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Abstract We introduce a strategy to study the parame-
ter space of the general, CP-conserving, two-Higgs-doublet
Model (2HDM) with a softly broken Z2-symmetry by means
of a new “hybrid” basis. In this basis the input parame-
ters are the measured values of the mass of the observed
Standard Model (SM)-like Higgs boson and its coupling
strength to vector boson pairs, the mass of the second CP-
even Higgs boson, the ratio of neutral Higgs vacuum expecta-
tion values, and three additional dimensionless parameters.
Using the hybrid basis, we present numerical scans of the
2HDM parameter space where we survey available parame-
ter regions and analyze model constraints. From these results,
we define a number of benchmark scenarios that capture dif-
ferent aspects of non-standard Higgs phenomenology that
are of interest for future LHC Higgs searches.

1 Introduction

The observation in 2012 [1,2] of a new boson with a mass
close to 125 GeV [3] has been widely viewed as the discov-
ery of the long sought-after Higgs boson [4–6]. Despite the
limited data set, the detailed analyses of the Run 1 LHC data
by the ATLAS and CMS Collaborations have confirmed that
the observed signal strengths (cross section times branching
ratio) of the Higgs boson candidate relative to that expected
of the Standard Model (SM) Higgs boson are consistent with
SM predictions to within the accuracy of the current mea-
surements [7,8]. Nevertheless, the current precision is at best
20 % in the bosonic channels and considerably less accurate
in the fermionic channels. Thus, there is still considerable
room for new physics beyond the SM to contribute to the
properties of the already discovered scalar state.

The Standard Model posits that the dynamics of one com-
plex hypercharge-one, weak doublet of scalar fields is solely
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responsible for electroweak symmetry breaking. Three of
the four degrees of freedom of this scalar doublet provide
the longitudinal modes of the massive W± and Z gauge
bosons. The remaining scalar degree of freedom is the SM
Higgs boson. But why should the scalar sector of the SM
be of minimal form? The spin-1/2 quark and lepton degrees
of freedom of the SM appear in three generations. The ori-
gin of the non-trivial flavor structure of the SM is presently
unknown. By analogy, one might expect a replication in the
scalar sector as well – a non-minimal Higgs sector consist-
ing of multiple doublets. Adding additional doublets yields
new phenomena in the scalar sector – charged Higgs scalars,
neutral Higgs scalars of opposite CP quantum numbers (if
CP is conserved by the scalar potential) or neutral Higgs of
indefinite CP (if CP is violated by the scalar potential). The
current Higgs data do not rule out the existence of an extended
Higgs sector which, as we will discuss in some detail, could
be realized at mass scales close to (or in the extreme case
even below) 125 GeV. Thus, apart from any other theoreti-
cal motivation, it behooves us to devote a dedicated program
at the LHC to search for evidence of a non-minimal Higgs
structure.

Of course, theoretical arguments have also been advanced
in support of a non-minimal Higgs sector. Perhaps the most
persuasive is based on the fact that the SM is unnatural [9,10]
– namely, it is difficult to understand how the scale of elec-
troweak symmetry breaking (v = 246 GeV) arises in a more
fundamental framework that includes gravity and its associ-
ated Planck scale, MPL � 1019 GeV. In the context of the
SM coupled to gravity, electroweak symmetry is achieved
only by fine-tuning the squared-mass parameter of the scalar
potential to an accuracy of 34 decimal places. New physics
beyond the SM that attempts to address this issue intro-
duces new phenomena that enter at or near the TeV scale.
Many such approaches invoke non-minimal Higgs sectors.
The best-studied example of this kind is the minimal super-
symmetric extension of the SM (MSSM), which employs
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a two-Higgs-doublet scalar sector with quartic terms in the
scalar potential that respect supersymmetry (SUSY) [11–14].

Since we do not presently know the precise nature of the
new physics beyond the SM, it is prudent to be open minded
about the possible structure of the non-minimal Higgs sec-
tor. However, the observed value of the electroweak param-
eter ρ = m2

W /(m2
Z cosθ

W ) � 1 strongly favors non-minimal
Higgs sectors comprised only of singlet and doublet scalar
fields [15,16].1 Among theories in this category, we find the
two-Higgs-doublet model2 (2HDM) particularly attractive
as the minimal extension that yields new scalar phenomena,
including new charged states (H±) and neutral states with
different (or mixed) CP properties. Direct searches for the
additional 2HDM Higgs states based on run-I LHC data have
appeared both from ATLAS [21] and CMS [22,23]. Interpre-
tations of the recently discovered Higgs boson at 125 GeV
in the context of the 2HDM and implications for future LHC
searches have been presented in [24–34].

In this paper, we develop a set of benchmark scenarios
for LHC Higgs searches that capture different aspects of
2HDM phenomenology. Our scenarios are devised taking
into account that the observed Higgs boson already possess
properties that are close to those expected in the SM. The
experimental data already provide important constraints on
the 2HDM framework. For example, the absence of observ-
able flavor changing neutral currents (FCNCs) mediated by
tree-level exchange of neutral Higgs bosons requires that the
structure of the Higgs–fermion Yukawa couplings must be
of a special form [35,36]. The simplest way to eliminate
tree-level Higgs-mediated FCNCs is to impose a particular
discrete Z2 symmetry (cf. Table 1 in Sect. 2.4) that is exactly
respected by the dimension-four quartic terms of the Higgs
Lagrangian [37,38].3 We make one further assumption in our
analysis by imposing CP symmetry on the scalar potential.
This assumption is not required based on data (even though
a pure CP-odd state has been ruled out as an explanation
for the 125 GeV state [39]). The restriction to CP-symmetry
provides an additional simplification to the analysis. In par-
ticular, the neutral scalar spectrum consists of two CP-even
states h and H with mh < mH , and the CP-odd state A.
Indeed, the methods developed in this paper are rather easily
generalized to a 2HDM with a CP-violating scalar potential
or CP-violating vacuum. This possibility will be addressed
elsewhere.

1 Including triplet scalar fields for example typically violates ρ � 1 [16,
17] except in special cases that must be considered as fine-tuned [18].
2 For a comprehensive review of the 2HDM, see [19]. A review that
treats the 2HDM in the formalism employed in this paper can be found
in [20].
3 Dimension-two quadratic terms in the Higgs Lagrangian that softly
break the Z2 discrete symmetry are allowed since these terms will only
generate Higgs-mediated FCNCs at the loop level, which typically are
not large enough to be in conflict with experimental data.

In Sect. 2, we provide the theoretical background relevant
to the 2HDM. We introduce the Higgs basis [40,41], which
is especially useful in our analysis, as it provides a very clear
way of parametrizing the terms that yield deviations of the
properties of the observed Higgs boson from those of the
SM. Ultimately, we construct a “hybrid basis” of parame-
ters, which we will employ in 2HDM parameter scans. These
parameters include the two CP-even neutral Higgs boson
masses (mh and mH , where one of these masses is identified
with the mass of the observed Higgs boson), the parameter
cβ−α , which parametrizes the deviation of the lightest CP-
even neutral Higgs boson h from that of the SM, the ratio
of neutral Higgs vacuum expectation values, tan β, and three
dimensionless quartic couplings of the Higgs basis. Two of
these three dimensionless couplings are related in a simple
way to the masses of the charged Higgs and neutral CP-odd
Higgs boson of the 2HDM.

In Sect. 3, we present our numerical scans of the 2HDM
parameter space using the hybrid basis of parameters.
Based on these scans, which are performed using the code
2HDMC[42,43], we develop seven different benchmark sce-
narios: (1) a SM-like h, with cβ−α small but nonzero as
allowed by current data to yield interesting phenomenology
of the heavier H ; (2) a “flipped” scenario with a SM-like
H (which implies that |cβ−α| is near 1); (3) overlapping
CP-even and CP-odd scalars with masses around 125 GeV;
(4) a SM-like h and a heavy non-SM-Higgs mass spectrum
with short cascade decays H → Z A or H → W±H∓;
(5) a SM-like h and a heavy non-SM Higgs mass spectrum
with long cascade decays H± → W±A → W±ZH or
A → W±H∓ → W±W∓H ; (6) SM-like hV V and ht t̄
couplings (V = W± and Z ), but with opposite sign hbb̄
and hτ+τ− couplings as compared with the SM; and (7) an
MSSM-like scenario, in which the scalar potential param-
eters (with one exception) are fixed by the corresponding
tree-level MSSM relations. Finally, in Sect. 4, we present our
conclusions. The proposed benchmark scenarios are summa-
rized in a set of tables presented in Appendix A.

2 Theoretical background

2.1 The general two-Higgs-doublet model (2HDM)

The two-Higgs-doublet model (2HDM) consists of two com-
plex SU(2) doublet, hypercharge-one fields, �1 and �2, and
an SU(2) × U(1)-invariant scalar potential,

V = m2
11�

†
1�1 + m2

22�
†
2�2 − [m2

12�
†
1�2 + h.c.]

+ 1
2λ1(�

†
1�1)

2 + 1
2λ2(�

†
2�2)

2 + λ3(�
†
1�1)(�

†
2�2)

+λ4(�
†
1�2)(�

†
2�1) +

{
1
2λ5(�

†
1�2)

2

+[λ6(�
†
1�1) + λ7(�

†
2�2)]�†

1�2 + h.c.

}
, (1)
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where the parameters m2
12, λ5, λ6, and λ7 are potentially

complex. All other scalar potential parameters are mani-
festly real. We assume that the parameters are chosen such
that the minimum of the scalar potential spontaneously
breaks the SU(2) × U(1) electroweak gauge symmetry to
U(1)EM [44,45]. That is, at the minimum of the scalar poten-
tial, the neutral components of the complex doublet scalar
fields acquire vacuum expectation values (vevs),

〈�0
i 〉 = vi√

2
eiξi , (i = 1, 2), (2)

where by convention v1 and v2 are real and non-negative.
The combination v2 ≡ v2

1 + v2
2 � (246 GeV)2 is fixed by

its relation to the Fermi constant and the W boson mass,
v2 = 1/(

√
2GF ) = 4m2

W /g2.
In the most general 2HDM, the fields �1 and �2 are

indistinguishable. Thus, it is always possible to define two
orthonormal linear combinations of the two scalar doublet
fields without modifying any prediction of the model. Per-
forming such a redefinition of fields (henceforth called a
change of basis of the scalar doublet fields) leads to a new
scalar potential with the same form as Eq. (1) but with
modified coefficients. In this paper we shall focus on the
case where the scalar potential and the vacuum state are
CP-conserving, leaving the more general case for future
work.

The scalar potential is explicitly CP-conserving if and
only if there exists a basis choice for the scalar fields in
which m2

12, λ5, λ6, and λ7 are simultaneously real. The gen-
eral conditions that guarantee the existence of such a basis
(called a real basis) were developed in [46]. Henceforth, we
shall assume that all scalar potential parameters given in Eq.
(1) are real. However, it is still possible that the vacuum
spontaneously breaks CP . In particular, spontaneous CP-
violation takes place if and only if the scalar potential is
explicitly CP-conserving, but no real basis exists in which
the scalar vacuum expectation values are simultaneously real.
Sufficient conditions for a CP-conserving vacuum are eas-
ily obtained. The minimization of the scalar potential fixes
v1 ≡ v cos β, v2 ≡ v sin β (where 0 ≤ β ≤ 1

2π ) and the
relative phase of the two vevs, ξ ≡ ξ2 − ξ1, through the
equations

m2
11 = m2

12 tan β cos ξ − 1
2v2[λ1c

2
β

+ (λ3 + λ4 + λ5 cos 2ξ)s2
β

+ 3λ6sβcβ cos ξ + λ7s
2
β tan β cos ξ ], (3)

m2
22 = m2

12 cot β cos ξ − 1
2v2[λ2s

2
β

+ (λ3 + λ4 + λ5 cos 2ξ)c2
β

+ λ6c
2
β cot β cos ξ + 3λ7sβcβ cos ξ ], (4)

m2
12 sin ξ = 1

2v2[2λ5sβcβ cos ξ + λ6c
2
β + λ7s

2
β ] sin ξ, (5)

where sβ ≡ sin β and cβ ≡ cos β, and all scalar potential
parameters are real by assumption. If sin ξ 
= 0, then Eq. (5)
can be used to obtain

cos ξ = m2
12 − 1

2λ6v
2
1 − 1

2λ7v
2
2

λ5v1v2
. (6)

Moreover, this value of ξ corresponds to the minimum
(maximum) of the scalar potential if λ5 > 0 (λ5 < 0). Thus,
it follows (e.g., see Appendix B of Ref. [47]) that no scalar
potential minimum occurs for sin ξ 
= 0 if

∣∣∣m2
12 − 1

2λ6v
2
1 − 1

2λ7v
2
2

∣∣∣ ≥ λ5v1v2. (7)

Thus if Eq. (7) is satisfied, then the scalar potential is min-
imized for sin ξ = 0 (i.e., ξ = nπ for integer n). One can
then perform a hypercharge gauge transformation, �i →
e−iξ1�i , followed by the field redefinition, �2 → (−1)n�2,
which yields real non-negative vevs, 〈�0

i 〉 = vi/
√

2 (for
i = 1, 2).

If Eq. (7) is not satisfied, then the scalar potential is min-
imized for sin ξ 
= 0. Nevertheless, one still must check that
there exists no basis transformation of the scalar fields such
that the resulting vevs are real. This can be accomplished
without explicitly considering all possible basis choices for
the scalar fields by making use of the so-called Higgs basis. In
Sect. 2.2, we define the Higgs basis and explain how it can be
used to verify that a 2HDM with an explicitly CP-conserving
scalar potential also has a CP-conserving vacuum.

2.2 The Higgs basis

It is convenient to define new Higgs-doublet fields,

H1 =
(
H+

1

H0
1

)
≡ v1e−iξ1�1 + v2e−iξ2�2

v
,

H2 =
(
H+

2

H0
2

)
≡ −v2eiξ2�1 + v1eiξ1�2

v
. (8)

It follows that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0. This is theHiggs
basis [40,41], which is uniquely defined up to an overall
rephasing, H2 → eiχ H2.

In the Higgs basis, the scalar potential takes the same form
as Eq. (1), but with new coefficients,

V = Y1H
†
1 H1 + Y2H

†
2 H2 + [Y3H

†
1 H2 + h.c.]

+ 1
2 Z1(H

†
1 H1)

2 + 1
2 Z2(H

†
2 H2)

2 + Z3(H
†
1 H1)(H

†
2 H2)

+ Z4(H
†
1 H2)(H

†
2 H1) +

{
1
2 Z5(H

†
1 H2)

2

+[Z6(H
†
1 H1) + Z7(H

†
2 H2)]H†

1 H2 + h.c.

}
, (9)
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where Y1, Y2, and Z1, . . . , Z4 are real and uniquely defined,
whereas Y3, Z5, Z6, and Z7 are complex and transform under
the rephasing of H2,

[Y3, Z6, Z7] → e−iχ [Y3, Z6, Z7] and Z5 → e−2iχ Z5.

(10)

For an explicitly CP-conserving scalar potential where all
the coefficients given in Eq. (1) are real, the real coefficients
of the scalar potential in the Higgs basis are given by

Y1 = m2
11c

2
β + m2

22s
2
β − 2m2

12s2β cos ξ, (11)

Y2 = m2
11s

2
β + m2

22c
2
β + 2m2

12s2β cos ξ, (12)

Z1 = λ1c
4
β + λ2s

4
β + 1

2 (λ3 + λ4 + λ5 cos 2ξ)s2
2β

+ 2s2β(λ6c
2
β + λ7s

2
β) cos ξ, (13)

Z2 = λ1s
4
β + λ2c

4
β + 1

2 (λ3 + λ4 + λ5 cos 2ξ)s2
2β

− 2s2β(λ6s
2
β + λ7c

2
β) cos ξ, (14)

Z3 = 1
4 (λ1 + λ2 − 2λ3 − 2λ4 − 2λ5 cos 2ξ)s2

2β

+ λ3 − (λ6 − λ7)s2βc2β cos ξ, (15)

Z4 = 1
4 (λ1 + λ2 − 2λ3 − 2λ4 − 2λ5 cos 2ξ)s2

2β

+ λ4 − (λ6 − λ7)s2βc2β cos ξ, (16)

where s2β ≡ sin 2β, c2β ≡ cos 2β, etc. The potentially com-
plex coefficients of the scalar potential in the Higgs basis are
given by

Y3 = −e−iξ [ 1
2 (m2

11 − m2
22)s2β + m2

12c2β cos ξ

+ im2
12 sin ξ

]
, (17)

Z5 = e−2iξ
{

1
4 [λ1 + λ2 − 2(λ3 + λ4 + λ5 cos 2ξ)]s2

2β

+ λ5 cos 2ξ − (λ6 − λ7)s2βc2β cos ξ

+ i[λ5c2β sin 2ξ − (λ6 − λ7)s2β sin ξ ]
}
, (18)

Z6 = e−iξ
{
− 1

2 [λ1c
2
β − λ2s

2
β

−(λ3 + λ4 + λ5 cos 2ξ)c2β ]s2β

+ (λ6cβc3β + λ7sβs3β) cos ξ

+ i
[ 1

2λ5s2β sin 2ξ + (λ6c
2
β + λ7s

2
β) sin ξ

]}
, (19)

Z7 = e−iξ
{
− 1

2 [λ1s
2
β − λ2c

2
β

+ (λ3 + λ4 + λ5 cos 2ξ)c2β ]s2β

+ (λ6sβs3β + λ7cβc3β) cos ξ

+ i
[− 1

2λ5s2β sin 2ξ + (λ6s
2
β + λ7c

2
β) sin ξ

]}
. (20)

One can check that, by using Eqs. (3)–(5), one recovers
the expected scalar potential minimization conditions in the
Higgs basis,

Y1 = − 1
2 Z1v

2, Y3 = − 1
2 Z6v

2. (21)

Note that if sin ξ = 0 then Y3, Z5, Z6, and Z7 are all real
and the scalar potential and the vacuum are CP-conserving.
More generally, if all the coefficients of the Higgs basis are
real for some choice of χ [cf. Eq. (10)], then it follows that
any basis related to this real Higgs basis by a real orthogonal
transformation of the two doublet fields is also a real basis
with real vevs. Thus, it follows that the scalar potential and
vacuum are CP-conserving if and only if [41,46,48,49]

Im(Z∗
5 Z

2
6) = Im(Z∗

5 Z
2
7) = Im(Z∗

6 Z7) = 0. (22)

No separate condition involving Y3 is needed in light of
Eq. (21). Thus, if sin ξ 
= 0, then it may still be possible that
the vacuum is CP-conserving if Eq. (22) is satisfied. One can
obtain the general conditions for a CP-conserving vacuum
by inserting Eqs. (18)–(20) into Eq. (22). For example,

Im(Z∗
6 Z7) = 1

4 sin 2ξs2
2β [λ5(λ1 − λ2) − λ2

6 + λ2
7]

− 1
2 sin ξs2βc2β [λ1λ7 + λ2λ6

−(λ3 + λ4 + λ5)(λ6 + λ7)]. (23)

One noteworthy observation concerns the special case of
λ1 = λ2 and λ7 = −λ6 (dubbed an exceptional point of
the 2HDM parameter space in Ref. [41]). In fact, if both
these relations hold simultaneously in one basis then they
hold simultaneously in all bases. Applying this observation
to the Higgs basis, it follows that Z1 = Z2 and Z7 = −Z6,
which can easily be verified using Eqs. (13), (14), (19), and
(20). As a result Im(Z∗

6 Z7) = −Im(|Z6|2) = 0, which is
confirmed by Eq. (23).

The general expressions for Im(Z∗
5 Z

2
6) and Im(Z∗

5 Z
2
7) are

much more complicated and not particularly illuminating.
Nevertheless, if Eq. (22) is satisfied for some value of ξ 
= 0,
then it follows that a real Higgs basis exists. Performing an
O(2) basis transformation then yields a scalar potential of
the form given by Eq. (1) with real vevs. That is, without
loss of generality, we can assume that sin ξ = 0 in (17)–
(20), which yields a real Higgs basis that is unique up to a
possible sign ambiguity that corresponds to redefining the
Higgs-basis field H2 → −H2.

Thus, we shall parametrize the general CP-invariant
2HDM scalar potential by its real Higgs-basis form given
in Eq. (9), where all the Yi and Zi are real. The scalar poten-
tial minimum conditions given in Eq. (21) fix Y1 and Y3 in
terms of Z1 and Z6, respectively. Since 〈H0

1 〉 = v/
√

2 and
〈H0

2 〉 = 0, it follows that Y2, Z1, . . . , Z5, and the product
Z6Z7 are uniquely defined, whereas Z6 and Z7 separately
change sign under the only possible transformation among
real Higgs bases, H2 → −H2. That is, Z6 and Z7 are pseudo-
invariant quantities with respect to the real Higgs-basis trans-
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formation H2 → −H2. However, the relative sign of Z6 and
Z7 is meaningful.

Physical observables must be invariant with respect to
any possible Higgs-basis transformation. In the most gen-
eral 2HDM, tan β is also unphysical [41,50] since there is no
physical significance to an arbitrary real basis of scalar fields
(apart from the Higgs basis and the basis defined in terms
of neutral Higgs mass eigenstates). However, it is often the
case that the form of the Higgs–fermion Yukawa couplings
pick out a special scalar field basis, in which case tan β is
promoted to a physical parameter.

It is convenient to employ the real Higgs basis to evaluate
the spectrum of Higgs masses in the CP-conserving model.
The physical charged Higgs boson is the charged component
of the Higgs-basis doublet H2, and its mass is given by

m2
H± = Y2 + 1

2 Z3v
2. (24)

The three physical neutral Higgs boson mass-eigenstates are
determined by diagonalizing a 3×3 real symmetric squared-
mass matrix that is defined in the Higgs basis [40,50]

M2=
⎛
⎝Z1v

2 Z6v
2 0

Z6v
2 Y2 + 1

2 (Z3 + Z4 + Z5)v
2 0

0 0 Y2 + 1
2 (Z3 + Z4 − Z5)v

2

⎞
⎠.

(25)

We identify the CP-odd Higgs boson A = √
2 Im H0

2 with
squared mass,

m2
A = Y2 + 1

2 (Z3 + Z4 − Z5)v
2. (26)

Note that the real Higgs mass-eigenstate field A is defined up
to an overall sign change, which corresponds to the freedom
to redefine H2 → −H2.

The upper 2 × 2 matrix block given in Eq. (25) is the
CP-even Higgs squared-mass matrix,

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
, (27)

where we have used Eq. (26) to eliminate Y2. To diagonalize
M2

H , we define the CP-even mass eigenstates, h and H (with
mh ≤ mH ) by

(
H
h

)
=

(
cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2 Re H0

2

)
, (28)

where cβ−α ≡cos(β −α) and sβ−α ≡sin(β −α) are defined
in terms of the mixing angle α that diagonalizes the CP-
even Higgs squared-mass matrix when expressed in the orig-
inal basis of scalar fields, {�1, �2}. The real Higgs mass-
eigenstate fields H and h are defined up to an overall sign

change. This implies that β−α is defined modulo π . In par-
ticular,

cβ−α → −cβ−α, sβ−α → −sβ−α, H2 → +H2

⇒ H → −H, h → −h, (29)

cβ−α → +cβ−α, sβ−α → −sβ−α, H2 → −H2

⇒ H → +H, h → −h, (30)

cβ−α → −cβ−α, sβ−α → +sβ−α, H2 → −H2

⇒ H → −H, h → +h. (31)

It follows that the product sβ−αcβ−α is a pseudo-invariant
quantity with respect to the real Higgs-basis transformation
H2 → −H2.

The squared masses of h and H are then given by

m2
H,h = 1

2

{
m2

A + (Z1 + Z5)v
2

±
√

[m2
A + (Z5 − Z1)v2]2 + 4Z2

6v4

}
. (32)

The following identity therefore holds:

|Z6|v2 =
√

(m2
H − Z1v2)(Z1v2 − m2

h). (33)

Hence, diagonalizing M2
H yields the following expressions:

Z1v
2 = m2

hs
2
β−α + m2

Hc
2
β−α, (34)

Z6v
2 = (m2

h − m2
H )sβ−αcβ−α, (35)

m2
A + Z5v

2 = m2
Hs

2
β−α + m2

hc
2
β−α, (36)

where sβ−α ≡ sin(β −α) and cβ−α ≡ cos(β −α). Note that
Eq. (35) implies that

Z6sβ−αcβ−α ≤ 0. (37)

Indeed, Eq. (37) is invariant with respect to the real Higgs-
basis transformation H2 → −H2, so the sign of the quantity
Z6sβ−αcβ−α is physically meaningful.

Using the fact that β − α is defined modulo π , we shall
establish the convention where

0 ≤ β − α ≤ π. (38)

In this convention, sβ−α is non-negative, the sign of the field
h is fixed, and cβ−α is pseudo-invariant with respect to the
real Higgs-basis transformation H2 → −H2. One can then
derive expressions for cβ−α and sβ−α from Eqs. (34) and (35),
where the signs of the corresponding quantities are fixed by
Eqs. (37) and (38):
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cβ−α = − sgn(Z6)

√
Z1v2 − m2

h

m2
H − m2

h

= −Z6v
2√

(m2
H − m2

h)(m
2
H − Z1v2)

, (39)

sβ−α =
√
m2

H − Z1v2

m2
H − m2

h

= |Z6|v2√
(m2

H − m2
h)(Z1v2 − m2

h)

. (40)

Note that we have used Eq. (33) to obtain the second form
for cβ−α and sβ−α in Eqs. (39) and (40), respectively.

2.3 The CP-conserving 2HDM scalar potential with a
softly broken discrete Z2 symmetry

When we introduce the Higgs–fermion Yukawa couplings
in Sect. 2.4, there will be some motivation to restrict the
parameter freedom of the most general scalar potential given
in Eq. (1) by requiring the invariance of the scalar potential
under the discrete Z2 symmetry �1 → +�1 and �2 →
−�2. Imposing this discrete symmetry implies that m2

12 =
λ6 = λ7 = 0 in Eq. (1). In this case, λ5 is the only potentially
complex scalar potential parameter, which can be rendered
real by an appropriate rephasing of �1. It then follows from
Eqs. (6) and (7) that the scalar potential is minimized for
sin ξ = 0 if λ5 < 0 and cos ξ = 0 if λ5 > 0. In the latter case,
〈�0

2〉/〈�0
1〉 = ±i tan β. However, a redefinition of �1 →

∓i�0
1 yields real vevs while λ5 → −λ5. Thus, the Z2 –

invariant scalar potential and the vacuum are CP-invariant.
One can relax the discrete symmetry by allowing for

m2
12 
= 0 in Eq. (1) which softly breaks the Z2 symmetry.

The quartic terms in Eq. (1) still respect the Z2 symmetry,
so that λ6 = λ7 = 0. However, the scalar potential is now
CP-violating unless Im(λ∗

5[(m2
12]2) = 0. In what follows,

we shall assume that the latter condition is satisfied. In this
case, one can rephase �1 such that m2

12 and λ5 are both real.
That is, theCP-conserving scalar potential of interest is given
by

V = m2
11�

†
1�1 + m2

22�
†
2�2 − m2

12[�†
1�2 + �

†
2�1]

+ 1
2λ1(�

†
1�1)

2 + 1
2λ2(�

†
2�2)

2 + λ3(�
†
1�1)(�

†
2�2)

+λ4(�
†
1�2)(�

†
2�1) + 1

2λ5[(�†
1�2)

2 + (�
†
2�1)

2],
(41)

where all scalar potential parameters are real. We denote this
basis of scalar fields as the Z2-basis.

If λ5 ≤ |m2
12|/(v1v2), then the vevs are also real in

light of Eq. (7), which implies that the vacuum is also
CP-conserving. Otherwise, there is the potential for spon-
taneous CP-violation. To guarantee that the vacuum is CP-

conserving, we check the conditions given by Eq. (22). Set-
ting λ6 = λ7 = 0 in Eq. (23) yields

Im(Z∗
6 Z7) = 1

4λ5(λ1 − λ2)s
2
2β sin 2ξ. (42)

The other two conditions given in Eq. (22) simplify consid-
erably when λ6 = λ7 = 0,

Im(Z∗
5 Z

2
6) = − 1

4λ5s
2
2β sin 2ξ

{
(λ1 − λ3 − λ4)

2c4
β

−(λ2 − λ3 − λ4)
2s4

β

+ 1
2λ5(λ1 − λ2)s

2
2β cos 2ξ − λ2

5c2β

}
, (43)

Im(Z∗
5 Z

2
7) = − 1

4λ5s
2
2β sin 2ξ

{
(λ1 − λ3 − λ4)

2s4
β

−(λ2 − λ3 − λ4)
2c4

β

+ 1
2λ5(λ1 − λ2)s

2
2β cos 2ξ + λ2

5c2β

}
, (44)

where cos ξ = m2
12/(λv1v2) if λ5 > |m2

12|/(v1v2) and
sin ξ = 0 otherwise.

Although the vacuum isCP-violating for generic values of
the softly broken Z2-invariant 2HDM scalar potential when
sin ξ 
= 0, special cases can arise in which sin ξ 
= 0 and yet
the vacuum is CP-conserving. We have already encountered
one such example when m2

12 = λ6 = λ7 = 0 and λ5 > 0,
in which case the scalar potential is minimized for ξ = 1

2π .
More generally, consider the case of m2

12 
= 0, λ1 = λ2,
λ5 = |λ1−λ3−λ4|, and λ6 = λ7 = 0. In this case, Eqs. (42)–
(44) all vanish, which implies that a real Higgs basis exists.
Indeed, for this particular example, Eqs. (18)–(20) yield

Z2
6

Z5
= ± 1

2λ5s
2
2β(1 ± cos 2ξ),

Z6 = −Z7 = ± 1
2λ5s2β [(1 ± cos 2ξ)c2β + i sin 2ξ ], (45)

for λ5 = ±(λ1 −λ3 −λ4). Thus, one can rephase the Higgs-
basis field H2 to render Z5, Z6, and Z7 real. Henceforth, we
assume that a Higgs basis has been chosen such that all the
Zi are real and sin ξ = 0.

The most general parametrization of the CP-conserving
2HDM scalar potential and vacuum is easily specified in the
Higgs basis. To determine the constraints on the Higgs-basis
parameters that guarantee the existence of a softly broken
Z2-invariant,CP-conserving scalar potential, one simply sets
λ6 = λ7 = sin ξ = 0 in Eqs. (11)–(20). It is also convenient
to redefine tan β as the ratio of vevs. That is, henceforth we
shall define tan β ≡ 〈�0

2〉/〈�0
1〉 = eiξ v2/v1 = ±v2/v1 for

ξ = 0 and ξ = π , respectively. In particular, the Zi are now
given by

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2λ345s
2
2β, (46)

Z2 ≡ λ1s
4
β + λ2c

4
β + 1

2λ345s
2
2β, (47)
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Zi ≡ 1
4 s

2
2β [λ1+λ2−2λ345]+λi , (for i = 3, 4 or 5), (48)

Z6 ≡ − 1
2 s2β [λ1c

2
β − λ2s

2
β − λ345c2β ], (49)

Z7 ≡ − 1
2 s2β [λ1s

2
β − λ2c

2
β + λ345c2β ], (50)

where λ345 ≡ λ3 + λ4 + λ5. Since there are five nonzero λi
and seven nonzero Zi , there must be two relations. One can
check that the following two identities are satisfied:

Z2 = Z1 + 2(Z6 + Z7) cot 2β, (51)

Z345 = Z1 + 2Z6 cot 2β − (Z6 − Z7) tan 2β, (52)

where

Z345 ≡ Z3 + Z4 + Z5. (53)

Eliminating tan 2β yields the following relation among the
Zi :

(Z1 − Z2)[Z1Z7 + Z2Z6 − Z345(Z6 + Z7)]
+2(Z6 + Z7)

2(Z6 − Z7) = 0. (54)

Indeed, in a general CP-conserving 2HDM, if Eq. (54) is
satisfied then there must exist a basis in which λ6 = λ7 = 0.
The corresponding value of tan β (which specifies the basis)
can be determined from either Eq. (51) or (52).

At this stage, the parameter tan β is a pseudo-invariant,
since its sign can be flipped by redefining H2 → −H2 [e.g.,
�2 → −�2 and ξ2 → ξ2 + π in Eq. (8)]. It is convenient to
work in a convention where the ratio of vevs is non-negative,
in which case we can take

0 ≤ β ≤ 1
2π. (55)

In this convention, the signs of the pseudo-invariants Z6 and
Z7 are now fixed, since we can no longer flip their signs by
redefining H2 → −H2. This implies that the relative sign of
sβ−α and cβ−α is fixed by Eq. (37), in which case the sign of
cβ−α is determined by combining Eqs. (37) and (38).

Finally, in the CP-conserving, softly broken Z2-invariant
2HDM, it is convenient to introduce the squared-mass param-
eter,

m 2 ≡ 2m2
12

sin 2β
= m2

A + λ5v
2. (56)

One can express m 2 in terms of Y2, Z1, and Z6,

m 2 = Y2 + 1
2 Z1v

2 + Z6v
2 cot 2β. (57)

Then, combining Eq. (57) with Eqs. (26), (35), and (36) yields

Z7v
2 = (m2

h − m2
H )sβ−αcβ−α

+2 cot 2β[m2
Hs

2
β−α + m2

hc
2
β−α − m 2]. (58)

2.4 Special forms for the Higgs–fermion Yukawa couplings

We next turn to the Higgs–fermion Yukawa couplings. One
starts out initially with a Lagrangian expressed in terms of
the scalar doublet fields �i (i = 1, 2) and the interaction-
eigenstate quark fields. After electroweak symmetry break-
ing, one can identify the 3 × 3 quark mass matrices. By
redefining the left and right-handed quark and lepton fields
appropriately, the quark and charged lepton mass matri-
ces are transformed into diagonal form, where the diagonal
elements are real and non-negative. The resulting Higgs–
fermion interaction Lagrangian in terms of the quark and
lepton mass-eigenstate fields, U = (u, c, t), D = (d, s, b),
N = (νe, νμ, ντ ), and E = (e, μ, τ), is given by

− LY = UL�0 ∗
a hUa UR − DLK

†�−
a h

U
a UR

+ULK�+
a h

D †
a DR + DL�0

ah
D †
a DR

+ NL�+
a h

E †
a ER + EL�0

ah
E †
a ER + h.c., (59)

where K is the CKM quark mixing matrix, the hU,D,L are
3×3 Yukawa coupling matrices and there is an implicit sum
over a = 1, 2. The diagonal quark and charged lepton mass
matrices are given by MF = (v1hF

1 + v2hF
2 )/

√
2, where

F = U, D, E . However, the couplings of the neutral Higgs
bosons to the fermions are not flavor-diagonal. Thus, Eq. (59)
would yield large tree-level Higgs-mediated flavor changing
neutral currents (FCNCs), which is in conflict with observed
data.

In a general extended Higgs model, tree-level Higgs-
mediated FCNCs are absent if for some choice of basis of
the scalar fields, at most one Higgs multiplet is responsible
for providing mass for quarks or leptons of a given electric
charge, as first pointed out by Glashow, Weinberg, and Pas-
cos (GWP) [35,36]. This GWP condition can be imposed by
a symmetry principle, which guarantees that the absence of
tree-level Higgs-mediated FCNCs is natural. By an appropri-
ate choice of symmetry transformation laws for the fermions
and the Higgs scalars, the resulting Higgs–fermion Yukawa
interactions take on the required form in a specific basis of
scalar fields. The symmetry also restricts the form of the
Higgs scalar potential in the same basis. These considera-
tions were first applied in the 2HDM in Refs. [37] and [38].

The GWP condition can be implemented in four different
ways [51–54]:

1. Type-I Yukawa couplings: hU1 = hD
1 = hL1 = 0,

2. Type-II Yukawa couplings: hU1 = hD
2 = hL2 = 0.

3. Type-X Yukawa couplings: hU1 = hD
1 = hL2 = 0,

4. Type-Y Yukawa couplings: hU1 = hD
2 = hL1 = 0.

The four types of Yukawa couplings can be implemented by
a discrete symmetry as shown in Table 1.
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Table 1 Four possible Z2 charge assignments that forbid tree-level Higgs-mediated FCNC effects in the 2HDM [54]

�1 �2 UR DR ER UL , DL , NL , EL

Type I + − − − − +
Type II (MSSM-like) + − − + + +
Type X (lepton specific) + − − − + +
Type Y (flipped) + − − + − +

Table 2 Neutral Higgs–fermion couplings in the 2HDM subject to the Z2 symmetries given in Table 1. The couplings listed above are normalized
relative to the SM Higgs couplings to UU , DD, and EE

hUU hDD hEE HUU HDD HEE i AUγ5U i ADγ5D i AEγ5E

Type I cos α
sin β

cos α
sin β

cos α
sin β

sin α
sin β

sin α
sin β

sin α
sin β

− cot β cot β cot β

Type II cos α
sin β

− sin α
cos β

− sin α
cos β

sin α
sin β

cos α
cos β

cos α
cos β

− cot β − tan β − tan β

Type X cos α
sin β

cos α
sin β

− sin α
cos β

sin α
sin β

sin α
sin β

cos α
cos β

− cot β cot β − tan β

Type Y cos α
sin β

− sin α
cos β

cos α
sin β

sin α
sin β

cos α
cos β

sin α
sin β

− cot β − tan β cot β

The neutral Higgs Yukawa couplings (relative to the corre-
sponding couplings of the SM Higgs boson) are conveniently
summarized in Table 2 for the four possible implementations
of the GWP condition.

The imposition of the discrete symmetry also restricts the
form of the Higgs scalar potential given in Eq. (1) by setting
m2

12 = λ6 = λ7 = 0. As discussed in Sect. 2.3, the condition
m2

12 = 0 can be relaxed. In the case of a softly broken Z2-
invariant 2HDM with m2

12 
= 0, Higgs-mediated FCNCs are
still absent at tree level, although they are generated at one-
loop order. Nevertheless, the size of these FCNCs may be
phenomenologically acceptable, depending on the region of
the 2HDM parameter space. This motivates us to focus on the
Higgs scalar potential of the form given in Eq. (41). Note that
the parameter tan β ≡ 〈�0

2〉/〈�0
1〉 is defined in terms of the

vevs with respect to the Z2-basis of scalar fields, where the
discrete Z2 symmetry of the Higgs–fermion Yukawa interac-
tions is manifest (i.e., where three of the six Higgs–fermion
Yukawa matrices vanish). Indeed as previously advertised,
the parameter tan β has been promoted to a physical param-
eter of the theory.

2.5 Parametrizing the softly broken Z2-symmetric
CP-conserving 2HDM

The scalar potential in the Z2-basis [Eq. (41)] is governed by
three squared-mass parameters and five dimensionless quar-
tic coupling parameters. Minimizing the scalar potential, we
re-express m2

11 and m2
22 in terms of v = 246 GeV and tan β.

Excluding v (which determines the W and Z masses), we
are left with seven real parameters: m2

12, tan β, and the λi
(i = 1, 2, . . . , 5). In the Higgs basis, the counting is also
straightforward: after imposing the scalar potential minimum
conditions the relevant real parameters (excluding v) are Y2

and Zi (i = 1, 2, . . . , 7). Imposing one relation, Eq. (54), to

guarantee the existence of a basis where λ6 = λ7 = 0, we
are again left with seven real parameters.

A more physical choice of parameters would consist of
α, β, and the four scalar masses, mh , mH , mA, and mH± .
This leaves one additional parameter, which is usually cho-
sen to be m2

12 or λ5 (cf. Appendix D of [47]). In many of the
previous studies of the 2HDM parameter space [24–26,29–
31,33,34], scans were performed over the parameters mh ,
mH , mA, mH± , m2

12, α, and β. Acceptable points in the scan
must satisfy unitarity and perturbativity constraints [55,56].
However, for random choices of m2

12 and masses of the
three non-SM-like Higgs bosons, one finds that the unitarity
and perturbativity constraints are often violated. This is eas-
ily understood in the context of the decoupling limit where
Y2 � v. In this limit, mH � v in which case cβ−α → 0
[cf. (39)] and the properties of h approach that of the SM
Higgs boson. Moreover, Eqs. (24), (26), (36), and (56) yield
the squared-mass differences

m2
A − m2

H± = 1
2 (Z4 − Z5)v

2, m2
H − m2

A � Z5v
2,

m 2 − m2
A = λ5v

2. (60)

The conditions of unitarity and perturbativity constrain
these squared-mass differences to be of O(cv2), where
c � 10.

To maximize the efficiency of costly scans over the 2HDM
parameter space (e.g. in a global fit), one should define the
input parameters of the model to include the mass of the
observed SM-like Higgs boson and at most one additional
Higgs mass. The other two Higgs masses and m 2 are deter-
mined in terms of the quartic Higgs self-coupling parameters.
As long as the magnitudes of the quartic parameters are con-
strained to be less than O(10), the scan over the other Higgs
masses andm2 will not violate the unitarity and perturbativity
constraints.
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Table 3 2HDM input parameters in the hybrid basis. By convention,
we take tan β to be non-negative. For a more detailed description of
their phenomenological relevance, see the text

Parameter Description

mh Mass of the light CP-even Higgs boson

mH Mass of the heavy CP-even Higgs boson

cβ−α cos(β − α), which determines the couplings of the
CP-even Higgs bosons to VV

tan β Ratio of vacuum expectation values in the basis with
manifest Z2 symmetry

Z4, Z5, Z7 Quartic couplings in the Higgs basis of O(1)

2.6 The hybrid basis of parameters

In light of the discovery of a SM-like Higgs boson, we have
information on two of the parameters of the 2HDM. Since the
observed boson is not CP-odd, we shall identify it with either
h or H . Given that the hV V and HVV couplings (V = W±
or Z ) relative to the SM Higgs boson hSM are given by

ghVV = ghSMVV sβ−α, gHVV = ghSMVV cβ−α, (61)

the values of the SM-like Higgs boson mass (mh or mH ) and
cβ−α are already known with some precision.

We therefore propose a “hybrid” strategy for specify-
ing the input parameters for the softly broken Z2-invariant
2HDM. The masses of the physical CP-even Higgs scalars
are given directly as input parameters together with cβ−α ,
which determines the phenomenologically important cou-
plings of the CP-even scalars to the W± and Z bosons
[cf. Eq. (61)], and tan β which specifies the basis of scalar
fields where the discrete symmetry of the Higgs–fermion
Yukawa interactions is manifest. In addition, we specify the
real Higgs-basis self-coupling coefficients Z4, Z5, and Z7 as
input parameters. We henceforth designate the input parame-
ter set {mh,mH , cβ−α, tan β, Z4, Z5, Z7} as the hybrid basis
of parameters as indicated in Table 3. In the convention
adopted in Eq. (38), we have4

0 ≤ sβ−α ≤ 1, and − 1 ≤ cβ−α ≤ 1, (62)

4 Different convention choices for β−α appear in the 2HDM literature.
For example, the convention 0 ≤ cβ−α ≤ 1 and −1 ≤ sβ−α ≤ 1 is
employed internally by the 2HDMC code [42,43]. Another common
choice in the literature is to take − 1

2 π ≤ α ≤ 1
2 π . Indeed, one is

always free to define either α or β − α modulo π . It is a simple matter
to translate among the various conventions. For any 2HDM parameter
point (α, β) where 0 ≤ β ≤ 1

2 π , compute the values of sβ−α and
cβ−α . Then, to convert to the convention of Eq. 62, simply replace
(sβ−α, cβ−α) → (−sβ−α,−cβ−α) if sβ−α is initially negative. Only
the relative sign of sβ−α and cβ−α is physical under the independent
convention of non-negative tan β (the latter is universally employed in
the 2HDM literature), as explained below Eq. (55).

in addition to the convention of Eq. (55), which implies that
tan β is non-negative.

With these seven input parameters, one may compute the
real Higgs basis self-coupling coefficients Z1, Z2, Z3, and
Z6 as well as the CP-odd Higgs and charged Higgs scalar
masses mA and mH± as follows. First, we employ Eqs. (34)
and (35),

Z1 = s2
β−αm

2
h + c2

β−αm
2
H

v2 , (63)

Z6 = (m2
h − m2

H )sβ−αcβ−α

v2 . (64)

In order to ensure that unitarity and perturbativity constraints
are not violated, one should choose the input parameters mH

and cβ−α such that m2
Hcβ−α ∼ O(cv2), where c � O(10) in

order to avoid a potentially large value of Z6. Next, we use
Eq. (51) to compute Z2,

Z2 = s2
β−αm

2
h + c2

β−αm
2
H

v2

+2 cot 2β

(
(m2

h − m2
H )sβ−αcβ−α

v2 + Z7

)
. (65)

There is a danger that Z2 may become too large if β is near 0
or 1

2π . This is not a true singularity since in the formal limit
of tan 2β = 0, it follows that Z6 = Z7 = 0 [cf. Eqs. (46)
and (47)] corresponding to the inert 2HDM limit discussed
briefly at the end of this section. In practice, we restrict our
scans over regions of tan β such that Z2 is never too large.

The parameter Z3 is determined from Eq. (52),

Z3 = s2
β−αm

2
h + c2

β−αm
2
H

v2 + (2 cot 2β − tan 2β)

×
(

(m2
h − m2

H )sβ−αcβ−α

v2

)
+ Z7 tan 2β − Z4 − Z5.

(66)

For this quantity, values of β near 0, 1
4π or 1

2π appear to be
problematical, yielding potentially large values of Z3. The
case of β near 0 or 1

2π has already been mentioned below
Eq. (65). The case of β = 1

4π is not a singular limit, as it cor-
responds to Z1 = Z2 and Z6 = Z7 with Z345 an independent
parameter [cf. Eqs. (46)–(50)]. In particular, for β = 1

4π ,
we must replace Z7 with Z3 as an input parameter in the
hybrid basis. We can sidestep this special parameter regime
by avoiding values of tan β too close to 1.

Observe that Eqs. (64)–(66) are consistent with the
pseudo-invariant nature of tan β, sβ−αcβ−α , Z6, and Z7.
Since we have established a convention in which sβ−α and
tan β are both non-negative [cf. Eqs. (38)–(55)], it follows
that that full parameter space of the model requires the con-
sideration of all possible non-negative values of tan β and
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sβ−α and all possible sign combinations of cβ−α , Z6, and
Z7, subject to the constraint of Eq. (37).

The masses of theCP-odd Higgs and charged Higgs scalar
masses are determined from Eqs. (24), (26), and (36)

m2
A = m2

Hs
2
β−α + m2

hc
2
β−α − Z5v

2, (67)

m2
H± = m2

A − 1
2 (Z4 − Z5)v

2. (68)

As a side note, one can also determine m 2 from Eq. (58),

m 2 = m2
Hs

2
β−α + m2

hc
2
β−α + 1

2 tan 2β(Z6 − Z7)v
2, (69)

where Z6 is given by Eq. (64).
In practice, taking the parameters Z4 and Z5 as input

parameters is not very intuitive. Clearly a more physical
approach is to take mA and mH± as input parameter and then
compute Z4 and Z5 using Eqs. (67) and (68). Then these
parameters can be employed in evaluating Z3 via Eq. (66).
The only danger with such an approach is that a poor choice
of mA and mH± will yield values of Z4 and Z5 that vio-
late unitarity and perturbativity constraints, as discussed in
Sect. 2.5. In practice, we first employ our hybrid basis to
perform our parameter scans. Once we have identified suit-
able parameter regimes, we will then take a more physical
approach by employing mA and mH± to define the corre-
sponding benchmark scenarios.

The parameter Z7 is also not particularly intuitive, so one
could advocate taking m 2 as the input parameter and then
compute Z7 using Eq. (69). However, m 2 is not a physi-
cal squared-mass parameter, so there is no particular advan-
tage for adopting this strategy. A poor choice of m 2 would
yield a value of Z7 that violates unitarity and perturbativity
constraints. Indeed, the CP-conserving, softly broken Z2-
invariant 2HDM always requires one extra parameter beyond
the four physical Higgs masses, α and β. There is an advan-
tage to choosing this parameter to be dimensionless for the
reasons noted above. Another possible choice for this param-
eter that is often found in the literature is λ5. Using Eqs. (48)–
(50), one can check that

λ5 = Z5 + 1
2 (Z6 − Z7) tan 2β, (70)

so one can always trade in λ5 for Z7 and vice versa.
The case ofm 2 = 0 is special and corresponds to a 2HDM

with an exact Z2 symmetry. In this case, Z7 is determined
by Eq. (69) in terms of mh , mH , and cβ−α . It is notewor-
thy that one cannot take mH arbitrarily large in the Z2-
invariant 2HDM without violating unitarity and perturbativ-
ity bounds.5 Thus, there is no consistent decoupling limit
where the heavy Higgs states H , A, and H± decouple from

5 In light of Eq. (70), the quantity (Z6 − Z7) tan 2β ∼ O(1) for all
values of tan β as long as the λi ∼ O(1).

the low-energy theory. In contrast, in the softly broken Z2-
invariant 2HDM with m 2 
= 0, the decoupling limit exists
in which H , A, and H± are all very heavy, with squared
masses of O(m 2) [cf. Eq. (57)], while keeping all Higgs
self-coupling parameters bounded.

Finally, the inert 2HDM [57–59], corresponding to Z6 =
Z7 = 0 and Type-I Yukawa couplings [20], must be treated
separately. In the inert 2HDM, we have either β = 0 or
β = 1

2π and either cβ−α = 0 (in which case h is identified
as the SM-like Higgs boson) or sβ−α = 0 (in which case H
is identified as the SM-like Higgs boson). In both cases, the
SM-like Higgs boson is denoted by hSM and the other inert
neutral Higgs bosons will be denoted by HI and AI . The
states HI and AI are relatively CP-odd, although (despite
the notation) the individual CP-quantum numbers of these
two states are not well defined. By convention, we shall define
HI to be the heavier of the two neutral inert Higgs scalars.
Then, using Eqs. (24) and (25), the charged and neutral inert
Higgs masses are given by

m2
H± = Y2+ 1

2 Z3v
2, m2

HI ,AI
= Y2+ 1

2 (Z3+Z4±|Z5|)v2.

(71)

The relevant input parameter set in this case is {m2
hSM

=
Z1v

2,m2
H± , Z2, Z3, Z4, Z5}. Note that parameters Z2 and

Z3, which govern the self-couplings of the inert scalar dou-
blet, must be provided separately since Eqs. (65) and (66)
are not applicable in this case. We shall not consider the inert
2HDM further here, but phenomenological constraints and
benchmark scenarios for this model have been recently dis-
cussed in [60].

3 Benchmark scenarios

3.1 Numerical analysis

To capture the 2HDM phenomenology that is interesting for
upcoming LHC Higgs searches, we have performed numeri-
cal scans over the softly brokenZ2-symmetric 2HDM param-
eter space using the hybrid basis of parameters for inputs for
the scans.6 Based on these results, we identify a set of use-
ful benchmark scenarios that we will now describe in more
detail. Most of the scenarios are presented in the form of
two-dimensional benchmark planes, whereas some of them
are in the form of lines where only one parameter is var-
ied. As a general rule, these scenarios could be made into
benchmarks of higher dimensions by promoting additional

6 The parameter scans presented in Sect. 3 have employed either Type-I
or Type-II Yukawa couplings. Parameter scans with Type-X or Type-Y
Yukawa couplings will be treated elsewhere.
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Fig. 1 Example 2HDM parameter regions respecting perturbative unitarity and stability constraints (green) for mH = 300 GeV (left) and
mH = 600 GeV (right), Z4 = Z5 = −2 and Z7 = 0

parameters with fixed values to vary within certain ranges.
Below we discuss a few examples of how this could be done.

For the numerical evaluations we use the code 2HDMC
[42,43] (v. 1.7.0), where the hybrid basis of parameters has
been implemented according to Sect. 2.6. Constraints on the
quartic couplings from (absolute) vacuum stability and S-
matrix unitarity are evaluated at the input scale. For the case
with Z2 symmetry (as is implicit already in the definition
of the hybrid basis), the condition that the Higgs potential is
positive definite is equivalent to the well-known relations [57]

λ1 > 0, λ2 > 0, λ3 > −√
λ1λ2,

λ3 + λ4 − |λ5| > −√
λ1λ2. (72)

For the unitarity constraints, we impose an upper limit which
corresponds to saturation of the unitarity bound by the tree-
level contribution. Using the formulation of [56], this is
equivalent to the constraint |�| < 16 π on individual matrix
elements.

As an example, the regions in (cβ−α, tan β ) compat-
ible with theoretical constraints from perturbative unitar-
ity and positivity of the potential are shown in Fig. 1 for
fixed values of the input parameters in the hybrid basis:
mh = 125 GeV, mH = 300 GeV (left) and mH = 600 GeV
(right), Z4 = Z5 = −2 and Z7 = 0. The theoreti-
cally allowed parameter space (shown in green) shrinks with
increasing mH , owing to the existence of a proper decou-
pling limit where cβ−α is forced toward zero as mH � v

[cf. Eq. (39)]. As can be seen from this figure, there is an
allowed (green) patch that survives for large values of cβ−α

even for mH = 600 GeV. This region is removed at higher
masses by the unitarity constraint (which cuts in from the
upper right corner). The constraints are invariant under the
transformation (cβ−α, tan β ) → (−cβ−α, 1/ tan β ), reflect-
ing the fact that these points are related by an interchange
of the Higgs fields in the Z2-basis, �1 ←→ �2, or equiva-
lently taking H2 → −H2 and cβ−α → −cβ−α in a conven-

tion where sβ−α is non-negative [cf. Eq. (31)]. We shall not
consider values of tan β < 1 in the following.

The branching ratios and LHC cross sections for Higgs
production are evaluated using 2HDMC and SusHi [61] in
accordance with the recommendations of [62]. We recom-
mend that numerical values used in an experimental analysis
are also calculated withHIGLU [63] andHDECAY [64], since
such a comparison can provide a first estimate of the theoret-
ical uncertainties in the treatment of (missing) higher-order
corrections. These programs provide cross section predic-
tions for the heavier 2HDM Higgs bosons, H and A, in the
dominant gluon fusion and bb̄ associated production modes.
One of the benchmark scenarios discussed below (Scenario
E) allows for the production of heavy charged Higgs bosons.
The cross section for pp → t b̄H−/t̄bH+ depends only on
mH± and tan β. A detailed numerical analysis of this pro-
cess has recently been presented in [65], with numbers that
are applicable to our Scenario E.

Constraints from direct Higgs searches at LEP, the Teva-
tron, and the LHC are evaluated using HiggsBounds [66–
68] (v. 4.2.0), which selects for each parameter point the most
sensitive exclusion limit (at 95 % C.L.). The compatibility of
the 2HDM with the observed 125 GeV Higgs signal is calcu-
lated in terms of a χ2 value taking into account the full LHC
run-I data using HiggsSignals [69] (v. 1.3.0). To deter-
mine the viable parameter regions in a benchmark scenario
with two free parameters, we demand compatibility with the
best-fit point, which usually is in very good agreement with
the SM, within 2 σ (�χ2 = χ2 − χ2

min < 6.18). The best-
fit (minimal χ2 value) is reevaluated for each benchmark
scenario. We make no quantitative statements about the rela-
tive degree of compatibility between different scenarios and
the data, but it is checked explicitly that the best-fit points
obtained in all cases lie very close to the SM predictions.

Figure 2 demonstrates how these constraints work on
the 2HDM parameter space under the assumption that the
observed LHC signal corresponds to the lightest 2HDM
Higgs boson, h. Demanding that the Higgs rates are within
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Fig. 2 Direct constraints from LHC Higgs searches on the param-
eter space for the 2HDM Type-I (top) and Type-II (bottom) with
mH = 300 GeV (left) and mH = 600 GeV (right). In both cases
mh = 125 GeV, Z4 = Z5 = −2, and Z7 = 0. The colors indi-

cate compatibility with the observed Higgs signal at 1 σ (green), 2 σ

(yellow) and 3 σ (blue). Exclusion bounds at 95 % C.L. from the non-
observation of the additional Higgs states are overlaid in gray

2 σ of the measurements restricts cβ−α to be close to the SM
limit (cβ−α ∼ 0) in the case of Type-II Yukawa couplings.
For Type-I couplings, the deviation from the SM limit can
be somewhat larger. The shape of the allowed region arises
from the dependence of the production and decay rates on
the mixing angles, most importantly the total width which in
the Type-II model is dominated by the hbb̄ coupling.

One additional set of constraints to keep in mind when
designing viable benchmark scenarios are the electroweak
precision tests, where in particular the oblique T parameter
[70] can receive sizable contributions due to a large mass
splitting between the non-SM-like charged and neutral Higgs
states [71–75]. In particular,

αT = g2

64πm2
W

{
F(m2

H± ,m2
A0 ) + F(m2

H± ,m2
H0 )

−F(m2
A0 ,m

2
H0 ) + c2

β−α[F(m2
H± ,m2

h0 )

− F(m2
A0 ,m

2
h0 ) + F(m2

A0 ,m
2
H0 ) − F(m2

H± ,m2
H0 )]

}

+O(g′ 2), (73)

where α ≡ e2/(4π) with the electromagnetic coupling e
and the weak couplings g and g′ defined in the MS scheme
evaluated at mZ . The function F is defined by

F(m2
1,m

2
2) ≡ 1

2 (m2
1 + m2

2) − m2
1m

2
2

m2
1 − m2

2

ln

(
m2

1

m2
2

)
, (74)

with F(m2,m2) = 0. Typically, the O(g′ 2) contribution to
T is numerically small. Hence, to ensure that the 2HDM
contribution to T is within the current bound, T ≤ 0.2 at
95 % C.L. [76], one must be close to the custodial limit. In
particular, in the decoupling limit of the 2HDM, Eq. (73)
reduces to [75]

αT � (m2
H± − m2

A)(m2
H± − m2

H )

48π2v2m2
H

[
1 + O

(
v2

m2
H

)]
, (75)

from which one can see that the 2HDM contribution to the T
parameter will be sufficiently small if either m2

H± − m2
A �

O(v2) or m2
H± − m2

H � O(v2). Note that Eq. (75) can be
rewritten as [cf. Eq. (60)]

αT � (Z4 − Z5)(Z4 + Z5)v
2

192π2m2
H

[
1 + O

(
v2

m2
H

)]
. (76)

Consequently, the choice Z4 = ±Z5 is special in the sense
that the corresponding Higgs sector contributions to the T
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Fig. 3 Parameter space of the non-aligned benchmark Scenario A with Type-I couplings, cβ−α = 0.1 (left) and Type-II Yukawa couplings,
cβ−α = 0.01 (right). The color coding is the same as in Fig. 2

parameter vanish in the decoupling limit. Several of the
benchmark scenarios that we propose below satisfy this prop-
erty.

Finally, the general 2HDM (without supersymmetry) can
also be constrained by various low-energy (flavor physics)
processes (see, e.g., [77]). Since our main objective is to
define scenarios capturing interesting LHC phenomenology,
we will not be concerned with the details of these constraints,
nor will they be explicitly applied in our numerical results. In
all the following, it should be noted that there exists a generic
lower bound on the charged Higgs boson mass in the Type-II
2HDM, mH± � 480 GeV at 95 % C.L., from measurements
of the BR(B → Xsγ ) [78].

3.2 Scenario A (non-alignment)

Our first benchmark scenario has the “normal” interpretation
of the 125 GeV signal as the lightest CP-even Higgs boson,
h, with SM-like properties. The h is SM-like in the so-called
alignment limit7 where cβ−α → 0, in which case the hV V
coupling approaches the corresponding SM value. On the
other hand, to allow for some interesting phenomenology of
the heavier CP even state, H , we define the scenario with a
non-alignment (cβ−α 
= 0) as allowed by the present con-
straints (cf. Fig. 2). The scenario focuses on searches for the
heavier CP-even state, H , in SM final states (including the
H → hh decay). The remaining two Higgs bosons, A and
H± (which are kept mass-degenerate), are decoupled to a
sufficient degree to create a small hierarchy

mh = 125 GeV < mH < mA = mH± .

7 In the alignment limit [20,24,34,79–81], the SM-like Higgs boson is
approximately aligned with the neutral component of the Higgs-basis
field H1. In particular, in the limit where cβ−α → 0, we have h �√

2 Re H0
1 − v, and m2

h � Z1v
2. In light of Eq. (39), this limit can be

realized if either Z6 → 0 or if mH � mh . The latter is achieved in the
decoupling limit, whereas the former can be achieved independently of
the choice of the non-SM-like Higgs masses.

For mH > 150 GeV, this can be achieved by setting
Z4 = Z5 = −2, which leads to values of mH± satisfying
the b → sγ constraint for Type-II models. The value of
cβ−α is fixed close to the maximum allowed by the LHC
Higgs constraints, cβ−α = 0.1 for Type-I and cβ−α = 0.01
for Type-II couplings. Consequently, we keep mH and tan β

as free parameters. These parameter choices lead to a very
good fit to the light Higgs signal rates over a large fraction
of the (mH , tan β ) plane, as shown in Fig. 3.
An alternative to choosing a fixed value for cβ−α is to realize
this scenario with a value that decreases with mH to emulate
decoupling [cf. Eq. (39)]. For example, in the case of Type-
I couplings, we have performed scans with cβ−α = 0.1 ×
(150 GeV/mH )2.

We now look at the predictions for the production and
decay modes of the heavy CP-even Higgs in this scenario.
Figure 4 shows contours of the cross section for the domi-
nant gluon fusion production mode, gg → H versus the free
parameters (mH , tan β ). As can be seen from this figure, the
cross section is maximized as low values of tan β due to the
suppression of the Htt̄ coupling by 1/ tan β . This holds for
both Type-I and Type-II couplings due to the universality of
the couplings to up-type quarks. In the Type-II case, we also
see an enhancement of the cross section at high values of
tan β where the bottom loops become dominant, although in
this scenario the parameter space regions with a significant
enhancement are already disfavored by LHC constraints. In
the Type-I case, the decoupling property of the H couplings
to fermions sets in at high tan β , which can lead to arbi-
trarily small values of the cross section. This scenario can
therefore provide a useful benchmark to gauge and interpret
experimental progress in probing smaller and smaller values
of σ × BR in particular channels. In the Type-II model, at
high tan β , the cross section for associated production with
b quarks, bb̄ → H , can become important since it scales
as tan2 β, whereas for Type-I couplings this process is sup-
pressed.
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Fig. 4 Cross sections for gluon fusion gg → H at
√
s = 13 TeV in the 2HDM relative to the prediction for a SM Higgs boson with the same

mass in the alignment limit cβ−α → 0 with Type-I (left) and Type-II Yukawa couplings (right)

tt̄

hh

W+W−

ZZ

gg

bb̄

τ+τ−

tt̄

hh

W+W−

ZZ

bb̄

Fig. 5 Branching ratios of the Heavy Higgs boson, H , in scenario A
with Type-I couplings for cβ−α = 0.1, tan β = 1.5 (left) and tan β = 7
(right). Colors: H → W+W− (blue, solid), H → Z Z (red, solid),

H → hh (green, solid), H → t t̄ (gray, short dash), H → bb̄ (black,
long dash), H → ττ (gray, long dash), and H → gg (black, short
dash)

Turning now to the decay modes, the case of Type-I
Yukawa couplings is shown in Fig. 5 for tan β = 1.5 and
7. The Type-I couplings gives a very distinct pattern of
dominant decay modes, where the vector bosons dominate
below 250 GeV. Above this value, the cascade H → hh
opens up and quickly becomes dominant, while there are
still substantial contribution from the decays to WW and
Z Z . At low tan β this changes above the t t̄ threshold, but for
higher values of tan β this mode (like all fermionic decays)
is suppressed. Scenario A with Type-I Yukawa couplings
is a suitable benchmark to replace the SM as the standard
parametrization of 2� and 4� searches at higher masses,
where the rates can basically be adjusted to anything below
the present limit. Note that arbitrarily high values of mH are
not allowed in this scenario for all tan β values, owing to
the restrictive unitarity and stability constraints when cβ−α

is nonzero (cf. Fig. 1).
With Type-II couplings, the restriction on mH from the-

oretical constraints is much less severe, since the LHC
data already forces the scenario to be defined with cβ−α

much closer to the alignment limit. This also has the

effect of suppressing bosonic decay modes, which can be
seen in Fig. 6 where fermionic modes (bb̄, ττ , and t t̄)
are clearly dominant over the full mass range. This sce-
nario can be used for combinations of searches utiliz-
ing different fermionic decay modes. It is also useful to
gauge the performance of e.g. ττ searches in a setting
where only a single CP-even Higgs boson is present at
a given mass (in contrast to the MSSM case where typi-
cally H and A are nearly mass-degenerate). It also avoids
other complications associated with SUSY interpretations,
such as the non-holomorphic �b corrections to the bottom
Yukawa coupling and/or the presence of SUSY decay modes
[82,83].

3.3 Scenario B (low-mH )

Scenario B corresponds to a “flipped” 2HDM benchmark
scenario. In this scenario both h and H are light, but it is the
heavier of the two which has mH = 125 GeV and is SM-
like. Since mh < mH , the lighter of the two CP-even Higgs
bosons must have strongly suppressed couplings to vec-

123



Eur. Phys. J. C   (2015) 75:491 Page 15 of 24  491 

tt̄

hh

W+W−

ZZ

gg

bb̄

τ+τ− tt̄

hh

W+W−

ZZ

bb̄

τ+τ−

Fig. 6 Branching ratios of H in scenario A with Type-II couplings for cβ−α = 0.01, tan β = 1.5 (left) and cβ−α = 0.01, tan β = 7 (right). The
color coding is the same as in Fig. 5

Fig. 7 Allowed parameter regions for the lightest 2HDM Higgs boson
in Scenario B with Type-I Yukawa couplings (left) and Type-II couplings
(right). The colors indicate statistical compatibility with the 125 GeV

signal at 1 σ (green), 2 σ (yellow) and 3 σ (blue). The gray (dashed)
region is excluded at 95 % C.L. by constraints from direct searches at
LEP and the LHC

tor bosons to be compatible with direct search limits which
forces sβ−α → 0 [cf. Eq. (61)].8

Similarly to Scenario A, the hybrid basis quartic parame-
ters are chosen to decouple the other two Higgs states, A and
H±, to a sufficient degree not to affect the phenomenology
(here: Z4 = Z5 = −5). This is to ensure compatibility with
the strong indirect constraints (from flavor physics) on a light
charged Higgs boson with mass of order mH , in particular
for Type-II Yukawa couplings. In the parameter space region
90 < mh < 120 GeV LHC constraints (from h → bb, ττ )
apply, which leads to an upper limit on tan β. This limit
depends only weakly on cβ−α in the limit cβ−α � 1. We
focus here on the benchmark line with tan β = 1.5 as a func-

8 In light of Eq. (40), the alignment limit of sβ−α → 0 is achieved
in the limit of Z6 → 0, in which case the heavier of the two CP-
even Higgs scalars is approximately aligned with the Higgs-basis field,
H � √

2 Re H0
1 − v, and mH � Z1v

2 (cf. footnote 7). In contrast to
Scenario A, the decoupling limit can never be realized in Scenario B,
since at least one of the Higgs states is lighter than the SM-like Higgs
boson.

tion of mh , although it is straightforward to generalize this
analysis to a benchmark plane by varying tan β.

Since this scenario implements a completely different
interpretation of the 125 GeV signal, the assumptions for
the parameter space fit presented in Fig. 2 are not fulfilled.
In Fig. 7 we therefore show the corresponding results with
the assumption of mH � 125 GeV for a region of parameter
space near the SM limit, |cβ−α| → 1. From this figure it can
also be seen that the region where H → hh is open is very
hard to reconcile with LHC measurements, we will therefore
not consider this possibility any further.

As suitable benchmark scenarios we select the cases of
exact alignment, cβ−α = 1, with either Type-I or Type-II
Yukawa couplings. As a third scenario, we choose a non-
aligned value of cβ−α = 0.9, which, however, is only rel-
evant for Type-I couplings. The dominant decay modes of
the light, non-SM-like, Higgs bosons are similar for all the
three different scenarios, with BR(h → bb̄) ∼ 75–80 % and
BR(h → τ+τ−) ∼ 8 % being the two most interesting from
the phenomenological point of view.
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Fig. 8 Hadronic cross sections at
√
s = 13 TeV for production of the light CP-even Higgs boson (long dashes), the CP-odd Higgs A (short

dashes), and their sum (green, solid) in Scenario C with Type-I Yukawa couplings

3.4 Scenario C (CP-overlap)

In this work we have restricted ourselves to benchmarks for a
2HDM Higgs sector with CP-conservation, while a detailed
analysis of the hybrid basis extended to the CP-violating case
is postponed to future work. Nevertheless, we now consider
a scenario where overlapping CP-odd and CP-even Higgs
bosons simultaneously have mass close to 125 GeV [84].
Since the CP-odd Higgs boson does not couple to vector
bosons at tree level, there are surprisingly few channels where
it is possible to distinguish this scenario from the case with
a single light Higgs, h. The most important channel where
the CP-odd contribution to the total rate could reach O(1)

is through gluon (bb̄) fusion, followed by the decay h/A →
τ+τ−. We shall therefore analyze this process in more detail.

Requiring thatmA = mh (= 125 GeV) in the hybrid basis
of parameters, Eq. (67) yields

Z5 = (m2
H − m2

h)s
2
β−α

v2 . (77)

Requiring in addition that mH± = mH , Eq. (68) implies that

Z4 = −Z5 − 2(m2
H − m2

h)c
2
β−α

v2 . (78)

The remaining quartic parameter, Z7, does not enter in the
mass determination. To maintain a SM-like h, we focus on
the alignment limit and set cβ−α = 0. In this case, Eqs. (77)
and (78) reduce to

Z5 = −Z4 = m2
H − m2

h

v2 . (79)

We fix Z7, which has only minor impact on the phenomenol-
ogy, such that m2

12 = m2
Asβcβ , or equivalently λ5 = 0. Set-

ting mH = 300 GeV, this leaves tan β as the only remaining
free parameter in Scenario C. Other choices for mH (or even

varying its value continuously) would lead to a benchmark
plane generalization of Scenario C. However, varying mH

has no impact on the properties of the overlapping CP states
(h and A).

Scenario C can be considered with both Type-I and Type-
II Yukawa couplings. In Fig. 8, we show the production
cross sections in the hadronic modes gg → h/A and
bb̄ → h/A (and their sum) for Type-I couplings. In this case
the CP-even production dominates, except at low values of
tan β � 1.6. Since there is no tan β enhancement of the bot-
tom Yukawa, the bb̄-induced production remains small and
can be neglected. Combining the (total) production cross sec-
tions (gg + bb̄) with the branching ratios BR(h/A → ττ),
we form the inclusive quantity

Rh/A
ττ = σ(pp → h/A) × BR(h/A → ττ)

[σ(pp → h/A) × BR(h/A → ττ)]SM
(80)

for the ττ rate relative to the SM. Predictions for Rττ in Sce-
nario C are shown in Fig. 9. The figure shows that the total
rate (green curve) approaches the SM value (Rττ = 1) in
the limit of high tan β due to the decoupling property for
the A contribution with Type-I couplings. In the opposite
limit, the CP-odd contribution becomes increasingly impor-
tant and dominates for tan β � 1.6. In effect, the total
predicted ττ rate significantly exceeds the SM prediction.
Experimental constraints limit the maximal total rate, with
the currently measured rates being μATLAS

ττ = 2.1+0.9
−0.8 [85]

and μCMS
ττ = 0.34 ± 1.09 [86].9 To determine the fractions

of the total rate which can be due to the CP-even and CP-
odd 2HDM components, we show in the right panel of Fig. 9
their relative contributions Ri

ττ /R
tot
ττ . Due to the decrease

in the cross section, the CP-odd component can be seen to
decrease monotonously with increasing tan β. This scenario

9 These results correspond to the “boosted” category of ATLAS and to
the “0 jet” results of CMS, both of which are expected to be dominated
by gluon fusion production.
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Fig. 9 The total ττ rate (adding gg and bb̄ production modes), relative
to the SM, from h (long dashes), A (short dashes) and their sum (green,
solid) in Scenario C with Type-I Yukawa couplings.Right: the respective

fractions of the inclusive ττ rate resulting from h (long dashes) and A
(short dashes)

Fig. 10 Hadronic cross sections at
√
s = 13 TeV for production of the light CP-even Higgs boson (long dashes), the CP-odd Higgs A (short

dashes), and their sum (green, solid) in Scenario C with Type-II Yukawa couplings

Fig. 11 The total ττ rate (adding gg and bb̄ production modes), rel-
ative to the SM, from h (long dashes), A (short dashes) and their sum
(green, solid) in Scenario C with Type-II Yukawa couplings. Right:

the respective fractions of the inclusive ττ rate resulting from h (long
dashes) and A (short dashes)

therefore provides a consistent model to parametrize an arbi-
trarily small CP-odd admixture in the 125 GeV signal.

With Type-II Yukawa couplings, the production cross sec-
tions for the CP-odd state, A, have a different dependence on
tan β . The effect of this change is shown in Fig. 10. As can be
seen from this figure the CP-odd contribution now becomes

much more important at high tan β , both due to an increase
in gluon fusion which has a minimum around tan β ∼ 4 and
due to a contribution from the bb̄ → A process with a cross
section increasing as tan2 β. In the case of Type-II couplings
the total cross section does not approach the SM value for
any value of tan β . This also has consequences for the total
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Fig. 12 Branching ratios of H in Scenario D (with low mA) for tan β = 2 with Type-I (left) and Type-II Yukawa couplings. The colors show
H → Z A (blue, solid), H → AA (blue, short dash), H → t t̄ (gray, dash) and H → bb̄ (black, long dash) and H → ττ (gray, long dash)

ττ rate, as can be seen in Fig. 11. In this scenario the min-
imum rate, obtained for tan β ∼ 3.5, is Rττ � 1.5. While
50 % above the SM expectation, this is not experimentally
excluded. Interestingly, a similar magnitude of the CP-even
and CP-odd contributions leads to fractions that are nearly
equal over a large range in tan β (Fig. 11, right). This sce-
nario is therefore particularly suitable as a “best-case” test of
the possibility to distinguish CP-properties of the 125 GeV
Higgs boson in the ττ channel.

3.5 Scenario D (short cascade)

This scenario is constructed with a SM-like h by fixing cβ−α

to be zero (exact alignment). The mass hierarchy can be mod-
ified to allow for either one or both of the decay modes
H → Z A or H → W±H∓H to be open, thus result-
ing in a “small cascade” of Higgs-to-Higgs decays.10 These
decays can typically be made dominant in the mass win-
dow 250 GeV < mH < 350 GeV (below t t̄ threshold). A
recent search for H → Z A by the CMS Collaboration [23]
already places interesting constraints on the parameter space
of this type of scenario. Other modes that can be potentially
of simultaneous interest is H → hh and H → AA (when A
is very light).

We present realizations of Scenario D for all the interesting
cases below. We define these scenarios with a single free
parameter by fixing tan β = 2, but this assumption could
easily be relaxed. For simplicity, we choose two of the three
non-SM-like Higgs masses to be equal. In the hybrid basis of
parameters, these mass degeneracies can be implemented by
an appropriate choice of Z4 and Z5 as follows [cf. Eqs. (67)
and (68)]:

mH = mH± and cβ−α = 0 ⇒ Z4 = −Z5, , (81)

mH = mA and cβ−α = 0 ⇒ Z5 = 0, (82)

mA = mH± ⇐⇒ Z4 = Z5. (83)

10 Such decay modes have also been considered recently in [87].

In addition to the short cascade that we are investigating,
additional “exotic” decay modes may be accessible, such
as e.g. A → W±H∓ (when H∓ is light). However, with
the possibility of non-degeneracy between the heavy Higgs
bosons (H and A in this case) there is in principle no guar-
antee for these other exotic decay modes to co-exist at any
appreciable rate. We therefore choose to discuss only the H
decays here, but there could be additional modes of similar
type to exploit.

Starting with the case of only a low mA, this can be real-
ized in the hybrid basis of parameters by choosing Z4 = −1,
Z5 = 1. For mH close to 250 GeV, the decay H → AA can
be open, with a rate that can be adjusted by varying Z7. Here
we choose Z7 = −1, which satisfies stability requirements
in the whole mass range.11 Figure 12 shows the branching
ratios of the heavy CP-even Higgs boson, H , into the inter-
esting final states. As this figure shows, there is nearly no
difference in the decay pattern for the two Yukawa types
(although, of course, the production cross sections are dif-
ferent). One thing that can be noteworthy is that the cas-
cade decay, in this case H → Z A maintains an appre-
ciable branching ratio also beyond the top threshold, with
percent-level rates up to mH ∼ 380 GeV. In Type-II mod-
els it is possible to suppress H → t t̄ further by going to
higher tan β , but we find for the chosen set of parameters
that this requires adjusting Z7 to maintain positivity of the
potential.

An alternative mass hierarchy with mH± < mA = mH

can be arranged by setting Z4 = 2 and Z5 = 0 while keep-
ing the remaining parameters fixed. This generates the new
possible decay modes H → W±H∓ (and H → H+H− for
very lowmH± ). Note that these lowmH± might be in a region
which is disallowed by flavor constraints. The decay branch-
ing ratios in this scenario are shown in Fig. 13. Similarly to
the case with light A, the cascade decay H → W±H∓ is

11 In contrast, the opposite sign choice, Z7 = 1 leads to problems with
positivity of the scalar potential.
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tt̄W±H∓

H+H−

bb̄

tt̄W±H∓

H+H−

bb̄

τ+τ−

Fig. 13 Branching ratios of H in Scenario D (with low mH± ) for tan β = 2 with Type-I (left) and Type-II Yukawa couplings. The colors show
H → W±H∓ (red, solid), H → H+H− (red, short dash), H → t t̄ (gray, dash) and H → bb̄ (black, long dash) and H → ττ (gray, long dash)

tt̄
W±H∓

ZA

H+H−AA

bb̄

tt̄
W±H∓

ZA

H+H−AA

bb̄

τ+τ−

Fig. 14 Branching ratios of H in Scenario D with both mA and mH± low (Z4 = Z5) for tan β = 2 with Type-I (left) and Type-II (right) Yukawa
couplings. The color coding is the same as used in Figs. 12 and 13

dominant over the range 250 < mH < 350 GeV, and with a
sizable tail toward higher masses. In this case percent-level
branching ratios are obtained for mH � 420 GeV.

Finally, by setting Z4 = Z5 the hierarchy of masses
becomes mA = mH± < mH , with the light CP-odd and
charged Higgs degenerate in mass. In this case all the dif-
ferent cascade modes for H can be open at the same time.
The resulting branching ratios for the chosen scenario are
shown in Fig. 14. Note that the widths for the leading-order
predictions for the decays involving one Higgs boson and
one gauge bosons, e.g. H → Z A, are proportional to gauge
couplings (and therefore relatively fixed), whereas the modes
involving triple-Higgs couplings, such as H → AA, are pro-
portional to scalar couplings appearing in the Higgs potential.
For example,12

gH AA = −v[(Z3 + Z4 − Z5)cβ−α − Z7sβ−α]. (84)

The strength of such modes is therefore more sensitive to the
specific choice of the 2HDM parameters.

12 A list of the triple Higgs couplings expressed in terms of the Higgs-
basis quartic parameters can be found in [34].

3.6 Scenario E (long cascade)

The short cascade (Scenario D) was defined with a one-step
decay involving two (or more) Higgs bosons. In Scenario E,
we extend this to a “long cascade” where two-step decays
involving all three non-SM-like Higgs bosons are possible,
assuming that H is always the lighter of the three. Assuming
first (E1) that H± is heavier than both A and H (realized
in the hybrid basis by choosing Z4 = −6, Z5 = −2 (with
Z7 always zero in this scenario), can give rise to a “long”
cascade and a second complementary direct decay that is
always present [88],

H± → W± A → W± Z H

H± → W± H. (85)

The other hierarchy, with mA > mH± > mH is achieved by
setting Z4 = 1, Z5 = −3 (E2). This leads to long cascades
which are inverted compared to Eq. (85) [87]:

A → W± H∓ → W± W∓ H

A → Z H. (86)
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Table 4 Mass spectrum and Type-I Higgs branching ratios to bosonic decay modes in Scenario E

Scenario Masses (GeV) Branching ratios

mH mA mH± H± → W± A H± → W± H A → Z H A → W± H∓

E1.1 200 402 532 0.053 0.79 0.62 –

300 460 577 0.041 0.74 0.39 –

E1.2 200 471 317 – 0.27 0.56 0.25

300 521 388 – 0.026 0.50 0.20

Interesting signatures in this scenario include a heavy Higgs
boson H in the τ+τ− or bb̄ channels augmented with multi-
ple leptons and/or additional jets.

As in scenario D, the recent search for A → ZH [23]
places constraints on the parameter space. It should be inter-
esting to analyze the interplay between this mode and other
available signatures in this scenario in more detail. In Table 4
we present the branching ratios for the various cascade decay
modes in the two different incarnations of Scenario E for
input masses mH = 200 GeV and mH = 300 GeV with
Type-I Yukawa couplings. Note that for this low value of
tan β there is no significant change in any of these branching
ratios in a Type-II setting. The main difference between the
two types are instead in the decay of H at the end of the
cascade, where the final states with down-type fermions (b,
τ ) are more favored with Type-II couplings.

There are several things of generic interest that can be
noted from Table 4. The heaviest (parent) Higgs boson has
a rather high probability, 70–85 %, to decay into a lighter
Higgs and a vector boson. However, most of this decay goes
directly into the lighter of the two states (H ) due to the larger
available phase space. The aggregated branching ratio for a
“long” cascade is thus suppressed, reaching typical values at
the (few) percent-level (up to 5–6 % in some cases). Never-
theless, to be able to study these types of final states would be
an intriguing possibility, which would contain a lot of infor-
mation concerning the structure of an extended Higgs sector.

3.7 Scenario F (flipped Yukawa)

The flipped Yukawa scenario is characterized by SM-like
couplings for the light Higgs, h, except for the couplings to
down-type fermions which has a change of sign relative to the
SM. This scenario is realized with Type-II Yukawa couplings
for values of (cβ−α, tan β ) solving the Eq. [89]

ghdd
gSM
hdd

= − sin α

cos β
= sin(β − α) − tan β cos(β − α) = −1.

(87)

This unconventional solution is what generates the second
branch of 2 σ -allowed parameter space in Fig. 2 (right), with

valid solution for not too small values of tan β. We define
Scenario F by simply fixing the value of cβ−α from the chosen
tan β using this relation, while the remaining parameters are
given the same values as in Scenario A: Z4 = Z5 = −2,
Z7 = 0.

The (small) effects on the h phenomenology induced by
the opposite sign bottom Yukawa coupling have been studied
in detail in [89]. However, the comparably large allowed val-
ues of cβ−α also open possibilities for the decay modes of the
heavier Higgs boson beyond what can be achieved near the
alignment limit as considered, for example, in Scenario A.
To illustrate this point, we show in Fig. 15 the decay branch-
ing ratios of H as a function of mH and tan β . As this figure
shows, the decays into vector bosons can be sizable over a
large part of the remaining parameter space, clearly beyond
what is possible in the alignment case. This observation holds
even in the region above the top threshold, which makes the
Flipped Yukawa scenario a suitable benchmark to replace the
SM in interpretations of future heavy Higgs searches in the
dilepton and 4� final states over a larger mass range.

3.8 Scenario G (MSSM-like)

This scenario is inspired by the Higgs potential of the MSSM.
The tree-level MSSM is defined by the following values for
the quartic couplings (in the “SUSY-basis” where supersym-
metry is manifest):

λ1 = λ2 = 1
4 (g2 + g′2), λ3 = 1

4 (g2 − g′2),
λ4 = − 1

2g
2, λ5 = λ6 = λ7 = 0. (88)

Following Eq. (56), the remaining parameter is given by
m2

12 = 1
2m

2
A sin 2β in terms of the more usual MSSM inputs:

the CP-odd Higgs mass, mA, and tan β. In the tree-level
MSSM, the mass of the lightest Higgs boson, mh ≤ mZ , is
not compatible with the LHC measurements. However, the
CP-even mass matrix receives corrections beyond leading
order. To a good approximation, the leading radiative correc-
tions can be parametrized as an additional contribution to λ2

[90], corresponding to the shift λ2 → λ2 + δ, while (sub-
leading) MSSM contributions to the other quartic couplings
are neglected. This is reminiscent of the approach pursued
in [91]. Since the leading radiative corrections in the MSSM
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Fig. 15 Branching ratios of H in Scenario F. The panels show H → WW (upper left), H → Z Z (upper right), H → t t̄ (lower left) and H → hh
(lower right). Contours for each branching ratio are indicated with colors (see legend). Gray regions are excluded at 95 % C.L. from direct searches

can most easily be specified in terms of the SUSY-basis, we
use this instead of hybrid basis input for Scenario G. Working
in this approximation, we define our MSSM-inspired 2HDM
scenario by three parameters: mh , mA and tan β. Using this
input, together with the MSSM relations for the λi (i 
= 2)
given by Eq. (88), we solve for the value of δ necessary to
reproduce the desired value of mh for the chosen values of
mA and tan β. In practice, this is done with 2HDMC using
an iterative procedure.13 To satisfy the constraints of uni-
tarity and perturbativity, we impose the additional condition
λ2 < 4π .

Although this scenario is inspired by the MSSM, it is
(like all our other benchmarks) completely defined within the
CP-conserving, softly broken Z2-symmetric 2HDM. There
is therefore no principal restriction to the Type-II structure
for the Yukawa couplings, although we choose to stick to this
familiar pattern here to keep the connection to the MSSM
tree-level structure.

Using a fixed value mh = 125 GeV, we scan over the
remaining parameters mA and tan β to determine the viable
regions of parameter space. The results are shown in Fig. 16,
where green color indicates regions compatible with mh =
125 GeV (and λ2 < 4π ). The shaded (gray) regions show the
excluded regions at 95 % C.L. from direct Higgs searches. In
particular the limit H/A → ττ plays a very important role
to constrain this scenario both for high and low values of

13 This procedure can be accessed through the set_hMSSM method
or by running the CalcHMSSM example program.

Fig. 16 Allowed parameter space by direct Higgs search constraints
in the “MSSM-like” 2HDM with Type-II Yukawa couplings. The color
coding is the same as in Fig. 2

tan β for values mA < 2mt . Constraints from heavy Higgs
searches benefit in this scenario from the near-degeneracy of
the heavy Higgs bosons H and A.

The resulting phenomenology of this scenario is very sim-
ilar to the MSSM Higgs sector in the absence of additional
low-energy degrees of freedom, which in the MSSM could
provide additional decay channels for the heavy non-SM-like
Higgs bosons. This can be seen, for example, from the region
allowed by the LHC Higgs measurements in Fig. 16. In the
absence of large radiative corrections affecting the CP-even
Higgs mixing [81], the LHC Higgs data forces the MSSM
into the decoupling limit. Hence, we find mA > 360 GeV at
95 % C.L. almost independently of tan β. A related analysis
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in the MSSM context at low values of tan β with a heavy
supersymmetric spectrum that makes use of the framework
described above has recently been presented in [92].

3.9 Additional scenarios for consideration

There are a number of additional scenarios worthy of con-
sideration that we have not included in this work. For exam-
ple, one can consider the inert 2HDM with Type-I Yukawa
couplings, which provides a plausible dark matter candi-
date [59,93–96]. As noted at the end of Sect. 2.6, phenomeno-
logical constraints and benchmark scenarios for this model
have been recently discussed in [60].

It is also possible to consider simplified models of 2HDM
phenomena, where h is SM-like and one of the non-SM-like
Higgs states among H , A, and H± is significantly lighter
than the two heaviest states (keeping in mind that the split
spectrum must be consistent with constraints due to the T
parameter). In this case, one can focus on the phenomenol-
ogy of a single non-SM-like scalar. Scenarios A and B already
provide examples of this type, in which A and H± are sig-
nificantly heavier than h and H . But other scenarios could be
considered that would feature the production and decay of A
or H± alone. In these latter scenarios, it would be appropri-
ate to slightly modify the hybrid basis, which specifies two
scalar masses as input parameters. When focusing on either
A or H±, it would be more appropriate to specify the SM-
like Higgs mass and one other scalar mass (mA or mH±) as
the two input scalar masses. Of course, one could then use
Eqs. (67) and (68) to determine the masses of the remaining
non-SM-like Higgs scalars.

4 Conclusions

We have introduced a new “hybrid” basis to define input
parameters in the general,CP-conserving, two-Higgs-doublet
Model with a softly broken Z2 symmetry in a way that natu-
rally accommodates constraints from perturbativity and uni-
tarity. In this basis, the input parameters are the two CP-even
Higgs masses, mh and mH , three quartic couplings defined
in the Higgs basis, Z4, Z5, and Z7, and the mixing angles
cos(β − α) and tan β which are very relevant for the phe-
nomenology. In this hybrid approach, tan β can be interpreted
as specifying the basis where the soft Z2-breaking is mani-
fest.

The hybrid basis of parameters has been implemented as
an input option for the public computer code 2HDMC. Using
this setup, we have performed a scan and a detailed numerical
analysis of the parameter space constraints and predictions
of cross sections and branching ratios for different 2HDM
configurations. Using the results of this analysis, we have

defined a set of 2HDM benchmark scenarios that we deem
relevant for the design and interpretation of Higgs searches
beyond the SM at LHC run-II and beyond. The scenarios are
defined to cover different aspects of the 2HDM phenomenol-
ogy, including interpretation of the 125 GeV Higgs signal as
either the light or the heavy CP-even Higgs boson. We also
devise a new scenario with overlappingCP-even andCP-odd
Higgses at 125 GeV, which could potentially be very useful
for the interpretation of CP-studies in the ττ final state, as
well as a scenario where the Yukawa coupling of the Higgs
to down-type fermions has the “flipped” sign (relative to the
coupling to vector bosons). Two other sets of scenarios pro-
vide Higgs cascade decays as a prominent feature, giving rise
to completely non-standard final states that may contain addi-
tional leptons and/or jets. Finally, we define the 2HDM equiv-
alent of the decoupled MSSM, where the Higgs spectrum
follows MSSM relations with the dominant radiative correc-
tions to the Higgs masses completely captured in a shift of the
quartic coupling λ2 appearing in the Higgs potential. Results
presented for this scenario should be immediately familiar to
anyone following MSSM Higgs searches at the LHC, which
could make it useful for comparison and communication of
results.

We hope that the presented scenarios will be useful and
serve to inspire new discoveries!
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A. Parameter values for 2HDM benchmark lines and
planes

For convenience, this appendix contains a list of the input
parameters that can be used to realize the 2HDM benchmark
scenarios described in this paper.
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Scenario A (non-alignment)

mh
(GeV)

mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

A1.1 125 150 . . . 600 0.1 −2 −2 0 1 . . . 50 I

A1.2 125 150 . . . 600 0.1 ×
(

150 GeV
mH

)2 −2 −2 0 1 . . . 50 I

A2.1 125 150 . . . 600 0.01 −2 −2 0 1 . . . 50 II

A2.2 125 150 . . . 600 0.01 ×
(

150 GeV
mH

)2−2 −2 0 1 . . . 50 II

Scenario B (low-mH )

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

B1.1 65 . . . 120 125 1.0 −5 −5 0 1.5 I
B1.2 80 . . . 120 125 0.9 −5 −5 0 1.5 I
B2 65 . . . 120 125 1.0 −5 −5 0 1.5 II

Scenario C (CP- overlap)

mh mH mA mH± cβ−α λ5 tan β Type

C1 125 300 125 300 0 0 1 . . . 10 I
C2 125 300 125 300 0 0 1 . . . 10 II

Scenario D (short cascade)

mh

(GeV)
mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

D1.1 125 250 . . . 500 0 −1 1 −1 2 I
D1.2 125 250 . . . 500 0 2 0 −1 2 I
D1.3 125 250 . . . 500 0 1 1 −1 2 I
D2.1 125 250 . . . 500 0 −1 1 −1 2 II
D2.2 125 250 . . . 500 0 2 0 −1 2 II
D2.3 125 250 . . . 500 0 1 1 −1 2 II

Scenario E (long cascade)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

E1.1 125 200 . . . 300 0 −6 −2 0 2 I
E1.2 125 200 . . . 300 0 1 −3 0 2 I
E2.1 125 200 . . . 300 0 −6 −2 0 2 II
E2.2 125 200 . . . 300 0 1 −3 0 2 II

Scenario F (flipped Yukawa)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

F2 125 150 . . . 600 sin 2β −2 −2 0 5 . . . 50 II

Scenario G (MSSM-like)

mh (GeV) mA (GeV) tan β Type

G2 125 90 . . . 1000 1 . . . 60 II
λi (i 
= 2) given by their MSSM values [cf. Eq. (88)]; λ2 determined by mh
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