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Abstract The stability of tree-level relations among the
parameters of a quantum field theory with respect to renor-
malization group (RG) running is typically explained by the
existence of a symmetry. We examine a toy model of a quan-
tum field theory of two real scalars in which a tree-level
relation among the squared-mass parameters of the scalar
potential appears to be RG-stable without the presence of an
appropriate underlying symmetry. The stability of this rela-
tion with respect to renormalization group running can be
explained by complexifying the original scalar field theory.
It is then possible to exhibit a symmetry that guarantees the
relations of relevant beta functions of squared-mass param-
eters of the complexified theory. Among these relations, we
can identify equations that are algebraically identical to the
corresponding equations that guarantee the stability of the
relations among the squared-mass parameters of the original
real scalar field theory where the symmetry of the complex-
ified theory is no longer present.

1 Introduction

The discovery of the Higgs boson at the LHC in 2012 [1,2]
provided strong evidence that the mechanism for generating
the masses of the gauge bosons, quarks, and charged lep-
tons of the Standard Model was governed by the dynam-
ics of a weakly-coupled scalar sector. Indeed, the Higgs
boson appears to be an elementary spin-0 particle, the first
of its kind. Subsequent measurements have shown that the
Higgs boson couplings to fermions and gauge bosons are,
with increasing experimental precision [3,4], nearly identi-
cal to those predicted by the Standard Model (SM). However,
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despite these impressive successes, a number of fundamen-
tal aspects of the theory of fundamental particles and their
interactions remain unexplained. As a result, the possibil-
ity of new physics beyond the SM has been considered for
decades.

Enlarging the scalar sector beyond the one complex SU(2)
doublet employed by the SM has long been an interesting
and promising way to try to address some of the issues that
the SM is incapable of explaining. For example, a theory of
very small but nonzero neutrino masses may be achieved by
considering an extra SU(2) triplet field, using the see-saw
mechanism [5]. Adding gauge singlet scalars has been con-
sidered in order to generate a first order electroweak phase
transition that is required for a viable theory of electroweak
baryogenesis [6]. Finally, adding a second complex scalar
doublet to the SM, resulting in the two Higgs doublet model
(2HDM) [7], has been proposed as a means to explain dark
matter [8,9], or as a possible new source of CP-violation [7].
Even without a particular theoretical motivation, it is note-
worthy that both the gauge sector and the fermion sector of
the SM are quite nonminimal (as Rabi famously noted after
the discovery of the muon by asking “who ordered that?”).
Thus, it is certainly useful to entertain the possibility that the
scalar sector of the SM should also be nonminimal.

Extending the scalar sector predicts the existence of new
scalar particles and its attendant phenomenology. However,
a larger scalar sector comes at a price. Whereas the SM
scalar potential is fully characterized by two independent
real parameters, the scalar potential of an extended scalar
sector introduces many additional parameters. For example,
the most general scalar potentials of the 2HDM and the three
Higgs doublet model (3HDM) are governed by 14 and 54 real
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parameters, respectively.1 The increased number of parame-
ters that govern the scalar potential significantly reduces the
predictive power of extended Higgs sector models.

One way to reduce the number of independent parameters
of these models is to impose global symmetries, either dis-
crete and/or continuous, as they eliminate or impose relations
among the Lagrangian parameters. Moreover, these symme-
tries are usually considered because they have interesting
phenomenological consequences beyond simply reducing
the dimensionality of the model parameter space. For exam-
ple, by imposing a particular Z2 symmetry on the 2HDM
Lagrangian [13–15], one can “naturally” eliminate tree-level
scalar-mediated flavor changing neutral currents (FCNCs)
that otherwise would appear in the model. In particular, the
Z2 symmetry allows only one of the scalar doublets to cou-
ple to fermions of the same electric charge, and as a con-
sequence the Yukawa interactions of the scalars to quarks
and leptons are rendered flavor-diagonal [16,17]. Moreover,
the number of parameters of the Z2-symmetric 2HDM is
reduced to seven due to the Z2 symmetry. Note that one can
still achieve flavor-diagonal Higgs-fermion couplings if the
Z2 symmetry is softly broken, in which case the symmetry
still imposes parameter relations among the dimension-four
scalar self-coupling parameters at the expense of adding one
additional squared-mass parameter to the model.

Another example of a 2HDM symmetry is the U(1) Peccei-
Quinn symmetry [18], which was initially introduced in an
attempt to solve the strong QCD problem. In total, there are
six different global symmetries [19–24] one can impose on
the scalar sector of the SU(2)L×U(1)Y 2HDM. These sym-
metries arise when imposing the invariance of the scalar
potential under unitary field transformations that mix both
scalar doublets (so called Higgs-family symmetries) or their
complex conjugates (so called generalized CP symmetries).
In all cases cited above these are unitary transformations that
preserve the kinetic energy terms of the scalar doublets.2

One well-known consequence of imposing a symmetry
on a model is the fact that if a tree-level parameter relation,
X = 0, is the result of some symmetry S, then that param-
eter relation will be preserved to all orders of perturbation
theory (e.g., see Ref. [29]). Note that if S is spontaneously
broken, then there may be finite corrections to X = 0 that
give it a non-zero value at some order of perturbation the-
ory, but there will never be any infinite corrections to this
relation. Equivalently, if X = 0 due to a symmetry then the

1 To be more precise, the corresponding number of physical param-
eters is slightly less than the numbers quoted above after taking into
account possible scalar field redefinitions [10]. In particular, the 2HDM
and 3HDM scalar sectors are governed by 11 and 46 real (physical)
parameters, respectively [11, 12].
2 Additional symmetries of the scalar potential have also been consid-
ered in Refs. [25–28] that are not preserved by the hypercharge U(1)Y
interactions of the 2HDM.

beta-function of X obeys the same equation, βX = 0, to all
orders of perturbation theory. That is, the parameter relation
X = 0 is stable with respect to renormalization group (RG)
running. One can extend this result in the case of a softly bro-
ken symmetry. In particular, if there is a parameter relation,
X = 0, among the dimensionless parameters of the scalar
potential, then βX = 0 to all orders in perturbation theory,
since βX can only depend on the dimensionless parameters
of the models, which respect the symmetry (whose breaking
is due to parameters of the model with dimensions of mass
to a positive power).

Suppose that the one-loop beta function βX = 0. Does this
imply the existence of a symmetry that imposes the tree-level
condition X = 0? In general, the answer is no. If one then
computes the two-loop beta function βX , one will generically
find that it does not vanish if no symmetry exists to impose
X = 0. Recently, a curious result was discovered in the case
of the 2HDM. Denoting the two complex scalar doublets of
the 2HDM by �1 and �2, the most general gauge-invariant
renormalizable scalar potential is given by [30–32]

V = m2
11�

†
1�1 + m2

22�
†
2�2 − [m2

12�
†
1�2 + h.c.]

+ 1
2λ1(�

†
1�1)

2 + 1
2λ2(�

†
2�2)
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†
1�1)(�

†
2�2)

+λ4(�
†
1�2)(�

†
2�1) +

{
1
2λ5(�

†
1�2)

2

+[
λ6(�

†
1�1) + λ7(�

†
2�2)

]
�

†
1�2 + h.c.

}
. (1.1)

In Ref. [33] it was shown that the set of relations

m2
22 = −m2

11, λ1 = λ2, λ7 = −λ6, (1.2)

is a fixed point of the scalar sector parameter RG equations to
all orders of perturbation theory. That is, to all orders in the
parameters of the scalar potential and neglecting the gauge
and Yukawa couplings, one finds that

βm2
22

= −βm2
11

, βλ1 = βλ2 , βλ7 = −βλ6 . (1.3)

Moreover, the beta function relations given in Eq. (1.3) were
shown to hold to all orders in the perturbation expansion
when gauge interactions are included. In particular, these
relations still hold if Yukawa interactions are now taken into
account up to two-loop order (which suggests but does not yet
prove that the relations of Eq. (1.3) remain valid to all orders
in the perturbation expansion). This result strongly suggested
that some manner of symmetry is present in the model that
would explain the origin of the results obtained in Eq. (1.3).
However, whereas the relations among the quartic scalar self-
couplings in Eq. (1.2) can be obtained by imposing one of the
six known global 2HDM symmetries [19–24] (the symmetry
usually denoted by GCP2), the relation m2

22 = −m2
11 cannot

be reproduced by any of the known symmetries of the 2HDM.
Indeed, Ref. [33] demonstrated that the parameter relation
m2

22 = −m2
11 cannot be the result of any symmetry consisting

123



Eur. Phys. J. C           (2025) 85:541 Page 3 of 18   541 

of a scalar field transformation that is a unitary transformation
of both scalar doublets or their complex conjugates.

Ref. [33] also showed that a formal way of obtaining
the conditions of Eq. (1.2) is to write the 2HDM poten-
tial in terms of the four gauge invariant scalar-field bilin-
ears rμ (μ = 0, 1, 2, 3) of Ref. [20] (see also Refs. [34,35])
and require invariance under the transformation r0 → −r0,
where r0 ≡ 1

2 (�
†
1�1 + �

†
2�2). Clearly, there is no uni-

tary transformation of the two Higgs doublet fields, �i →∑
i Ui j� j (where i, j ∈ {1, 2}), that yields r0 → −r0. Con-

sequently an unconventional alternative was proposed. After
re-expressing the two complex doublet scalar fields in terms
of real fields φi such that

�1 = 1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, �2 = 1√

2

(
φ5 + iφ6

φ7 + iφ8

)
,

(1.4)

the parameter relations exhibited in Eq. (1.2) are a conse-
quence of imposing invariance of the scalar potential under
r0 → −r0.3 Equivalently,

φ1 → iφ6 , φ2 → iφ5 , φ3 → iφ8 , φ4 → iφ7 ,

φ5 → −iφ2 , φ6 → −iφ1 , φ7 → −iφ4 , φ8 → −iφ3 .

(1.5)

However, these transformations do not correspond to
a legitimate symmetry transformation for two reasons.
First, the allowed symmetry transformations of real fields
must involve real numbers, whereas the transformations of
Eq. (1.5) involve the imaginary number i . This observation is
also reflected by noting the transformations given by Eq. (1.5)
correspond to the following transformations of the complex
doublet scalar fields,

�1 → −�∗
2 , �

†
1 → �T

2 ,

�2 → �∗
1, �

†
2 → −�T

1 . (1.6)

In particular, the transformation law of the complex conju-
gate field �∗

i is not the complex conjugate of the correspond-
ing transformation law of �i .

The second problem with the proposed symmetry transfor-
mations of Eq. (1.5) [or equivalently, Eq. (1.6)] is that these
transformations reverse the sign of the kinetic energy terms

3 In Ref. [36], a covariant bilinear treatment of the one-loop 2HDM
potential was developed, and it was shown that the tree-level rela-
tions among parameters shown in Eq. (1.2) are broken by ultraviolet-
finite corrections to the scalar potential. Indeed, if the transformation
r0 → −r0 were a legitimate symmetry, then this symmetry must be
spontaneously broken due to the nonzero 2HDM scalar field vacuum
expectation values. Consequently, the (spontaneously broken) symme-
try permits only finite radiative corrections to the tree-level parameter
relations, as previously noted.

of the scalar fields. Ref. [33] advanced the radical proposal
where the spacetime coordinates themselves also transform
via xμ → i xμ. Equivalently, the covariant derivative must
also transform as Dμ → i Dμ (which implies that the gauge
fields themselves must also similarly transform) in order that
the kinetic energy terms of the scalar fields remain invariant.

The transformations proposed above, which collectively
correspond to no known symmetry, were informally dubbed
as “GOOFy” symmetries based on the names of the four
authors of Ref. [33]. Whether they express something deeper
hitherto unknown in quantum field theory that can provide a
viable explanation of the all-orders fixed points of the beta
functions to guarantee the RG-stability of the parameter rela-
tion m2

22 = −m2
11 is an open question.

In this paper, we shall propose a method for identifying a
legitimate symmetry explanation for the origin of the param-
eter relation m2

22 = −m2
11. To simplify the argument, we

shall examine a toy model of two real scalar fields that pos-
sesses an RG-stable parameter relation among the squared-
mass parameters of the scalar potential which is of the same
form as in the 2HDM example introduced above. One could
again try to invoke the GOOFy symmetries to explain the RG-
stability of this parameter relation as in the 2HDM example
above. However, for the same reasons outlined above, we
shall reject this proposal.

Instead, we will take inspiration from the process of com-
plexification used in mathematics to create a complex vector
space (or Lie algebra) starting from a real vector space (or
Lie algebra). Given a real scalar field theory, we can create a
complex scalar field theory (called the complexified theory)
by promoting the real scalar fields to complex scalar fields.
What looked like GOOFy symmetry transformations of the
real scalar field theory are now legitimate symmetry transfor-
mations of the complexified theory. Consequently, the param-
eter relations of the complexified theory are RG-stable. For
example, the complexification of the toy model of two real
scalar fields will yield a complexified theory with the RG-
stable parameter relation m2

22 = −m2
11, corresponding to the

relation of the corresponding beta functions, βm2
22

= −βm2
11

that is satisfied to all orders in perturbation theory. A careful
analysis of these beta functions reveals a particular relation
that is algebraically identical to the corresponding beta func-
tion relation of the original toy model of real scalar fields
that guarantees the RG-stability of the parameter relation
m2

22 = −m2
11. The end result is the RG-stability of the rela-

tion among the squared-mass parameters of the original real
scalar field Lagrangian despite the fact that the symmetry of
the complexified theory is no longer present in the original
model.

This paper is organized as follows. In Sect. 2, a toy model
with two real scalar fields is presented that possesses an RG-
invariant relation among the squared-mass parameters that
is not guaranteed by any legitimate symmetry. In Sect. 3, we
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introduce the notion of complexification of a scalar field the-
ory, where each real scalar field is promoted to a complex
scalar field and two symmetries of the complexified theory
are imposed. The first symmetry is chosen such that the holo-
morphic terms of the scalar potential of the complexified
theory match precisely the corresponding terms that appear
in the scalar potential of the original real scalar field the-
ory. The second symmetry is a standard CP symmetry that
imposes reality conditions on all scalar potential parameters
of the complexified theory. The one-loop beta functions of
the complexified model are written out explicitly in Sect. 4.
The vanishing of the appropriate combinations of one-loop
and two-loop beta functions of the parameters of the com-
plexified theory yield a set of equations. In Sect. 5, we show
that a subset of these equations are algebraically identical
to the corresponding beta function equations of the original
theory of real scalar fields. We argue that these arguments
generalize to all orders in perturbation theory. We thus con-
clude that the RG-stability of the parameter relations of the
real scalar field Lagrangian is a consequence of symmetries
of the complexified theory that are not present in the origi-
nal real scalar field model. In Sect. 6, we outline a procedure
for constructing additional examples of real scalar field theo-
ries with parameter relations whose RG-stability can only be
explained by the existence of a symmetry of the complexified
theory. In Sect. 7, we recapitulate the main results obtained
in this paper. The implication of these results and their rela-
tion to the all-order RG-stability of the 2HDM squared mass
parameter relation described earlier in this section are out-
lined in Sect. 8 along with some possible generalizations of
this work. Further details of our analysis have been relegated
to three appendices.

2 A toy model with RG-stable parameter relations in
the absence of a symmetry

Consider a quantum field theory of two real scalar fields ϕ1

and ϕ2, with the most general renormalizable Lagrangian
given by

L = ∂μϕi∂
μϕi − 1

2m
2
i j ϕiϕ j − 1

4! λi jk� ϕiϕ jϕkϕ�, (2.1)

with real coefficients m2
i j and λi jk� with i, j, k, � ∈ {1, 2},

and an implied sum over repeated indices. In order to avoid
terms linear and cubic in the fields, we have imposed a global
parity symmetry ϕ1 → −ϕ1 and ϕ2 → −ϕ2 (taken simul-
taneously). Note that m2

i j = m2
j i and thus there are three

real degrees of freedom in the quadratic coefficients (m2
11,

m2
22, andm2

12). Likewise, λi jk� is completely symmetric with
respect to permutations of its indices, and thus yields five
independent real degrees of freedom (conveniently chosen
to be λ1111, λ1112, λ1122, λ1222, and λ2222).

One can further reduce the number of free parameters of
the theory by imposing an additional symmetry. Note that
the kinetic energy term in Eq. (2.1) is invariant under the
symmetry transformation ϕi → Qi jϕ j (with an implicit sum
over j), where Q is a 2 × 2 real orthogonal matrix; i.e.,
Q ∈ O(2). Any conventional symmetry transformation that
is being considered to reduce the number of free parameters
should be either O(2) or a (continuous or discrete) proper
subgroup of O(2).

We now impose the following relations among the scalar
potential parameters:

m2
22 = −m2

11 λ1111 = λ2222, λ1112 = −λ1222.

(2.2)

The corresponding scalar potential now takes the following
form:

VR = 1
2m

2
11

(
ϕ2

1 − ϕ2
2

)
+ m2

12 ϕ1ϕ2 + 1
24λ1111

(
ϕ4

1 + ϕ4
2

)

+ 1
4λ1122 (ϕ1ϕ2)

2 + 1
6λ1112

(
ϕ2

1 − ϕ2
2

)
ϕ1ϕ2, (2.3)

where the subscript R emphasizes that this is a theory of real
scalar fields. In principle, one could choose to set m2

12 = 0
by performing an appropriate change of scalar field basis, as
discussed in Appendix B. However, such a basis choice is
not stable under RG running, so we choose to leave m2

12 as a
free parameter.

We now pose the following question: are the parameter
relations exhibited in Eq. (2.2) stable under RG running? We
can check this using the one-loop and two-loop beta functions
given in the literature [37–41]. Starting from the Lagrangian
given by Eq. (2.1) and writing β ≡ β I +β I I , the correspond-
ing one-loop beta functions are given by

β I
m2
i j

= m2
mnλi jmn, (2.4)

β I
λi jk�

= 1

8

∑
perm

λi jmnλmnk�

= λi jmnλmnk� + λikmnλmnj� + λi�mnλmnjk, (2.5)

with an implicit sum over the repeated indices, where
∑

perm
in Eq. (2.5) denotes a sum over the permutations of the uncon-
tracted indices, i , j , k, and �. Likewise, the corresponding
two-loop contributions to the beta functions are given by

β I I
m2
i j

= 1

12

(
λik�mλnk�mm

2
nj + λ jk�mλnk�mm

2
ni

)

−2m2
k�λikmnλ j�mn, (2.6)

β I I
λi jk�

= 1

72

∑
perm

λinpqλmnpqλmjk�

−1

4

∑
perm

λi jmnλkmpqλ�npq . (2.7)
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Using the results obtained in Appendix A, we obtain

βm2
11+m2

22

∣∣
sym= βm2

11
+ βm2

22

∣∣
sym = 0, (2.8)

βλ1111−λ2222

∣∣
sym= βλ1111 − βλ2222

∣∣
sym = 0, (2.9)

βλ1112+λ2221

∣∣
sym= βλ1112 − βλ2221

∣∣
sym = 0, (2.10)

at both one-loop and two-loop order, where “sym” indi-
cates that the parameter relations exhibited in Eq. (2.2) have
been applied in evaluating the corresponding beta functions
given by the right-hand sides of Eqs. (2.4)–(2.7). Note that
the two-loop beta functions, β I I

m2
i j

and β I I
λi jk�

, each consist of

the sum of two linearly independent combinations of tensor
quantities. Thus, each individual combination separately van-
ishes when the parameter relations exhibited in Eq. (2.2) are
applied, as demonstrated in Eqs. (A.21), (A.26), and (A.31)
of Appendix A. These results are not accidental, as it appears
that Eqs. (2.8)–(2.10) are satisfied to all orders in perturbation
theory.

One could understand the results obtained in Eqs. (2.8)–
(2.10) if a symmetry could be identified that forces the scalar
potential to take on the form exhibited in Eq. (2.3). Consider
the following symmetry transformation:

ϕ1 → ϕ2, ϕ2 → −ϕ1. (2.11)

Imposing this as a symmetry of the scalar potential yields

m2
22 = m2

11 m2
12 = 0,

λ1111 = λ2222, λ1112 = −λ1222. (2.12)

Comparing with Eq. (2.2), we see that although the relations
among the scalar self-couplings are the same, the relations
among the squared-mass parameters are different. However,
the scalar self-coupling parameter relations must be RG-
stable as these relations are a consequence of a softly-broken
symmetry (due to the fact that the beta functions for the λi jk�
are independent of the squared-mass parameters). That is,
Eqs. (2.9) and (2.10), to all orders in perturbation theory, are
a consequence of a softly broken symmetry.

Unfortunately, this argument does not explain why the
squared mass relation, m2

22 = −m2
11 is RG-stable. Following

Ref. [33] and the discussion given in Sect. 1 [see Eq. (1.5)],
suppose we were to propose the following “symmetry” trans-
formation,4

ϕ1 → iϕ2, ϕ2 → −iϕ1. (2.13)

If we were to require that the general scalar potential is invari-
ant with respect to Eq. (2.13), thenVR would necessarily have
the form shown in Eq. (2.3), where m2

22 = −m2
11. However,

following the same arguments presented in Sect. 1, there are

4 This toy model and the corresponding “symmetry” were proposed in
Ref. [42] to study the validity of applying imaginary transformations of
real scalar fields and spacetime coordinates to the computation of the
one-loop effective potential [43].

two serious problems with this proposal. First, the symmetry
corresponding to the transformation proposed in Eq. (2.13)
is not a subgroup of O(2). Indeed, it simply does not make
sense to use non-real numbers in considering possible sym-
metry transformations of real scalar fields. Second, even if
one were to allow such a transformation, the kinetic energy
terms of the Lagrangian change sign when the fields are trans-
formed according to Eq. (2.13), whereas these terms should
be invariant with respect to a legitimate symmetry transfor-
mation. This is analogous to the result obtained by Ref [33]
when applying the “symmetry” transformation [cf. Eq. (1.5)]
of the 2HDM scalar potential given in Eq. (1.1). As noted in
Sect. 1, the authors of Ref. [33] attempted to address this sec-
ond problem above by extending the symmetry transforma-
tion to the spacetime coordinates themselves, which affected
the derivative that appears in the kinetic energy term such that
the kinetic energy term was now invariant with respect to the
extended “symmetry”. But, as previously asserted, this is not
a legitimate symmetry transformation in any conventional
sense.

Since Eq. (2.13) is a transformation involving non-real
numbers, perhaps it would be useful to rewrite the real scalar
field theory with the scalar potential given by Eq. (2.3) as the
theory of a single complex field,

� = ϕ1 + iϕ2√
2

. (2.14)

Consider the Lagrangian,

L = ∂μ�∂μ�∗ − m2
1�

∗� − (m2
2�

2 + c.c.)

−λ1(�
∗�)2 − (λ2�

4 + c.c.) − (
λ3�

2 + c.c.)�∗�,

(2.15)

where “c.c.” stands for complex conjugate, and we have
imposed the discrete symmetry � → −� to remove terms
linear and cubic in the scalar fields. Equation (2.15) is gov-
erned by three squared-mass terms (m2

1, Rem2
2, Im m2

2) and
five quartic couplings (λ1, Re λ2, Im λ2, Re λ3, Im λ3), where
m2

1 and λ1 are real parameters. Plugging in Eq. (2.14) into
Eq. (2.15) and comparing with Eq. (2.1), it follows that

m2
1 = 1

2 (m2
11 + m2

22), (2.16)

m2
2 = 1

4 (m2
11 − m2

22 + 2i m2
12), (2.17)

λ1 = 1
16

(
λ1111 + λ2222 + 2λ1122

)
, (2.18)

λ2 = 1
96

[
λ1111 + λ2222 − 6λ1122 + 3i(λ1112 − λ1222)

]
,

(2.19)

λ3 = 1
24

[
λ1111 − λ2222 + 2i(λ1112 + λ1222)

]
. (2.20)

If we now impose the parameter relations given in Eq. (2.2),
it follows that m2

1 = λ3 = 0. As in Eq. (2.3), the resulting
scalar potential of the complex scalar � is also governed by
five real degrees of freedom (λ1, Re λ2, Im λ2, Rem2

2, and
Im m2

2):
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VR = (m2
2�

2 + c.c.) + λ1(�
∗�)2 + (λ2�

4 + c.c.). (2.21)

Of course, the physical consequences of Eqs. (2.3) and (2.21)
are the same, as these are the same theories expressed in two
different ways. One can also check that

βm2
1

∣∣
sym = 0, (2.22)

βλ3

∣∣
sym = 0, (2.23)

where “sym” instructs one to set m2
1 = λ3 = 0 when evalu-

ating the corresponding beta functions.
In light of Eq. (2.12), consider the symmetry transforma-

tion,

� → −i�∗, (2.24)

which implies that �∗ → i�. Applying this symmetry to
Eq. (2.15) yields m2

2 = λ3 = 0, whereas m2
1 is a free param-

eter. If we regard the symmetry exhibited by Eq. (2.24) as a
softly-broken symmetry of Eq. (2.15), then this provides an
explanation for Eq. (2.23) to all orders in perturbation theory,

Of course, the argument just given does not explain why
the squared mass relation, m2

1 = 0 is RG-stable. Once again,
we shall attempt to apply the “symmetry” transformation
given by Eq. (2.13). Rewriting this in terms of the complex
field �, we conclude that Eq. (2.13) is equivalent to the “sym-
metry” transformation,

� → �, �∗ → −�∗. (2.25)

Although this proposed symmetry transformation does indeed
set m2

1 = λ3 = 0, Eq. (2.25) does not make sense as a sym-
metry transformation of a complex scalar field theory since
the transformation law for �∗ is not the complex conjugate
of the transformation law of �. Indeed, this result is analo-
gous to the “symmetry” of the 2HDM scalar potential given in
Eq. (1.1) that was proposed in Ref. [33] [cf. Eq. (1.6)]. More-
over, the kinetic energy term changes sign under Eq. (2.25) as
previously noted below Eq. (2.13). Thus, Eq. (2.25) cannot
be used to explain the RG fixed point exhibited in Eq. (2.22).
Of course, these two problems are the same ones noted when
discussing the proposed symmetry transformation for the real
scalar field theory above.

For these reasons, we shall reject the proposed extended
GOOFy symmetry of Ref. [33] as an explanation for the
fixed-point behaviors exhibited in Eqs. (2.8) and (2.22).
Indeed, any conventional symmetry that preserves the kinetic
energy term will also preserve the term m2

1(�
∗�) in

Eq. (2.15). Hence, no conventional symmetry can setm2
1 = 0.

3 Complexification of the toy model of two real scalar
fields

A symmetry transformation such as Eq. (2.13) would make
sense if the corresponding scalar fields were complex. This
motivates a procedure, which we denote by complexification,
where the scalar fields of the real scalar field theory are pro-
moted to complex scalar fields denoted by �i . When applied
to the toy model of Sect. 2, we can express the two complex
scalar fields �i (i ∈ {1, 2}) in terms of four real scalar fields
ϕi where i ∈ {1, 2, 3, 4}, as follows:

�1 = 1√
2

(ϕ1 + i ϕ2) , �2 = 1√
2

(ϕ3 + i ϕ4) .

(3.1)

Moreover, the complexified model is defined to employ a
canonically normalized kinetic energy term,

LKE = ∂μ�∗̄
a∂μ�a, (3.2)

which is invariant under the U(2) transformation,

�a → Uab̄�b, �∗̄
a → �∗̄

b
U †
bā, (3.3)

where U †
bāUac̄ = δbc̄. In the above notation, the indices

a, b, c ∈ {1, 2} and ā, b̄, c̄ ∈ {1̄, 2̄} run over the complex
two dimensional flavor space of scalar fields. The use of
unbarred/barred index notation is accompanied by the rule
that there is an implicit sum over unbarred/barred index pairs.

As in the original model of real scalar fields, we shall
impose a parity symmetry,

�1 → −�1 and �2 → −�2 (taken simultaneously),
(3.4)

to remove terms in the scalar potential with an odd number
of fields. In this case, the most general renormalizable scalar
potential of the complexified model may be written as

VC = M2
ab̄

�∗̄
a�b + M2

āb̄
�a�b + M2

ab�
∗̄
a�

∗̄
b

+
abc̄d̄ �∗̄
a�

∗̄
b
�c�d

+
āb̄c̄d̄ �a�b�c�d + 
ab̄c̄d̄ �∗̄
a�b�c�d

+
abcd̄ �∗̄
a�

∗̄
b
�∗̄

c�d + 
abcd�
∗̄
a�

∗̄
b
�∗̄

c�
∗̄
d
, (3.5)

where the subscript “C” emphasizes that this is the complexi-
fied version of the original toy model of two real scalar fields.
In the notation used in Eq. (3.5), the squared-mass param-
eters M2

ab and M2
ab̄

are independent (despite the use of the

same symbol M2). Likewise, the quartic coupling parameters

abcd , 
abcd̄ , and 
abc̄d̄ are independent (despite the use of
the same symbol 
). One can distinguish among the inde-
pendent parameters based on their explicit unbarred/barred
index structure.
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The squared-mass and quartic coupling parameters satisfy
the following relations:

M2
āb̄

= M2
b̄ā

, M2
ab = M2

ba,


abc̄d̄ = 
bac̄d̄ = 
abd̄c̄ = 
bad̄c̄. (3.6)

Similarly, 
āb̄c̄d̄ is symmetric under the permutation of the
indices āb̄c̄d̄ , 
ab̄c̄d̄ is symmetric under the permutation of
the indices b̄c̄d̄, 
abc̄d̄ is separately symmetric under the
interchange of the indices ab and c̄d̄ , respectively [as indi-
cated in Eq. (3.6)], 
abcd̄ is symmetric under the permutation
of the indices abc, and 
abcd is symmetric under the permu-
tation of the indices abcd.

Hermiticity of VC implies that

M2
ab̄

= [
M2

bā

]∗
, 
abc̄d̄ = [


cdāb̄

]∗
, (3.7)

and

M2
āb̄

= [
M2

ab

]∗
, 
āb̄c̄d̄ = [


abcd
]∗

, 
dāb̄c̄ = [

abcd̄

]∗
.

(3.8)

In particular, M2
11̄

, M2
22̄

, 
111̄1̄, 
222̄2̄, and 
121̄2̄ = 
212̄1̄
are real parameters.

We can now identify the independent parameters of VC .
There are ten independent squared-mass parameters,

M2
11̄

, M2
22̄

, Re M2
12̄

, Im M2
12̄

,

Re M2
11, Re M2

12, Re M2
22, Im M2

11, Im M2
12, Im M2

22, (3.9)

and 35 independent quartic coupling parameters,

Re 
1111, Re 
1112, Re 
1122, Re 
1222, Re 
2222,

Im 
1111, Im 
1112, Im 
1122, Im 
1222, Im 
2222,

Re 
1111̄, Re 
1121̄, Re 
1221̄, Re 
2221̄,

Re 
1112̄, Re 
1122̄, Re 
1222̄, Re 
2222̄,

Im 
1111̄, Im 
1121̄, Im 
1221̄, Im 
2221̄,

Im 
1112̄, Im 
1122̄, Im 
1222̄, Im 
2222̄,


111̄1̄,
222̄2̄,
121̄2̄, Re 
111̄2̄,

Re 
112̄2̄, Re 
122̄2̄, Im 
111̄2̄, Im 
112̄2̄, Im 
122̄2̄. (3.10)

Although VC is not invariant under a U(2) transformation
exhibited in Eq. (3.3), one can interpret Eq. (3.3) as a change
in the scalar field basis. The benefit of the unbarred/barred
index notation is that the index structure of the scalar potential
parameters indicates how these parameters change under a
scalar field basis transformation:

M2
ab̄

→ Uac̄U
†
db̄
M2

cd̄
, M2

ab → Uac̄Ubd̄M
2
cd ,


abc̄d̄ → UaēUb f̄ U
†
gc̄U

†
hd̄


e f ḡh̄,


abcd → UaēUb f̄ UcḡUdh̄
e f gh,


abcd̄ → UaēUb f̄ UcḡU
†
hd̄


e f gh̄ . (3.11)

We shall now impose two additional symmetries to precisely
define the complexification of the toy model of Sect. 2 [whose

scalar potential is given by Eq. (2.3)]. Possible symmetries
to consider are any of the continuous or discrete subgroups
of U(2), or generalized CP (GCP) transformations, �a →
Vab�∗̄

b
, where V is a fixed 2 × 2 unitary matrix.

First, we shall promote the illegitimate symmetry transfor-
mations exhibited in Eq. (2.13) to a legitimate symmetry of
the complexified model by requiring that the scalar potential
shown in Eq. (3.5) is invariant under5

�1 → i �2, �2 → −i �1. (3.12)

Imposing Eq. (3.12) as a symmetry of VC yields

M2
11̄

= M2
22̄

, M12̄ = 0, M2
11 = −M2

22,

(3.13)


1111 = 
2222, 
1112 = −
1222, (3.14)


1111̄ = −
2222̄, 
1121̄ = 
1222̄,


1122̄ = −
1221̄, 
1112̄ = 
2221̄, (3.15)


111̄1̄ = 
222̄2̄,


111̄2̄ = −
∗
122̄2̄

, 
112̄2̄ = 
∗
112̄2̄

, (3.16)

where in Eq. (3.16), we have made use of the last relation of
Eq. (3.8). This leaves us with five independent squared-mass
parameters and 19 independent quartic coupling parameters.
Observe that the last relation in Eq. (3.13) and the two rela-
tions of Eq. (3.14) [which exclusively depend on self cou-
pling tensors with four unbarred indices] are analogous to
the three relations given in Eq. (2.2).

The scalar potential subject to the symmetry conditions
given by Eqs. (3.13)–(3.16) is given by

VC = M2
(
|�1|2 + |�2|2

)

+[
M̄2

(
�2

1 − �2
2

)
+ M2

12 �1�2 + c.c.
]

+
1

(
|�1|4 + |�2|4

)
+ 
2|�1|2|�2|2

+
[

3

(
�∗

1�2
)2 + c.c.

]

+
[

4 �∗

1 �∗
2

(
�2

1 − �2
2

)
+ c.c.

]

+
[

5 (�1�2)

2 + c.c.
]

+
[

6

(
�4

1 + �4
2

) + c.c.
]

+
[

7�1 �2

(
�2

1 − �2
2

)
+ c.c.

]

+(

8 �1 �2 + c.c.

) (
|�1|2 + |�2|2

)

+[

9(�

2
1|�1|2 − �2

2|�2|2) + c.c.
]

+[

10(�

2
1|�2|2 − �2

2|�1|2) + c.c.
]

+[

11

(
�3

1�
∗
2 + �3

2�
∗
1

) + c.c.
]
. (3.17)

5 In terms of the ϕi defined in Eq. (3.1), the transformations of Eq. (3.12)
correspond to ϕ1 ↔ −ϕ4 and ϕ2 ↔ ϕ3.

123



  541 Page 8 of 18 Eur. Phys. J. C           (2025) 85:541 

Second, we shall require that VC is invariant under a “stan-
dard” CP transformation,

�1 → �∗
1, �2 → �∗

2, (3.18)

so that all scalar potential coefficients are real, which finally
leaves us with three independent real squared-mass param-
eters (M2, M̄2, and M2

12) and 11 independent real quartic
coupling parameters (
i for i = 1, 2, . . . , 11) that govern
the complexification of the toy model of Sect. 2. In particu-
lar, note that

M2
ab = M2

āb̄
� {M̄2, M2

12}, (3.19)

M2
ab̄

= M2
bā � {M2}, (3.20)


abc̄d̄ = 
cdāb̄ � {
1,
2,
3,
4}, (3.21)


abcd = 
āb̄c̄d̄ � {
5,
6,
7}, (3.22)


abcd̄ = 
ab̄c̄d̄ � {
8,
9,
10,
11}, (3.23)

after making use of Eqs. (3.7) and (3.8). Since M2, M̄2, and
M2

12 are independent real parameters, it follows that they are
linearly independent, which implies that M2

ab and M2
ab̄

are
also linearly independent. Similarly, the 
i are linearly inde-
pendent real parameters, which implies that 
abc̄d̄ , 
abcd ,
and 
abcd̄ are also linearly independent. This is a crucial
observation for the method we will propose to explain the
RG stability of parameter relations observed in the original
toy model of two real scalar fields.

The complexification of the toy model of two real scalar
fields with scalar potential given by Eq. (2.3) has been
achieved by promoting the GOOFy symmetry of the toy
model to a legitimate symmetry of the complexified model.
In particular, it is instructive to examine the terms of VC given
in Eq. (3.17) that are holomorphic in the complex fields (i.e.,
those terms that depend just on the fields �1 and �2 but not
their complex conjugates):

VC � M̄2
(
�2

1 − �2
2

)
+ M2

12 �1�2 + 
5 (�1�2)
2

+
6
(
�4

1 + �4
2

) + 
7�1 �2

(
�2

1 − �2
2

)
, (3.24)

where M̄2, M2
12, λ5, λ6, and 
7 are real parameters. It is

noteworthy that Eq. (3.24) has precisely the same form as
Eq. (2.3). This indicates that the complexification of the toy
model of two real scalar fields has been properly obtained.

4 One-loop beta functions of the complexified model

First, let us re-express the complex fields �1 and �2 in terms
of the four real fields ϕi (i = 1, 2, 3, 4) using Eq. (3.1). We
can then rewrite the Lagrangian of two complex scalar fields
given by Eqs. (3.2) and (3.5) in the form shown in Eq. (2.1).
We shall call this process realification. Of course, the theory

of two complex fields and the corresponding realified the-
ory of four real scalar fields are the same model written in
a different form.6 We can now make use of the results of
Refs. [37–41] to evaluate the beta functions of the squared-
mass and quartic coupling parameters. In particular, starting
from a theory written in terms of real scalar fields with a
Lagrangian given by Eq. (2.1), the corresponding one-loop
beta functions are given by Eqs. (2.4) and (2.5).

We begin with the squared mass parameters. Using the
results of Appendix C, one can solve for the M2

ab and M2
ab̄

in terms of the m2
i j , where i, j ∈ {1, 2, 3, 4}. For example,

Re M2
11 = 1

4

(
m2

11 − m2
22

)
, (4.1)

Re M2
22 = 1

4

(
m2

33 − m2
44

)
, (4.2)

Im M2
11 = 1

2m
2
12, (4.3)

Im M2
22 = 1

2m
2
34, (4.4)

prior to imposing the symmetries specified in Eqs. (3.12) and
(3.18). These results can be used to obtain the beta functions
of the parameters M2

āb̄
and M2

ab̄
. For example, in light of

Eq. (3.13) and the reality of all scalar potential parameters,
it follows that

βM2
11+M2

22

∣∣∣
sym

= 1
4

[
βm2

11
− βm2

22
+ βm2

33
− βm2

44

] ∣∣∣
sym

= 0,

(4.5)

after imposing the relevant parameter relations (as indicated
by the subscript “sym”). Of course, these results must hold to
all orders in perturbation theory as they are guaranteed by the
symmetries of the complexified theory given by Eq. (3.17).

For our purposes, it is more useful to re-express the one-
loop beta functions of the quadratic parameters, given in
Eq. (2.4), directly in terms of the parameters exhibited in
Eqs. (3.9) and (3.10) that govern the complexified theory. A
straightforward calculation yields

β I
M2

āb̄

= 4M2
c̄d̄


cdāb̄ + 24M2
cd
āb̄c̄d̄ + 6M2

ed̄

dāb̄ē, (4.6)

β I
M2

ab̄

= 12M2
cd
ab̄c̄d̄ + 12M2

c̄d̄

acdb̄ + 8M2

dē
aeb̄d̄ . (4.7)

We next consider the quartic coupling parameters. Using
the results of Appendix C, one can now solve for 
abcd ,

abcd̄ and 
abc̄d̄ in terms of the λi jk�. For example,

Re 
1111 = 1

96

[
λ1111 + λ2222 − 6λ1122

]
, (4.8)

Re 
2222 = 1

96

[
λ3333 + λ4444 − 6λ3344

]
, (4.9)

Re 
1112 = 1

96

[
λ1113 + λ2224 − 3(λ1124 + λ1223)

]
, (4.10)

6 We have already noted in Sect. 2 that the realification of a theory of
a single complex field yields the most general theory of two real scalar
fields.
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Re 
1222 = 1

96

[
λ1333 + λ2444 − 3(λ1344 + λ2334)

]
, (4.11)

Im 
1111 = 1

24

(
λ1112 − λ1222

)
, (4.12)

Im 
2222 = 1

24

(
λ3334 − λ3444

)
, (4.13)

Im 
1112 = 1

96

[
λ1114 − λ2223 + 3(λ1123 − λ1224)

]
, (4.14)

Im 
1222 = 1

96

[
λ2333 − λ1444 + 3(λ1334 − λ2344)

]
, (4.15)

prior to imposing the symmetries specified in Eqs. (3.12) and
(3.18).

In light of Eq. (3.14) and the reality of all scalar potential
parameters, it follows that

β
1111−
2222

∣∣
sym= βλ1111+λ2222−6λ1122−λ3333−λ4444+6λ3344

∣∣
sym= 0,

(4.16)
β
1112+
1222

∣∣
sym

= βλ1113+λ2224−3λ1124−3λ1223+λ1333+λ2444−3λ1344−3λ2334

∣∣
sym= 0,

(4.17)

after imposing the relevant parameter relations. Of course,
these results hold to all orders in perturbation theory as they
are guaranteed by the symmetries imposed on VC .

It is again more useful to re-express the one-loop beta
functions of the quartic couplings, given in Eq. (2.5), in terms
of the independent parameters given in Eq. (3.10) that govern
the complexified theory. Another straightforward calculation
yields:

β I

āb̄c̄d̄

= 1

96

∑
perm


āb̄ē f̄ 
e f c̄d̄ + 1

256

∑
perm


eāb̄ f̄ 
 f ēc̄d̄

= 1

12
(
āb̄ē f̄ 
e f c̄d̄ + 
āc̄ē f̄ 
e f b̄d̄ + 
ād̄ ē f̄ 
e f b̄c̄)

+ 1

32
(
eāb̄ f̄ 
 f ēc̄d̄ + 
eāc̄ f̄ 
 f ēb̄d̄ + 
eād̄ f̄ 
 f ēb̄c̄),

(4.18)

β I

abc̄d̄

= 3

2

abe f 
ē f̄ c̄d̄ + 1

24

(

abē f̄ 
e f c̄d̄ + 
ae f̄ c̄
b f ēd̄

+
be f̄ c̄
a f ēd̄ + 
ae f̄ d̄
b f ēc̄ + 
be f̄ d̄
a f ēc̄
)

+ 3

32

(
2
abe f̄ 
 f ēc̄d̄ + 
ae f c̄
bē f̄ d̄

+
be f c̄
aē f̄ d̄ + 
ae f d̄
bē f̄ c̄ + 
be f d̄
aē f̄ c̄

)
,

(4.19)

β I

abcd̄

= 1

24

(

abē f̄ 
e f cd̄ + 
acē f̄ 
e f bd̄ + 
bcē f̄ 
e f ad̄

)

+ 1

12

(

abe f̄ 
c f ēd̄ + 
ace f̄ 
b f ēd̄ + 
bce f̄ 
a f ēd̄

)

+1

4

(

abe f 
cē f̄ d̄ + 
ace f 
bē f̄ d̄ + 
bce f 
aē f̄ d̄

)
.

(4.20)

As a simple check of the expressions for the one-loop
beta functions obtained above, suppose that we require that

VC is invariant with respect to the U(1) symmetry where
�a → eiθ�a (for a = 1, 2). This would imply that
M2

ab = 
abc f = 
abcd̄ = 0 in Eq. (3.5). The beta func-
tions exhibited in Eqs. (4.6), (4.18), and (4.20) then yield
βM2

āb̄
= β
āb̄c̄d̄

= β
abcd̄
= 0 (after imposing the relevant

parameter relations) as expected, and these relations must
hold to all orders of perturbation theory.

5 RG-stability of scalar potential parameter relations
guaranteed by symmetries of the complexified model

The goal of this section is to show that RG-stability of
the parameter relations of the complexified theory given in
Eqs. (3.13)–(3.16), which are guaranteed by the invariance
of Eq. (3.5) under the symmetry transformations given by
Eqs. (3.12) and (3.18), implies the RG-stability of parame-
ter relations [Eq. (2.2)] of the scalar potential of the original
toy model of two real scalar fields [Eq. (2.3)]. As discussed
in Sect. 2, only one of the three parameter relations of the
toy model (m2

22 = −m2
11) cannot be explained by a legiti-

mate symmetry within the framework of the original model
of two real scalar fields. Thus, we only need to examine the
beta functions of the squared-mass parameters to achieve our
goal.

Consider a linear relation on the parameters m2
i j of the toy

model of two real scalar fields of the form ci jm2
i j = 0 (with

an implicit sum over repeated indices). In Sect. 2, we found
that the corresponding one-loop beta function,

β I
ci jm2

i j

∣∣
sym= ci jm

2
k�λi jk�

∣∣
sym= 0, (5.1)

with c11 = c22 = 1 and c12 = c21 = 0, where “sym”
indicates that the parameter relations given by Eq. (2.12)
have been applied. As a result, the relation m2

22 = −m2
11 is

RG-stable despite the absence of a symmetry to enforce the
relation among squared-mass parameters.

For the complexified theory, we have identified a legiti-
mate symmetry that imposes a linear relation on the param-
eters M2

āb̄
of the form cabM2

āb̄
= 0, with c11 = c22 = 1

and c12 = c21 = 0 as before. Then, the corresponding beta
function, βcabM2

āb̄
, must vanish to all orders in perturbation

theory. Applying this relation to Eq. (4.6), we note that the
symmetry will also impose separate independent relations
among the product of scalar potential parameters M2

c̄d̄

cdāb̄,

M2
cd
āb̄c̄d̄ , and M2

ed̄

dāb̄ē, since these are linearly indepen-

dent quantities as noted below Eq. (3.23). Hence, one may
conclude that three separate relations must be satisfied:

cabM
2
c̄d̄


cdāb̄

∣∣
sym = 0, (5.2)

cabM
2
cd
āb̄c̄d̄

∣∣
sym = 0, (5.3)

cabM
2
ed̄


dāb̄ē

∣∣
sym = 0, (5.4)
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where there is implied summation over unbarred/barred
index pairs, and “sym” indicates that the symmetry relations
satisfied by M2

c̄d̄
, Mc̄d , 
cdāb̄, 
āb̄c̄d̄ ,and 
dāb̄ē [exhibited

in Eqs. (3.13)–(3.16)] have been imposed. In light of the CP
symmetry, which enforces all scalar potential parameters of
VC to be real, we recognize Eqs. (5.1) and (5.3) as being
algebraically equivalent. Thus, we have understood Eq. (5.1)
as a consequence of a symmetry of the complexified model.

This is not an accident of the one-loop beta functions.
Consider the corresponding two-loop beta function for the
m2

i j given in Eq. (2.6). Applying this result to the toy model
of two real scalar fields subject to the conditions specified in
Eq. (2.2), the following two conditions separately hold:

ci j
(
λik�mλnk�mm

2
nj + λ jk�mλnk�mm

2
ni

)∣∣
sym = 0. (5.5)

ci jm
2
k�λikmnλ j�mn

∣∣
sym = 0. (5.6)

Consequently β I I
ci jm2

i j
= 0 despite the absence of a real sym-

metry imposed on the scalar Lagrangian.
Following our one-loop analysis, we shall consider the

two-loop beta function for the complexified model. If we
follow our previous technique, we should rewrite Eq. (2.6)
in terms of the parameters M2

c̄d̄
, Mc̄d , 
cdāb̄, 
āb̄c̄d̄ , and


dāb̄ē. However, we can identify the possible index struc-
ture of the various terms. Similar to Eqs. (5.2)–(5.4), one
can derive separate relations that must be satisfied if the beta
function vanishes. Since the complexified theory does pos-
sess a symmetry that guarantees the relations exhibited in
Eqs. (3.13)–(3.16), we are assured that the two-loop beta
function will vanish. Among all the relations obtained, we
find that

cab
(

ād̄ ē f̄ 
cde f M

2
c̄b̄

+ 
b̄d̄ ē f̄ 
cde f M
2
c̄ā

)∣∣
sym = 0, (5.7)

cabM
2
cd
āc̄ē f̄ 
e f d̄ b̄

∣∣
sym = 0. (5.8)

Since we have also imposed CP conservation, it follows that
all the quartic couplings in Eqs. (5.7) and (5.8) are real. More-
over, since 
āb̄c̄d̄ and 
abc̄d̄ are independent, then Eq. (5.8)
must hold if we numerically set 
abc̄d̄ = 
āb̄c̄d̄ in Eq. (5.8).
This numerical procedure is consistent with the symmetry
conditions specified in Eqs. (3.14) and (3.16).7 We can there-
fore conclude that Eqs. (5.5) and (5.7) are algebraically iden-
tical. Likewise, Eqs. (5.6) and (5.8) are algebraically iden-
tical. Thus, we have again explained the vanishing of the
beta functions in the real scalar model as a consequence of
a symmetry of the corresponding complexified model. This
conclusion can be extended to arbitrary loops. In particular,

7 First, we set 
112̄2̄ = 
121̄2̄ [i.e., 
2 = 
3 in the notation of
Eq. (3.17)]. It then follows that 
abc̄d̄ is now a completely symmet-
ric real tensor that satisfies the same symmetry conditions as 
āb̄c̄d̄ .
Thus, if Eq. (5.10) is valid for arbitrary 
āb̄c̄d̄ and 
abc̄d̄ , then this
equation must continue to be valid if 
abc̄d̄ is replaced by 
āb̄c̄d̄ .

there will always be an equation obtained in the complexi-
fied model that only involves tensors with an even number
of unbarred and barred indices, respectively, which is alge-
braically identical to a corresponding equation obtained in
the toy model of two real scalar fields.

For example, one can repeat the analysis for the three-
loop beta functions using the results in the literature [44],
but the end result is the same. One can always find expres-
sions that are products of M2

āb̄
, 
āb̄c̄d̄ , 
abc̄d̄ and their com-

plex conjugates (the latter need not be distinguished as all
squared-mass and quartic coupling parameters are real due
to the CP symmetry). Once the relevant relations have been
found for the parameters of the complexified model, one can
numerically set 
abc̄d̄ = 
āb̄c̄d̄ , if needed, as shown above to
produce relations that are algebraically equivalent to the cor-
responding relations of the original real scalar field model.
We stress that this relation between the quartic couplings is
not a requirement of further symmetry of the model, but is
merely a numerical choice. Since the 
abc̄d̄ and 
āb̄c̄d̄ are
independent tensors [subject to the parameter relations spec-
ified in Eqs. (3.14) and (3.16)], the relations we obtained
above are valid for any values they might take, which of
course includes the case where these two tensors are taken
to be equal.

As noted at the beginning of this section, we do not need
to justify the RG-stability of the parameter relations among
the scalar self-couplings of the original toy model of real
scalar fields, since we successfully identified a softly-broken
symmetry to account for the observed behavior of the cor-
responding beta functions. Nevertheless, it is instructive to
show that the symmetry of the complexified model speci-
fied in Eqs. (3.13)–(3.16) can also be used to establish the
RG-stability of the parameter relations among the scalar self-
couplings of the original toy model of real scalar fields.8

Suppose that a symmetry imposes a linear relation on the
parameters 
āb̄c̄d̄ , 
abc̄d̄ , 
abcd̄ of the form

cabcd
āb̄c̄d̄ = cāb̄cd
abc̄d̄ = cāb̄c̄d
abcd̄ = 0. (5.9)

Then, the corresponding beta functions, βcabcd
āb̄c̄d̄
,

βcāb̄cd
abc̄d̄
, and βcāb̄c̄d
abcd̄

must vanish to all orders of per-
turbation theory. Applying this relation to Eq. (4.18), we
note that the symmetry will also impose separate indepen-
dent relations among the scalar potential parameters 
cdāb̄,

āb̄c̄d̄ ,and 
dāb̄ē. Hence, one may conclude that two separate

8 It is possible that examples of real scalar field theory models exist
that possess scalar coupling relations whose RG-stability cannot be
explained by a symmetry. In such cases, one would show using the
methods of this section that the corresponding RG-stability of the scalar
coupling parameter relations of the complexified theory imply the RG-
stability of the coupling parameter relations of the original real scalar
field theory.
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relations must be satisfied:

cabcd(
āb̄ē f̄ 
e f c̄d̄+
āc̄ē f̄ 
e f b̄d̄+
ād̄ ē f̄ 
e f b̄c̄)
∣∣
sym=0,

(5.10)

cabcd(
 f āb̄ē
e f̄ c̄d̄+
 f āc̄ē
e f̄ b̄d̄+
 f ād̄ ē
e f̄ b̄c̄)
∣∣
sym=0,

(5.11)

where “sym” indicates that the conditions specified by
Eq. (5.9) have been imposed on the quartic coupling parame-
ters. Since we have also imposed CP conservation, it follows
that all the quartic couplings in Eqs. (5.10) and (5.11) are
real. Moreover, since 
āb̄c̄d̄ and 
abc̄d̄ are independent, then
Eq. (5.10) must hold if we numerically set 
abc̄d̄ = 
āb̄c̄d̄
in Eq. (5.10), as justified below Eq. (5.8). The end result
is that Eq. (5.10), where all quartic couplings are real with

abc̄d̄ = 
āb̄c̄d̄ , is algebraically identical to Eq. (2.5). Thus,
it follows that

β I
ci jk�λi jk�

∣∣
sym = ci jk�(λi jmnλmnk� + λikmnλmnj�

+λi�mnλmnjk)
∣∣
sym= 0 , (5.12)

with an implicit sum over repeated indices i, j, k, � ∈ {1, 2},
with c2222 = c1111, c1222 = −c1112 and all other ci jk� equal
to zero. That is, the one-loop beta function relation satisfied
by the scalar potential given in Eq. (2.3) is explained by the
symmetries of the complexified theory given by Eq. (3.17).

Finally, we consider the corresponding two-loop beta
function for the λi jk� given in Eq. (2.7). Applying this result
to the original model of two real scalar fields subject to the
conditions specified in Eq. (2.2), we see that the following
two conditions separately hold:

∑
perm

λinpqλmnpqλmjk�
∣∣
sym= 0, (5.13)

∑
perm

λi jmnλkmpqλ�npq
∣∣
sym= 0. (5.14)

Using the same procedure as before, we can identify two rela-
tions (among many) that are the consequence of the vanishing
of the two-loop beta function of the complexified theory,

cabcd
∑
perm


ā f̄ ḡh̄
e f gh
ēb̄c̄d̄

∣∣
sym= 0, (5.15)

cabcd
∑
perm

(

āb̄ē f̄ 
egc̄h̄
 f hḡd̄ + κ
āb̄e f 
ghc̄ē
d̄ f̄ ḡh̄

)∣∣
sym= 0,

(5.16)

where κ is a number that can be evaluated explicitly by
expressing the two complex scalars of the complexified the-
ory in terms of the four real fields defined in Eq. (3.1) and
then making use of Eq. (2.7). However, we do not need to
know an explicit value for κ . We again follow the procedure
outlined below Eq. (5.8) where we take all quartic couplings
real and numerically set 
abc̄d̄ = 
āb̄c̄d̄ in Eq. (5.16). It then

follows that Eqs. (5.13) and (5.15) are algebraically equiva-
lent. Likewise Eqs. (5.14) and (5.16) differ only by an overall
numerical factor, which is irrelevant as both expressions are
equal to zero.

6 Complexification and realification revisited

It is perhaps useful to comment on the use of the terms “com-
plexification” and “realification” used in this paper. Here, we
are employing these terms by analogy with the way they are
used in mathematics. In particular, these concepts are of par-
ticular importance in the theory of Lie algebras [45,46].

We briefly review the complexification and realification
of a Lie algebra by providing some simple examples [45].
Consider the real Lie algebra corresponding to the set of
real traceless 2 × 2 matrices, denoted by sl(2,R). Any real
traceless 2 × 2 matrix is a real linear combination of three
generators, {( 0 1

0 0

)
,
(

0 0
1 0

)
,
( 1 0

0 −1

)}. The complexification of
sl(2,R) consists of taking complex linear combinations of
the generators. This procedure yields sl(2,C), the Lie alge-
bra of complex traceless matrices. Note that the real dimen-
sion of the original Lie algebra has been doubled since
dimR sl(2,R) = 3, whereas dimR sl(2,C) = 6.

Continuing with our example of sl(2,C), consider the pro-
cess of realification. What this means is that we now con-
sider sl(2,C) as a real Lie algebra, sometimes denoted by
sl(2,C)R, consisting of arbitrary real linear combinations of
six generators, {( 0 1

0 0

)
,
(

0 0
1 0

)
,
( 1 0

0 −1

)
,
(

0 i
0 0

)
,
(

0 0
i 0

)
,
( i 0

0 −i

)}.
This is a simple rewriting of the original sl(2,C) Lie alge-
bra,9 so dimR sl(2,C)R = dimR sl(2,C) = 6.

Note that the realification of a complex Lie algebra g,
denoted by gR, should not be confused with a real form
of g. The latter is defined as a subalgebra of gR whose com-
plexification is isomorphic to g. In particular, the dimen-
sion of a real form of a complex Lie algebra g is equal to
1
2 dimR g, whereas dimR gR = dimR g. For example, the
three-dimensional real Lie algebra sl(2,R) is an example of
a real form of sl(2,C), which is clearly distinct from the six-
dimensional real Lie algebra sl(2,C)R. Finally, we note that
one can complexify the real Lie algebra sl(2,C)R. The result-
ing complex Lie algebra is sl(2,C) ⊕ sl(2,C) ∼= so(4,C),
whose dimension is twice that of sl(2,C).

When we complexify a theory of n real scalar fields, the
corresponding complexified theory is a theory of n com-
plex scalar fields with twice the number of real degrees of
freedom, in analogy with the complexification of a real Lie
algebra. The realification of a theory of complex scalars
is obtained by writing �a = (ϕa1 + iϕa2)/

√
2 and re-

9 Indeed, sl(2,C)R is isomorphic to the six-dimensional real Lie alge-
bra of the Lorentz group, so(3, 1), a fact that plays a significant role in
relativistic quantum field theory.
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expressing the Lagrangian in terms of the real scalars ϕ1a

and ϕ2a , for a = 1, 2, . . . , n. This is analogous to the real-
ification of a complex Lie algebra discussed above. In con-
trast, the original real scalar field theory whose complexifi-
cation yields the theory of complex scalars �a is analogous
to the real form of a complex Lie algebra. Note that start-
ing from a complex scalar field theory, one can perform the
complexification process in two steps. First, the realification
of the initial complex scalar field theory is performed. One
can then complexify the resulting realified model, in analogy
with the complexification of a complex Lie algebra sl(2,C)

mentioned above.
This leads to the following question: starting from a quan-

tum field theory of n complex scalars, how does one produce
a quantum field theory of n real scalars, whose complexifica-
tion yields the original complex scalar field theory? The toy
example of Sect. 2 and its complexification given in Sect. 3
provide an answer. Suppose one is given a scalar potential
of the form exhibited in Eq. (3.5). Construct from this a
real scalar field theory using the following recipe. First, we
replace the kinetic energy term [Eq. (3.2)] with a canonically
normalized kinetic energy term of a real scalar field theory
of the form 1

2∂μϕi∂
μϕi . Next, we retain only the terms of

Eq. (3.5) that are holomorphic in the complex fields. That is,
we retain M2

āb̄
�a�b +
āb̄c̄d̄ �a�b�c�d , while discarding

all other terms in Eq. (3.5). Finally, replace the �a with the
same number of real scalar fields ϕa . The resulting theory is
described by a Lagrangian of a real scalar field theory of the
form given by Eq. (2.1), whose complexification yields the
Lagrangian specified in Eqs. (3.2) and (3.5). As an example,
we noted at the end of Sect. 3 the relation between Eq. (3.24)
and the scalar potential of the toy model of two real scalar
fields given in Eq. (2.3).

The above procedure suggests an algorithm for construct-
ing examples of real scalar field theories with an RG-stable
parameter relation without a symmetry to explain its RG-
stability. Start with a theory of n complex scalars with param-
eter relations whose RG-stability can be accounted for by the
symmetries of the model. From this theory, construct the cor-
responding theory of n real scalars whose complexification
yields the theory of n complex scalars (using the method
outlined above). If the symmetries of the complexified the-
ory involve some symmetry transformation group that cannot
be embedded in O(n), then such symmetries cannot survive
as a legitimate symmetry of the theory of n real scalars. This
is precisely what happened in Sect. 3, where the symmetry
employed [Eq. (3.12)] corresponded to the matrix

( 0 i
−i 0

)
,

which is not an element of O(2). Nevertheless, the vanishing
of the beta functions of the parameter relations of the theory
of n complex scalars will still ensure the vanishing of the
corresponding beta functions of the theory of n real scalars,
as discussed in Sect. 5.

7 Summary of results

A symmetry imposed on a Lagrangian yields relations among
its parameters, and those relations will be preserved under
renormalization. In particular, the relations among specific
parameters will be obeyed by the beta functions of those
parameters, to all orders of perturbation theory. Recently, in
the context of two Higgs doublet models, an example was
found that showed how specific relations between 2HDM
parameters were preserved to all orders of perturbation the-
ory, but none of the known six possible global symmetries
of the model could reproduce said relations [33]. These rela-
tions were shown to be preserved to all orders by the scalar
and gauge sectors, and at least up to two loops when the
Higgs-fermion Yukawa couplings are included. To the best
of our knowledge, this is the first example of how the RG-
stability of a model parameter relation to all orders of per-
turbation theory may not imply the existence of a symme-
try of the Lagrangian. But if not a symmetry, then what
could be causing this remarkable behavior? The authors of
Ref. [33] observed that this result could formally be obtained
by transformations among the real scalar components of the
two doublets that involve imaginary numbers. Even stranger,
these transformations required that the spacetime coordi-
nates transformed into themselves multiplied by an imagi-
nary number to preserve the kinetic energy terms of the model
Lagrangian. These transformations correspond to no known
legitimate symmetry, and a different explanation for the RG
stability of the parameter relations of the model is clearly
needed.

In this paper we considered a toy model containing two
real scalar fields, and observed that the RG-stability of a rela-
tion among the parameters of the theory exists that is analo-
gous to that of the 2HDM of Ref. [33]. The relations among
the quartic couplings could be reproduced (as in Ref. [33])
by a simple set of parity transformations on the real fields (all
of them contained in the O(2) group of possible field trans-
formations), but the RG-stable relation between the squared-
mass parameters, m2

22 = −m2
11 [in the notation of Eq. (2.1)]

cannot be obtained by any known symmetry. However, it can
be reproduced by adopting a “GOOFy” transformation anal-
ogous to those of Ref. [33], wherein both scalar fields trans-
form among themselves multiplied by factors of i . These
transformations, given in Eq. (2.13), are not legitimate sym-
metry transformations of real scalar fields, but they served
as inspiration for a possible explanation of the RG stabil-
ity of the squared-mass parameter relation of the model.
Namely, we promoted the two real scalar fields to two com-
plex scalar fields (a process that was called complexification),
and imposed simple symmetries on the resulting complexi-
fied model. These symmetries consisted of an overall parity
symmetry to eliminate linear and cubic terms in the scalar
potential, CP conservation to enforce reality of the scalar
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potential parameters, and an exchange symmetry between
the two complex fields involving imaginary numbers [see
Eq. (3.12)]. The latter is analogous to the GOOFy transfor-
mation of the real scalar fields of the original toy model,
but in the context of the complexified model this is now a
legitimate symmetry.

In the complexified model, the symmetries impose rela-
tions among its parameters [given by Eqs. (3.13)–(3.16)] that
are preserved under renormalization and thus yield analogous
relations for the corresponding beta functions. Indeed, rela-
tions of the form cabM2

āb̄
= 0 exist for the squared-mass

parameters of the complexified model due to the presence of
a symmetry which then imply

βcabM2
āb̄

∣∣
sym= 0, (7.1)

to all orders of perturbation theory when the parameter rela-
tions imposed by the symmetry have been employed (as indi-
cated by the subscript “sym”). In fact, one can obtain even
stronger conditions beyond what appears in Eq. (7.1). At any
fixed order in perturbation theory, Eq. (7.1) takes the follow-
ing schematic form:

βcabM2
āb̄

= cab
∑
k

fk(M
2,
)āb̄, (7.2)

where the fk(M2,
) are functions of the squared-mass and
self coupling parameters. Each term in the sum will contain
one factor of M2 and n factors of 
 at order n in the per-
turbation expansion. The tensor M2 can have index structure
cd, c̄d̄ , or cd̄ , and the tensor 
 can have index structure
cde f , cde f̄ , cdē f̄ , cd̄ē f̄ , or c̄d̄ ē f̄ . By appropriate choices
of the index structure along with some appropriate Kronecker
deltas to tie together some unbarred/barred index pairs, the
index structure of the fk must be āb̄ as indicated in Eq. (7.2).
As a simple example, at one-loop order Eq. (7.2) takes the
form

βcabM2
āb̄

∣∣
sym = cab

[
4M2

c̄d̄

cdāb̄ + 24M2

cd
āb̄c̄d̄

+6M2
ed̄


dāb̄ē

] ∣∣∣∣
sym

= 0. (7.3)

Although the number of possible terms for fk expands
quickly with each order in perturbation theory, the critical
observation is that the fk are linearly independent tensors.
This means that

cab fk(M
2,
)āb̄

∣∣
sym= 0, (7.4)

for each k separately. This is a stronger result than the one
given in Eq. (7.1).

The second critical observation is that there will always be
at least one special value of k where fk(M2,
) depends on
tensors with an even number of unbarred and barred indices,
respectively. For example, at one loop order, Eq. (7.4) takes

the form

cabM
2
cd
āb̄c̄d̄

∣∣
sym= 0. (7.5)

Moreover, having imposed CP conservation on the complexi-
fied theory, tensors with only unbarred indices are equal to the
corresponding tensors with only barred indices. Beyond one
loop order, fk(M2,
) will also involve 
 with two unbarred
and two barred indices. However, since Eq. (7.4) is satis-
fied in general, it also must be satisfied in the special case
where 
abc̄d̄ is set equal to 
abcd . The end result, is that
for the special values of k identified above, an equation of
the form given by Eq. (7.4) holds where all barred indices
are replaced by unbarred indices (and the usual implicit sum
over unbarred/barred index pairs is carried out).

The structure of the equations for the beta functions of the
original toy model of two real scalar fields also involves sums
of linearly independent products of tensors. The observed RG
stability of the parameter relation m2

22 = −m2
11 (which is not

the result of a legitimate symmetry of the original toy model)
yields equations that are algebraically equivalent to Eq. (7.4)
for the special values of k noted above. For example, at one-
loop order,

βci jm2
i j

∣∣
sym= ci jm

2
k�λi jk�

∣∣
sym= 0, (7.6)

which is algebraically equivalent to Eq. (7.5) after dropping
the distinction between unbarred and barred indices. Thus,
we have succeeded in explaining the RG stability of m2

22 =
−m2

11 as being the result of an “inherited” symmetry that was
imposed on the corresponding complexified theory.

8 Future directions

It would be quite useful to obtain further examples of RG
stable parameter relations that cannot be explained by a sym-
metry of the original theory.10 An algorithm for producing
such examples was discussed in Sect. 6. In particular, it would
also be interesting to apply the ideas of this paper to under-
stand the origin of the RG stability of the parameter relation
m2

22 = −m2
11 in the context of the 2HDM that was discovered

in Ref. [33]. Although we expect that the results of this paper
can be used in the 2HDM, there are a number of challenges
to confront. First, since the realification of the 2HDM yields
a theory of eight real scalar fields, the corresponding com-
plexified theory will be a theory of eight complex fields (or
equivalently sixteen real fields). It is not clear exactly how the
SU(2)L doublet structure of 2HDM scalar fields is manifested
in the complexified theory. For example, is the complexified

10 It is interesting to note a similar phenomenon in Ref. [47] where
relations between running coupling and masses that do not follow from
symmetries were engineered by making use of infrared fixed points of
gauge couplings.
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theory equivalent to a four Higgs doublet model? Indeed,
the strange form of Eq. (1.6) suggests that the transforma-
tions considered might need to “break” the doublet structure
somehow, before it is put back together.

Second, the all-order RG invariance found in Ref. [33]
involved not only the scalar sector but also the gauge inter-
actions; fermions were found to respect the RG fixed points
up to two loops via an explicit calculation, strongly sug-
gesting an all-orders RG invariance. The argument presented
here pertains to the scalar sector only, and therefore the first
step would be to verify how the process of complexifica-
tion of a scalar field theory impacts the scalar couplings to
gauge fields and fermion fields. Since the interaction of the
scalars to gauge fields is generated by replacing the deriva-
tives in the scalar kinetic energy terms [Eq. (3.2)] with gauge
covariant derivatives, it appears that the interactions of the
gauge bosons with the scalars of the complexified theory can
be treated in a straightforward manner. The introduction of
Yukawa interactions in the complexified theory also seems
rather straightforward, but this needs to be checked.

In both the 2HDM and now in the toy model of two real
scalar fields examined here, the RG stability of the parameter
relations of these theories were discovered, and shown to be
valid to all orders in perturbation theory. In both cases, the
RG stability could not be attributed to a legitimate symmetry
of the model. This paper shows how such parameter rela-
tions may be understood as arising from a symmetry present
in the complexified version of the theory. The beta func-
tion relations that yield the RG stability of the correspond-
ing parameter relations of the original model are therefore
understood by virtue of the fact that they are algebraically
identical to symmetry-protected relations of the complexi-
fied model. This is still a strange state of affairs, and highly
counterintuitive. Why should the RG stability of parameter
relations of a given theory be governed by symmetries of a
theory containing a larger field content? And yet that is the
strong implication of the work presented here. We look for-
ward to finding additional examples of these non-symmetry-
guaranteed, all-orders-protected, RG invariant relations, and
find it fascinating that such a novel approach to symmetries
is still possible, even after all the developments of quantum
field theory over the last half century.

Note added in proof: After this article was accepted for
publication, another approach to explaining the RG-stability
of parameter relations imposed by GOOFy transformations
was suggested by Trautner in Ref. [48], even though the cor-
responding GOOFy scalar field transformations are explicitly
broken by the gauge-kinetic energy terms.
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Appendix A Beta functions of a toy model of two real
scalar fields

Consider a quantum field theory of two real scalar fields
governed by the Lagrangian specified in Eq. (2.1). At two-
loop order, the beta functions of the parameters m2

i j and λi jk�

for i, j, k, � ∈ {1, 2} are denoted by β = β I + β I I , where
the corresponding one-loop and two-loop contributions are
exhibited in Eqs. (2.4)–(2.7). In this appendix, we provide the
corresponding analytic expressions for the beta functions of
m2

11,m2
22, λ1111, λ2222, λ1112, and λ1222. We then demonstrate

that in the toy model with

m2
22 = −m2

11, λ1111 = λ2222, λ1112 = −λ1222,

(A.1)

these parameter relations are stable under renormalization
group running, since the corresponding beta functions for
m2

11 + m2
22, λ1111 − λ2222 and λ1112 + λ1222 vanish exactly.

We first evaluate the one-loop beta functions of m2
11 and

m2
22. Using Eq. (2.4),

β I
m2

11
= m2

11λ1111 + m2
22λ1122 + 2m2

12λ1112, (A.2)

β I
m2

22
= m2

22λ2222 + m2
11λ

2
1122 + 2m2

12λ1222. (A.3)
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It then follows that

β I
m2

11+m2
22

= β I
m2

11
+ β I

m2
22

= m2
11λ1111 + m2

22λ2222

+(m2
11 + m2

22)λ1122 + 2m2
12(λ1112 + λ1222).

(A.4)

After imposing the parameter relations of Eq. (A.1) [denoted
below by the subscript “sym”], we obtain

β I
m2

11+m2
22

∣∣
sym= 0. (A.5)

Next, we evaluate the one-loop beta functions of λ1111,
λ2222, λ1112, and λ2222. Using Eq. (2.5),

β I
λ1111

= 3(λ2
1111 + 2λ2

1112 + λ2
1122), (A.6)

β I
λ2222

= 3(λ2
2222 + 2λ2

1222 + λ2
1122), (A.7)

β I
λ1112

= 3(λ1111λ1112 + 2λ1112λ1122 + λ1122λ1222), (A.8)

β I
λ1222

= 3(λ1112λ1122 + 2λ1122λ1222 + λ1222λ2222). (A.9)

It follows that

β I
λ1111−λ2222

= β I
λ1111

− β I
λ2222

= 3
[
λ2

1111 − λ2
2222 + 2

(
λ2

1112 − λ2
1222

)]
, (A.10)

β I
λ1112+λ1222

= β I
λ1112

+ β I
λ1222

= 3
[
λ1111λ1112 + λ2222λ1222

+3λ1122(λ1112 + λ1222)
]
. (A.11)

After imposing the parameter relations of Eq. (A.1), we
obtain

β I
λ1111−λ2222

∣∣
sym= β I

λ1112+λ1222

∣∣
sym= 0. (A.12)

To compute the two-loop contributions to the beta func-
tions of m2

i j and λi jk� given in Eqs. (2.6) and (2.7), we shall
evaluate the following quantities:

Ai j ≡ 1
2

[
λik�mλnk�mm

2
nj + λ jk�mλnk�mm

2
ni

]
, (A.13)

Bi j ≡ m2
k�λikmnλ j�mn, (A.14)

Ci jk� ≡ 1

24

∑
perm

λinpqλmnpqλmjk�, (A.15)

Di jk� ≡ 1

24

∑
perm

λi jmnλkmpqλ�npq , (A.16)

where “perm” indicates that the sum includes terms in which
the uncontracted indices i , j , k, and � have been permuted in
all possible ways. In addition, there are implicit sums over
each repeated index pair. Then, we obtain

A11 = [
λ2

1111 + 3
(
λ2

1112 + λ2
1122

) + λ2
1222

]
m2

11

+[
λ1112

(
λ1111 + 3λ1122

)

+λ1222
(
λ2222 + 3λ1122

)]
m2

12, (A.17)

A22 = [
λ2

1112 + 3
(
λ2

1122 + λ2
1222

) + λ2
2222

]
m2

22

+[
λ1112

(
λ1111 + 3λ1122

)

+λ1222
(
λ2222 + 3λ1122

)]
m2

12, (A.18)

B11 = (
λ2

1111 + 2λ2
1112 + λ2

1122

)
m2

11

+(
λ2

1112 + 2λ2
1122 + λ2

1222

)
m2

22

+2
(
λ1111λ1112 + 2λ1112λ1122 + λ1122λ1222

)
m2

12,

(A.19)

B22 = (
λ2

1112 + 2λ2
1122 + λ2

1222

)
m2

11

+(
λ2

1122 + 2λ2
1222 + λ2

2222

)
m2

22

+2
(
λ1112λ1122 + 2λ1122λ1222 + λ1222λ2222

)
m2

12.

(A.20)

One can see by inspection that

A11 + A22
∣∣
sym= 0, B11 + B22

∣∣
sym= 0, (A.21)

where “sym” again indicates that the parameter relations
given by Eq. (A.1) have been employed. These results con-
firm the vanishing of the two-loop contribution to the beta
function of m2

11 + m2
22.

Next, we record the following results:

C1111 = λ3
1111 + λ1111

(
4λ2

1112 + 3λ2
1122 + λ2

1222

)

+3λ1112λ1122(λ1112 + λ1222) + λ1112λ1222λ2222,

(A.22)

C2222 = λ3
2222 + λ2222

(
4λ2

1222 + 3λ2
1122 + λ2

1112

)

+3λ1222λ1122(λ1112 + λ1222) + λ1111λ1112λ1222,

(A.23)

D1111 = λ3
1111 + λ1111

(
4λ2

1112 + λ2
1122

)

+2λ3
1122 + λ1122

(
λ2

1222 + 2λ1112λ1222 + 5λ2
1112

)
,

(A.24)

D2222 = λ3
2222 + λ2222

(
4λ2

1222 + λ2
1122

)

+2λ3
1122 + λ1122

(
λ2

1112 + 2λ1112λ1222 + 5λ2
1222

)
.

(A.25)

After imposing the parameter relations of Eq. (A.1), one can
see by inspection that

C1111 − C2222
∣∣
sym= 0, D1111 − D2222

∣∣
sym= 0.

(A.26)

These results confirm the vanishing of the two-loop contri-
bution to the beta function of λ1111 − λ2222.

Finally, we have evaluated the following quantities:

C1112 = 1

4

{
10λ3

1112 + λ1112
(
4λ2

1111 + 6λ1111λ1122

+21λ2
1122 + 6λ2

1222 + λ2
2222

)

+λ1222
[
3λ1122

(
λ1111 + 3λ1122 + λ2222

)

+λ1111λ2222
]}

, (A.27)
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C1222 = 1

4

{
10λ3

1222 + λ1222
(
4λ2

2222 + 6λ2222λ1122

+21λ2
1122 + 6λ2

1112 + λ2
1111

)

+λ1112
[
3λ1122

(
λ2222 + 3λ1122 + λ1111

)

+λ1111λ2222
]}

, (A.28)

D1112 = 1

2

{
3λ3

1112 + λ3
1222 + 3λ2

1112λ1222

+λ1112
(
2λ2

1111 + 8λ2
1122

+λ2
1222 + λ1122λ2222 + 5λ1111λ1122

)

+λ1222
[
6λ2

1122 + λ1122
(
λ1111 + λ2222

)]}
, (A.29)

D1222 = 1

2

{
3λ3

1222 + λ3
1112 + 3λ2

1222λ1112

+λ1222
(
2λ2

2222 + 8λ2
1122 + λ2

1112

+λ1122λ1111 + 5λ2222λ1122
)

+λ1112
[
6λ2

1122 + λ1122
(
λ1111 + λ2222

)]}
. (A.30)

After imposing the parameter relations of Eq. (A.1), one can
see by inspection that

C1112 + C1222
∣∣
sym= 0, D1112 + D1222

∣∣
sym= 0.

(A.31)

These results confirm the vanishing of the two-loop contri-
bution to the beta function of λ1112 + λ1222.

The results obtained in Eqs. (A.21), (A.26), and (A.31)
indicate that the two-loop contributions to the beta functions
of m2

11 +m2
22, λ1111 −λ2222, and λ1112 +λ1222, respectively,

consist of the sum of two linearly-independent contributions
given by Eqs. (2.6)–(2.7), each of which has been shown in
this Appendix to separately vanish.

Appendix B Stability of parameter relations under a
change of the scalar field basis

Consider the most general renormalizable theory of two real
scalar fields with scalar potential

V = 1
2m

2
11ϕ

2
1 + 1

2m
2
22ϕ

2
2 + m2

12ϕ1ϕ2

+ 1
24λ1111ϕ

4
1 + 1

24λ2222ϕ
4
2 + 1

4λ1122ϕ
2
1ϕ2

2

+ 1
6λ1112ϕ

3
1ϕ2 + 1

6λ1222ϕ1ϕ
3
2 . (B.1)

A scalar field basis transformation is a linear redefinition of
the scalar fields that preserves the scalar field kinetic energy
terms,

LKE = 1
2∂μϕ1∂

μϕ1 + 1
2∂μϕ2∂

μϕ2. (B.2)

That is, the most general change of the scalar field basis is
an O(2) transformation,

(
ϕ1

ϕ2

)
=

(
cθ sθ

−εsθ εcθ

)(
ϕ′

1
ϕ′

2

)
, (B.3)

where cθ ≡ cos θ , sθ ≡ sin θ , and the parameter ε is either
+1 or −1.

Inserting Eq. (B.3) into Eq. (B.1), we obtain the scalar
potential in terms of the primed fields with primed coeffi-
cients given by:

m′ 2
11 = m2

11c
2
θ + m2

22s
2
θ − εm2

12 sin 2θ, (B.4)

m′ 2
22 = m2

11s
2
θ + m2

22c
2
θ + εm2

12 sin 2θ, (B.5)

m′,2
12 = 1

2 (m2
11 − m2

22) sin 2θ + εm2
12 cos 2θ, (B.6)

λ′
1111 = c4

θλ1111 + s4
θ λ2222 + 6s2

θ c
2
θλ1122

−4εsθcθ (c
2
θλ1112 + s2

θ λ1222), (B.7)

λ′
1112 = cθ sθ

(
c2
θλ1111 − s2

θ λ2222
) − 3sθcθ (c

2
θ − s2

θ )λ1122

+εc2
θ (c

2
θ − 3s2

θ )λ1112 − εs2
θ (s2

θ − 3c2
θ )λ1222, (B.8)

λ′
1122 = c2

θ s
2
θ (λ1111 + λ2222) + (1 + 2c2

θ s
2
θ )λ1122

+2εsθcθ (c
2
θ − s2

θ )
(
λ1112 − λ1222

)
, (B.9)

λ′
1222 = cθ sθ

(
s2
θ λ1111 − c2

θλ2222
)

+3sθcθ (c
2
θ − s2

θ )λ1122 − εs2
θ (s2

θ − 3c2
θ )λ1112

+εc2
θ (c

2
θ − 3s2

θ )λ1222, (B.10)

λ′
2222 = s4

θ λ1111 + c4
θλ2222 + 6s2

θ c
2
θλ1122

+4εsθcθ (s
2
θ λ1112 + c2

θλ1222). (B.11)

Consider the parameter relations given in the {�1 ,�2}
basis by Eq. (2.2), which we repeat below for the benefit of
the reader:

m2
22 = −m2

11 λ1111 = λ2222, λ1112 = −λ1222.

(B.12)

Plugging these relations into Eqs. (B.4)–(B.11) yields the
corresponding parameter relations in the {�′

1 ,�′
2} basis:

m′ 2
22 = −m′ 2

11, λ′
1111 = λ′

2222, and λ′
1112 = −λ′

1222. That is,
the parameter relations in Eq. (B.12) are RG stable and stable
under a change of scalar field basis. In contrast, m′ 2

12 �= m2
12

(assuming a nontrivial change of basis). This means that one
is free to choose θ such that m′ 2

12 = 0 at tree level, which
corresponds to a choice of θ such that tan 2θ = εm2

12/m
2
22

after making use of the squared mass relation in Eq. (B.12).
However, it is noteworthy that the choice of basis needed

to set m′ 2
12 = 0 is not stable under RG running. In particular,

in light of Eq. (2.4),

β I
m2

12
= m2

11λ1112 + m2
22λ1222 + 2m2

12λ1122. (B.13)
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After imposing the parameter relations of Eq. (B.12), we
obtain

β I
m2

12

∣∣∣
sym

= 2
(
m2

11λ1112 + m2
12λ1122

)
. (B.14)

That is, if we set m2
12 = 0 at some energy scale μ1 then

m2
12 �= 0 at energy scale μ2 �= μ1, which means that the

choice of the scalar field basis is not stable with respect to
RG running.

The above results should be contrasted with the parameter
relations given by Eq. (2.12),

m2
22 = m2

11 m2
12 = 0,

λ1111 = λ2222, λ1112 = −λ1222, (B.15)

which are enforced by a legitimate symmetry. Inserting these
relations into Eqs. (B.4)–(B.11) yields m′ 2

22 = m′ 2
11, m′ 2

12 = 0,
λ′

1111 = λ′
2222, and λ′

1112 = −λ′
1222. That is, the parameter

relations in Eq. (B.15), including the condition m2
12 = 0, are

RG stable and stable under a change of scalar field basis.
In this case, the fact that the choice of scalar field basis is
not stable with respect to RG running has no impact on the
symmetry-imposed parameter relations.

Appendix C Parameters of the complexified theory

The independent squared-mass and quartic coupling param-
eters of the complexified theory are listed in Eqs. (3.9) and
(3.10) respectively. If we now express the complex fields �1

and �2 in terms of four real fields ϕi defined in Eq. (3.1), then
the scalar potential given by VC in Eq. (3.5) can be rewritten
as a scalar potential of the corresponding realified theory,

VC = 1
2m

2
i j ϕiϕ j + 1

4! λi jk� ϕiϕ jϕkϕ�,

i, j, k, � ∈ {1, 2, 3, 4}, (C.1)

with an implicit sum over repeated indices. In particular, m2
i j

and λi jk� are completely symmetric real tensors, with 10 and
35 independent components, respectively.11

It is straightforward to express the independent elements
of m2

i j in terms of the 10 squared-mass parameters exhibited
in Eq. (3.9):

m2
11 = M2

11̄
+ 2 Re M2

11, (C.2)

m2
22 = M2

11̄
− 2 Re M2

11, (C.3)

m2
33 = M2

22̄
+ 2 Re M2

22, (C.4)

m2
44 = M2

22̄
− 2 Re M2

22, (C.5)

m2
12 = 2 Im M2

11, (C.6)

11 In general, the number of independent components of a com-
pletely symmetric real rank r tensor whose indices take on the values
1, 2, . . . , d is equal to (d + r − 1)!/[(d − 1)!r !].

m2
34 = 2 Im M2

22, (C.7)

m2
13 = Re M2

12̄
+ 2 Re M2

12, (C.8)

m2
24 = Re M2

12̄
− 2 Re M2

12, (C.9)

m2
14 = − Im M2

12̄
+ 2 Im M2

12, (C.10)

m2
23 = Im M2

12̄
+ 2 Im M2

12. (C.11)

Likewise, it is straightforward to express the independent
elements of λi jk� in terms of the 35 self-coupling parameters
exhibited in Eq. (3.10):

λ1111 = 6
111̄1̄ + 12 Re
(

1111 + 
1111̄

)
, (C.12)

λ1112 = 6 Im
(
2
1111 + 
1111̄

)
, (C.13)

λ1113 = 3 Re
[
2
111̄2̄ + 4
1112 + 
1112̄ + 3
1121̄

]
, (C.14)

λ1114 = −3 Im
[
2
111̄2̄ − 4
1112 + 
1112̄ − 3
1121̄

]
, (C.15)

λ1122 = 2
111̄1̄ − 12 Re 
1111, (C.16)
λ1123 = Im

(
2
111̄2̄ + 12
1112 + 3
1112̄ + 3
1121̄

)
, (C.17)

λ1124 = Re
[
2
111̄2̄ − 12
1112 + 3
1112̄ − 3
1121̄

]
, (C.18)

λ1133 = 4
121̄2̄+2 Re
[

112̄2̄+6
1122+3
1122̄+3
1221̄

]
, (C.19)

λ1134 = −2 Im
(

112̄2̄−6
1122−3
1221̄

)
, (C.20)

λ1144 = 4
121̄2̄−2 Re
[

112̄2̄+6
1122−3
1122̄+3
1221̄

]
, (C.21)

λ1222 = −6 Im
(
2
1111 − 
1111̄

)
, (C.22)

λ1223 = Re
[
2
111̄2̄ − 12
1112 − 3
1112̄ + 3
1121̄

]
, (C.23)

λ1224 = − Im
[
2
111̄2̄ + 12
1112 − 3
1112̄ − 3
1121̄

]
, (C.24)

λ1233 = 2 Im
[

112̄2̄ + 6
1122 + 3
1122̄

]
, (C.25)

λ1234 = 2 Re
(

112̄2̄ − 6
1122

)
, (C.26)

λ1244 = −2 Im
(

112̄2̄ + 6
1122 − 3
1122̄

)
, (C.27)

λ1333 = 3 Re
[
2
122̄2̄ + 4
1222 + 3
1222̄ + 
2221̄

]
, (C.28)

λ1334 = − Im
[
2
122̄2̄ − 12
1222 − 3
1222̄ − 3
2221̄

]
, (C.29)

λ1344 = Re
[
2
122̄2̄ − 12
1222 + 3
1222̄ − 3
2221̄

]
, (C.30)

λ1444 = −3 Im
[
2
122̄2̄ + 4
1222 − 3
1222̄ + 
2221̄

]
, (C.31)

λ2222 = 6
111̄1̄ + 12 Re
(

1111 − 
1111̄

)
, (C.32)

λ2223 = 3 Im
[
2
111̄2̄ − 4
1112 − 
1112̄ + 3
1121̄

]
, (C.33)

λ2224 = 3 Re
[
2
111̄2̄ + 4
1112 − 
1112̄ − 3
1121̄

]
, (C.34)

λ2233 = 4
121̄2̄−2 Re
[

112̄2̄+6
1122+3
1122̄−3
1221̄

]
, (C.35)

λ2234 = 2 Im
(

112̄2̄ − 6
1122 + 3
1221̄

)
, (C.36)

λ2244 = 4
121̄2̄+2 Re
[

112̄2̄+6
1122−3
1122̄−3
1221̄

]
, (C.37)

λ2333 = 3 Im
[
2
122̄2̄ + 4
1222 + 3
1222̄ − 
2221̄

]
, (C.38)

λ2334 = Re
[
2
122̄2̄ − 12
1222 − 3
1222̄ + 3
2221̄

]
, (C.39)

λ2344 = Im
[
2
122̄2̄ − 12
1222 + 3
1222̄ + 3
2221̄

]
, (C.40)

λ2444 = 3 Re
[
2
122̄2̄ + 4
1222 − 3
1222̄ − 
2221̄

]
, (C.41)

λ3333 = 6
222̄2̄ + 12 Re
(

2222 + 
2222̄

)
, (C.42)

λ3334 = 6 Im
(
2
2222 + 
2222̄

)
, (C.43)

λ3344 = 2
222̄2̄ − 12 Re 
2222, (C.44)
λ3444 = −6 Im

(
2
2222 − 
2222̄

)
, (C.45)

λ4444 = 6
222̄2̄ + 12 Re
(

2222 − 
2222̄

)
. (C.46)
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