Physics 5J Syllabus, Winter 2009

The course will consist of weekly lectures, short problem sets (one or two problems per week), and a term project (either a programming project or term paper) of your choice, on a topic of your choice, to be approved by me. I will provide a list of suggestions. The homework should take an hour or less per week; you should expect to spend about three hours per week on the term project in weeks 2-8 of the quarter. The last two classes of the quarter will be spent on student Powerpoint-style presentations of their term projects.

Lecture: Thursday 2:00pm - 3:30pm

Instructor: David Smith, 321 Nat. Sci. II, 9-2183, <u>dsmith@scipp.ucsc.edu</u> **Smith office hours:** Tuesday 2-3, Wednesday 10:30-11:30 and by appointment

Textbook: Readings will be distributed weekly. For an advanced treatment of wave topics, see

The Physics of Waves by Howard Georgi, available free at: http://www.people.fas.harvard.edu/~hgeorgi/new.htm

This syllabus is tentative. I will see what topics work well as we go along:

Wk.	Date	Topics	Notes
	Jan 8	Lagrangian and Eulerian treatment of	
		fluid flow; Euler's equation; continuity;	
1		viscosity, turbulence, Reynolds number	
	Jan 15	Complex number formalism for oscillators;	HW 1 due
2		coupled oscillators; chaos	
	Jan 22	Waves in a solid; dispersion; phase and	HW 2 due
3		group velocity	
	Jan 29	Wakes, shocks, solitons, water waves,	HW 3 due
4		tsunamis	
	Feb 5	Fourier analysis; overtones and tone	HW 4 due
5		quality; musical instruments	
	Feb 12	Fermat's Principle, aberration, real	HW 5 due
6		telescopes, thick lenses, Cerenkov radiation	
	Feb 19	Interferometry, x-ray crystallography,	HW 6 due
7		holography	
	Feb 26	Phase contrast microscopy, Fourier	HW 7 due
8		imaging (radio telescopes)	
9	March 5	Student presentations I	
10	March 12	Student presentations II	Term project due

Grading:

Term project: 40% Problem sets: 25%

Term project presentation: 20% Attendance and participation: 15%

Some suggested topics for term programming projects:

Numerical simulation of disturbances in a 3D crystal lattice

Numerical simulation of coupled pendula (e.g. apparatus on wall outside physics office)

Numerical simulation of the spread of a density enhancement in an accretion disk

Numerical simulation of a tsunami wave

Overtone content related to tone quality and identification of instruments (would require synthesizer hardware)

Program to generate diffraction pattern numerically from 2D cutout shape

Some suggested topics for term papers:

Development and techniques of x-ray diffraction in biology (protein structure) Issues related to camera lenses (aberrations and techniques for compensating) Telescope types / advantages and disadvantages / current and planned telescopes Survey of waves in plasmas (requires a **lot** of reading ahead in electromagnetism) Gravitational waves