂·
~J )ij ≡ −iǫijknk. Note that

(n̂·
~J )2ij = −ǫiℓknkǫℓjmnm = (δijδkm − δimδjk)nknm = δij − ninj ,

after employing the well-known ǫ-tensor identity and noting that δkmnknm = 1 for the unit
vector n̂. Next, we compute:

(n̂·
~J )3ij = −i(δiℓ − ninℓ)ǫℓjknk = −iǫijknk = (n̂·

~J)ij .

Thus, for any positive integers k,

(n̂·
~J )2k−1 = n̂·

~J , (n̂·
~J )2k = (n̂·

~J)2 .

Inserting these results in eq. (48), we obtain:

Rij(n̂, θ) = δij − (n̂·
~J)ij

∞
∑

k=0

1

(2k + 1)!
(iθ)2k+1 + (n̂·

~J)2ij

∞
∑

k=1

1

(2k)!
(iθ)2k

= δij − i(n̂·
~J)ij sin θ + (n̂·

~J)2ij(cos θ − 1)

= δij − ǫijknk sin θ + (δij − ninj)(cos θ − 1)

= ninj + (δij − ninj) cos θ − ǫijknk sin θ .

(c) Verify the formula:

e−iθn̂·~σ/2 σj e
iθn̂·~σ/2 = Rij(n̂, θ) σi .

To evaluate e−iθn̂·~σ/2 σj e
iθn̂·~σ/2, we first note that this quantity is a traceless hermitian 2×2

matrix. The traceless condition follows from:

Tr(e−iθn̂·~σ/2 σj e
iθn̂·~σ/2) = Trσj = 0 ,
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after cyclically permuting the terms inside the parenthesis. Hermiticity is also easily demon-
strated given that σ†

j = σj . Since an arbitrary traceless hermitian matrix can always be
written as a real linear combination of σ1, σ2 and σ3, it follows that

e−iθn̂·~σ/2 σj e
iθn̂·~σ/2 = Rij(n̂, θ) σi , (49)

for some real coefficients Rij . To determine these coefficients, we multiply eq. (49) by σk and
take the trace of the resulting equation. Using Tr(σiσj) = 2δij [which immediately follows
after taking the trace of eq. (46)], it follows that:

Rij =
1
2
Tr
(

e−iθn̂·~σ/2 σj e
iθn̂·~σ/2σi

)

. (50)

This is easily evaluated using the results of part (a).

Rij =
1
2
Tr

{

[cos(θ/2)− in̂·~σ sin(θ/2)]σj [cos(θ/2)− in̂·~σ sin(θ/2)]σi

}

= 1
2
cos2(θ/2)Trσiσj +

1
2
sin2(θ/2)Tr(n̂·~σσin̂·~σσj)

+1
2
i cos(θ/2) sin(θ/2)Tr(σjn̂·~σσi − n̂·~σσjσi) . (51)

We proceed to work out the three traces. The first trace has already been obtained,
Tr(σiσj) = 2δij. The second trace is given by:

Tr(n̂·~σσin̂·~σσj) = nknℓTr(σkσiσℓσj)

= nknℓTr(
[

(Iδki + iǫkimσm)(Iδℓj + iǫℓjnσn)
]

= 2nknℓδkiδℓj − 2nknℓǫkimǫℓjnδmn

= 2ninj − 2nknℓ(δkℓδij − δkjδiℓ)

= 4ninj − 2δij ,

after using Tr I = 2, Trσi = 0, and Tr(σiσj) = 2δij . Finally, the third trace is given by:

Tr(σjn̂·~σσi − n̂·~σσjσi) = Tr
[

(n̂·~σ(σiσj − σjσi)
]

= 2iǫijkTr
[

n̂·~σσk

]

= 4iǫijknk ,

after making use of the commutation relations, [σi , σj ] = 2iǫijkσk; the latter is a consequence
of eq. (46). Inserting these traces back into eq. (51) yields,

Rij = cos2(θ/2) + sin2(θ/2)(2ninj − δij)− 2 sin(θ/2) cos(θ/2)ǫijknk .

Finally, using the well-known trigonometric identities,

sin θ = 2 sin(θ/2) cos(θ/2) , cos2(θ/2) = 1
2
(1 + cos θ) , sin2(θ/2) = 1

2
(1− cos θ) ,

we arrive at:
Rij = δij + (δij − ninj) cos θ − ǫijknk sin θ ,

which are the matrix elements of the rotation matrix obtained in part (b).
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(d) The set of matrices exp(−iθn̂·~σ/2) constitutes the defining representation of SU(2).
Prove that this representation is pseudoreal.

To prove that D(θ) ≡ exp(−iθn̂·~σ/2) = cos(θ/2) − iθn̂·~σ sin(θ/2) is a pseudoreal repre-
sentation of SU(2), we must first prove that D(θ) and D∗(θ) are equivalent representations.
Noting that

D∗(θ) = exp(iθn̂·~σ
∗/2) = I cos(θ/2) + iθn̂·~σ

∗ sin(θ/2) ,

it is straightforward to check that

σ2D(θ)σ2 = D∗(θ) . (52)

This is a consequence of properties (i) and (ii) of part (a). Since σ−1
2 = σ2, we can rewrite

eq. (52) as D∗(θ) = S−1D(θ)S, where S = σ2. Consequently, D(θ) and D∗(θ) are equivalent
representations.

To show that D(θ) is pseudoreal, we can employ the theorem (proved in class) that states
that if D∗ = ADA−1 where A∗A = −I then D is pseudoreal. In the present case, A = σ2

and σ∗
2σ2 = −I, which confirms that D(θ) is pseudoreal.

ADDED NOTE: A direct proof that D(θ) is pseudoreal.

If D(θ) is pseudoreal, then no basis exists in which D(θ) = cos(θ/2)− iθn̂·~σ sin(θ/2) is
real. That is, no invertible matrix S exists such that S−1D(θ)S is real. This requirement
is equivalent to the condition that no invertible matrix S exists such that iS−1

~σS is real.
That is, no basis exists in which the iσk are simultaneously real. Without loss of generality,
one can assume that detS = 1 by rescaling the elements of S (since the overall determinant
factor cancels in iS−1~σS). One way to prove that no such matrix S exists is by writing

S =

(

a b
c d

)

, S−1 =

(

d −b
−c a

)

,

where ad− bc = 1 and then computing iS−1σkS for k = 1, 2, 3. Assuming that all the matrix
elements of iS−1σkS are real, one quickly reaches a contradiction.

Admittedly, this is not a very elegant proof. If S is unitary, then I can assume that its
determinant is equal to one without loss of generality (by rescaling the elements of S as
above). Then S is an SU(2) matrix which can be expressed as S = exp(iθn̂·~σ/2). In this
case, we can use the results of part (c) to obtain

iS−1σkS = ie−iθn̂ ·~σ/2σke
iθn̂·~σ/2 = iRjkσj , (53)

which is simultaneously real for k = 1, 2, 3 if R1k = R3k = 0. But this is impossible since the
Rkj are matrix elements of an orthogonal matrix which cannot possess a row of zeros. Taking
S to be unitary means that S−1D(θ)S is unitary, so this last argument establishes that no
real representation exists that is unitarily equivalent to D(θ). However, this last argument
does not yield the stronger result that no real representation exists (whether unitary or not)
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that is equivalent to D(θ). A direct proof of the latter result, which is responsible for the
theorem cited in the paragraph following eq. (52), is given below.

Suppose a nonsingular matrix S exists such that

A ≡ S−1iσkS , where A is a real matrix . (54)

Then taking the complex conjugate of this equation (using A = A∗) yields

S−1iσkS = −S∗−1iσ∗
kS

∗ ,

which can be rewritten as
−iσ∗

k = (SS∗−1)−1iσkSS
∗−1 .

Using property (ii) of part (a) of this problem, σ∗
k = −σ2σkσ2, then yields:

SS∗−1σ2iσk = iσkSS
∗−1σ2 . (55)

Schur’s second lemma states that if ZD(θ) = D(θ)Z for all θ, then Z is a multiple of the
identity. Using D(θ) = cos(θ/2) − iθn̂·~σ sin(θ/2), Schur’s second lemma then implies that
if Ziσk = iσkZ for k = 1, 2, 3, then Z is a multiple of the identity. Using eq. (55) with
Z = SS∗−1σ2 and noting that (σ2)

2 = I, it follows that

SS∗−1 = kσ2 , where k is a non-zero complex number . (56)

Note that k = 0 is not allowed since S and σ2 are invertible matrices. Taking the complex
conjugate of eq. (56) and multiplying the result by by eq. (56) yields

SS∗−1S∗S−1 = |k|2σ2σ
∗
2 ,

which simplifies to
I = −|k|2I .

No complex k exists that satisfies this equation, so we have a contradiction. Therefore, our
initial assumption that the matrix A defined in eq. (54) is real must be false. Thus, there
exists no nonsingular matrix S such that S−1iσkS is real for k = 1, 2, 3. This completes the
proof that no basis exists in which the iσk are simultaneously real.
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