
Eur. Phys. J. C  (2017) 77:742 
DOI 10.1140/epjc/s10052-017-5243-5

Regular Article - Theoretical Physics

The impact of two-loop effects on the scenario of MSSM Higgs
alignment without decoupling

Howard E. Haber1,a, Sven Heinemeyer2,3,4,b, Tim Stefaniak 1,c

1 Santa Cruz Institute for Particle Physics (SCIPP) and Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95060,
USA

2 Campus of International Excellence UAM+CSIC, Cantoblanco, 28049 Madrid, Spain
3 Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
4 Instituto de Física de Cantabria (CSIC-UC), 39005 Santander, Spain

Received: 23 August 2017 / Accepted: 16 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract In multi-Higgs models, the properties of one neu-
tral scalar state approximate those of the Standard Model
(SM) Higgs boson in a limit where the corresponding scalar
field is roughly aligned in field space with the scalar doublet
vacuum expectation value. In a scenario of alignment without
decoupling, a SM-like Higgs boson can be accompanied by
additional scalar states whose masses are of a similar order of
magnitude. In the Minimal Supersymmetric Standard Model
(MSSM), alignment without decoupling can be achieved due
to an accidental cancellation of tree-level and radiative loop-
level effects. In this paper we assess the impact of the lead-
ing two-loop O(αsh2

t ) corrections on the Higgs alignment
condition in the MSSM. These corrections are sizable and
important in the relevant regions of parameter space and fur-
thermore give rise to solutions of the alignment condition
that are not present in the approximate one-loop description.
We provide a comprehensive numerical comparison of the
alignment condition obtained in the approximate one-loop
and two-loop approximations, and discuss its implications
for phenomenologically viable regions of the MSSM param-
eter space.

1 Introduction

Since the initial discovery of a new scalar particle with mass
of about 125 GeV [1,2], detailed studies of the data from
Run 1 and 2 of the Large Hadron Collider (LHC) at CERN
are beginning to establish the phenomenological profile of
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what appears to be the Higgs boson associated with elec-
troweak symmetry breaking. Indeed, the measurements of
Higgs production cross sections times decay branching ratios
into a variety of final states appear to be consistent with the
Higgs boson predicted by the Standard Model (SM) [3]. One
can now say with some confidence that a “SM-like” Higgs
boson has been discovered. Nevertheless, the limited preci-
sion of the current Higgs data from the LHC still allows for
deviations from SM expectations. If such deviations were
to be confirmed, new physics beyond the SM would be
required.

Deviations from the SM Higgs behavior can be accom-
modated by introducing additional Higgs scalars to the elec-
troweak model. Typically, the SM Higgs sector is extended
by adding additional electroweak scalar doublets and/or sin-
glets in order to avoid deviations of the approximate rela-
tion between the W and Z boson mass, MW � MZ cos θW ,
where θW is the Weinberg mixing angle. However, the exis-
tence of a SM-like Higgs boson already imposes significant
constraints on any extended Higgs sector. We can always
define a neutral Higgs field that points in the direction of
the scalar doublet vacuum expectation value (vev) in field
space. The tree-level couplings of such a scalar field to the
SM gauge bosons and fermions are precisely those of the
SM Higgs boson. However, in general, this aligned scalar
field is not a mass-eigenstate field, since it will mix with
other neutral scalar fields of the extended Higgs sector.
Thus, the current Higgs data is consistent with an extended
Higgs sector only if the observed scalar particle with mass
125 GeV is approximately aligned in field space with the
doublet vev. This so-called alignment limit [4–8] is either
the result of some symmetry of the scalar sector [9,10], or
it is the result of some special choice of the scalar sector
parameters.
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An example of the latter is the decoupling regime of the
extended Higgs sector [4,11]. The scalar potential typically
contains a number of mass parameters. One of those mass
parameters is fixed by the doublet scalar vev, which must
be set to v = 246 GeV to explain the observed value of
the Fermi constant GF . If other scalar sector mass param-
eters are characterized by a scale M that is significantly
larger than v, then one of the neutral scalar mass eigen-
states will be of O(v), whereas all other scalar masses will
be of order M � v. One can then integrate out the heavy
scalar states below the mass scale M . The resulting effec-
tive scalar theory will be that of the SM with a single Higgs
doublet, which will yield one neutral Higgs boson state
whose couplings are approximately those of the SM Higgs
boson. Of course, in such a scenario, additional scalar states
would be quite heavy and may be difficult to discover at the
LHC.

One can also achieve alignment independently of the
masses of the non-SM-like Higgs bosons. Generically, the
aligned scalar field (which possesses the couplings of the
SM Higgs boson) is not a mass eigenstate. However, if
the parameters of the scalar sector (either accidentally or
due to a symmetry) yield suppressed mixing between the
aligned scalar field and the other neutral scalar interaction
eigenstates, then approximate alignment is realized. In any
multi-Higgs doublet model, an exact alignment condition
can be specified, in which the aligned scalar field is a mass
eigenstate (and thus its mixing with all other scalar eigen-
state fields vanishes). Hence, if this alignment condition
is approximately fulfilled, it is possible to have a SM-like
Higgs boson along with additional scalar states with masses
that are not significantly larger than the electroweak scale
and thus more amenable to discovery in future LHC runs.
We denote the latter scenario alignment without decoupling
[4–8,12–14].

Extended Higgs sectors in isolation suffer from the same
problem as the SM Higgs sector, namely there is no natu-
ral explanation for the origin of the electroweak scale. There
have been numerous attempts in the literature to devise mod-
els of new physics beyond the SM (BSM) that can provide a
natural explanation of the electroweak scale, either via new
dynamics or a new symmetry. All such approaches invoke
new fundamental degrees of freedom, and many models of
BSM physics incorporate enlarged scalar sectors. One of the
best-studied models of this type is the minimal supersymmet-
ric extension of the SM (MSSM) [15–18], which requires
a second Higgs doublet in order to avoid anomalies asso-
ciated with the supersymmetric fermionic partners of the
SM Higgs doublet. In the light of the fact that no super-
symmetric particles have yet been discovered, it follows that
the scale of supersymmetry (SUSY)-breaking, MS, must lie
somewhat above the electroweak scale. This already leads
to some tension with the requirements of a natural expla-

nation of the electroweak scale (sometimes called the lit-
tle hierarchy problem [19–22]). Nevertheless, if supersym-
metric particles are ultimately discovered at the LHC, it
would provide a significant amelioration of the large hier-
archy problem associated with the fact that the electroweak
scale is 17 orders of magnitude smaller than the Planck
scale.

Numerous searches for supersymmetric particles at the
LHC (as well as at previous lower energy colliders such
as LEP and Tevatron) provide important constraints on the
allowed MSSM parameter space [23,24], with additional
constraints from considerations of virtual supersymmetric
particle contributions to SM processes (see, e.g., Ref. [25]
for a review). Finally, due to the enlarged Higgs sector of
the MSSM, the properties of the observed Higgs boson and
the absence of evidence for additional Higgs scalars yield
additional constraints. In particular, given that the observed
Higgs boson appears to be SM-like, it follows that the Higgs
sector of the MSSM must be close to the alignment limit.
In the MSSM, the scale of the non-SM-like Higgs boson is
governed by a SUSY-breaking mass parameter. Although this
mass parameter is logically distinct from the mass parameter
MS that governs the mass scale of the heavy supersymmet-
ric particles, one might expect these two parameters to be
of a similar order of magnitude. If this is the case, then the
approximate alignment limit of the MSSM Higgs sector is a
result of the decoupling of heavy Higgs states. On the other
hand, one may wonder whether the approximate alignment
limit of the MSSM Higgs sector can be achieved outside of
the decoupling limit, in which case one might expect the pos-
sibility that additional non-SM-like Higgs scalars could soon
be discovered in future LHC running.

The possibility of alignment without decoupling has been
analyzed in detail in Refs. [4–8,12–14].1 More recently, the
connection of Higgs alignment without decoupling in the
MSSM with dark matter has been investigated in Ref. [27]. In
Ref. [28], a parameter scan of the phenomenological MSSM
(pMSSM) with eight parameters was performed, taking into
account the experimental Higgs boson results from Run I of
the LHC and further low-energy observables. One of the cen-
tral questions considered in Ref. [28] was whether parameter
regimes with approximate Higgs alignment without decou-
pling are still allowed in light of the current LHC data. Two
separate cases were considered in which either the lighter or
the heavier of the two CP-even neutral Higgs bosons of the
MSSM is identified with the observed Higgs boson of mass
125 GeV. In the first case, we identified allowed regions of
the MSSM parameter space in which the non-SM-like Higgs

1 It is noteworthy that a number of benchmark scenarios (e.g. the “τ -
phobic” and low-MH scenarios) proposed for different reasons in Ref.
[26] also provide parameter regimes in which approximate alignment
without decoupling is achieved.
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bosons could be as light as 200 GeV. In the second case,
we demonstrated that the heavy CP-even Higgs boson is still
a viable candidate to explain the Higgs signal—albeit only
in a highly constrained parameter region. Both cases corre-
spond to parameter regimes of approximate alignment with-
out decoupling.

In the MSSM, alignment without decoupling arises due to
an approximate accidental cancellation between tree-level
and loop-level effects. Given the current precision of the
Higgs data, we concluded in Ref. [28] that this region of
approximate cancellation, while accidental in nature, does
not require an extreme fine-tuning of the MSSM parameters.
Indeed, such regions must appear in any comprehensive scan
of the MSSM parameter space. In Ref. [28], we showed that
the result of our numerical scans could be understood using
simple analytical expressions in which the leading one-loop
and two-loop radiative corrections to the MSSM Higgs sector
are included. In this paper, we provide a detailed treatment of
this analytic approximation and demonstrate the importance
of the leading two-loop radiative effects in determining the
allowed parameter regions for approximate alignment with-
out decoupling.

The remainder of this paper is structured as follows. In
Sect. 2, we review the alignment limit at tree-level in the con-
text of the general CP-conserving two Higgs doublet model
2HDM). Both the decoupling limit and the limit of alignment
without decoupling are discussed. We can apply these results
to the MSSM by treating the MSSM Higgs sector as an effec-
tive non-supersymmetric 2HDM at tree-level, obtained by
integrating out heavier supersymmetric particles. The effects
of the SUSY-breaking lead to corrections that are logarithmic
in the supersymmetry breaking scale, MS , as well as finite
threshold corrections that can be of O(1). The leading one-
loop corrections to the exact alignment condition are treated
in Sect. 3. However, it is well known that the two-loop correc-
tions to the MSSM Higgs sector can be phenomenologically
relevant. Employing a procedure first introduced in Ref. [29]
and later extended in Ref. [30], the one-loop results of Sect. 3
are modified to obtain the leading two-loop corrections to
the exact alignment condition in Sect. 4. In Sect. 5, a numer-
ical comparison of the impact of the corresponding leading
one-loop and two-loop corrections is given. In addition, we
discuss the MS values required to achieve a SM-like Higgs
boson mass of 125 GeV, and give a criterion on the CP-odd
Higgs mass, MA, that determines whether the lighter or the
heavier CP-even Higgs boson is aligned with the SM Higgs
vev. In the latter scenario in which the heavier of the two
CP-even Higgs bosons is identified with the observed Higgs
scalar at 125 GeV, a new decay mode H → hh is possi-
ble if mH > 2mh . We discuss the magnitude of the relevant
triple Higgs coupling and the resulting branching fraction for
this decay in Sect. 6. Finally, we present our conclusions and
outlook in Sect. 7.

2 The alignment limit in the two Higgs doublet model

In light of the LHC Higgs data, which strongly suggests that
the properties of the observed Higgs boson are SM-like [3],
we seek to explore the region of the MSSM parameter space
that yields a SM-like Higgs boson. Since the Higgs sector
of the MSSM is a constrained CP-conserving 2HDM, we
first review the limit of the 2HDM that yields a SM-like
Higgs boson. In a multi Higgs doublet model, a SM-like
Higgs boson arises in the alignment limit, in which one of
the neutral Higgs mass eigenstates is approximately aligned
with the direction of the Higgs vacuum expectation value
(vev) in field space.

The 2HDM contains two hypercharge-one weak SU(2)L
doublet scalar fields, �1 and �2. By an appropriate rephasing
of these two fields, one can choose their vevs, 〈�0

1〉 ≡ v1/
√

2
and 〈�0

2〉 ≡ v2/
√

2, to be real and non-negative. In this
convention, tan β ≡ v2/v1, with 0 ≤ β ≤ 1

2π . Note that
v ≡ (v2

1 + v2
2)1/2 = (2G2

F )−1/4 � 246 GeV is fixed by the
value of the Fermi constant, GF .

It is convenient to introduce the following linear combi-
nations of Higgs doublet fields:

H1 =
(
H+

1
H0

1

)
≡ v1�1 + v2�2

v
,

H2 =
(
H+

2
H0

2

)
≡ −v2�1 + v1�2

v
,

(1)

such that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0, which defines the
Higgs basis [31–33]. The most general 2HDM scalar poten-
tial, expressed in terms of the Higgs basis fields H1 and H2,
is given by

V = Y1H†
1H1 + Y2H†

2H2 + [Y3H†
1H2 + h.c.

+ 1
2 Z1(H†

1H1)
2+ 1

2 Z2(H†
2H2)

2 + Z3(H†
1H1)(H†

2H2)

+ Z4(H†
1H2)(H†

2H1) +
{

1
2 Z5(H†

1H2)
2

+ [
Z6(H†

1H1) + Z7(H†
2H2)

]H†
1H2 + h.c.

}
. (2)

The Higgs basis is uniquely defined up to a rephasing of the
Higgs basis field H2. If the tree-level Higgs scalar potential
and vacuum is CP-conserving, then it is possible to rephase
the Higgs basis field H2 such that all the scalar potential
parameters are real.

The scalar potential minimum conditions determine the
values of Y1 and Y3,

Y1 = − 1
2 Z1v

2, Y3 = − 1
2 Z6v

2 . (3)

The tree-level squared masses of the charged Higgs boson
and the CP-odd neutral Higgs boson are given by
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M2
H± = Y2 + 1

2v2Z3, (4)

M2
A = Y2 + 1

2v2(Z3 + Z4 − Z5) . (5)

In particular, the squared-mass parameter Y2 can be elimi-
nated in favor of M2

A.
One can then evaluate the squared-mass matrix of the neu-

tral CP-even Higgs bosons, with respect to the neutral Higgs
basis states, {√2 Re H0

1 − v,
√

2 Re H0
2 }. After employing

Eqs. (3) and (5), the CP-even neutral Higgs squared-mass
matrix takes the following simple form:

M2 =
(
Z1v

2 Z6v
2,

Z6v
2 M2

A + Z5v
2

)
. (6)

If
√

2 Re H0
1 − v were a Higgs mass eigenstate, then its tree-

level couplings to SM particles would be precisely those of
the SM Higgs boson. This would correspond to the exact
alignment limit. To achieve a SM-like Higgs boson, it is suf-
ficient for one of the neutral Higgs mass eigenstates to be
approximately given by

√
2 Re H0

1 − v, with a correspond-
ing squared mass � Z1v

2. The observed Higgs mass implies
that Z1 � 0.26.

The CP-even neutral Higgs squared-mass matrix given by
Eq. (6) is controlled by two independent mass scales, v �
246 GeV andY2, where the latter enters via the parameter M2

A
[cf. Eq. (5)]. In addition, the scalar potential parameters Z1,
Z5 and Z6 are typically of O(1) or less (in the MSSM, they
are of order the square of a gauge coupling). Consequently, a
SM-like neutral Higgs boson can arise in two different ways:

1. M2
A � (Z1 − Z5)v

2. This corresponds to the so-called
decoupling limit, where h is SM-like and MA ∼ MH ∼
MH± � Mh .

2. |Z6| � 1. Then h is SM-like if M2
A + (Z5 − Z1)v

2 > 0
and H is SM-like if M2

A + (Z5 − Z1)v
2 < 0.

In particular, one can achieve alignment without decoupling
if |Z6| � 1, independently of the value of the non-SM-like
Higgs states H , A and H±. Indeed, if the heavier of the two
neutral CP-even Higgs states is SM-like, then one must have
|Z6| � 1 in a non-decoupling parameter regime.

After diagonalizing the CP-even neutral Higgs squared-
mass matrix, one obtains theCP-even Higgs mass eigenstates
h and H (where mh < mH ),

(
H
h

)
=

(
cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2 Re H0

2

)
, (7)

where cβ−α ≡ cos(β−α) and sβ−α ≡ sin(β−α) are defined
in terms of the mixing angle α that diagonalizes the CP-even
Higgs squared-mass matrix when expressed in the original
basis of scalar fields, {√2 Re �0

1 − v1,
√

2 Re �0
2 − v2}.

Since the SM-like Higgs field must be approximately

√
2 Re H0

1 − v, it follows that h is SM-like if |cβ−α| � 1
and H is SM-like if |sβ−α| � 1.

We can now apply the above results to the MSSM Higgs
sector. In the usual treatment of the MSSM, one introduces
two Higgs doublets, HU and HD of hypercharge Y = +1 and
Y = −1, respectively.2 To make contact with the notation of
the 2HDM presented above, we can relate these fields to the
hypercharge Y = +1 scalar fields,

(�1)
i = εi j (H

∗
D) j , (�2)

i = (HU )i , (8)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0, and there is an
implicit sum over the repeated SU(2)L index j = 1, 2. The
tree-level quartic couplings Zi can be expressed in terms of
the electroweak SU(2)L and U(1)Y gauge couplings g and
g′, respectively,

Z1 = Z2 = 1
4 (g2 + g′ 2)c2

2β,

Z5 = 1
4 (g2 + g′ 2)s2

2β, Z7 = −Z6 = 1
4 (g2 + g′ 2)s2βc2β,

Z3 = Z5 + 1
4 (g2 − g′ 2), Z4 = Z5 − 1

2g
2, (9)

where c2β ≡ cos 2β and s2β ≡ sin 2β. We have already
noted that the squared mass of the SM-like Higgs boson
is approximately given by Z1v

2, which is equal to M2
Zc2β

at tree-level in the MSSM, and thus incompatible with the
observed Higgs mass of 125 GeV. Moreover, if the exis-
tence of a SM-like Higgs boson is due to alignment without
decoupling, then the relation Z6 = 0 must be approximately
fulfilled, which implies that sin 4β = 0 (i.e. β = 0, 1

4π or
1
2π ). Of course, the extreme values of β = 0 or β = 1

2π are
not phenomenologically realistic, whereas β = 1

4π would
yield a massless CP-even Higgs boson at tree-level.

In order to achieve a realistic MSSM Higgs sector, radia-
tive corrections must be incorporated [34–36] (see, e.g., Refs.
[25,37–39] for reviews). It is well known that the observed
Higgs mass of 125 GeV is compatible with a radiatively cor-
rected Higgs sector in certain regions of the MSSM param-
eter space [40]. Moreover, a SM-like Higgs state is easily
achieved in the decoupling limit where M2

A � v2, where h is
identified as the observed Higgs boson. In this paper, we focus
on the alternative scenario in which a SM-like Higgs boson
is a consequence of approximate alignment without decou-
pling. When loop corrections are taken into account, the pos-
sibility of alignment without decoupling must be reconsid-
ered.

2 The notation derives from the fact that the MSSM superpotential is a
holomorphic gauge-invariant function of the corresponding superfields
ĤU and ĤD . As a consequence, ĤU couples exclusively to the up-type
SU(2)L singlet quark superfield Û and ĤD couples exclusively to the
down-type SU(2)L singlet quark superfield D̂.
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3 Alignment without decoupling at the one-loop level

In the MSSM, exact alignment via Z6 = 0 can only happen
through an accidental cancellation of the tree-level terms with
contributions arising at the one-loop level (or higher). In this
case the Higgs alignment is independent of the values of M2

A,
Z1 and Z5. The leading one-loop contributions to Z1, Z5 and
Z6 proportional to h2

t m
2
t , where mt is the top quark mass and

ht =
√

2mt

vsβ
(10)

is the top quark Yukawa coupling, have been obtained in
Ref. [12] in the limit MZ , MA � MS (using results from
Ref. [41]):

Z1v
2 = M2

Zc
2
2β

+ 3m4
t

2π2v2

[
ln

(
M2

S

m2
t

)
+ X2

t

M2
S

(
1 − X2

t

12M2
S

)]
,

(11)

Z5v
2 = s2

2β

{
M2

Z

+ 3m4
t

8π2v2s4
β

[
ln

(
M2

S

m2
t

)
+ XtYt

M2
S

(
1 − XtYt

12M2
S

)]}
,

(12)

Z6v
2 = −s2β

{
M2

Zc2β

− 3m4
t

4π2v2s2
β

[
ln

(
M2

S

m2
t

)
+ Xt (Xt + Yt )

2M2
S

− X3
t Yt

12M4
S

]}
,

(13)

where sβ ≡ sin β, s2β ≡ sin 2β, c2β ≡ cos 2β, MS ≡√mt̃1mt̃2 denotes the SUSY-breaking mass scale that governs
the top squark (stop) sector, given by the geometric mean of
the light and heavy stop masses, and3

Xt ≡ At − μ/ tan β, Yt ≡ At + μ tan β. (14)

The approximate expression for Z6v
2 given in Eq. (13)

depends only on the unknown parameters μ, At , tan β and
MS . Exact alignment arises if Z6 = 0. Note that Z6 = 0 is
trivially satisfied if β = 0 or 1

2π (corresponding to the van-
ishing of either v1 or v2). However, this choice of parameters
is not relevant for phenomenology as it leads to a massless

3 The elements of the top squark squared-mass matrix are governed
by the supersymmetric higgsino mass parameter μ and the soft-SUSY-
breaking trilinear H0

U t̃L t̃
∗
R coupling At . For simplicity, we ignore poten-

tial CP-violating effects by taking μ and At to be real parameters in this
work.

b quark or t quark, respectively, at tree-level.4 Henceforth,
we assume that tan β is finite and non-zero; by convention,
we take tan β to be positive. Regarding the other parame-
ters, μ, At and MS , we generously allow for rather large
parameter values in this work. However, one should keep in
mind that parameter points with |μ/MS| and |At/MS| larger
than about 3 are often severely restricted by vacuum (meta-
)stability requirements, in particular the absence of a color
and/or electric charge-breaking global minimum of the full
MSSM scalar potential [43–49] (for recent analyses, see also
Refs. [50–52].) Furthermore, for values of |Xt/MS| >∼ 3, the
theoretically predicted loop-corrected Higgs squared mass
decreases rapidly from its maximal value (which at one-loop
is achieved at Xt/MS � √

6), and is ultimately driven to
negative values. In our numerical analysis, we consider only
|At/MS| values up to about 3, and highlight regions of the
parameter space that exhibit |Xt/MS| ≥ 3 where our analysis
is untrustworthy.

We simplify the analysis by solving Eq. (11) for ln
(M2

S/m
2
t ) and inserting the result back into Eq. (13). The

resulting expression for Z6 now depends on Z1, tan β, and
the dimensionless ratios

Ât ≡ At

MS
, μ̂ ≡ μ

MS
. (15)

Using Eq. (14) to rewrite the final expression in terms of Ât

and μ̂, we obtain

Z6v
2 = − cot β

{
m2

Zc2β − Z1v
2

+ 3m4
t μ̂( Ât tan β − μ̂)

4π2v2s2
β

[ 1
6 ( Ât − μ̂ cot β)2 − 1

]}
.

(16)

Setting Z6 = 0, we can identify Z1v
2 with the mass of the

observed (SM-like) Higgs boson (which may be either h or H
depending on whether sβ−α is close to 1 or 0, respectively).
We can then numerically solve for tan β for given values of
Ât and μ̂. Indeed, tβ ≡ tan β is the solution to a seventh
order polynomial equation,

M2
Z t

4
β(1 − t2

β) − Z1v
2t4

β(1 + t2
β)

+ 3m4
t μ̂( Ât tβ − μ̂)(1 + t2

β)2

4π2v2

[
1
6 ( Ât tβ − μ̂)2 − t2

β

]
=0.

(17)

A seventh order polynomial has either one, three, five or
seven real roots. In light of the comments below Eq. (14),

4 A potential loophole to this last remark arises in models, dubbed
“uplifted supersymmetry”, in which down-type fermion masses are
absent at tree-level but are generated radiatively by loop-induced cou-
plings to the up-type Higgs doublet, HU . Further details are described
in Ref. [42].
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Fig. 1 Number of real solutions to the one-loop alignment condition, Eq. (17). We set Z1v
2 = 125 GeV. Left: All solutions with real tan β; right:

Real, positive tan β solutions

we are only interested in real positive solutions of Eq. (17);
i.e., we exclude the possibility of tβ = 0. Moreover, we can
interpret the negative tβ solutions at the point (μ̂, Ât ) as cor-
responding to positive tβ solutions at the point (−μ̂, Ât ).5

Finally, the solution to Eq. (17) is invariant under the simul-
taneous inversion of μ̂ → −μ̂ and Ât → − Ât (keeping the
sign of tan β fixed). The latter is a consequence of the sym-
metry properties of the approximate one-loop expressions for
Z1, Z5 and Z6. It therefore follows that a negative tβ solution
at the point (μ̂, Ât ) corresponds to a positive tβ solution at
the point (μ̂, − Ât ).

In the left (right) panel of Fig. 1 we show the number of
real (positive) solutions to the above polynomial, Eq. (17), in
the (μ̂, Ât ) plane. We observe that there is one real root of
Eq. (17) for |μ̂| <∼ 5 to 8 (depending on the value of Ât �= 0).
For larger values of |μ̂| in the (μ̂, Ât ) plane, there are three
real roots. The transition between these two regions occurs
when two of the three roots coalesce (yielding a degenerate
real root) and then move off the real axis to form a complex
conjugate pair. In the quadrants with μ̂ Ât > 0 (μ̂ Ât < 0)
with large |μ̂|, these two real roots are always positive (neg-
ative), whereas the sign of the third root, which also exists
at smaller |μ̂|, depends on the value of Ât : if | Ât | ≥ √

6,
this root is positive (negative) in the quadrant with μ̂ Ât > 0
(μ̂ Ât < 0), whereas, if | Ât | <

√
6, it is of the opposite sign.

To see how the roots evolve in a continuous manner in the
(μ̂, Ât ) parameter plane, consider a path in the left panel of
Fig. 1 that begins at Ât ∼ 3 and μ̂ ∼ −9. For these values,
Eq. (17) possesses three negative roots and no positive roots.

5 In light of the interactions of the Higgs bosons with quarks and with
squarks, if we were to adopt an alternative convention in which both
signs of tβ were allowed, then under tβ → −tβ one must also trans-
form μ → −μ and ht → −ht (note that the signs of Xt and Yt are
unaffected). In this alternative convention, the points (μ̂, Ât , tβ) and
(−μ̂, Ât , −tβ) would be physically equivalent.

Keeping μ̂ fixed and reducing Ât , one of the negative roots
decreases without bound until it reaches −∞ at Ât ∼ √

6.
Taking Ât below

√
6, the root switches over to +∞, and

then steadily decreases. When Ât crosses from positive to
negative values, all positive and negative roots interchange.
Consequently, when we enter the quadrant where Ât is neg-
ative, we now have two positive roots and one negative root.
This happens because one of the negative roots goes to −∞
as Ât approaches zero from above, and then switches over
to +∞ after crossing Ât = 0. Finally, the remaining neg-
ative root goes to −∞ as Ât approaches −√

6 from above,
and then switches over to +∞. For values of Ât < −√

6,
there is now a third positive root. For smaller values of |μ̃|,
Eq. (17) possesses only one real root, since the two other
roots that were real at larger values of |μ̃| are now complex,
as noted above. Finally, the two panels of Fig. 1 are symmet-
ric under μ̂ → −μ̂ and Ât → − Ât , reflecting the symmetry
of Eq. (17). We shall discuss the tan β values of all these
roots in greater detail in Sect. 5, when we present the results
of our numerical analysis.

It is instructive to obtain an approximate analytic expres-
sion for the value of the largest real root. Assuming
μ̂ Ât tan β � 1 the following approximate alignment con-
dition, first written explicitly in Ref. [12], is obtained:

tan β �
M2

h/H + M2
Z + 3m4

t μ̂
2

8π2v2 ( Â 2
t − 2)

m4
t μ̂ Ât

8π2v2 ( Â 2
t − 6)

� 127 + 3μ̂2( Â 2
t − 2)

μ̂ Ât ( Â 2
t − 6)

, (18)

where M2
h/H � Z1v

2 denotes the (one-loop) mass of the
SM-like Higgs boson obtained from Eq. (11), which could
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be either the light or heavy CP-even Higgs boson. It is clear
from Eq. (18) that a positive tan β solution exists if either
μ̂ Ât ( Â2

t −6) > 0 and Â2
t > 2, or if μ̂ Ât ( Â2

t −6) < 0, Â2
t < 2

and |μ̂| is sufficiently large such that the numerator of Eq. (18)
is negative. Keeping in mind that Eq. (18) was derived under
the assumption that μ̂ Ât tan β � 1, we have observed in
our numerical evaluation in Sect. 5 that the largest of the
three roots of Eq. (17) always satisfies the stated conditions
above. Another consequence of Eq. (18) is that by increasing
the value of |μ̂ Ât | (in the region where 2 < Â2

t < 6), it is
possible to lower the tan β value at which alignment occurs.

If | Ât | � 1, then Eq. (18) is no longer a good approxima-
tion. Returning to Eq. (17), we set Ât = 0 and again assume
that tan β � 1. We can then solve approximately for tan β,

tan2 β �
M2

Z − M2
h/H + 3m4

t μ̂
2

4π2v2

( 1
6 μ̂2 − 2

)

M2
Z + M2

h/H + 3m4
t μ̂

2

4π2v2

� −39 + μ̂2(μ̂2 − 12)

126 + 6μ̂2 . (19)

For example, in the parameter regime where Ât � 0 and
|μ̂| � 1, we obtain tan β � |μ̂|/√6.

Once the value of tβ corresponding to exact alignment is
known at a specific point in the (μ̂, Ât ) plane, we can use
Eq. (11) to determine the value of the SUSY mass scale, MS ,
such that Z1v

2 = (125 GeV)2 is the observed Higgs squared
mass. We shall explore the numerical values of MS in Sect. 5
for each of the physical solutions of the alignment condition.

The question of whether the light or the heavy CP-even
Higgs boson possesses SM-like Higgs couplings in the align-
ment without decoupling regime depends on the relative size
of Z1v

2 and Z5v
2 + M2

A. Combining Eqs. (12) and (13), it
follows that in the limit of exact alignment where Z6 = 0,
we can identify Z1v

2 as the squared mass of the observed
SM-like Higgs boson and

Z5v
2 = M2

Z (1 + c2β) + 3m4
t μ̂( Ât − μ̂ cot β)

8π2v2s4
β

×
{
s2β − 1

6

[
( Â 2

t − μ̂2)s2β − 2 Ât μ̂c2β

]}
. (20)

We define a critical value of M2
A,

M2
A,c ≡ max

{
(Z1 − Z5)v

2, 0
}
, (21)

where Z1v
2 = (125 GeV)2 and Z5v

2 is given by Eq. (20).
Note further that the squared mass of the non-SM-like CP-
even Higgs boson in the exact alignment limit, M2

A + Z5v
2,

must be positive, which implies that the minimum value pos-
sible for the squared mass of the CP-odd Higgs boson is

M2
A,m ≡ max

{−Z5v
2, 0

}
. (22)

That is, if Z5 is negative, then the minimal allowed value of
M2

A is non-zero and positive.
If we compute Z5 from Eq. (20) using the value of tan β

obtained by setting Z6 = 0 in Eq. (16), the value of M2
A,c for

each point in the (μ̂, Ât ) plane can be determined. The inter-
pretation of M2

A,c is as follows. If M2
A > M2

A,c, then h can be
identified as the SM-like Higgs boson with Mh � 125 GeV. If
M2

A,m < M2
A < M2

A,c [where M2
A,m is the minimal allowed

value of M2
A given in Eq. (22)], then H can be identified as

the SM-like Higgs boson with MH � 125 GeV. We shall
exhibit numerical results for MA,c in Sect. 5 for each of the
realistic tan β solutions.

Finally, we note that using the same one-loop approxima-
tions employed in this section, the leading contribution to
the squared-mass splitting of the charged Higgs boson and
CP-odd Higgs boson is given by [41],

M2
H± − M2

A � M2
W − 3μ2m4

t

16π2v2s4
βM

2
SUSY

� M2
W

(
1 − 0.035μ̂2

s4
β

)
. (23)

In particular, in the parameter regime in which H is identified
as the SM-like Higgs boson, there is an upper bound on the
charged Higgs mass obtained by inserting MA = MA,c into
Eq. (23). In this case, collider and flavor constraints relevant
to such a light charged Higgs boson can significantly reduce
the allowed MSSM parameter space [28,53].

4 Alignment without decoupling at the two-loop level

As previously noted, the analysis above was based on approx-
imate one-loop formulas given in Eqs. (11)–(13), where only
the leading terms proportional to m2

t h
2
t are included. In the

exact alignment limit, we identify Z1v
2 given by Eq. (11)

as the squared mass of the observed SM-like Higgs boson.
However, it is well known that Eq. (11) overestimates the
value of the radiatively corrected Higgs mass. Remarkably,
one can obtain a significantly more accurate result simply by
including the leading two-loop radiative corrections propor-
tional to αsm2

t h
2
t .

In Ref. [30], it was shown that the dominant part of these
two-loop corrections can be obtained from the corresponding
one-loop formulas with the following very simple two step
prescription. First, we replace

m4
t ln

(
M2

S

m2
t

)
−→ m4

t (λ) ln

(
M2

S

m2
t (λ)

)
,

where λ ≡ [
mt (mt )MS

]1/2
, (24)
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where mt (mt ) � 163.6 GeV is the MS top quark mass [54],
and the running top quark mass in the one-loop approxima-
tion is given by

mt (λ) = mt (mt )

[
1 + αs

π
ln

(
m2

t (mt )

μ2

)]
. (25)

In our numerical analysis, we take αs = αs(mt (mt )) �
0.1088 [54]. Second, when m4

t multiplies the threshold cor-
rections (i.e., the one-loop terms proportional to Xt and Yt ),
then we make the replacement

m4
t −→ m4

t (MS), (26)

where

mt (MS) = mt (mt )

[
1 + αs

π
ln

(
m2

t (mt )

M2
S

)
+ αs

3π

Xt

MS

]
.

(27)

Note that the running top quark mass evaluated at MS

includes a threshold correction at the SUSY-breaking scale
that is proportional to Xt . Here, we only keep the leading
contribution to the threshold correction under the assump-
tion that mt � MS (a more precise formula can be found in
Appendix B of Ref. [30]). The above two step prescription
can now be applied to Eqs. (11)–(13), which yields a more
accurate expression for the radiatively corrected Higgs mass
and the condition for exact alignment without decoupling.

In applying the prescription outlined above, we formally
work to O(αs) while dropping terms of O(α2

s ) and higher.
For example,

ln

(
M2

S

m2
t (μ)

)
�

[
1 + αs

2π

]
ln

(
M2

S

m2
t (mt )

)
. (28)

The end results are the following approximate expressions
for Z1, Z5 and Z6 that incorporate the leading two-loop
O(αsm2

t h
2
t ) effects,

Z1v
2 = M2

Zc
2
2β + CL

(
1 − 2αs L + αs

)
+CX1

(
1 − 4αs L + 4

3αs xt
)
, (29)

Z5v
2 = s2

2β

[
M2

Z + CL

4s4
β

(
1 − 2αs L + αs

)

+ C

4s4
β

X5
(
1 − 4αs L + 4

3αs xt
)]

, (30)

Z6v
2 = −s2β

[
M2

Zc2β − CL

2s2
β

(
1 − 2αs L + αs

)

− C

2s2
β

X6
(
1 − 4αs L + 4

3αs xt
)]

, (31)

where we have defined

C ≡ 3m4
t (mt )

2π2v2 , αs ≡ αs

π
,

xt ≡ Xt/MS, yt ≡ Yt/MS, L ≡ ln

(
M2

S

m2
t (mt )

)
, (32)

and

X1 ≡ x2
t

(
1 − 1

12 x
2
t

)
, X5 ≡ xt yt

(
1 − 1

12 xt yt
)
,

X6 ≡ 1
2 xt (xt + yt ) − 1

12 x
3
t yt . (33)

In the above equations, mt ≡ mt (mt ) is the MS top quark
mass. Note that the approximate loop-corrected formulas for
Z1, Z5 and Z6 are no longer invariant under Xt → −Xt ,
Yt → −Yt (or equivalently At → −At , μ → −μ) due to
the asymmetry introduced by Eq. (27) at O(αs).

We can now derive analogous expressions to Eqs. (17)
and (20) that incorporate the leading two-loop effects at
O(αsm2

t h
2
t ). First, we note that Eq. (29) yields

L = C−1(Z1v
2 − M2

Zc
2
2β

) − X1 + αs B1, (34)

where B1 is to be determined. Inserting Eq. (34) into Eq. (29),
the O(1) terms cancel exactly. Keeping only terms of O(αs),
we end up with the following expression for B1:

B1 = 2C−2(Z1v
2 − M2

Zc
2
2β

)2 − C−1(Z1v
2 − M2

Zc
2
2β

)
+ X1

(
1 − 2X1 − 4

3 xt
)

. (35)

Now we substitute Eq. (35) back into Eq. (34) to obtain

L = C−1(1 − αs)
(
Z1v

2 − M2
Zc

2
2β

)
+ 2αsC

−2(Z1v
2 − M2

Zc
2
2β

)2

− X1
[
1 − αs

(
1 − 2X1 − 4

3 xt
)]

. (36)

Finally, we insert Eq. (36) into Eq. (31) and set Z6 = 0 to
obtain,

2M2
Z s

2
βc2β − (Z1v

2 − M2
Zc

2
2β)

[
1 + 4αs(X1 − X6)

]
+C(X1 − X6)

[
1 + αs(4X1 + 4

3 xt )
] = 0 . (37)

That is, tβ ≡ tan β is the solution to a 11th order polynomial
equation,

M2
Z t

8
β(1 − t2

β) − Z1v
2t8

β(1 + t2
β)

+ 3m4
t μ̂( Ât tβ − μ̂)t4

β(1 + t2
β)2

4π2v2

[ 1
6 ( Ât tβ − μ̂)2 − t2

β

]
+ 2αs t

4
β

[
M2

Z (1 − t2
β)2 − Z1v

2(1 + t2
β)2]

× μ̂( Ât tβ − μ̂)
[ 1

6 ( Ât tβ − μ̂)2 − t2
β

]

+ αsm4
t μ̂( Ât tβ − μ̂)2(1 + t2

β)2

π2v2

[ 1
6 ( Ât tβ − μ̂)2 − t2

β

]
× [

t3
β + 3t2

β( Ât tβ − μ̂) − 1
4 ( Ât tβ − μ̂)3] = 0. (38)
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Fig. 2 Number of real solutions to the two-loop alignment condition, Eq. (38). We set Z1v
2 = 125 GeV. Left: All solutions with real tan β; right:

real, positive tan β solutions

As previously noted, solutions to this equation for negative
tan β at a point in the (μ̂, Ât ) plane can be reinterpreted as
positive tan β solutions at the point (−μ̂, Ât ).

In order to obtain two-loop improved versions of M2
A,c

and M2
A,m [cf. Eqs. (21) and (22)], we need to impose the

alignment limit condition, Z6 = 0, on the two-loop expres-
sion for Z5 given by Eq. (30). Our strategy is similar to the
one employed above in deriving Eq. (37). First, we derive
another expression for L based on Eq. (30); the steps leading
to Eq. (36) are modified by the following substitutions:

M2
Zc

2
2β → M2

Z s
2
2β, C → C/t2

β,

Z1 → Z5, and X1 → X5 . (39)

The end result is

L = C−1(1 − αs)
(
Z5v

2 − M2
Z s

2
2β

)
t2
β

+ 2αsC
−2(Z5v

2 − M2
Z s

2
2β

)2
t4
β

− X5
[
1 − αs

(
1 − 2X5 − 4

3 xt
)]

. (40)

Finally, we insert Eq. (40) into Eq. (31) and set Z6 = 0 to
obtain,

2M2
Z s

2
βc2β − (Z5v

2 − M2
Z s

2
2β)t2

β

[
1 + 4αs(X5 − X6)

]
+C(X5 − X6)

[
1 + αs(4X5 + 4

3 xt )
] = 0 . (41)

Solving for Z5, and again expanding out in αs and dropping
terms of O(α2

s ) and higher,

Z5v
2 = M2

Z (1 + c2β) + C(X5 − X6)

t2
β

×
{

1 + 4αs
(
X6 + 1

3 xt − 2s2
βc2βC

−1M2
Z

)}
, (42)

which yields the O(αs) correction to Eq. (20). One can now
define the two-loop improved versions of M2

A,c and M2
A,m

via Eqs. (21) and (22) . Likewise, the two-loop improved
formula for the charged Higgs mass is obtained by replacing
mt in Eq. (23) by mt (MS) according to Eq. (27). The end
result is

M2
H± � M2

A + M2
W − 3μ2m4

t (mt )

16π2v2s4
βM

2
SUSY

×
[

1 + 4αs

π
ln

(
m2

t (mt )

M2
S

)
+ 4αs

3π

Xt

MS

]
. (43)

In the left (right) panel of Fig. 2 we show the number of real
(positive) solutions to the polynomial given in Eq. (38), cor-
responding to the two-loop condition for alignment without
decoupling which determines tan β as a function of μ̂ and Ât .
Compared to the one-loop results of Sect. 3, there are a few
notable changes, which we now discuss. First, in our scan of
the (μ̂, Ât ) plane, we have observed numerically that there
are three real roots of Eq. (38) for |μ̂| <∼ 8–10 (depending on
the value of Ât ), whereas, for larger values of |μ̂|, a region
opens up in which there are five real roots. As previously
discussed, the transition between these two regions occurs
when two of the real roots in the large |μ̂| regime coalesce
(yielding a degenerate real root) and then move off the real
axis to form a complex conjugate pair as the value of |μ̂| is
reduced. Comparing with the roots of Eq. (17), we see that
two new roots have come into play. We have analyzed these
two roots and find that one is positive and one is negative.
However, the positive root always corresponds to a value of
|Xt | > 3MS , which lies outside our region of interest. Hence-
forth, we simply discard this possibility. What remains then
are at most two real roots at a given point in the (μ̂, Ât ) plane
that can be identified as the two-loop-corrected versions of
the corresponding one-loop results obtained earlier.

We can now see the effects of including the leading
O(h2

t αs) corrections. The regions where positive solutions
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to Eq. (38) exist, shown in the right panels of Fig. 2 (exclud-
ing the positive solution corresponding to |Xt | > 3MS as
noted above), have shrunk considerably in the two quadrants
where μ̂ Ât > 0, as compared to the corresponding positive
solutions to Eq. (17) shown in the right panel of Fig. 1. In
contrast, in the two quadrants where μ̂ Ât < 0, the respective
sizes of the regions where positive solutions to Eq. (17) and
Eq. (38) exist are comparable.

One new feature of the two-loop approximation not yet
emphasized is that we must now carefully define the input
parameters μ and At . In the formulas presented in this sec-
tion, we interpret these parameters as MS parameters. How-
ever, it is often more convenient to re-express these parame-
ters in terms of on-shell parameters. In Ref. [30], the follow-
ing expression was obtained for the on-shell squark mixing
parameter XOS

t in terms of the MS squark mixing parameter
Xt , where only the leading O(αs) corrections are kept:

XOS
t = Xt − αs

3π
MS

[
8 + 4Xt

MS
− X2

t

M2
S

− 3Xt

MS
ln

(
m2

t

M2
S

)]
.

(44)

Since the on-shell and MS versions of μ are equal at this
level of approximation, we also have

AOS
t = XOS

t + μ

tan β
. (45)

The approximations employed in the section capture some
of the most important radiative corrections relevant for ana-
lyzing the alignment limit of the MSSM. However, it is
important to appreciate what has been left out. The anal-
ysis of this section ultimately corresponds to a renormal-
ization of cos(β − α), which governs the couplings of the
Higgs boson in the effective 2HDM theory below the SUSY-
breaking scale and its departure from the alignment limit.
However, radiative corrections also contribute other effects
that modify Higgs production cross sections and branching
ratios. It is well known that, for MA � MS , the effective
low-energy theory below the scale MS is a general two Higgs
doublet model with the most general Higgs-fermion Yukawa
couplings. These include the so-called wrong-Higgs cou-
plings of the MSSM [55], which ultimately are responsible
for the 
b and 
τ corrections that can significantly modify
the coupling of the Higgs boson to bottom quarks and tau
leptons.6 In addition, integrating out heavy SUSY particles
at the scale MS can generate higher dimensional operators
that can also modify Higgs production cross sections and
branching ratios [57]. None of these effects are accounted
for in the analysis presented in this section.

6 For a review of these effects and a guide to the original literature, see
Ref. [56].

5 Numerical results

In this section we present the numerical results for the phys-
ical (i.e. real positive) tan β solutions of the alignment con-
dition, and, in particular, compare the results obtained in the
one-loop and two-loop approximations given in Sects. 3 and
4, respectively. Moreover, we shall discuss for each of these
solutions their implications for the correlated parameters,
i.e. the SUSY-breaking mass scale, MS , and the critical MA

value, MA,c, which determines whether the light or the heavy
CP-even Higgs boson is the one aligned with the SM Higgs
vev in field space.

As shown in Figs. 1 and 2, there may be more than one
value of tan β corresponding to exact alignment for a given
μ̂ and Ât . In the left and right panels of Fig. 3 these tan β

solutions in the one-loop [Eq. (17)] and two-loop [Eq. (38)]
approximation, respectively, are displayed as filled contours
in the (μ̂, Ât ) parameter plane.7 The three panels from top
to bottom of Fig. 3 correspond to three different roots, with
the respective tan β values being the smallest in the top panel
and the largest in the bottom panel. Taking the top, middle
and bottom panel together, one can immediately discern the
regions of zero, one, two and three positive roots of Eq. (17)
and Eq. (38), and their corresponding values.

Previous work on Higgs alignment without decoupling
in the MSSM [8,12,28] has largely focused on the tan β

solution displayed in the two bottom panels of Fig. 3. This
value of tan β, which can appear already at moderately large
|μ̂| values, has also been employed in the definition of
MSSM benchmark scenarios with Higgs alignment with-
out decoupling [12,58]. However, this solution is associ-
ated with a large trilinear scalar coupling, Ât , and thus
part of the parameter space exhibiting this solution may
yield a color or electric charge-breaking vacuum and/or fea-
ture an unreliable theoretical prediction of the Higgs mass.
In order to highlight this, we overlay the region where
|Xt |/MS ≥ 3 with a blue shading in Fig. 3. Since for
the relevant parameter space, μ̂ Ât tan β � 1, this tan β

solution is approximated by Eq. (18), as first employed in
Ref. [12]. Alignment without decoupling at moderately small
values of tan β � 10, as suggested by constraints from LHC
H/A → τ+τ− searches [59,60], can be found for |μ̂| ∼ 2–3
and | Ât | ∼ 3. Comparing the numerical values of this tan β

solution obtained in the approximate one-loop and two-loop
descriptions, we observe that the improved description at the
two-loop level yields rather small corrections, which slightly
increase the value of tan β. Furthermore, note the small asym-
metry between the two sectors (μ̂ > 0 and Ât > 0 vs. μ̂ < 0
and Ât < 0) introduced by the finite threshold correction
proportional to Xt entering at the two-loop level.

7 In the one-loop approximation, similar plots were previously exhib-
ited in Ref. [26].
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Fig. 3 Contours of tan β corresponding to exact alignment, Z6 = 0,
in the (μ/MS, At/MS) plane. Z1 is adjusted to give the correct Higgs
mass. Left: Approximate one-loop result; right: two-loop improved
result. Taking the three panels on each side together, one can imme-

diately discern the regions of zero, one, two and three values of tan β in
which exact alignment is realized. In the overlaid blue regions we have
(unstable) values of |Xt/MS | ≥ 3

The smallest of the tan β solutions, displayed in the top
panel of Fig. 3, was only briefly mentioned in Refs. [8,12],
but was subject to detailed discussions in Ref. [28] in the con-
text of scenarios where the observed SM-like Higgs boson

was interpreted in terms of the heavy CP-even Higgs boson.
In fact, such scenarios were found viable in this parameter
region at |μ̂| ∼ 6–8, partly because for such large μ̂ val-
ues, large 
b corrections suppress the light charged Higgs
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contribution to the rare flavor physics decays B → Xsγ .
In the top panel of Fig. 3, we observe that this tan β solu-
tion extends over all four sectors of the (μ̂, Ât ) parameter
space, however, with the restriction that for |μ̂| � 5 (7), the
parameters μ̂ and Ât have to be of opposite sign in the one-
loop (two-loop) description. In the latter case, and as long
as |μ̂|| Ât | tan β � 1, the tan β alignment solution derived at
the one-loop level (top left panel of Fig. 3) is approximately
described by Eq. (18). The impact of the two-loop improved
calculation on the numerical values of this solution is signif-
icant and again shifts the tan β values towards larger values.
Whereas alignment without decoupling at moderately small
values of tan β � 10 is achieved in the one-loop description,
for μ̂ � 2.2, Ât ∼ −1.3 and for μ̂ <∼ −2.2, Ât ∼ 1.3 (due to
the μ̂ → −μ̂, Ât → − Ât symmetry), the two-loop descrip-
tion pushes these results to higher absolute values of μ̂ >∼ 4.2
and μ̂ <∼ − 3.4, respectively. Even lower tan β values � 5
can be obtained by allowing even larger μ̂ values, as can be
seen in Fig. 3. However, with further increasing μ̂ � 1, this
turns over into the approximate behavior tan β � |μ̂|/√6,
found in the limit μ̂ � 1 and small Ât of Eq. (19), and thus
tan β starts to increase with μ̂. At such large μ̂ values align-
ment solutions are also found in the parameter regions with
μ̂ and Ât having the same sign, which feature small values
of tan β � 5 (for the μ̂ range considered here).

The remaining tan β solution, displayed in the middle
panels in Fig. 3, has not been discussed previously in the
literature (except for some brief comments in our previous
work [28]). It occurs only in the regions where μ̂ and Ât have
the same sign, and only for very large |μ̂| � 5 (7 − 8) in the
one-loop (two-loop) description. The tan β value of this solu-
tion is small at large | Ât |, and approaches +∞ as | Ât | → 0.
This solution is only found in regions of the parameter space
that also exhibit the solution shown in the top panels of Fig. 3,
and its tan β values are always larger. Therefore, and because
of the very large μ̂ values required especially after taking into
account the two-loop corrections, this alignment solution is
phenomenologically not relevant.

In our numerical scans in the (μ̂, Ât ) plane, the size of
the SUSY-breaking mass scale, MS , varies as required by the
condition of exact alignment (Z6 = 0) such that the SM-like
Higgs mass is fixed to its observed value of 125 GeV. That
is, given the value of tβ for exact alignment at a point in the
(μ̂, Ât ) plane, one can use Eq. (11) [Eq. (29)] in the one-loop
(two-loop) approximation to determine the value of MS such
that Z1v

2 = (125 GeV)2. These MS values are exhibited in
the three rows of Fig. 4, which are in one-to-one correspon-
dence with the three rows of Fig. 3, i.e. each row shows a
different solution of the alignment condition, and on the left
(right) we show the one-loop (two-loop) result. We define
maximal mixing in the top squark sector to correspond to the
value of Xt/MS that maximizes the value of Z1v

2 given by
Eq. (11) [Eq. (29)] in the one-loop (two-loop) approxima-

tion, prior to fixing the Higgs mass at its observed value of
125 GeV. In the one-loop approximation, maximal mixing
occurs at Xt/MS = √

6, and the maximal value of the Higgs
mass corresponds to maximal mixing with tan β � 1. Turn-
ing this around, if we fix the value of the Higgs mass to be
its observed value of 125 GeV, then the minimal value of MS

occurs at maximal mixing with tan β � 1. This can be seen
in the top panels of Fig. 4, where the minimal MS contour
is located in the region of Ât = √

6 and μ̂ Ât < 0. In this
region, tan β � 1 so that Ât � Xt/MS , corresponding to the
region of maximal mixing at large tan β. Maximal mixing at
large tan β is also evident in the bottom panels of Fig. 4. At
smaller values of | Ât |, it is still possible to reach maximal
mixing at large values of |μ̂|, albeit with smaller values of
tan β shown in Fig. 3. In contrast, maximal mixing is never
reached in the middle panels of Fig. 4, as the correspond-
ing Xt/MS values are closer to the minimal mixing value of
Xt = 0. In this case, the smaller values of MS are associated
with the larger values of tan β, which occur when | Ât | → 0.

Lastly, we turn to the question whether the light or the
heavy neutral CP-even Higgs boson is the state that is aligned
with the SM Higgs vev. Recall that the answer depends on the
relative size of Z1v

2 and Z5v
2 +M2

A. In the end of Sect. 3 we
defined a critical and a minimal MA value, MA,c and MA,m

[see Eqs. (21), (22)], respectively, such that h is SM-like for
the parameter points with M2

A > M2
A,c and H is SM-like for

the parameter points with M2
A,m < M2

A < M2
A,c.

We can compute Z5 at one-loop (two-loop) accuracy from
Eq. (20) [Eq. (30)] using the value of tan β for which exact
alignment without decoupling occurs. This allows us to deter-
mine the value of M2

A,c for each point in the (μ̂, Ât ) plane.
The corresponding contours of MA,c are exhibited in the
three rows of Fig. 5, which are in one-to-one correspondence
with the three rows of Figs. 3 and 4. Again, we show the
one-loop (two-loop) results on the left (right)-hand side of
Fig. 5. For the two phenomenologically relevant alignment
solutions, displayed in the top and bottom panels in Fig. 5,
we observe that MA,c generally increases with |μ̂|. In the
alignment solution shown in the top panel, a slight increase
of MA,c can also be noted with | Ât |. At the two-loop level,
the asymmetry between the relative signs of μ̂ and Ât intro-
duced by the finite threshold corrections proportional to Xt

are quite noticeable in these figures. Furthermore, the two-
loop corrections lead to a sizable shift of MA,c towards lower
values in the entire parameter space, thus narrowing the avail-
able parameter space that can feature a heavy SM-like Higgs
boson at 125 GeV.

Under the assumption that the heavy CP-even Higgs boson
H is identified with the observed Higgs boson at 125 GeV,
the MA,c values can easily be translated into upper bounds on
the charged Higgs boson mass, MH+ , according to Eqs. (23)
and (43) in the leading one- and two-loop description, respec-
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Fig. 4 MS value needed to obtain the correct Higgs mass in the limit
of exact alignment, corresponding to the solutions found in Fig. 3 in the
(μ/MS, At/MS) plane. Left: Approximate one-loop result; right: two-

loop improved result. In the overlaid blue regions we have (unstable)
values of |Xt/MS | ≥ 3
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tively. Here one should keep in mind that the leading radia-
tive corrections are negative and proportional to μ̂2. Conse-
quently, at large μ̂, these radiative corrections can substan-
tially decrease the MH+ prediction with respect to its tree-

level prediction, M tree
H+ = (

M2
A + M2

W

)1/2
. Collider and fla-

vor constraints on such scenarios arising from a light charged
Higgs boson have been extensively discussed in Ref. [28] (see
also Ref. [53] for a similar analysis in the framework of the
2HDM).

We close this section with a few comments on how
these results compare with the numerical fit results found
in Ref. [28]. In the global fit, Ref. [28] identified two distinct
parameter regions with phenomenologically viable points
near the limit of alignment without decoupling. These regions
resemble the parameter regions that are exhibited in the top
and bottom panels in Figs. 3, 4 and 5. Specifically, under
the assumption that h is identified as the SM-like Higgs
boson at 125 GeV, the preferred points with low MA (i.e. in
the non-decoupling regime) found in Ref. [28] were located
near the alignment solution displayed in the bottom pan-
els. The main reason for this, however, is the restriction
|μ|/MS ≤ 3 imposed in the fit for the light Higgs interpre-
tation, which essentially excludes the other possible align-
ment solutions identified in this work. In contrast, assuming
that H is identified as the SM-like Higgs boson at 125 GeV,
Ref. [28] found viable points only near the parameter regions
displayed in the top panels of Figs. 3, 4 and 5. Here, the
restriction |μ|/MS ≤ 3 was not imposed, and the main rea-
son for this observation was a coupling suppression of the
charged Higgs contribution to the branching fraction of the
B meson decay B → Xsγ , thus yielding phenomenologi-
cally acceptable values despite the presence of a very light
charged Higgs boson. Lastly, a word of caution is in order:
the numerical results displayed in this work are based on the
exact alignment limit, whereas in the global fit studies of
the MSSM parameter space in the non-decoupling regime,
the parameter points only need to be near the alignment
limit in order to be phenomenologically viable. In partic-
ular, Ref. [28] quantified the maximal values of |Z6|/Z1 for
the parameter points allowed at the 2σ level in the light Higgs
(with low MA) and heavy Higgs interpretation, resulting in
∼ 0.3 and ∼ 0.2, respectively. Such values indicate that these
parameter regions are not yet parametrically fine-tuned, and
non-negligible deviations from the alignment limit are still
allowed by the current data.8

8 For instance, in the global fit of Ref. [28] employing the heavy Higgs
interpretation, MA values up to around 180 GeV were found to be
viable, whereas in the exact alignment limit we find MA,c ≤ 125 GeV
in the corresponding parameter region, as shown in the top right panel
of Fig. 5.

6 SM-like Higgs branching ratios in the alignment limit

In the exact alignment limit, the tree-level couplings of the
SM-like Higgs boson are precisely those of the Higgs boson
of the SM. Nevertheless, in the case of alignment without
decoupling, deviations from SM Higgs boson properties can
arise because the effective theory at the electroweak scale
contains additional fields beyond the fields of the SM. In this
work, we have employed the framework of the MSSM under
the assumption that the SUSY-breaking scale MS � MZ ,
MH± . Thus the effective electroweak theory at energy scales
below MS is the 2HDM. Moreover, SUSY-breaking effects
can generate so-called wrong-Higgs couplings with coeffi-
cients that in some cases are tan β-enhanced (see footnote 6).
Thus, we are led to consider the 2HDM with the most general
Higgs-fermion Yukawa interactions as the effective theory
below MS . In particular, the masses of the additional scalar
states are assumed to be of the same order as the scale of
electroweak symmetry breaking. In the exact alignment limit,
deviations of the SM-like Higgs boson branching ratios from
the corresponding SM predictions can arise due to two pos-
sible effects: (1) new loop contributions due to the exchange
of non-SM Higgs scalars that modify partial decay rates, and
(2) new decay channels in which the SM-like Higgs boson
decays into a pair of lighter scalars, if kinematically allowed.

If new tree-level Higgs decays are present, these will typi-
cally yield the dominant contributions to the deviations of the
Higgs branching ratios from their SM values. In particular,
we expect that any additional deviations that arise from the
exchange of non-SM Higgs scalars (which compete with the
SM loop corrections) would result only in small shifts of the
Higgs decay rates away from their corresponding SM predic-
tions, and they will be difficult to isolate experimentally. In
contrast, consider the loop-induced Higgs couplings to γ γ

and Zγ , which have no tree-level counterpart. In this case,
new loop corrections due to charged Higgs exchange can
compete with the corresponding SM loop contributions, since
by assumption MH± does not differ appreciably from the
mass of the SM-like Higgs boson [14]. In practice, due to the
domination of the W -loop contribution to the loop-induced
Higgs couplings to γ γ and Zγ relative to the fermion and
scalar loop contributions, the shift in the loop-induced Higgs
couplings from their SM values due to the contribution of
charged Higgs exchange will typically be small.

The most significant deviation from SM Higgs branch-
ing ratios in the alignment limit without decoupling arises if
new decay channels are present in which the SM-like Higgs
boson decays into a pair of lighter scalars. In Ref. [28], we
demonstrated that regions of the MSSM parameter space in
which the heavier of the CP-even scalars, H , is SM-like and
mh < mH/2 are still allowed after taking into account the
experimental constraints from SUSY particle searches and
the measurement of Higgs boson properties at the LHC. In
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Fig. 5 Critical MA value, MA,c, in the exact alignment, indicating the
maximal MA value for which the mass hierarchy of the heavy Higgs
interpretation is obtained, corresponding to the solutions found in Fig. 3

in the (μ/MS, At/MS) plane. Left: Approximate one-loop result; right:
two-loop improved result. In the overlaid blue regions we have (unsta-
ble) values of |Xt/MS | ≥ 3
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Fig. 6 Contours of Z345 in the exact alignment, corresponding to the
strength of the Hhh coupling in the heavy Higgs interpretation. These
results correspond to the first alignment solution displayed in the top

panels of Fig. 3 in the (μ/MS, At/MS) plane. Left: Approximate one-
loop result; right: two-loop improved result

such a scenario, the decay mode H → hh is kinematically
allowed, which has an impact on the predicted SM Higgs
branching ratios.

At tree level, the Hhh coupling survives in the exact align-
ment limit where sβ−α = 0. Indeed, when expressed in terms
of the coefficients of the scalar potential in the Higgs basis,
the tree-level Hhh coupling is given by [4,13,14]

gHhh = −3v

[
Z1cβ−αs

2
β−α + Z345cβ−α

(
1
3 − s2

β−α

)

− Z6sβ−α(1 − 3c2
β−α) − Z7c

2
β−αsβ−α

]
, (46)

where

Z345 ≡ Z3 + Z4 + Z5 . (47)

Thus, in the alignment limit, gHhh → −vZ345.
In the one-loop-corrected MSSM in the limit of MZ ,

MA � MS , we make use of the results of Ref. [41] to obtain,9

Z345v
2 = M2

Z (3s2
2β − 1) + 9m4

t cot2 β

2π2v2

[
ln

(
M2

S

m2
t

)

+ X2
t + Y 2

t + 4XtYt
6M2

S

− X2
t Y

2
t

12M4
S

]
. (48)

Including the approximate leading O(αsm2
t h

2
t ) correc-

tions we obtain

Z345v
2 = M2

Z (3s2
2β − 1) + s2

2β

4s4
β

C [3L(1 − 2αs L + αs)

+ (2X34 + X5)(1 − 4αs L + 4
3αs xt )

]
, (49)

9 One can obtain Eq. (48) from the radiatively corrected expressions
for Z3, Z4 and Z5 given in Appendix A of Ref. [61] after setting λ = 0.

where we have denoted X34 ≡ 1
4 (xt + yt )2 − 1

12 x
2
t y

2
t and

X5 ≡ xt yt (1− 1
12 xt yt ) and the other relevant quantities have

been defined in Eq. (32).
In the left and right panel of Fig. 6 we show the con-

tours of Z345 for the first alignment solution (shown in the
top panels in Fig. 3) derived in the one-loop and two-loop
description, respectively. For most of the parameter space
Z345 is negative, with large negative values found for large
|μ̂| values. A small parameter region with small | Ât | � 0.4
and |μ̂| between 2.5 and 5 in the one-loop (5 and 7 in the two-
loop) description exhibits small positive Z345 values, shown
by the dark green color in Fig. 6. At the boundary between
the light and dark green region the coupling Z345 vanishes.
Thus, in these regions the decay H → hh becomes coupling-
suppressed and the branching fraction can even become zero,
irrespective of the available phase-space. This feature has
been numerically observed in Ref. [28] and in particular
exploited in Ref. [27] in the definition of low mass light
Higgs boson benchmark scenarios for dark matter studies.

The other two alignment solutions (middle and bottom
panels in Fig. 3) do not exhibit phenomenologically relevant
parameter regions where the coupling Z345 vanishes, and thus
we do not exhibit them here.10 For the second alignment
solution (shown in the middle panels in Fig. 3), the Z345

values are positive, whereas in the third alignment solution
(shown in the bottom panels in Fig. 3), the Z345 values are
negative, with larger magnitudes found at larger values of
|μ̂|.

In order to further illustrate the feature of a vanishing
branching fraction BR(H → hh) in the first alignment solu-

10 In the second solution (middle panels in Fig. 3), one can achieve a
vanishing Z345 in a small parameter strip in the second solution (mid-
dle panels in Fig. 3), which we have discarded as phenomenologically
irrelevant.

123



Eur. Phys. J. C   (2017) 77:742 Page 17 of 20  742 

Fig. 7 Contours of the branching fraction BR(H → hh) in the exact
alignment in the heavy Higgs interpretation, for the first alignment solu-
tion (top panels in Fig. 3) in the (μ/MS, At/MS) plane. We exhibit only

the two-loop improved result here, and we assume the light Higgs mass
to be Mh = 10 GeV (left) and 60 GeV (right)

tion, as mentioned above, we show BR(H → hh) for two
choices of the light Higgs mass, Mh = 10 GeV and 60 GeV,
in the left and right panel of Fig. 7. Here, we exhibit the align-
ment solution in the two-loop description, and calculate the
branching ratio,

BR(H → hh) = (H → hh)

SM
tot + (H → hh)

, (50)

where SM
tot = 4.1 MeV is the SM Higgs boson total decay

width [62], and11

(H → hh) = Z2
345v

2

32πMH

(
1 − 4M2

h

M2
H

)1/2

. (51)

By comparing Fig. 7 with Fig. 6 one can clearly observe
that the branching fraction vanishes in the region where
Z345 = 0. Nevertheless, while such an “accidental” param-
eter constellation leading to a vanishing coupling Z345 can
occur in this alignment solution, it should be noted that gener-
ically the Hhh coupling does not vanish in the alignment
limit in the scenario where the heavy CP-even Higgs boson is
identified with the observed Higgs boson at 125 GeV. Thus,
precision measurements of the properties of the observed
Higgs boson can be employed to further constrained the
heavy SM-like Higgs scenario.

11 Employing Eq. (49) for Z345 in Eq. (51) incorporates some of the
leading one and two-loop corrections to the H → hh decay rate. A
more complete one-loop computation can be found in Ref. [63].

7 Conclusions and outlook

Given the current precision of Higgs boson measurements at
the LHC, the observed state with mass 125 GeV is consis-
tent with a Higgs boson that possesses the spin, CP quantum
number and coupling properties predicted by the SM. In an
extended Higgs sector of a BSM theory, a scalar mass eigen-
state would possess the properties of the SM Higgs boson
if it is aligned in field space with the scalar vacuum expec-
tation value responsible for electroweak symmetry break-
ing. This defines the so-called alignment limit. Higgs align-
ment can be achieved due to the decoupling of the non-SM
Higgs states, under the assumption that these scalars are con-
siderably heavier than the SM-like Higgs boson, or via the
suppression of the mixing between the aligned scalar state
and the other scalar states of the Higgs sector. In the lat-
ter scenario, the possibility of alignment without decoupling
arises if the masses of the non-SM-like Higgs states are of the
same order of magnitude as the mass of the SM-like Higgs
boson.

In the MSSM, the simplest way to achieve approximate
Higgs alignment is in the decoupling limit in which MA �
Mh and h is identified as the observed SM-like Higgs boson.
In this paper, we have addressed the possibility of achiev-
ing approximate Higgs alignment without decoupling, which
can arise due to an accidental cancellation of tree-level and
loop-level effects, independently of the mass scale of the
other Higgs states. Under the assumption that the SUSY-
breaking scale, MS , is significantly larger than the masses of
the non-SM-like Higgs scalars, the properties of the Higgs
sector are well described by an effective two-Higgs doublet
extension of the SM (2HDM). In previous work, alignment
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without decoupling was achieved due to the cancellation of
tree-level and one-loop contributions to the effective 2HDM
Lagrangian.12 The present work goes beyond previous stud-
ies and provides a detailed analysis of the leading two-loop
corrections and their impact on the parameter regions that
exhibit an exact realization of the alignment without decou-
pling scenario. In particular, we assessed the leading radia-
tive corrections proportional to the strong coupling constant
αs , which first enters at the two-loop level, by employing
an approximation scheme developed in Refs. [29,30]. This
scheme employs an optimal choice of the renormalization
scale for the running top quark mass, which captures the
leading logs at the two-loop level as well as a significant part
of the two-loop corrections proportional to the stop mixing
parameter Xt .

Taking the observed Higgs boson mass of 125 GeV as
an additional constraint, the alignment condition (i.e., the
equation corresponding to exact alignment, independent of
the value of MA) can only be fulfilled for a specific value
of tan β and MS that depends on the location in the (μ̂ ≡
μ/MS, Ât ≡ At/MS) parameter plane. We discussed all
physical solutions of the alignment condition both at the
one-loop and two-loop level. We found that up to three phys-
ical solutions exist simultaneously, out of which at most two
appear to be phenomenologically relevant. Comparing the
one- and two-loop approximations we found some signifi-
cant differences in the number of physical solutions in the
(μ̂, Ât ) parameter plane. Nevertheless, the gross qualitative
features of the one-loop solutions are maintained in the two-
loop improved results.

We presented a detailed numerical comparison of the
resulting tan β and MS values obtained in the one-loop and
two-loop approximation in the exact alignment limit. We
found that the two-loop corrections are sizable and lead to
significant changes of the phenomenology. In particular, the
tan β values are corrected towards larger values, and the
SUSY mass scale MS is corrected towards smaller values,
with respect to the corresponding values obtained in the one-
loop approximation. Because tan β is a parameter that signifi-
cantly influences the collider phenomenology of the non-SM
Higgs bosons (in particular the CP-odd Higgs boson A), the
two-loop corrections to the alignment condition cannot be
neglected in a detailed phenomenological study of the via-
bility of the alignment without decoupling scenario in the
MSSM [28]. We found that the SUSY-breaking mass scale
MS varies in the (μ̂, Ât ) plane from below 500 GeV up to
values in the multi-TeV range.

12 The analysis of the leading two-loop contributions to the align-
ment without decoupling scenario given in Sect. 4 has already been
employed in our previous numerical study of the allowed MSSM param-
eter space [28].

We furthermore defined a critical mass of the CP-odd
Higgs boson, MA,c. For parameter points with MA below
this value, the heavy CP-even Higgs boson plays the role
of the SM-like Higgs boson at 125 GeV, whereas parameter
points with MA > MA,c feature a SM-like light CP-even
Higgs boson. We exhibited numerical results for MA,c for
all viable solutions to the alignment condition in the one-
loop and two-loop approximations. Again, we noted a sig-
nificant impact of the two-loop corrections, which in general
lead to a substantial downward shift of MA,c, thus narrow-
ing the parameter space that exhibits a SM-like heavy Higgs
boson H .

In the heavy Higgs interpretation, i.e. the scenario where
the heavy CP-even Higgs boson plays the role of the SM-
like Higgs boson at 125 GeV, a new decay mode H → hh
is possible if mH > 2mh . We discussed the magnitude of the
relevant triple Higgs coupling and the resulting branching
fraction BR(H → hh) for two choices of the light Higgs
mass, Mh = 10 and 60 GeV, in the (μ̂, Ât ) plane. We find
that generically the relevant coupling is unsuppressed in the
limit of alignment without decoupling, thus leading to a value
of BR(H → hh) that is in conflict with the LHC Higgs data.
However, in one of the solutions to the alignment condition,
the responsible triple Higgs coupling (accidentally) vanishes
in certain regions of the parameter space. These regions are
found at small | Ât | � 0.4 and large |μ̂| values around 3–5 (5–
7) in the one-loop (two-loop) description. Parameter points
exhibiting this accidental suppression of BR(H → hh) in
the heavy Higgs interpretation have previously been observed
numerically in Refs. [27,28].

In the effective 2HDM Lagrangian, exact alignment cor-
responds to setting the effective Higgs basis parameter Z6

to zero. Given that exact Higgs alignment in the MSSM is
achieved by an accidental cancellation between tree-level and
loop-level contributions to Z6, the astute reader may object
that this scenario is of no interest as it represents a set of
measure zero of the MSSM parameter space. To address this
concern, we first note that the present Higgs data implies
that the observed state at 125 GeV is consistent with that of
the SM Higgs boson with an accuracy that is roughly 20–
30%. Consequently, as long as the parameters of the MSSM
Higgs sector yield a result close to the alignment limit, such
MSSM parameter regions are presently not ruled out by the
Higgs data. Indeed, in Ref. [28], a detailed numerical scan
of the parameter space of a phenomenological MSSM gov-
erned by eight parameters revealed the existence of regions
in which approximate Higgs alignment without decoupling
is satisfied. In the preferred region, some points with val-
ues of Z6 as large as |Z6/Z1| ∼ 0.3 were within two stan-
dard deviations of the best fit point. Thus, the present Higgs
data does not require excessive fine-tuning of the MSSM
parameters to achieve approximate Higgs alignment without
decoupling.
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The analysis of the exact alignment limit given in this
paper provides an understanding of the regions of the MSSM
parameters where Higgs alignment without decoupling can
occur, and the impact of including or neglecting the lead-
ing two-loop effects. Our analytic approximations include
the leading effects proportional to the fourth power of the
top quark Yukawa coupling and include leading logarithmic
terms (sensitive to the mass scale of SUSY-breaking, MS ,
arising from the top squark sector), and the leading thresh-
old effects at MS due to top squark mixing. However, sub-
dominant effects proportional to the square of the top quark
Yukawa coupling, the bottom quark and tau lepton Yukawa
couplings, and the electroweak gauge couplings have been
neglected, as well as non-leading logarithmic terms and non-
leading threshold effects due to bottom squark mixing. It is
straightforward to include such effects analytically (see, e.g.
Ref. [29]). Additional corrections not treated in this work
include effects arising from higher dimensional operators
(ultimately arising from integrating out the heavy SUSY sec-
tor) as well as genuine electroweak radiative corrections to
the low-energy effective 2HDM. Nevertheless, the impact
of including all such corrections, while modifying some of
the precise details of the cancellation between tree-level and
loop-level contributions in achieving exact Higgs alignment,
will not change the overall qualitative understanding of the
MSSM parameter regime that yields the approximate align-
ment limit without decoupling.

Further experimental Higgs studies at the LHC will
improve the precision of the properties of the 125 GeV Higgs
boson, while further constraining or discovering the exis-
tence of new scalar states of the extended Higgs sector. Both
endeavors will be critical for providing a more fundamen-
tal understanding as to why the observed 125 GeV scalar
resembles the SM Higgs boson.
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