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Properties of Proper and Improper Rotation Matrices

1. Proper and improper rotation matrices

A real orthogonal matrix R is a matrix whose elements are real numbers and satisfies
R−1 = RT (or equivalently, RRT = I, where I is the n × n identity matrix). The
set of all such matrices provides the n-dimensional defining representation of the Lie
group O(n). Taking the determinant of the equation RRT = I and using the fact that
det(RT) = det R, it follows that (det R)2 = 1, which implies that either det R = 1
or detR = −1. The real orthogonal n × n matrices with detR = 1 are called special

real orthogonal matrices and provide the n-dimensional defining matrix representation
of the group of proper n-dimensional rotations, denoted by SO(n). Note that SO(n)
is a normal subgroup of O(n) since g SO(n)g−1 is a real orthogonal matrix with unit
determinant for any g ∈ O(n) and hence is an element of SO(n).

We shall henceforth focus on the case of n = 3. The most general 3 × 3 special
orthogonal matrix represents a counterclockwise rotation by an angle θ about a fixed
axis that lies along the unit vector n̂. The rotation matrix operates on vectors to
produce rotated vectors, while the coordinate axes are held fixed.1 In typical parlance,
a rotation refers to a proper rotation. Thus, in the following sections of these notes
we will often omit the adjective proper when referring to a proper rotation. The 3× 3
real orthogonal matrix with det R = −1 provides a matrix representation of a three-
dimensional improper rotation. To perform an improper rotation requires mirrors. That
is, the most general improper rotation matrix is a product of a proper rotation by an
angle θ about some axis n̂ and a mirror reflection through a plane that passes through
the origin and is perpendicular to n̂.

In these notes, I shall present a detailed treatment of the matrix representations
of three-dimensional proper and improper rotations. By determining the most general
form for a three-dimensional proper and improper rotation matrix, we can then examine
any 3 × 3 orthogonal matrix and determine the rotation and/or reflection it produces
as an operator acting on vectors. If the matrix represents a proper rotation, then the
axis of rotation and angle of rotation can be determined. If the matrix represents an
improper rotation, then the reflection plane and the rotation, if any, about the normal
to that plane can be determined. For additional material on these topics, I highly
recommend Refs. 1–3 listed at the end of these notes.

2. Properties of the 3 × 3 rotation matrix

A rotation in the x–y plane by an angle θ measured counterclockwise from the
positive x-axis is represented by the 2 × 2 real orthogonal matrix with determinant

1This is called an active transformation.
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equal to 1 given by
(

cos θ − sin θ
sin θ cos θ

)

.

If we consider this rotation as occurring in three-dimensional space, then it can be
described as a counterclockwise rotation by an angle θ about the z-axis. The matrix
representation of this three-dimensional rotation is given by the 3 × 3 real orthogonal
matrix with determinant equal to 1 given by

R(ẑ, θ) ≡





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , (1)

where the axis of rotation and the angle of rotation are specified as arguments of R.
The most general three-dimensional proper rotation, denoted by R(n̂, θ), can be

specified by an axis of rotation, n̂, and a rotation angle θ.2 Conventionally, a positive
rotation angle corresponds to a counterclockwise rotation. The direction of the axis is
determined by the right hand rule. Namely, curl the fingers of your right hand around
the axis of rotation, where your fingers point in the θ direction. Then, your thumb
points perpendicular to the plane of rotation in the direction of n̂. R(n̂, θ) is called the
angle-and-axis parameterization of a general three-dimensional proper rotation.

In general, rotation matrices do not commute under multiplication. However, if
both rotations are taken with respect to the same fixed axis, then

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) . (2)

Simple geometric considerations will convince you that the following relations are also
satisfied:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (3)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (4)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) , (5)

which implies that any three-dimensional rotation can be described by a counterclock-
wise rotation by an angle θ about an arbitrary axis n̂, where 0 ≤ θ ≤ π. However, if
we substitute θ = π in eq. (5), we conclude that

R(n̂, π) = R(−n̂, π) , (6)

2There is an alternative convention for the range of possible angles θ and rotation axes n̂. We say
that n̂ = (n1, n2, n3) > 0 if the first nonzero component of n̂ is positive. That is n3 > 0 if n1 = n2 = 0,
n2 > 0 if n1 = 0, and n1 > 0 otherwise. Then, all possible rotation matrices R(n̂, θ) correspond to
n̂ > 0 and 0 ≤ θ < 2π. However, we will not employ this convention in these notes.
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which means that for the special case of θ = π, R(n̂, π) and R(−n̂, π) represent the
same rotation. In particular, note that

[R(n̂, π)]2 = I . (7)

Indeed for any choice of n̂, the R(n̂, π) are the only non-trivial rotation matrices whose
square is equal to the identity operator. Finally, if θ = 0 then R(n̂, 0) = I is the identity
operator (sometimes called the trivial rotation), independently of the direction of n̂.

To learn more about the properties of a general three-dimensional rotation, consider
the matrix representation R(n̂, θ) with respect to the standard basis Bs = {x̂ , ŷ , ẑ}.
We can define a new coordinate system in which the unit vector n̂ points in the direction
of the new z-axis; the corresponding new basis will be denoted by B′. The matrix
representation of the rotation with respect to B′ is then given by R(ẑ, θ). Consequently,
there exists an invertible matrix P such that3

R(n̂, θ) = PR(ẑ, θ)P−1 , (8)

where n̂ = P ẑ and R(ẑ, θ) is given by eq. (1). An explicit form for P is obtained in
Appendix A. However, the mere existence of the matrix P in eq. (8) is sufficient to
provide a simple algorithm for determining the rotation axis n̂ (up to an overall sign)
and the rotation angle θ that characterize a general three-dimensional rotation matrix.

To determine the rotation angle θ, we note that the properties of the trace imply
that Tr(PRP−1) = Tr(P−1PR) = TrR, since one can cyclically permute the matrices
within the trace without modifying its value. Hence, it immediately follows from eq. (8)
that

Tr R(n̂, θ) = Tr R(ẑ, θ) = 2 cos θ + 1 , (9)

after taking the trace of eq. (1). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0.
Hence, the rotation angle is uniquely determined by eq. (9) To identify n̂, we observe
that any vector that is parallel to the axis of rotation is unaffected by the rotation itself.
This last statement can be expressed as an eigenvalue equation,

R(n̂, θ)n̂ = n̂ . (10)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue 1. In particular,
the eigenvalue 1 is unique for any θ 6= 0, in which case n̂ can be determined up to an
overall sign by computing the eigenvalues and the normalized eigenvectors of R(n̂, θ). A
simple proof of this result is given in Appendix B. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. Using eq. (8), it follows that the eigenvalues of R(n̂, θ) are identical to
the eigenvalues of R(ẑ, θ). The latter can be obtained from the characteristic equation,

(1− λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

3Eq. (8) is a special case of a more general result, R(n̂, θ) = PR(n̂′, θ)P−1, where n̂ = P n̂′. The
derivation of this result, which makes use of eqs. (57) and (59) of Section 7, is presented in Appendix D.
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which simplifies to:
(1− λ)(λ2 − 2λ cos θ + 1) = 0 ,

after using sin2 θ + cos2 θ = 1. Solving the quadratic equation, λ2 − 2λ cos θ + 1 = 0,
yields:

λ = cos θ ±
√
cos2 θ − 1 = cos θ ± i

√
1− cos2 θ = cos θ ± i sin θ = e±iθ . (11)

It follows that the three eigenvalues of R(ẑ, θ) are given by,

λ1 = 1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

There are three distinct cases:

Case 1: θ = 0 λ1 = λ2 = λ3 = 1 , R(n̂, 0) = I ,

Case 2: θ = π λ1 = 1 , λ2 = λ3 = −1 , R(n̂, π) ,

Case 3: 0 < θ < π λ1 = 1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding rotation matrix is indicated for each of the three cases. Indeed,
for θ 6= 0 the eigenvalue 1 is unique. Moreover, the other two eigenvalues are complex
conjugates of each other, whose real part is equal to cos θ, which uniquely fixes the
rotation angle in the convention where 0 ≤ θ ≤ π. Case 1 corresponds to the identity
(i.e. no rotation) and Case 2 corresponds to a 180◦ rotation about the axis n̂. In
Case 2, the interpretation of the the doubly degenerate eigenvalue −1 is clear. Namely,
the corresponding two linearly independent eigenvectors span the plane that passes
through the origin and is perpendicular to n̂. In particular, the two doubly degenerate
eigenvectors (along with any linear combination ~v of these eigenvectors that lies in the
plane perpendicular to n̂) are inverted by the 180◦ rotation and hence must satisfy
R(n̂, π)~v = −~v.

Since n̂ is a real vector of unit length, it is determined only up to an overall sign by
eq. (10) when its corresponding eigenvalue 1 is unique. This sign ambiguity is immaterial
in Case 2 in light of eq. (6). The sign ambiguity in Case 3 cannot be resolved without
further analysis. To make further progress, in Section 3 we shall obtain the general
expression for the three dimensional rotation matrix R(n̂, θ).

3. An explicit formula for the matrix elements of a general 3 × 3 rotation
matrix

The matrix elements of R(n̂, θ) will be denoted by Rij . Since R(n̂, θ) describes a
counterclockwise rotation by an angle θ about an axis n̂, the formula for Rij that we
seek will depend on θ and on the coordinates of n̂ = (n1 , n2 , n3) with respect to a
fixed Cartesian coordinate system. Note that since n̂ is a unit vector, it follows that:

n2

1
+ n2

2
+ n2

3
= 1 . (12)
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An explicit formula for Rij is obtained by noting that a general element of SO(3)

in the angle-and-axis parameterization is given by Rij(n̂, θ) = exp(−iθn̂ · ~J )ij , with

(n̂ · ~J )ij ≡ −iǫijknk [where there is an implicit sum over the index k due to the Einstein
summation convention]. The explicit evaluation of the exponential can be carried out
by employing the Taylor series definition of the matrix exponential [cf. problem 7(b) of
Problem Set 2] and yields:

Rij(n̂, θ) = ninj + (δij − ninj) cos θ − ǫijknk sin θ . (13)

Eq. (13) can also be derived using the techniques of tensor algebra in a clever way
as follows. Employing the arguments given in Appendix C, one can regard Rij as
the components of a second-rank tensor. Likewise, the ni are components of a vector
(equivalently, a first-rank tensor). Two other important quantities for the analysis are
the invariant tensors δij (the Kronecker delta) and ǫijk (the Levi-Civita tensor). If we
invoke the covariance of Cartesian tensor equations, then one must be able to express
Rij in terms of a second-rank tensor composed of ni, δij and ǫijk, as there are no other
tensors in the problem that could provide a source of indices. Thus, the explicit formula
for Rij must be of the following form:

Rij = aδij + bninj + cǫijknk . (14)

The numbers a, b and c are real scalar quantities. As such, a, b and c are functions
of θ, since the rotation angle is the only relevant scalar quantity in this problem.4 If
we also allow for transformations between right-handed and left-handed orthonormal
coordinate systems, then Rij and δij are true second-rank tensors and ǫijk is a third-rank
pseudotensor. Thus, to ensure that eq. (14) is covariant with respect to transformations
between two bases that are related by either a proper or an improper rotation, we
conclude that a and b are true scalars, and the product cn̂ is a pseudovector.5

We now propose to deduce conditions that are satisfied by a, b and c. The first
condition is given by eq. (10), which in terms of components is

Rijnj = ni . (15)

To determine the consequence of this equation, we insert eq. (14) into eq. (15) and make
use of eq. (12). Noting that

δijnj = ni , njnj = 1 ǫijknjnk = 0 , (16)

4One can also construct a scalar by taking the dot product of n̂·n̂, but this quantity is equal to 1
[cf. eq. (12)], since n̂ is a unit vector.

5Under inversion of the coordinate system, θ → −θ and n̂ → −n̂. However, since 0 ≤ θ ≤ π (by
convention), we must then use eq. (4) to flip the signs of both θ and n̂ to represent the rotation R(n̂, θ)
in the new coordinate system. Hence, the signs of θ and n̂ effectively do not change under the inversion
of the coordinate system. That is, θ is a true scalar and n̂ is a pseudovector, in which case c is also
a true scalar. In a different convention where −π ≤ θ ≤ π (which we do not adopt in these notes), θ
is a pseudoscalar and n̂ is a true vector, in which case c is also a pseudoscalar. Independent of these
conventions, the product cn̂ is a pseudovector as asserted in the text above.
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it follows immediately that ni(a+ b) = ni. Hence,

a+ b = 1 . (17)

Since the formula for Rij given by eq. (14) must be completely general, it must hold
for any special case. In particular, consider the case where n̂ = ẑ. In this case, eqs. (1)
and (14) yields:

R(ẑ, θ)11 = cos θ = a , R(ẑ, θ)12 = − sin θ = c ǫ123n3 = c . (18)

Using eqs. (17) and (18) we conclude that,

a = cos θ , b = 1− cos θ , c = − sin θ . (19)

Inserting these results into eq. (14) yields the Rodriguez formula:

Rij(n̂, θ) = cos θ δij + (1− cos θ)ninj − sin θ ǫijknk (20)

which reproduces the result of eq. (13). We can write R(n̂, θ) explicitly in 3× 3 matrix
form,

R(n̂, θ) =





cos θ + n2

1
(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2

2
(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2

3
(1− cos θ)



 .

(21)
One can easily check that eqs. (3) and (4) are satisfied. In particular, as indicated

by eq. (5), the rotations R(n̂, π) and R(−n̂, π) represent the same rotation,

Rij(n̂, π) =





2n2

1
− 1 2n1n2 2n1n3

2n1n2 2n2

2
− 1 2n2n3

2n1n3 2n2n3 2n2

3
− 1



 = 2ninj − δij . (22)

Finally, as expected, Rij(n̂, 0) = δij , independently of the direction of n̂. I leave it as
an exercise to the reader to verify explicitly that R = R(n̂, θ) given in eq. (21) satisfies
the conditions RRT = I and det R = +1.

The two rotation matrices R(n̂, θ) and R(n̂′, θ) are related in an interesting way
that generalizes the result of eq. (8). Details can be found in Appendix D.

4. R(n̂, θ) expressed as a product of simpler rotation matrices

In this section, we shall demonstrate that it is possible to express a general three-
dimensional rotation matrix R(n̂, θ) as a product of simpler rotations. This will provide
further geometrical insights into the properties of rotations. First, it will be convenient
to express the unit vector n̂ in spherical coordinates,

n̂ = (sin θn cosφn , sin θn sin φn , cos θn) , (23)
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where θn is the polar angle and φn is the azimuthal angle that describe the direction of
the unit vector n̂. Noting that

R(ẑ, φn) =





cosφn − sin φn 0
sinφn cosφn 0
0 0 1



 , R(ŷ, θn) =





cos θn 0 sin θn
0 1 0

− sin θn 0 cos θn



 ,

one can identify the matrix P given in eq. (71) as:

P = R(ẑ, φn)R(ŷ, θn) =





cos θn cosφn − sin φn sin θ cosφn

cos θn sinφn cosφn sin θ sin φn

− sin θn 0 cos θn



 . (24)

We now introduce a unit vector in the azimuthal direction,

ϕ̂ = (− sin φn , cosφn , 0) .

Inserting n1 = − sinφn and n2 = cosφn into eq. (21) then yields:

R(ϕ̂, θn) =





cos θn + sin2φn(1− cos θn) − sin φn cosφn(1− cos θn) sin θn cos φn

− sinφn cosφn(1− cos θn) cos θn + cos2φn(1− cos θn) sin θn sinφn

− sin θn cosφn − sin θn sin φn cos θn





= R(ẑ, φn)R(ŷ, θn)R(ẑ,−φn) = PR(ẑ,−φn) , (25)

after using eq. (24) in the final step. Eqs. (4) and (25) then imply that

P = R(ϕ̂, θn)R(ẑ, φn) , (26)

One can now use eqs. (4), (8) and (26) to obtain:

R(n̂, θ) = PR(ẑ, θ)P−1 = R(ϕ̂, θn)R(ẑ, φn)R(ẑ, θ)R(ẑ,−φn)R(ϕ̂,−θn) . (27)

Since rotations about a fixed axis commute, it follows that

R(ẑ, φn)R(ẑ, θ)R(ẑ,−φn) = R(ẑ, φn)R(ẑ,−φn)R(ẑ, θ) = R(ẑ, θ) ,

after using eq. (2). Hence, eq. (27) yields:

R(n̂, θ) = R(ϕ̂, θn)R(ẑ, θ)R(ϕ̂,−θn) . (28)

To appreciate the geometrical interpretation of eq. (28), consider R(n̂, θ)~v for any
vector ~v. This is equivalent to R(ϕ̂, θn)R(ẑ, θ)R(ϕ̂,−θn)~v. The effect of R(ϕ̂,−θn)
is to rotate the axis of rotation n̂ to ẑ (which lies along the z-axis). Then, R(ẑ, θ)
performs the rotation by θ about the z-axis. Finally, R(ϕ̂, θn) rotates ẑ back to the
original rotation axis n̂.6

6Using eq. (25), one can easily verify that R(ϕ̂,−θn)n̂ = ẑ and R(ϕ̂, θn)ẑ = n̂.
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By combining the results of eqs. (25) and (28), one obtains:

R(n̂, θ) = R(ẑ, φn)R(ŷ, θn)R(ẑ,−φn)R(ẑ, θ)R(ẑ, φn)R(ŷ,−θn)R(ẑ,−φn)

= R(ẑ, φn)R(ŷ, θn)R(ẑ, θ)R(ŷ,−θn)R(ẑ,−φn) . (29)

That is, a rotation by an angle θ about a fixed axis n̂ (whose direction is described by
polar and azimuthal angles θn and φn) is equivalent to a sequence of rotations about a
fixed z and a fixed y-axis. In fact, one can do somewhat better. One can prove that an
arbitrary rotation can be written as:

R(n̂, θ) = R(ẑ, α)R(ŷ, β)R(ẑ, γ) ,

where α, β and γ are called the Euler angles. Details of the Euler angle representation
of R(n̂, θ) are presented in Appendix E.

5. Properties of the 3 × 3 improper rotation matrix

An improper rotation matrix is a real orthogonal matrix, R, such that detR = −1.
That is, R ∈ O(n) but R 6∈ SO(n). Specializing to the case of n = 3, the most general
three-dimensional improper rotation, denoted by R(n̂, θ), consists of a product of a
proper rotation matrix, R(n̂, θ), and a mirror reflection through a plane normal to the
unit vector n̂, which shall be denoted by R(n̂). In particular, the reflection plane passes
through the origin and is perpendicular to n̂. In equations,

R(n̂, θ) ≡ R(n̂, θ)R(n̂) = R(n̂)R(n̂, θ) . (30)

The improper rotation defined in eq. (30) does not depend on the order in which the
proper rotation and reflection are applied. The matrix R(n̂) is called a reflection matrix,
since it is a representation of a mirror reflection through a fixed plane. In particular,

R(n̂) = R(−n̂) = R(n̂, 0) , (31)

after using R(n̂, 0) = I. Thus, the overall sign of n̂ for a reflection matrix has no physical
meaning. Note that all reflection matrices are orthogonal matrices with detR(n̂) = −1,
with the property that:

[R(n̂)]2 = I . (32)

In general, the product of a two proper and/or improper rotation matrices is not com-
mutative. However, if n̂ is the same for both matrices, then eq. (2) implies that:7

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (33)

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (34)

after making use of eqs. (30) and (32).

7Since det[R(n̂, θ1)R(n̂, θ2)] = det R(n̂, θ1) det R(n̂, θ2) = −1, it follows that R(n̂, θ1)R(n̂, θ2)
must be an improper rotation matrix. Likewise, R(n̂, θ1)R(n̂, θ2) must be a proper rotation matrix.
Eqs. (33) and (34) are consistent with these expectations.
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The properties of the improper rotation matrices mirror those of the proper rotation
matrices given in eqs. (3)–(7). Indeed the properties of the latter combined with eqs. (31)
and (32) yield:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (35)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (36)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) . (37)

We shall adopt the convention (employed in Section 2) in which the angle θ is defined
to lie in the interval 0 ≤ θ ≤ π. In this convention, the overall sign of n̂ is meaningful
when 0 < θ < π.

The matrix R(n̂, π) is special. Geometric considerations will convince you that

R(n̂, π) = R(n̂, π)R(n̂) = R(n̂)R(n̂, π) = −I . (38)

That is, R(n̂, π) represents an inversion, which is a linear operator that transforms all
vectors ~x → −~x. In particular, R(n̂, π) is independent of the unit vector n̂. Eq. (38) is
equivalent to the statement that an inversion is equivalent to a mirror reflection through
a plane that passes through the origin and is perpendicular to an arbitrary unit vector
n̂, followed by a proper rotation of 180◦ around the axis n̂. Sometimes, R(n̂, π) is
called a point reflection through the origin (to distinguish it from a reflection through
a plane). Just like a reflection matrix, the inversion matrix satisfies

[R(n̂, π)]2 = I . (39)

In general, any improper 3 × 3 rotation matrix R with the property that R 2 = I is a
representation of either an inversion or a reflection through a plane that passes through
the origin.

Given any proper 3×3 rotation matrix R(n̂, θ), the matrix−R(n̂, θ) has determinant
equal to −1 and therefore represents some improper rotation, which can be determined
as follows:

−R(n̂, θ) = R(n̂, θ)R(n̂, π) = R(n̂, θ + π) = R(−n̂, π − θ) , (40)

after employing eqs. (38), (33) and (37). Two noteworthy consequences of eq. (40) are:

R(n̂, 1

2
π) = −R(−n̂, 1

2
π) , (41)

R(n̂) = R(n̂, 0) = −R(n̂, π) , (42)

after using eq. (6) in the second equation above.
To learn more about the properties of a general three-dimensional improper rotation,

consider the matrix representation R(n̂, θ) with respect to the standard basis Bs =
{x̂ , ŷ , ẑ}. We can define a new coordinate system in which the unit normal to the
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reflection plane n̂ points in the direction of the new z-axis; the corresponding new basis
will be denoted by B′. The matrix representation of the improper rotation with respect
to B′ is then given by

R(ẑ, θ) = R(ẑ, θ)R(ẑ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









1 0 0
0 1 0
0 0 −1





=





cos θ − sin θ 0
sin θ cos θ 0
0 0 −1



 .

Similar to the case of eq. (8), there exists an invertible matrix P (which has been
explicitly obtained in Appendix A) such that

R(n̂, θ) = PR(ẑ, θ)P−1 . (43)

The rest of the analysis mirrors the discussion of Section 2. It immediately follows
that

Tr R(n̂, θ) = Tr R(ẑ, θ) = 2 cos θ − 1 , (44)

after taking the trace of eq. (43). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0.
Hence, the rotation angle is uniquely determined by eq. (44) To identify n̂ (up to an
overall sign), we observe that any vector that is parallel to n̂ (which points along the
normal to the reflection plane) is inverted. This last statement can be expressed as an
eigenvalue equation,

R(n̂, θ)n̂ = −n̂ . (45)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue −1. In particular,
the eigenvalue −1 is unique for any θ 6= π, in which case n̂ can be determined up to an
overall sign by computing the eigenvalues and the normalized eigenvectors of R(n̂, θ). A
simple proof of this result is given in Appendix B. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. Using eq. (43), it follows that the eigenvalues of R(n̂, θ) are identical to
the eigenvalues of R(ẑ, θ). The latter can be obtained from the characteristic equation,

−(1 + λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

which simplifies to:
(1 + λ)(λ2 − 2λ cos θ + 1) = 0 .

The solution to the quadratic equation, λ2 − 2λ cos θ + 1 = 0, was given in eq. (11). It
follows that the three eigenvalues of R(ẑ, θ) are given by,

λ1 = −1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

There are three distinct cases:
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Case 1: θ = 0 λ1 = λ2 = λ3 = −1 , R(n̂, π) = −I ,

Case 2: θ = π λ1 = −1 , λ2 = λ3 = 1 , R(n̂, 0) ≡ R(n̂) ,

Case 3: 0 < θ < π λ1 = −1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding improper rotation matrix is indicated for each of the three
cases. Indeed, for θ 6= π, the eigenvalue −1 is unique. Moreover, the other two eigen-
values are complex conjugates of each other, whose real part is equal to cos θ, which
uniquely fixes the rotation angle in the convention where 0 ≤ θ ≤ π. Case 1 corre-
sponds to inversion and Case 2 corresponds to a mirror reflection through a plane that
passes through the origin and is perpendicular to n̂. In Case 2, the doubly degenerate
eigenvalue +1 is a consequence of the two linearly independent eigenvectors that span
the reflection plane. In particular, any linear combination ~v of these eigenvectors that
lies in the reflection plane is unaffected by the reflection and thus satisfies R(n̂)~v = ~v.
In contrast, the improper rotation matrices of Case 3 do not possess an eigenvalue of
+1, since the vectors that lie in the reflection plane transform non-trivially under the
proper rotation R(n̂, θ).

Since n̂ is a real vector of unit length, it is determined only up to an overall sign
by eq. (45) when its corresponding eigenvalue −1 is unique. This sign ambiguity is
immaterial in Case 2 in light of eq. (31). The sign ambiguity in Case 3 cannot be
resolved without further analysis. To make further progress, in Section 6 we shall obtain
the general expression for the three dimensional improper rotation matrix R(n̂, θ).

6. An explicit formula for the matrix elements of a general 3 × 3 improper
rotation matrix

In this section, the matrix elements of R(n̂, θ) will be denoted by Rij. The derivation
of an explicit form for R(n̂, θ) follows closely the derivation of R(n̂, θ) given in Section 3.
In particular, one can also express Rij in terms of a second-rank tensor composed of ni,
δij and ǫijk, since there are no other tensors in the problem that could provide a source
of indices. Thus, the form of the formula for Rij must be:

Rij = aδij + bninj + cǫijknk , (46)

where the coefficients of a, b and c need not be the same as those that appear in eq. (14).
In this case, a, b and c can be determined as follows. The first condition is given by

eq. (45), which in terms of components is

Rijnj = −ni . (47)

To determine the consequence of this equation, we insert eq. (46) into eq. (47) and make
use of eq. (12). using eq. (16), it follows immediately that ni(a+ b) = −ni. Hence,

a+ b = −1 . (48)
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Since the formula for Rij given by eq. (46) must be completely general, it must hold for
any special case. In particular, consider the case where n̂ = ẑ. In this case, eqs. (32)
and (46) yields:

R(ẑ, θ)11 = cos θ = a , R(ẑ, θ)12 = − sin θ = c ǫ123n3 = c . (49)

Using eqs. (48) and (49) we conclude that,

a = cos θ , b = −1− cos θ , c = − sin θ . (50)

Inserting these results into eq. (46) yields the analog of the Rodriguez formula for
improper rotation matrices:

Rij(n̂, θ) = cos θ δij − (1 + cos θ)ninj − sin θ ǫijknk (51)

We can write R(n̂, θ) explicitly in 3× 3 matrix form,

R(n̂, θ) =





cos θ − n2

1
(1 + cos θ) −n1n2(1 + cos θ)− n3 sin θ −n1n3(1 + cos θ) + n2 sin θ

−n1n2(1 + cos θ) + n3 sin θ cos θ − n2

2
(1 + cos θ) −n2n3(1 + cos θ)− n1 sin θ

−n1n3(1 + cos θ)− n2 sin θ −n2n3(1 + cos θ) + n1 sin θ cos θ − n2

3
(1 + cos θ)



 .

(52)
One can easily check that eqs. (35) and (36) are satisfied. In particular, as indicated

by eq. (31), the improper rotations R(n̂, 0) and R(−n̂, 0) represent the same reflection
matrix,8

Rij(n̂, 0) ≡ Rij(n̂) =





1− 2n2

1
−2n1n2 −2n1n3

−2n1n2 1− 2n2

2
−2n2n3

−2n1n3 2− n2n3 1− 2n2

3



 = δij − 2ninj . (53)

Finally, as expected, Rij(n̂, π) = −δij , independently of the direction of n̂. I leave it as
an exercise to the reader to verify explicitly that R = R(n̂, θ) given in eq. (52) satisfies

the conditions RR
T

= I and det R = −1.

7. Determining the parameters n̂ and θ of a general 3 × 3 orthogonal matrix.

The results obtained in eqs. (20) and (51) can be expressed as a single equation.
Consider a general 3 × 3 orthogonal matrix R, corresponding to either a proper or
improper rotation. Then its matrix elements are given by:

Rij(n̂, θ) = cos θ δij + (ε− cos θ)ninj − sin θ ǫijknk , (54)

where
ε ≡ detR(n̂, θ) . (55)

8Indeed, eqs. (22) and (53) are consistent with eq. (42) as expected.
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That is, ε = 1 for a proper rotation and ε = −1 for an improper rotation. Using
eq. (54), one can derive expressions for the unit vector n̂ and the angle θ in terms
of the matrix elements of R. With some tensor algebra manipulations involving the
Levi-Civita tensor, we can quickly obtain the desired results.

First, we compute the trace of R(n̂, θ). In particular, using eq. (54) it follows that:9

Tr R(n̂, θ) ≡ Rii = ε+ 2 cos θ . (56)

In deriving this result, we used the fact that δii = Tr I = 3 (since the indices run over
i = 1, 2, 3 in three-dimensional space) and ǫiik = 0 (the latter is a consequence of the
fact that the Levi-Civita tensor is totally antisymmetric under the interchange of any
two indices). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0. Thus,

cos θ = 1

2
(TrR − ε) and sin θ = (1−cos2 θ)1/2 = 1

2

√

(3− εTrR)(1 + εTrR) , (57)

where cos θ is determined from eq. (56) and we have used ε2 = 1. All that remains is
to determine the unit vector n̂.

Let us multiply eq. (20) by ǫijm and sum over i and j. Noting that

ǫijmδij = ǫijmninj = 0 , ǫijkǫijm = 2δkm , (58)

it follows that
2nm sin θ = −Rijǫijm . (59)

If R is a symmetric matrix (i.e. Rij = Rji), then Rijǫijm = 0 automatically since ǫijk
is antisymmetric under the interchange of the indices i and j. In this case sin θ = 0,
and eq. (59) cannot be used to determine n̂. If sin θ 6= 0, then one can divide both sides
of eq. (59) by sin θ. Using eq. (57), we obtain:

nm = −Rijǫijm
2 sin θ

=
−Rijǫijm

√

(3− εTrR)(1 + εTrR)
, sin θ 6= 0 . (60)

More explicitly,

n̂ =
1

√

(3− εTrR)(1 + εTrR)

(

R32−R23 , R13−R31 , R21−R12

)

, εTrR 6= −1 , 3 .

(61)
In Appendix F, we verify that n̂ as given by eq. (60) is a vector of unit length [as
required by eq. (12)]. The overall sign of n̂ is fixed by eq. (60) due to our convention
in which sin θ ≥ 0. If we multiply eq. (59) by nm and sum over m, then

sin θ = −1

2
ǫijmRijnm , (62)

after using nmnm = 1. This provides an additional check on the determination of the
rotation angle.

9The quantities Rii ≡ TrR and δii ≡ Tr I = 3 each involve an implicit sum over i (following the
Einstein summation convention), and thus define the trace of R and I, respectively.
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If sin θ = 0, then there are two possible cases to consider depending on the sign
of cos θ. In the case of cos θ = −ε (which corresponds to εTrR = −1), one can use
eq. (54) to derive

n̂ =

(

ǫ1

√

1

2
(1 + εR11) , ǫ2

√

1

2
(1 + εR22) , ǫ3

√

1

2
(1 + εR33)

)

, if εTrR = −1 ,

(63)
where the individual signs ǫi = ±1 are determined up to an overall sign via

ǫiǫj =
εRij

√

(1 + εRii)(1 + εRjj)
, for fixed i 6= j , εRii 6= −1 , εRjj 6= −1 . (64)

The ambiguity of the overall sign of n̂ is not significant in light of eqs. (6) and (31).
Finally, in the case of cos θ = ε (which corresponds to εTr R = 3), we have R = εI
independently of the direction of n̂.

Alternatively, we can define a matrix S whose matrix elements are given by:

Sjk ≡ Rjk +Rkj + (ε− TrR)δjk (65)

= 2(ε− cos θ)njnk = (3ε− TrR)njnk ,

after using eq. (54) for Rjk. Hence,
10

njnk =
Sjk

3ε− TrR
, TrR 6= 3ε . (66)

To determine n̂ up to an overall sign, we simply set j = k (no sum) in eq. (66), which
fixes the value of n2

j . If sin θ 6= 0, the overall sign of n̂ is fixed by eq. (59).
As noted above, if R is a symmetric matrix (i.e. Rij = Rji), then sin θ = 0 and

n̂ cannot be determined from eq. (60). In this case, eq. (56) determines whether cos θ =
+1 or cos θ = −1. If cos θ = ε, then Rij = εδij, in which case S = 0 and the axis n̂ is
undefined. For cos θ = −ε, one can determine n̂ up to an overall sign using eq. (66).
As previously remarked, in this latter case the overall sign of n̂ is not meaningful.

To summarize, eqs. (57), (61) and (66) provide a simple algorithm for determining
the unit vector n̂ and the rotation angle θ for any proper or improper rotation matrix
R(n̂, θ) 6= εI.

8. Determining the reflection plane corresponding to an improper rotation

As noted in Section 5, the most general three-dimensional improper rotation, de-
noted by R(n̂, θ), consists of a product of a proper rotation matrix, R(n̂, θ), and a
mirror reflection through a plane normal to the unit vector n̂, which we denote by

10Eq. (65) yields Tr S = 3ε− TrR. One can then use eq. (66) to verify once again that n̂ is a unit
vector.
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R(n̂)[cf. eq. (30)]. In particular, the reflection plane passes through the origin and is
perpendicular to n̂. In this section, we shall derive an equation for the reflection plane,
which passes through the origin and is perpendicular to n̂.

Consider a plane that passes through the point (x0, y0, z0) that is perpendicular to
the unit vector n̂ = n1x̂+ n2ŷ + n2ẑ = (n1, n2, n3). Then it is straightforward to show
that the equation of the plane is given by:

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0 . (67)

It is then a simple matter to apply this result to the reflection plane, which is perpen-
dicular to n̂ and passes through the origin, i.e. the point (x0, y0, z0) = (0, 0, 0). Then,
eq. (67) immediately yields the equation of the reflection plane,

n1x+ n2y + n3z = 0 . (68)

Note that the equation for the reflection plane does not depend on the overall sign of n̂
[cf. eq. (31)]. This makes sense, as both n̂ and −n̂ are perpendicular to the reflection
plane.

The equation for the reflection plane can also be derived directly as follows. If
θ 6= π,11 then the reflection plane corresponding to the improper rotation R(n̂, θ) is
perpendicular to n̂, independently of the value of θ. Thus without loss of generality,
one can take θ = 0 and consider R(n̂) ≡ R(n̂, 0), which represents a mirror reflection
through the reflection plane. Any vector ~v = (x, y, z) that lies in the reflection plane
is an eigenvector of R(n̂) with eigenvalue +1, as indicated at the end of Section 5.
Thus, the equation of the reflection plane is R(n̂)~v = ~v, which is explicitly given by
[cf. eq. (53)]:





1− 2n2

1
−2n1n2 −2n1n3

−2n1n2 1− 2n2

2
−2n2n3

−2n1n3 2− n2n3 1− 2n2

3









x
y
z



 =





x
y
z



 . (69)

The matrix equation, eq. (69), is equivalent to:




n2

1
n1n2 n1n3

n1n2 n2

2
n2n3

n1n3 n2n3 n2

3









x
y
z



 = 0 . (70)

Applying two elementary row operations, the matrix equation, eq. (70), can be trans-
formed into reduced row echelon form,





n2

1
n1n2 n1n3

0 0 0
0 0 0









x
y
z



 = 0 .

The solution to this equation is all x, y and z that satisfy eq. (68), which corresponds
to the equation of the reflection plane.

11In the case of θ = π, the unit normal to the reflection plane n̂ is undefined so we exclude this case
from further consideration.
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Appendix A: An explicit computation of the matrix P defined in eq. (8)

The matrix R(n̂, θ) is specified with respect to the standard basis Bs = {x̂ , ŷ , ẑ}.
One can always rotate to a new orthonormal basis, B′ = {x̂′ , ŷ′ , ẑ′} , in which new
positive z-axis points in the direction of n̂. That is,

ẑ′ = n̂ ≡ (n1, n2, n3) , where n2

1
+ n2

2
+ n2

3
= 1 .

The new positive y-axis can be chosen to lie along

ŷ′ =

(

−n2
√

n2

1
+ n2

2

,
n1

√

n2

1
+ n2

2

, 0

)

,

since by construction, ŷ′ is a unit vector orthogonal to ẑ′. We complete the new right-
handed coordinate system by choosing:

x̂′ = ŷ′
×ẑ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

−n2
√

n2

1
+ n2

2

n1
√

n2

1
+ n2

2

0

n1 n2 n3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

n3n1
√

n2

1
+ n2

2

,
n3n2

√

n2

1
+ n2

2

, −
√

n2

1
+ n2

2

)

.

One can now determine the matrix P whose matrix elements are defined by

b′j =

n
∑

i=1

Pijêi ,

where the êi are the basis vectors of Bs and the b′j are the basis vectors of B′. The
columns of P are the coefficients of the expansion of the new basis vectors in terms of
the old basis vectors. Thus,

P =



















n3n1
√

n2

1
+ n2

2

−n2
√

n2

1
+ n2

2

n1

n3n2
√

n2

1
+ n2

2

n1
√

n2

1
+ n2

2

n2

−
√

n2

1
+ n2

2
0 n3



















. (71)

Note that the columns of P are orthonormal and det P = 1. That is, P is an SO(3)
matrix. Using eq. (10) of the class handout cited above, we recover eq. (8). It is
straightforward to check that n̂ = P ẑ , which is not surprising since the matrix P was
constructed so that the vector n̂, which is represented by n̂ = (n1 , n2 , n3) with respect
to the standard basis Bs would have coordinates (0 , 0 , 1) with respect to the basis B′.
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Appendix B: The eigenvalues of a 3 × 3 orthogonal matrix12

Given any matrix A, the eigenvalues are the solutions to the characteristic equation,

det (A− λI) = 0 . (72)

Suppose that A is an n× n real orthogonal matrix. The eigenvalue equation for A and
its complex conjugate transpose are given by:

Av = λv , v†AT = λ∗ v† .

Hence multiplying these two equations together yields

λ∗ λ v†v = v
†
ATAv = v†v , (73)

since an orthogonal matrix satisfies ATA = I. Since eigenvectors must be nonzero, it
follows that v†v 6= 0. Hence, eq. (73) yields |λ| = 1. Thus, the eigenvalues of a real
orthogonal matrix must be complex numbers of unit modulus. That is, λ = eiα for
some α in the interval 0 ≤ α < 2π.

Consider the following product of matrices, where A satisfies ATA = I,

AT(I−A) = AT − I = −(I− A)T .

Taking the determinant of both sides of this equation, it follows that

detA det(I−A) = (−1)ndet(I− A) , (74)

since for the n × n identity matrix, det(−I) = (−1)n. For a proper odd-dimensional
orthogonal matrix, we have detA = 1 and (−1)n = −1. Hence, eq. (74) yields13

det(I− A) = 0 , for any proper odd-dimensional orthogonal matrix A. (75)

Comparing with eq. (72), we conclude that λ = 1 is an eigenvalue of A.14 Since detA
is the product of its three eigenvalues and each eigenvalue is a complex number of unit
modulus, it follows that the eigenvalues of any proper 3× 3 orthogonal matrix must be
1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π.15

Next, we consider the following product of matrices, where A satisfies ATA = I,

AT(I+ A) = AT + I = (I+ A)T .

12A nice reference to the results of this Appendix can be found in L. Mirsky, An Introduction to

Linear Algebra (Dover Publications, Inc., New York, 1982).
13Eq. (75) is also valid for any improper even-dimensional orthogonal matrix A since in this case

detA = −1 and (−1)n = 1.
14Of course, this is consistent with the result that the eigenvalues of a real orthogonal matrix are of

the form eiα for 0 ≤ α < 2π, since the eigenvalue 1 corresponds to α = 0.
15There is no loss of generality in restricting the interval of the angle to satisfy 0 ≤ θ ≤ π. In

particular, under θ → 2π − θ, the two eigenvalues eiθ and e−iθ are simply interchanged.
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Taking the determinant of both sides of this equation, it follows that

detA det(I+ A) = det(I+ A) , (76)

For any improper orthogonal matrix, we have detA = −1. Hence, eq. (76) yields

det(I+ A) = 0 , for any improper orthogonal matrix A.

Comparing with eq. (72), we conclude that λ = −1 is an eigenvalue of A. Since detA
is the product of its three eigenvalues and each eigenvalue is a complex number of unit
modulus, it follows that the eigenvalues of any improper 3×3 orthogonal matrix must be
−1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π (cf. footnote 15).

Appendix C: Matrix elements of matrices correspond to the components of
second rank tensors

Consider the matrix elements of a linear operator with respect to two different
orthonormal bases, B = {ê1 , ê2 , ê3} and B′ = {ê′

1
, ê′

2
, ê′

3
} . Then, using the Einstein

summation convention,
ê′
j = Pij êi ,

where P is an orthogonal matrix. Given any linear operator A with matrix elements
aij with respect to the basis B, the matrix elements a′ij with respect to the basis B′ are
given by

a′kℓ = (P−1)kiaijPjℓ = PikaijPjℓ ,

where we have used the fact that P−1 = PT in the second step above. Finally, identifying
P = R−1, where R is also an orthogonal matrix, it follows that

a′kℓ = RkiRℓjaij ,

which we recognize as the transformation law for the components of a second rank
Cartesian tensor.

Appendix D: The relation between R(n̂, θ) and R(n̂′, θ)

Eq. (8) is a special case of a more general result,

R(n̂, θ) = RR(n̂′, θ)R−1 , where n̂ = Rn̂′ . (77)

That is, R is the rotation matrix that rotates the unit vector n̂′ into the unit vector n̂.16

The group theoretical interpretation of this result is that elements of SO(3) correspond-
ing to a rotation by a fixed angle θ about an arbitrary axis are members of the same

16An explicit form for the matrix R can be obtained using the methods of Appendix A.
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conjugacy class. In particular, the independent (disjoint) conjugacy classes of SO(3)
are in one to one correspondence with the possible choices of θ (where 0 ≤ θ ≤ π).

Eq. (77) is a consequence of a well known result of the theory of Lie groups and Lie
algebras. I will discuss this result at the end of this Appendix. First, I will provide a
direct proof of eq. (77). First, we shall compute the angle of the rotation RR(n̂′, θ)R−1

using eq. (57) with ε = 1. Since Tr[RR(n̂′, θ)R−1] = Tr R(n̂′, θ) using the cyclicity
of the trace, it follows that the angles of rotation corresponding to RR(n̂′, θ)R−1 and
R(n̂′, θ) coincide and are both equal to θ. To compute the corresponding axis of rotation
n̂, we employ eq. (59),

2nm sin θ = −(RR′ R−1)ijǫijm , (78)

where R′ ≡ R(n̂′, θ). Since R−1 = RT, or equivalently (R−1)ℓj = Rjℓ, one can rewrite
eq. (78) as:

2nm sin θ = −Rik R
′
kℓ Rjℓ ǫijm , (79)

Multiplying both sides of eq. (79) by Rmn and using the definition of the determinant
of a 3× 3 matrix,

RikRjℓRmnǫijm = (detP )ǫkℓn ,

it then follows that:
2Rmnnm sin θ = −R′

kℓǫkℓn , (80)

after noting that detR = 1. Finally, we again use eq. (59) which yields

2n′
n sin θ = −R′

kℓǫkℓn . (81)

Assuming that sin θ 6= 0, we can subtract eqs. (80) and (81) and divide out by 2 sin θ.
Using (RT)nm = Rmn, the end result is:

n̂′ −RTn̂ = 0 .

Since RRT = RT R = I, we conclude that

n̂ = Rn̂′ . (82)

The case of sin θ = 0 must be treated separately. Using eq. (10), one can determine
the axis of rotation n̂ of the rotation matrix RR(n̂′, θ)R−1 up to an overall sign. Since
R(n̂′, θ)n̂′ = n̂′, the following eigenvalue equation is obtained:

RR(n̂′, θ)R−1(Rn̂′) = RR(n̂′, θ)n̂′ = Rn̂′ . (83)

That is, Rn̂′ is an eigenvector of RR(n̂′, θ)R−1 with eigenvalue +1. It then follows
that Rn̂′ is the normalized eigenvector of RR(n̂′, θ)R−1 up to an overall undetermined
sign. For sin θ 6= 0, the overall sign is fixed and is positive by eq. (82). If sin θ = 0,
then there are two cases to consider. If θ = 0, then R(n̂, 0) = R(n̂′, 0) = I and eq. (77)
is trivially satisfied. If θ = π, then eq. (6) implies that the unit vector parallel to the
rotation axis is only defined up to an overall sign. Hence, eq. (77) is valid even in the
case of sin θ = 0, and the proof is complete.
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As noted above eq. (77) is a consequence of a well known result of the theory of Lie
groups and Lie algebra of SO(3). The matrices Rij given in eq. (20) constitutes the
defining representation of SO(3). The operator AdR acts on elements of the SO(3) Lie
algebra, henceforth denoted by so(3), and is defined by

AdR(x) = RxR−1 , x ∈ so(3) . (84)

The matrix elements of AdR are obtained in the usual way by considering the action
of AdR on the basis vectors, namely the generators of so(3) ,

AdR(ei) = (AdR)jiej , (85)

where there is an implicit sum over the repeated index j. The generators of so(3)
satisfy the commutation relations, [ei , ej ] = ǫijkek.

17 We identify (AdR)ji = Rji, since
the adjoint representation and the defining representation of SO(3) coincide. Thus,
combining eqs. (84) and (85),

ReiR−1 = Rjiej , (86)

which applies to any matrix representation of the so(3) generators, ei.
We shall make use of eq. (86) by taking the ei to be the matrix generators of

so(3) in the defining representation (which in this case is equivalent to the adjoint
representation) of so(3). In the notation of problem 7(b) of problem set 2, we identify
ek = −iJk, where (Jk)ij = −iǫijk. Then, multiplying both sides of eq. (86) by θn̂′

i and
defining n̂j = Rjin̂

′
i [cf. eq. (82)], it follows that

R (−iθn̂′
· ~J )R−1 = −iθn̂· ~J , (87)

after combining the three matrix generators, {−iJ1 , −iJ2 , −iJ3}, of so(3) into a vector

by writing ~J = (J1 , J2 , J3). Finally, we exponentiate both sides of eq. (87), and

recognize that R(n̂, θ) = exp(−iθn̂· ~J) as noted below eq. (12).18 Hence, we end up
with

RR(n̂′, θ)R−1 = R(n̂, θ) , where n̂ = Rn̂′ . (88)

which is eq. (77).

Appendix E: Euler angle representation of R(n̂, θ)

The angle-and-axis parameterization, denoted by R(n̂, θ), is only one of a number
of ways of parameterizing the most general three-dimensional proper rotation. In this
Appendix, we examine an alternative parameterization called the Euler angle represen-
tation.

17Here, we use the mathematician’s convention in which the generators of so(3) in the defining
representation are antihermitian. In the physicist’s convention, one replaces ei → iei and employs
hermitian generators.

18Note that for any invertible matrix S, it follows that exp(SAS−1) = SeAS−1. This result is easily
established by using the Taylor series expansion for the exponential function.
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An arbitrary three-dimensional proper rotation matrix can be written as the product
of the following three simpler rotations,19

R(n̂, θ) = R(ẑ, α)R(ŷ, β)R(ẑ, γ) , (89)

where α, β and γ are called the Euler angles. The ranges of the Euler angles are:
0 ≤ α, γ < 2π and 0 ≤ β ≤ π. We shall prove these statements “by construction.”
That is, we shall explicitly derive the relations between the Euler angles and the angles
θ, θn and φn that characterize the rotation R(n̂, θ) [where θn and φn are the polar
and azimuthal angle that define the axis of rotation n̂ as specified in eq. (23)]. These
relations can be obtained by multiplying out the three matrices on the right-hand side
of eq. (89) to obtain

R(n̂, θ) =





cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β



 .

(90)
If the matrix elements of Rij are known, then the Euler angles can be determined from
the following relations,

tanα =
R23

R13

, cos β = R33 , tan γ = −R32

R31

, (91)

where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π, as noted above. Eq. (91) leaves the quadrants of
the angles α and γ ambiguous, but these can be fixed from the signs of R23 and R32,
respectively, which determine the respective signs of sinα and sin γ (in light of the fact
that 0 ≤ sin β ≤ 1).

One can now make use of the results of Section 7 (with ε = 1) to obtain θ and n̂

in terms of the Euler angles α, β and γ. For example, cos θ is obtained from eq. (57).
Simple algebra yields:

cos θ = cos2(β/2) cos(γ + α)− sin2(β/2) (92)

after using cos2(β/2) = 1

2
(1 + cos β) and sin2(β/2) = 1

2
(1 − cos β). Thus, we have

determined θ mod π, consistent with our convention that 0 ≤ θ ≤ π [cf. eq. (57) and
the text preceding this equation]. One can also rewrite eq. (92) in a slightly more
convenient form,

cos θ = −1 + 2 cos2(β/2) cos2 1

2
(γ + α) . (93)

We examine separately the cases for which sin θ = 0. First, cos β = cos(γ + α) = 1
implies that θ = 0 and R(n̂, θ) = I. In this case, the axis of rotation, n̂, is undefined.

19There are many possible Euler angle parameterizations of a rotation matrix. See, e.g., Ref. 3 for a
catalog of different possible parameterizations (note that this paper employs passive rather than active
rotations, so to match the results in these notes, one must change the signs of all angles). The Euler
angle parameterization employed in eq. (89) follows that standard convention adopted in most books
on angular momentum in quantum mechanics.
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Second, if θ = π then cos θ = −1 and n̂ is determined up to an overall sign (which is
not physical). Eq. (93) then implies that cos2(β/2) cos2 1

2
(γ + α) = 0, or equivalently

(1 + cos β) [1 + cos(γ + α)] = 0, which yields two possible subcases,

(i) cos β = −1 and/or (ii) cos(γ + α) = −1 .

In subcase (i), if cos β = −1, then eqs. (63) and (64) yield

R(n̂, π) =





− cos(γ − α) sin(γ − α) 0
sin(γ − α) cos(γ − α) 0

0 0 −1



 ,

where
n̂ = ±

(

sin 1

2
(γ − α) , cos 1

2
(γ − α) , 0

)

.

In subcase (ii), if cos(γ + α) = −1, then

cos γ + cosα = 2 cos 1

2
(γ − α) cos 1

2
(γ + α) = 0 ,

sin γ − sinα = 2 sin 1

2
(γ − α) cos 1

2
(γ + α) = 0 ,

since cos2 1

2
(γ + α) = 1

2
[1 + cos(γ + α)] = 0. Thus, eqs. (63) and (64) yield

R(n̂, π) =





− cos β − 2 sin2α sin2(β/2) sin(2α) sin2(β/2) cosα sin β
sin(2α) sin2(β/2) −1 + 2 sin2α sin2(β/2) sinα sin β

cosα sin β sinα sin β cos β



 ,

where
n̂ = ±

(

sin(β/2) cosα , sin(β/2) sinα , cos(β/2)
)

.

Finally, we consider the generic case where sin θ 6= 0. Using eqs. (61) and (91),

R32 − R23 = 2 sin β sin 1

2
(γ − α) cos 1

2
(γ + α) ,

R13 − R31 = 2 sin β cos 1

2
(γ − α) cos 1

2
(γ + α) ,

R21 − R12 = 2 cos2(β/2) sin(γ + α) .

In normalizing the unit vector n̂, it is convenient to write sin β = 2 sin(β/2) cos(β/2)
and sin(γ + α) = 2 sin 1

2
(γ + α) cos 1

2
(γ + α). Then, we compute:

[

(R32 − R23)
2 + (R13 − R31)

2 + (R12 − R21)
2
]

1/2

= 4
∣

∣cos 1

2
(γ + α) cos(β/2)

∣

∣

√

sin2(β/2) + cos2(β/2) sin2 1

2
(γ + α) . (94)

Hence,20

n̂ =
ǫ

√

sin2(β/2) + cos2(β/2) sin2 1

2
(γ + α)

×
(

sin(β/2) sin 1

2
(γ − α) , sin(β/2) cos 1

2
(γ − α) , cos(β/2) sin 1

2
(γ + α)

)

, (95)

20One can can also determine n̂ up to an overall sign starting from eq. (90) by employing the relation
R(n̂, θ)n̂ = n̂. The sign of n̂ sin θ can then be determined from eq. (61).
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where ǫ = ±1 according to the following sign,

ǫ ≡ sgn
{

cos 1

2
(γ + α) cos(β/2)

}

, sin θ 6= 0 . (96)

Remarkably, eq. (95) reduces to the correct results obtained above in the two subcases
corresponding to θ = π, where cos(β/2) = 0 and/or cos 1

2
(γ + α) = 0, respectively.

Note that in the latter two subcases, ǫ as defined in eq. (96) is indeterminate. This
is consistent with the fact that the sign of n̂ is indeterminate when θ = π. Finally,
one can easily verify that when θ = 0 [corresponding to cos β = cos(γ + α) = 1], the
direction of n̂ is indeterminate and hence arbitrary.

One can rewrite the above results as follows. First, use eq. (93) to obtain:

sin(θ/2) =
√

sin2(β/2) + cos2(β/2) cos2 1

2
(γ + α) ,

cos(θ/2) = ǫ cos(β/2) cos 1

2
(γ + α) . (97)

Since 0 ≤ θ ≤ π, it follows that 0 ≤ sin(θ/2) , cos(θ/2) ≤ 1. Hence, the factor of ǫ
defined by eq. (96) is required in eq. (97) to ensure that cos(θ/2) is non-negative. In
the mathematics literature, it is common to define the following vector consisting of
four-components, q = (q0 , q1 , q2 , q3), called a quaternion, as follows:21

q =

(

cos(θ/2) , n̂ sin(θ/2)

)

, (98)

where the components of n̂ sin(θ/2) comprise the last three components of the quater-
nion q and

q0 = ǫ cos(β/2) cos 1

2
(γ + α) ,

q1 = ǫ sin(β/2) sin 1

2
(γ − α) ,

q2 = ǫ sin(β/2) cos 1

2
(γ − α) ,

q3 = ǫ cos(β/2) sin 1

2
(γ + α) . (99)

In the convention of 0 ≤ θ ≤ π, we have q0 ≥ 0.22 Quaternions are especially valuable
for representing rotations in computer graphics software.23

If one expresses n̂ in terms of a polar angle θn and azimuthal angle φn as in eq. (23),
then one can also write down expressions for θn and φn in terms of the Euler angles α,

21The connection between q and the quaternion division algebra H discussed in class is treated in
some detail in Ref. 4. The relation between quaternions and the rotation group is also discussed in
Ref. 5 along with applications to molecular symmetry.

22In comparing with other treatments in the mathematics literature, one should be careful to note
that the convention of q0 ≥ 0 is not universally adopted. Often, the quaternion q in eq. (98) will be
re-defined as ǫq in order to remove the factors of ǫ from eq. (99), in which case ǫq0 ≥ 0.

23See Ref. 6 for a very readable introduction to quaternions and their applications to visual repre-
sentations and computer graphics.
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β and γ. Comparing eqs. (23) and (95), it follows that:

tan θn =
(n2

1
+ n2

2
)1/2

n3

=
ǫ tan(β/2)

sin 1

2
(γ + α)

(100)

where we have noted that (n2

1
+ n2

2
)1/2 = sin(β/2) ≥ 0, since 0 ≤ β ≤ π, and the sign

ǫ = ±1 is defined by eq. (96). Similarly,

cosφn =
n1

(n2

1
+ n2

2
)
= ǫ sin 1

2
(γ − α) = ǫ cos 1

2
(π − γ + α) , (101)

sin φn =
n2

(n2

1
+ n2

2
)
= ǫ cos 1

2
(γ − α) = ǫ sin 1

2
(π − γ + α) , (102)

or equivalently

φn = 1

2
(ǫπ − γ + α) mod 2π (103)

Indeed, given that 0 ≤ α, γ < 2π and 0 ≤ β ≤ π, we see that θn is determined mod π
and φn is determine mod 2π as expected for a polar and azimuthal angle, respectively.

One can also solve for the Euler angles in terms of θ, θn and φn. First, we rewrite
eq. (93) as:

cos2(θ/2) = cos2(β/2) cos2 1

2
(γ + α) . (104)

Then, using eqs. (100) and (104), it follows that:

sin(β/2) = sin θn sin(θ/2) . (105)

Plugging this result back into eqs. (100) and (104) yields

ǫ sin 1

2
(γ + α) =

cos θn sin(θ/2)
√

1− sin2 θn sin
2(θ/2)

, (106)

ǫ cos 1

2
(γ + α) =

cos(θ/2)
√

1− sin2 θn sin
2(θ/2)

. (107)

Note that if β = π then eq. (105) yields θ = π and θn = π/2, in which case γ + α
is indeterminate. This is consistent with the observation that ǫ is indeterminate if
cos(β/2) = 0 [cf. eq. (96)].

We shall also make use of eqs. (101) and (102), which we repeat here:

ǫ sin 1

2
(γ − α) = cosφn , ǫ cos 1

2
(γ − α) = sin φn . (108)

Finally, we employ eq. (108) to obtain (assuming β 6= π):

sinφn−
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

= ǫ
[

cos 1

2
(γ − α)− cos 1

2
(γ + α)

]

= 2ǫ sin(γ/2) sin(α/2) .
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Since 0 ≤ 1

2
γ, 1

2
α < π, it follows that sin(γ/2) sin(α/2) ≥ 0. Thus, we may conclude

that if γ 6= 0, α 6= 0 and β 6= π then

ǫ = sgn

{

sinφn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

}

, (109)

If either γ = 0 or α = 0, then the argument of sgn in eq. (109) will vanish. In this
case, sin 1

2
(γ + α) ≥ 0, and we may use eq. (106) to conclude that ǫ = sgn {cos θn}, if

θn 6= π/2. The case of θn = φn = π/2 must be separately considered and corresponds
simply to β = θ and α = γ = 0, which yields ǫ = 1. The sign of ǫ is indeterminate if
sin θ = 0 as noted below eq. (96).24 The latter includes the case of β = π, which implies
that θ = π and θn = π/2, where γ + α is indeterminate [cf. eq. (107)].

There is an alternative strategy for determining the Euler angles in terms of θ, θn
and φn. Simply set the two matrix forms for R(n̂, θ), eqs. (21) and (90), equal to each
other, where n̂ is given by eq. (23). For example,

R33 = cos β = cos θ + cos2 θn(1− cos θ) . (110)

where the matrix elements of R(n̂, θ) are denoted by Rij . It follows that

sin β = 2 sin(θ/2) sin θn

√

1− sin2 θn sin
2(θ/2) , (111)

which also can be derived from eq. (105). Next, we note that if sin β 6= 0, then

sinα =
R23

sin β
, cosα =

R13

sin β
, sin γ =

R32

sin β
, cos γ = − R31

sin β
.

Using eq. (21) yields (for sin β 6= 0):

sinα =
cos θn sin φn sin(θ/2)− cosφn cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

, (112)

cosα =
cos θn cos φn sin(θ/2) + sin φn cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

, (113)

sin γ =
cos θn sin φn sin(θ/2) + cosφn cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

, (114)

cos γ =
− cos θn cosφn sin(θ/2) + sinφn cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

. (115)

The cases for which sin β = 0 must be considered separately. Since 0 ≤ β ≤ π,
sin β = 0 implies that β = 0 or β = π. If β = 0 then eq. (110) yields either (i) θ = 0,
in which case R(n̂, θ) = I and cos β = cos(γ + α) = 1, or (ii) sin θn = 0, in which case

24In particular, if θ = 0 then θn and φn are not well-defined, whereas if θ = π then the signs of
cos θn, sinφn and cosφn are not well-defined [cf. eqs. (6) and (23)].
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cos β = 1 and γ + α = θ mod π, with γ − α indeterminate. If β = π then eq. (110)
yields θn = π/2 and θ = π, in which case cos β = −1 and γ −α = π− 2φ mod 2π, with
γ + α indeterminate.

One can use eqs. (112)–(115) to rederive eqs. (106)–(108). For example, if γ 6= 0,
α 6= 0 and sin β 6= 0, then we can employ a number of trigonometric identities to
derive25

cos 1

2
(γ ± α) = cos(γ/2) cos(α/2)∓ sin(γ/2) sin(α/2)

=
sin(γ/2) cos(γ/2) sin(α/2) cos(α/2)∓ sin2(γ/2) sin2(α/2)

sin(γ/2) sin(α/2)

=
sin γ sinα∓ (1− cos γ)(1− cosα)

2(1− cos γ)1/2(1− cosα)1/2
. (116)

and

sin 1

2
(γ ± α) = sin(γ/2) cos(α/2)± cos(γ/2) sin(α/2)

=
sin(γ/2) sin(α/2) cos(α/2)

sin(α/2)
± sin(γ/2) cos(γ/2) sin(α/2)

sin(γ/2)

=
sin(γ/2) sinα

2 sin(α/2)
± sin γ sin(α/2)

2 sin(γ/2)

= 1

2
sinα

√

1− cos γ

1− cosα
± 1

2
sin γ

√

1− cosα

1 − cos γ

=
sinα(1− cos γ)± sin γ(1− cosα)

2(1− cosα)1/2(1− cos γ)1/2
. (117)

We now use eqs. (112)–(115) to evaluate the above expressions. To evaluate the de-
nominators of eqs. (116) and (117), we compute:

(1− cos γ)(1− cosα) = 1− 2 sinφn cos(θ/2)
√

1− sin2 θn sin
2(θ/2)

+
sin2 φn cos

2(θ/2)− cos2 θn cos
2 φn sin

2(θ/2)

1− sin2 θn sin
2(θ/2)

= sin2 φn −
2 sinφn cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

+
cos2(θ/2)

1− sin2 θn sin
2(θ/2)

=

(

sin φn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

)2

.

Hence,

(1− cos γ)1/2(1− cosα)1/2 = ǫ

(

sin φn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

)

,

25Since sin(α/2) and sin(γ/2) are positive, one can set sin(α/2) =
{

1

2
[1 − cos(α/2)]

}1/2
and

sin(γ/2) =
{

1

2
[1− cos(γ/2)]

}1/2
by taking both square roots to be positive, without ambiguity.
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where ǫ = ±1 is the sign defined by eq. (109). Likewise we can employ eqs. (112)–(115)
to evaluate:

sin γ sinα− (1− cos γ)(1− cosα) =
2 cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

[

sinφn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

]

,

sin γ sinα + (1− cos γ)(1− cosα) = 2 sinφn

[

sin φn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

]

,

sinα(1− cos γ) + sin γ(1− cosα) =
2 cos θn sin(θ/2)

√

1− sin2 θn sin
2(θ/2)

[

sinφn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

]

,

sinα(1− cos γ) + sin γ(1− cosα) = 2 cosφn

[

sin φn −
cos(θ/2)

√

1− sin2 θn sin
2(θ/2)

]

.

Inserting the above results into eqs. (116) and (117), it immediately follows that

cos 1

2
(γ + α) =

ǫ cos(θ/2)
√

1− sin2 θn sin
2(θ/2)

, cos 1

2
(γ − α) = ǫ sinφn , (118)

sin 1

2
(γ + α) =

ǫ cos θn sin(θ/2)
√

1− sin2 θn sin
2(θ/2)

, sin 1

2
(γ − α) = ǫ cosφn , (119)

where ǫ is given by eq. (109). We have derived eqs. (118) and (119) assuming that
α 6= 0, γ 6= 0 and sin β 6= 0. Since cos(β/2) is then strictly positive, eq. (96) implies
that ǫ is equal to the sign of cos 1

2
(γ + α), which is consistent with the expression for

cos 1

2
(γ + α) obtained above. Thus, we have confirmed the results of eqs. (106)–(108).

If α = 0 and/or γ = 0, then the derivation of eqs. (116) and (117) is not valid.
Nevertheless, eqs. (118) and (119) are still true if sin β 6= 0, as noted below eq. (109),
with ǫ = sgn(cos θn) for θn 6= π/2 and ǫ = +1 for θn = φn = π/2. If β = 0, then as
noted below eq. (115), either θ = 0 in which case n̂ is undefined, or θ 6= 0 and sin θn = 0
in which case the azimuthal angle φn is undefined. Hence, β = 0 implies that γ − α
is indeterminate. Finally, as indicated below eq. (107), γ + α is indeterminate in the
exceptional case of β = π (i.e., θ = π and θn = π/2).

EXAMPLE: Suppose α = γ = 150◦ and β = 90◦. Then cos 1

2
(γ + α) = −1

2

√
3,

which implies that ǫ = −1. Eqs. (93) and (95) then yield n̂ = − 1√
5
(0 , 2 , 1) and

cos θ = −1

4
. The polar and azimuthal angles of n̂ [cf. eq. (23)] are then given by

φn = −90◦ (mod 2π) and tan θn = −2. The latter can also be deduced from eqs. (100)
and (103).

Likewise, given cos θ and n̂ computed above, one obtains cos β = 0 (i.e. β = 90◦)
from eq. (110), ǫ = −1 from eq. (109), γ = α from eq. (108), and γ = α = 150◦ from
eqs. (106) and (107). One can verify these results explicitly by inserting the values of
the corresponding parameters into eqs. (21) and (90) and checking that the two matrix
forms for R(n̂, θ) coincide.
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Appendix F: Verifying that n̂ obtained from eq. (60) is a unit vector

We first need some preliminary results. The characteristic equation of an arbitrary
3× 3 matrix R is given by:

p(λ) = det(R − λI) = −
[

λ3 − λ2Tr R + c2λ− det R
]

,

where26

c2 =
1

2

[

(Tr R)2 − Tr(R2)
]

. (120)

For an orthogonal matrix, ε ≡ det R = ±1. Hence,

p(λ) = −λ3 + λ2Tr R− 1

2
λ
[

(Tr R)2 − Tr(R2)
]

+ ε .

We now employ the Cayley-Hamilton theorem, which states that a matrix satisfies its
own characteristic equation, i.e. p(R) = 0. That is,

R3 −R2 Tr R + 1

2
R
[

(Tr R)2 − Tr(R2)
]

− εI = 0 .

Multiplying the above equation by R−1, and using the fact that R−1 = RT for an
orthogonal matrix,

R2 − RTr R + 1

2
I
[

(Tr R)2 − Tr(R2)
]

− εRT = 0 .

Finally, we take the trace of the above equation and solve for Tr(R2). Using Tr I = 3,
the end result is given by:

Tr(R2) = (Tr R)2 − 2εTrR , (121)

which is satisfied by all 3× 3 orthogonal matrices.
We now verify that n̂ as determined from eq. (60) is a unit vector. For convenience,

we repeat eq. (60) here:

nm = −Rijǫijm
2 sin θ

=
−Rijǫijm

√

(3− εRii)(1 + εRii)
, sin θ 6= 0 ,

where Rii ≡ Tr R. We evaluate n̂·n̂ = nmnm as follows:

nmnm =
RijǫijmRkℓǫkℓm

(3− εRii)(1 + εRii)
=

RijRkℓ(δikδjℓ − δiℓδjk)

(3− εRii)(1 + εRii)
=

RijRij −RijRji

(3− εRii)(1 + εRii)
,

(122)

26To prove eq. (120), write det(R−λI) = (λ1 −λ)(λ2 −λ)(λ3 −λ), where the λi are the roots of the
characteristic equation. By diagonalizingR, it follows that TrR = λ1+λ2+λ3 and TrR2 = λ2

1+λ2
2+λ2

3.
Therefore,

c2 = λ1λ2 + λ1λ3 + λ2λ3 = 1

2

[

(λ1 + λ2 + λ3)
2 − (λ2

1 + λ2

2 + λ2

3)
]

= 1

2

[

(Tr R)2 − Tr(R2)
]

.
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after making use of the well-known identity,

ǫijmǫkℓm = δikδjℓ − δiℓδjk . (123)

The numerator of eq. (122) is equal to:

RijRij − RijRji = Tr(RTR)− Tr(R2) = Tr I− Tr(R2)

= 3− Tr(R2) = 3− (TrR)2 + 2εTrR

= (3− εRii)(1 + εRii) , (124)

after using eq. (121) for Tr(R2). Hence,

n̂·n̂ = nmnm =
RijRij − RijRji

(3− εRii)(1 + εRii)
= 1 ,

and the proof that n̂ is a unit vector is complete.
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