Introduction to SU(5) and SO(10) Grand Unification

nick hamer

University of California Santa Cruz

June 6, 2019
Overview

1. Motivation for Grand Unification
2. SM introduction (first generation)
3. SU(5) Unification
4. SO(10) Unification (briefly)
Motivation

- Can the large number of parameters inserted into the standard model be reconciled?
- Is it possible to unify SM forces, account for seemingly arbitrary coupling constants?
- Likewise can the fermions be united?
- Why are the hypercharge values of multiplets the way they are?
- Similarly, why are the electric charges what they are?
- SM incompatible with massive neutrinos
Isospin

- Analogous to spin-\(\frac{1}{2}\), described by SU(2)
- Strong isospin states up/down equivalent to spin-\(\frac{1}{2}\) projections: \(\pm \frac{1}{2}\)
- Quite descriptive due to the proximity of the masses of the u,d quarks
- Strong interaction acts on multiplets of the total isospin, e.g.
 \[2 \otimes 2 = 3 \oplus 1: \pi^0, \pm \oplus \eta \]
Hypercharge

- Utility in assigning these particle families a particular number: \(Y \)
- Gell-Mann-Nishijima formula: \(Q = I_3 + \frac{Y}{2} \)
Weak isospin

- Extend idea to leptons, create second doublet: \[
\begin{pmatrix}
\nu_L \\
\ell^-_L
\end{pmatrix}
\]
- Weak isospin mediated by \(W^\pm, Z^0 \)
- Observed asymmetry in chirality, only left-handed particles transform non-trivially under \(SU(2) \)
- Extend hypercharge as well, Gell-Mann-Nishijima still holds if the weak isospin doublet has \(Y = -1 \)
- Right-handed particles have no weak isospin projections
Gauge bosons, symmetry breaking

- **SM gauge group**: $SU(3) \otimes SU(2) \otimes U(1)$
- **SU(3) gauge bosons**: 8 massless gluons
- **Unified electroweak gauge bosons** (massless): W^0, \pm, B, with γ, Z^0 being linear combinations of W^0 and B
- **SU(2) \otimes U(1) symmetry broken**, electromagnetic and weak force behave differently, W^\pm, Z^0 bosons become massive
16 total fermions in $SU(3) \otimes SU(2) \otimes U(1)$

- $\nu_R = (1 \otimes 1)_0$
- $e_R = (1 \otimes 1)_{-2}$
- Left-handed lepton doublet $(1 \otimes 2)_{-1}$
- Right-handed down quark triplet $d_R = (3 \otimes 1)_{-\frac{2}{3}}$
- Right-handed up quark triplet $u_R = (3 \otimes 1)_{\frac{4}{3}}$
- Left-handed quark sextuplet $Q_L = (3 \otimes 2)_{\frac{1}{3}}$

16 fermions and 16 anti-fermions: $16 \oplus \bar{16} = 32$
Why SU(5)?

- Sensible to start with a rank 4 group
- SM has 4 commuting generators, $T_{3,8}$ from SU(3), σ_3 from SU(2) and the U(1) generator
- Is it possible to embed the SM into SU(5)?
- By construction, the diagonal generators can be made equivalent to those of the SM
Fitting $SU(3) \otimes SU(2) \otimes U(1)$ in $SU(5)$

- Represent matrices in $SU(5)$ as block diagonal, with block elements that are $SU(3)$, $SU(2)$ matrices multiplied by an appropriate $U(1)$ factor.

\[
A = \begin{pmatrix} \alpha^{-2} M & 0 \\ 0 & \alpha^3 N \end{pmatrix}, \alpha \in U(1), M \in SU(3), N \in SU(2)
\]

- Kernel of $\phi : (\alpha, M, N) \mapsto A$ is $(\alpha, \alpha^2, \alpha^{-3})$.

- Satisfying determinant condition requires that α be a sixth root of unity: \mathbb{Z}_6.
To be able to embed the SM group (G_{SM}) into SU(5), the kernel must act trivially.

With some algebra, this yields constraints on the hypercharge, e.g. for left-handed quarks, $Y = 2k + \frac{1}{3}$, $k \in \mathbb{Z}$.

Structure introduced to the hypercharges via Gell-Mann-Nishijima, electric charge determined.
Where the first generation particles fit

- Examining the structure of that matrix A, its action would be on a vector made up of a doublet and a triplet
- The fundamental $5 = (1 \otimes 2)_1 \oplus (3 \otimes 1)_{-2/3}$
- Utilise $\bar{5} = (1 \otimes 2)_{-1} \oplus (\bar{3} \otimes 1)_{2/3}$, identify with doublet of leptons: $(\nu, e)^T$ and triplet of \bar{d}
- The antisymmetric part of the product of two 5s: $5 \otimes_A 5 = 10$ can describe the remainder
- $10 = (1 \otimes 1)_2 \oplus (3 \otimes 2)_{1/3} \oplus (\bar{3} \otimes 1)_{-4/3}$
- Identify \bar{e}, quark sextuplet, \bar{u} triplet
Gauge bosons

- \(5^2 - 1 = 24\) generators

\[
T^a = \left(\begin{array}{cc} \frac{\lambda^a}{2} & 0 \\ 0 & 0 \end{array} \right), \quad T^i = \left(\begin{array}{cc} 0 & 0 \\ 0 & \frac{\sigma^i}{2} \end{array} \right)
\]

- \(\lambda^a\) and \(\sigma^i\) are the Gell-Mann and Pauli matrices respectively.
- for \(a = 3, 8\) and \(i = 3\), there are 3 diagonal matrices. We expect one more
- \(\tilde{Y} = \frac{1}{\sqrt{60}} \text{diag}(-2, -2, -2, 3, 3)\)
- \(24 = (8 \otimes 1)_0 \oplus (1 \otimes 3)_0 \oplus (1 \otimes 1)_0 \oplus (\bar{3} \otimes 2)^{\frac{5}{6}} \oplus (3 \otimes 2)^{-\frac{5}{6}}\)
- Twelve off-diagonal matrices, linear combinations of which give 12 additional bosons
- These X,Y bosons can mediate processes that don’t conserve baryon or lepton number
Proton Decay

Figure: Retrieved from wikipedia. public domain.
Proton Decay

Figure: Retrieved from wikipedia. public domain.
Proton Decay

\[\Gamma(qqq \rightarrow q\bar{q}l = \pi^0 e^+) \approx \frac{m_p^5}{M_{GUT}^4} \]

- Experimental searches for proton decay constrain \(M_{GUT} \gtrsim 10^{16} \text{ GeV} \)
For the Higgs, again use fundamental 5 containing a triplet and a doublet.

Symmetry breaking $SU(5) \rightarrow SU(3) \otimes SU(2) \otimes U(1)$

Doublet energy goes to the weak energy scale (100 GeV)

Energy of triplet would remain at GUT energy scale, 10^{14} GeV
difference: fine tuning problem

SO(10) encounters same problem
Weinberg angle

- \[\sin^2(\theta_W) = \frac{g'^2}{g^2+g'^2} \text{ where } g', g \text{ are the couplings for hypercharge and weak isospin respectively} \]
- Denotes the rotation of the basis vectors \(\gamma, Z^0 \) in the \(W^0, B \) plane after electroweak symmetry breaking.
- Can express it in terms of single SU(5) coupling \(g \), replacing the \(g \) in the above equation.
- Inspect the action of \(\tilde{\gamma} \) on the states in the \(\bar{5} \) and we can read off \(\tilde{\gamma} = \frac{\sqrt{60}}{6} \gamma \)
- Comparing \(\gamma \) to \(\tilde{\gamma} \) yields \((g/g')^2 = \frac{5}{3} \)
- Predicts \(\sin^2(\theta^{GUT}_W) = \frac{3}{8} \)
SU(5) summary

- A single gauge coupling
- Structure of hypercharge, electric charge
- Energy scale large due to proton stability
- Weinberg angle prediction is motivating but simple scheme untenable
- Not all SM particles embedded into single irrep
- Fine tuning problem present
Pati-Salam model

- Idea: promote right handed singlets to doublets
- Weak isospin now acts like $SU(2) \otimes SU(2)$, with each $SU(2)$ acting on a doublet of different handedness
- Additionally, can think of lepton number as a fourth colour. $SU(3) \rightarrow SU(4)$
- Full model: $SU(4) \otimes SU(2) \otimes SU(2)$
What can be gained by adding another commuting generator?

- B-L conservation is a naturally motivated choice: gives rise to Pati-Salam

- Can represent SM fermions inside a single irrep: \(16 = 10 \oplus \bar{5} \oplus 1 \)

- All particles inside a single irrep
Can break symmetry in various ways, some examples:

- $SO(10) \rightarrow SU(3) \otimes SU(2) \otimes U(1)$
- $SO(10) \rightarrow SU(4) \otimes SU(2) \otimes SU(2)$
- $SO(10) \rightarrow SU(3) \otimes SU(2) \otimes SU(2) \otimes U(1)$
- $SO(10) \rightarrow SU(5) \otimes U(1)$
We saw that the 5 of SU(5) was an SU(3) colour triplet and an SU(2) isospin doublet.

With $16 \oplus \bar{16} = 32$ SM fermions (and anti-fermions), can represent every particle in a 5 element vector, whose elements are binary flags for some kind of charge: $2^5 = 32$.

Can think of a binary flag as some SU(2) projection.

$\psi = (r, g, b, up, down)^T$
\[2^5 \text{ representation}\]

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>(Y)</th>
<th>(r)</th>
<th>(g)</th>
<th>(b)</th>
<th>(u)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu^c)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(e^c)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(u_r)</td>
<td>1/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(d_r)</td>
<td>1/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(u_g)</td>
<td>1/3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(d_g)</td>
<td>1/3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(u_b)</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(d_b)</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(u_{r}^c)</td>
<td>-4/3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(u_{g}^c)</td>
<td>-4/3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(u_{b}^c)</td>
<td>-4/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(d_{r}^c)</td>
<td>2/3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(d_{g}^c)</td>
<td>2/3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(d_{b}^c)</td>
<td>2/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\nu)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(e)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Various ways to unite leptons and quarks
Hypercharge seen to be less arbitrary, electric charge follows
Still a large number of parameters to be inserted
SU(5): $M_{GUT} \gtrsim 10^{16}$ GeV
SU(5) and SO(10) encounter fine tuning issues
Extending these theories with SUSY possible, though thoroughly outside the scope here

