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1 Introduction

Since the discovery of the Higgs boson at the LHC in 2012 [1, 2] the ATLAS and CMS
Collaborations have embarked on a detailed study of the properties of the Higgs bosons
(e.g., total cross sections, differential cross sections, decay branching fractions, decay an-
gular distributions, etc.) in order to verify the predictions of the Standard Model (SM)
and perhaps uncover deviations from SM predictions that would require the presence of
new physics beyond the SM (BSM). After analyzing data from the Run 1 and Run 2 data
sets, the LHC experimental collaborations have determined that the properties of the Higgs
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boson coincide with those of the SM Higgs boson to within the current accuracy of the
accumulated data, typically in the range of 10%–20% depending on the observable [3–5].

One possible conclusion of the LHC experimental precision Higgs studies is that the
Standard Model is confirmed and there is no evidence for BSM physics. However, it is
perhaps surprising that the fundamental theory of particles and their interactions at the
energy scale of electroweak symmetry breaking (EWSB) consists of a scalar sector that is of
minimal form. Namely, the SM Higgs boson comes from a single electroweak complex-scalar
doublet that yields precisely one physical degree of freedom after electroweak symmetry
breaking. This should be contrasted with the non-minimal structures inherent in a fermion
sector that consist of three generations of quarks and leptons and a gauge sector based on a
direct product of three separate gauge groups. Having now discovered the first state of an
(apparently) elementary spin 0 scalar sector, the naive expectation would be to anticipate
a non-minimal structure here as well.

However, one cannot simply add additional scalar bosons to the model at will, since
experimental constraints limit the structure of any extended Higgs sector. For example,
the observation of the electroweak ρ-parameter close to 1 strongly suggests that the scalar
sector must be comprised of electroweak doublets and perhaps singlets [6]. One of the
simplest extensions of the SM Higgs sector posits the existence of additional electroweak
scalar doublets (of the same hypercharge as that of the SM Higgs doublet). The two-Higgs
doublet model (2HDM) provides a nontrivial extension of the SM that introduces new
physical phenomena (e.g. charged scalars and CP-odd scalars) that can be searched for at
the LHC.1 Comprehensive reviews of the 2HDM can be found in refs. [6, 10].

Nevertheless, even the 2HDM must be constrained in light of the LHC Higgs data,
since one must be able to explain why the properties of the observed Higgs boson at the
LHC is SM-like. In any extended Higgs sector that contains at least one complex scalar
doublet (with the U(1)Y hypercharge of the SM Higgs boson), after EWSB there exists
a neutral scalar eigenstate whose properties coincide with those of the SM Higgs boson.
But, such a scalar eigenstate will in general mix with other neutral scalar eigenstates that
are present in the extended Higgs sector. Thus, generically one would not expect there
to be a physical (mass eigenstate) neutral scalar that is SM-like, in conflict with the LHC
Higgs data.

In the so-called Higgs alignment limit [11–14], there exists one neutral scalar mass
eigenstate that is aligned with the direction of the Higgs vacuum expectation value in field
space. This direction corresponds precisely to the interaction eigenstate with the tree-level
properties of the SM Higgs boson. In light of the LHC Higgs data, if an extended Higgs
sector exists then the Higgs alignment limit must be approximately realized, which then
implies that the mixing of the SM Higgs interaction eigenstate with other neutral scalar
mass eigenstates is suppressed.

1Of course, extended Higgs sectors that add additional doublets or singlet scalars are also possible.
Adding additional doublets makes the analysis less tractable analytically without adding significantly new
observable phenomena. The 2HDM has also been motivated by the fact that it is a necessary part of the
minimal supersymmetric extension of the Standard Model [7, 8], which has been advocated as a possible
solution to the gauge hierarchy problem [9].
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How is this suppressed mixing realized in a realistic model? There are two possible
mechanisms. One possibility, called the decoupling limit [15, 16], posits that all neutral
scalar states (excluding the observed Higgs boson) are significantly heavier than the scale
of electroweak symmetry breaking (which can be taken to be the vacuum expectation value
of the Higgs doublet in the SM, denoted by v ' 246 GeV). If the scale of the heavy scalars
is Λ, then one can formally integrate out these states below the scale Λ, which results in an
effective theory corresponding to the SM with one Higgs doublet. Deviations from SM-like
behavior of the observed Higgs boson would be of O(v2/Λ2), which are consistent with the
observed Higgs data if Λ is sufficiently large. Of course, in this scenario it might be very
challenging to discover experimental evidence for the presence of the heavier scalars at the
LHC. In particular, if Λ is sufficiently large then it may not be possible to discover such
heavy scalars above SM backgrounds.

A second possibility is to simply fine-tune the parameters of the 2HDM in such a way
that the mixing of the SM Higgs interaction eigenstate with other neutral scalar mass
eigenstates is suppressed at the level required by the LHC Higgs data. This can always be
done, and allows for the possibility of new scalar states whose masses are not significantly
larger than that of the observed Higgs boson, thereby presenting opportunities in future
LHC runs for their discovery. However, the arbitrary fine-tuning required to achieve this
scenario seems completely ad hoc and is not particularly appealing from a theoretical
point of view.

In this paper, we will consider a third possibility in which the Higgs alignment limit is
realized as the result of a symmetry. The simplest example of such a scenario is known as
the inert doublet model (IDM) [17, 18], in which a second complex scalar doublet is added
to the SM that is odd under a discrete Z2 symmetry, whereas all SM fields are Z2-even. It
follows that the Higgs alignment limit is exactly realized, since the Z2 symmetry forbids
the mixing of the first Higgs doublet (which contains the SM Higgs field) and the second
Higgs doublet. Consequently, the tree-level properties of the neutral CP-even scalar field
that resides inside the first Higgs doublet coincides precisely with those of the SM Higgs
boson. In practice, the observed Higgs boson of this model deviates from the SM Higgs
boson in its loop induced properties. For example, the amplitude for h(125) → γγ would
include contributions from a loop of charged Higgs bosons. However, such corrections are
typically too small to be seen in the present Higgs data, and could very well lie beyond the
reach of the precision Higgs program at the LHC.

If deviations from SM-like Higgs properties are revealed in future experimental Higgs
studies, then one would conclude that the Higgs alignment limit is only approximately
realized. In this case, a natural explanation for the observed SM-like Higgs boson could be
attributed to an approximate symmetry. In such a case, if the symmetry breaking is soft
(generated by dimension two or three terms in the Lagrangian), then the deviations from
SM-like Higgs behavior would be naturally small. In contrast, if the symmetry breaking is
hard then one can only ensure small deviations from SM-like Higgs behavior by fine-tuning
the size of the hard symmetry breaking terms of the Lagrangian. In the case of the IDM, it
is not possible to break the Z2 symmetry softly, since a Z2-breaking squared mass term of
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the Higgs potential must be accompanied by a hard Z2-breaking dimension-four parameter
of the scalar potential due to the scalar potential minimum conditions.

Thus, our primary goal in this paper is to introduce a global symmetry beyond that of
the IDM that can be softly broken in order to provide a natural explanation for approximate
Higgs alignment. There exist a number of possible global symmetries that can be imposed
on the scalar potential of the 2HDM that enforce the exact Higgs alignment limit [19, 20].
However (with the exception of the IDM), it is not possible to extend these symmetries
to the Yukawa Lagrangian that describes the interactions of the scalars with the quarks
and leptons. That is, the Yukawa Lagrangian, which consists of dimension-four terms
(and dimensionless couplings) constitutes a hard breaking of the global symmetry that is
imposed to yield exact Higgs alignment. This means that it is not possible to naturally
preserve the global symmetry in the scalar potential. The authors of refs. [19, 20] proposed
that the global symmetry of the scalar potential is exactly realized at a very high energy
scale (e.g., the Planck scale), and assumed that some unknown dynamics is responsible
for generating the symmetry breaking Yukawa interactions at the same scale. Then, they
employed renormalization group (RG) evolution of the model parameters from the high
energy scale down to the low energy scale to determine the effective 2HDM parameters at
the electroweak scale. Thus, RG evolution generates a departure from the Higgs alignment
limit, which can then be compared with the properties of the Higgs boson that are measured
at the LHC.

Our strategy is different and is inspired by the work of ref. [21], which proposed to
extend the Yukawa sector by adding vector-like top partners.2 The motivation of ref. [21]
was to construct a 2HDM in which no additional fine-tuning was required beyond the one
fine-tuning of the SM that sets the scale of EWSB. In this work, we have repurposed this
idea to provide a natural explanation for approximate Higgs alignment. As in ref. [21], the
addition of the vector-like top partners allows us to extend the global symmetry transfor-
mation laws imposed on the scalar potential to the Yukawa sector. At this stage, the Higgs
alignment would be exact as it is protected by the global symmetry. However, the masses
of the vector-like top partners that are generated by EWSB would yield top partners with
masses that are easily excluded by LHC searches. To avoid this problem, we add gauge
invariant dimension-three terms to the Yukawa Lagrangian that generate additional con-
tributions to the masses of the vector-like top partners that are sufficiently large to avoid
the limits on vector-like quark masses deduced from LHC searches. Such terms necessarily
provide a soft breaking to the global symmetry and thus will generate deviations from the
exact Higgs alignment limit. Nevertheless, the soft nature of the symmetry breaking allows
for the possibility that the deviations from exact alignment are in a range consistent with
the present LHC Higgs data.

The model that we describe is not ultraviolet complete. Thus, we imagine that there
is an ultraviolet (UV) cutoff scale Λc that is well above the TeV scale. The physics that lies
above this scale is ultimately responsible for generating the symmetry-breaking dimension-

2A more complete model would introduce vector-like partners for all quarks and leptons. But, we shall
demonstrate that the effect of the top partners dominates, so one can simplify the analysis by focusing on
top partners alone.
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three terms that appear in the Yukawa Lagrangian. In order to avoid excessive fine-tuning,
Λc cannot be arbitrarily large. In addition, the mass terms are assumed to be large enough
to avoid the LHC limits on top quark partner masses while small compared to Λc to ensure
the validity of the effective theory that includes the top quark partners. By imposing limits
on the amount of fine-tuning that we are prepared to tolerate, we can obtain an upper limit
on the top quark partner masses. Hence, the goal of our analysis is to map out the region
of parameter space in which the deviations from the Higgs alignment limit and the absence
of observed top quark partners is consistent with LHC data with a requirement of at most
a moderate of fine-tuning of model parameters. If this program is successful, it would
provide a correlation between the predicted deviation from SM-like Higgs behavior and the
masses of top quark partners that could be revealed in future runs at the LHC.

In section 2, we begin with a brief review of the theoretical structure of the 2HDM. The
enhanced global symmetries of 2HDM are enumerated, and we identify those symmetries
that ensure the exact Higgs alignment limit. Two possible generalized CP symmetries
of the 2HDM [22] (denoted as GCP2 and GCP3) provide compelling models for exact
Higgs alignment. Since we anticipate that these symmetries will be softly broken, we also
include soft-symmetry-breaking squared-mass terms in the scalar potential. In general
the softly-broken GCP2 scalar potential includes CP-violating effects in the scalar sector,
whereas a softly-broken GCP3 scalar potential is CP-invariant. Thus, in order to simplify
our analysis, we focus on the softly-broken GCP3 scalar potential for the remainder of
the paper.

Details of the softly-broken GCP3-symmetric 2HDM scalar potential are provided in
section 3. By an appropriate change of the scalar field basis (details are relegated to
appendix A), the dimension-four terms of the scalar potential when expressed in terms
of the new basis fields is invariant under a direct product of a Peccei-Quinn U(1) global
symmetry [23] and a Z2 symmetry [24]. Our analysis simplifies considerably in this new
basis, so all results are henceforth presented under the assumption of a softly-broken
U(1)⊗ Z2-symmetric 2HDM scalar potential.

In section 4, the softly-broken U(1)⊗ Z2 symmetry is extended to the Yukawa sector
by introducing a vector-like top quark partner. Due to mixing between the interaction
eigenstate top quark and partners, one must determine the appropriate mass eigenstates
of the top sector. This is accomplished by performing a singular value decomposition
of a real 2 × 2 matrix (details of which are provided in appendix B). The computation is
performed in two steps, where EWSB effects are only taken into account in the second step.
(Of course, one can derive the same result in one single step as outlined in appendix C.)
Using the soft masses introduced in the Yukawa sector, we estimate the magnitudes of the
squared-mass parameters of the scalar potential that softly break the U(1)⊗Z2 symmetry,
and we discuss the implications for the degree of fine-tuning that is associated with the
soft symmetry breaking effects.

Finally in section 5, we survey the parameter space of our model and identify those
parameter regimes that are consistent with the LHC Higgs data, the searches for non-SM-
like neutral Higgs scalars and charged Higgs scalars, and the searches for vector-like top
quarks. Conclusions of this work are presented in section 6.

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
5

2 The scalar sector of the 2HDM

2.1 The 2HDM scalar potential

Let Φ1 and Φ2 denote two complex hypercharge Y = 1, SU(2)L doublet scalar fields. The
most general gauge invariant renormalizable scalar potential is given by

V =m2
11Φ†1Φ1+m2

22Φ†2Φ2−[m2
12Φ†1Φ2+h.c.]+ 1

2λ1(Φ†1Φ1)2+ 1
2λ2(Φ†2Φ2)2+λ3(Φ†1Φ1)(Φ†2Φ2)

+λ4(Φ†1Φ2)(Φ†2Φ1)+
{1

2λ5(Φ†1Φ2)2+
[
λ6(Φ†1Φ1)+λ7(Φ†2Φ2)

]
Φ†1Φ2+h.c.

}
. (2.1)

In general, m2
12, λ5, λ6 and λ7 can be complex. In order to avoid tree-level Higgs-mediated

flavor changing neutral currents (FCNCs), we shall impose a Type I, II, X and Y structure
on the Higgs-quark and the Higgs-lepton interactions [25–27]. These four types of Yukawa
couplings can be naturally implemented [28, 29] by imposing a softly-broken Z2 symmetry,
Φ1 → +Φ1 and Φ2 → −Φ2, which implies that λ6 = λ7 = 0, whereas m2

12 6= 0 is allowed.3

In this basis of scalar doublet fields (denoted as the Z2-basis), the discrete Z2 symmetry of
the quartic terms of eq. (2.1) is manifest. The scalar fields can then be rephased such that
λ5 is real, which leaves m2

12 as the only potential complex parameter of the scalar potential.
The scalar fields will develop non-zero vacuum expectation values (vevs) if the Higgs

mass matrix m2
ij has at least one negative eigenvalue. Moreover, we assume that only

the neutral Higgs fields acquire non-zero vevs, i.e. the scalar potential does not admit the
possibility of stable charge-breaking minima [34, 35]. Then, the doublet scalar field vevs
are of the form

〈Φ1〉 = v√
2

(
0
cβ

)
, 〈Φ2〉 = v√

2

(
0

eiξsβ

)
, (2.2)

where cβ ≡ cosβ = v1/v, sβ ≡ sin β = v2/v and v2 ≡ v2
1 +v2

2 ' (246 GeV)2. By convention
we take 0 ≤ β ≤ 1

2π and 0 ≤ ξ < 2π.
The parameters v, β and ξ (or equivalently, v1, v2 and ξ) are determined by minimizing

the scalar potential. The minimization conditions in the case of λ6 = λ7 = 0 and real λ5
are given by,

m2
11v1 = Re(m2

12e
iξ)v2 −

1
2λ1v

3
1 −

1
2λ345v1v

2
2 , (2.3)

m2
22v2 = Re(m2

12e
iξ)v1 −

1
2λ2v

3
2 −

1
2λ345v2v

2
1 , (2.4)

Im(m2
12e

iξ)v1 = 1
2λ5v

2
1v2 sin 2ξ , (2.5)

Im(m2
12e

iξ)v2 = 1
2λ5v

2
2v1 sin 2ξ , (2.6)

3The absence of tree-level Higgs-mediated FCNCs is maintained in the presence of a soft breaking of the
Z2 symmetry (due tom2

12 6= 0), and the FCNC effects generated at one loop are small enough to be consistent
with phenomenological constraints over a significant fraction of the 2HDM parameter space [30–33].
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where
λ345 ≡ λ3 + λ4 + λ5 cos 2ξ . (2.7)

Assuming that v1 6= 0 and v2 6= 0, the minimization conditions simplify to,

m2
11 = Re(m2

12e
iξ) tan β − 1

2λ1v
2c2
β −

1
2λ345v

2s2
β , (2.8)

m2
22 = Re(m2

12e
iξ) cotβ − 1

2λ2v
2s2
β −

1
2λ345v

2c2
β , (2.9)

Im(m2
12e

iξ) = 1
2λ5v

2sβcβ sin 2ξ . (2.10)

In contrast, if one of the two vevs vanishes, then the minimization conditions are

m2
12 = 0 , m2

22 = −1
2λ2v

2 , if v1 = 0 and v2 = v, (2.11)

m2
12 = 0 , m2

11 = −1
2λ1v

2 , if v2 = 0 and v1 = v. (2.12)

Of the original eight scalar degrees of freedom, three Goldstone bosons (G± and G)
are absorbed (“eaten”) by the W± and Z. The remaining five physical Higgs particles are:
three neutral scalars (h1, h2 and h3) and a charged Higgs pair (H±). If CP is conserved
in the scalar sector, then the neutral scalars consist of two CP-even scalars (h and H) and
one CP-odd scalar (A). It is straightforward to identify the scalar mass eigenstates and
their interactions. In general, none of the neutral scalars will possess the properties of the
Standard Model (SM) Higgs boson, due to mixing of the would-be SM Higgs state with
the additional neutral scalar degrees of freedom.

As discussed in section 1, we seek a symmetry beyond the Z2 symmetry already im-
posed above in order to provide a natural explanation for the approximate Higgs alignment
observed in the LHC Higgs data. In particular, we shall employ an approximate symmetry
by allowing the symmetry to be softly broken by mass terms in the scalar potential.

We begin by considering the possible enhanced symmetries of the scalar potential.
It will be convenient to analyze the scalar potential in the Higgs basis [36–41], which is
introduced in the next subsection.

2.2 Enhanced symmetries of the 2HDM scalar potential

The scalar potential given in eq. (2.1) is expressed in the Z2-basis of scalar doublet fields in
which the Z2 discrete symmetry of the quartic terms is manifest. It will prove convenient
to re-express the scalar doublet fields in terms of Higgs basis fields H1 and H2, which are
defined by the linear combinations of Φ1 and Φ2 such that 〈H0

1 〉 = v/
√

2 and 〈H0
2 〉 = 0.

That is,
H1 ≡ cβΦ1 + sβe

−iξΦ2 , H2 = eiη
[
−sβeiξΦ1 + cβΦ2

]
, (2.13)

where eiη accounts for the fact that Higgs basis is not unique since one is always free to
rephase the Higgs basis field H2 [42]. In terms of the Higgs basis fields defined in eq. (2.13),
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the scalar potential is given by,

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3e

−iηH†1H2 + H.c.]

+ 1
2Z1(H†1H1)2 + 1

2Z2(H†2H2)2 + Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1)

+
{1

2Z5e
−2iη(H†1H2)2 +

[
Z6e

−iη(H†1H1) + Z7e
−iηH†2H2)

]
H†1H2 + h.c.

}
. (2.14)

The scalar potential minimum conditions are,

Y1 = −1
2Z1v

2 , Y3 = −1
2Z6v

2 . (2.15)

The charged Higgs mass is given by,

m2
H± = Y2 + 1

2Z3v
2 = 2 Re(m2

12e
iξ)

s2β
− 1

2v
2(λ4 + λ5 cos 2ξ) . (2.16)

The squared-masses of the neutral Higgs bosons are given by the eigenvalues of the
neutral Higgs squared mass matrix, which is presented with respect to the neutral scalar
field basis, {

√
2 ReH0

1 − v , ReH0
2 , ImH0

2},

M2 = v2


Z1 Re(Z6e

−iη) − Im(Z6e
−iη)

Re(Z6e
−iη) 1

2
[
Z34+Re(Z5e

−2iη)
]
+Y2/v

2 −1
2 Im(Z5e

−2iη)
− Im(Z6e

−iη) −1
2 Im(Z5e

−2iη) 1
2
[
Z34−Re(Z5e

−2iη)
]
+Y2/v

2

 ,
(2.17)

where Z34 ≡ Z3 + Z4. The would-be SM Higgs state is hSM ≡
√

2 ReH0
1 − v. The Higgs

alignment limit then corresponds to Z6 = 0, in which case the mixing of hSM with ReH0
2

and ImH0
2 is completely absent. The tree-level properties of hSM then coincide with those

of the SM Higgs boson.
It is straightforward to compute the corresponding Higgs basis parameters in terms of

the parameters of eq. (2.1). The Yi are given by,

Y1 = m2
11c

2
β +m2

22s
2
β − Re(m2

12e
iξ)s2β , (2.18)

Y2 = m2
11s

2
β +m2

22c
2
β + Re(m2

12e
iξ)s2β , (2.19)

Y3 =
[1

2(m2
22 −m2

11)s2β − Re(m2
12e

iξ)c2β − i Im(m2
12e

iξ)
]
e−iξ . (2.20)

In light of eq. (2.15), the Higgs alignment limit is realized if Y3 = 0. One way of satisfying
Y3 = 0 is to set m2

12 = 0, in which case one must also require that either s2β = 0 or
m2

11 = m2
22. Note that the condition m2

12 = 0 is enforced if the Z2 symmetry imposed
above is unbroken. If s2β = 0, then the Z2 symmetry is unbroken by the vacuum. This
case yields the inert doublet model (IDM), which is known to possess a neutral scalar state
with the tree-level properties of the SM Higgs boson. Although the IDM is consistent with
the LHC Higgs data over a significant part of its parameter space, one cannot break the
Z2 softly since Y3 6= 0 would yield Z6 6= 0 due to eq. (2.15) and would thus constitute a
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symmetry transformation law
Z2 Φ1 → Φ1, Φ2 → −Φ2

Π2 (mirror symmetry) Φ1 ←→ Φ2

U(1) (Peccei-Quinn symmetry [23]) Φ1 → e−iθΦ1, Φ2 → eiθΦ2

SO(3) (maximal Higgs flavor symmetry) Φa → UabΦb , U ∈ U(2)/U(1)Y

Table 1. Classification of 2HDM scalar potential Higgs family symmetries in a generic Φ1–Φ2
basis [22, 43–46]. The corresponding constraints on the 2HDM scalar potential parameters are
shown in table 3.

hard breaking of the Z2 symmetry. The alternative is to assume that s2β 6= 0 and instead
impose m2

11 = m2
22, which requires an enhanced symmetry of the scalar potential.

The enhanced symmetries of the 2HDM have been classified in refs. [22, 43–46]. Start-
ing from a generic Φ1–Φ2 basis, these symmetries fall into two separate categories: (i) Higgs
family symmetries of the form Φa → UabΦb, and (ii) Generalized CP (GCP) symmetries
of the form Φa → UabΦ∗b , where U resides in a subgroup (either discrete or continuous)
of U(2). Although it appears that the number of possible choices for symmetries is quite
large, it turns out that in many cases, different choices of U yield the same constraints on
the 2HDM scalar potential parameters.

Note that the gauge covariant kinetic energy terms of the scalar fields are invariant
under the full global U(2) Higgs family symmetry transformation. Moreover, the scalar po-
tential is invariant under a global hypercharge transformation, U(1)Y, which is a subgroup
of U(2). Thus, any enhanced Higgs family symmetries that are respected by the scalar
potential would be a subset of the U(2) transformations that are orthogonal to U(1)Y. In
tables 1 and 2, we summarize the possible discrete and continuous Higgs family symmetries
modulo the U(1)Y hypercharge symmetry that can impose constraints on the 2HDM scalar
potential. Note that the list of symmetries in table 1 contains a redundancy. It may appear
that the Z2 and Π2 discrete symmetries are distinct (as they yield different constraints on
the 2HDM scalar potential parameters in the Φ1–Φ2 basis). Nevertheless, starting from
the scalar potential of a Π2-symmetric 2HDM, one can find a different basis of scalar fields
in which the corresponding scalar potential manifestly exhibits the Z2 symmetry, and vice
versa [40]. In table 3, the constraints of the various possible Higgs family symmetries and
GCP symmetries on the 2HDM scalar potential in a generic Φ1–Φ2 basis are exhibited.

One can also consider the possibility of applying two of the symmetries listed above
simultaneously in the same basis. Ref. [22] showed that no new independent models arise
in this way. For example, applying Z2 and Π2 in the same basis yields a Z2⊗Π2 model that
is equivalent to CP2 when expressed in a different basis. Similarly, applying U(1)PQ and
Π2 in the same basis yields a U(1)⊗Π2 model that is equivalent to GCP3 when expressed
in a different basis. The equivalence of GCP3 and U(1)⊗Π2 is explicitly demonstrated in
appendix A.4

4The U(1)⊗Π2-symmetric 2HDM scalar potential was first introduced in ref. [24].
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symmetry transformation law
GCP1 Φ1 → Φ∗1, Φ2 → Φ∗2
GCP2 Φ1 → Φ∗2, Φ2 → −Φ∗1

GCP3

Φ1 → Φ∗1 cos θ + Φ∗2 sin θ,
Φ2 → −Φ∗1 sin θ + Φ∗2 cos θ

, for 0 < θ < 1
2π.

Table 2. Classification of 2HDM scalar potential generalized CP (GCP) symmetries in a generic
Φ1–Φ2 basis [22, 43–46]. Note that a GCP3 symmetry with any value of θ that lies between 0
and 1

2π yields the same constrained 2HDM scalar potential. The corresponding constraints on the
2HDM scalar potential parameters are shown in table 3.

symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7

Z2 0 0 0
Π2 m2

11 real λ1 real λ∗6

Z2 ⊗Π2 m2
11 0 λ1 real 0 0

U(1) 0 0 0 0
U(1) ⊗Π2 m2

11 0 λ1 0 0 0
SO(3) m2

11 0 λ1 λ1 − λ3 0 0 0
GCP1 real real real real
GCP2 m2

11 0 λ1 −λ6

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

Table 3. Classification of 2HDM scalar potential symmetries and their impact on the coefficients of
the scalar potential [cf. eq. (2.1)] in a generic basis [22, 43–46]. Empty entries in table 3 correspond
to a lack of constraints on the corresponding parameters. Note that Π2, Z2 ⊗ Π2 and U(1) ⊗ Π2
are not independent symmetries, since a change of scalar field basis can be performed in each case
to a new basis in which the Z2, GCP2 and GCP3 symmetries, respectively, are manifestly realized.

A quick perusal of table 3 shows that the Higgs alignment limit, which can be achieved
by setting m2

11 = m2
22 and m2

12 = 0 arises automatically by imposing one of the following
Higgs family symmetries: Z2 ⊗Π2, U(1)⊗Π2, or SO(3). As noted above, one can replace
the first two symmetries of this list with GCP2 and GCP3, respectively, since a GCP2
[GCP3] invariant scalar potential exhibits a Z2 ⊗ Π2 [U(1) ⊗ Π2] symmetry in a different
basis of scalar fields. If the Higgs alignment is approximate, then one can tolerate a soft
breaking of the enhanced symmetries by allowing for m2

11 6= m2
22 and m2

12 6= 0. It turns out
that it is more convenient to employ the softly-broken Higgs family symmetries. Thus, we
shall focus on the implications of the softly-broken Z2⊗Π2, U(1)⊗Π2, or SO(3) symmetries
in what follows.

We begin with the case of least enhanced symmetry — the softly-broken Z2 ⊗ Π2
model. As indicated in table 3, this means that λ1 = λ2 and λ6 = λ7 = 0 while taking λ5
real. The softly-broken parameters m2

11, m2
12 and m2

12 are taken to be arbitrary (with m2
12

– 10 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
5

generically complex). It is convenient to introduce the parameter,

R ≡ λ3 + λ4 + λ5
λ

. (2.21)

It then follows from eq. (2.7) that λ345 = λR− 2λ5 sin2 ξ.
Assuming that v1 and v2 are both nonzero, one can use eqs. (2.8)–(2.10) [with

λ ≡ λ1 = λ2] to eliminate m2
11, m2

22 and Im(m2
12e

iξ). It then follows that the Higgs ba-
sis parameters are given by,

Y2 = 2 Re(m2
12e

iξ)
s2β

− 1
2λv

2 + 1
2v

2[λ(1−R) + 2λ5 sin2 ξ
] (

1− 1
2s

2
2β

)
, (2.22)

Z1 = Z2 = λ− 1
2
[
λ(1−R) + 2λ5 sin2 ξ

]
s2

2β , (2.23)

Z3 = λ3 + 1
2
[
λ(1−R) + 2λ5 sin2 ξ

]
s2

2β , (2.24)

Z4 = λ4 + 1
2
[
λ(1−R) + 2λ5 sin2 ξ

]
s2

2β , (2.25)

Z5 =
{1

2
[
λ(1−R) + 2λ5 sin2 ξ

]
s2

2β + λ5(cos 2ξ + ic2β sin 2ξ)
}
e−2iξ , (2.26)

Z6 = −Z7 =
{
−1

2
[
λ(1−R) + 2λ5 sin2 ξ

]
c2β + 1

2 iλ5 sin 2ξ
}
s2βe

−iξ . (2.27)

One can also check that the minimization conditions of the Higgs basis given by eq. (2.15),
are satisfied as expected.

The scalar sector is CP conserving if and only Im(Z∗5Z2
6 ) = 0. A straightforward

computation yields,

Im(Z∗5Z2
6 ) = −1

4λλ5(λ− λ3 − λ4 − λ5)(λ− λ3 − λ4 + λ5)s2
2βc2β sin 2ξ . (2.28)

We shall henceforth impose CP conservation in the scalar sector, which simplifies the
model that will be analyzed in this paper. In light of eq. (2.28), one can achieve a CP
conserving scalar sector in a number of different ways. The case of s2β = 0 corresponds to
the IDM which has already been noted above. The case of λ1 = λ3 + λ4 + λ5 corresponds
to the case of GCP3, whereas the case of λ5 = 0 corresponds to the case of U(1) ⊗ Π2,
which is equivalent to GCP3 in a different scalar field basis as noted above. Moreover,
one is always free to rephase Φ2 → iΦ2 in the GCP3 basis, which changes the sign of the
real parameter λ5. Thus, the case of λ1 = λ3 + λ4 − λ5 also corresponds to GCP3. These
models automatically yield a CP conserving scalar sector. These considerations motivate
us to focus primarily on the softly-broken U(1) ⊗ Π2 model. Thus, we now examine the
scalar sector of this model in more detail.

3 The softly-broken GCP3-symmetric 2HDM scalar potential

In this section, we examine in detail the scalar mass spectrum and neutral scalar mixing in
the softly-broken GCP3-symmetric 2HDM. As previously indicated, it is more convenient
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to impose a U(1)⊗Π2 Higgs family symmetry in the generic Φ1–Φ2 basis, which is equivalent
to the realization of a GCP3 symmetry in another basis, as shown in appendix A. Consider
the softly-broken U(1)⊗Π2 model, where λ ≡ λ1 = λ2 and λ5 = λ6 = λ7 = 0, whereas the
softly-broken parameters m2

11, m2
22 and m2

12 are arbitrary. If we demand that the potential
is bounded from below, then the following conditions must be satisfied,

λ > 0 , λ+ λ3 > 0 , λ+ λ3 + λ4 > 0 . (3.1)

Assuming that v1 and v2 are both nonzero, eqs. (2.8)–(2.10) yield,

m2
11 = Re(m2

12e
iξ) tan β − 1

2λv
2c2
β −

1
2(λ3 + λ4)v2s2

β , (3.2)

m2
22 = Re(m2

12e
iξ) cotβ − 1

2λv
2s2
β −

1
2(λ3 + λ4)v2c2

β , (3.3)

Im(m2
12e

iξ) = 0 . (3.4)

Eqs. (3.2) and (3.3) fix the value of β. In particular,

cos 2β = m2
22 −m2

11
m2

11 +m2
22 + λv2 , (3.5)

where 0 < β < 1
2π, under the assumption that m2

11 6= m2
22.

Since m2
12 is the only potentially complex parameter, one can rephase one of the two

Higgs doublet fields to set ξ = 0. After this rephasing, it follows from eq. (3.4) that m2
12 is

real. Then, eqs. (2.22)–(2.27) yield,

Y2 = 2m2
12

s2β
− 1

2λv
2
[
R+ 1

2s
2
2β(1−R)

]
, (3.6)

Z1 = Z2 = λ

[
1− 1

2s
2
2β(1−R)

]
, (3.7)

Z3 = λ3 + 1
2λs

2
2β(1−R) , (3.8)

Z4 = λ4 + 1
2λs

2
2β(1−R) , (3.9)

Z5 = 1
2λs

2
2β(1−R) , (3.10)

Z6 = −Z7 = −1
2s2βc2βλ(1−R) , (3.11)

where
R ≡ λ3 + λ4

λ
. (3.12)

It is noteworthy that in the limit of R = 1, the quartic terms of the scalar potential
are invariant under the full global U(2) Higgs family symmetry, which was denoted by
SO(3) in table 1 after removing the hypercharge U(1)Y transformations (which have no
effect on the scalar potential parameters). That is, in the limit of R = 1, we obtain the
softly-broken SO(3)-symmetric 2HDM, where the conditions λ = λ1 = λ2 = λ3 + λ4 and
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λ5 = λ6 = λ7 = 0 [specified in table 3] are satisfied for all possible choices of the scalar
field basis.

The squared masses of the neutral Higgs bosons are obtained by computing the eigen-
values of eq. (2.17). In light of eqs. (3.10) and (3.11), it is convenient to take η = 0 in
eq. (2.17), since this choice yields Im(Z5e

−2iη) = Im(Z6e
−iη) = 0. One can then immedi-

ately identity the squared mass of the CP-odd neutral scalar,

m2
A = 1

2v
2(Z3 + Z4 − Z5) + Y2 = 2m2

12
s2β

. (3.13)

Note that since s2β > 0, the positivity of m2
A requires that m2

12 > 0. One can also combine
eqs. (3.2), (3.3) and (3.13) to obtain an alternative expression,

m2
A = m2

11 +m2
22 + 1

2λv
2(1 +R) . (3.14)

Likewise, the charged Higgs squared mass is given by

m2
H± = Y2 + 1

2Z3v
2 = m2

A −
1
2λ4v

2 , (3.15)

after making use of eq. (3.13). Finally, the squared masses of the CP-even neutral scalars,
denoted by h and H, are the eigenvalues of the 2× 2 matrix,

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A+Z5v
2

)
=
(
λv2[1− 1

2s
2
2β(1−R)

]
−1

2λv
2s2βc2β(1−R)

−1
2λv

2s2βc2β(1−R) m2
A+ 1

2λv
2s2

2β(1−R)

)
, (3.16)

whereM2
H is expressed with respect to the Higgs basis fields {

√
2 ReH0

1 − v,
√

2 ReH0
2}.

The CP-even neutral scalar mass eigenstates are denoted by H and h (where mH > mh),
which are related to the Higgs basis fields as follows,(

H

h

)
=
(
cβ−α −sβ−α
sβ−α cβ−α

) (√
2 Re H0

1 − v√
2 Re H0

2

)
, (3.17)

where cβ−α ≡ cos(β−α) and sβ−α ≡ sin(β−α) in a convention where 0 ≤ β−α ≤ π. In a
generic Φ1–Φ2 basis, tan β = v2/v1 and α is the mixing angle that diagonalizes the CP-even
Higgs squared-mass matrix when expressed with respect to {

√
2 Re Φ0

1−v1 ,
√

2 Re Φ0
2−v2}.

Nevertheless, the quantity β − α independent of the choice of the scalar field basis.
The exact Higgs alignment limit corresponds to Z6 = 0, where the neutral scalar

interaction eigenstate corresponding to the SM Higgs boson,
√

2 ReH0
1 − v, does not mix

with the other neutral scalar interaction eigenstates of the 2HDM. We shall henceforth
assume that the lighter of the two CP-even Higgs mass eigenstates, h '

√
2 ReH0

1 − v, is
SM-like and thus should be identified with the observed Higgs boson with mh ' 125GeV.
Under this assumption, it follows that cβ−α → 0 in the Higgs alignment limit.

After diagonalizing the matrixM2
H , the neutral CP-even scalar masses are given by,

m2
H,h = 1

2

{
m2
A + λv2 ±

√[
m2
A − λv2(c2

2β +Rs2
2β)
]2 + λ2s2

2βc
2
2β(1−R)2v4

}
, (3.18)

– 13 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
5

and
cβ−α = λv2s2βc2β(1−R)

2
√

(m2
H −m2

h)
[
m2
H − λv2

(
1− 1

2s
2
2β(1−R)

)] . (3.19)

As noted above, if the Higgs alignment limit is approximately realized, then it follows
that |cβ−α| � 1. In light of eq. (3.19), which has been derived under the assumption that
s2β 6= 0, one can achieve |cβ−α| � 1 if either c2β is close to 0 and/or R is close to 1. In
light of eqs. (3.5) and (3.14), it follows that |c2β | � 1 when

|∆m2| ≡ |m2
22 −m2

11| � m2
A + 1

2λv
2(1−R) . (3.20)

That is, we shall require that the parameter ∆m2, which if present (and nonzero) corre-
sponds to a soft-breaking of the U(1)⊗Π2 symmetry, should not be too large. Alternatively,
if |1−R| � 1, which approaches the SO(3) symmetry limit noted below eq. (3.12), it again
follows that the Higgs alignment limit is approximately realized.

It is noteworthy that there are cases in which the Higgs alignment limit is exactly re-
alized (corresponding to cβ−α = 0) even though soft-symmetry breaking terms are present.
For example, if c2β = 0 then eq. (3.5) yields ∆m2 = 0 and exact Higgs alignment is
achieved even though the U(1)⊗Π2 symmetry remains softly broken if m2

12 6= 0. Likewise,
exact Higgs alignment is achieved when R = 1 despite the fact that the SO(3) symme-
try remains softly broken if either ∆m2 and/or m2

12 are nonzero. One can verify that in
these two examples, Y3 = 0 [cf. eq. (2.20)] when the scalar potential minimum conditions
[eqs. (3.2)–(3.4)] are imposed.

A stable minimum requires that the scalar squared-masses should be positive. Hence,

m2
12 > 0 and λ4 < 2m2

A/v
2 . (3.21)

due to the positivity of m2
A and m2

H± . In addition, we demand that

TrM2
H = m2

A + λv2 > 0 , (3.22)
1
v2 detM2

H = 1
4λ

2v2s2
2β(1−R2) + λm2

A

[
1− 1

2s
2
2β(1−R)

]
> 0 . (3.23)

Note that eq. (3.22) is automatically satisfied in light of eq. (3.1). On the other hand,
eq. (3.23) is satisfied only if R lies below a critical positive value that depends on λ, β
and m2

A/v
2,

− 1 < R <
m2
A

λv2 +

√√√√(m2
A

λv2 − 1
)2

+ 4m2
A

λv2s2
2β
, (3.24)

after employing eq. (3.1).5 It follows that eq. (3.23) is satisfied for all values of β if

− 1 < R < 1 + 2m2
A

λv2 . (3.25)

5Apart from the upper bound given in eq. (3.24), one can obtain an independent upper bound by
imposing either tree-level unitarity or a perturbativity constraint. One would then expect R/(4π) . O(1).
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The cases of v1 = 0 or v2 = 0 should be treated separately and imply that m2
12 = 0 in

light of eqs. (2.11) and (2.12). First, suppose that v2 = 0 and v1 = v. Then, eqs. (3.13)
and (3.14) are replaced by

m2
A = Y2 + 1

2λv
2R , (3.26)

where Y2 is a free parameter of the model that is no longer given by eq. (3.6). In particular,
eq. (3.5) is no longer valid since Y2 = m2

22 is independent of the squared mass parameter
m2

11; only the latter is fixed by the scalar potential minimum condition.
The squared-masses of the CP-even scalars and the charged Higgs scalar are given by,

m2
h = λv2 , m2

H = m2
A , m2

H± = m2
A −

1
2λ4v

2 , (3.27)

where h denotes the neutral CP-even Higgs scalar whose tree-level properties exactly coin-
cide with those of the SM Higgs boson. Eqs. (3.7)–(3.12) remain valid after setting β = 0.

Second, suppose that v1 = 0 and v2 = v. In this case, it follows that Y2 = m2
11 is a

free parameter and Y1 = m2
22 = −1

2Z1v
2 = −1

2λv
2. Eqs. (3.7)–(3.12) remain valid after

setting β = 1
2π. Moreover, the neutral Higgs masses given by eqs. (3.26) and (3.27) also

remain valid.
Let us examine more closely when a vacuum can arise in which one of the two vevs

vanishes. First, we require that R > −1 in light of eq. (3.1). If v1 = v and v2 = 0, then
eq. (2.12) yields m2

12 = 0 and m2
11 = −1

2λv
2 < 0. The positivity of m2

A given in eq. (3.26)
yields m2

22 + 1
2λRv

2 > 0. Hence, it follows that

m2
22 > Rm2

11 . (3.28)

The above inequality is equivalent to

(1 +R)(m2
11 −m2

22) < (1−R)(m2
11 +m2

22) . (3.29)

Since 1 +R is always positive, it follows that

m2
22 −m2

11 > −
(1−R

1 +R

)
(m2

11 +m2
22) . (3.30)

In the case of v1 = 0 and v2 = v, one simply interchanges the roles of m2
11 and m2

22.
In particular,

m2
22 −m2

11 <

(1−R
1 +R

)
(m2

11 +m2
22) . (3.31)

Although the vanishing of one of the two vevs requires that m2
12 = 0, the converse

is not necessarily true. That is, if m2
12 = 0, then two different phases of the 2HDM are

possible: an inert phase in which either v1 or v2 vanishes and a mixed phase in which both
v1 and v2 are nonzero. To analyze the latter possibility more detail, we note that if m2

12 = 0
and v1, v2 6= 0, then eqs. (3.2) and (3.3) yield

m2
11 = −1

2λ
(
v2

1 +Rv2
2
)
, (3.32)

m2
22 = −1

2λ
(
v2

2 +Rv2
1
)
. (3.33)
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It is convenient to eliminate v1 and v2 in favor of the scalar potential parameters. Using
eqs. (3.32) and (3.33), one easily obtains,

v2
1 = 2

λ

(
m2

22R−m2
11

1−R2

)
, v2

2 = 2
λ

(
m2

11R−m2
22

1−R2

)
. (3.34)

One feature of the mixed phase with m2
12 = 0 is that mA = 0 due to the spontaneous

breaking of the global Peccei-Quinn U(1) symmetry. Thus, we will exclude this possibility in
our subsequent phenomenological analysis. Nevertheless, for completeness it is instructive
to examine the range of scalar potential parameters that yields this mixed phase scenario.

One can work out a number of inequalities that must be satisfied if the mixed phase
is stable. We again require that R > −1 in light of eq. (3.1). Using eq. (3.16), the trace
and determinant of the 2× 2 neutral CP-even scalar squared-mass matrix yields,

m2
h +m2

H = λv2 , m2
hm

2
H = 1

4λ
2v4s2

2β(1−R2) . (3.35)

Hence, the positivity of the CP-even scalar squared masses implies that |R| < 1. Next, we
employ eqs. (3.32) and (3.33) along with |R| < 1 to obtain,

m2
11 +m2

22 = −1
2λv

2(1 +R) < 0 , (3.36)

m2
11 +m2

22 + λv2 = 1
2λv

2(1−R) > 0 . (3.37)

Finally, the requirement that v2
1 and v2

2 are strictly positive implies that

m2
22R > m2

11 , m2
11R > m2

22 , (3.38)

in light of eq. (3.34). The above equations are actually equivalent to the requirement that
|c2β | < 1 after making use of eqs. (3.5) and (3.37). It then follows that(1−R

1 +R

)
(m2

11 +m2
22) < m2

22 −m2
11 < −

(1−R
1 +R

)
(m2

11 +m2
22) , (3.39)

which is easily shown to be equivalent to eq. (3.38). Comparing eq. (3.39) with eqs. (3.30)
and (3.31), it follows that a stable mixed phase and inert phase never coexist for any choice
of the scalar potential parameters of the softly-broken U(1)⊗Π2 symmetric 2HDM.6

Based on the considerations above, it follows that we can fix the parameter space of
the U(1) ⊗ Π2 model by specifying the values of λ, λ4, R, β and mA (with v fixed to
be 246 GeV). One can always replace λ with mh and λ4 with mH± , in which case the
independent parameters of the U(1)⊗Π2 model can be taken to be mh, mA, mH± , R and
β. If β 6= 0, 1

2π, then one is free to take m2
12 (which is assumed to be real and positive) in

place of mA as the independent parameter.
6The same conclusion applies in the case of a softly-broken Z2⊗Π2 symmetric scalar potential, where λ5

is a nonzero real number. In this case eqs. (3.30), (3.31) and (3.39) still apply, where R is now defined as in
eq. (2.21). This corrects an error in ref. [21] which neglected to include the left hand side of the inequality
given in eq. (3.39) and hence incorrectly concluded that the inert and mixed phases could coexist over part
of the parameter space with m2

12 = 0.
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The inert limit of the U(1) ⊗ Π2 model corresponds to setting Z6 = 0, in which case
we have Y3 = Z6 = Z7 = 0, implying the presence of an exact Z2 symmetry (despite of
the presence of squared-mass parameters that softly break the U(1)⊗Π2 symmetry). The
inert limit arises if either v1 = 0 or v2 = 0, but is more general. Indeed, eq. (3.11) implies
that the inert limit arises if one of the following conditions are satisfied: β = 0, 1

4π,
1
2π, or

R = 1. (We reject the possibility of λ = 0 which results in a massless CP-even scalar.) In
the inert limit, cβ−α = 0 and the neutral CP-even scalar h with squared-mass m2

h = Z1v
2

possesses the tree-level properties of the SM Higgs boson.
Finally, we observe that the U(1)⊗ Π2 symmetry is explicitly preserved by the scalar

potential if m2
11 = m2

22 and m2
12 = 0. If both vevs are nonzero then the U(1) ⊗ Π2

symmetry limit arises if m2
12 = 0 and β = 1

4π. In this case, the neutral scalar mass
spectrum is m2

A = 0, m2
h = 1

2λv
2(1 + R) and m2

H = 1
2λv

2(1 − R), which corresponds to a
stable minimum if |R| < 1. The U(1) symmetry is spontaneously broken by the vacuum,
resulting in a massless scalar state. Note that in the special case of m2

11 = m2
22, m2

12 = 0
and R = 1, an SO(3) symmetry is explicitly preserved by the scalar potential [cf. table 3].
The SO(3) symmetry is spontaneously broken by the vacuum, leaving a residual unbroken
U(1) symmetry, which results in two massless Goldstone bosons, H and A.

If only one of the two vevs is nonzero, then sin 2β = 0, which implies that m2
12 = 0.

After setting m2
11 = m2

22, we obtain m2
A = m2

H = 1
2λv

2(R − 1) and m2
h = λv2, which

corresponds to a stable minimum if R > 1. Note that in this case the U(1) symmetry is
preserved by the vacuum and results in the H, A mass degeneracy. In the limit of R→ 1
one again finds an SO(3)-symmetric scalar potential where SO(3) is spontaneously broken
down to U(1), resulting in two Goldstone boson states A and H as previously noted.

In all of the unbroken U(1)⊗Π2 symmetry cases above and in the limiting SO(3) case
in the limit of R = 1, note that cβ−α = 0, corresponding to a Higgs alignment limit where h
has the tree-level properties of the SM Higgs boson. Although the U(1) ⊗ Π2 and SO(3)
symmetry limits yield the inert model, the converse does not necessarily hold. In particular,
if m2

12 > 0 and β = 1
4π then m2

A = 2m2
12, m2

h = 1
2λv

2(1 +R) and m2
H = m2

A + 1
2λv

2(1−R)
due to an explicit breaking of the U(1) symmetry. If m2

12 > 0, s2β 6= 0 and R = 1 then
m2
h = λv2 and m2

A = m2
H = 2m2

12/s2β . If sin 2β = 0 and m2
11 6= m2

22 then m2
h = λv2 and

m2
A = m2

H . In the latter two cases, the Π2 symmetry is softly broken, whereas an unbroken
U(1) symmetry is responsible for the H, A mass degeneracy.

4 GCP3-symmetric Yukawa couplings

If we wish to employ a GCP3-symmetric 2HDM scalar potential (broken at most by
dimension-two squared-mass parameters), then we should impose the GCP3 symmetry
on the Higgs-fermion Yukawa couplings. Such an attempt was made in ref. [47] by extend-
ing the GCP3 transformation laws to the fermion fields. Unfortunately, any such extension
must relate fermions of different generations, and the resulting phenomenology was in-
compatible with observed experimental data. A possible way out of this conundrum was
suggested in ref. [21], which proposed adding new vector-like fermions to the two Higgs
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doublet extended SM.7 In this way, one could devise an extension of the GCP3 transfor-
mation laws to the fermion sector that relates the fermion of the SM to vector-like fermion
partners of the same flavor. It is again convenient to work in the U(1)×Π2 basis of scalar
fields, and thus all fermion field transformation laws introduced below will be extensions
of the U(1)⊗Π2 scalar field transformations exhibited in table 1.

4.1 Extending the 2HDM to include vector-like fermions

First, consider the top-quark sector. Let q = (u d)T denote the third generation of color
triplet, SU(2) doublet of two-component quark fields, and ū denote the color anti-triplet,
SU(2) singlet two-component top quark field. We now add a mirror two-component top
partner field, U , having the same SM gauge quantum numbers as ū. As suggested by the
notation, one can easily extend these considerations to three generations of quarks and
their mirrored partners by considering the generation indices on the fermion fields defined
above to be implicit. Under a U(1)⊗Π2 symmetry transformation,

Π2 : q ←→ q, ū←→U, Φ1 ←→Φ2, (4.1)
U(1) : q −→ q, ū −→ e−iθū, U −→ eiθU, Φ1 −→ e−iθΦ1, Φ2 −→ eiθΦ2. (4.2)

It is possible to impose the symmetries on the fermion sector in other ways, for example,
by adding a mirror isospin doublet for q either instead of or in addition to the singlet for ū.
The choice above is minimal in terms of the additional matter content. Note that the gauge
covariant kinetic energy terms of the fermions and their mirror partners are automatically
invariant under U(1) ⊗ Π2, whereas the form of the Yukawa couplings is constrained. In
particular, the Yukawa couplings invariant under U(1) ⊗ Π2 transformations now take
the form,

−LYuk ⊃ yt
(
qΦ2ū+ qΦ1U

)
+ h.c., (4.3)

where qΦi ≡ εabqaΦib (for i = 1, 2) and a and b are SU(2) gauge group indices. The
antisymmetric epsilon symbol defined such that ε12 = −ε21 = 1. In order to avoid gauge
anomalies, we shall add a two-component color triplet, SU(2) singlet field U with a weak
hypercharge that is opposite in sign to that of its conjugate field, U . This new fermion U
transforms under U(1)⊗Π2 as,

Π2 : U ←→U (4.4)
U(1) : U −→ e±iθU , (4.5)

where one of the two signs in eq. (4.5) should be selected (either sign choice is equally valid).
No additional Yukawa interaction involving U is allowed by the symmetry. The mirror top
partner U together with U can be combined into a Dirac fermion that possesses vector-like
couplings to gauge bosons. Henceforth we will refer to U and U as the vector-like partners
of the top quark.

As indicated in table 3, if m2
11 = m2

22, m2
12 = 0, λ = λ1 = λ2 and R ≡ (λ3 + λ4)/λ = 1

then the scalar potential is invariant under the U(2) Higgs flavor symmetry, Φa → UabΦb,
7The phenomenology of such models has been examined previously in ref. [48].
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where U ∈ U(2) and a, b = 1, 2. Moreover, the Yukawa Lagrangian specified in eq. (4.3)
is also invariant under the U(2) Higgs family symmetry. In particular, we can combine ū
and U into a U(2) multiplet, U† ≡

(
U ū

)
, with a transformation law under U(2) given by

U†a → U
†
bU
†
ba. We can then rewirte eq. (4.3) to exhibit its invariance under U(2),

−LYuk ⊃ ytqU†aΦa + h.c. (4.6)

Furthermore, we recognize that the U(1) and Π2 symmetry transformations specified in
eqs. (4.1) and (4.2) are special elements of the two-dimensional representation of the U(2)
symmetry with

U(1) : U =
(
e−iθ 0

0 eiθ

)
, Π2 : U =

(
0 1
1 0

)
. (4.7)

The fields u, d transform as singlets under the U(2) transformation, whereas U transforms
as a nontrivial one-dimensional representation of U(2) as indicated in eq. (4.5).

In order to evade the experimental limits on the nonobservation of vector-like fermions
at the LHC, we shall add explicit U(1)Y gauge invariant mass terms that softly break the
U(2) symmetry,

−Lmass = MUUU + (MuūU + h.c.). (4.8)

The U(1)⊗Π2 subgroup of U(2) is also softly broken once eq. (4.8) is introduced. The
vector-like mass terms explicitly break the Π2 symmetry if MU 6= Mu, whereas the Π2
symmetry is preserved if MU = Mu. In contrast, if MUMu 6= 0 then one of the two mass
terms above must explicitly break the U(1) symmetry for either sign choice of the U(1)
transformation law given in eq. (4.5). Indeed, as noted at the end of section 3, one must
avoid the spontaneously breaking of the U(1) symmetry by the vacuum, which yields an
undesirable massless scalar.

Having introduced the soft symmetry breaking of eq. (4.8), it then follows that the soft
symmetry breaking squared-mass parameters of the scalar potential will be automatically
generated in the low energy effective 2HDM once the mirror fermions are integrated out.
For example, because of the breaking of the Π2 symmetry, quantum corrections spoil the
symmetry protected degeneracy, m2

11 = m2
22. However, due to the soft nature of the

symmetry breaking, m2
22 −m2

11 is protected from quadratic sensitivity to the cutoff scale
Λc. Likewise, due to the soft breaking of the U(1) symmetry, we expect the following
contributions to m2

12 ∝ MuMU and m2
11 −m2

22 ∝ (M2
U −M2

u). We return to the effects of
soft symmetry breaking in section 4.2.

Other SM fermion partners can be included analogously: SU(2) doublets of two-
component lepton fields are denoted by ` = (ν e)T; and the remaining two-component
SU(2) singlet fermion fields of the SM, d̄, and ē, acquire mirror partners D and E. These
mirror fields pair up with their conjugate fields D and E (generation indices are implicit)
to yield vector-like mass terms. The U(1)⊗Π2 symmetries are taken to act as,

Π2 : d̄⇐⇒D, `⇐⇒ `, ē⇐⇒E, D⇐⇒D, E⇐⇒E (4.9)
U(1) : d̄ =⇒ eiθξd d̄, ` =⇒ `, ē =⇒ eiθξe ē, D =⇒ e−iθξdD, D =⇒ e±iθD,

E =⇒ e−iθξeE, E =⇒ e±iθE (4.10)
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As discussed below eq. (4.5), in the transformation laws of D and E, one of the two sign
choices should be selected, although any one of the four possible sign choices is equally
valid. The factors ξd and ξe are also sign factors that can be chosen in four different
ways. For example, if ξd = ξe = 1, then the Yukawa couplings are Type-I Higgs-quark and
Higgs-lepton couplings [25, 49],

−LYUK ⊃ yb
(
Φ†2qd̄+ Φ†1qD

)
+ yτ

(
Φ†2`ē+ Φ†1`E

)
. (4.11)

Likewise, if ξd = ξe = −1, then one must switch Φ1 ↔ Φ2 in eq. (4.11), which yields Type II
Higgs-quark and Higgs-lepton couplings [25, 36]. Alternatively, one could choose ξd = −ξe,
in which case, ξd = 1 corresponds to Type X Higgs-quark and Higgs-lepton couplings and
ξd = −1 corresponds to Type Y Higgs-quark and Higgs-lepton couplings [26, 27]. In a
multi-generational model, there are no FCNCs mediated by tree-level neutral Higgs boson
exchange in models with Type I, II, X or Y Yukawa couplings.

Once again, the Yukawa Lagrangian specified in eq. (4.11) is invariant under the U(2)
Higgs family symmetry. We can combine d̄ andD and likewise ē and E into U(2) multiplets,
D† ≡

(
D d̄

)
and E† ≡

(
E ē

)
, with transformation laws under U(2) given by D†a → D

†
bU
†
ba

and E†a → E
†
bU
†
ba. That is, we can rewirte eq. (4.11) to exhibit its invariance under U(2),

−LYuk ⊃ ybqD†aΦa + yτ `E†aΦa + h.c. (4.12)

The fields ν, e transform as singlets under the U(2) transformation, whereas D and E

transform as a nontrivial one-dimensional representation of U(2) as indicated in eq. (4.10).
As in eq. (4.8), we add vector-like fermion mass terms to softly break the U(2) sym-

metry,
−Lmass ⊃MDDD +MEEE + (Mdd̄D +MeēE + h.c.). (4.13)

Once again, the U(1)⊗Π2 subgroup of U(2) is also softly broken. The vector-like mass terms
explicitly break the Π2 symmetry ifMD 6= Md and/orME 6= Me, whereas the Π2 symmetry
is preserved if MD = Md and ME = Me. In contrast, if MDMd 6= 0 [or MEMe 6= 0] then
one of the two mass terms appearing in MDDD + Mdd̄D [or MEEE + MeēE] above
must explicitly breaks the U(1) symmetry for either sign choice in the corresponding U(1)
transformation law given in eq. (4.10).

Given vector-like mass parameters Mf and MF , there is a one-loop correction to
m2

22 −m2
11. Requiring this correction to be smaller than the electroweak scale implies

a bound of order
y2
f

16π2 |M
2
F −M2

f | . v2. (4.14)

Assume for simplicity that Mf � MF , which suppresses the mixing of f with its vector-
like partners. Then we require MF=b,τ . 100TeV and MF=e . 108 GeV. Therefore, if the
cutoff scale Λc is not too high, then the simplest, most minimal new field content needed
to enforce the symmetries in a natural way is a vector-like right-handed top partner near
the electroweak scale. Integrating out the top partner at its threshold, the low-energy
effective theory is that of a 2HDM with a scalar potential governed by an approximate
(softly-broken) U(1)⊗Π2 symmetry.
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4.2 Soft symmetry breaking effects

Vector-like masses softly break the discrete mirror Π2 symmetry and the top sector dom-
inates as previously noted. We imagine that above a cutoff scale Λc, the symmetry is re-
stored; below Λc, explicit Π2-breaking enters with a characteristic scale, M2 ≡M2

U +M2
u .

Following eqs. (4.3) and (4.8), we consider the Lagrangian,

−L ⊂ yt
(
qΦ2ū+ qΦ1U

)
+ (MUUU +MuūU + h.c.) . (4.15)

The one generation model possesses four potentially complex parameters: m2
12, yt, Mu

andMU (where we are only including top partners among the vector-like quarks). However,
one can remove all complex phases by absorbing them into the definition of the scalar and
fermion fields. In particular, given Φ1, Φ2, q, ū, U and U , the Lagrangian is invariant under
a U(1)Y transformation. This leaves five additional global U(1) transformations that can
be used to absorb phases.8 Hence, without loss of generality, one can assume that m2

12, yt,
Mu and MU are real positive parameters.

The mass terms appear in the Lagrangian in the following form,

−Lmass =Mi
jχ̂iη̂

j + h.c., (4.16)

whereM is (in general) a complex matrix with matrix elements Mi
j . Following ref. [50],

we have denoted the two-component fermion interaction eigenstates by hatted fields, χ̂i
and η̂i, which are related to the unhatted fermion mass eigenstate fields, χi and ηi, via

χ̂i = Li
kχk , η̂i = Rikη

k , (4.17)

where the unitary matrices L and R, with matrix elements given respectively by Lik and
Rik, are chosen such thatMi

jLi
kRj` = mkδ

k
` (no sum over k), such that themk are real and

nonnegative. Equivalently, in matrix notation with suppressed indices, χ̂ = Lχ , η̂ = Rη

and
LTMR = m = diag(m1,m2, . . .), (4.18)

where the real and nonnegative mk can be identified as the physical masses of the fermions.
The singular value decomposition of linear algebra states that for any complex matrix

M, unitary matrices L and R exist such that eq. (4.18) is satisfied. It then follows that:

LT(MM†)L∗ = R†(M†M)R = m2. (4.19)

That is, sinceMM† andM†M are both hermitian, they can be diagonalized by unitary
matrices. The diagonal elements of m are therefore the nonnegative square roots of the
corresponding eigenvalues ofMM† (or equivalently,M†M). In terms of the fermion mass
eigenstate fields,

−L =
∑
i

miχiη
i + h.c. (4.20)

8Including one generation of vector-like down-type quarks and charged leptons introduces additional
potentially complex parameters but also adds additional U(1) transformations to remove those phases.

– 21 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
5

The mass matrix now consists of 2×2 blocks
( 0 mi
mi 0

)
along the diagonal. For mi 6= 0, each

χi–ηi pair describes a charged Dirac fermion.
In our present application, M is a real 2 × 2 matrix in the convention where the

mass parameters of eq. (4.15) are real and nonnegative, in which case the matrices L and
R can be taken to be real orthogonal matrices. Thus, we shall employ the singular value
decomposition of an arbitrary real 2×2 matrix, whose explicit form is given in appendix B.

We identify the interaction eigenstates as follows: χ̂i = (u U) and η̂j = (ū U),
where u ≡ q1. Hence, prior to electroweak symmetry breaking, eq. (4.15) yields,

M =
(

0 0
Mu MU

)
. (4.21)

Using the eqs. (B.4) and (B.21), it follows that L = 12×2 and

R =
(

cos γ sin γ
− sin γ cos γ

)
, (4.22)

where

sγ ≡ sin γ = Mu

M
, cγ ≡ cos γ = MU

M
, where M ≡ (M2

U +M2
u)1/2 , (4.23)

and 0 ≤ γ ≤ 1
2π in the convention adopted below eq. (4.15) where MU and Mu are taken

to be nonnegative quantities. The two-component fields u and U do not mix, whereas
ū and U mix to form two-component fermion mass eigenstates that we shall denote by
ηk = (x̄0 X0), where the subscript 0 indicates a mass-eigenstate field prior to electroweak
symmetry breaking. In particular,

x̄0 = −sγU + cγ ū , X0 = cγU + sγ ū . (4.24)

Rewriting eq. (4.15) in terms of the two-component fermion mass-eigenstate fields
yields,

−L ⊂ yt
{
q(Φ2sγ + Φ1cγ)X0 + q(Φ2cγ − Φ1sγ)x̄0

}
+MX0U + h.c. (4.25)

One can introduce four-component fermions fields,

t0 =
(
u

x̄0

)
, T0 ≡

(
U

X0

)
. (4.26)

Then the four-component fermion version of eq. (4.25) contains the following mass terms
and couplings to the neutral Higgs fields,

−L ⊂ yt
{

(Φ0
2cγ − Φ0

1sγ)t̄0t0 + (Φ0
2sγ + Φ0

1cγ)(T 0PLt0 + h.c.)
}

+MT 0T0 , (4.27)

where PL ≡ 1
2(1− γ5).

The Π2 symmetry is broken ifMu 6= MU , which corresponds to sγ 6= cγ . When evolved
down from the UV theory, this breaking generates a mass splitting m2

11 −m2
22 6= 0. In the

infrared the mass splitting is approximately

∆m2 ≡ m2
22 −m2

11 ∼ κ∆m2(M2
U −M2

u)− 3y2
t (M2

U −M2
u)

4π2 log(Λc/M) . (4.28)
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There is a similar contribution to m2
12,

m2
12 ∼ κm2

12
MUMu + 3y2

tMUMu

4π2 log
(Λc
M

)
. (4.29)

The first terms exhibited on the right hand sides of eqs. (4.28) and (4.29) represent threshold
corrections at the UV scale Λc, where κ∆m2 , κ∆m2

12
are dimensionless couplings, and the

second terms represent a radiative correction from the quark loops below Λc. Thus, the
framework under consideration is an example of a partially natural 2HDM introduced in
ref. [21], where only one fine-tuning of scalar parameters is necessary to determine the
electroweak scale.

In estimating the numerical values of ∆m2 and m2
12 above, one must determine the

value of the parameter yt. In particular, yt is not the physical top-quark coupling, but it
is related to the physical top-quark mass via,

mt ' (ytv/
√

2)|sβ−γ | , (4.30)

after electroweak symmetry breaking is taken into account. This relation implies that
|sβ−γ | should not be too small; otherwise eq. (4.30) would require yt � 1 leading to a
non-perturbative top Yukawa coupling (as well as a Landau pole in the running of yt that
is uncomfortably close to the TeV scale). Since we expect that realistic values of sin γ
should be rather small compared to unity in order to avoid significant shifts in the top
quark couplings away from their SM values, it follows that the preferred parameter regime
will correspond to values of tan β above 1.

Note that m2
12 given by eq. (4.28) vanishes if either MU or Mu vanish due to an

unbroken Peccei-Quinn U(1) symmetry. However, in contrast to the model of ref. [21] where
Mu was assumed to vanish, we expect that both MU and Mu are generically nonzero, as
these parameters are presumably generated by physics that lies above the UV cutoff scale
Λc. It is still possible that m2

12 = 0 accidentally due to the a cancellation of the two terms
on the right hand side of eq. (4.29). However, we would regard such a cancellation as an
unnatural fine-tuning of the model parameters. Thus, we conclude that m2

12 is generically
non-zero, which implies that the inert limit of the model (where Higgs alignment is exact)
is not realized. That is, in the scenario presented in this paper, the Higgs alignment is
expected to be approximate, implying that deviations from SM Higgs couplings should
eventually be detected in future Higgs precision experiments.

Below the scale M , the vector-like fermions can be integrated out, in which case
the parameters of the scalar potential (evaluated at the electroweak scale) will shift,
λi → λi + δλi, due to the evolution of the scalar potential parameters from the scale M ,
which characterizes the mass scale of the vector-like top quarks, down to the top quark
mass mt. The parameter shifts in the one-loop approximation are roughly given by,9

δλi ∼
3y4
t

4π2ki log
(
M

mt

)
, (4.31)

9There are additional symmetry-preserving contributions to the running of the λi between Λc and M ,
which should be understood to be absorbed into the symmetry-preserving values of the λi at the scale
M . Also, compared with eq. (4.28), we give only the leading-log correction to the λi below the scale
M , neglecting finite symmetry-breaking threshold corrections. The logarithmic terms give a qualitative
estimate for the size of the corrections.
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for i = 1, 2, . . . , 7 with ki ≡ (−sγ)p1(cγ)p2 , where pi is equal to the number of times
the scalar field Φi or its complex conjugate appears in the ith quartic term of the scalar
potential. In particular,

k1 = s4
γ , k2 = c4

γ , k3 = k4 = k5 = s2
γc

2
γ , k6 =−s3

γcγ , k7 =−sγc3
γ , (4.32)

as a consequence of the mixing between U and ū [cf. eqs. (4.24) and (4.25)].
The size of the parameter shifts can be estimated by employing eq. (4.30) for yt. For

example, if we take M = 1.5 TeV, γ = 0.2, and tan β > 5, then we obtain a splitting
between λ1 and λ2,

|λ2 − λ1| ∼
3y4
t

4π2 log
(
M

mt

)
| cos 2γ| < 0.22 . (4.33)

Likewise nonzero values of λ5, λ6, and λ7 are also generated,

|λ5| ∼
3y4
t

16π2 log
(
M

mt

)
s2

2γ < 0.01 , (4.34)

|λ6| ∼
3y4
t

4π2 log
(
M

mt

)
s3
γcγ < 0.0019 , (4.35)

|λ7| ∼
3y4
t

4π2 log
(
M

mt

)
sγc

3
γ < 0.045 . (4.36)

Note that λ5, λ6, and λ7 vanish when sγcγ = 0 since this limit corresponds to an unbroken
Peccei-Quinn U(1) symmetry.

In the case of R = 1, the tree-level theory is a softly-broken SO(3)-invariant 2HDM.
Below the scale M , a shift δR ≡ R − 1 will be generated after integrating out the vector-
like fermions. However, some care is needed in defining what we mean by R since in the
one-loop approximation we no longer have λ ≡ λ1 = λ2 and λ5 = 0 in light of eqs. (4.33)
and (4.34). Thus, we redefine,

R ≡ λ3 + λ4 + λ5
1
2(λ1 + λ2)

, (4.37)

which reduces to our previous definitions of R in the case of λ1 = λ2 [cf. eq. (2.21)] and
λ5 = 0 [cf. eq. (3.12)]. Using eqs. (4.31)–(4.32), we then find that the shift in the R
parameter in the one-loop approximation is roughly given by,10

λ |δR| =
∣∣∣∣δ (λ3 + λ4 + λ5 −

1
2λ1 −

1
2λ2

)∣∣∣∣ ∼ 3y4
t

8π2 log
(
M

mt

)
| cos 4γ| < 0.083 , (4.38)

for the same choice of parameters employed below eq. (4.33).
Numerically, in the parameter regions of interest, the corrections to the relations

λ1 = λ2, λ5 = λ6 = λ7 = 0 (and the deviation of R from 1 in the case of a softly-broken
SO(3)-invariant 2HDM) are small. Hence, in our present study, we shall simply neglect
these effects as they will have a negligible numerical impact on our final results.

10Note that in the one-loop approximation, δR = 0 if cos 4γ = 0. Nevertheless, this limiting case does not
correspond to the presence of an unbroken SO(3) symmetry given that λ1 6= λ2 and λ5 6= 0 if cos 4γ = 0,
in light of eqs. (4.33) and (4.34). The vanishing of δR when cos 4γ = 0 must be regarded as an accidental
cancellation that is not expected to persist at higher orders in the loop expansion.
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4.3 Top quark mixing after EWSB

Additional mixing of fermionic states can occur once the electroweak symmetry breaking
effects are taken into account [48, 51].11 After inserting

Φ0
i = vi√

2
+ Φ0

i , for i = 1, 2, (4.39)

in eq. (4.25), we denote χ̂ = (u U) as before and η̂j = (x̄0 X0). These states are now
considered to be interaction eigenstates. The two-component Dirac fermion mass matrix
defined in eq. (4.16) is now given by,

M =
(
Y sβ−γ Y cβ−γ

0 M

)
, (4.40)

where
Y ≡ ytv√

2
. (4.41)

Note that if cβ−γ = 0 thenM is diagonal, and no additional mixing between the top
quark and its vector-like partners is generated. However, since β and γ are independent pa-
rameters, the generic case yields additional mixing effects. Using the results of appendix B,
the fermion mass spectrum consists of two Dirac fermions with squared-masses,

m2
T,t = 1

2

{
M2 + Y 2 ±

√
(M2 + Y 2)2 − 4Y 2M2s2

β−γ

}
, (4.42)

where sγ and cγ are defined in eq. (4.23) and mT > mt. Note that,

m2
T +m2

t = M2 + Y 2 , m2
Tm

2
t = Y 2M2s2

β−γ . (4.43)

The singular value decomposition ofM [eq. (4.40)] yields two mixing angles, θL and θR,

sin 2θL = 2YMcβ−γ
m2
T −m2

t

, cos 2θL = M2 − Y 2

m2
T −m2

t

, (4.44)

sin 2θR = Y 2 sin 2(β − γ)
m2
T −m2

t

, cos 2θR = M2 + Y 2 cos 2(β − γ)
m2
T −m2

t

. (4.45)

Note that eqs. (4.44) and (4.45) determine both θL and θR modulo π. In addition to the
two mixing angles, the matrices L and R given in eq. (B.4) also depend on εL and εR,
where εLεR = sgn(sβ−γ).

One can make use of eq. (4.44) to obtain the following convenient expression,

tan θL = sin 2θL
1 + cos 2θL

= 2YMcβ−γ
m2
T −m2

t +M2 − Y 2 = YMcβ−γ
M2 −m2

t

. (4.46)

11Of course, this analysis could have been carried out in one step by first employing eq. (4.39) in eq. (4.15)
and then computing the mixing of the top quark with its vector-like partners. Details can be found in
appendix C.
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after using eq. (4.43) in the last step above. One can then employ eq. (B.20) to determine
θR, which shows that the mixing angles θL and θR are not independent quantities [51],

tan θR = εLεR
mt

mT
tan θL . (4.47)

Since no vector-like top quarks have been observed so far at the LHC, it follows that
mT � mt. Thus, we can obtain useful approximations to the relationship between the
physical masses and the parameters M and Y as well as approximations for θL and θR.
For example, eq. (4.42) yields,

m2
t = Y 2s2

β−γ

[(
1− Y

M
cβ−γ

)2
+O

(
Y 2

M2

)]
, (4.48)

m2
T = M2 + Y 2

[
c2
β−γ +O

(
Y 2

M2

)]
. (4.49)

In a convention where Y , Mu, MU and the vevs v1 and v2 are positive, it follows that
0 ≤ β, γ ≤ 1

2π, which implies that 0 ≤ cβ−γ ≤ 1 and −1 ≤ sβ−γ ≤ −1. Hence,

mt ' Y |sβ−γ |
(

1− Y

M
cβ−γ

)
, (4.50)

MT 'M
[
1 + m2

t

2M2 cot2(β − γ)
]
. (4.51)

Likewise, we can use eqs. (4.46) and (4.47) to obtain,

θL '
mt

MT
| cot(β − γ)| , θR '

m2
t

M2
T

cot(β − γ) . (4.52)

The two-component fields u and U mix to form two-component fermion mass eigen-
states that we shall denote by χk = (x X). Likewise, ū and U mix to form two-component
fermion mass eigenstates that we shall denote by ηk = (x̄ X). Note that nothing depends
on the separate values of εL and εR; only its product is determined. Henceforth, we shall
take εR = 1 with no loss of generality. Then, the fermion mass eigenstates are explicitly
given by

x = −sLU + cLu , X = εL(cLU + sLu) , (4.53)

x̄ = −sRX0 + cRx̄0 , X = cRX0 + sRx̄0 , (4.54)

where sL,R ≡ sin θL,R and cL,R ≡ cos θL,R.
Plugging the above results back into eq. (4.25) yields the following mass terms and

interactions among the fermions and the neutral Higgs fields,

−L ⊂ yt
{

(cLx+ εLsLX)
[(

Φ0
2sγ+θR

+ Φ0
1cγ+θR

)
X +

(
Φ0

2cγ+θR
− Φ0

1sγ+θR

)
x̄
]}

+mTXX +mtx̄x+ h.c. (4.55)
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One can introduce four-component fermions fields,

t =
(
x

x̄

)
, T ≡

(
X

X

)
, (4.56)

where t is the physical top quark field. Then the four component fermion version of
eq. (4.55) is,

−L ⊂mtt̄t+mTTT+yt
{
cL
(
Φ0

2cγ+θR
−Φ0

1sγ+θR

)
t̄t+εLsL

(
Φ0

2sγ+θR
+Φ0

1cγ+θR

)
TT

}
+yt

{
cL
(
Φ0

2sγ+θR
+Φ0

1cγ+θR

)
(TPLt+h.c.)+sL

(
Φ0

2cγ+θR
−Φ0

1sγ+θR

)
(t̄PLT+h.c.)

}
.

(4.57)

4.4 Relaxing the GCP3 symmetry

At the end of section 2.2, we motivated our study of the softly-broken GCP3-symmetric
model by noting that it provided a useful simplification by removing the possibility of CP
violation in the scalar potential. The absence of CP violation is maintained when including
the coupling of the scalars to one generation of fermions and their vector-like partners.

Of course, the current Higgs data does not yet rule out the possibility of new sources
of CP violation in the scalar sector. Our choice to do so is a matter of convenience, since
the neutral mass-eigenstates of a CP-conserving 2HDM are eigenstates of CP consisting of
the SM-like Higgs boson, its CP-even scalar partner and a CP-odd scalar. This avoids the
necessity of diagonalizing a 3× 3 neutral scalar squared-mass matrix and the introduction
of additional mixing angles that would be necessary to fully treat the neutral Higgs scalar
phenomenology.

We now briefly discuss the possibility of relaxing the softly-broken GCP3 symmetry to
a softly-broken GCP2 symmetry. One way to maintain the CP invariant scalar potential
is to assume that ξ = 0 in eq. (2.28).12 In this case, it is easy to extend the results of
section 3. As discussed in section 2.2, it is sufficient to employ a basis where the discrete
Z2 ⊗ Π2 symmetry is manifest in the quartic terms of the scalar potential. In this basis,
λ5 is real and nonzero and m2

12 is either purely real or purely imaginary (if the latter, then
one can rephase, Φ2 → iΦ2 to obtain a real m2

12, while flipping the sign of λ5). Then, all
the formulae obtained in section 3 are still valid with the following simple modifications:
R is now given by eq. (2.21), and m2

A is replaced by m2
A + λ5v

2.
Under the Z2⊗Π2 symmetry transformations, we can impose the transformation laws

specified in eqs. (4.1), (4.2), (4.4) and (4.5) [and likewise in eqs. (4.9) and (4.10)] by setting
θ = π, in which case a U(1) transformation reduces to a Z2 transformation. Indeed, the
imposition of the Z2 ⊗ Π2 symmetry on the Yukawa sector automatically yields Yukawa
couplings that are invariant under U(1) ⊗ Π2. Consequently, the general structure of
the U(1) ⊗ Π2-symmetric Yukawa couplings obtained previously remain unchanged. We
can therefore conclude that the numerical analysis presented in section 5.2 for the softly-
broken GCP3 model also would apply to a softly-broken GCP2 model with ξ = 0 by simply
reinterpreting the parameters R and m2

A as indicated above.
12A more complete discussion of the softly-broken GCP2-symmetric scalar potential where CP invariance

is maintained can be found in ref. [52].
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The special case of the softly-broken GCP2 model with ξ = 0 was previously treated
in ref. [21], where it was further assumed that m2

12 = 0 and Mu = 0. However, as the
next subsection shows, these additional parameter assumptions may be too constraining,
and in this paper we have argued that there is no motivation for imposing such additional
parameter restrictions.

4.5 Fine-tuning and electroweak precision

In section 4.2 we argued that soft U(1)⊗Π2 symmetry breaking terms in the scalar sector
given by ∆m2 ≡ m2

22 − m2
11 and m2

12 can be generated from soft-symmetry breaking in
an extended Yukawa sector. This extended sector includes a new vector-like top-partner
T with a mass of order the TeV scale. Furthermore, eqs. (4.28) and (4.29) show that by
evolving down from a UV theory at the cutoff scale Λc to the mass scale of the top-quark
partner that is characterized bymT , non-zero values for the scalar squared mass parameters
∆m2 and m2

12 are generated,

∆m2 ∼ κ∆m2M2c2γ −
3y2
tM

2c2γ
4π2 log

( Λc
mT

)
, (4.58)

m2
12 ∼ κm2

12
M2s2γ + 3y2

tM
2s2γ

8π2 log
( Λc
mT

)
, (4.59)

where γ andM are defined in eq. (4.23). We would expect in the absence of fine-tuning that
∆m2 and m2

12 are of the same order as the logarithmic terms. However, if the vector-like
quark mass is large compared to the weak scale (mT � v), a tuning of the κ parameters
in eqs. (4.58) and (4.59) is needed to keep the scalar squared mass parameters small.

To make the degree of tuning more transparent we approximate M2 ≈ m2
T (in the

limit of M2 � Y 2) by using eq. (4.42). Specific numerical results will depend on the choice
of Λc, which should lie sufficiently above mT so that the (renormalizable) 2HDM, extended
to include a vector-like top quark partner, is a good effective field theory, but not so far
above mT that the presence of the logarithmically enhanced terms in eqs. (4.58) and (4.59)
requires significant fine-tuning as noted above. In order to provide a concrete example
for our subsequent numerical studies, we shall choose log(Λc/M) = 3. Using eqs. (4.58)
and (4.59), we then find two possible estimates of m2

T ,

m2
T ∼

4π2

9y2
t

∣∣∣∣∣∆m2

c2γ

∣∣∣∣∣ ≡ |c∆∆m2| or m2
T ∼

8π2

9s2γy2
t

m2
12 ≡ c12m

2
12 , (4.60)

in a convention where m2
12 and s2γ are both positive quantities.

If the true value of mT is significantly larger than these estimates, then there must
be a tuning of κ∆m2 and κm2

12
in eqs. (4.58) and (4.59). To estimate this tuning one can

compare the estimated value of m2
T in eq. (4.60) to the true value. In particular, a tuning

of one part in N corresponds to a squared top-quark partner mass m2
T = (N − 1)|c∆∆m2|

or m2
T = (N − 1)c12m

2
12, where

1
N

= |c∆∆m2|
|c∆∆m2|+m2

T

or 1
N

= c12m
2
12

c12m2
12 +m2

T

, (4.61)

corresponding to the two possible estimates of eq. (4.60), respectively.
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These two tuning measures depend on scalar and Yukawa sector parameters and are
in general quite different. Yet we can get a feeling for the tuning measures by recalling
the formulas for ∆m2 and m2

12 given in section 3. Thus we take mA, R, and β as free
parameters and investigate the impact of each individually. First, eqs. (3.5) and (3.13)
show that by increasing mA, while holding the other two parameters fixed, the tuning is
reduced. This is quite natural since a larger mA implies a smaller hierarchy between scalar
masses and mT . Second, by varying β alone we see that ∆m2 vanishes when β = 1

4π,
and m2

12 vanishes when β = 0, 1
2π. In each of these limits one of the tunings in equation

eq. (4.61) becomes large. Lastly, the R dependence is quite weak compared to the mA and
β dependence.

Next, consider the Yukawa-sector parameters, which now include two additional free
parameters, mT and γ, in the top quark sector. The mT dependence of the tuning mea-
sures is given by eq. (4.61), while the γ dependence is more interesting. As previously noted
below eq. (4.30), we shall avoid the region of γ ∼ β where yt � 1 in order to maintain the
perturbativity of the top quark Yukawa coupling. Furthermore, γ is constrained by elec-
troweak precision measurements. Namely, an analysis of electroweak precision constraints13

(which determine the allowed range of the electroweak oblique parameters [54, 55]) shows
that γ must satisfy sin θL . 0.1 for mT = 1.5 TeV. This, together with equation eq. (4.52),
implies that |cot (β − γ)| ≤ 0.85 [48, 56]. Solving this inequality results in two allowed
regions,

0 ≤ β ≤ γ − 0.87 or β ≥ γ + 0.87 , (4.62)

in our convention where 0 ≤ β, γ ≤ 1
2π. These allowed regions correspond to the ranges

of tan β,

tan β ≤ 0.84 or tan β ≥ 1.19 . (4.63)

It is noteworthy that tan β = 1 is not allowed in this model. Moreover the range of tan β
above 1 is the preferred one in light of the remarks below eq. (4.30).

While this paper focuses on the GCP3 model, the above discussion also applies to the
CP-conserving GCP2 model, as noted in section 4.4. Indeed, much of the parameter space
for the softly-broken GCP2 model treated in ref. [21] is ruled out by experimental limits on
the mixing of the top quark with its vector-like partner. In particular, the model in ref. [21]
corresponds to γ = 0, and the mixing constraints implies that tan β ≥ 1.19 (or equivalently,
ε ≡ cos 2β . −0.17). This means that most parameter space is ruled out if m2

12 = 0, which
provides further motivation for analyzing the more generic case where m2

12 6= 0.

5 Survey of the parameter space consistent with LHC Higgs data
and searches

5.1 LHC constraints

In this section we assess the experimental constraints on the softly-broken GCP3 model.
In addition to new scalar particles (A, H, H±), the model contains a vector-like top-quark

13See, e.g., J. Erler and A. Freitas, Electroweak Model and Constraints on New Physics, in ref. [53].
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partner. This top partner constrains the model directly through collider searches, and
indirectly through tuning of ∆m2 and m2

12 as discussed in section 4.5.
There are a few variations of the model depending on the Yukawa sector. Recall that

to naturally avoid tree-level Higgs-mediated FCNCs, the structure of the Higgs-fermion
Yukawa couplings of the 2HDM must be of Type-I, II, X, or Y; in this work we focus on
Type-I and Type-II. Because the SM-like Higgs-boson mass, mh = 125GeV, is known,
the scalar sector has 4 free parameters, which we choose to be mA, R, mH± , β. One
of these parameters can be dropped by assuming mH± = mA. This choice minimizes the
Higgs-mediated radiative corrections to the tree-level value of the electroweak ρ-parameter,
leaving mA, R, and β as the remaining free parameters.14 We also assume that mA > mh

since no CP odd Higgs scalar has been found in LHC searches. Since the goal of this
paper is to achieve Higgs alignment without decoupling, we consider mA ∈ [150, 500] GeV
(whereas the mass of H can be slightly larger).

The mass mH and the scalar potential parameter λ can be expressed in terms of mA, R
and β by using the relations in section 3. For example, one can derive a quadratic equation
for λ by multiplying eq. (3.22) by m2

h and then making use of eq. (3.23) to rewrite the
product m2

hm
2
H in terms of m2

A, R and β. The end result is

λ2v4s2
2β(1−R2)− 4λv2

{
m2
A

[
1− 1

2s
2
2β(1−R)

]
−m2

h

}
− 4m2

h(m2
A −m2

h) = 0 . (5.1)

Under the assumption that mA > mh, the roots of this quadratic equation are real and
their product is negative. Since λ > 0, one must choose the positive root.

The extended Yukawa sector yields additional free parameters as described in sec-
tion 4.3. Prominent amongst these are the mass of the vector-like top partner, mT , and
the top quark mixing angles θL and θR. Other free parameters such as Y andM are related
to mT and the angles β and γ. For example, in the limit of mT � mt, the masses of the
top quark and its vector-like partner are given by eqs. (4.50) and (4.51), and the top quark
mixing angles are given by eq. (4.52).

Because the vector-like top quark partner mixes with the SM top quark, it can decay
into tZ, th, and bW . Experimental searches at 13 TeV [59, 60] constrain a vector-like
quark decaying predominately to these particles to have a mass greater than 1.3–1.4 TeV
depending on the relative size of the branching ratios. In our model, these bounds are likely
too strong since the vector-like quark can also decay to tH, tA, and tH±. These decays are
unsuppressed by top quark mixing and are expected to dominate, so the true experimental
lower bound on the mass of the vector-like quark may even lie somewhat below 1 TeV.

In this paper we focus on the scalar sector. We take the mass of the vector-like top
partner to be mT = 1.5 TeV in order to safely evade any collider bounds. Moreover, as

14In the Type-II scenario, in light of the most recent theoretical analysis of the SM prediction for the
decay rate of b→ sγ at NNLO, one can deduce that mH± & 800GeV [57]. The corresponding constraint in
the Type-I scenario is far less severe [33], and allows for a charged Higgs mass in our parameter region of
interest for values of tan β & 2. Unless the Type-II prediction for the b→ sγ decay rate is modified by loop
contributions from the vector-like quarks [58] or some other new physics phenomena, the end result will be
to favor the Type-I scenario and strongly disfavor the Type-II scenario in regions where approximate Higgs
alignment without decoupling can be achieved.
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remarked in section 4.5, the measured values of the electroweak oblique parameters con-
strain sin θL ≤ 0.1 for mT = 1.5 TeV.15 Finally, the vector-like top partner can contribute
to scalar production and decays through loops. This effect is quite small with our chosen
vector-like top quark mass and will be neglected in the analysis presented below.

Scalar parameters are constrained from precision measurements and collider searches.
On the precision side, the measured couplings of the observed SM-like 125 GeV Higgs boson
greatly limit the allowed regions of the tan β vs. cos(β − α) parameter space [3, 4, 64, 65].
These constraints are particularly severe for the Type-II Yukawa coupling scenario, where
only a small deviation from cos(β − α) = 0 is allowed.

Cross sections and branching ratios of new heavy scalars are also constrained by di-
rect collider searches. For the low-mass region of interest—mA, mH ∈ [150, 500] GeV,
leptonic decay channels (A/H → ττ) are strongly constrained. Experimental limits ob-
tained by CMS and ATLAS [66–69] restrict the small tan β region in a Type-I scenario, and
likewise place limits on the large tan β region in a Type-II scenario. Other channels like
A→ Zh [70–73] and A → γγ [74–76] are most relevant for A masses above ∼ 220 GeV.
These two channels are important for small tan β values in both the Type-I and Type-
II scenarios. The diphoton channel is of particular interest since not only small masses
(mA . 250 GeV) are constrained, but also large masses (mA & 300 GeV). We have also
considered channels such as H → ZA and A → ZH [77, 78], which are not suppressed in
the Higgs alignment limit. Rates for all of these processes are computed with SusHi [79–87]
and 2HDMC [85]. For all calculations we neglect the contribution of the vector-like quark
in loops since it is expected to be small for mT = 1.5 TeV.

5.2 Results

We now investigate the allowed parameter space taking into account collider, Higgs pre-
cision, and fine-tuning constraints—described in the previous two subsections. Amongst
these, collider constraints, based on 95% CL limits on the cross section times branching
ratio of the new heavy scalar states, depend on whether we employ a Type-I or a Type-II
model, whereas tuning constraints are quite insensitive to this choice. Therefore it is natu-
ral to assess the impact of the two types of constraints separately. Figures 1 and 2 show the
parameter space allowed by collider constraints, whereas figures 3 and 4 show the tuning.
The combined effects of these constraints are exhibited in figures 5 and 6. The special case
of R = 1 is presented in figure 7. Finally, we provide a rough projection of the anticipated
sensitivity of the High Luminosity LHC to the parameter space of our model in figure 8.
The color of the shaded regions bounded by the outermost contour in all figures is chosen
solely for its aesthetic allure.

The collider constraints shown in figures 1 and 2 are organized as follows: panel (a)
shows the small-mass region—where A → Zh and A → γγ are not relevant; panel (b)
shows the combination of all considered collider constraints; panel (c) shows the parameter
space ruled out from Higgs precision searches; and panel (d) shows the combination of

15This bound can be softened by taking mH± 6= mA, because the Higgs-mediated contribution to the
electroweak oblique T parameter (in the one-loop approximation) are of opposite sign to the vector-like
quark contribution [56, 61–63].
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(a) (b)

(c) (d)

Figure 1. Bounds for Type-I Yukawa couplings. Regions ruled out by (a) A/H → ττ data,
(b) combination of collider constraints, including A/H → ττ , (c) precision Higgs global fits, and
(d) combination of collider bounds and global fits of Higgs precision data. Each panel shows three
different R curves; the white regions of the parameter space are ruled out. In panels (b)–(d) the
ruled out areas expand somewhat as R decreases, with the borders of the allowed shaded regions
indicated by the corresponding contours. For R = −0.5, the area enclosed by the closed dashed
blue contour in panels (b) and (d) is also ruled out. There is a different mA scale in panel (a) as
compared to the other three panels because the A → γγ and A → Zh bounds are restricted to
mA & 220 GeV. The color of the shaded regions bounded by the outermost contour in all figures is
chosen solely for its aesthetic allure.

collider and Higgs precision constraints. Note that the mA scale is different in figures 1b
and 1d.

Figure 1a shows that the A/H → ττ channel only restricts small tan β values for the
Type-I model. This is expected because the production cross-section rapidly decreases as
tan β → ∞. Other collider searches rule out a sizeable chunk of the low tan β parameter
space as seen in figure 1b. The weak dependence of collider bounds on R is not shared
by the fits to the Higgs precision data. Figure 1c shows that larger R values are less
constrained than smaller ones. This behavior follows from eq. (3.19), as does the behavior
as β → 1

4π and β → 1
2π. The combination of these constraints, in figure 1d, show that
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(a) (b)

(c) (d)

Figure 2. Bounds for Type-II Yukawa couplings. Regions ruled out by (a) A/H → ττ data,
(b) combination of collider constraints, including A/H → ττ , (c) precision Higgs global fits, and
(d) combination of collider bounds and precision Higgs global fits. Each panel shows three different
R curves; the white regions of the parameter space are ruled out. In panels (b)–(d), the ruled out
areas expand somewhat as R decreases, with the borders of the allowed shaded regions indicated
by the corresponding contours. There is a different mA scale in panel (a) as compared to the other
three panels because the A→ γγ and A→ Zh bounds are restricted to mA & 220 GeV.

there is plenty of available parameter space at large tan β for the Type-I scenario, even for
the smaller values of mA.

The picture is rather different for the Type-II model. The A/H production cross
section rises for larger values of tan β, and the A/H → ττ branching sinks for small tan β.
This behavior, together with the lepton branching ratios, is reflected in figure 2a, where the
lepton decay channel mainly constrains large tan β values. Nevertheless, figure 2b shows
that the small tan β region is almost entirely ruled by the A→ γγ and A→ Zh channels.
Higgs precision constraints rule out another chunk of parameter space. This is because
Higgs precision data force Type-II close to exact Higgs alignment [cos(β − α) ≈ 0], which
is reflected by the strong R dependence. Indeed, eq. (3.19) implies that cos(β − α) → 0
in the limit of R → 1. All these constraints are combined in figure 2d which shows, in
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(a) (b)

(c) (d)

Figure 3. Contours of fine-tuning as defined in eq. (4.61). Panels (a) and (b) employ the benchmark
points R = 0 and γ = 0.1, whereas panels (c) and (d) employ the benchmark points R = 0 and
γ = 0.3. The shaded region inside and/or above each respective contour satisfies the corresponding
tuning constraint.

combination with figure 7, that a light CP-odd scalar (mA ≤ 350 GeV) is only possible for
R values close to 1.

Moreover, it is noteworthy that all collider bounds are less severe for mA ≥ 350 GeV.
This is because the production cross-section drops for energies larger than the two-top-
quark threshold. In addition, the area enclosed by the blue dotted line in figures 1b, 1d,
and 2b comes from the A → Zh bound; the branching ratio vanishes for tan β = 1, and
the A→ Zh branching ratio is larger for smaller R.

Let us now turn to the degree of fine-tuning. Figure 3 shows the fine-tuning measures
as defined in eq. (4.61) for γ = 0.1 and γ = 0.3 and figure 4 shows the tuning for different
mT values. The two tuning measures are complementary: ∆m2 mainly constrains small
and intermediate tan β values, while m2

12 constrains small and large tan β. Note that the
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(a) (b)

Figure 4. Dependence of the degree of fine-tuning for various masses of the vector-like top quark
partner. The shaded region inside and/or above each respective contour corresponds to a fine-
tuning of at most 5%. Both panels employ the benchmark points R = 0 and γ = 0.3.

white regions in figure 3 occur when β = γ; that is, at β = 0.1 in figures 3a and 3b,
and at β = 0.3 in figures 3c and 3d. This behavior can be traced back to eq. (4.50), and
corresponds to the yt →∞ limit. In addition, there is a region close to β = 1

4π where ∆m2

vanishes. This region is quite narrow and is indistinguishable in the figures. Of the two
tunings, m2

12 depends more strongly on γ than ∆m2, as discussed in section 4.5. Moreover,
the mT dependence of the tunings is more pronounced for m2

12 than for ∆m2 as shown
in figure 4.

Figures 5 and 6 show the combination of collider and tuning constraints. Figure 5a, for
Type-I, and figure 5c, for Type-II, allow a ∆m2 tuning of at most 5% and take into account
collider constraints. Likewise, figures 5b and 5d are defined analogously and allow a tuning
of m2

12 of at most 5%. Both the ∆m2 and m2
12 tuning constraints are combined in figure 6c

for Type-I, and figure 6d for Type-II. These figures show that tuning constrains a region
of parameter space untouched by other constraints. Of the two tuning measures, the m2

12
tuning measure is salient—it restricts the large tan β region that is otherwise unconstrained
for Type-I, and likewise but to a smaller extent for Type-II. However, lowering γ makes
tuning constraints less pronounced, as shown in figures 5c and 5d. In summary, tuning
constraints are complementary to collider bounds in these models, and moreover are not
optional, as the purpose of our models is precisely to achieve approximate Higgs alignment
(without decoupling) with minimal tuning.

In figure 7, we exhibit the experimental and tuning bounds for R = 1, corresponding
to the softly-broken SO(3)-symmetric 2HDM. The allowed parameter regions for Type-I
[panels (a) and (c)] and Type-II [panels (b) and (d)] are exhibited for γ = 0.1 and 0.3,
respectively. This limiting case provides the most robust example of approximate Higgs
alignment without decoupling in our framework, with allowed parameter regimes with mA

as low as 200 GeV.
With the High-Luminosity LHC upgrade expected to begin taking data later in this

decade, it is of interest to estimate the anticipated sensitivity to the parameter space of
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(a) (b)

(c) (d)

Figure 5. Experimental and tuning bounds for different R values. The allowed shaded regions
inside and/or above each respective contour satisfy all experimental bounds in addition to exhibiting
a tuning of at most 5% in ∆m2 (left) andm2

12 (right). Panels (a) and (b) show the results for Type-I
Yukawa couplings, and panels (c) and (d) show the results for Type-II Yukawa couplings. All panels
employ the γ = 0.3 benchmark.

our model with 3000 fb−1 of data. First, the influx of data will likely tighten the bounds
on vector-like quarks. To safely evade any new bounds (in the absence of a discovery)
we increase the vector-like quark mass to mT = 2.5 TeV. Second, we assume that all
limits on experimental signal strengths for H and A production decrease by a factor of
4.16 The result of these considerations is shown in figure 8. The sub-plots of this figure
are defined analogously to those of figure 6. As expected, the allowed parameter regions
are severely reduced in figure 8 as compared to figure 6. Nonetheless, parameter space still
exist where light scalar bosons (≈ 350GeV) cannot be ruled out at the 95% CL. We also
observe that the type-I results in figures 8a and 8c are quite sensitive to the value of γ.
In particular, choosing a smaller γ increases the allowed parameter space for larger tan β

16In light of
√
N statistics, the increased integrated luminosity suggests that limits on experimental signal

strengths would improve by roughly a factor of 4.5. We have chosen a factor of 4 to be conservative and
not overestimate the impact of the anticipated data.
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(a) (b)

(c) (d)

Figure 6. Regions allowed by experimental bounds and tuning constraints for different R, with an
m2

12 and ∆m2 tuning of at most 5%. Each panel shows three different R curves; the white regions
of the parameter space are ruled out. The ruled out areas expand somewhat as R decreases, with
the borders of the allowed shaded regions indicated by the corresponding contours. For R = −0.5,
the area enclosed by the closed dashed blue contour in panel (a) is also ruled out. Panels (a)
and (c) correspond to Type-I Yukawa couplings, and panels (b) and (d) correspond to Type-II
Yukawa couplings. Panels (a) and (b) employ the γ = 0.1 benchmark, whereas panels (c) and (d)
employ γ = 0.3.

values. Furthermore, the allowed parameter space in the large tan β region increases for
Type-I if one is willing to accept more fine-tuning. So it seems unlikely that the entire
region of approximate Higgs alignment without decoupling can be ruled out for the Type-I
scenario.

6 Conclusions

The 2HDM remains one of the simplest and best motivated extensions of the Standard
Model. Theoretical and phenomenological studies of the 2HDM have been of great utility in
guiding collider searches for new physics phenomena in the Higgs sector and have provided
a useful framework for interpreting collider data.
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(a) (b)

(c) (d)

Figure 7. Experimental and tuning bounds for the softly-broken SO(3)-symmetric 2HDM (R = 1).
The shaded regions in panels (a) and (b) satisfy all experimental bounds in addition to having a
tuning of at most 5% for both ∆m2 and m2

12 in panels (c) and (d). Panels (a) and (c) correspond to
Type-I Yukawa couplings, and panels (b) and (d) correspond to Type-II Yukawa couplings. Panels
(a) and (b) employ the γ = 0.1 benchmark, whereas panels (c) and (d) employ γ = 0.3.

Despite null results thus far from the LHC, the possibility of an extended Higgs sec-
tor remains viable. Of particular experimental interest is the case of approximate Higgs
alignment without decoupling, where multiple states in the Higgs sector are light, but
the neutral scalar interaction eigenstate, whose tree-level properties coincide with the SM
Higgs field, does not mix strongly with the other scalar field degrees of freedom. If an
approximate Higgs alignment is realized, then the present LHC Higgs data do not rule out
this scenario, while the presence of other scalar states with masses not significantly larger
than the electroweak scale and a small degree of mixing with the SM Higgs eigenstate
provide experimental targets for the long-term LHC program.

In this work we have described an approximate global symmetry structure that results
in approximate Higgs alignment. The global symmetry is one of the generalized CP sym-
metries of the 2HDM, and we extend it to the Yukawa sector by introducing vector-like
fermions with soft symmetry-breaking masses. For practical purposes, a minimal addition
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(a) (b)

(c) (d)

Figure 8. Projected regions allowed by experimental bounds anticipated at the high-luminosity
LHC with 3000 fb−1 of data, assuming mT = 2.5 TeV with an m2

12 and ∆m2 tuning of at most
5%. Each panel shows three different R contours; the white regions of the parameter space are
ruled out. The ruled out areas expand somewhat as R decreases, with the borders of the allowed
shaded regions indicated by the corresponding contours. Panels (a) and (c) correspond to Type-I
Yukawa couplings, and panels (b) and (d) correspond to Type-II Yukawa couplings. Panels (a) and
(b) employ the γ = 0.1 benchmark, whereas panels (c) and (d) employ γ = 0.3.

of vector-like partners for the right-handed top quark is sufficient. The resulting model,
although it does not address the ordinary electroweak hierarchy problem, realizes Higgs
alignment without decoupling in an otherwise natural way. The structure in the Higgs
sector, as well as the extended fermion sector, provide a range of collider signatures that
can be accessed by future LHC searches.

We have assessed current experimental and fine-tuning constraints on the model param-
eters relevant for Higgs alignment arising from direct searches for vector-like top partners
and new Higgs states, the LHC Higgs data, and precision electroweak observables. The
model is viable and the new Higgs states can lie below about 500GeV if the top partner
is between one and a few TeV, tan β is in the range ∼ 1–10, and the mixing between the
top quark and the vector-like top partner is small. These restrictions are the result of
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an intricate interplay between experimental and tuning constraints. The viable parameter
regimes provide attractive targets for the High-Luminosity LHC.

In addition to the generalized CP symmetry GCP3 employed in this work, there is
another possible generalized CP symmetry of the 2HDM, GCP2, that can be used to im-
pose Higgs alignment. Unlike the model studied here, softly breaking the GCP2 symmetry
allows for the possibility of explicit and/or spontaneous CP violation in the Higgs sec-
tor [44]. Further exploration of this model and its CP-violating phenomenology would be
an interesting avenue for future work.
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A Equivalence of the softly-broken GCP3 and U(1)⊗Π2

symmetric 2HDMs

To see that the softly-broken U(1) ⊗ Π2-symmetric and GCP3-symmetric 2HDMs are in
fact the same model expressed with respect to different scalar field bases [22], we provide
the following details taken from ref. [52]. Consider the U(1) ⊗ Π2 basis parameters with
ξ 6= 0 and m2

12 complex [subject to eq. (3.4)]. For convenience, we shall refrain from
rephasing the scalar doublet fields to remove the phase ξ. Applying the following unitary
transformation,

Φ′a = UabΦb , where U = 1√
2

(
1 −i
−i 1

)
, (A.1)
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to the U(1)⊗Π2 basis parameters yields the corresponding GCP3 basis parameters (denoted
with prime superscripts),

λ′ = 1
2λ(1 +R) , (A.2)

λ′3 = λ3 + 1
2λ(1−R) , (A.3)

λ′4 = λ4 + 1
2λ(1−R) , (A.4)

λ′5 = −1
2λ(1−R) , (A.5)

λ′6 = −λ′7 = 0 . (A.6)

In particular, λ′5 = λ′1 − λ′3 − λ′4 is real and λ′6 = λ′7 = 0, corresponding to the GCP3 basis
defined in table 3.

In addition, the corresponding soft-breaking squared-mass parameters are,

m′ 211 = 1
2(m2

11 +m2
22) + Imm2

12 , (A.7)

m′ 222 = 1
2(m2

11 +m2
22)− Imm2

12 , (A.8)

m′ 212 = Rem2
12 + 1

2 i(m
2
22 −m2

11) . (A.9)

Finally, the complex vevs in the GCP3 basis are given by

v′1 = 1√
2
(
v1 − iv2e

iξ) , v′2 = − i√
2
(
v1 + iv2e

iξ) . (A.10)

Hence,

tan2 β′ =
∣∣∣∣v′2v′1
∣∣∣∣2 = v2

1 + v2
2 − 2v1v2 sin ξ

v2
1 + v2

2 + 2v1v2 sin ξ
= 1− s2β sin ξ

1 + s2β sin ξ . (A.11)

which implies that
s2

2β′ = 1− s2
2β sin2 ξ , (A.12)

where s2β′ ≡ sin 2β′ following our usual notation for sines and cosines. By convention,
0 ≤ β′ ≤ 1

2π (or equivalently, sin 2β′ ≥ 0).
The relative phase of the vevs in the GCP3 basis, denoted by ξ′, is given by,

eiξ
′ tan β′ ≡ v′2

v′1
= −iv1 + v2e

iξ

v1 − iv2eiξ
(A.13)

Hence, we obtain,
eiξ
′ = s2β cos ξ − ic2β

(1− s2
2β sin2 ξ)1/2 . (A.14)

That is,
sin ξ′ = −c2β

(1− s2
2β sin2 ξ)1/2 , cos ξ′ = s2β cos ξ

(1− s2
2β sin2 ξ)1/2 . (A.15)
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Hence eqs. (A.12) and (A.15) yield,

s2β′ sin ξ′ = −c2β . (A.16)

It is straightforward to verify that one obtains the same mass spectrum when computed
in either scalar field basis. For example, in the U(1)⊗Π2 basis, we have

m2
A = 2 Re(m2

12e
iξ)

s2β
, (A.17)

prior to a rephasing of the scalar fields to set ξ = 0 [cf. eq. (3.13)]. To obtain m2
A expressed

in terms of GCP3 basis parameters, we first employ eqs. (A.9), (A.12) and (A.14) to obtain

2 Re(m′ 212e
iξ′)

s2β′
= 2 Re(m2

12)s2β cos ξ + c2β(m2
22 −m2

11)
1− s2

2β sin2 ξ
. (A.18)

In light of eq. (3.4), it follows that

Re(m2
12) = Re(m2

12e
iξ) cos ξ + Im(m2

12e
iξ) sin ξ = Re(m2

12e
iξ) cos ξ . (A.19)

Hence, after using eqs. (3.2) and (3.3) to evaluate m2
22 − m2

11, it follows that eq. (A.18)
yields,

2 Re(m′ 212e
iξ′)

s2β′
= 2 Re(m2

12e
iξ)

s2β
+

λv2(1−R)c2
2β

2(1− s2
2β sin2 ξ)

. (A.20)

Finally, using eq. (A.17), we end up with

m2
A = 2 Re(m′ 212e

iξ′)
s2β′

+ λ′5v
2 sin2 ξ′ , (A.21)

after employing eqs. (A.5) and (A.15). Indeed, one can derive eq. (A.21) directly from the
scalar potential expressed in terms of the GCP3 basis parameters, as expected. We have
similarly verified that the masses of the other Higgs scalars computed in the GCP3 basis
match those obtained in the U(1)⊗Π2 basis.

As a final check of our computations, one can verify that Y2, Z1, . . . , Z4, |Z5|, |Z6|, and
Z∗5Z

2
6 are invariant quantities that are independent of the choice of the scalar field basis.

For example, starting from the GCP3 basis and transforming to the Higgs basis,

Z5 = λ′5e
−2iξ′(cos ξ′ + ic2β′ sin ξ′

)2
, (A.22)

Z6 = −Z7 = iλ′5s2β′ sin ξ′e−iξ
′(cos ξ′ + ic2β′ sin ξ′

)
. (A.23)

Note that CP is conserved in light of the relation,

Z2
6 = −λ′5s2

2β′ sin2 ξ′Z5 , (A.24)

which implies that Im(Z∗5Z2
6 ) = 0. Hence, eqs. (A.22) and (A.24) yield,

Z∗5Z
2
6 = −λ′ 35 s

2
2β′ sin2 ξ′(1− s2

2β′ sin2 ξ′)2 = 1
8λ

3(1−R)3c2
2βs

4
2β , (A.25)
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in agreement with eqs. (3.10) and (3.11). One can check that all the other invariant
quantities also yield the same values in the GCP3 and U(1)⊗Π2 basis.

Likewise, one can invert the transformations above and obtain the U(1) ⊗ Π2 basis
parameters starting from the GCP3 basis parameters. For completeness, these results are
summarized below. First, the coefficients of the quartic terms of the scalar potential are
given by,

λ = λ′ − λ′5 , (A.26)

λ3 = λ′3 + λ′5 , (A.27)

λ4 = λ′4 + λ′5 , (A.28)

λR = λ′ + λ′5 , (A.29)

λ5 = λ6 = λ7 = 0 . (A.30)

Next, the corresponding soft-breaking squared-mass parameters are:

m2
11 = 1

2(m′ 211 +m′ 222)− Imm′ 212 , (A.31)

m2
22 = 1

2(m′ 211 +m′ 222) + Imm′ 212 , (A.32)

m2
12 = Rem′ 212 −

1
2 i(m

′ 2
22 −m′ 211) . (A.33)

Finally, the complex vevs in the U(1)⊗Π2 basis are given by

v1 = 1√
2
(
v′1 + iv′2e

iξ′) , v′2 = i√
2
(
v′1 − iv′2eiξ

′)
. (A.34)

Hence,

tan2 β =
∣∣∣∣v2
v1

∣∣∣∣2 = v′ 21 + v′ 22 + 2v1v2 sin ξ
v′ 21 + v′ 22 − 2v1v2 sin ξ

= 1 + s2β′ sin ξ′

1− s2β′ sin ξ′
. (A.35)

which implies that
s2

2β = 1− s2
2β′ sin2 ξ′ . (A.36)

The relative phase of the vevs in the U(1)⊗Π2 basis, denoted by ξ, is given by,

sin ξ = c2β′

(1− s2
2β′ sin2 ξ′)1/2 , cos ξ = s2β′ cos ξ′

(1− s2
2β′ sin2 ξ′)1/2 , (A.37)

Hence eqs. (A.36) and (A.37) yield,

s2β sin ξ = c2β′ . (A.38)

Of course, once the U(1) ⊗ Π2 basis parameters have been derived, one can perform one
further rephasing to remove the complex phase ξ (thereby setting ξ = 0).
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B Singular value decomposition of a real 2 × 2 matrix

The material presented in this appendix is taken from ref. [88].
For any real n× n matrix M , real orthogonal n× n matrices L and R exist such that

LTMR = MD = diag(m1,m2, . . . ,mn), (B.1)

where the mk are real and nonnegative. This corresponds to the singular value decompo-
sition of M restricted to the space of real matrices.

The singular value decomposition of a general 2×2 real matrix can be performed fully
analytically. Let us consider the non-diagonal real matrix,

M =
(
a c

c̃ b

)
, (B.2)

where at least one of the two quantities c or c̃ is non-vanishing. The real singular value
decomposition of M is

LTMR =
(
m1 0
0 m2

)
, (B.3)

where L and R are real 2 × 2 orthogonal matrices and m1 and m2 are nonnegative. In
general, one can parameterize L and R in eq. (B.3) by

L =
(

cos θL sin θL
− sin θL cos θL

)(
1 0
0 εL

)
, R =

(
cos θR sin θR
− sin θR cos θR

)(
1 0
0 εR

)
, (B.4)

where −1
2π < θL,R ≤ 1

2π, and εL,R = ±1. Note that detL = εL and detR = εR, which
implies that εLεR detM = m1m2. Since m1, m2 ≥ 0, it follows that sgn(detM) = εLεR.
Thus, only the product of εL and εR is fixed by eq. (B.3).

The diagonal elements of LTMR can be determined by taking the positive square root
of the nonnegative eigenvalues, m2

1,2, of the real orthogonal matrix MTM ,

m2
1,2 = 1

2
[
a2 + b2 + c2 + c̃2 ∓∆

]
, (B.5)

in a convention where 0 ≤ m1 ≤ m2 (i.e., ∆ ≥ 0), with

∆ ≡
[
(a2 − b2 − c2 + c̃2)2 + 4(ac+ bc̃)2]1/2

=
[
(a2 + b2 + c2 + c̃2)2 − 4(ab− cc̃)2]1/2 . (B.6)

Note that
m2

1 +m2
2 = a2 + b2 + c2 + c̃2 , m1m2 = εLεR(ab− cc̃) . (B.7)

Moreover, m1 = m2 if and only if a = ±b and c = ∓c̃, which imply that ac + bc̃ = 0
and ∆ = 0.

We first assume that m1 6= m2. Then, if we rewrite eq. (B.3) in the form MR = LMD,
where MD ≡ diag(m1 , m2), then we immediately obtain,

m1 cos θL = a cos θR − c sin θR , εLεRm2 sin θL = a sin θR + c cos θR , (B.8)
m1 sin θL = b sin θR − c̃ cos θR , εLεRm2 cos θL = c̃ sin θR + b cos θR . (B.9)
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It follows that

m2
1 cos2 θL +m2

2 sin2 θL = a2 + c2 , m2
1 sin2 θL +m2

2 cos2 θL = b2 + c̃2 . (B.10)

Subtracting these two equations, and employing eq. (B.6) yields,

cos 2θL = b2 − a2 − c2 + c̃2

∆ , cos 2θR = b2 − a2 + c2 − c̃2

∆ . (B.11)

In obtaining cos 2θR, it is sufficient to note that eqs. (B.8)–(B.10) are valid under the
interchange of c↔ c̃ and the interchange of the subscripts L↔ R.17

We can also use eqs. (B.8) and (B.9) to obtain,

m2
1 cos θL sin θL = (a cos θR − c sin θR)(b sin θR − c̃ cos θR) , (B.12)

m2
2 cos θL sin θL = (a sin θR + c cos θR)(c̃ sin θR + b cos θR) . (B.13)

Subtracting these two equations yields

sin 2θL = 2(ac̃+ bc)
∆ , sin 2θR = 2(ac+ bc̃)

∆ , (B.14)

after again noting the symmetry under c→ c̃ and the interchange of the subscripts L↔ R.
Thus, employing eqs. (B.11) and (B.14), we have succeeded in uniquely determining

the angles θL and θR (where −1
2π < θL,R ≤ 1

2π). As noted below eq. (B.4), the individual
signs εL and εR are not separately fixed (implying that one is free to set one of these two
signs to +1); only the product εLεR = sgn(detM) is determined by the singular value
decomposition of M .

A useful identity can now be derived that exhibits a direct relation between the angles
θL and θR. First, we note two different trigonometric identities for the tangent function,

tan θL = 1− cos 2θL
sin 2θL

= m2
2 −m2

1 − b2 + a2 + c2 − c̃2

2(ac̃+ bc) = a2 + c2 −m2
1

ac̃+ bc
, (B.15)

tan θR = sin 2θR
1 + cos 2θR

= 2(ac+ bc̃)
m2

2 −m2
1 + b2 − a2 + c2 − c̃2 = ac+ bc̃

m2
2 − a2 − c̃2 , (B.16)

where we have made use of eqs. (B.7), (B.11) and (B.14). It then follows that

tan θL
tan θR

= (a2 + c2 −m2
1)(m2

2 − a2 − c̃2)
(ac̃+ bc)(ac+ bc̃) . (B.17)

The numerator of eq. (B.17) can be simplified with a little help from eq. (B.7) as follows,

(a2 +c2−m2
1)(m2

2−a2− c̃2) = a2(m2
1 +m2

2)+c2m2
2− c̃2m2

1−(a2 +c2)(a2 + c̃2)−m2
1m

2
2

= a2(a2 +b2 +c2 + c̃2)−(a2 +c2)(a2 + c̃2)
+c2m2

2 + c̃2m2
1−(ab−cc̃)2

= c2m2
2 + c̃2m2

1 +2(ab−cc̃)cc̃= (cm2 +εLεRc̃m1)2 . (B.18)
17One can verify this by rewriting eq. (B.3) in the form LTM = MDR

T, which yields equations of the
form given by eqs. (B.8) and (B.9) with c↔ c̃ and the interchange of the subscripts L↔ R. Note that ∆
and hence m2

1,2 are unaffected by these interchanges.
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Likewise, the denominator of eq. (B.17) can be simplified as follows,

(ac̃+ bc)(ac+ bc̃) = (ab− cc̃)(c2 + c̃2) + cc̃(a2 + b2 + c2 + c̃2)

= εLεRm1m2(c2 + c̃2) + cc̃(m2
1 +m2

2)

= (cm2 + εLεRc̃m1)(c̃m2 + εLεRcm1) . (B.19)

Hence, we end up with a remarkably simple result,

tan θL
tan θR

= cm2 + εLεRc̃m1
c̃m2 + εLεRcm1

. (B.20)

The case of m1 = 0, which arises when detM = ab − cc̃ = 0, is noteworthy. It then
follows that ∆ = (a2 + c̃2)(b2 + c̃2)/c̃2 [cf. eq. (B.6) with c = ab/c̃] and,18

tan θL = a

c̃
, tan θR = c̃

b
. (B.21)

In particular, after using ab = cc̃, it follows that

tan θL
tan θR

= c

c̃
, for m1 = 0. (B.22)

This is indeed the correct limit of eq. (B.20) when m1 = 0, as expected. In this case, the
signs εL and εR are arbitrary, and one can choose εL = εR = 1 without loss of generality.

For completeness, we note that the case of m ≡ m1 = m2 6= 0 must be treated
separately. In this case, a = ±b and c = ∓c̃, which yields m = (a2 + c2)1/2. Since eq. (B.3)
implies that MR = mL, one can take R to be an arbitrary 2 × 2 real orthogonal matrix.
Using eq. (B.4), the matrix L is now determined,

cos θL = a cos θR − c sin θR√
a2 + c2

, sin θL = ±
(
c cos θR + a sin θR√

a2 + c2

)
, (B.23)

subject to the constraint εLεR = ±1 that determines the sign factor appearing in the
expression for sin θL given in eq. (B.23).

C Top quark mixing revisited

In sections 4.2 and 4.3, we determined the mixing of the top quark and its vector-like
partners by a two step procedure. In the first step, the effects of electroweak symmetry
breaking were ignored. The Yukawa interactions and mass terms were then obtained in
terms of the mass eigenstate fields, x̄0 and X0, resulting in eq. (4.25). In the second step,
the fields x̄0 and X0 were treated as interaction eigenstates, and the new mass eigenstates
were determined when the Higgs field vevs are taken into account.

18In deriving eq. (B.21), we have assumed that c̃ 6= 0. If c̃ = 0 then one can repeat the calculation
by dividing the equation ab − cc̃ = 0 by a different nonzero parameter. For example, if c 6= 0 then
∆ = (a2 + c2)(b2 + c2)/c2, in which case it follows that tan θL = c/b and tan θR = a/c. The other cases can
be similarly treated.
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One could have performed the same analysis in one step by treating the effects of
electroweak symmetry breaking from the beginning by employing Φ0

i = vi/
√

2 + Φ0
i (for

i = 1, 2) in eq. (4.15). In this case, the interaction eigenstates are given by χ̂i = (u U)
and η̂j = (ū U) as in section 4.2, whereas the mass matrix given in eq. (4.21) is modified
as follows,

M =
(
Y sβ Y cβ
Mu MU

)
, (C.1)

where Y ≡ ytv/
√

2. Using the results of appendix B, one can then directly determine the
fermion masses and mixing.

As expected, eq. (B.5) yields the squared-masses of the two Dirac fermions previously
given in eq. (4.42). The singular value decomposition of M [cf. eq. (C.1)] involves two
mixing angles, denoted below by θ′L and θ′R, that are given by

sin 2θ′L = 2YMcβ−γ
m2
T −m2

t

, cos 2θ′L = M2 − Y 2

m2
T −m2

t

, (C.2)

sin 2θ′R = Y 2s2β +M2s2γ
m2
T −m2

t

, cos 2θ′R = Y 2c2β +M2c2γ
m2
T −m2

t

, (C.3)

which uniquely determine the mixing angles modulo π. Note that in addition to the mixing
angles θ′L and θ′R, the matrices L and R given in eq. (B.4) depend on εL and εR, where
εLεR = sgn(YMsβ−γ), which is the same result obtained below eq. (4.45).

All the results of this appendix could have been anticipated given that θ′L and θ′R are
related to the mixing angles θL and θR of section 4.3 as follows,

θ′L = θL , θ′R = γ + θR . (C.4)

Indeed, using eq. (C.4) and the results of eqs. (4.44) and (4.45), one can recover the
expressions presented in eqs. (C.2) and (C.3). Finally, eqs. (4.47) and (C.4) yield,

tan θ′L = εLεR
mT

mt
tan(θ′R − γ) . (C.5)

By employing the identities for the tangent function given in eqs. (B.15) and (B.16), one
can derive eq. (C.5) directly starting from eqs. (C.2) and (C.3).
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