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ABSTRACT: If the scalar sector of the Standard Model is non-minimal, one might expect
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of N Higgs doublets (where N > 2). It is particularly convenient to work in the so-called
charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in
the first Higgs doublet, and the charged components of remaining N — 1 Higgs doublets are
mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical
Higgs scalars and the Goldstone bosons and show that they are determined by an N x 2N
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the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters,
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simple form for the cubic interaction and some of the quartic interactions of the Goldstone
bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs
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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) appears to complete
the story of the Standard Model (SM) of particle physics [1, 2]. In particular, the subsequent
experimental measurements of the properties of the observed scalar with mass 125 GeV are
so far consistent with those of the SM Higgs boson [3]. The current Higgs data set is still
statistically limited, so a more precise statement is that the observed scalar behaves as a
SM-like Higgs boson, to within an accuracy of about 20%. Future experimental studies of
the Higgs boson at the LHC will continue to search for deviations from SM behavior, as
well as evidence for additional scalar states that might comprise an extended Higgs sector.

Nevertheless, there are numerous reasons to suspect that there must exist new physi-
cal phenomena beyond the SM. For example, the SM cannot accommodate dark matter,!
massive neutrinos,? baryogenesis® and the gravitational interaction. Indeed, there is no
fundamental understanding of how the electroweak scale arises, and why this scale is many
orders of magnitude smaller than the Planck scale.* However, the casual observer exam-
ining the structure of the SM in its present form might also be puzzled that the set of
fundamental scalar fields consists of a single neutral CP-even Higgs boson. After all, the
SM employs a direct product of three separate gauge groups and the elementary fermionic
matter comes in three generations. Why should one expect a scalar sector to consist only
of a single physical state?

In light of the non-minimal structure of the fermionic and gauge bosonic sectors of the
SM, one is tempted to suppose that the scalar sector is likewise non-minimal. It is a simple

!See e.g. M. Drees and G. Gerbier, Dark matter, in [4].

2See e.g. K. Nakamura and S.T. Petkov, Neutrino mass, mizing, and oscillations, in [4].
3See e.g. ref. [5].

“See e.g. ref. [6].



matter to construct an extension of the SM that incorporates an enlarged Higgs sector.
In order to preserve the tree-level relation, pg = my/mz cosfy = 1 (which is confirmed
by the electroweak data after accounting for electroweak radiative corrections®), the elec-
troweak quantum numbers of the Higgs scalar multiplets are constrained |7, 8]. For exam-
ple, a Higgs sector employing hypercharge-1/2 scalar doublets and hypercharge-zero scalar
singlets yields pp = 1, independently of the vacuum expectation values (vevs) of the neutral
scalar fields. Following the generational pattern of the fermions, we shall simply replicate
the SM Higgs doublet and consider an extended Higgs sector consisting of N hypercharge-
1/2 scalar doublets. For N > 2, one must further require that at the minimum of the
scalar potential, only the neutral components of the N scalar fields acquire vevs [9, 10].

In this paper, we wish to explore various relations among Higgs couplings and bounds
on scalar masses that arise in an N Higgs doublet extension of the SM. Electroweak gauge
invariance plays a central role in determining the structure of the Higgs couplings. Our
primary focus here will be the couplings of Higgs bosons to gauge bosons and the cubic and
quartic scalar self-couplings. The couplings of the Higgs bosons to fermions is governed
by the Yukawa couplings, which must be highly constrained in order to avoid tree-level
flavor-changing neutral currents mediated by neutral scalars [11, 12]. In this paper, we
shall simply postpone the consideration of the scalar-fermion interactions [13].

Our main tool for obtaining relations among Higgs couplings and constraints on Higgs
masses is tree-level unitarity. If one computes the scattering amplitudes for 2 — 2 scattering
of gauge and Higgs bosons, under the assumption that all Higgs couplings are independent
of one another, then one finds that some of the scattering amplitudes grow with the center of
mass energy. Such behavior is not consistent with unitarity. Of course, there is no paradox
here since the assumption of independent Higgs couplings is incorrect. Electroweak gauge
invariance imposes relations among the couplings that guarantee that the bad high energy
behavior of any scattering amplitude must exactly cancel. One can turn this argument
around and derive relations among the Higgs couplings that are required to cancel the bad
high energy behavior of all scattering amplitudes [14, 15]. This procedure allows one to
deduce a variety of sum rules that relate various Higgs couplings [16-18].

Having canceled the bad high energy behavior, one finds that scattering amplitudes in
the high energy limit either approach a constant value or vanish in the limit of large center
of mass energy. In the former case, the condition of tree-level unitarity imposes an upper
limit on the value of this constant. Ultimately, one can show that this constant is a function
of dimensionless quartic couplings that appear in the scalar potential. Thus, the imposition
of tree-level unitarity yields an upper bound on the values of various combinations of quartic
scalar couplings. This in turn can provide upper bounds on some combinations of scalar
masses [19, 20].

In section 2 we consider the most general N Higgs doublet model (NHDM). We ex-
plicitly write out the couplings of the Higgs bosons to the gauge bosons, which arise from

5See e.g. J. Erler and A. Freitas, Electroweak model and constraints on new physics, in [4].

5The requirement that the electric charge preserving vacuum is a global minimum of the scalar potential
imposes some constraints on the scalar potential parameters. Henceforth, we assume that these constraints
are respected.



the scalar field kinetic energy terms after replacing the ordinary derivative with the gauge
covariant derivatives of the electroweak theory. Remarkably, these couplings are controlled
by an N x 2N matrix B, whose physical significance is explained below. We also note
the appearance of the 2N x 2N matrix A = Im(BB). The matrix A is an orthogonal
antisymmetric matrix that is governed by N(IN — 1) parameters. These parameters are
independent of the basis of scalar fields used to define the model, and thus are related to
physical observables.” The matrix B is governed by 2(N — 1)? physical parameters, which
include the N(IN — 1) parameters that already appear in the matrix A. In addition, the
matrix B depends on N — 1 (unphysical) phases that can be eliminated by appropriately
rephasing the physical charged Higgs fields of the model. We also examine some aspects
of the scalar self-couplings. We find that some specific cubic and quartic couplings involv-
ing Goldstone boson fields also depend exclusively on the matrices A and B. This is a
consequence of the fact that these interactions terms are related by gauge-fixing to terms
appearing in the gauge-covariant scalar kinetic energy terms. The structure of the other
cubic and quartic couplings are not as simple, and involve more complicated invariant
expressions involving the coefficients of the scalar potential.

In section 3, we derive a variety a sum rules involving the couplings of gauge bosons
and Higgs bosons and the couplings of Goldstone bosons and Higgs bosons. In section 4,
we present an efficient technique to impose the condition of tree-level unitarity, leading to
upper bounds on various combinations of couplings and scalar masses. We apply this to
known results and present new results for the three Higgs doublet models (3HDMs) with Z3
symmetry and with order-4 CP symmetry, respectively. Conclusions are given in section 5.

In our analysis of the NHDM, one can define a new basis of scalar fields such that the
neutral scalar vev resides entirely in one of the Higgs doublet fields, denoted by @{{ . This
is the well-known Higgs basis [21-24], in which the charged component of ® is identified
as the charged Goldstone boson field and the imaginary part of the neutral component
of ®! is the neutral Goldstone boson field. The Higgs basis is not unique, since one is
free to make an arbitrary U(N — 1) transformation among the remaining N — 1 doublet
fields. In particular, one can employ this transformation to diagonalize the physical charged
Higgs squared-mass matrix. This procedure yields the charged Higgs basis, as discussed in
appendix A. Note that the resulting basis is unique up to an arbitrary separate rephasing
of the N — 1 scalar doublets that contain the physical charged Higgs boson fields.

In appendix B, we apply the analysis of the NHDM given in section 2 to the two-Higgs
doublet model (2HDM). We first discuss the complex two-Higgs doublet model (C2HDM),
in which a Zs-symmetric scalar potential is softly broken by a complex squared-mass pa-
rameter. We then generalize to the most general 2HDM, which is treated using the basis-
independent formalism of ref. [25]. In both cases, we display the explicit 2HDM forms for
the matrices A and B and exhibit the unphysical parameters in the matrix B that can be
eliminated by an appropriate rephasing of the physical charged Higgs fields. In appendix C,

"Given a set of N scalar doublet fields {®}, one is always free to consider another basis of scalar fields,
{®}} that is related to the original set of scalar fields by a unitary transformation. Any physical observable
must be independent of the choice of basis.



we demonstrate how to count the number of parameters that govern the matrices A and
B of the NHDM and identify which of these parameters are physical.

In our derivation of coupling sum rules and unitarity relations, the coupling of the
Goldstone bosons fields to the physical Higgs fields play an important role. Although the
initial forms of these expressions are quite complicated, the corresponding cubic couplings
end up reducing to remarkably simple forms. As an example, we provide in appendix D the
details of the derivation and simplification of the coupling of two neutral Goldstone fields
and a physical Higgs scalar. Finally, in appendix E, we rederive the sum rules obtained
directly from the NHDM interaction Lagrangian using an alternative method, which im-
poses the cancellation of bad high energy behavior in the 2 — 2 scattering amplitudes of
processes involving the gauge and Higgs bosons. The relation between sum rules involving
the neutral Higgs boson couplings to WTW ™ and ZZ is clarified in appendix F.

2 N Higgs doublet models

In this section we discuss the bosonic Lagrangian of the most general NHDM. The field
content consists of the SU(2)7, x U(1)y gauge bosons and N hypercharge-1/2 Higgs doublet
fields, parameterized as,

(P+
op=1{ , " o |, fork=1,... N (2.1)
ﬁ(vk + ¢n)
The Higgs-fermion Yukawa interactions will be examined in a subsequent work [13].

2.1 The scalar potential

For the scalar potential, we follow the notation of [23, 26]:
Vir = pij (B]25) + Xijit(2]8;) (B]1) = —Liiges, (2.2)

where, by hermiticity,
Pij = Hjis  Nijkl = Mklij = Nji gk (2.3)
Using eq. (2.1), the Higgs potential becomes

Vi =Vo+Vi+ Va+ Vs + Vi, (2.4)

where,?
2Vo = pij (vivy) + %)‘ij,kl (viv) (vgwr), (2.5)
2Vi = o [pij + Nijvivi] @ + 00 g + Aij vk vj, (2.6)

81t is useful to note that, because (M3);; and A vxv; are hermitian in (i,4), the second term in
eq. (2.7) may be written as

[(M3)i; + Niktjvevi ]| 07 0] = Re {[(M2)ij + Nirgjoevr | @7 07} -



Va = (M3)ij o 0f + 5 [(M2)ij + Aigjonvy ] @7 0] + ghe { Nk growvr el oY}, (2.7)

2
- 1 * * *
Vs = i o; @) [o v+ viel] + S 070 [l o+ vl (2.8)
_ _ - 1
Vi = Mg (0 0] (0 0) + Nigaa(or o) (070 + i (91707) (007D, (2.9)
and
(M2)ij = pij + Nij v (2.10)

is the mass matrix for the charged scalar fields. Requiring the absence of linear terms
yields the stationarity condition,

Vi=0 = [,uij + Aij,klv;;vl] vj = (M:%:)l] v; = 0. (2.11)

The vacuum of these models has been studied in ref. [9]; here we assume only that the
electromagnetic U(1)ey, remains unbroken.’ Expanding the neutral fields in terms of their
real and imaginary components, the second and third terms of Vo may be written as

Re(¢Y)
M?2 M?2 :
1 ) 0 0 ) 5 1| Re(ed)
5 (Re(@)), ... Re(d), In(g), ... .Tm(s}) ) e
2 \T 2 Im(gpl)
(MRI) MI .
Im(o%)
(2.12)
where [cf. footnote §],
(MI%)ZJ = Re {(M:%:)%] + )\ik,ljvkvl* + )\ik,jwkvl} , (2.13)
(MIQ)” = Re {(M:%:)lj + )xik’ljvkvl* — )\ik,jlvkvl} , (2.14)
(M}%[)ij = —Im {(M:%:)U + )\ikjljvkvl* — )\ikdlvkvl} . (2.15)

Using eq. (2.3), we conclude that M? is hermitian, the matrices M% and M7 are real and
symmetric, and M3, is a general real matrix. Thus, the mass matrix in eq. (2.12) is real
and symmetric, as expected. Our mass matrices agree with those in ref. [9], after noting
that their v{ = vj,/v/2. Our eq. (2.15) differs by a minus sign in the last term with respect
to a similar eq. (A17) of ref. [30]. However, this sign error is the result of a misprint, in
light of the agreement in signs between our results and eqgs. (A18)—(A22) of ref. [30].

For later use, we note that

(MENE =Tm {(M2)i; + Nikgjorv} + Nik ki } (2.16)

9Some features of the vacuum of N Higgs doublet models have also been studied using the bilinear
formalism in refs. {10, 27-29].



arises from egs. (2.15) and (2.3). From egs. (2.13)—(2.16), we find
2 ik gjonv] = —2(M2)i; + [(MR)y + (M7)i] +i [(MED)G; — (Map)i) . (2.17)
2 Nikjiowvr = [(MRg)ij — (M7)i] + 1 [(Mz)i; + (Mgp)ij] - (2.18)
egs. (2.5)-(2.9) are written in with respect to a generic basis of the scalar doublet fields.

One can define a new set of charged and neutral scalar fields denoted, respectively, by
S¥ (a=1,...,N)and S§ (8=1...,2N), via

N

Splj = Z UkaS;a (219)
a=1
2N

©) = VigSh, (2.20)
B=1

where U is an N x N unitary matrix, and V is a complex N x 2N matrix. It is convenient

to define the real 2N x 2N matrix,
- Re V
V= . (2.21)
ImV

Note that the transformation given in eq. (2.20) results in a real orthogonal similarity
transformation of the 2N x 2N symmetric squared-mass matrix given in eq. (2.12). That
is Vis a 2N x 2N real orthogonal matrix. As a result, we find

Lavxoy = VIV = ReV” ReV +ImV7 ImV = Re (V1V), (2.22)
where 1oy «on is the 2N x 2N identity matrix. Similarly, from 1oy xony = f/f/T, we obtain,

ReV ReVT = 1yyn = ImV ImV7,
ReV ImV7T = Onyxny = ImV ReV7. (2.23)

Hence, it follows that,
VVT =Re(VVT) +iIm(VVT) = 0. (2.24)

Note that we have used the convenient notation of refs. [31, 32], which in turn was inspired
by refs. [30, 33]. In addition,

VVI=Re(VVT) +iIm(VVT) = 2-1yun. (2.25)

Finally, one can show that the matrix Im (VTV) is antisymmetric. Moreover, using
egs. (2.23), this matrix satisfies,

[t (V1 v)]2 = —Lonan. (2.26)

Thus, Im (VTV) is the only nontrivial piece of VVT and VIV. As we shall see below, it has
the crucial role of controlling scalar couplings involving the Z boson or its corresponding



Goldstone boson. Combining the antisymmetry with eq. (2.26), we conclude that Im (VTV)
is orthogonal

[Im (va)} ! [Im (VW)] = Lonson. (2.27)
In particular, all of its entries satisfy
’Im (VTX/)aﬁ <1 (2.28)
This will be of interest later.
Let us consider matrices such that
Upy = o, (2.29)
Vil = 0y, (2.30)
where we have defined
ok = %’“ (2.31)
With these choices, the unitarity of U implies
(UT0)g = 610 = (0'U)y  (a=1,...,N), (2.32)
while eq. (2.22) implies
~Im(VT9)5 = Im(8'V)5 = 815 (B=1,...,2N), (2.33)
Re(VT0)s =Re(0'V)s = —Im(VIV)13  (8=2,...,2N), (2.34)
Re(VI0) = Re(8V); = —Im(VIV)1; =0, (2.35)

where the last equality holds because Im(VTV)aﬁ is antisymmetric in 3. We wish to study
the squared-mass matrix of the charged scalars with respect to the charged scalar fields S,

ME =UTM2U. (2.36)
Using egs. (2.10), (2.29), and (2.11), it is easy to show that
(UTM1U> L= (UTMiU) =0 (2.37)

This means that with respect to the charged scalar fields S, [reached by transformations
with (2.29)], the first row and first column of the transformed squared-mass matrix of
the charged scalars vanishes. This identifies Sf[ with the charged would-be Goldstone
boson G*,

St =a*. (2.38)

Next, we turn to the squared-mass matrix of the neutral scalar fields.

| ompomp |
My =vVT 1% (2.39)
(Mg)" M

— ReVT M2ReV +ImV7T (M%,)" ReV +ReV” M, ImV +ImV7™ M? TmV.



Using eq. (2.30), we start by looking at

(MEReV),, + (M ImV) | = —Re {(M2)ij + Aikgjvev; + Nikjivevr} Im(d;)
—Im {(Mi)w + ik, 1jVRY; — )\ik,jlvkvl} Re(v;)
= —Im {(Mi)ij@j + /\imjvkvl*@j} + Im {)\imlvkvl@;}
= 0. (2.40)

For the first equality, we have used egs. (2.13) and (2.15). To reach the last line of eq. (2.40),
we have used eq. (2.31) and the stationarity condition given in eq. (2.11). Similarly,

((]\JIQ{I)T];{GV)i1 + (MIQIHIV)Z.I = —Im{ M:?:)Zj + Aik’ljvkvl* + )\ile’Ukvl} Im(’f)j)
M2)ij + Nik1jokvf — Nikjivevr ) Re(9;)
= Re {(Mi)ijﬁj + )\ik,ljvkvl*ﬁj} — Re {/\ik,jlvkvl@;}

= 0. (2.41)

Multiplying eq. (2.40) by (ReV7T)4:, multiplying eq. (2.41) by (ImV7'),;, and summing
over i, we conclude from eq. (2.39) that

(MR)15 = (M3)a1 =0, (2.42)

where the first equality holds since M]2V is a real symmetric matrix. This means that with
respect to the scalar fields S, [reached by transformations with (2.30)], the first row and
first column of the transformed squared-mass matrix of the neutral scalars vanishes. This
identifies SY with the neutral would-be Goldstone boson GY,

SV =GO, (2.43)

One can choose matrices U and V in such a way that the transformations in egs. (2.19)
and (2.20) yield the charged and neutral scalar mass eigenstate fields, respectively,

U'MiU = D} =diag (mi, =0,m3,,...,m3 y) (2.44)

| ompom |
vT V = D} = diag (m} =0,m3,....,m3y). (2.45)
(ME)T M}

Since we have identified Si~ = G* and S = GY, it follows from our above analysis that the
matrices U and V must satisfy eqs. (2.29) and (2.30), respectively. In this case, ST (a =
2,...,N) and Sg (8 =2,...,2N) denote the fields of the physical charged and neutral
scalar particles, respectively. Their corresponding masses are mik (k=1,2,...,N) and
m3 (B=1,2,...,2N).10

10T appendix A we discuss two other ways to identify the neutral and charged scalar mass eigenstate
fields, involving intermediate steps which simplify some of the analysis.



Using egs. (2.44)—(2.45) in egs. (2.17)—(2.18), we end up with

2 N1 URV] = —2 (U D% UT) + (V p2vt ) , (2.46)

v

v

2 X jivkvr = (V D VT) (2.47)

ij
These are the only combinations of quartic couplings (and vevs) that one can obtain from
the diagonalization of the scalar squared-mass matrices. Thus, only those cubic and quartic
terms of the scalar potential involving these combinations will be related to scalar masses.
Eqgs. (2.46)—(2.47) constitute a crucial result of our paper, since, they will enable us to
relate the gauge-Higgs couplings with the scalar-scalar couplings.!!

2.2 Gauge-Higgs couplings

When expressed in terms of the physical gauge fields, the gauge covariant derivative may

be written as
iD, =0, — Y W+ W) — eQA, — 9 (E — QS%V) Zy, (2.48)
2 1% 1% CW 2

where g is the SU(2) coupling constant, cyr = cos Oy, sy = sin Oy, e is the electric charge
of the positron, @ is the charge operator, and'?

T+:<8 f), 7'_:<\35 8), 7'3=<(1) _2); (2‘49)

when acting on SU(2) doublets. Note that the signs of the coupling constants and gauge
fields above correspond to choosing all the 7 equal to +1 in the notation of ref. [34]. This

coincides with the conventions of ref. [7], but differs in the signs in g from refs. [35, 36].13
This also has an impact on any Feynman rules proportional to My, or M.
The kinetic term for the scalar fields is
N
Lie =Y (D"¥)" (D). (2.50)
k=1

We substitute eq. (2.48) and parameterize the ®j as in eq. (2.1). Next, we employ
egs. (2.19)—(2.20) to express the charged and neutral fields in terms of the mass eigen-
state fields, and we use the properties in egs. (2.22)—(2.35). We end up with,

N 2N

1 1
Lo = Z(a“SJ)T(auS:)-FﬁZ(aMSg’) (8“52)+M%/W+“W;+§M%Z“ZH (2.51)
a=1 pA=1

+iMy [W,H(O"GT) =W, (0" GT)| =Mz Zu (0" G°)+Lyvs+Lyss+Lyvss,

1 This is, of course, consistent with gauge-fixing and is needed, in particular, for the equivalence theorem.

12Tn this paper, we normalize the hypercharge ) such that Q = T3 + ), where T = %7"’.

13The signs in refs. [23, 31] correspond to yet another choice, which yields an unexpected sign in the
relation tan 0w = —g'/g.



where, 4

Lyys = [eMw A" — gMysiy ZM] (W, Gt + W+G_]

—g [MWW+“W + —Z“Z } Z S5 Awg, (2.52)

gczw
EVSS:z[eA + == ]Zsmﬂs +4—Zu Z Soé) SH Ay

2ew cw Moyl
g N 2N o o
; +(q0 — — 0
+z2;; [Baﬁwu (S99S7) + (B gaW, (S augﬁ)] 7 (2.53)

2 2 2N
g - g
Lyyss = [4W*“WM + SC%Z“ZM] 2(52)2
=1

2
+ BW*“W; +2APA, + LWV gy g CZW Z“Z } Z STSF

cw
eg 9282 N 2N
AR LW gn BagW,F 2.54
[ L] S8 s nis].
with copy = cos (20y) and
B=UWV [N x 2N, (2.55)
A =Im(V'V) = Im(B'B) 2N x 2N, (2.56)

are matrices of dimension N x 2N and 2N x 2N, respectively.

The matrix A is basis-independent and hence physical, whereas the matrix B is basis-
independent up to unphysical phases that can be absorbed into the definition of the physical
charged Higgs fields, S* (for a = 2,3,..., N). Further details will be provided in the next
section. Eqs. (2.51)—(2.54) agree with egs. (29a)—(29p) of ref. [31], if we notice that, because
of the different sign in the coupling g, we have ¢ = —gCFO0 | Ay = —MV([;,LOO , and
My =-M g"'LOO, where the subscript “GLOO” stands for ref. [31]. The only exception is
in the Z.S,S3 coupling given in eq. (2.53) which, after the difference in notation is properly
accounted for, disagrees with the sign of eq. (29h) of ref. [31]. We have checked in both
notations that their incorrect sign can be attributed to a misprint.

2.3 The A and B matrices

In section 2.2 we showed that the couplings arising from the kinetic Lagrangian depend
exclusively on the matrix B in the charged scalar sector and on A = Im(B'B) in the
neutral scalar sector. A and B are defined in terms of the matrices U and V', which relate
the charged and neutral fields in a generic basis of scalar fields, {®}, to the corresponding

>
We employ the notation where ST 9+S, = S+ (0"S;) — (0*ST)S, .
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mass-eigenstate scalar fields, respectively. The choice of basis is of course arbitrary. For
example, another set of scalar fields {®}}, with

D) = XD, (2.57)

where X is some N X N unitary matrix, could have been employed. The scalar field kinetic
energy terms are invariant with respect to eq. (2.57), since

N N
Lo = 32 (D)1 (D) = S (D40) (D) (259
k=1 k=1

which follows from XX = 1y.y. Consequently, the interactions of the scalars with
the gauge bosons given by eqs. (2.51)—(2.54) are basis-independent. Indeed, any physical
observable cannot depend on the choice of basis. We would like to use these observations
to address the behavior of the matrices A and B under an arbitrary change of basis. The
interaction Lagrangian given by egs. (2.51)—(2.54) is written in terms of the scalar mass
eigenstates S and S, which are related via egs. (2.19) and (2.20) to the scalar fields in
a generic basis. The diagonalization of the neutral scalar squared-mass matrix is given
by eq. (2.39) and yields real neutral scalar mass-eigenstate fields. The overall sign of the
neutral scalar mass-eigenstate fields are not physical. However, the standard practice is
to fix this sign by appropriately restricting the range of the angles that parameterize the
diagonalization matrix. Having adopted this convention where the sign of the neutral scalar
mass-eigenstate fields are fixed, it follows that the matrix A that appears in eqs. (2.52)
and (2.53) is basis-independent and hence physical.

In contrast, the diagonalization of the charged scalar squared mass matrix yields com-
plex mass-eigenstate charged scalar fields. By convention, the phase of the charged Gold-
stone field is fixed. In particular, it is convenient to choose X = U in eq. (2.57), which
yields the scalar field basis,

G+ Sy ST
f = , BY = 2 Lo, 8% = N o], (2.59)
75 (v+ H' +iGY) 595" AR
where S;r Yo ,SJJ\F, are the physical (mass-eigenstate) charged Higgs fields with correspond-

ing masses mgtz This is called the charged Higgs basis and has two defining properties:
1. S5, 85, .., S]T,, are the charged scalar mass-eigenstate fields;

2. the first doublet field, <I>1C, has the massless would-be Goldstone boson G as its
charged (upper) component, and its phase has been chosen such that the (real and
positive) vev, v ~ 246 GeV, is contained in the real part of its neutral (lower) com-
ponent.

The Higgs basis (which is defined by property 2 alone) and the charged Higgs basis are
discussed in detail in appendix A. Notice that the fields H° and gogo, e go%o are not the
neutral scalar mass-eigenstate fields. B is the matrix that transforms these fields, written
in the charged Higgs basis, into the neutral scalar mass-eigenstates.
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The charged Higgs basis is unique up to a possible rephasing of the charged Higgs fields,
St — exaSF [for a = 2,3,...,N]. That is, the charged Higgs basis is a family of scalar
bases that is characterized by N — 1 phases, x,, as discussed at the end of appendix A. In
egs. (2.53) and (2.54), the invariant combinations B,3S, and its charged conjugate appear.
Hence, it follows that the matrix B is not quite basis-independent, since B,g — eiXa B,p [for
a=2,3,...,N] under the rephasing of the charged Higgs fields to preserve the invariance
of egs. (2.53) and (2.54).

In contrast, the mixing matrices U and V that relate the charged and neutral fields
in a generic basis of scalar fields, {®}, to the corresponding mass-eigenstate scalar fields,
respectively, are basis dependent. It is instructive to examine the question of basis de-
pendence and work out the explicit forms of the matrices A and B in the more familiar
2HDM. In this case, the matrix U contains the angle 8 = tan~! (vy/v1). As discussed at
length in ref. [25], this means that the angle 5 does not in general have a physical mean-
ing, since the vevs v; and vy (and hence tan ) transform under the basis transformation
given by eq. (2.57). Similarly, the mixing angle parameters appearing in the matrix V
that transforms the neutral scalar fields of the generic basis into the neutral scalar mass-
eigenstate fields are also basis dependent. To find basis-independent quantities, one must
consider the neutral mixing angle parameters relative to the angle 5. That is, under a
basis transformation, both the neutral mixing angle parameters and the angle 5 shift by
the same amount so that their difference is invariant. Thus, one way to determine the
invariant neutral mixing angle parameters is to work in the Higgs basis, in which 8 = 0.
Further details can be found in appendix B. The matrix B is the NHDM generalization of
the neutral mixing angle parameters relative to the angle 5. As noted above, the matrix B
is almost basis-invariant, since unphysical phases remain that reflect the possible rephasing
of the charged Higgs fields.

From section 2.1, we can deduce the following properties of the matrices A and B. First,
it is convenient to re-express A in terms of the matrix V defined in eq. (2.21). We introduce
the 2N x 2N orthogonal antisymmetric matrix .J, which in block form is defined by

J= ( 0 1NXN> . (2.60)
—1InxnN 0
Then A = Im(V1V) can be rewritten as,
A=VTjv. (2.61)
It immediately follows that A is a real orthogonal and antisymmetric matrix; i.e.,
AAT = 150N, AT = —A. (2.62)

In particular, the orthogonality of A implies that |A,g| < 1.
Given an N x N unitary matrix U, it is always possible to represent this matrix by
the following 2N x 2N real orthogonal matrix,

~ ReU —ImU
ImU ReU
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Henceforth, we shall always identify the real orthogonal representation of a unitary matrix
with a subscript R and a tilde (to indicate that the dimensionality of the matrix has been
doubled).
Using this notation, it is convenient to construct the 2N x 2N matrix B,
. Re B e
B = =UxpV. (2.64)
Im B

Since Ui and V are real orthogonal 2N x 2N matrices, it follows that B is also a real
orthogonal 2N x 2N matrix. Moreover,

1
5BBT = 1yxn, Re(B'B) = 1anxan. (2.65)

Noting that B = UV and A = Im(B'B), one can write

B'B=VV = 1oyuon +iA. (2.66)
Finally, we note that
B = i6a17
Big = —Alg + Z'(slg. (2.67)

The central point of this section is the following. Unless there is an (imposed symme-
try) reason to single out some specific basis, the best way to count parameters and to set up
a numerical simulation is to write the potential in the charged Higgs basis ab initio. As seen
from appendix A, the charged Higgs basis is (almost) unique, up to the separate rephasing
of the N — 1 doublets with zero vev. As a result, all the parameters of the scalar potential,
when written in the charged Higgs basis, are either invariant or pseudo-invariant quantities
with respect to arbitrary scalar basis transformations. Here, pseudo-invariant means invari-
ant up to an overall phase that arises from the rephasing of the N — 1 doublets that contain
the physical charged Higgs fields. It is straightforward to construct invariants from appro-
priate products of pseudo-invariants in which the overall phase ambiguity cancels. All such
observable quantities are potential experimental observables. This provides the generaliza-
tion of the parameters Y1,Ys, Y3 and Z1, Zs, ..., Z7 championed for the 2HDM in ref. [37].

2.4 Parameter counting

We begin by asking the following question. How many parameters govern the matrices A
and B and how many of these parameters are physical? To address this question, we first
examine the matrices V and U, which transform the neutral and charged scalar fields of a
generic basis to the corresponding scalar-mass eigenstates, respectively.

Starting from a scalar basis, {®y}, one can compute the neutral scalar squared-mass
matrix as shown in eq. (2.45). The real orthogonal 2N x 2N diagonalizing matrix V is
related to the matrix V' defined in eq. (2.20) via eq. (2.21). With respect to a new scalar
basis {®}}, one obtains a new matrix V given by

V=XV, (2.68)
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after using egs. (2.20) and (2.57). Employing eqgs. (2.21) and (2.68), one obtains a new real
orthogonal diagonalizing matrix V' given by

V' =XkLV, (2.69)

where [following eq. (2.63)] the 2N x 2N real orthogonal matrix Xp is defined by

~ ReX —ImX
Xp= . (2.70)
ImX Re X

Using eq. (C.31), one can decompose the real orthogonal 2N x 2N matrix V= WRRC,
where W5 and R, are the real orthogonal 2N x 2N matrices given in eq. (C.32). Inserting
this result back into eq. (2.70) yields,

V' = XEWrR.. (2.71)

Using the definition of the matrix A given in eq. (2.56), one can determine A with
respect to a new scalar basis {®}},

A =Im(V'TV) =Im(VIV)=A. (2.72)
Note that the same result can be obtained by employing eqgs. (2.61) and (2.69), since
A=v'Tjv =vTjv =4, (2.73)

after noting that XpJJX%L = J (the latter makes use of the fact that X is unitary). That
is, A is basis-independent. In particular, if we choose X = W in eq. (2.71), then V' = R,,
which can be expressed in terms of N (N —1) parameters.'® Consequently, eq. (2.73) implies
that A = RT JR., which depends on N (N — 1) physical parameters. 6

Likewise, starting from a scalar basis, {®x}, one can compute the charged scalar
squared-mass matrix as shown in eq. (2.44). The N x N unitary diagonalizing matrix
U defined in eq. (2.19) depends on the basis. One also must take into account that the
charged Higgs basis is not uniquely defined, as discussed at the end of appendix A. Hence,
the physical charged Higgs fields may acquire phases under the basis change. If we per-
form a basis transformation given by eq. (2.57), we must allow for the possibility that
S — eXeSF [for a = 2,3,...,N]. We can write the latter as

S& =Y KaS,", (2.74)
b

where the primes indicate quantities associated with the transformed basis and

K =diag(l, e ™2 e s . e XN), (2.75)

15Since V' = R., we can use the results of appendix C.3 to show that R., which depends on two N x N
real antisymmetric matrices, is governed by N(N — 1) parameters.

16This result is consistent with eq. (2.62), since the most general real orthogonal antisymmetric 2N x 2N
matrix can be expressed in terms of N(NN — 1) independent parameters, as shown in appendix C.1.

— 14 —



Combining eqgs. (2.19), (2.57) and (2.74) yields

N
ot =Y Ui.Sat, (2.76)
a=1
where
U =XUK. (2.77)

That is, one obtains a new unitary diagonalizing matrix U’ given by
= (X130, Ul, = e X(X1) Uk, (2.78)

where there is an implicit sum over the repeated index k.
We can now compute the transformation of B under a change of scalar basis. With
respect to the basis {®}}, we have

Big = (U'TV')15 = (UV)15 = Bug, (2.79)
Bl = (U'TV')ap =X (UTV)qp = €XByg . (2.80)

after making use of egs. (2.68) and (2.78).

If we consider the charged Higgs basis where X = U, then eq. (2.77) yields U’ = K

and

B =UV = UL (UEWR)R., (2.81)
after making use of egs. (2.64) and (2.71) with X = U. The N — 1 phases x, (for a =
2,3,...,N) that appear U’ = K (and similarly are contained in ﬁI’QT) are unphysical and
can be absorbed into the definition of the charged Higgs fields S;F. Since W # U (unless
the neutral Higgs fields are mass eigenstates in the charged Higgs basis), it follows that B
contains additional parameters beyond the N (/N — 1) physical parameters that determine
the matrix R.. As shown in appendix C.2, the matrix B (and B) depends on an additional
(N — 1)(IN — 2) physical parameters. That is, after absorbing the N — 1 phases into a
redefinition of the charged Higgs fields, there are 2(N — 1)2 physical parameters remaining
in the matrix B (and B).

The C2HDM provides an interesting example, discussed in detail in appendix B. One
sees in eq. (B.49) that B (or equivalently B) depends on 3 angles, where one of the angles is
unphysical and corresponds to the freedom to rephase the second scalar doublet with zero
vev. In contrast, A in eq. (B.56) depends only on the two invariant angles contained in B.
The case of N = 2 is special in that the parameters that define the matrix A corresponding
precisely to the physical parameters that appear in the matrix B.

The 2(N — 1)? physical parameters contained in the matrix B are sufficient to param-
eterize all the gauge boson-Higgs boson interactions. But, the three-scalar and four-scalar
interactions derived from the scalar potential necessarily involve additional parameters.
We have already emphasized that the charged Higgs basis is especially useful in identifying
the invariant (and pseudo-invariant) scalar self-coupling coefficients. In particular, in the
charged Higgs basis, the scalar potential is given by

Vir = Yi(®5105) + Zij 0 (0109 (2 T2, (2.82)
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parameters | magnitudes phases
2 N(N+1) N(N-1)
Y N — —a—
A N2(N2+1) N2(N2+3) N2(N2-1)
2 1 4
N2(N2+3) N445N242N N44+N2-2N
Y and 7 5 1 T

Table 1. Number of parameters in the Y and Z coefficients of the Higgs potential.

The number of relevant parameters is shown in table 1.

The number of parameters gets reduced for two reasons. First, our definition of the
charged Higgs basis allows for a rephasing of the N — 1 scalar doublets with zero vevs. This
reduces the number of phases by N — 1. In addition, the stationarity conditions written in
the charged Higgs basis relate some Y and Z parameters. More generally, eq. (A.16) can
be used to obtain a relation of the Y and Z parameters with the charged scalar masses,

Yij + ’UQZZ‘J',H = 5ij mii, (2.83)

which can be used to trade in the Y;; for the Z parameters and the charged scalar masses.
Hence, using the charged Higgs basis as parameters, we need only the iN 2(N? + 3) mag-
nitudes and the $N?(N?2 — 1) phases in Z, of which only $§N?(N? — 1) — (N — 1) phases
are physical.

For example, in the 2HDM and in the notation of ref. [37], we find

1
Y, = —§Z102,
1
YE’) = _§Z6U27
1
Yy = -3 302 +mi. (2.84)
The seven magnitudes correspond to |Z1],|Z2|,...,|Z7| and the two independent phases

are Im(Z2 Z2) and Im(Z} Z2), first identified in ref. [22] as basis invariant measures of CP
violation. Although not independent in the case Zs, Zg, Z7 # 0, the possibility of Z5 = 0
is only covered by considering in addition the third invariant phase, Im(ZZ%) [22, 24].

Many different parameter choices exist in the literature. For example, one can employ:
(i) m4, and the quartic coefficients Z of the scalar potential in the charged Higgs basis;
or (ii) the quadratic coefficients Y not fixed by the scalar potential minimum conditions
and all of the quartic coefficients Z; or (iii) the physical parameters in B, the physical
charged and neutral scalar masses, and (if needed) some invariant combination of scalar self-
couplings. In extended Higgs sectors with additional symmetries (where the basis in which
the symmetries are manifest becomes physical), one can also employ the various ratios of
scalar vevs in the list of parameters. For example, in the CP-conserving 2HDM with a
softly-broken Zs-symmetric scalar potential, some authors choose parameters consisting of
B = tan~! (v/v1), B — a [which appears in the matrix B in our notation], the charged
scalar mass my, the neutral scalar masses (mp, mpg, and m4), and the soft Zg breaking
squared-mass term m3,.
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2.5 Scalar self-couplings

In this section, we demonstrate that some of the scalar self-couplings are related to the
kinetic terms obtained in section 2.2. In particular, it is convenient to enquire which scalar
couplings may be written exclusively in terms of the matrix B (and A), that appear in the
kinetic terms, and the scalar masses m+, and mg.

We first consider the cubic scalar self-couplings. The scalar potential in eqs. (2.4)—
(2.9) can be expressed in terms of the physical fields using the mixing matrices U and V
in egs. (2.19)—(2.20). The cubic vertex interactions can therefore be written as

Vi = )\ij,kl(UT)ainb [(VT)gkvl + UZV}ﬁ} SgSa_S;'
1
+ 5/\¢j,kl(VT)§iVm [(VT)ﬂkvl + UZVm} S%SSS(?. (2.85)

In contrast to the terms of the interaction Lagrangian that couple the scalar and vector
bosons given in egs. (2.51)—(2.54), additional structures appear beyond those combinations
of U and V that define the matrices A and B. However, if we focus on the cubic couplings
that involve at least one Goldstone field, the form of the cubic interaction terms simplify
significantly and can be expressed in terms of the A and B matrices and the squared masses
of the physical scalars.!” Indeed, this is to be expected, as these interaction terms are
related by gauge-fixing to the pure gauge boson terms arising from the kinetic Lagrangian,
which can be expressed in terms of the matrices A and B, as shown in egs. (2.51)—(2.54).
In order to simplify the non-vanishing cubic potential terms we employ eqs. (2.22)—
(2.35), from which we obtain the further useful relations
; 2N
[UTV] [UTV} =2 1yen = > (UV)ap(VIU) gy = 260, (2.86)
p=1

N
T
[UTV} [UTV] =1y +iIm(VIV) = > (VIU)0a(UTV)ag = dag + iIm(VIV) a5,

a=1
(2.87)
and
(UV)ar = ibar, (2.88)
UV)g = —Im(VIV)15 +i615. (2.89)

Moreover, we must use the crucial relations given in egs. (2.46)—(2.47), relating some com-
binations of quartic couplings with the scalar masses. This simplifies considerably the final
expressions. The end result is,'®

e For S°G—St + S0S—G+:

1
K [Bag (m3 —m2,) $98; G+ + (BY)ga (m3 — m2,) SYS;F G*} . (2.90)

In particular, we find that the couplings G°S~S¥, G °G*ST, GGG, and G°G~G* vanish. The
vanishing of the G°G°GP°, and G°G~G* couplings is a well-known result of the SM.
18The expressions for the cubic couplings of the Goldstone bosons and physical Higgs scalars in terms of

scalar squared-masses was first obtained in the CP-conserving 2HDM in ref. [38].
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Kinetic lagrangian Scalar potential

Coupling Feynman rule Coupling Feynman rule
(WEGTZ] —igM 7% G [GTGTFGY) Null

[ZS+S,] —gew (pF —pg ), Va [G°S+ 8] Null, Va

28950 | g -1 Ay VB# | [GOSSSY | —i(md—m2)As, . VA =2
2GOS) | S (0% — s A, VB AL | (GOGOSY L3 i, VB A1

(WHSs S8 | ¥(pa —p3)'Bap » Va, VB #1 | [GTS;SY] | —L[m% —m?%,]Bas , Va,VB8#1

WHG=SY) | —%(pg —pH)"Aig, VB#1 | [GTG~SY) im2Aig, VB#1

(WG~ G —$(pe — P&)" [GTG~GY] Null
[225§] 4 A g, VB#L | [GOGOSE) tmjdig, VB #1

[W+W=59] —igMw Avg g , VB#1 [GTG~SY] im2Aig, VB#1

Table 2. All cubic couplings from the kinetic lagrangian (except photon) and their scalar potential
counterparts obtained by substituting all gauge bosons by the corresponding Goldstone bosons.

e For SYG+G—:
1
V3D ——GT G miAi Sy (B>2). (2.91)
e For GYSY59:
1
V3D ;Gom%AmS%Sg (y#£B8>2). (2.92)
e For G°GYS0:
1
Vi D —%GOGOm%AwSE} (B>2), (2.93)

where there is an implicit sum over repeated indices. Achieving the simplified forms of the
couplings above is rather laborious. For example, the explicit derivation of eq. (2.93) is
given in appendix D.

The cubic couplings that are present in the kinetic lagrangian are also present in parallel
with the scalar potential. A comparison is shown in table 2, where we have collected the rel-
evant Feynman rules. We notice that both sets of couplings depend on the same parameters:

Ag =Im(VIV)i5, Ausg=Im(ViV),s, and Bag= (UTV)us. (2.94)

This is not surprising, since gauge boson couplings and Goldstone boson couplings are
related by the gauge-fixing, as previously noted. Although the equivalence theorem [39] is
not a requirement on the couplings but rather on full processes [40], the relation between
these couplings insures that the equivalence theorem is satisfied.
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For the calculation of the quartic couplings we use the general expression
Vi = Nijst (UN)ai Uy (U)ot U (S5 S;7)(S2 S)
+ Nijt (U ai Uy (Vak Vig (S, Si)(S9S9)
1
it (Vai Vig (V) Vis (Sa55)(55.95)- (2.95)

It is instructive to focus on the quartic couplings that involve the Goldstone boson fields.
After some very long simplifications, we find the non-vanishing Goldstone-scalar quartic
couplings that involve an even number of Goldstone boson fields listed below.

e For G-GTG~G:
ViD o (G7 G2 Zmﬁ [A15)? (2.96)

e For G-GTS—St:

2N
1 _
Vid 5 GG Sy LZ2 m&Bas(BY) gy — 2y (2.97)
e For GG~ STST + h.c.:
1 - - *
Vi35G G S S (B D§B)ap + hc. (2.98)
e For G-GTGOGY: o
1 — 0,~0 2 2
ViD 55 G GGG 62:27715 [A1] (2.99)
e For G°GY°GOGP: -
ViD —GOGOGOGO > mlAsg) (2.100)
B=2
e For G°GY8959:
_L 0,0 ¢0 o0 1
Vi —55G0Gsss | (B YB)aB (AD3A),, (2.101)
e For G-G15°50:
1
Vio 5 G=GtS2SY [(BT D2 B)os — (BY B)aﬂj| (2.102)
e For G'GYS—S+:
Vi o - GOGOS; S [(D2)as — Yar) (2.103)
4 2 a *p +/ab ab .
e For G-G°SYS* + h.c.
VaD —%G_SJGOS;% [i(BTDi)ﬁb + (ADﬁBT)ﬁb] the (2.104)
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The corresponding expressions involving an odd number of Goldstone fields are more com-
plicated and will not be given here.

In contrast to the cubic couplings given in egs. (2.90)-(2.93), additional structures
beyond the matrices A, B and the squared masses of the physical scalars appear in the
expressions above. For example, the quadratic coefficient of the scalar potential in the
charged Higgs basis, Y, appears on the right hand side of eq. (2.97). Note that there is
no simple relation between quartic couplings in the kinetic Lagrangian and quartic terms
from the scalar potential. For example, as in the SM, there is a (G0)4 coupling, but no
Z* coupling. This does not violate the equivalence theorem since the processes involving
quartic couplings typically involve other diagrams. In particular, only the sum of all
contributing diagrams must obey the equivalence principle.

3 Sum rules

3.1 Coupling relations and sum rules from the Lagrangian

One can obtain a large number of sum rules from the kinetic part of the Lagrangian and
the scalar potential of the NHDM. In the case of the 2HDM, two of the sum rules that are
usually exhibited (see, e.g., refs. [17, 18, 41, 42]) are

D ISRVVE =1,
k
[SOVV]? + [[SIWFHF)|* = 1 (any k), (3.1)

where k identifies some specific neutral scalar physical field. It is easy to find the corre-
sponding sum rules in the general NHDM:

D ISV =1, (3.2)
B
N
[SIVVI2+ 3 |SIWESF]* =1 (for 8> 1), (3.3)
b=2

where the indices follow the same notation as above. In this section we use a simplified
notation for the couplings, strictly related to the matrices A and B, in which some coupling
[X.YpZ| is identified as the term in the Lagrangian that depends explicitly on family type
indices. For example, in the Lagrangian term

LD C fla,b,0) XY Ze, (3.4)

involving the fields X,, V3, Z. and the constant C1, we identify [X,Y,Z.] = f(a,b,c). In
cases where the corresponding coupling also exists in the SM, this procedure means simply
that we have divided out by the SM coupling C}.

In addition to these, we have found many sum rules for an arbitrarily extended scalar
doublet sector. For example,

|[SIWEGT]|* = [SVV]? (for 5> 1). (3.5)
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Using this result in eq. (3.3), and recalling that S + — G*, we find

N
S [SOWESF]” =1 (any B), (3.6)
b=1
2N
> W, S S51ZuSpST] = —ilW, S, 831 (any a,7) . (3.7)
B=1

Further equations arising from the kinetic Lagrangian are

(S9WESF]|* = [[SIW*ST 2] (any b, 8), (3.8)
2N
> 1Z2S0sh? =1, (3.9)
B=1
2N
> 1280857 = 2N. (3.10)
a#pL=1

The relations among different couplings in the kinetic Lagrangian imply that one can write
eq. (3.9) in terms of massive fields (i.e., without the Goldstone bosons) as

2N
[SOVVIE+ ) [280S5)% = 1. (3.11)
B=2

We have checked that all our relations are verified when using the couplings in the special
case of the C2HDM. Notice that egs. (3.5) and (3.8) are not proper sum rules, but rather
relations among couplings valid in our particular model.

These sum rules have been found by employing the NHDM interaction Lagrangian. But
we know that sum rules can also be found for generic Lagrangians by using unitarity argu-
ments, as in refs. [17, 18]. The sum rules we have derived in egs. (3.2) and (3.6)—(3.8) can
also be found in that fashion. We will revisit this question in section 3.2 and in appendix E.

In the quartic couplings sector, we have found further interesting sum rules. For
example, using the couplings in eq. (2.97), we find'’

N
D (GGt S = tr[Df] - 2tx[Y], (3.12)
a=1

which has the peculiar feature that a sum of couplings involving solely charged particles
yields a contribution that depends on the masses of the neutral fields. Similarly, using the
couplings in eq. (2.102), we find

2N
D (G- GTSESE) = 2tx[Di] — 2tx[Y]. (3.13)
B=1

19Note that tr[u] = tr[Y] is a basis-invariant quantity.

- 21 —



We can recombine a number of these sum rules as

N N
> G768 8 —2) T [G°G0S; 5] = tr[Df] — 2tx[DZ], (3.14)
a=1 b=1
or
N 2N
> IGTGTS, S =) (G GTSSY] = tr[Df] — 2tx[DZ], (3.15)
a=1 a=1

because the following equation is satisfied,

N 2N
2> [GYGS, SF1=> (G GTS)S)). (3.16)
a=1 a=1

The sum rules involving quartic couplings presented in egs. (3.12)—(3.16) are new.

3.2 Sum rules from unitarity

The constraints from unitarity have had an historical impact on the development of particle
physics. The idea is that the scattering among vector bosons and/or scalars cannot grow
with energy and must obey the optical theorem. Imagine that one writes the most general
effective couplings between these states, up to dimension four. Forcing the sum of all terms
growing like the fourth power of the center of mass energy (E) to vanish immediately
restricts the vector bosons to originate from a gauge theory [14, 15]. Requiring that all E?
terms vanish forces the scalar-gauge couplings to originate from a gauge theory and further
constrains the couplings [16, 17]. But unitarity also limits the value of the constant in the
E° terms. This has been used in the past to place limits on (combinations) of the scalar
masses and couplings [16, 18-20].

In the previous section we derived the coupling relations (3.5) and (3.8) and many sum
rules directly from the Lagrangian of the NHDM. We have checked that most sum rules
involving triple couplings can be obtained from those presented in ref. [17], by applying
them to the NHDM and cycling through all possible indices. The exception arises in
applying egs. (3.2) and (3.3) for the case of VV = ZZ, which are presented in ref. [17]
under the assumption of CP conservation. For completeness, we include in appendix E
a careful and detailed derivation of the sum rules given in egs. (2.4)-(2.6) of ref. [17].
The derivation of these sum rules does not make use of CP conservation. Nevertheless,
when applied to models with scalars in their section IV, the authors of ref. [17] focus on
models that conserve CP. In particular, they point out that requiring CP conservation,
myy, = my ey, and [WFZS,] = 0 leads, through their eq. (4.5), to [ZZS3] = [WTW~5g],
thus turning sum rules that involve [W*W*Sg] into sum rules involving [ZZSg] in the
case of a CP conserving Higgs sector. In contrast, the general NHDM may (or not) violate
CP; nevertheless, the same sum rules apply. We include in appendix F a proof that
ZZ Sg] = [W*W‘Sg], which makes no assumption concerning CP conservation, and yet
is valid for scalars in any representation of SU(2)r, provided that the theory satisfies
m‘%v = mQZcIQ/V without fine tuning of the various vevs.
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4 Tree-level unitarity bounds

In this section, we present an algorithm for the determination of the tree-level unitarity
bounds. We check that it reproduces results available in the literature, and present its ap-
plication to two new cases with three Higgs doublets. Finally, the techniques presented here
can be used for faster numerical implementation of unitarity bounds in more complicated
cases, not amenable to closed-form solutions.

The problem of finding the constraints imposed by tree-level unitarity has been ad-
dressed in the case of the 2HDM, both with Zy symmetry [43] and also for most general
case [44, 45]. For the 2HDM with a Zy symmetric scalar potential, the results are simple,
but for the most general case one has to compute the eigenvalues of 4 x 4 and 3 x 3 matri-
ces [44, 45]. For the case of the 3HDM a solution is known for the case of S3 symmetry [46]
where because of the symmetry the solutions are again simple, although the method to
obtain them is already quite complicated.

Clearly, for the NHDM one needs an algorithm that can be easily implemented nu-
merically. As explained in the references above, since one is interested in the high energy
limit, one just needs to evaluate the scattering S-matrix for the two body scalar bosons,
and these arise exclusively from the quartic part of the potential, V4. Then, the first part
of the problem consists in finding the set of two body states that can contribute. For the
cases of low N and high symmetry we can choose conveniently the sets to take advantage
of this [43, 44], but if we are going to solve the problem numerically it is better to have
a simple algorithm of general applicability. Since the electric charge and the hypercharge
are conserved in this high energy scattering, we can separate the states according to these
quantum numbers. For this it is better not to separate the real and imaginary parts of the
neutral components, using the following notation for Higgs doublets

T

] . (4.1)

w;

*
n;

The relevant two body states are given in the entries of table 3, and their complex conju-
gates. As an example, for N = 2 we have,

R SR S T S SR

So T = {wiw, wiwy , wywy },
+ g+ + + +
Sa = {w] n1,wi ng, wy N1, wy nat,
+ _ S TR S T S YTl oo
Ty = {w ni,winy, wynij,wyny},

0
Sa = {”1711, ning, n2n2},

~ o~ o~ —~
L
S Ot =~ W N
I D D =

O — L=t ai—a o b * x x x
T, = {w] wi, wy wy , wy wi, wy wy , NNy, nins, nany, nans},

plus their complex conjugates. It is important to note that the index « is a compound index;
it refers to a set of {4, j} indices. Also note that in egs. (4.2) and (4.5) the two body states
with equal particles have a normalization of 1/1/2 that we have not written here (see below).
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Q | 2Y | State Number of states

2| 2 | St =ww/, (i=1,N,j=iN) a=1,... NN +1)
1| 2 |Sf=wfn (i=1,N,j=1,N) a=1,..., N2

1| 0 |T=wn} (i=1,N,j=1,N) a=1,...,N?

0] 2 |8 =mniny (i=1,N,j=1iN) a=1,...,iN(N+1)
0| 0 | 79={wjwf nni}, (i=1,N,j=1,N) | a=1,..,2N?

Table 3. List of two body scalar states separated by (Q,Y).

Now we separate the different partial wave amplitudes for the different charges and
hypercharges. We have

9*(Va) N(N+1) N(N+1)

++ — ++ -
0*(Va) 2 A2

167 (afy_y) = (M) 3= —o—Fir [N? x N7, (4.8)

( )ag b 0S5 0S5

0*(Va)

167 (aar’y:(])aﬂz ( J)WEEJW;T/}L [N? x N?], (4.9)

_ _ 0*(Vy) N(N+1) N(N+1)

167 (ad y—1) 45 = (M3) 5 = 95095 [ X } , (4.10)
(V.

167 (a0 y—0) oy = (M0) o5 = WO(;T)E [2N? x 2N?] | (4.11)

where we have indicated on the right-hand side the dimensionality of the resulting matrices.
The compound nature of the index « should be taken in account. For instance
aVy 0%V,

= Nj———— 4.12
0Sa ™ T ow; ow; (4.12)

where the set {i,j} corresponds to @ and the normalization N;; is 1/v/2 for the 2 body
states with equal particles and 1 in all the other cases. This factor can be understood
in the following way. When we take the derivative with respect to the 2 body state with
equal particles we should divide by the normalization 1/v/2. But on the right-hand side
we are taking derivatives with respect to the individual fields. To avoid double counting

we should divide by two in the case of identical particles, so ()71 = L.

This procedure can be easily implemented in an algebraic [\fogram l\i/lfe Mathematica
and we can easily obtain the five matrices MQJr +,M2+ , Mgr , M3, Mg . For simple cases we
can obtain the eigenvalues; for the more complicated cases we can obtain the characteristic
equation and solve it numerically for the eigenvalues.

For illustration, consider the case of the 2HDM. The quartic part of the potential

contains

1 _ 1 _ _ _
Va> 5)‘1@}1 )2 (wi)? + 5/\2(11)2 )2 (wF)? + Agwy wiwi wy + Agwy wi wiwy
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1 _ 1., _ _ v
S swr B + SN Ewh)? + ds(wr Pt wd + Nwg o (w))?
+ Adqwy wy (wy )2 4+ A (wy ) *w wy (4.13)
Using the procedure described above one can easily get for M; *,
A1 V26 As

My* = 1V2X As+M V27|, (4.14)
A% V25 Ao

which coincides with the result of ref. [45], up to an interchange of rows and columns.
We have applied this procedure for the known cases in the literature and, to illustrate
the power of the method, we also present two new cases.

4.1 An (almost) trivial case: the Standard Model
Consider the Standard Model with ng = 1. With the conventions of ref. [34], we have

2 9° o _my

In this case the M matrices reduce to

4N 2\
My =[2)], My = [2)\], M = [2)], MY = [2)\], M{ = [% 4A] . (4.16)

There are therefore two independent eigenvalues,
A =2\, Ay =6). (4.17)

Applying partial wave unitarity to the eigenvalues of the s-wave amplitude matrix, which
is a consequence of the optical theorem,

lag|* < |Tm ag| < 1. (4.18)

eq. (4.18) implies that
(Re ap)? < |Im ao|(1 — [Im ag)). (4.19)

Since the right hand side of eq. (4.19) is bounded by %, it follows that [47],

1
|Re ag| < 2 (4.20)
which translates into
Ay <87 . (4.21)
This in turn implies
4 8
)\Sg, or mHS\/?sz?HGeV, (4.22)

a well known result [19, 20].
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4.2 Other known cases

We applied the method to the complex 2HDM with Zs symmetry and we recover the results
of refs. [43, 44]. Next we studied the general complex 2HDM and we also agree with the
results of refs. [44, 45]. Both these cases are for N = 2. A more complicated case is the
3HDM with S3 symmetry. The matrices are larger but we were able to recover all the
results of ref. [46]. This makes us confident that the procedure can be generalized to cases
where the unitarity constraints have not been studied. We consider two new cases.

4.3 The 3HDM with order-4 CP symmetry
Consider the potential of the 3HDM with order-4 CP symmetry given in ref. [48],

V = =iy (@]®1) — mdy (@105 + Bls) + X (@]@1)% + Xo [(@)2)? + (05)?]
+ 2g(@]@1)(@L®s + @1 @3) + 5 (@102) (@] 05) + Ay [(@]@2) (@] 1) + (@] @5)(@]01) |

A
+ Xy (@h02) (@]2) + [ As(@f1)(@f@1) + T [(@h01)? - (@]@5)?]

+ Ag(PLD3)2 + Ao (BLD3) (BB — BLD3) + h.c.] , (4.23)

with all parameters real except for Ag, Ag that are complex. Applying the method we get
the following distinct eigenvalues for the M matrices,

A_o=A3Et N\,
As=N;— N,

(

(
Ag_5=MA314/ )\%—F)\z, (4.26)
A6_7:)\3+2)\4ﬂ:3\/)\§+)\g, (

1
Asg=3 <2>\1 +2Xo+ N £ \/ 4X3 =81 A2 —4A1X4+4A§+4A2Ag+8Ai+Ag2> : (4.28)

A
Ag—11=3)\ +3)\2+)\g+

/
4

4.29
2 ( )

A\
i\/<—3)\1—3)\2—>\g—24> — (36 A1 A2+ 12X N+ 6 N, —8A3 —8A3A\4 —2)3)

A19_14=Roots of:

2P 427 (=200 — 2X5+ A) 2 (—4AsAE —4Ag NG +H4A N5 AT — 205 0))

+8A2ANE H AN AGAE — AN A AE —AAZNE — A (N2 — 2D A2+ N2N, =0, (4.30)
Ai5_17=Roots of:

2?+2% (=62 —3\}) +2 (—36As A5 — 360 A5+ 12X M5 +24 X0 Ny — 3N —6A5N))

+216 2| As| 2= 7205 | Ag|2 43675 Ao |2 — 36X, [ Ag |2+ T2, | Mo |2 —108AZNE—108)s (M)

—BANE — 24X N N) — 24D N H2XE HONEN, H 1200 +4NE =0, (4.31)
Aq1g_21 =Roots of:

a3 (=201 —4Ao— A= N)) + 22 (—4As A —4Ao g +8A1 A 20 \f
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F2M N AN +H4A N +4A N — 202 —2X8) + 2 (8A1 AsAG +8A1 Ao A

+8A2 A AS AN AN+ AN NSNS —AAs A6 A+ 2AENE+H AN NS +4)s (N5)?

—8AIA3 = 8A Ao\ —8A Ao N, —4AINS —AAZN, +8 Ao AZ + AN N F 20N
F2NAE — 45 X6 A9 +2A8\s)

— 161 A2 X0 A5 —8AL N5 AAE —8AL N Ag A —8A A2 NS — 81 Ag (A))?

+8A2 A5 X606 — 2A5AENE — 2NAENE H8AZ A NS +8A5 A6 Ao A5 +8 A5 A6 As NG

—2AZ (52 HANI NGNS HBANINS +8A NIV, —8AINZ —4Aa NGAZ — 4N N N2

+8X2 A5 A6 A0 — 2M5 A2 A — 2N A2 Ag —2MZN2 =0. (4.32)

4.4 The 3BHDM with Z3 symmetry

As a second example, we consider the potential for the 3SHDM with a Zs symmetry [49],
that we write in the form

V = a1 (®1®)) + ax(PIPy) + a3(PiPs) (4.33)
o) o) o) i i
71 (@]@1) s (0f0n) 41y (0]0s) " + 2 (0] (0f,)
+ 275 (@}bl) (@Q@,) + 27 (@Q%) (@Q%) + 20 (@}bg) (@}bl)
+ 275 (0g) (0]@1) + 219 (0]03) (@]@,)
+ {2 cr (9]@2) (9]03) + 201 (@], (@]5) + 2011 (@]@s) (@fs) + h.c} ,

where the parameters a; and r; are real, while ¢; are complex. We get the following
eigenvalues of the M matrices:

Ay =2(rg —17), (4.34)
Ao = 2(rs — 75). (435)
A3z =2(rg —19), (4.36)
Ay s=r1+rs+7r9* \/8]04]2 + 73 — 2y — 2r1r9 + 12 + 2r6T9 + 73, (4.37)
A7 =r9+1r5+18 + \/8]c12\2 + 73 — 2rory — 2rorg + 12 + 2r5r8 + 13, (4.38)
Ag_g=r3+r4+1r7 £ \/8]611\2 + 73 — 2rsry — 2rgrr + 13 + 2ryr7 + 12, (4.39)

A1g—12 = Roots of:

>+ m2(—27‘1 —2rg —2r3) + T (47“11"2 + 4riry 4+ 4rerg — 41"% — 4r§ — 47“3)

— 8117913 + 87172 + 8ror2 + 81372 — 1677r8rg = 0, (4.40)
A13_-15 = Roots of:

a3+ 2?(—2ry — 25 — 2r¢)

+x (—4|011|2 — 4cia|? — 4|ca|* + drars + dryr + Arsre)

— 8cyci iy — 8cr1C12€C) + 8T4|611]2 + 87’5\012|2 + 87‘6|C4|2 — 8ryrsrg =0, (4.41)
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A16_18 = Roots of:
2 + 2*(—6ry — 6ry — 6r3) + 2 (367172 + 361173 + 367913 — 1677 — 167477
—161% — 167575 — 161G — 167619 — 417 — 4§ — 4r§) — 216717973
+ 967“11"(25 + 96r1rer9 + 24?"17"3 + 967‘27"% + 96719151y + 247“27“% + 961"37"2
+ 96r3rar7 + 247“37“3 — 128ryr5rg — 64rar5T9 — 647141678 — 32147879
— 64r5rgry — 3215779 — 32167778 — 16771879 = 0, (4.42)
A19_21 = Roots of:
a3+ 2% (=2ry — 2r5 — 2rg — drq — drg — 4rg) 4+ 2 (—36¢11¢}; — 36¢12¢]y
— 36¢yc) + 4ryrs + drare + 8rars + 8rarg + 4rsre + 8rsry + 8rsrg + 8rery
+8rgrg + 16r7rs + 161719 4+ 167879)
— 216¢4c71C19 — 216¢11c12¢) + T2¢1171407 + 144c1177¢],
+ T2c1275¢]9 + 144c19r8¢]9 + 720416 + 144cqr9C) — 8rarsre — 16147579

— 16ry7r6rg — 32r4rgrg — 16751677 — 32157719 — 32167718 — 64r7rgrg = 0. (4.43)

4.5 Unitarity bounds for specific processes in the NHDM

In the previous sections, we have presented an algorithm which computes tree-level uni-
tarity bounds on a given chosen model of scalar doublets. The method of Lee, Quigg and
Thacker [19, 20], which we have generalized and optimized, yields necessary and sufficient
conditions for tree unitarity in the scalar and gauge sectors of any NHDM. A possible
shortcoming of this method is the computational time needed to find all the eigenvalues for
each point in parameter space in the case of a general scalar doublet theory, i.e. without
symmetries, or with a large V.

A complementary approach of finding necessary, although not sufficient conditions for
every NHDM can be attained by using unitarity bounds on specific processes. Therefore, we
can compute the partial-wave coefficient a¢ for gauge-gauge and gauge-scalar scatterings,
using that from the optical theorem |Re(ag)| < 1/2, and that we can use the Equivalence
Theorem to simplify calculations. The Equivalence Theorem allows us to perform all
calculations from the scalar potential, and therefore, we can always define

| Re(ao)| < % — | Re(M)| < 8, (4.44)

where M stands for the amplitude of the process. Another important property of this
method, also used in the previous section, is that we will only consider the quartic couplings

contribution at high energy. We use this simple approach to work out some examples in
the NHDM for an arbitrary N.

4.5.1 The WtW~- — WTW ™ process

As a first example, we consider the process with amplitude M (W+W = — WTW ™), which
we approximate at high energies to M (GTG~ — G+TG™). The leading order contribution
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for the process will be the quartic coupling with amplitude
Mo (GTG™ = G7GT) =—5 Zmﬁ [Arp)* = - Z [S9vv]? (4.45)

where we have used eq. (2.96) and the notation from section 3. It is straightforward to see
that this process enforces the bound

2N
S m [SVV]?| < (872Gev)? . (4.46)
B=2

It is interesting to note that in the alignment limit of the coupling [AVV]ngpMm =
[RVV]sm we cannot further constrain any masses of new neutral scalars. This observation
is due to the bound in the A matrix itself, which is orthogonal, implying that » 5 [A15)% = 1.
This bound is given as a special case of eq. (2.10c) of ref. [16], and it is valid in any NHDM.
4.5.2 The ZS;" — ZS;_ process
We now turn to the unitarity bounds arising from the ZS} — ZS} scattering. Using the
same reasoning as before, we use the quartic coupling of eq. (2.103). We then have

2 2
Mq (S5 = G*S;) = == | (D3)aa = (U )aa| = =5 [(DD)aw = Yaa] . (447)

where Y is the quadratic parameter of the lagrangian in the charged Higgs basis. Using
the optical theorem we find that

mi, — Ya| < 4mo?, (4.48)

Although one cannot predict mass bounds for the charged scalars in this process, it is
possible to study numerically the dependence on a given choice of Y. This parameter in
the charged Higgs basis is a physical one and can, in principle, be measured.

4.5.3 The W"‘Sa_ — W+S; process

As a final example we compute the unitarity bounds for the process W*S, — WS, . We
follow the same arguments as before and write the quartic coupling in eq. (2.97) as

Ma (G*8; = G¥87) =~ [(BDEBY a0 — 2¥aa] (4.49)

where B,z is the coupling to [SgW*Sg] and (BY)g, is the coupling to [SgW*Sa*]. We can
therefore use the optical theorem to obtain,

‘(BD%BT)W Y| < 8702, (4.50)
It is convenient to rewrite eq. (4.50) as
2N
> m3[SEW TS, [SEWTS] — 24| < 870, (4.51)
p=2

so that the dependence on cubic couplings is explicit.
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5 Conclusions

We have studied the most general SU(2);, x U(1)y theory with N Higgs doublets. We
have stressed the importance of the charged Higgs basis, where the magnitudes and basis-
invariant combinations of phases of its scalar couplings Y and Z are observables. The
kinetic Lagrangian depends exclusively on a N x 2N matrix B, or equivalently the 2N x 2N
real orthogonal matrix B as defined in eq. (2.64), which governs the relation between
the neutral scalar components of the scalar doublets in the charged Higgs basis and the
neutral Higgs mass eigenstates. The matrix B (or B) depends on N — 1 unphysical phases
(corresponding to the non-uniqueness of the charged Higgs basis) and on 2(N —1)? physical
parameters. Of these, N(N — 1) appear in the special combination A = Im(B'B).

Although new parameters beyond B appear in the scalar potential, many couplings
involving the Goldstone bosons G° and G* can be related to couplings involving Z° and
W, as expected from consistency with gauge fixing. We use the crucial eqs. (2.46)(2.47)
to show that such relations indeed hold. This is also consistent with bounds from unitarity,
which are discussed in great detail. In particular, we develop an efficient algorithm for the
inclusion of such bounds in NHDM and employ it in two new 3SHDM models with a Z3 and
with a order-4 CP symmetry, respectively. Some model independent necessary constraints
are shown, by applying the optical theorem to selected processes.

In models where the scalar potential exhibits additional symmetries, some new param-
eters may appear to arise, relating the original basis to the charged Higgs basis (thereby
acquiring physical significance). For example, such a case arises in the 2HDM with a Zo-
symmetric scalar potential, where (3 is the angle that rotates the basis in which the Zs
symmetry is manifest into the charged Higgs basis. But, such parameters can always be
re-expressed in terms of those discussed here [e.g., as shown for 3 in egs. (51) and (52) of
ref. [37]]. New parameters do arise when fermions are included, which will be addressed
elsewhere [13].
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A The Higgs basis and the charged Higgs basis

In section 2.1, we have discussed how to determine the physical charged and neutral scalar
mass eigenstates starting from a generic basis of scalar fields {®}. The charged and neutral
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components of the kth scalar doublet can be expressed as linear combinations of the physical
charged and neutral scalar mass eigenstates [cf. eqs. (2.19) and (2.20), respectively], where
the corresponding coefficients define the matrices U and V. To find the physical couplings,
we first determine the scalar potential minimum conditions in the original (generic) basis
(these stationarity conditions given in eq. (2.11) are complicated coupled cubic equations
in the vevs, vg). Substituting these conditions back into egs. (2.7)—(2.9) and re-expressing
the generic basis scalar fields in terms of the physical charged and neutral scalar mass
eigenstates yields the desired expressions for the physical couplings.

Note that in determining the charged and neutral scalar mass eigenstates via (2.19)
and (2.20), one must decompose the scalar doublets into their charged and neutral compo-
nents, treating each component separately. This hides an important characteristic of the
Higgs potential — namely, physical observables must be invariant under a unitary transfor-
mation among the N scalar doublets. This is known as basis invariance, which is discussed
at length in refs. [23, 24, 26].

It is often more convenient to perform the analysis of the NHDM by first transforming
from the generic basis to the so-called Higgs basis [21-24], in which the neutral vev resides
entirely in the first scalar doublet. This is achieved through a unitary transformation X,

N
;=) X;df, (A1)
k=1
such that
vi
le = Z = Uj . (AQ)

Since X is unitary, we can invert eq. (A.1) to obtain

N

of = X505 (A.3)
j=1

We employ the normalization of the vevs such that <<I>?) = v;/Vv/2. Hence, taking the
vacuum expectation value of both sides of eq. (A.3) and making use of eq. (A.2) yields

N
(®1%) = v/V2, where v® =) |v;|* = (246 GeV)?. (A.4)
j=1

Moreover, %’02 =5 ;50 = >, ®*®H since X is unitary. Thus, one can immediately
conclude that
(@Y% = v/V2, (@f% =0 (for k=2,...,N). (A.5)

In light of egs. (2.38) and (2.43), it follows that the basis where the first scalar field contains
the would-be Goldstone bosons coincides with the basis where all scalar doublets except
the first have zero vev. Since only X is determined, “the Higgs basis” is not uniquely
determined. More precisely, the Higgs basis constitutes a class of bases, since starting in
any given Higgs basis, one can still perform an (N — 1) x (N — 1) unitary transformation
on ®(k = 2,...,N) without altering eq. (A.5). For example, if N = 2, one can still
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rephase the second Higgs doublet via CI>12LI — exp(ix)@f without leaving the class of Higgs
bases.?’ Comparing eq. (A.2) with eqgs. (2.29) and (2.30), we conclude immediately that
the charged component of @{{ is G, while the imaginary part of the neutral component is
GY. The difference between egs. (2.19)—(2.20) and eq. (A.5) is that, in the latter, we have
also transformed another combination of the real components of ®j, which yields a real
field HO that is not a mass eigenstate. Thus, we may parameterize
e
H
T L rmrion ) (4.6)
One particularly nice feature of the Higgs basis is the simplification obtained in the
stationarity conditions of eq. (2.11),

pi1 + Ain1v® = (M3)a =0, (A7)

and in the masses of eq. (2.10) and egs. (2.13)—(2.15) [9]:
(M3)ij = pij +v*Nija1, (A8
(M7)ij = Re [uij +v* (N1 + A1y + Nig1)] (A9

(MIQ)ij = Re [pij + 0% (Nija1 + Ai1j — Aig)] (A.10

(Ml%lf)ij = —Tm [p1;j +v* (N1 + N1y — Ning1)] - (A.11
Note that the couplings in eqgs. (A.7)—(A.11) are calculated in the Higgs basis; they are
not the couplings p and A of the original generic basis of eq. (2.2). To derive the charged
and neutral scalar mass eigenstates, one must now perform an (N — 1) x (N — 1) unitary
transformation on the charged components of ®(k =2,...,N), and a (2N —1) x (2N —1)
unitary transformation on the 2N — 1 neutral scalar components consisting of H? and the
®H(k=2,...,N).

Any matrix X obeying eq. (A.2) will yield a Higgs basis where, by definition, only
the first scalar doublet has a non-zero vev. Of the infinitely many choices for X that
satisfy eq. (A.2), it is particularly interesting to consider the transformation X = U,
where U is the unitary matrix defined in eq. (2.19) that yields the physical charged Higgs
mass eigenstates [10]. Notice that we have left the scalar doublet structure intact; in
this procedure, the neutral components transform as the charged components. Thus, in
general, the corresponding neutral partner of the physical charged scalar will not be a mass
eigenstate. We define such a basis as the charged Higgs basis,

N
;= Updf. (A.12)
k=1
which is a subclass of the class of Higgs bases defined above. Now, egs. (2.29) and (A.5)
remain valid and we may parameterize

Gt Hf HY
o = .05 = 2 ., 0% = N, (A13)
! L (v+ HO+iG0) 2 g0 10

20The requirement that no physical observable can depend on the choice of x provided the original
motivation for the basis invariance considerations in the Higgs sector [22].
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where H; s H]T, are the physical charged Higgs mass eigenstate fields, with correspond-

ing masses mft ;- In this first step, the neutral components are transformed by

Re(¢?) Re(¢{?)
Re(oh) | _ g, | ReleR’)
Im(49) Im({°)
Im(¢%) Im(¢§°)
where golco = H° +iG°, with

RelU —ImU
[NJR =

ImU ReU

After this first step, egs. (A.8)—(A.11) become

( 2

(M2)ij = bijmi; +v° Re [Zin 15 + Zinjul,
(M2

)
)
);: = 0iymi; +v*Re[Zia 1y — Zagil
) = —’U2 Im [Zil,lj - il,jl] )
) = v2Im [Zil,lj + Zil,jl] .
Thus,
20*Zin a5 = [(MR)ij + (M7)ij — 265 m3 ;] + [(MIQ%I)'T' - (M%I)ij} ’
2’02Zi17j1 = [(MJQQ)U - (Mjg)lj] +1 [(MIQ%I)Z + (M}%I)ZJ '

In addition,

(MIQ)zl =0= (‘MIZ)U7
(MI%U)ﬂ =0 (MIZ%’,I)iFjv

which implies that the N + 15 row and column of the matrix,

M Mgy

(Mp)" M7
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vanish, corresponding to the massless Im cplco = GY. As a result,

2027}y 1; = 0% Zu gy = (Mp)iy +i (Mpy),,, forj# 1,
20221111 = (ME)11. (A.25)

The first equality above is a consequence of eq. (2.3), and it is consistent with eq. (A.21)
because mil is the mass of GT, which vanishes. Notice that the couplings in Y and Z
egs. (A.16)—(A.22) are calculated in the charged Higgs basis; they are not the couplings u
and A of the original generic basis in eq. (2.2).

To determine the neutral scalar mass eigenstates, one must diagonalize the real or-
thogonal (2N —1) x (2N — 1) squared mass matrix that mixes the (2N — 1) neutral scalar
fields H°, Re ¢©5°,..., Re go 0 Im 59, ..., Im go%o (which are defined in the charged Higgs
basis). This is achleved thorough the N x 2N matrix V¢

0=>"v$sy, (A.26)
B=1

where

VS =id  (k=1...N),
m(Vj3) =65 (B=1...2N). (A.27)

One can define the real orthogonal 2N x 2N matrix V¢ in analogy with eq. (2.21), which
satisfy equations analogous to egs. (2.22)-(2.24). Deleting the first row and column of V¢
yields the matrix that diagonalizes the squared-mass matrix of the neutral scalars fields in
the charged Higgs basis.

Performing the neutral scalar squared-mass diagonalization in the charged Higgs basis
can be especially useful in some circumstances. Egs. (2.46) and (2.47) assume very simple
forms in the charged Higgs basis,

20°Zin1j = —2(D1)i; + (BDSBT> s
ij
QUQZZ'l’jl = (BD%BT)Z] . (A28)

As a further example, we notice that the cubic terms of the scalar potential in eq. (2.8)
may be written in the charged Higgs basis as

Vs=v (S Sj 290100*%‘ 0) (Zij k™ + Zijanel”] - (A.29)

All couplings with two indices equal to 1 may be related with egs. (A.21)—(A.22), and hence
can be related to the scalar masses. We find

Vs = <S;Sl+ f\goC°| > {( 14 Regf +Z [(M7), Regokco—i-(M]QH)lkImcpgo]}

_ 1 cox .
n (si St + A0S 0) [(M2),, +7 (M) | Reo® + e
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N
<S St %CO* CO)Z{[ )i — Oiemi ] + i (Mzg), }Rego
k=2

(M) + 1 [(M7), = bum? ]| Tmip° | + hc.

1 o
+ <Si SF+ 5%0 0 SOJ-CO> 20%Z;;11Repf”

N
<S S+ + %CO*SOJ' 0) v’ Z [Zij,kl‘pkco* + Zaij,leOkCO] ) (A.30)
k=2
where there are implicit sums over repeated indices, ¢ = 2,...,N and j =2,..., N.

As in the case of the Higgs basis, the charged Higgs basis is also not uniquely
determined. Indeed, the charged Higgs basis is a class of bases, since starting in
any given charged Higgs basis, one can separately rephase the N — 1 scalar doublet
fields, <I>g, <I>3C, ey (1316\',, while preserving the corresponding charged components as mass-
eigenstate fields. It is convenient to keep track of this rephasing degree of freedom. Thus,
in eq. (2.19), we will choose the unitary matrix U such that Ug; = 0 and make some
conventional choice for the overall phases of the column vectors Uy;, for j = 2,3,..., N.
Such a choice picks out one of the possible charged Higgs bases. In this basis, the cor-
responding physical charged Higgs fields are denoted by S} (for a = 2,3,...,N). One
can of course transform to any other charged Higgs basis by an appropriate rephasing of
@g,@g, ey @%, in which case the corresponding physical charged Higgs fields are also
rephased, S — e™Xa S

B Connections with the 2HDM

B.1 2HDM with a softly-broken Z, discrete symmetry

The Lagrangian shown in sections 2.2 and 2.5 depends on the matrices U and V introduced
in egs. (2.19) and (2.20). This is not the notation commonly used in two Higgs doublet
models (2HDM) [7, 50]. Here we make the connection to the notation used in the complex
two Higgs doublet model (C2HDM), where the Zy symmetry (&1 — &1, Po — —P9) is
softly broken by a complex squared-mass parameter [51-54]. In this case, one transforms
to the Higgs basis [22, 26] through

)=o) () =
H, —53 ¢ Py ’

V2(8Y) = v = veg, V2(0) = vy =vsp. (B.2)

In eq. (B.2), cg = cos B, sg = sinfB, and v = \/vi +v5 = (vV2Gr)~1/2. Without loss of
generality, we have taken the vevs v; and vy real.?! The doublets in the Higgs basis may

where

21This just redefines the phase of terms in the scalar potential sensitive to the relative phase between ®;
and Ps.
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be written
G+ H+

L (p+ h+iGO H=\ 4 piir
\/§(U+ +1G”) \/5( + i)

where G* and G are the Goldstone bosons and H* are the physical charged scalars. Thus,

Hy = (B.3)

the matrix U of eqgs. (2.19) is simply

U= (C'B _85> . (B.4)
55 ¢s

Let us parameterize the scalars ®; and ®, in the original generic basis as

+ +
&= S - L . (B.5)
ﬁ(vl +m +ix1) ﬁ(vz + 12 +ix2)

Egs. (B.1) and (B.3) yield for the massless would-be Goldstone boson G = czx1 + saxe-
We define the orthogonal state

N3 = —sgX1 + CcgX2- (B.6)

The fields 71, 12, and 13 combine into the mass eigenstates hi, ho, and hg as

ha m
h2 =R 2 ’ (B 7)
h3 73

where the orthogonal matrix may be parameterized as

C1C2 S$1C2 52
R= —(018283 + 8103) C1C3 — 818283 (283 . (B.S)

—c152c3 + 5153 —(c153 + s152¢3) Cac3

Here, s; = sinay, ¢; = cosay (i = 1,2,3), and, without loss of generality, the angles may
be restricted to [55]

—7m/2<a; <7/2, —m/2 < ag < 7/2, 0<asz<m/2 (B.9)

By definition, we take the masses of the neutral scalars in increasing order: m; < mo < ms.
We would like to recombine these expressions into the form of egs. (2.1) and (2.21):

Re ¢ G° G°
Re goo - h Re V h
o 7 R P ' (B.10)
Im ¢! ha Im V hs
Im ¢} h3 h3
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We find
0 cica —c3s1 — €1S983 —c1¢389 + S183
~ 0 C251 C1C3 — 818983 —C381S82 — (C1S83
V= (B.11)
Ccg —S8288 —C28353 —C2C353
85 8265 628305 620365
and
0 5102 —6351 — 518283 —516382 + 5183
0 coS51 Cicg — 818283 —C351S2 — €153

1 0 0 0

wof
I

: (B.12)

0 s9 C283 coC3

which satisfies egs. (2.67), as expected. As we have seen in sections 2.2 and 2.5, several
important couplings, including the couplings of each neutral scalar with two vector bosons,
involve the special antisymmetric combination

0 —CaC S983C1 + €351  €3S89C1 — S351
c2Cy 0 —C382C1 + 8351 8253C1 + €351
A=Im(B'B) = ,
—8983C1 — C3S51 C389C1 — 8381 0 CoC1
—C389C1 + S351 —S983C1 — €351 —CoC 0
(B.13)

where §; = sin (a1 — ) and ¢; = cos (a3 — ). Notice that, although three angles appear,
there are in fact only two independent parameters in the most general orthogonal and
antisymmetric 4 x 4 matrix. Indeed, such a matrix can always be parameterized as

0 —C1 S1Cy 8189

C1 0 —8182 81C9

o o - , (B.14)
—81C9 51859 0 C1
—8182 —S81Co —C1 0

where ¢ = cos@, and 5 = sinfy, for K = 1,2. Thus, of the three angles in the matrix
R, only two combinations can be determined by measurements involving solely the neutral
scalars.

The complete set of Feynman rules for the C2HDM is presented on a webpage [56]. We
have checked explicitly that the couplings in sections 2.2 and 2.5 reproduce the C2HDM
Feynman rules in [56]. This is a highly non-trivial cross-check since the expressions are very
complicated when written in terms of the angles «; and 5. Moreover, for those couplings
involving masses the equality is only obtained when using the relation

o mi Rig(Riztan 8 — Ry1) + m3 Rog(Roztan 8 — Ro)
R33(R31 — R3ztan j3)

which holds in the C2HDM [54]. The following relations are also useful:

Ay iy1 = —cos B Rip —sin 8 Ry,
Ait1,j+1 = —€ijk [cos B Ry1 + sin 8 Rya] . (B.16)
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In the limit of the real 2HDM (s2 — 0 and s3 — 0), one finds
A= . (B.17)

It is also interesting to consider what happens in the SM, where

¢0=h+iGO:<i 1) (CiLO) (B.18)

viv = (1 _i> (B.19)

confirming that Re(VTV) = 1242 and Im(VTV) is antisymmetric.

Thus, V = (i 1), and

B.2 Basis-independent treatment of the most general 2HDM

By using the basis-independent techniques introduced in refs. [24, 25], one can analyze the
most general CP-violating 2HDM (with no additional symmetries imposed on the scalar
potential) in terms of quantities that are independent of the choice of basis for the two
scalar doublet fields. All physical observables of the theory can be expressed in terms of
such basis-independent quantities. It is instructive to see how this formalism is related to
the treatment of the NHDM given in section 2.

Since the notation of ref. [25] differs somewhat from the notation used in this paper,
we provide here a brief introduction to the basis-independent treatment of the 2HDM. We
begin with the scalar potential in a generic basis given in eq. (2.2). The vevs of the scalar

v 0
(D) = 7 (w) , (B.20)

where v = 2myy /g ~ 246 GeV and © = (01, 02) is a complex vector of unit norm. A second

doublet fields are given by

unit vector w can be defined that is orthogonal to o,
wj = @fﬁij s (B.21)

where €190 = —e91 = 1 and €17 = €99 = 0. Indeed, the complex dot product, @;%Dj =0,
where the sum over the repeated index j is implicit.
It is convenient to define two hermitian projection operators,

V;]E@Z A;, VVUEU%’Q);:(%*‘/” (B22)

Note that © and w are eigenvectors of the matrix V. The matrices V and W can be used
to define the following manifestly basis-invariant real quantities that depend on the scalar
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potential parameters defined in the generic basis of scalar fields [cf. eq. (2.2)],

Y1 = Te(uV), (B.23)
Yo = Tr(uW), (B.24)
Z1 = 2ijk0 ViV (B.25)
Zo = 2ije WiiWar,, (B.26)
Zs = 200 ViWak | (B.27)
Zs = 20 VieWes (B.28)

In addition, we shall define the following pseudo-invariant (potentially complex) quantities,

Y3 = pij vjwy, (B.29)
Zs = 2Xij ke U WjvLWy . (B.30)
Zs = 2Nij ke Vi vjURWYE . (B.31)
Z7 = 2N ke V; wjwiwy (B.32)

The significance of the quantities defined by eqgs. (B.23)—(B.32) become clearer af-
ter rewriting the scalar potential in the Higgs basis. Using the notation of egs. (B.20)
and (B.21), the Higgs basis fields can be defined as,??

In particular, note that the vevs of the Higgs basis fields are

(HY) = 5 (HD) =0, (B.34)

as required by eq. (A.5). That is, starting from the scalar potential defined in the generic
basis [cf. eq. (2.2)], we simply set © = (1,0) and @w = (0,1). Applying these results to
egs. (B.23)—-(B.32), we see that Y723 are the coefficients of the squared mass terms and
Z1,2,....7 are the coefficients of the quartic terms of the scalar potential when expressed in
terms of the Higgs basis fields. In particular,

Vi = YiH]Hy + Yo HI Hy + [YsHI Hy + h.c] + %Zl(Hjﬂl)Z + %ZQ(HZIHQ)2
+Z3(H{ Hy)(H} Hp) + Z4(H{ Hy)(H} Hy)
+ {;Zg,(Hsz)2 + [Zs(HIHy) + Z7(HIHy) | HI Ho + h.c.} . (B.35)
In the Higgs basis, the minimization of the scalar potential yields
Y] = —%Zﬂ}Q, Y3 = —%Zﬁv? (B.36)

One key observation is that the Higgs basis as defined by eq. (B.34) is unique only up
to an overall phase redefinition of the Higgs basis field Hy — eXH,. Indeed, in light of

22Eq. (B.33) defines the Higgs basis scalar fields for one particular choice in the class of Higgs bases.
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eq. (B.33), the phase freedom in defining the Higgs basis simply corresponds to @ — e~ ™X1.
It then follows that Y3, Z5, Zg and Z7 also acquire a phase under Hy — e'X Ho,

(Y3, Zg, Z7) — e X[Y3, Zg, Z7] and Zs — e 2XZ5, (B.37)

which is why these quantities were called pseudo-invariants above. In contrast, Y7, Yo and
Z1,2,3,4 are invariant under Hy — X Hy.

Our goal now is to evaluate the matrices B and A defined in egs. (2.55) and (2.56),
respectively. This requires the diagonalization of the charged Higgs and neutral Higgs
squared-mass matrices. First, we consider the charged Higgs squared-mass matrix, which
is given by eq. (2.10). It is convenient to rewrite this matrix as follows. Following ref. [25],
we note that we can expand an hermitian second-ranked tensor in terms of the eigenvectors

of V,
Aij = Tr(VA)Vij + Tl"(WA)Wij + (ﬁzngkg)@iw; + (11)75@514]{;@)1@1@; . (B.38)
Applying eq. (B.38) to the hermitian charged Higgs squared-mass matrix, it follows that
1 1 1 o 1 . a
(M3);;= <Y1+221112> Vij+ <Y2+2Z:5U2> Wi+ <Y3+226U2> VW + <Y3 +QZ§U2> W07,
(B.39)

after making use of eqgs. (B.23)—-(B.31). After imposing the scalar potential minimum
conditions given in eq. (B.36), we end up with

1
(M3)i; = <Y2 + 2Z302) Wij . (B.40)

The diagonalization of M? is straightforward. Defining the diagonalization matrix U as in

eq. (2.19), it follows that
v=(" " (B.41)
U9 W2

UWU = (O O) . (B.42)

which satisfies,

01

That is, of the two eigenvalue of M2, one is zero, corresponding to the charged Goldstone
boson, and the other is ml%li =Yy + %Z3U2.

Next, we obtain the matrix that diagonalizes the neutral Higgs squared-mass matrix. In
this analysis, it will prove useful to first perform the diagonalization in the Higgs basis, since
this allows us to easily identify the relevant basis-independent quantities. This has been car-
ried out in ref. [25]. Here we summarize the main results that we need for our present analy-
sis. The three physical neutral Higgs boson mass-eigenstates are determined by diagonaliz-
ing the 3 x 3 real symmetric squared-mass matrix that is defined in the Higgs basis [23, 25],

Z1 Re ZG —Im Z@‘
_/\/l2 = ’1)2 Re ZG %(Z345 + }/2/’1)2) —% Im Z5 Y (B43)
—Im Zg —%ImZ5 %(23454-)/2/1]2) — Re Zy
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J 51 452

0 ) 0

1 €12€13 —812 — 1€12513
2 S12€13 C12 — 1812813
3 S13 iclg

Table 4. Invariant combinations of the neutral Higgs boson mixing angles 615 and 63, where
cij = cost; and s;; = sin6;;.

where Zsy5 = Z3 + Z4 + ReZ5. To identify the neutral Higgs mass-eigenstates, we
diagonalize the squared-mass matrix M?2. The diagonalization matrix is a 3 x 3 real
orthogonal matrix that depends on three angles: 012, 13 and 63,

0
hi C12€13  —S812C23 — C12513523  —C12513C23 + 512523 V2Re HY — v
_ 0
ha | = | s12¢c13  c12¢23 — 512513523 —812513C23 — C12523 V2 Re HY )
0
hg 513 C13523 C13C23 \/EIID H2
(B.44)

where the h; are the mass-eigenstate neutral Higgs fields, ¢;; = cosf;; and s;; = sinf;;.
Under the rephasing Ho — ¢XH,

012, 013 are invariant, and 63 — fo3 — x. (B.45)

As shown in ref. [25], the invariant angles 615 and 63 are in fact basis-independent
quantities — that is, they can be expressed explicitly in terms of basis-independent
combinations of quantities defined in any scalar field basis.??

The neutral Goldstone boson and the physical neutral Higgs states (hg = G° and hi23,

respectively) are then given by:

hj = \%{Q;l (H? - \/vi) + g H3e'" + h-C-} , (B.46)
where the g;1 and gj2 are invariant combinations of 612 and 613, which are exhibited in
table 4. In particular, note that the quantities g;1 and g;2 are basis-invariants and the
neutral fields hy are also invariant with respect to a rephasing of the Higgs basis field Ho.

To identify the diagonalizing matrix V defined in eq. (2.20),2* we make use of eq. (B.33)
to rewrite eq. (B.46) as follows,

G+@i -+ H+1fji
®; = (B.47)

3
v . 1 N —i0oa ~ 3
Vit Z (001 g™ ) 1y

ZMore generally, one can show that any quantity defined in the Higgs basis that is invariant under the
rephasing of Ha — e*XH, can be rewritten explicitly in a basis-independent form.
24Note that in the notation used here, hs_1 = Sg, where 5 =1,2,3,4.
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for ¢ = 1,2. Hence, it immediately follows that
V%j = qjlﬁi + qjge_w%u?i . (B.48)

Using egs. (B.41) and (B.48), we can now evaluate the matrices B and A. First,

i
B—Uyv = Q11A CJ21‘ Q31} ' (B.49)
0 quae 3 ggoe™02 ggpemf2
It is straightforward to check that
10
BB =2 < > : Re(B'B) = 144 (B.50)
01

as noted in eq. (2.65).

We immediately see that B is not an invariant matrix in light of eq. (B.45). Neverthe-
less, in eq. (2.51) we note that the matrix B always appears along with the charged Higgs
or Goldstone fields, namely B,zS, (and its hermitian conjugate). Recall that under the
rephasing of the Higgs basis field Hy — e'X Hy, we have w0 — e~ X4, whereas ¢ is invariant.
Eq. (B.47) implies that GF is invariant and

H* — efixg*, (B.51)

From eq. (B.49) we see that Bj; is invariant and Bs; — eXBy; in light of eq. (B.45),
whereas S] = G~ is invariant and S, = H~ — e XH~ as noted above. Hence, the
combination B,gS, is invariant as expected.

Next, we construct the orthogonal matrix B defined in eq. (2.64),

0 q11 q21 g31
- Re B 0 Re e~ 023 Re e~ 023 Re 023
B _ (q12 ) (q22 ) (g32 ) (B.52)
Im B 1 0 0 0
0 Tm(gee ) Tm(gme ) Tm(gze ")
Using the results of table 4,
0 €12€13 812€13 513
. 0 —s19C93 — €125138 C12C23 — S12513S c13S
B 12€23 12513523 12C23 12513523 13523 (B.53)
1 0 0 0
0 §12823 — €12513C23 —S812813C23 — C12523  C13C23

Indeed, one easily checks that BTB = | VI
In the 2HDM, the charged Higgs basis and the Higgs basis coincide. Thus, the matrix
B rotates the Higgs basis fields into the neutral Higgs mass eigenstate fields (which includes
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the massless Goldstone field, G® = /2Im H 9). More precisely, comparison with eq. (B.44)
yields

GO V2Re HY — v
h - 2Re HY
U Zpr| V2ReH: (B.54)
ha V2 1Im HY
hs V21Im HY
Finally, we evaluate the matrix A,
0 —q11 —q21 —q31
0 Im(qgr Im(qt
A= Im(BTB) _ q11 (Q12Q22) (Q1QQ32) 7 (B.55)
21 —Im(giq02) 0 Im(g32432)
31 —Im(giyq32)  —Im(g3,432) 0
after using eq. (B.49). Once again, we can use the results of table 4 to obtain,
0 —C12€13  —S12C13 —513
C12C 0 s —819C
4 | e 13 12€13 (B.56)
$12€13 —513 0 C12€13
513 $12€13  —C12C13 0

As expected, the matrix A is invariant, as it depends only on the invariant angles 612 and 613
[cf. eq. (B.45)]. It is now straightforward to check that the interaction Lagrangian involving
the coupling of the gauge bosons to the scalars given in egs. (2.52)—(2.54) reproduce the
corresponding 2HDM results given in ref. [25].

The power of the notation introduced in ref. [25] is clear in eq. (B.56), which depends
on the only two invariant angles. In contrast, the notation of egs. (B.7) and (B.8) conven-
tionally used in the C2HDM community, leads to the matrix A given in eq. (B.13) which
seems to depend on three angles. The true physical content of eq. (B.13) becomes apparent
only after rewriting it as in eq. (B.14), which as in the case of eq. (B.56) depends only on
two independent parameters.

Note that A is a real orthogonal antisymmetric matrix, as required by eq. (2.62).
Indeed, the most general 4 x 4 real orthogonal antisymmetric matrix depends on two
parameters, which we have identified with the two invariant angles of the neutral Higgs
squared-mass matrix diagonalization.

In the 2HDM, the special form of the ¢;; and g¢;2 allow us to rewrite eq. (B.55) as

Ap =0, Aj() = —AOj =dqj1, Aij = €ijkdk1 (B57)

where 0 labels the first row and column of A, and the indices i,j,k = 1,2,3 (with an
implicit sum over k) correspond to the second, third and fourth rows and columns of A.
This allows one to simplify the expression for the Zh;h; vertex. This is special to the case
of N =2 and does not generalize to the NHDM with N > 2.

Given the explicit forms for the matrices A and B given by egs. (B.56) and (B.49)
respectively, one can immediately check that eq. (2.67) is satisfied.
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C Counting parameters that govern the A and B matrices

The matrices A and B enter the expression for the interaction Lagrangian that couples the
Higgs mass eigenstates to the gauge bosons and Goldstone bosons. The matrix A is mani-
festly invariant under a change of the scalar basis used in expressing the NHDM Lagrangian
in terms of interaction-eigenstate scalar fields. The matrix B is a pseudo-invariant quantity
that depends on N — 1 unphysical phases. However, these phases can be completely
absorbed into the definition of the N — 1 physical charged Higgs fields. In this appendix,
we discuss the number of parameters that govern the A and B matrix in the NHDM.

C.1 Independent parameters of the matrix A

The key properties of the matrix A are given in eq. (2.62). Namely, A is an arbitrary real
orthogonal antisymmetric 2/N x 2N matrix. First, we note that A is a 2N x 2N nonsingular
matrix such that det A = 1. Since ATA = 1oyyan, it follows that det A = 41, which
implies that A is nonsingular. Moreover, for any even-dimensional 2N x 2N antisymmetric

matrix A, the pfaffian of A, denoted by pf A, is defined by

1
pfA - M E’iljlizjzminjnAiljlAi2j2 e Ainjn ’ (Cl)
where € is the rank-2N Levi-Civita tensor, and the sum over repeated indices is implied.

A well-known result states that for any antisymmetric matrix A,
det A = [pf A]*. (C.2)

In particular, if A is also orthogonal then det A = 1, in which case pf A = +1.

Next, we note that the eigenvalues of any real antisymmetric matrix A are purely
imaginary. Moreover if A is an eigenvalue of A then \* is also an eigenvalue (see, e.g.,
ref. [58]). Thus, the eigenvalues of a 2N x 2N antisymmetric matrix A can be denoted by
+ia;, (i =1,2,...,n) where the a; are real and positive. We now exploit the real normal
form of a nonsingular 2N x 2N real antisymmetric matrix A (see, e.g., appendix D.4 of
ref. [59]). In particular, there exists a real orthogonal matrix @ such that

wrmf(23) (23 (23
—a10 —GQO —anN 0

is written in block diagonal form with 2 x 2 matrices appearing along the diagonal and the
a; are real and positive. Note that the a; are the positive square roots of the eigenvalues
of AT A.

If in addition, A is a real orthogonal matrix, then we may use the fact that the
eigenvalues of a real orthogonal matrix are complex numbers of unit modulus. In light of
the above results, it follows that a; = 1 for all i = 1,2, ...,n. Thus,

QTAQ:JEdiag{< 01) ( Ol) ( 01)}. (C.4)
10 -10 -10

N

Z5For a discussion of the properties of the pfaffian, see, e.g., ref. [57], appendix A.1.3.
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Hence, we conclude that any real orthogonal antisymmetric 2N x 2N matrix A can be
parameterized by

A=QJQT, (C5)

where J is defined in eq. (C.4) and @ is a real orthogonal matrix. We now employ the
well-known property of the pfaffian that pf(QJQ") = pf J det Q. In light of pf J = 1, it
follows that

detQ =pf A, (C.6)

which determines the sign of det Q.

As discussed in appendix D.4 of ref. [59], the orthogonal matrix @ in eq. (C.5) is
unique up to multiplication on the right by a 2N x 2N real orthogonal matrix S that
satisfies SJST = J. Such a matrix S is an element of Sp(N,R) N O(2N) = U(N),
where a proof of this isomorphism is given in ref. [60].26 Since O(2N) is parameterized by
N(2N — 1) continuous parameters and U(N) is parameterized by N? parameters, we can
use the freedom to multiply @ on the right by S to remove N? parameters from Q. This
leaves N(2N — 1) — N? = N(N — 1) parameters in @ that cannot be removed.

That is, a real orthogonal antisymmetric 2N x 2N matrix A can be parameterized by
N(N — 1) continuous parameters.

C.2 Independent parameters of the matrix B

To determine the number of independent parameters that govern the N x 2N matrix B, it
is more convenient to consider the real orthogonal 2N x 2N matrix B. The transpose of this
matrix rotates the charged Higgs basis fields into the neutral Higgs mass eigenstate fields S9,

2N

k=1

where S{ = G is the neutral Goldstone boson field, and
HY = (H°, Re 057, ..., Re %", G°, Im ¢S, ..., Im ©{0). (C.8)

Note that H = Re golco has the properties of the SM Higgs boson, G = Im go?o is the

neutral Goldstone boson, and %apkco (k=1,2,...,N) are the neutral components of the

N scalar fields in the charged Higgs basis [cf. eq. (A.13)]. It then follows that

Bj1 =6jn+1, Byi1g = 01 - (C.9)

It is convenient to remove the first column and the N + 15¢ row of B to eliminate the
neutral Goldstone bosons state. The resulting (2N —1) x (2N — 1) matrix will be called R.

26See problem 1.12 on p. 41 and its solution on p. 306 of ref. [60]. The proof of this result consists of
representing an arbitrary complex unitary N x N matrix as a real 2N x 2N matrix. Following section 1.6
of ref. [60], the corresponding real 2N x 2N matrix can be identified by Ur given in eq. (2.63). Indeed, one
can check that Ug is a 2N x 2N orthogonal symplectic matrix.
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We label Rys with row and column indices that take on values from 1,2,...,2N, but
excluding k = N 4+ 1 and § = 1. That is,

2N
S§= > RugMp, forf=2,3... 2N, (C.10)
KN

We can parameterize the matrix R as follows. First we define the 2 x 2 orthogonal

rij = <CO§ j Sin j> ' (Cll)

sin 02 7 COS 92 7

matrix,

We then define the (2N — 1) x (2N — 1) matrix R as a matrix whose matrix elements are

given by
Swe for k04 g
Ry=4 " ks (C.12)
rij, fork,£=1,7.
Then, R can be written recursively as [61]
R = RigRi13- - R1an—1%2N—-2 , (C.13)

where Zan_o can be expressed in block matrix form in terms of a (2N —2) x (2N — 2) real

1 0
HaN-—2 = < > : (C.14)
0 Ron-2

orthogonal matrix Ron_o,

It is always possible to express Rony_o by making use of the decomposition given in
eq. (C.28),
Ron—o = R.Up R (C.15)

where R, is a (2N — 2) x (2N — 2) matrix given in block form by

C D
R. = exp , (C.16)
D -C

where C' and D are (N — 1) x (N — 1) real antisymmetric matrices, and the matrix Ug is
a (2N —2) x (2N — 2) real representation of the U(N — 1) subgroup of SO(2N — 2). Thus,
our final expression for the matrix R is

1 0
R = RigRi3--- Rian-1 . (C.17)
0 R.JUg

We have already noted in section 2.3 that under the rephasing of the physical charged
Higgs fields, S — e™«SF we must also transform B,s — eX<B,s (in both cases for
a=2,3,...,N), so that the combinations B,3S, and its charged conjugate appearing in
the interaction Lagrangian are invariant. Since Ugr in eq. (C.17) is a real representation
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of U(N — 1), which depends on (N — 1)? parameters, it is convenient to decompose this
matrix into the product,

Ugr = UrcURq, (C.18)
where
Ura € U(1) x U(1) x --- x U(1), (C.19)
N1

is a real representation of an element of the diagonal U(1) x U(1) x --- x U(1) subgroup
of U(N — 1), which depends on N — 1 parameters, and Ug. incorporates the remaining
(N —1)(N — 2) degrees of freedom of Ur. Then, we see that Ugrgq represents the freedom
to perform separate rephasings of the N — 1 scalar doublets with zero vevs. That is, the
degrees of freedom in the matrix Urg represent the freedom to redefine the charged Higgs
basis. Hence, the N — 1 parameters that govern the matrix Ugg are unphysical.

The remaining parameters that describe the matrix R are physical. We can count these
parameters as follows. First, the product R12R13--- R 2n—1 consists of 2N — 2 angles 02,
013, ...,6012n—1. Second, the number of parameters that govern the (2N — 2) x (2N —2)
matrix R is equal to the number of parameters needed to express the two (N —1) x (N —1)
real antisymmetric matrices C' and D. This provides (N —1)(/N —2) additional parameters.
Finally, we must include the (N —1)(N —2) parameters that govern the matrix Ug.. Thus,
we have 2N — 2 + 2(N — 1)(N — 2) = 2(N — 1)? parameters. These are basis-invariant
parameters, since they do not depend on the choice of the charged Higgs basis.

The end result is that the matrix B can be expressed in terms of 2(N — 1)? physical
parameters. Indeed, this number can be obtained starting with the (N — 1)(2N — 1)
parameters that describe the (2N —1) x (2N — 1) real orthogonal matrix R [cf. eq. (C.10)],
and then subtracting the NV — 1 unphysical phases by absorbing them into the definition of
the physical charged Higgs fields as described above.

C.3 The embedding of the U(IN) subgroup inside SO(2N)

We begin with the following theorem, which is useful in the analysis of spontaneous sym-
metry breaking of an SO(2N) symmetric potential in a theory with a second-rank anti-
symmetric tensor multiplet of scalars [62-64].

Theorem. Suppose that g isa 2/N x2N real antisymmetric matrix that satisfies EOTEO =
ZOZOT = ?19nxon for some real number c. Then, if the generators of the Lie algebra of
SO(2N), henceforth denoted by s0(2N), in the defining (2N-dimensional) representation
are given by {T,, Xp}, where the ¢T, and iX, are real antisymmetric 2N x 2N matrices
that satisfy:

T,%0 + STl =0, (C.20)
XX — Yo X! =0, (C.21)

then the Tj, span a u(N) Lie subalgebra of so(2N), while the remaining generators, Xj,
span elements of s0(2N) whose exponentials comprise the SO(2N)/U(/N) homogeneous
space. Moreover, Tr(7,X;) = 0.
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Proof. First, we show that if Egzo = EOEg = ?1lonxon and T, X0 + EOTE = 0, then
the T, span an U(V) Lie subalgebra. Note that these two conditions imply:

AT = - »IT,%,. (C.22)

In light of eq. (C.3), there exists a real orthogonal matrix W such that WMW7T =
diag(J1,J2,...,Jn) is block diagonal, where each block is a 2 x 2 matrix of the form
In = (_Zon T ), where z, € R and the 22 are the eigenvalues of MM7T (or MTM). Apply-
ing this result to ¥, note that the eigenvalues of EOEOT are all degenerate and equal to ¢.

J= ( 0 1NXN> . (C.23)

—1InxN 0

Moreover, since the matrix

satisfies JJL = 1onxon, it follows that one can find real orthogonal matrices Wy and Ws
such that WlEoVVl = CWQJW2 = diag(cJ,cJ,...,cT), where J is the 2 x 2 matrix,

(0 1
(0] -

That is, the factorization of o and ¢.J both yield the same block diagonal matrix consisting
of N identical 2 x 2 blocks consisting of ¢J. Thus, there exists a real orthogonal matrix
V = W, 'W; such that VEOVT = ¢J. The inverse of this result is VI VT = —¢.J (since
JT = —J). We now define T, = VT,V7. Then eq. (C.22) implies that

~ -1 ~ P

T] = —-VSEVIT,VE VT = JT,J . (C.25)

c

Likewise, one can use the same matrix V to define )A(/b = VXbVT. By an analogous
computation, X1 = ZTXEO, which implies that Xb = —JXbJ

Recall that T, and X; are both antisymmetric 2N x 2N matrices. Then, T,=VI,VT
and X, = VX,V7T are also antisymmetric. Hence, it follows that

To=—JT.J, Xo=JXuJ. (C.26)

Using the explicit form for J, eq. (C.26) implies that T, and X, take the following block

form:
- A B ~ C D
1T, = , 1Xp = , (C.27)
-B A D -C

where A, B, C'and D are N x N real matrices such that A, C'and D are antisymmetric and
B is symmetric. Thus, we have exhibited a similarity transformation (note that V7' = V1)
that transforms the basis of the Lie algebra spanned by the T; to one that is spanned by
the T Moreover, consider the isomorphism that maps zTa given in eq. (C.27) to the
N x N matrix A +iB. Since (A +iB)! = (A —iB)Y = —(A+ iB), we see that the
A+ iB are anti-hermitian generators (which are not generally traceless) that span a u(NV)
subalgebra of s0(2/N). We can check the number of u(/N) generators by counting the
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number of degrees of freedom of one real antisymmetric and one real symmetric matrix:
$N(N —1) 4+ $N(N 4 1) = N2, as expected.

Finally, multiplying the two equations 2T = —EgTaZO and chl:f = EgXbEO, it
follows that 2 T1 X = —XI'T, XX (after employing X%y = ¢2I,). Taking the trace
yields Tr T, X = — Tr T, X3, and we conclude that Tr T, X; = 0.

To show that the {7}, X;} span the full so(2N) Lie algebra, we have already noted
above that there are N2 generators, {T,}. In addition, there are N (N —1) generators, { X,},
corresponding to the number of parameters describing two real antisymmetric matrices [see
eq. (C.27)]. Thus, the total number of generators is N(2/N — 1) which matches the total
number of s0(2/N) generators.

Any element of the SO(2N) group is an exponential of an element of the corresponding
$50(2N) Lie algebra. This provides many possible choices for parameterizing an arbitrary
element of the SO(2N) group. We shall choose T, and X, as generators of the so0(2N) Lie
algebra. Exponentiating the appropriate linear combinations of generators [cf. eq. (C.27)]
allows us to express any element Rony € SO(2N) in the following form,

Ron = R.UR, (C.28)

where

R © D U A B (C.29)
. = ex , =ex , .
Plp ¢ R=SPl_p 4

where A, B, C and D are N x N real matrices such that A, C' and D are antisymmetric
and B is symmetric. Based on the discussion below eq. (C.27), we recognize Ug as the
2N-dimensional real representation of the group U(NN). That is, given an N x NN unitary

) ReU —ImU
URE< ¢ o ) (C.30)

matrix U, one can identity,

ImU ReU

as a 2N x 2N real orthogonal matrix that provides the explicit form for the embedding of
U(N) inside SO(2N).

Since the exponential of any element of the Lie algebra s0(2N) yields an element of
SO(2N), one can also choose a different order in the product of exponentials to parameterize
an element of SO(2N). For example, one can also express any element Roy € SO(2N) in
the following form,

Ron = WrR., (C.31)

where

. c’ D’ —~ ReW —ImW
R, =exp , Wgr = , (C.32)
D -’ ImW  ReW

where C’ and D’ are real N x N antisymmetric matrices and W is an N x N unitary
matrix. In general, ' # C, D' # D and W # U.
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D Cubic couplings of the Goldsone boson and physical Higgs scalars

It is quite remarkable that the cubic scalar couplings that involve a single or two Goldstone
fields can be simplified to expressions that involve either squared mass differences or squared
masses of the corresponding physical Higgs scalars, as exhibited in egs. (2.90)—(2.93). This
was first noted in the context of the CP-conserving 2HDM in refs. [18, 38].

Achieving such simplified forms for these couplings is rather laborious. It is instructive
to provide some of the details of the derivation. As an example, we demonstrate below how
to derive the coupling between a neutral scalar (here denoted by Sg) and two Goldstone
bosons G® = S obtained in eq. (2.93). Starting from eq. (2.85), there seem to be three rele-
vant terms: those with (3,+,d) = (p,1,1), (8,7,9) = (1,p,1), and (5,~,d) = (1,1,p). How-
ever, the latter two vanish due to egs. (2.30)—(2.31). Indeed, when § = 1, the result involves

*

i * _ _‘Uj U] _
(VD ko + vV <2U>vl+vk(v> 0. (D.1)

Applying egs. (2.30)-(2.31) to the remaining term, we find for 4v V3[SpG°GY],

2 * *
7>‘ij7klvi v |:(VT) Ul—l—vk‘/}p]
v pk

[ 2(vpiut ) +(vogvt )k]] o (VT)pk+[—2 (vpiut )il+<VD§VT)ﬂ] (V)
=(vivDRvT) o+ (VvDRVT V)i

VIV DE PI:Je (V1)g;0; | +Re[0} pw] DVTV

=(VIvD})  Re[(V)asi] (D3viv),,

VIVDim (VIV)| —|Im(VIV)D3VIV

=[VivDitm(viv)] ~[m(viv)piviv]

[ —[Im(vTv)DgRe(vTv)]lp

——2m2 [tm (VIV) | " (D.2)

Re(V1V) D3t (VIV))] B

thus reproducing eq. (2.93). The most crucial step is the first, where eq. (2.46) was used
to relate these couplings with the mass matrices. The third line above is obtained by using
egs. (2.32) and (2.44), where the (11) entry vanishes, which shows that the charged boson
masses do not contribute, as expected. The fourth line is obtained by breaking (VT)gjﬁj
in its real and imaginary parts, and then using egs. (2.33) and (2.45) to show that the
imaginary part involves the vanishing entries of D?. Eq. (2.34) yields the fifth line. To
proceed, we break the remaining V1V matrix into its real and imaginary parts. According
to eq. (2.66) the real part is the unit matrix, while the imaginary part is antisymmetric.
The two terms involving the symmetric matrix Im(VTV)DZIm(VTV) cancel each other.
Given egs. (2.45) and (2.66), we reach the last line.

It is noteworthy that it took such a long calculation to obtain such a simple result. In
fact, it turns out that such proofs are simpler when performed in the charged Higgs basis.
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E Generalized sum rules

In this appendix, we rederive in detail the sum rules obtained by Gunion, Haber and Wudka
in ref. [17]. Following the conventions of ref. [17], we indicate vector bosons with indices
a,b,c,... and scalars with indices 4, j, k,.... The Feynman rules for the cubic vertices are

ASATAY i gape [(pa — )"+ (po — Pe)® + (P — Pa)?| =i gave TV (pasprspe),  (E.1)
AZAS i+ i gabi g7, (E.2)
AGdids + 1 gaij (pi —ps)”, (E.3)

with all momenta incoming, and the Feynman rules for the quartic vertices are
AAP b i ars q®B E4
a b¢z¢] *vGabij 9 - ( . )

For the sum rule involving four gauge bosons we also need the relation between the
quartic and cubic term. We adopt here the conventions of Cornwall, Levin and Tiktopou-
los [15]. We just need the relevant terms,

L =—Dgypeq Wa“WgLWC,,Wé’ — Cape 8,,WWWb“WC” + - (E.5)
This gives the following Feynman rules,

AZAZA'ZAZ -8 (Dabcd guyng+Dacbd gupgya"i_Dadbc g;w'gl/p)7 (Eﬁ)
ASAPAY: —Cope [(pa—pb)”vL(pb—pc)“+(pc—pa)6 =—Cape TP (pasp,pe), (BT

where we note, for future reference, that comparing eq. (E.1) and eq. (E.7) we get,
Cabe = —1 Gabe- (ES)

Cornwall, Levin and Tiktopoulos [15], and independently Llewellyn Smith [14]) show
that, in order for unitarity to hold, the couplings Cyp. and Dgp.q must be those of a gauge
theory. In particular,

1
Dabcd = g(cacecbde - Cadeche)a (EQ)
0= Cabeccde - Cacecbde - Cadeccbea (E]-O)
where the last relation is the Jacobi identity. This means that Cy. are the structure

constants of the gauge group. As we want to write everything in terms of the structure
constants ggp. of ref. [17], we use eq. (E.8) to obtain

1
Dgpea = _é(gacegbde - gadegcbe)v (E'll)
0 = gabeYede — GaceGbde — GadeYcbe- (E12)
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Figure 1. Amplitudes for the scattering A, A, — A Aq4.

E.1 AAAA sum rules
E.1.1 The amplitudes

The diagrams contributing to the scattering A, (p1)+Ap(p2) — Ac(ps)+Aa(ps) are given in
figure 1. In an obvious notation we will name the amplitudes according to the Mandelstam
variables channel (s,t or u) and by the particle being exchanged. We get

MAPO — (Y28 (Daped Gap s + Dacvd Gar 966 + Dadbe 9os95) FOP, (E.13)
M = (=) (i gave) (—i Gede) (—1)Tapu(p1, D2, —p1 — p2) s (—Ppas —p3, —p1 — D2)
" (9" = (p1 + p2)"(p1 + p2)” /M?] faes
s — M? '
M = (=) (=i gace) (i Gode) (—1)Tapy (P1, —P1 + P3, —3)T 350 (D2, —Pas P4 — P2)

v o _ v 2
o= fs,_)‘;\(f; P3)"[Me] rapes (E.15)

M= (=) (~i Gade) (—i geve) (=) Tapus (P1, —p1 + Pas —pa) Ty (P2, —p3, P3 — D2)
(9" — (p1 — pa)*(p1 — pa)¥ /M?] fobed

(E.14)

E.1

8 u— M2 (E.16)
M = (=) (igavie) (igear )i 222572 podes, (E.17)

s — M
MG = (=) (iGack) (igbar )i Mfaﬁe&, (E.18)

t— M2
M = (=) (igadi) (igner,)i 22958 posed, (E.19)

u — M

where

FoPO = (p1)e? (p2)€” (p3)€’ (pa)- (E.20)

E.1.2 The high energy limit

When the gauge bosons are longitudinally polarized, the diagrams of figure 1 grow with
energy for large center of mass energy /s. The most divergent behavior arises from the
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first four diagrams that grow like E4. To see this, one has to use the expression for the
polarization vector for the longitudinal case, which is given by

= (8.718) =+ 0 (17 ). (E.21)

To determine the coefficients of the high energy behavior (see eq. (E.31) below) we cannot
use the approximate expression on the right-hand side of eq. (E.21) because we would
then lose contributions from the E* terms that modify the E? terms. So we should use
consistently the definitions of the left-hand side and expand the result in powers of s, t or
u. For instance, for particle a we have,

= E2 _ M2
€a = (7a6a77aﬁa/6a), Ba — #,
a
1 M2 o M2
B,= T2 (E.22)

Ya = /71_ﬁ37 2\/5

and similarly for the other particles. Next we use the kinematics for the process

Aa(p1) + Ap(p2) = Ac(ps) + Aa(pa), (E.23)
in order to write
(Eaa 0 0 ﬁa a) (Eb, 0, 07 _BbEb)v (E24)
= (E¢, BeEcsinb, 0, f.E. cosb), ps = (Eq, —PaEqsin,0, —aEqcosb), (E.25)
aL ('Yaﬁmo 0,%a), l? = (%04, 0,0, _’Yb)a (E.26)
& = (YeBer Ve sin 6,0, . cos §), e} = (YaBa, —vasin b, 0, —y4 cos 6). (E.27)

We then use these expressions to evaluate all the amplitudes. In the end we substitute
cos 8 in terms of the Mandelstam variable ¢, through the relation

t— M2 - M? +2E,FE
cosf = < ¢ * 2l < (E.28)
QEGECB(I/BC

At this point all the amplitudes are expressed in terms of the Mandelstam variables and

the masses. As the Mandelstam variables are not independent we can still use the relation
s+t+u= M+ M+ M?+ Mg, (E.29)

to express the result in terms of just two independent variables. Which ones should be
used will depend on the problem. Next we want to isolate the terms that grow with E*
and E?. To achieve this we make the scaling

s—s/x, t—t/r, u—u/z, (E.30)

and perform an expansion for small . The terms in E* are the coefficients of 72 and
the terms that grow like E? are the coefficients of #~!. Therefore, we can write for each
amplitude

M; = Afs® + Alt? + Aftst + Bfs + Bit + constant, (E.31)
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where we assumed that the independent Mandelstam variables are s and t. We did this
consistent expansion using FeynCalc and Mathematica for the Lorentz algebra and se-
ries expansion, respectively. To have an idea of what is involved we just write the exact
amplitude for the s-channel exchange of a gauge boson:

MA _ —YGabeYcde
4=
M2 M3s
4M¢3szMe2 (S_Mez> (MCQ!_M;+S)2 (Mc2 - ‘]Mol2 + 8) (MdQ_]\;CQ+S>2 (MC%_MCQ + S)
M?2 M?
X a® (M2 M+ ) b7 5 (—MZ + M} + )
(M2 — M7 +5s) (—M2+ M2+ s)

x (Mg (=M} + M? (s — M?) + M7 + Mj (3M7? — s) + M?s)

+ M2 (2MEMZ (M? + M2 + ) + M2 (s — M?) + M? (2M3 M2 + M?(s — 2t) — 5°)
+3MIMZ — Mys+ M7M?s — 2M7MZ2t + M7s* — 2M2st)

M (M + M2 (3M2 — 5) — (M3 + M2) (M3 — ) + M (M2 (3M2 — )
+MZ(2MIMZ2 + M2 (s — 2t) + %) + My (s — M?) + M7 (MZ2(s — 2t) — s*) — 2M2st)

+MZs (MZ 4+ M7 +s) (M2 + M7 —s—2t)) ] : (E.32)
This is a quite complicated expression, but making the series expansion as described above
gives simply

1

1 1
A 2
Ms = m |:4gabegcde s°+ §gabegcd65t

(M2 —MZ)(M2—M3)
4 } y

1 2
+ ~YabeYed |:M+
aoedcae e Me2

1
+§gabegcde(M3 + MZ + M? + M? + M?) t + constant] . (E.33)
If we had not taken the exact expression for the polarization vectors in eq. (E.21)

but only the approximate expression, we would have obtained instead of eq. (E.33) the
following expression,

1 1 1
A
MG = M MMM, |4 GabeJede 5° + 5 JabeYede st
1
+ zgabegcde [M3_2M3_2M5_M02_Md2] s
1 2 2 2
+5 JabeGede [—M; — Mj + MZ| t + constant | , (E.34)

which shows that the E* terms are correct but there is a difference in the E? terms as
previously anticipated. Note that no such problem arises for the exchange of the scalars,
as the most divergent terms are of order E?. Nevertheless we adopt the same procedure
for all the diagrams.
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Diagram As At Ast

)

Mt 2 (Dived + Daave) | =2 (Dacvd + Dadbe) | —4Daape

M 1 Yabe Gode 0 3 Yabe Jede
M 0 1 Yace Gbde 3 Yace Jbde
M 1 Yade Yebe — 2 Yade Yebe 0

S MA 0 0 0

Table 5. Coefficients AL

The E* terms. The first four diagrams yield terms that grow like E*. To simplify
the expressions we redefine the coeflicients A; = A;M,MyM.M,. The corresponding A;
coeflicients are given in table 5.

The last line in this table is obtained after we use the relations found in ref. [15] and
given in eq. (E.11). Namely,

1

Dgpeq = _g(gace 9bde — Yade gcbe)a (E'35)
1

Dacbd = *g(gabe Gede + Gade gcbe)a (E36)
1

Doaye = _g(_gabe Gede — Gace gbde)a (E37)

where the antisymmetry of the constants g, was used. So the more divergent terms cancel
only with the gauge part. The constraints that emerge simply imply that we must have a
spontaneously broken gauge theory [14, 15] as given in egs. (E.11)—(E.12).

The E? terms. Having shown that a spontanecously broken gauge theory assures that
the most divergent high energy behavior cancels, we consider next the terms that diverge
like £2. Here the gauge theory part is not enough to achieve cancellation and we get
constraints on the gauge boson couplings to scalars. For convenience we define

B; = 4 M, M,M.M, B;. (E.38)

We also note that once we use eq. (E.33) there is no contribution at this order for Bf*. The
results are summarized in table 6.

E.1.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.4) of ref. [17] we take as independent the Mandelstam
variables s and t. The coefficients of the terms growing with s and ¢ must vanish. If we
take the coefficient of s we obtain the desired sum rule. To show this, we notice first that
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Diagram Bf B}

MAFoint 8 (Dabed + Dadve) X —8 (Dacvd + Dadse)
Mg GabeJede [MeQ + W] 29abeGede (3 + M?)
M7 —20acevae (X — M?) GaceJbde [Mf —2¥ 4+ W
M —Yade Jebe [Mf +2X + W} —Yade Jebe [—Mf +4¥ + %}
M¢ —Gabk Jedk 0
M7 0 —Gack Gbdk
M Gadk Gbek Gadk bk

Table 6. Coefficients B;. We have defined ¥ = (M2 + M2 + M2 + M?2).

the sum of all contributions to B is (sums implied)

(Mg — M)(MZ — Mi)]
M2

e

(Mg — M) (M — sz)]

3 (Dabcd + Dadbc) X+ YGabeYcde |:M62 +

- 2gacegbde(Z - Mg) — Yade Ycbe |:M32 +2X + = M2

[

(E.39)
= Gabk Gedk — Gadk Gbck>

where we have defined ¥ = (M2 + M7 + M? + M?). Now we use egs. (E.35)-(E.37) to
obtain

3 (Dabcd + Dadbc) Y= (gade Gebe T Gabe gcde) 2. (E40)

Inserting this result into eq. (E.39) we obtain,

M2 — M2)(M?2 — M?
( b]\);eg d):| - gowegbde(Q2 - 2M62)

(Mg — Mg3)(MZ — M)
M

GabeYcede |:2 + M@Z +

— Yade Ycbe [Mf + X+ ] = Gabk 9edk — Yadk Gbck- (E.41)

Now we use the Jacobi identity of eq. (E.12) in the form

(gabegcde — GaceGbde — gadegcbe) Y= 07 (E42)

and subtract it from eq. (E.41). We then obtain the sum rule of eq. (2.4) of ref. [17],

M? — M2)(M? — M?
Z/gabe Gede |:M€2 + ( “ b]\);z - d):|
e e

M2 o M2 M2 o M2
- Z,gadegcbe |:]\4e2 + ( 2 (1]\);2 = b):|
e e

— > Gace Gode (M7 + My + M2 + M7 —2M7) = (abk Gedk — Jadk Gock) ,  (E-43)
e k

where the prime in Y indicates that the sum only runs over massive gauge bosons.
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Figure 2. Amplitudes for the scattering A, A, — A.¢;.

E.1.4 Another sum rule

If we take the coefficient of £, that is the sum of the Bf we obtain another sum rule:

(Mg — M2)(M; — M)
M

Z ,gace Gbde |:M62 +

[

(Mg — M3)(M — M)

+ Z ,gade YGcbe |:M62 + M2
e e

- Z YGabe ede (Mg + Ml)2 + M(:2 + Mc% - 2Me2) = Z (gack 9bdk — YGadk gbck’) : (E44)
e k

Notice, however, that eq. (E.44) is not independent of eq. (E.43). It is just the result of

crossing symmetry from the s-channel to the ¢-channel.

E.2 AAA¢@ sum rules
E.2.1 The amplitudes

The diagrams contributing to the scattering A, + A, — A. + ¢; are given in figure 2. The

corresponding amplitudes are

M = (=) (i gabe) (i Geei) (=) T apu(P1, P2, —P1 — P2) Gow
" (9" = (p1+ p2)"(p1 + p2)”/

2
s — M:

Mt = (=0)(—i gace) (i Gebi) (=) Capy (P1, —P1 + D3, —D3) ga0
(9" — (p1 — p3)"(p1 — p3)"/

X

t— M2

Mf = (—1) (@ goce) (i Gaei) (—1) Fﬂ'yu(p% —p3,P3 — P2) Jap
(9" — (p1 — pa)"(p1 — pa)”/

X

2
u— M

. 9ap (—2ps — p3)

M = (=) (igavk) (igeir)i

2
S—Mk

N .\ Gay (=2ps £ p2
M = (=) g i) 22 CHEP2)S gy
k

N . C(—2ps+Dpiayg
M = (=) (igair) (igser )i ( )2“ By paby
u— M?
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Diagram B} B}
A [ ME— My +MZ ]
M —YabeYeci 21\;3 —Yabe Jeci
A M2 M2 M2 M2Z—MZ—M?
Mt Yace Yebi “ 2]\463 < Yace Gebi W
A [—MZ+MZ+MZ]
Mu YGaei Gbce Yaei Gbee EJQT
e
¢
M Yabk Gcik 0
¢
M, —Yack Gbik —Yack Gbik
¢
My 0 Yaik Jock

Table 7. Coefficients BZ

where
£ = €(p1)€’ (p2)€” (ps). (E.51)

E.2.2 The high energy limit

In this case it is convenient to choose as independent variables s and u. The results are
summarized in table 7. Again we used a definition similar to eq. (E.38),

Bi = 2MaMch Bz (E52)

E.2.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.5) of ref. [17], we take as independent Mandelstam variables
s and u. The coefficients of the terms growing with s and u must vanish. If we take the
coefficient of s we obtain the desired sum rule.

) M2 — M? + M2 M2 — M? + M2
§ YGabe YGeci — Yace Gebi — Gbce Yeai
2M62 2Me2

e

= Z (9eik Gabk — Gbik Gack) - (E.53)
k

E.2.4 Another sum rule
If we take the coefficient of u we get another sum rule,

, M2 — M2 + M? M2 — MZ+ M2
Z Gace YGebi 2M€2 — Gbce Yaei 2M32 + Gabe YGeci

e

=" (Gaik Gock — Gvik Jack) (E.54)
K

which is just the crossed version of eq. (E.53).

E.3 AA@p¢p sum rules
E.3.1 The amplitudes
The diagrams contributing to the scattering A, + A, — ¢; + ¢; are given in figure 3.
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Figure 3. Amplitudes for the scattering A, A, — ¢;¢;.

The diagram with the triple Higgs vertex does not exhibit any bad high energy behav-
ior, and therefore one does not have to consider it here. The other amplitudes are

MR — (i) (i gasij gap € (p1)” (p2), (E:55)
M= (=) (i gave) (i Geij) (=) Capu(p1, P2, —p1 — P2) (—p3 + pa)y

) (6" — (m +§2_)”]\(£21 + p2)” /M| 8(ps), (E.56)

) (905 = (p1 = P)a(pr = p3)s/ME] ,

*(p1)e

M = (1) (i Gaei) (i Goey) (—i (p1)e (p2),  (E.57)

=2
_ _ _ 2
M = (<0)(i gaeg) i ) (—i) 22— P2 54_)03553 POSIME] ) (), (B.58)
M = (=) (i) (igon; )i (225 & 1;1204]\2221?4 —p2)s e (p1)e’ (p2), (E.59)
k
M = (=) (igajn) (igski)i (=24 +lea]\<422p3 —p2)s e (p1)e’ (p2). (E.60)
k

E.3.2 The high energy limit
In this case it is convenient to choose as independent variables £ and u. The results are

summarized in table 8. Again we used a definition similar to eq. (E.38),

B; = M, M, B;. (E.61)

E.3.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.6) of ref. [17], we take as independent Mandelstam variables
t and u. The coefficients of the terms growing with ¢t and u must vanish. If we take the
coefficient of ¢ we obtain the desired sum rule.

1 1 Jaei Jebj 1
E JaikJokj — =Yabij T ~ E = E = Yabe Geij = 0. (E.62)
8 2 12 M 2
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Diagram Bf Bzu

M | =5 Gabis |~ Gavis
M¢ _% YGabe Geij % YabeYJeij
M e 0
Ma 0| i
Mf Yaik Gk 0
Mﬂ 0 Yajk 9bki

Table 8. Coefficients B;.

E.3.4 Another sum rule

If we take the coefficient of u we get another sum rule,

1 1 Jaej Gbei 1
Zk:gajkgbki - igabij + 1 ze:/ aj\]@ <+ Ze: igabe Geij = 0, (E-63)

which is just the crossed version of eq. (E.62).

F  Proof that [ZZ S| = [WHW ™ Sg]
Theories based on SU(2)z, x U(1)y involve the operators
T +T. T, =T%-12, Q=T5+. (F.1)

When acting on some neutral field,
1
D) = — (v, +¢Y), F.2
k /2 ( k ‘Pk) (F.2)

the operators 37, T and T: 3, when acting on a neutral (Q = 0) field @2, yield the corre-
sponding eigenvalues yi, Ti(Tx + 1) and (73)r = —y, respectively. Thus,

N

L= (D' (D,®y) (F.3)
1
g

O]

1
Y (lok ] + vieR + veey”) <[Tk(Tk +1) -y W WE = ] ZMZ“> ,
W

where there is an implicit sum running over all neutral fields in the theory, from 1 to Ny.?"
Thus,

2
Mf, = 92; [T3(T3 + 1) — ] okl
M2 = &L N 1920 F.4
zZ= 92 Z[yk]‘vk‘v (F.4)
Wk

2TNotice that nothing was assumed about the exact representations used, nor the value of No.
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and
M 3 [Te(Th + 1) — yi] |url?

= = . (F.5)
ey M3 >k [207] lok]?
We now turn to the cubic couplings. Using

2No
op = Z Vis S8, (F.6)

B=1

we find
* * (%

(viph + vppht) = 2vZRe [(VT)ak;k} So (F.7)

where v? = ", |vg|2. Substituting in eq. (F.3), we find the corresponding Feynman rules
as

2
(2,2,89)F = z‘iz—” > [207] Re [(VT)ak%} s
Wk

Wrw, Sl = ig>o ) [Tu(Ti + 1) — 4] Re {(VT)ak%ﬂ G- (F.8)
k

Defining the ratio of Feynman rules as

2,2, = 1ZuZvel”
rere T 2,2,80) 5y
_ (wiw, Ssal”
[WJW,, Sg] = i——w’ (FQ)
we get
— [WJW;S((Q _ Zk [Tk(Tk + 1) — yl%] Re [(VT>O‘]€ ’Uk-] (F 10)

"= 2,2,59 >k 2] Re [(VT)ar ]

Notice the similarity between egs. (F.5) and (F.10).

One knows from experiment that p = 1 to high precision.® Barring a fine tuning of the
various vevs, that can only occur if all representations of the theory with scalar fields with
non-vanishing vevs satisfy

Te(Ty +1) = 3y3. (F.11)

Moreover, if eq. (F.11) is satisfied, then eq. (F.10) implies that [WJW;SCO!] is necessarily
equal to [Z,7,S0]. Note that this conclusion does not depend on whether the scalar
potential is (or is not) CP-conserving.

We now apply eq. (F.10) in the case of the NHDM where Ty (T}, + 1) = 2y; = 1/2
for all k, and the matrix V' in eq. (F.6) coincides with the matrix V in eq. (2.20). Then,
egs. (2.34) and (2.56) imply that

3 Re {(VT)Q,G%’“} — Ay (F.12)
k

This agrees with the couplings obtained in eq. (2.52).
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