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1. (a) Show that the Lie algebra of U(n) can be written as a direct sum, u(n) ∼= su(n)⊕u(1).

The Lie algebra of U(n) can be written as a direct sum, u(n) ∼= su(n) ⊕ u(1). To verify
this claim, we can make use of eqs. (1)–(3) in the class handout entitled Properties of the

Gell-Mann matrices. Consider the n2 generators,

(Ek
ℓ )ij = δℓiδkj , (1)

which satisfy the following commutation relations (as is easily verified),

[
Ek

ℓ , E
m
n

]
= δknE

m
ℓ − δmℓ E

k
n . (2)

The matrices Ek
ℓ also satisfy the hermiticity condition,

(Ek
ℓ )

† = Eℓ
k . (3)

Thus, we can use the Ek
ℓ to construct the n2 hermitian matrix generators (using the physicist’s

convention) of u(n) by employing suitable linear combinations. The corresponding off-diagonal
hermitian generators are of the form Ek

ℓ +Eℓ
k and −i(Ek

ℓ −Eℓ
k) in analogy with the off-diagonal

Gell-Mann matrices. There are n diagonal generators, Eℓ
ℓ (ℓ = 1, 2, . . . , n; no sum over ℓ)

consisting of one non-zero entry occupying the ℓℓ element of the matrix. Note that

∑

ℓ

Eℓ
ℓ = I ,

where I is the n × n identity matrix. We can identify the traceless generators of su(n) by
defining

(F k
ℓ )ij ≡ (Ek

ℓ )ij −
1

n
δkℓδij . (4)

The off-diagonal generators of u(n) and su(n) coincide. Since,

∑

ℓ

F ℓ
ℓ = 0 , (5)

it follows that there are only n − 1 independent diagonal generators of su(n). The F k
ℓ also

satisfy the same commutation relations as the Ek
ℓ [cf. eq. (2)],

[
F k
ℓ , Fm

n

]
= δknF

m
ℓ − δmℓ F k

n . (6)

Thus, we may choose the diagonal generators of u(n) to consist of I and the n−1 independent
traceless diagonal generators obtained from F ℓ

ℓ . Note that I commutes with all the other u(n)
generators. Hence I generates a u(1) subalgebra of u(n). Using the (F k

ℓ )ij to construct the
set of n2−1 hermitian generators of su(n) and appending to it the u(1) generator I, it follows
that the Lie algebra of U(n) can be written as a direct sum, u(n) ∼= su(n)⊕ u(1).
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(b) As for the corresponding Lie groups, show that U(n)∼=SU(n)⊗U(1)/Zn.

Consider the relation between the Lie groups SU(n)⊗U(1) and U(n) . In order to determine
the corresponding group isomorphism, we first note that any element of U(n) can be written
in the form eiθA, where 0 ≤ θ < 2π and A is a unitary n× n matrix of unit determinant, and
any element of SU(n)×U(1) can be written as an ordered pair, (A, eiθ).

Let us introduce the homomorphism f : SU(n)×U(1)−→U(n) that takes (A, eiθ) 7−→ eiθA,
where A ∈ SU(n) and eiθ ∈ U(1). The kernel of the map f consists of all elements of
SU(n)×U(1) that are mapped onto the identity element I ∈ U(n). Thus, the elements of the
kernel must be of the form (I e−iθ , eiθ). In order that I e−iθ ∈ SU(n), we must have

det(I e−iθ) = e−inθ = 1 .

It follows that θ = 2πm/n for any integer m, and f(I e−2πim/n , e2πim/n) = I .
We conclude that1

kerf =
{
(I e−2πim/n , e2πim/n), for m = 0, 1, 2, . . . , n− 1} ∼= Zn . (7)

Noting that the image of the map f is given by im f = U(n), we can use the fundamental
homomorphism theorem of group theory that states that for any homomorphism f : G → imf
with kernel, ker f , we have im f ∼= G/kerf . Hence, it then follows that

U(n) ∼= SU(n)⊗ U(1)/Zn .

2. This problem concerns the Lie group SO(4) and its Lie algebra so(4).

(a) Work out the Lie algebra so(4) and verify that so(4) ∼= so(3)⊕ so(3).

The defining representation of the Lie algebra so(n) is

so(n) = {M ∈ gl(n,R) such that MT = −M} , (8)

where gl(n,R) is the set of all real n × n matrices. Recall that a suitable basis for the
defining representation of so(3), which consists of all 3 × 3 real antisymmetric matrices, is
(Ai)jk = −ǫijk, where i, j and k can take on the values 1, 2 and 3. To find a suitable basis
for the defining representation of so(4), one can generalize the Ai of so(3) by choosing

(Ai)jk =




0

−ǫijk 0
0

0 0 0 0


 , where i, j, k = 1, 2, 3 . (9)

Since a 4 × 4 real antisymmetric matrix has six independent parameters, we need to choose
three additional linearly-independent antisymmetric matrices to complete the basis for so(4).

1Recall the discrete group, Zn =
{
e2πim/n, for m = 0, 1, 2, . . . , n− 1}. In light of the isomorphism that

identifies (I e−2πim/n , e2πim/n) 7−→ e2πim/n, it follows that kerf ∼= Zn as indicated in eq. (7).
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We therefore introduce three antisymmetric matrices Bi by placing a 1 in one of the non-
diagonal elements of the fourth row (and a corresponding −1 required by the antisymmetry
property of the matrix), with all other elements zero. That is, a suitable basis for so(4) is
given by:

A1 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , A2 =




0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0


 , A3 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,

B1 =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


 , B2 =




0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


 , B3 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 .

One can easily verify that the six generators of so(4) satisfy the following commutation rela-
tions:

[Ai , Aj] = ǫijkAk , [Bi , Bj ] = ǫijkAk , [Ai , Bj ] = ǫijkBk . (10)

Note that the commutation relations satisfied by the Ai are precisely those of so(3), which is
not surprising in light of eq. (9).

The form of the commutators given in eq. (10) is not completely transparent. To under-
stand the implications of eq. (10), it is convenient to define a new set of so(4) generators that
are real linear combinations of the Ai and Bi. Thus, we define,

Xi ≡ 1

2
(Ai + Bi) , Yi ≡ 1

2
(Ai − Bi) , where i = 1, 2, 3 . (11)

Using eq. (10), it is a simple matter to work out the commutation relations among the Xi

and Yi,
[Xi , Xj] = ǫijkXk , [Yi , Yj] = ǫijkYk , [Xi , Yj ] = 0 . (12)

Thus, we have succeeding in writing the so(4) commutation relations in such a way that the
generators {Xi} and {Yi} are decoupled. In particular, the {Xi} and {Yi} each satisfy so(3)
commutation relations. Hence, so(4) is a direct sum of two independent so(3) Lie algebras.
That is,2

so(4) ∼= so(3)⊕ so(3) . (13)

(b) What is the universal covering group of SO(4)? What is the center of SO(4)? Identify
the adjoint group Ad

(
SO(4)

)
.

Since the universal covering group of SO(3) is SU(2), we can use eq. (13) to conclude that the
universal covering group of SO(4) is SU(2 )⊗SU(2).3 In particular,

SO(4) ∼= SU(2)⊗ SU(2)/Z2 . (14)

2Since su(2) ∼= so(3) as Lie algebras, we can equally well write so(4) ∼= su(2)⊕ su(2).
3Since the Lie group is obtained by exponentiation of the Lie algebra, a direct sum of Lie algebras correspond

to a direct product of Lie groups.

3



Proof of the isomorphism SO(4) ∼= SU(2) ⊗ SU(2)/Z2

In order to establish eq. (14), it is convenient to consider the set of quaternions H.
A quaternion q ∈ H is given by q = a + bi + cj + dk where a, b, c, d ∈ R and i, j and k
satisfy i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i and ki = −ik = j. The
conjugate of q is defined by q∗ = a − bi − cj − dk, and the magnitude of q is given by
‖q‖ = (q∗q)1/2 = (qq∗)1/2 ∈ R. That is, ‖q‖ = (a2 + b2 + c2 + d2)1/2. It is easy to prove that
(q1q2)

∗ = q∗
2
q∗
1
(notice the interchange of the order of q1 and q2) and q−1 = q∗/||q||2 for q 6= 0.

There exists a one-to-one and onto map from H to R4 that identifies q = a + bi+ cj + dk
with the four vector (a, b, c, d). There is another one-to-one and onto map from H to M2(C)
that identifies q = a+ bi+ cj + dk with the complex 2× 2 matrix,4

q = a + bi+ cj + dk ≡ z + wj 7−→
(

z w
−w∗ z∗

)
, where z = a + bi and w = c+ di. (15)

We shall also introduce the set of unit quaternions, Q =
{
q ∈ H : ||q|| = 1

}
. Note that there

exists a one-to-one and onto map from the unit quaternions Q to SU(2) given by eq. (15)
where q ∈ Q. This follows from the observation that 1 = ‖q‖2 = |z|2 + |w|2. One can check
that given the latter condition, it follows that the complex 2× 2 matrix in eq. (15) is unitary
with unit determinant.

Consider now a map from R4 → R4 that is represented by q 7−→ q′, where q, q′ ∈ H
⋆ (the

set of nonzero quaternions) such that q′ ≡ q1qq
−1

2
with q1, q2 ∈ Q. It is easy to check that

‖q′‖ = ‖q‖, since
‖q′‖ = ‖q1qq−1

2
‖ = ‖q1qq∗2‖ = (q1qq

∗
2
q2q

∗q∗
1
)1/2 = (qq∗)1/2 = ‖q‖ , (16)

where we have made use of ‖q1‖ = ‖q2‖ = 1. Thus, the mapping q 7−→ q′ represents a
transformation of a four-vector q ∈ R4 that leaves the length of q invariant. That is, one can
represent the transformation q 7−→ q′ by writing q′ = Rq, where q and q′ are nonzero four-
vectors in R4 and R ∈ SO(4). Moreover, since unit quaternions are isomorphic to SU(2), it
follows that the mapping q 7−→ q1qq

−1

2
provides a homomorphism f : SU(2)⊗SU(2) → SO(4)

corresponding to (q1, q2) 7−→ R.
Indeed, all elements of SO(4) can be represented by some mapping of the form q 7−→ q′

[see, e.g., Proposition 8.27 of Ian R. Porteous, Clifford Algebras and the Classical Groups

(Cambridge University Press, Cambridge, UK, 1995)]. Thus, the image of the homomorphism
is given by im f = SO(4). The kernel of the homomorphism f is the set of pairs of unit
quaternions (q1, q2) such that q1qq

−1

2
= q for all q ∈ H

⋆. Choosing q = 1 yields q1 = q2, so
that (a, a) ∈ ker f for a ∈ Q if and only if aq = qa for all q ∈ H

⋆. We conclude that

ker f =
{
(1, 1) , (−1,−1)

} ∼= Z2 , (17)

since 1 and −1 are the only unit quaternions that commute with all nonzero quaternions
q ∈ H

⋆. Hence, we can use the fundamental homomorphism theorem of group theory that
states that for any homomorphism f : G → im f with kernel, ker f , we have im f ∼= G/kerf .
It then follows that

SO(4) ∼= SU(2)⊗ SU(2)/Z2 . (18)

which confirms eq. (14).
4We denote M2(C) as the linear space of all complex 2× 2 matrices.
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Finally, the adjoint group by definition has a trivial center. Consider the centers of SO(4)
and SU(2)⊗SU(2). The center of SO(4) consists of all orthogonal matrices of unit determinant
that are multiples of the identity. There are only two such matrices, 14×4 and −14×4, where
14×4 is the 4× 4 identity matrix. Hence,

Z(SO(4)) = Z2 .

The center of SU(2) is {12×2 ,−12×2} ∼= Z2 so that

Z(SU(2)⊗ SU(2)) = Z2 ⊗ Z2 .

Thus, the adjoint group of SO(4) can be expressed in a number of equivalent forms,

SO(4)/Z2
∼= SO(3)⊗ SO(3) ∼= SU(2)⊗ SU(2)/Z2 ⊗ Z2 ,

where we have made use of the well-known isomorphism, SO(3) ∼= SU(2)/Z2. In particular,
SO(3)⊗SO(3) has a trivial center since SO(3) has a trivial center.

(c) Calculate the Killing form of so(4) and verify that this Lie algebra is semisimple and
compact.

The Cartan-Killing form can be expressed in terms of the Lie algebra structure constants,

gab = f d
ac f

c
bd . (19)

In this expression, the indices a, b, c and d range over 1, 2, . . . , 6, corresponding to the six
generators of so(4). It is easiest to evaluate gab in the basis {Xi , Yj} [cf, eqs. (11) and (12)].
In this basis,

f d
ac =






ǫijk , for a = i , b = j , and d = k ,

ǫijk , for a = i+ 3 , b = j + 3 , and d = k + 3 ,

0 , otherwise ,

where i, j and k range over 1, 2 and 3. Plugging into eq. (19) yields

gab = −2δab , (20)

which indicates that so(4) is a semisimple and compact Lie algebra.

(d) Consider the complexification of the corresponding Lie algebras of part (a). Show that
so(4,C) ∼= so(3,C)⊕ so(3,C). Do the conclusions of part (c) still hold? If not, explain how
these conclusions are modified?

In part (a), we showed that the most general element of so(4) was given by

M =
3∑

i=1

(aiAi + biBi) =




0 −a3 a2 −b1
a3 0 −a1 −b2

−a2 a1 0 −b3
b1 b2 b3 0


 , for ai, bi ∈ R. (21)

Indeed, M is a general real antisymmetric 4× 4 matrix [cf. eq. (8)].
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The complexification of so(4) is obtained by taking ai, bi ∈ C in eq. (21), which yields
the most general element of so(4)C. Thus, the elements of so(4)C are complex antisymmetric
4× 4 matrices. That is,

so(4)C = so(4,C) = {M ∈ gl(n,C) such that MT = −M} , (22)

where gl(n,C) is the set of all complex n× n matrices.
We again define Xi and Yi as in eq. (11), which satisfy the commutation relations given in

eq. (12). Thus, the most general element of so(4) can also be written as

3∑

i=1

(xiXi + yiYi) , for xi, yi ∈ R. (23)

Since
3∑

i=1

xiXi ∈ so(3) and

3∑

i=1

yiYi ∈ so(3) , for xi, yi ∈ R (24)

with [Xi , Yj] = 0, we concluded in part (a) that so(4) ∼= so(3) ⊕ so(3). Once again, the
complexification of so(4) is obtained by taking xi, yi ∈ C in eq. (23). By a similar argument
to the one presented above, it follows that so(3)C = so(3,C). Hence, by taking xi, yi ∈ C in
eqs. (23) and (24), we conclude that

so(4,C) ∼= so(3,C)⊕ so(3,C) . (25)

Since the basis for the Lie algebra did not changed in the process of complexification, it
follows that eq. (20) still holds. Thus gab = −2δab, which implies that so(4,C) is a semisimple
Lie algebra, in light of Cartan’s criterion which states that det g 6= 0 if and only if the Lie
algebra is semisimple. However, in contrast to the conclusions obtained in part (c), we cannot
claim that so(4,C) is compact. In the class handout entitled The Cartan-Killing Form, we
proved that if the Killing metric of a semisimple real Lie algebra g is negative definite then g is
a compact Lie algebra (which implies that the corresponding Lie group is compact). However,
this result does not hold for complex semisimple Lie algebras. Indeed, in class we proved a
theorem that stated that any compact complex Lie group is abelian.5 Thus, it follows that
any semisimple complex Lie group (which is necessarily nonabelian) must be noncompact.

(e) Using the methods used in part (a), show that so(3, 1) ∼= sl(2,C)R, where sl(2,C)R is
the realification of the Lie algebra sl(2,C). By complexification of this result, show that one
recovers the result of part (d).

The defining representation of the Lie algebra so(3, 1) is

so(3, 1) = {M ∈ gl(4,R) such that MT = −GMG−1} , (26)

where G = diag(+1,+1,+1,−1). In this case, the construction given in part (a) is modified.
5Consider a complex compact Lie group G and define a map f(x) = xyx−1y−1 for some fixed element

y ∈ G. Because G is compact, it follows that f(x) is a bounded holomorphic function. Using a well-known
theorem of complex analysis, any bounded holomorphic function must be a constant function. Since f(e) = e

[where e ∈ G is the identity element], it follows that f(x) = e for all x ∈ G. That is, e = xyx−1y−1, which
implies that xy = yx for all x, y ∈ G. Hence, we conclude that a complex compact Lie group must be abelian.
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A suitable basis for so(3, 1) is

A1 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , A2 =




0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0


 , A3 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,

B1 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 , B2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , B3 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 .

By construction, one can check that MT = −GMG−1, where

M =

3∑

i=1

(aiAi + biBi) =




0 −a3 a2 b1
a3 0 −a1 b2

−a2 a1 0 b3
b1 b2 b3 0


 , for ai, bi ∈ R. (27)

One can easily verify that the six generators of so(3, 1) satisfy the following commutation
relations:

[Ai , Aj] = ǫijkAk , [Bi , Bj ] = −ǫijkAk , [Ai , Bj ] = ǫijkBk . (28)

The most general element of sl(2,C) is
∑

i ciei, where ci ∈ C, and the generators ei satisfy
the commutation relations,

[ei, ej ] = ǫijkek . (29)

The realification of sl(2,C) is obtained by choosing a basis {e1, e2, e3, ie1, ie2, ie3} and consid-
ering real linear combinations of the six generators. It is convenient to denote fi ≡ iei for
i = 1, 2, 3. Then, the most general element of sl(2,C)R is given by

3∑

i=1

(ciei + difi) , for ci, di ∈ R. (30)

Using eq. (29) and fi = iei, it immediately follows that

[ei , ej ] = ǫijkek , [fi , fj ] = −ǫijkek , [ei , fj] = ǫijkfk . (31)

Comparing eqs. (28) and (31), one can conclude that

so(3, 1) ∼= sl(2,C)R . (32)

The final step is to complexify eq. (32). First, consider the complexification of so(3, 1).
The six generators of so(3, 1)C satisfy the commutation relations given in eq. (28). We shall

choose a new basis of six generators, which consists of {A1,A2,A3, B̃1, B̃2, B̃3}, where

B̃j ≡ iBj . (33)
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Note that the multiplication by i is permissible, since so(3, 1)C is a complex Lie algebra. Then,
the commutation relations of the new so(3, 1)C generators are given by

[Ai , Aj] = ǫijkAk , [B̃i , B̃j ] = ǫijkAk , [Ai , B̃j ] = ǫijkB̃k . (34)

Comparing eqs. (34) and (10), we conclude that

so(3, 1)C ∼= so(4,C) . (35)

Our remaining task is to complexify sl(2,C)R. The complexification of sl(2,C)R is obtained
by taking ci, di ∈ C in eq. (30). The commutation relations of the generators of [sl(2,C)R]C
are still given by eq. (31). As previously noted, since [sl(2,C)R]C is a complex Lie algebra, one
is permitted to define a new basis by taking complex linear combinations of the generators.
In analogy with eq. (11), we define

Xj ≡ 1

2
(ej + ifj) , Yj ≡ 1

2
(ej − ifj) , where j = 1, 2, 3 . (36)

Using eq. (31), it is a simple matter to work out the commutation relations among the Xi

and Yi,
[Xi , Xj] = ǫijkXk , [Yi , Yj] = ǫijkYk , [Xi , Yj ] = 0 . (37)

Thus, we have succeeding in writing the [sl(2,C)R]C commutation relations in such a way
that the generators {Xi} and {Yi} are decoupled, and the {Xi} and {Yi} each satisfy so(3,C)
commutation relations. In particular,

3∑

i=1

xiXi ∈ so(3,C) and
3∑

i=1

yiYi ∈ so(3,C) , for xi, yi ∈ C, (38)

with [Xi , Yj ] = 0. Hence, so(4,C) is a direct sum of two independent so(3,C) Lie algebras.
That is,6

so(4,C) ∼= so(3,C)⊕ so(3,C) , (39)

thereby reproducing the result of eq. (25).

BONUS MATERIAL

Define the following family of real Lie algebras that are subalgebras of the real Lie algebra
of n× n matrices:7

so(r, s, G) =
{
M ∈ gl(n,R) such that MT = −GMG−1

}
, (40)

where G is a real symmetric invertible n×n matrix that possesses r positive eigenvalues and s
negative eigenvalues with n = r+s. We now make use of Sylvester’s Theorem (see Corollary 1

6Since sl(2,C) ∼= so(3,C) as Lie algebras, we can equally well write so(4,C) ∼= sl(2,C)⊕ sl(2,C).
7One can check that if M1, M2 ∈ so(r, s,G) then [M1, M2] ∈ so(r, s,G), thereby confirming that

so(r, s,G) is a Lie algebra.
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of Appendix A of the class handout entitled The Cartan-Killing Form), which states that an
invertible real matrix R exists such that

RTGR = D(r, s) ≡ diag(1, 1, . . . , 1︸ ︷︷ ︸
r

, −1,−1, . . . ,−1︸ ︷︷ ︸
s

) . (41)

We can also introduce the real Lie algebra so(r, s) which is defined by

so(r, s) =
{
N ∈ gl(n,R) such that N T = −DND−1 and D = D(r, s)

}
. (42)

The following isomorphism of Lie algebras is noteworthy:

so(r, s, G) ∼= so(r, s) , (43)

where G is a real symmetric invertible n× n matrix that possesses r positive eigenvalues and
s negative eigenvalues with n = r + s. To exhibit this isomorphism, consider the function

N = f(M) = R−1MR , where M ∈ so(r, s, G) and RTGR = D(r, s) . (44)

In light of eq. (40), MT = −GMG−1. Using eq. (44) to write M = RNR−1, it then follows
that

(RNR−1)T = −GRNR−1G−1 . (45)

Multiplying eq. (45) by RT on the left and by RT−1 on the right and simplifying the resulting
equation, we end up with

N T = −(RTGR)N (RTGR)−1 . (46)

Using eq. (41), it follows that
N T = −DND−1 . (47)

That is, N ∈ so(r, s) [cf. eq. (42)]. In particular, the function f(M) defined in eq. (44)
is a mapping from so(r, s, G) to so(r, s). It is easy to check that this mapping is bijective
(one-to-one and onto), which establishes the isomorphism announced in eq. (43).

Consider now the complexification of so(r, s, G), which is obtained by replacing R with C

in eq. (40),
so(r, s, G)C =

{
M ∈ gl(n,C) such that MT = −GMG−1

}
, (48)

where G is a complex symmetric invertible n × n matrix. In this case, we can employ the
extension of Sylvester’s Theorem given in Appendix B of the class handout entitled The

Cartan-Killing Form, which states that an invertible complex matrix S exists such that

STGS = 1n×n , (49)

where 1n×n is the n× n identity matrix. We can make use of this result to establish the Lie
algebra isomorphism,

so(r, s, G)C ∼= so(r + s,C) , (50)

where
so(n,C) =

{
N ∈ gl(n,C) such that N T = −N

}
. (51)
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Consider the function

N = f(M) = S−1MS , where M ∈ so(r, s, G)C and STGS = 1n×n (with n = r + s) .
(52)

Using eq. (52) to write M = SNS−1, it then follows from eq. (48) that

(SNS−1)T = −GSNS−1G−1 . (53)

Multiplying eq. (53) by ST on the left and by ST−1 on the right and simplifying the resulting
equation, we end up with

N T = −(STGS)N (STGS)−1 = −N , (54)

after employing eq. (49). In light of eq. (51), it follows that N ∈ so(n,C), where n = r+s. In
particular, the function f(M) defined in eq. (52) is a mapping from so(r, s, G)C to so(r+s,C).
It is easy to check that this mapping is bijective (one-to-one and onto), which establishes the
isomorphism announced in eq. (50).

Finally, by combining eqs. (43) and (50), we deduce the following isomorphism of Lie
algebras,

so(r, s)C ∼= so(r + s,C) , (55)

where so(r, s)C is the complexification of so(r, s). Setting r = 3 and s = 1, we recover the
result previously obtained in eq. (35) by another method.

3. A Lie algebra g is defined by the commutation relations of the generators,

[ea, eb] = f c
abec .

Consider the finite-dimensional matrix representations of the ea. We shall denote the cor-
responding generators in the adjoint representation by Fa and in an arbitrary irreducible
representation R by Ra. The dimension of the adjoint representation, d, is equal to the
dimension of the Lie algebra g, while the dimension of R will be denoted by dR.

(a) Show that the Cartan-Killing metric gab can be written as gab = Tr(FaFb).

The Cartan-Killing metric can be expressed in terms of the structure constants as follows,

gij = fk
iℓf

ℓ
jk .

On the other hand, matrix elements of the adjoint representation are given by:

(Fi)
j
k = f j

ik ,

where j labels the rows and k labels the columns of the matrices Fi. Therefore,

Tr(FiFj) = (Fi)
k
ℓ(Fj)

ℓ
k = fk

iℓf
ℓ
jk = gij .

10



(b) If g is a simple real compact Lie algebra, prove that for any irreducible representation R,

Tr(RaRb) = cRgab ,

where cR is called the index of the irreducible representation R.

Consider a d-dimensional Lie algebra g, whose generators are represented by the matrices Ra.
These matrices satisfy the Lie algebra commutation relations,

[Ra, Rb] = f c
abRc , where a, b, c = 1, 2, . . . , d . (56)

We first note the following identity:

Tr
{
[Ra, Rb]Rc

}
= Tr

{
Ra[Rb, Rc]

}
. (57)

The proof of eq. (57) is straightforward:

Tr
{
[Ra, Rb]Rc

}
= Tr

{
(RaRb − RbRa)Rc

}
= Tr(RaRbRc)− Tr(RbRaRc)

= Tr(RaRbRc)− Tr(RaRcRb) = Tr
{
Ra(RbRc − RcRb)

}
= Tr

{
Ra[Rb, Rc]

}
,

after using the cyclic properties of the trace. Making use of eq. (56) in eq. (57) yields:

f d
ab Tr(RdRc) = f d

bcTr(RaRd) . (58)

To make further progress, recall that fabc ≡ gadf
d
bc is totally antisymmetric under the

interchange of any pair of indices a, b and c. It follows that

f d
bc = gadfabc , (59)

where gad is the inverse Cartan metric tensor. It is convenient to multiply both sides of eq. (58)
by gea to obtain:

geaf d
ab Tr(RdRc) = geaf d

bc Tr(RaRd) . (60)

Using eq. (59) and the antisymmetry properties of fabh,

geaf d
ab = geaghdfhab = geaghdfabh = ghdf e

bh .

Inserting this result into eq. (60) yields

ghdf e
bh Tr(RdRc) = geaf d

bc Tr(RaRd) . (61)

Consider the d × d matrix whose matrix elements are Ah
c ≡ ghdTr(RdRc). We can then

rewrite eq. (61) in the following form:

f e
bhA

h
c = f d

bcA
e
d . (62)

We recognize f e
bh = (Fb)

e
h and f d

bc = (Fb)
d
c. Hence, eq. (62) is equivalent to the ec component

of the matrix equation,
FbA = AFb ,

for all b = 1, 2, . . . , d.

11



We proved in class that the adjoint representation of a simple Lie algebra (whose gener-
ators are represented by the matrices Fb) is irreducible. Applying Schur’s second lemma to
representations of Lie algebras,8 any matrix that commutes with all the Fb must be a multiple
of the identity. Hence, A = cI or equivalently.

gedTr(RdRc) = cRδ
e
c ,

where cR is some complex constant. Using gedgeh = δdh, it immediately follows that

Tr(RhRc) = cRghc , (63)

which is the desired result.

(c) The quadratic Casimir operator is defined as C2 ≡ gabeaeb where gab is the inverse of
gab. Recall that C2 commutes with all elements of the Lie algebra. Hence, by Schur’s lemma,
C2 must be a multiple of the identity operator. Let us write C2 = C2(R)I, where I is the
dR×dR identity matrix and C2(R) is the eigenvalue of the Casimir operator in the irreducible
representation R. As noted above, d is the dimension of the Lie algebra g. Show that C2(R)
is related to the index cR by

C2(R) =
dcR
dR

.

Check this formula in the case that R is the adjoint representation.

By definition,
C2(R)I = gabRaRb , (64)

where I is the dR × dR identity matrix, dR is the dimension of the representation R, and
a, b = 1, 2, . . . , d. Taking the trace of eq. (64) and using eq. (63), it follows that:

dRC2(R) = gabTr(RaRb) = cRg
abgab = cRd ,

since gabgab = δaa = d. Hence, solving for C2(R), one obtains:

C2(R) =
dcR
dR

. (65)

For the adjoint representation (usually denoted by R = A), we have dA = d. Moreover,
the adjoint representation generators are (Ra)

b
c = f b

ac , as shown in class. Hence,

Tr(RaRd) = (Ra)
b
c(Rd)

c
b = f b

acf
c
db = gad ,

where we used the definition of the Cartan metric tensor at the last step. Comparing this
result with that of eq. (63) yields cA = 1. Hence, eq. (65) implies that C2(A) = 1 in agreement
with the theorem proved in class.

8A review of the proof given in class of Schur’s lemmas (which were applied to group representations)
reveals that it also applies to representations of Lie algebras. Indeed, for any algebraic structure A , Schur’s
second lemma states that if there exists a matrix M such that D(A)M = MD(A) for all A ∈ A , where D(A)
is an n-dimensional irreducible matrix representation of A (over a complex representation space Cn), then it
follows that M must be a multiple of the identity matrix. In particular, any element of a Lie algebra A can
be expressed as some linear combination of the generators Aa (which serve as a basis for the Lie algebra).
Consequently, if D(Aa)M = MD(Aa) for all a = 1, 2, . . . , d, then it follows that D(A)M = MD(A) for all
A ∈ A , and Schur’s second lemma applies.
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(d) Compute the index of an arbitrary irreducible representation of su(2).

For su(2), the irreducible representations are labeled by j = 0, 1
2
, 1, 3

2
. . .. The quadratic

Casimir operator is proportional to J2

1
+ J2

2
+ J2

3
, where [Ji, Jj] = iǫijkJk in the physicist’s

convention. Since the eigenvalue of J2

1
+ J2

2
+ J2

3
is j(j + 1), we shall adjust the overall nor-

malization of the Casimir operator so that C2(A) = 1. Given that the adjoint representation
of su(2) corresponds to j = 1, it follows that:

C2(j) =
1

2
j(j + 1) .

We now use eq. (65) to obtain the index of an irreducible representation of su(2). Using
dR = 2j + 1 for the irreducible representation labeled by j, it follows that the index cR is

c(j) = 1

6
j(j + 1)(2j + 1) .

In the defining representation, j = 1

2
, and we find cF ≡ c(1

2
) = 1

4
. In the adjoint representation,

j = 1 and we find that cA ≡ c(1) = 1 as expected from part (b).

(e) Compute the index of the defining representation of su(3) and generalize this result to
su(n).

First, consider the Lie algebra su(3). We choose the generators in the defining representation
to be the Gell-Mann matrices, 1

2
λa. Following the mathematician’s conventions, we define

Ta ≡ −1

2
iλa so that

[Ta, Tb] = fabcTc ,

where the fabc are the totally antisymmetric structure constants in the convention where the
Ta satisfy

Tr(TaTb) = −1

4
Tr(λaλb) = −1

2
δab , (66)

using the explicit form for the Gell-Mann matrices given in the class handout entitled Prop-

erties of the Gell-Mann matrices. In this basis choice,

gab = f c
adf

c
bd = −3δab ,

using the explicit form for the su(3) structure constants listed in the class handout on SU(3).
The index of the defining representation, usually denoted by cF (since physicists also refer to
this representation as the fundamental representation), can be obtained from eq. (63),

Tr(TaTb) = cF (−3δab) .

Using eq. (66) to compute the trace, we end up with cF = 1

6
.

To generalize these results to su(n), we shall make use of the construction of the su(n) Lie
algebra given in the class handout entitled Properties of the Gell-Mann matrices. There, we
defined traceless n× n matrices,

(F a
b )cd = δbcδ

a
d −

1

n
δab δcd ,
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which satisfy the commutation relations,

[F a
b , F

c
d ] = δadF

c
b − δcbF

a
d . (67)

The generalized (hermitian) Gell-Mann matrices are:

λ1 = F 1

2
+ F 2

1
=

(
σ1 0
0 0

)
, λ2 = i(F 1

2
− F 2

1
) =

(
σ2 0
0 0

)
,

λ3 = F 1

1
− F 2

2
=

(
σ3 0
0 0

)
, etc. (68)

where the Pauli matrices occupy the upper left 2 × 2 block of the n × n matrix generators
(with all other elements zero). In the mathematician’s convention, we define Ta = −1

2
iλa and

[Ta, Tb] = fabcTc, where the fabc are totally antisymmetric and Tr(TaTb) ∝ δab. To compute
the constant of proportionality, one can check for example that

Tr(T3T3) = −1

4
Tr(λ3λ3) = −1

2
,

using eq. (68). Clearly, the constant of proportionality does not depend on the choice of a
and b. Hence, it follows that the generators of su(n) in the defining representation satisfy

Tr(TaTb) = −1

2
δab . (69)

Next, we evaluate the Cartan metric tensor, which is given by:

gab = f c
adf

d
bc . (70)

In the convention where the generators satisfy Tr(TaTb) ∝ δab, the Cartan metric tensor also
satisfies gab ∝ δab, in light of eq. (63). To determine the proportionality constant, consider

[T3, Tc] = f3cdTd .

We can evaluate g33 = f3dcf3cd by examining eq. (67). In particular,

[T3, F
2

1
] = F 2

1
, [T3, F

1

2
] = −F 1

2
, [T3, F

a
1
] = 1

2
F a
1
, [T3, F

1

a ] = −1

2
F 1

a ,

[T3, F
a
2
] = −1

2
F a
1
, [T3, F

2

a ] =
1

2
F 1

a , [T3, F
a
b ] = [T3, F

b
a ] = 0 , (71)

for a 6= b and a, b = 3, 4, . . . , n. Note that the non-diagonal generators Tc of the form F a
b +F b

a

and i(F a
b − F b

a) for a < b with a = 1 or a = 2 are the only generators that do not commute
with T3. Eq. (71) provides the necessary information to evaluate g33,

g33 = (+1)(−1) + (n− 1)
(
1

2
)(−1

2

)
= −n .

where the first term on the right-hand side derives from f312f321, whereas the remaining terms
derive from the remaining combination of non-zero structure constants. That is,

gab = f c
adf

d
bc = −nδab .
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The index of the defining representation can be obtained from eq. (63),

Tr(TaTb) = cF (−nδab) .

Using eq. (69) to compute the trace, we end up with

cF =
1

2n
. (72)

One sees that this general result is consistent with the corresponding results of su(2) and su(3)
previously obtained.

Remarks:

Using eqs. (65) and (72), one can compute the eigenvalue of the quadratic Casimir operator
in the defining representation of su(n). In particular, since d = n2−1, dF = n and cF = 1/(2n),
it follows that:

C2(F ) =
n2 − 1

2n2
.

Moreover, the Casimir operator in the defining representation of su(n) is given by

C2(A) = 1 ,

according to the theorem proved in class. However, note that the Casimir operator of su(n)
is defined in an arbitrary irreducible representation R by

C2 = gabRaRb = −1

n

n2−1∑

a=1

RaRa , (73)

where we have used eq. (70) [recall that gab is the inverse of gab]. In the physics literature,
in the case of su(n) one typically defines C2 by omitting the overall factor of 1/n in eq. (73).
Consequently, C2(R) is a factor of n larger than indicated above, in which case

C2(F ) =
n2 − 1

2n
, Ca(A) = n .

Additional details on the Casimir operator and index of an irreducible representation of a
simple Lie algebra can be found in the class handout entitled, The eigenvalues of the quadratic
Casimir operator and second-order indices of a simple Lie algebra.

4. Various subalgebras of su(3) may be identified with specific subsets of the su(3) generators.

(a) Show that the Gell-Mann matrices λ1, λ2, and λ3 generate an su(2) subalgebra.

Consider the commutation relations satisfied by λ1, λ2 and λ3,

[λa, λb] = 2iǫabcλc , for a, b, c = 1, 2, 3 .
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If we define Ta ≡ −1

2
iλa, then the resulting commutation relations,

[Ta, Tb] = ǫijkTc , for a, b, c = 1, 2, 3 , (74)

correspond to an su(2) Lie algebra, which is a subalgebra of the su(3) Lie algebra.

(b) Show that the Gell-Mann matrices λ2, λ5, and λ7 generate an so(3) subalgebra. Why
do you think I called this an so(3) subalgebra rather than an su(2) subalgebra?

Consider the commutation relations, [λ2, λ5] = iλ7, and cyclic permutations thereof. It follows
that {−iλ2,−iλ5,−iλ7} satisfy the same su(2) commutation relations as the Ta of eq. (74).
Indeed, the matrix forms of {−iλ2,−iλ5,−iλ7} are:




0 0 0
0 0 −1
0 1 0



 ,




0 0 1
0 0 0

−1 0 0



 ,




0 −1 0
1 0 0
0 0 0



 , (75)

which are of the form (Aa)bc = −ǫabc.
The matrices given in eq. (75) constitute the adjoint representation of the generators of

su(2). When exponentiated, these matrices generate the Lie group SO(3), since SO(3) is the
adjoint group of SU(2). Hence, we say that {−iλ2,−iλ5,−iλ7} generate an so(3) subalgebra
of su(3).

(c) Decompose (if necessary) the three-dimensional irreducible representation of su(3) into
representations that are irreducible under the subalgebras of parts (a) and (b).

If we decompose the three-dimensional irreducible representation of su(3) denoted henceforth
by 3, with respect to the su(2) subalgebra that is generated by {−iλ1, −iλ2, −iλ3}, then it
is easy to determine from the weight diagram shown in Fig. 1 the components of the weight
vectors of the 3 corresponding to the eigenvalues of T3 ≡ 1

2
λ3.

T8

T3

(
0,− 1√

3

)

(
1

2
, 1

2
√
3

) (
1

2
, 1

2
√
3

)d u

s

Figure 1: The weight diagram of the three-dimensional defining representation, 3, of su(3).
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In particular, the 3 of su(3) contains a doublet ( u
d ) with T3 = ±1

2
and a singlet s with

T3 = 0. That is, with respect to the su(2) subalgebra generated by {−iλ1, −iλ2, −iλ3}, the
3 of su(3) decomposes as

3 −→ 2⊕ 1 .

This is an example of a branching rule.
The decomposition of the 3 of su(3) with respect to the su(2) subalgebra generated by

{−iλ2, −iλ5, −iλ7} is obtained as follows. In part (b), we noted that the explicit form for the
matrices {−iλ2, −iλ5, −iλ7} are given by (Aa)bc = −ǫabc, which is the adjoint representation
for the generators of su(2). The latter is a three-dimensional irreducible representation of
su(2). Hence, in this case, the corresponding branching rule is

3 −→ 3 . (76)

Since the adjoint group of SU(2) is SO(3), it is appropriate to consider the branching rule as
describing the embedding of an so(3) subalgebra within the Lie algebra su(3).

5. Consider the simple Lie algebra g generated by the ten 4×4 matrices: σa⊗I, σa⊗τ1, σa⊗τ3
and I ⊗ τ2, where (I, σa) and (I, τa) are the 2 × 2 identity and Pauli matrices in orthogonal
spaces. For example, since τ3 =

(
1 0

0 −1

)
, we obtain in block matrix form:

σa ⊗ τ3 =

(
σa 0
0 −σa

)
, (a = 1, 2, 3) ,

where 0 is the 2 × 2 zero matrix. The remaining seven matrices can be likewise obtained.
Take H1 = σ3 ⊗ I and H2 = σ3 ⊗ τ3 as the generators of the Cartan subalgebra. Note that if
A, B, C, and D are 2× 2 matrices, then (A⊗B)(C ⊗D) = AC ⊗ BD.

(a) Find the roots. Normalize the roots such that the shortest root vector has length 1.
What is the rank of g?

First, we write out the ten generators explicitly in block matrix form:

Aa ≡ σa ⊗ τ1 =

(
0 σa

σa 0

)
, (a = 1, 2, 3) ,

Ba ≡ σa ⊗ τ3 =

(
σa 0
0 −σa

)
, (a = 1, 2, 3) ,

Ca ≡ σa ⊗ I =

(
σa 0
0 σa

)
, (a = 1, 2, 3) ,

D ≡ I⊗ τ2 =

(
0 −iI
iI 0

)
. (77)

To check that these generators actually generate a Lie algebra, we work out all the commuta-
tion relations:
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[Aa, Ab] = 2iǫabcCc , [Ba, Bb] = 2iǫabcCc , [Ca, Cb] = 2iǫabcCc ,

[Aa, Bb] = −2iδabD , [Aa, Cb] = 2iǫabcAc , [Ba, Cb] = 2iǫabcBc ,

[Aa, D] = 2iBa , [Ba, D] = −2iAa , [Ca, D] = 0 , (78)

where we have used σaσb = Iδab + iǫabcσc. For example,

[Aa, Bb] = AaBb −BbAa =

(
0 σa

σa 0

)(
σb 0
0 −σb

)
−

(
σb 0
0 −σb

)(
0 σa

σa 0

)

=

(
0 −(σaσb + σbσa)

σaσb + σbσa 0

)

=

(
0 −2Iδab

2Iδab 0

)
= −2iδabD . (79)

Alternatively, one can derive the commutation relations displayed in eq. (78) by employing
the direct product representation of the Lie algebra generators given in eq. (77) and using
(A⊗ B)(C ⊗D) = AC ⊗BD. For example, eq. (79) can also be obtained as follows.

[Aa, Bb] = (σa ⊗ τ1)(σb ⊗ τ3)− (σb ⊗ τ3)(σa ⊗ τ1)

= (σaσb)⊗ (τ1τ3)− (σbσa)⊗ (τ3τ1)

= (σaσb)⊗ (−iτ2)− (σbσa)⊗ (iτ2)

= (σaσb + σbσa)⊗ (−iτ2)

= (2Iδab)⊗ (−iτ2) = −2iδab I⊗ τ2 = −2iδabD .

All other commutation relations are easily derived using either of the methods shown above.
Thus, the ten generators {Aa, Ba, Ca, D} generate a Lie algebra, since the commutation rela-
tions close.

To determine the roots, we treat g as a complex Lie algebra, so that we are free to consider
complex linear combinations of generators. It is convenient to choose the Hermitian generators
H1 = σ3 ⊗ I = C3 and H2 = σ3 ⊗ τ3 = B3 to span the Cartan subalgebra. Indeed, these two
generators are diagonal in the representation given in eq. (77). Therefore, the rank of the
algebra g is 2, corresponding to the maximal number of simultaneously diagonal generators.

We now rewrite the commutation relations given in eq. (78) in the Cartan-Weyl form.
Starting from the commutation relations,

[B3, A1] = [B3, A2] = 0 , [C3, A1] = 2iA2 , [C3, A2] = −2iA1 ,

it is clear that we should define A± ≡ A1 ± iA2, in which case,

[B2, A±] = 0 , [C3, A±] = ±2A± . (80)
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Next, we focus on the commutation relations,

[B3, A3] = 2iD , [B3, D] = −2iA3 , [C3, A3] = [C3, D] = 0 .

These results motivate the definition D± ≡ A3 ± iD, in which case,

[B3, D±] = ±2D± , [C3, D±] = 0 . (81)

The remaining commutation relations are:

[B3, B1] = 2iC2 , [B3, B2] = −2iC1 , [B3, C1] = 2iB2 , [B3, C2] = −2iB1 ,

(82)

[C3, B1] = 2iB2 , [C3, B2] = −2iB1 , [C3, C1] = 2iC2 , [C3, C2] = −2iC1 .

(83)

Defining B± ≡ B1 ± iB2 and C± ≡ C1 ± iC2, eqs. (82) and (83) can be rewritten as:

[B3, B±] = ±2C± , [B3, C±] = ±2B± , [C3, B±] = ±2B± , [C3, C±] = ±2C± .
(84)

Thus, if we define F± ≡ B± + C± and G± ≡ B± − C±, the eq. (84) will be in Cartan-Weyl
form,

[B3, F±] = ±2F± , [B3, F±] = ±2F± , [C3, G±] = ∓2G± , [C3, G±] = ±2G± .
(85)

To summarize, eqs. (80), (81) and (85) provide the Cartan-Weyl form for the commutation
relations among the generators Hi = {C3, B3} of the Cartan subalgebra and the off-diagonal
generators Eα ≡ {A±, D±, E±, F±}. Note that we have chosen the generators to satisfy,

H†
i = Hi , E−α = E†

α
. (86)

The root vectors are defined by the Cartan-Weyl form for the Lie algebra commutation
relations, [Hi, Eα] = αiEα, for i = 1, 2, . . . , r, where r = rank g. In the present example,
r = 2, H1 = C3, H2 = B3 and the off diagonal generators are Eα ≡ {A±, D±, E±, F±}. Hence,
we identify the root vectors derived from the non-diagonal generators:

A± : ±(0, 2) , D± : ±(2, 0) , (87)

F± : ±(2, 2) , G± : ±(−2, 2) , (88)

where the first entry of the root vector is the eigenvalue of adC3
and the second entry of the

root vector is the eigenvalue of adB3
The Cartan metric can be computed from the formula,

gij =
∑

α
αiαj . From the four root vectors obtained in eqs. (87) and (88), we immediately

obtain
gij = 24δij . (89)

The inverse Cartan metric is gij = 1

24
δij . One can now define the inner product on the root

space,
(α,β) = gijαiβj . (90)

The squared-length of a root vector α is given by (α,α) = gijαiαj =
∑

2

i=1
αiαi .
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(1,−1)

(1, 1)

(1, 0)(−1, 0)

(−1,−1)

(−1, 1)

(0, 1)

(0,−1)

Figure 2: The root diagram for sp(2,C) ∼= so(5,C).

It is convenient to redefine the inner product given in eq. (90) by introducing an overall mul-
tiplicative positive constant such that the new inner product is Euclidean, (α,β) =

∑
i αiβi .

Moreover, one is always free to rescale the generators of the Cartan subalgebra (which rescales
the root vectors) in such a way that the shortest root vector has length 1. In these conventions,
the rescaled roots are given by [cf. eqs. (87) and (88)],

{
±(0, 1) , ±(1, 0) , ±(1, 1) , ±(−1, 1)

}
,

and the corresponding root diagram is shown in Fig. 2 above, which we recognize as the root
diagram for the rank-2 Lie algebra sp(2,C) ∼= so(5,C).9

(b) Determine the simple roots and evaluate the corresponding Cartan matrix. Deduce
the Dynkin diagram for this Lie algebra and identify it by name.

The simple roots correspond to the two smallest positive roots. These are

α1 ≡ (0, 1) , and α2 ≡ (1,−1) . (91)

It is a simple matter to check that the other two positive roots can be expressed as sums of
simple roots,

(1, 0) = α1 +α2 , (1, 1) = 2α1 + α2 .

The Cartan matrix is defined by:10

Aij =
2(αi,αj)

(αi,αi)
, (92)

9In the notation used here, sp(n,C) is a Lie algebra of rank n. However, many books denote this Lie
algebra by sp(2n,C). Both conventions are common in the mathematics and physics literature.

10Warning: in the mathematics literature, eq. (92) is often employed as the definition of the transposed
Cartan matrix. You should check carefully when using results from books on Lie algebras.

20



α1 α2

Figure 3: The Dynkin diagram for sp(2,C) ∼= so(5,C).

where the inner product (α,β) ≡ ∑
i αiβi in the convention where gij = δij . Using eq. (91),

we obtain A11 = A22 = 2, A12 = −2 and A21 = −1. That is,

A =

(
2 −2

−1 2

)
. (93)

The structure of the Dynkin diagram depends on the angle between the two simple roots:

cosϕα1α2
=

(α1,α2)√
(α1,α1)(α2,α2)

= − 1√
2
.

Hence ϕα1α2
= 135◦, which corresponds to a double line connecting the two balls of the

Dynkin diagram. Hence, the Dynkin diagram corresponding to the Lie algebra, whose simple
roots are given by eq. (91), is exhibited in Fig. 3, where the shaded ball corresponds to the
simple root of the smallest length. In Cartan’s notation, this Lie algebra is B2

∼= C2, which
corresponds to sp(2,C) ∼= so(5,C) as noted at the end of part (a).

(c) The fundamental weights mi are defined in terms of the simple roots αj ∈ Π such that

2(mi,αj)

(αj ,αj)
= δij , for i, j = 1, 2, . . . , r , (94)

where r ≡ rank g. Using the results of part (b), determine all the fundamental weights of g.

We can solve for the mi by expanding the fundamental weight vectors in terms of the simple
roots:

mi =

r∑

k=1

ckiαk .

Inserting this expression into eq. (94) yields,

r∑

k=1

cki
2(αk,αj)

(αj,αj)
= δij ,

which can be expressed in terms of the Cartan matrix A,

r∑

k=1

ckiAjk = δij .

This implies that c = A−1, and we conclude that

mi =

r∑

k=1

(A−1)kiαk . (95)
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Using the Cartan matrix given in eq. (93), the inverse is easily obtained:

A−1 = 1

2

(
2 2
1 2

)
.

Thus, eq. (95) yields the two fundamental weights of sp(2,C) ∼= so(5,C),

m1 = α1 +
1

2
α2 = (1

2
, 1

2
) , (96)

m2 = α1 + α2 = (1 , 0) , (97)

where we have used eq. (91) for the simple roots.

(d) Each of the r fundamental weights is the highest weight for an irreducible representation
of g. Collectively, these are called the fundamental (or basic) representations of g. For
each fundamental representation of g, compute the complete set of weights and draw the
corresponding weight diagrams.11 What are the corresponding dimensions of the fundamental
representations of g.

The complete set of weights for the irreducible representations of sp(2,C) ∼= so(5,C)
corresponding to the highest weights m1 and m2, respectively, can be obtained by the method
of block weight diagrams described in Robert N. Cahn, Semi-Simple Lie Algebras and Their

Representations (Dover Publications, Inc., Mineola, NY, 2006).12

Given a highest weight M , the corresponding Dynkin labels ki (which are non-negative
integers) are defined by

ki ≡
2(M ,αi)

(αi,αi)
, where αi ∈ Π . (98)

The irreducible representations of the Lie algebra g are often denoted by placing the ith
Dynkin label ki above the ith ball of the Dynkin diagram (corresponding to the ith simple
root αi), as shown in Fig. 4 below.

The Dynkin labels for the fundamental weights m1 and m2 are [cf. eq. (94)],13

m1 : (1 , 0) , m2 : (0 , 1) , (99)

and the corresponding block weight diagrams are exhibited in Fig. 4.

The above block weight diagrams, corresponding to the two fundamental representations
of sp(2,C) ∼= so(5,C), were obtained as follows. We employed the theorem that establishes
strings of weights of the form

2(m,αi)

(αi,αi)
− kAji, for values of k = 0, 1, 2, , . . . ,

2(m,αi)

(αi,αi)
.

11The weight diagrams should be plotted on a two dimensional plane, where the axes correspond to the
diagonalized generators normalized such that the shortest root vector has length 1.

12However, note that Cahn defines the Cartan matrix that is the transpose of our definition.
13Do not confuse the Dynkin labels of a weight with its coordinates in weight space given in eqs. (96)

and (97). For example, the fundamental weight m1 = α1 + 1

2
α2 = (1

2
, 1

2
), whereas its Dynkin labels are

(k1, k2) = (1 , 0), as indicated in eq. (99).
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1 1

1 0

−1 1

1 − 1

−1 0

0 1

2 − 1

0 0

−2 1

0 − 1

Figure 4: The block weight diagrams of the fundamental irreducible representations of sp(2) ∼= so(5).

Thus, starting with any weight m, the Dynkin labels for the weights appearing below it in the
block weight diagram are obtained by subtracting off the jth column of the Cartan matrix n
times, where n is the jth positive Dynkin label of the weight.14 Applying the above algorithm
produces the Dynkin labels of the four weights corresponding to the representation specified
by m1 and the five weights corresponding to representation specified by m2.

In this method, the computation of the multiplicity of a given weight requires additional
analysis. But, for the simple cases treated above, all weights appear with multiplicity equal
to one, in which case the dimension of the representation is simply equal to the number of
weights in the block weight diagram.

Hence, the representations depicted by the block weight diagrams of Fig. 4 are four-
dimensional and five-dimensional, respectively, The four-dimensional representation, corre-
sponding to the highest weight m1, is precisely the matrix representation given in eq. (77).
This is either the defining representation of sp(2,C) or the spinor representation of so(5,C).15

In contrast, m2 is the highest weight of a five-dimensional representation, which corresponds
to the defining representation of so(5,C).

It is instructive to re-express the weights in terms of its coordinates in the vector space
spanned by the simple roots. The weights can then be depicted as vectors in a two-dimensional
plane. Given a weight specified by its Dynkin labels (k1, k2), the corresponding weight m is
obtained by solving the equations [cf. eq. (98)]:

k1 ≡
2(m,α1)

(α1,α1)
, k2 ≡

2(m,α2)

(α2,α2)
. (100)

To solve for m in terms of k1 and k2, we expand m as a linear combination of simple roots
[which are given explicitly in eq. (91)],

m = c1α1 + c2α2 . (101)

14If there are two (or more) positive Dynkin labels, then the block weight diagram branches. This does not
occur in the examples exhibited in Fig. 4.

15Since sp(2,C) ∼= so(5,C), the representations obtained above are representations of either Lie algebra.
However, the interpretation of the representation depends on which choice of Lie algebra is made.
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(
1

2
,− 1

2

)

(
1

2
, 1

2

)

(
− 1

2
,− 1

2

)

(
− 1

2
, 1

2

)

T2

T1

(1, 0)
T1(−1, 0)

T2

(0, 1)

(0,−1)

(0, 0)

Figure 5: The weight diagrams of the fundamental representations of sp(2,C) ∼= so(5,C), with dimensions
four [left] and five [right], respectively.

Inserting this expression for m into eq. (100), it follows that:

k1 =
2(c1α1 + c2α2 , α1)

(α1,α1)
= 2c1 − 2c2 ,

k2 =
2(c1α1 + c2α2 , α2)

(α2,α2)
= −c1 + 2c2 ,

after using (α1,α1) = 1, (α1,α2) = −1 and (α2,α2) = 2. Solving for c1 and c2 then yields:

c1 = k1 + k2 , c2 =
1

2
k1 + k2 . (102)

Hence, using eqs. (91) and (102), the weight m specified by eq. (101) is given by:

m =
(
1

2
k1 + k2 ,

1

2
k1
)
. (103)

As a check, if m = m1 then k1 = 1 and k2 = 0, in which case c1 = 1, c2 =
1

2
and m1 = (1

2
, 1

2
)

in agreement with eq. (96). Likewise, if m = m2 then k1 = 0 and k2 = 1, in which case
c1 = c2 = 1 and m1 = (1 , 0) in agreement with eq. (97).

One can use eq. (103) to obtain the coordinates of all the weights exhibited in Fig. 4.
For the four-dimensional representation specified by the Dynkin labels (1, 0) and the five-
dimensional representation specified by the Dynkin labels (0, 1), the corresponding weight
space diagrams are given in Fig. 5.16 In particular, T1 ≡ 1

2
H1 = 1

2
C3 and T2 ≡ 1

2
H2 = 1

2
B3

are the diagonal generators normalized such that the shortest root vector has length 1. Given
the explicit four-dimensional representation in eq. (77), one can check that the weight vectors,{
(1
2
, 1

2
) , (1

2
,−1

2
) , (−1

2
, 1

2
), (−1

2
,−1

2
)
}
, exhibited in Fig. 5 satisfy the eigenvalue equations,

Ti|m〉 = mi|m〉 , for i = 1, 2 , (104)

where m = (m1, m2) are the coordinates in the T1–T2 plane.
16As previously noted, all weights shown in the two weight space diagrams above have multiplicity one,

which means that the corresponding simultaneous eigenvector |m〉 defined in eq. (104) is unique.
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The weights of the five-dimensional representation,
{
(1, 0), (0, 1), (0, 0), (0,−1), (−1, 0)

}
,

shown in Fig. 5 include a zero weight (indicated by the filled circle at the origin of the weight
diagram). To check that eq. (104) is satisfied in this latter case, it is straightforward to
construct explicit five-dimensional matrix representations of T1 and T2, which are the Cartan
subalgebra generators in the defining representation of so(5,C). Explicitly, we may choose
the following Hermitian generators of the Cartan subalgebra,17

T1 =




0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, T2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0




. (105)

The simultaneous normalized eigenvectors, denoted by |m〉 in eq. (104), are

1√
2




1
i
0
0
0




,
1√
2




1
−i
0
0
0




,
1√
2




0
0
1
i
0




,
1√
2




0
0
1

−i
0




,




0
0
0
0
1




.

It is now a simple matter to check that the weights of the five-dimensional representation
shown in Fig. 5 satisfy eq. (104).

Finally, we note that the weight diagrams obtained above also apply to the real forms of
sp(2,C) ∼= so(5,C) [such as the corresponding compact real Lie algebras, sp(2) ∼= so(5)].

17The generators shown in eq. (105) are the obvious generalizations of the corresponding results of so(3,C)
and so(4,C). In the case of so(3,C), there is one Hermitian 3×3 matrix generator of the Cartan subalgebra in
the defining representation (or equivalently the adjoint representation), usually denoted by (T3)jk = −iǫ3jk.
In the case of so(4,C), there are two Hermitian 4×4 matrix generators of the Cartan subalgebra in the defining
representation, denoted by iA3 and iB3 in the notation of problem 3 of this problem set.
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