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We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider 
models in which the low-energy sector contains two weak complex doublets and perhaps one 
complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously 
broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate 
the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, 
fermions and scalars of the theory. We also present Feynman rules for vertices which are related 
by supersymrnetry to the above couplings. Exact analytic expressions are given in two useful 
limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corre- 
sponding to the absence of a supersymmetric Higgs mass term. 

1. Introduction 

With the recent discovery of the W and Z gauge bosons [1], the experimental 
confirmation of the Glashow-Weinberg-Salam [2] (GWS) model of electroweak 
interactions is nearly complete. The final ingredient which remains to be clarified is 
the mechanism of electroweak symmetry breaking. In the GWS model, symmetry 
breaking is triggered by the Higgs mechanism. The main consequence is the 
appearance of physical elementary scalar fields (the Higgs bosons) in the theory. 
Unfortunately, the present theory hardly constrains the properties of the Higgs 
bosons. The fact that p =-m2w/(mzCosZOw)--1 suggests that the low-energy world 
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consists of Higgs bosons which are weak SU(2) doublets and perhaps gauge 
singlets.* However the masses of these Higgs bosons and many of their couplings to 
fermions and scalars are not constrained at all by the theory. 

Although the Higgs boson masses are a priori free parameters, it is generally 
assumed that such masses must be somewhat below 1 TeV. Otherwise, one finds that 
the Higgs self-couplings become strong and it is no longer appropriate to treat the 
GWS model as a weak-coupling theory [3]. This observation has led to a number of 
puzzles (which have been referred to in the literature as the hierarchy [4] and 
naturalness [5] problems). Basically, it is difficult to understand how an elementary 
scalar field can be so light (m u _< 1 TeV). The "natural" value for a scalar boson 
mass is gA, where A is the mass scale of some underlying fundamental theory (such 
as the grand unification mass Mc~uv-1015 GeV or the Planck mass Mp-1019 
GeV) and g is some coupling strength. In addressing the above problems, various 
solutions have been proposed. The only solution which keeps the scalar Higgs 
bosons as elementary fields is supersymmetry [6]. In supersymmetric theories, scalar 
masses are related by the supersymmetry to fermion masses which can be naturally 
light due to approximate chiral symmetries. An equivalent but more technical way of 
saying this is that the unrenormalized theory is free from quadratic divergences. 

In supersymmetric models, it is postulated that all known fermions have scalar 
partners. Unfortunately, it seems impossible to identify some of these states as the 
Higgs bosons of the GWS model. The reason is that the scalar partners of quarks 
carry color quantum numbers and the scalar partners of leptons carry lepton 
number. In order that the theory not spontaneously break color and/or  electromag- 
netism, only the scalar neutrino could acquire a vacuum expectation value. This 
possibility would lead to lepton number violation in the theory. As shown in ref. [7], 
one cannot entirely rule out this scenario, although no realistic model exists where a 
scalar neutrino vacuum expectation value alone is responsible for the electroweak 
symmetry breaking of the GWS model. One must therefore add Higgs bosons and 
their fermionic partners in addition to the quark and lepton supersymmetric 
multiplets. 

Supersymmetry imposes a new requirement on the Higgs multiplet structure of the 
theory. In the standard model, only one Higgs doublet is required to give mass to the 
quarks and leptons. In the supersymmetric model, two Higgs doublets are needed to 
give mass to both up-type and down-type quarks (and the corresponding leptons) 
[6, 8]. This requirement arises from a technical property of supersymmetric models. 
The interaction of Higgs bosons and fermions arises from the superpotential given 
by: 

WF = E i] [ f12I[ L iR + fx I2I(Q JD + f2 I~IJQ i ~-J ] ,  (1.1) 

* It is possible to have p = 1 either automatically with certain higher Higgs representatives (e.g. I w = 3, 
y = 4, see ref. [44]) or by artificially adjusting the parameters  of the model. We shall neglect these 
alternatives on  the basis of simplicity. 
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where/41 a n d  /~2 are the Higgs superfields, (~ and L are the SU(2) weak-doublet 
quark and lepton superfields, respectively, U and D are SU(2)-singlet quark super- 
fields and R is an SU(2) weak-singlet charged lepton superfield. (See table 1 for a 
summary of the quantum numbers of the various fields.) The SU(2) indices i, j are 
contracted in a gauge invariant way. Supersymmetry forbids the appearance of Ha* 
and //2* in eq. (1). Because of gauge invariance (in this case, the hypercharge), an 
H~QU coupling is prohibited; hence, no up-quark mass can be generated if H 2 is 
omitted. 

Thus, the minimal supersymmetric extension of the GWS model is a two-Higgs 
doublet model. Furthermore, supersymmetry imposes non-trivial constraints on the 
Higgs boson sector of the model. Even if we assume that the supersymmetry is 
spontaneously or softly broken, it must be true that the dimension-four terms of the 
Higgs potential respect the supersymmetry, The consequences of this observation 
will be a major focus of this paper. 

We propose to study the Higgs sector of the minimal supersymmetric extension of 
the standard electroweak model. For the sake of generality, we shall admit all 
possible soft-supersymmetric-breaking terms [9] with arbitrary coefficients, i.e. terms 
of dimension two or three which do not reintroduce quadratic divergences to the 
unrenormalized theory. This is in fact a feature of low-energy supergravity models; 

TABLE 1 

Fermionic 
Superfield Boson fields partners SU(2) w Y 

Gauge 
muhiplets 

V" ~" triplet 0 
1~' V' X' singlet 0 

Matter 
multiplets 

{ L = (.~, FL) ( v , e ) L  doublet - 1  ,7 scalar leptons - _+ 
R = e  R e~_ singlet 2 

(~ f Q i = ( ~L' (~L) (U, d)L doublet 
scalar quarks U = ~ u~ singlet - ~ 

b / b = d~ d~ singlet 3 
tt, f H_{ ( ~k{~,, +oH, ) doublet 

(q~H2' fi l l :)  doublet 1 
ff  ~ N ~ku singlet 0 

We list the gauge and matter multiplets of the supersymmetric SU(2) × U(1) model. The charge Q is 
obtained via Q = 7~ + 12v, The labels are as follows: a = 1,2,3 labels the SU(2) triplet of gauge bosons 
and i, j = 1, 2 are SU(2) indices. Labels referring to multiple generations of quarks, leptons and their 
scalar partners are suppressed. 
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in addition, these models suggest particular values for some of the coefficients of the 
soft terms introduced.* We shall comment on some of the possible values of these 
coefficients at the end of this paper. 

The use of the term "minimal" above is somewhat ambiguous. In the literature 
there have been two basic choices. First, one may take a minimal SU(2)x  U(1) 
model of electroweak interactions with two Higgs doublets and add supersymmetric 
partners. Unfortunately, the supersymmetric version of this model fails to break the 
SU(2) x U(1) gauge symmetry. This is not a problem since by adding appropriate 
soft-supersymmetry breaking terms, one can arrange for the SU(2)x  U(1) gauge 
invariance to be spontaneously broken. In the low-energy supergravity models, this 
scenario occurs as follows. The resulting lagrangian of the model appropriate at the 
Planck scale Mp has the supersymmetry softly broken and the SU(2) X U(1) gauge 
invariance unbroken. When the renormalization group equations are used to evolve 
down from Mp to energies of order mw, at least one of the SU(2) weak-doublet 
Higgs fields acquires a negative mass-squared, indicating that SU(2)× U(1) has 
spontaneously broken [8,12-13]. All lagrangians we write down in this paper are 
appropriate to the energy scale of order mw. 

A second approach is to add a complex scalar field which is an SU(2)x  U(1) 
gauge singlet to two-Higgs doublet model [14-17]. One can now write down a 
supersymmetric version of this model where the SU(2)x  U(1) gauge symmetry is 
spontaneously broken. Although this model has an extra field, it is in some ways 
simpler than the model described previously. In low-energy supergravity models 
based on this picture, the SU(2) x U(1) is already broken at tree level [15-16]. Of 
course, one must check that the evolution down to scales of order m w does not 
upset this picture. 

The plan of this paper is as follows. In sect. 2, we discuss the GWS model with 
two-Higgs doublets in generality (with no particular reference to supersymmetry). In 
sect. 3 we construct the most general Higgs sector in a softly-broken supersymmetric 
SU(2) x U(1) model with two Higgs doublets and one Higgs singlet. Our parameters 
are chosen so that the SU(2) x U(1) spontaneously breaks to U(1)E M. We then make 
a few assumptions regarding the parameters of the model. This will allow us to 
obtain analytic expressions for the masses of all the physical Higgs bosons and their 
interactions. In sect. 4 we derive the Feynman rules for the interaction of the Higgs 
bosons with all particles of the supersymmetric spectrum. For completeness, we 
derive the couplings of the higgsinos to quarks and scalar-quarks in sect. 5. 
Although these interactions do not explicitly involve the Higgs bosons, they are 
supersymmetric analogs to some of the Higgs boson couplings discussed in this 
paper. This will require some careful discussion regarding the mixing of gauginos 
and higgsinos which we include for completeness in appendix A. The Feynman rules 

* For a review of the low-energy supergravity approach and a complete set of references, see refs. [10] 
and [11]. 
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presented in this paper provide a useful supplement to the rules given in the 
appendix of ref. [18]. These rules have been obtained assuming one generation of 
quarks and leptons. Extensions to the case of more than one generation are 
discussed in appendix B. In sect. 6 we discuss the parameters of the Higgs potential 
in the context of currently fashionable models of "low energy" supergravity. Some 
final comments appear in sect. 7. We shall apply the results of this paper to 
interesting physical processes in a follow-up paper [19]. 

2. Two-Higgs doublet models - generalities 

First, we shall discuss some general properties of the Higgs doublet models 
[20-22]. We shall then apply the results to the supersymmetric case in the next 
section as well as allowing for the possible addition of an SU(2)w × U(1) gauge 
singlet scalar field. 

Consider two complex y = 1, SU(2) w doublet scalar fields, ~1 and ~2- The Higgs 
potential which spontaneously breaks SU(2)× U(1) down to U(1)E M can be written 
in the following form* [20]: 

V ( ~ 1 , ~ 2 )  : X l ( d ~ t l ~ l  U~) 2 2 2 - + 

+ 4)  + 4)] 

+ x 5  -  l 2COS ] 

+ ) t 6  [ I m ( d p t l ( / ) 2 ) -  Ulo2s in  ~]  2 + )t 7 . (2.1) 

A few comments should be useful here. First, by hermiticity the ),, are all real 
parameters. Second, )t v appears for convenience only; in practice, all constant terms 
in eq. (2.1) can be dropped. However, when we discuss the supersymmetric case, it is 
convenient to choose )t 7 such that the minimum of the potential is V= 0 in the 
supersymmetric limit. Third, if the h i >i 0, then the minimum of the potential is 
manifestly 

thus breaking SU(2)w × U(1) down to U(1)E M as desired. In fact, the allowed range 
of the )t i corresponding to this desired minimum is somewhat larger. It can be easily 
determined by working out the mass spectrum of the physical Higgs bosons and 
demanding that all the squared masses be non-negative. 

* This potential is the most general one subject to two constraints: (a) gauge invariance, and (b) the 
discrete symmetry q'i ~ - ~ ,  is violated only softly (here, it is violated by dimension-two terms). The 
latter constraint  is a technical one, which is related to insuring that flavor changing neutral currents 
arc not too large [20]. It is automatically satisfied in the supersymmetric models wc study here. 
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In the next section, we will see that supersymmetry imposes the condition X 5 = ~k 6 

on eq. (2.1). In this case, we may redefine ~b 2 via q~2 ~ e'%2 and remove the phase 
from the potential. As a result, the vacuum expectation values of q'l and ~b 2 c a n  be 
chosen to be real and positive. 

Therefore, in this section we will not consider the most general potential as given 

in eq. (2.1). Instead we will derive all our results assuming that ~ = 0 (although we 

will take X 5 ~ X6). This, in fact, corresponds to the most general CP-invariant 
two-Higgs doublet  model. 

Our major  task is to compute the Higgs boson mass matrix. This is most easily 
done in a real basis where: 

'1'1- 
~b 1 d- i~b2] ~ ~b 2 

t~3 %" icb 4 ] dP3 ' 

'/'4 

q55 + i~6 ] ~ dP6 (2.3) 
t~7 q- iq5 8 ] d?7 • 

The method is described in the appendix of ref. [21]. Here we provide the results and 
correct a few minor errors in ref. [21]. First, one rewrites eq. (2.1) (with ~ = 0) in 
terms of the q~, (i = 1 . . . . .  8). The Higgs-boson squared mass matrix is obtained 

from: 

1 O2V 
M~2 20ep i Oq~j 

minimum 

(2.4) 

where " m i n i m u m "  means setting (03) = Vl, (07)  = v2 and (~k)  = 0 for all other k. 
Note  that the factor of ~ is needed in eq. (2.4) because of the normalization of the 
scalar fields as defined in eq. (2.3). When f = 0 in eq. (2.1), the scalar boson squared 
mass matrix separates into a series of 2 × 2 mass matrices. Diagonalization is 
straightforward and we summarize the results below. 

2.1. INDICES 1, 2, 5, AND 6 

These are the charged Higgs bosons. The positive and negative states decouple 
and have equal mass-squared matrices: 

v2 _v1 21 ' (2.5) 
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Diagonalizing the charged Higgs-boson mass-squared matrices results in two zero- 
mass Golds tone  boson states: 

G -+ = q5{ cos,8 + q~+-sin2/~, (2.6) 

where q~- ~ (~+)*,  and two massive charged Higgs boson states 

H + = - q~{sin fi + c)+cosfl, (2.7a) 

9 9 
m74+ = )t4( v~ + v22), (2.7b) 

where 

©2 
t anf l  - - - .  (2.8) 

u 1 

2.2. INDICES 4 AND 8 

The resulting mass-squared matrix is identical to eq. (2.5) with X 4 replaced by )l 6. 
Hence we obtain one zero-mass neutral Goldstone boson and one massive neutral 

G O = v~-(Im O°cosfl + ImO°sin f i ) ,  

H o = ~/2( - I m  O°sin fl + Im O°cos f l ) ,  

m2~, = )~6 (u12 + v2). 

(2.%) 

(2.9b) 

(2.9c) 

The factors of ~ -  are needed in order that these fields have conventional kinetic 
energy terms. 

2.3. INDICES 3 AND 7 

The mass-squared matrix is: 

4v~(Xl+  X3) + v22)t5 ( 4 • 3 + X s ) v l v 2 )  

(4)k3 q- ~.5) UlV 2 4V22 ()k 2 -t- ~t 3) + Vl2~t 5 " 

The physical states are: 

H ° =  v~- [(Re q~ ° - vl)cos c~ + (Re ~(~ - v2)sin c~ ] , 

H2°= v ~ - [ - ( R e  q, ° - vl)sin a + (Req, ° - v2)cos a ] . 

(2.10) 

(2.u) 
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If we define: 
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A = 4v2(Xl + X3) + v~Xs, 

B = (4X 3 + Xs)vlv  2, 

C =  4v2(X2 + X3) + v~X s, 

then the masses and mixing angles are defined as: 

1[ 1 mHlo H o= 5 A + C +  A - c ) z + 4 B  z , 

2B 
sin 2~ = 

~/(d -- C)2 + 4B 2 

A - C  
cos 2 ~ = 

~/( A - C)2  + 4 B  2 

(2.12) 

(2.13a) 

(2.13b) 

(2.13c) 

In eq. (2.13a) the mass of H ° ( H  °) corresponds to the plus (minus) sign, respec- 
tively. 

To get the Feynman rules for the interactions of the Higgs bosons, we employ the 
unitary gauge. This consists of setting the Goldstone fields G +- and G O to zero. In 

~ = _ H + s i n f l ,  

q~- = H+cosf l ,  

~° 1 = v 1 + ~-~ ( H°cos c~ - H2°sin c~ - iH3°sin f i ) ,  

q 5° = v2 + ~-2 ( H°sin a + Hz°cos a + ill°cos f l ) .  

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

this gauge, 

By inserting the expressions given by eq. (2.14) into the interaction lagrangian, 
one obtains the desired interactions of the physical Higgs bosons. Since CP is 
conserved (for ~ = 0), one finds (by analyzing the H~°q?t couplings) that H1 ° and H ° 
are scalars and H ° is a pseudoscalar. 

3. The Higgs sector in a minimal supersymmetric model 

We now turn to the implications of supersymmetry for the properties of the Higgs 
bosons [8, 23]. We shall analyze a "minimal" supersymmetric extension of the 
Standard Model consisting of two Higgs doublets and perhaps one SU(2) × U(1) 
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singlet Higgs field. A list of the fields in our model, which also defines our notation, 
is provided in table 1. Details of this model can be found in the appendices of ref. 
[18].* 

In order to use the results of sect. 2, we must be careful in our notation. In 
supersymmetric models, one employs two Higgs-doublet fields of opposite hyper- 
charge: H a with y = - 1  and H 2 with y = 1. The relations between these fields and 
the ~i of sect. 2 are: 

( ~ 1 )  j = eqH(* ,  

(<)J=/-q, (3.1) 

where i, j are SU(2) indices and 812 = - - 8 2 1  = 1, e n = E22 = 0. That is, 

( Hi  / ~o, 
H t = ' H ? ] = ( - O ( ) '  (3.2) 

where 01 - ( ~ ) *  and the asterisk indicates complex conjugation. 
As described in the introduction, we propose to analyze the most general Higgs 

potential corresponding to a softly broken supersymmetric theory. To obtain this 
potential, we first consider the superpotential of an unbroken supersymmetric theory 
made up of the fields listed in table 1. The most general superpotential (which 
conserves baryon number and lepton number) is: 

W =  he , /H(HJN + 1~8 i H [ H J -  rN + 1,MN 2 + ! A N  3 + W F, (3.3) 
J - 3 

where 

= 8,j[ fn L,k + i4;OJb + f2 nj(?'(;]  , (3.4) 

where we have replaced the superfields by their component scalar field, the defini- 
tions of the scalar fields are provided in table 1. The scalar potential is computed by 
[241 

V =  ½[D"D ~ + (D ' )  2] + Fi*F,, (3.5) 

* Our  nota t ion  follows that of ref. [18] with the following exceptions: (i) what  we call r here [eq. (3.3)] 
T is called - s  there: (ii) what  we call t,, here [eq. (3.7)] is called V5 v, there: (iii) what we call t anf l  

here [eq. (2.8)] is called cot 0,. there: and (iv) the Higgs-boson-quark-Yukawa couplings are denoted 
by £ here. 
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OW 
F -  

OA i ' 

D" !zA*-"~ = 2 0  i ui I z* j  , 

D '  1 , , = 2g YiAi I'4, + ~. 

(3.6a) 

(3.6b) 

(3.6c) 

In the above expressions, A, collectively denotes all scalar fields appearing in the 
theory. We shall henceforth assume that the Fayet-Iliopoulos term [25] ~ in eq. (3.6c) 
is negligible. 

We have described above how to calculate the scalar potential in the supersym- 
metric model. We now add all possible explicit soft-supersymmetry breaking terms 
to the model. The allowable terms have been derived in ref. [9]; the relevant terms 
for the scalar potential fall into two classes. The first class consists of all possible 
dimension-two terms consistent with gauge invariance. The second class consists of 
those gauge invariant dimension-three terms which do not mix the scalar fields with 
their complex conjugates. These terms correspond in form precisely to the cubic 
terms of the superpotential W [eqs. (3.3), (3.4)] plus their hermitian conjugates. 

The resulting scalar potential is the one we shall analyze. We make the following 
assumptions about this potential. First, the Higgs doublet fields H 1 and H 2 acquire 
vacuum expectation values: 

By appropriate choice of phases for the Higgs fields, v I and v 2 are real and 
non-negative. Second, we assume that the scalar-quark and scalar-lepton fields do 
not acquire vacuum expectation values. We then can ignore W F in eqs. (3.3) and 
(3.4) when studying the Higgs-boson mass matrix. Third, note that we can make a 
shift in the N field such that the parameter M in eq. (3.3) disappears. We will simply 
set M = 0 with no loss of generality. The scalar potential as a function of H 1, H 2 
and N can then be written as: 

V =  ~g, 2 [41 HI,.H2 [i 2 -- 2( H;*H{)(H~*HJ) + ( H I * H I ) 2  + 1t2i*H2 )i 2] 

+ ~g ,2(  i .  i _  IhH[HJeij r H2 H2 H;*H;)2+ - +AN2]  2 

i* t 2( i* t + [hI2( H¢*H~ + H2 H:)N*N + It*l H[*H[ + H2 n2) 

i ,  i , h.c.) + V, oft , (3.8) +(H~*H~ + H 2 H2)(~ hN + 

• 2 i* i __ ' h.c.) + m2U*U H2) 
i / h.c.) .  (3.9) +(m25N 2 + h . c . )+  rn3(ei/hA1H1H2N + ~AA2N3 + 
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The parameters  m i and m~2 have dimensions of mass, r has dimensions of 

mass-squared and A 1, A 2 are dimensionless. We will study the terms involving 
scalar-quark and scalar-lepton fields in sect. 4. 

We proceed to compute the spectrum of physical Higgs bosons and their masses. 
In the most  general case [eqs. (3.8), (3.9)], numerical methods are required to obtain 
some of the physical Higgs masses and eigenstates. We are interested in certain 

special cases where the Higgs masses and eigenstates can be computed analytically. 
Case 1: /~ = ( N )  = A l = 0. In this case, there is no mixing between N and the 

doublet  Higgs fields. Consequently, we may use all the results of sect. 2. The 

required translation is: 

0~01 = H { * H ; ,  (3.10a) 

q,** _ u i . u i  (3.lOb) 2"/"2 - -  **2 * ' 2  

q)]O2 - i s (3.10c) - e i j  H1 H2. 

Finally, a useful relation is: 

IH li.H2 ]i2 + leijH~HJ[2 = ( H[*H[)( HJ*HJ). (3.11) 

We then find: 

~ 2 , , . , , _  [(m~ 2 + hr,)ei/H[HJ + h.c.] V= m~H[*H[ + ' "2" '2  "'2 

i ,  i 2 + + (< <) ] 

+ ~ ( g 2  g , 2 ) ( H [ , H ; ) ( H J , H ~ )  

1 2 i j +(Ih l  2 -  ,Tg )lei,HIgzl 2÷ Irl 2, (3.12) 

where we have ignored terms involving N. We have retained the constant term ]r] 2 
for later convenience. Note in particular that no term of the form 

i j ) 2  
eiiH1H 2 + h.c. (3.13) 

appears  above. This implies that )'5 = ) ' 6  in eq. (2.1). Therefore, within the pure 
H~, H z sector of the theory, we may absorb the phase of m22+hr * into the 
definition of H 2 and set ~ = 0 in eq. (2.1). We emphasize that the same logic allows 
us to choose u I and v 2 to be non-negative. Henceforth, we shall take the parameters 
m22, h and r to be real. Note, however, that with the conventions above, CP-violat- 
ing phases may reappear in the interaction of H x and H 2 with other fields in the 
theory. 
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Comparing eq. (3.12) to eq. (2.1) (with ( = 0) and using eqs. (3.10), we obtain the 

)k2 = ) k l  , 

~k3 = l ( g 2  q- g ' 2 )  -- )kl , 

_ ~ g , 2  X4= 2Xl 2 , 

)k 5 = )k 6 = h 2 _ 1 ( g 2  q_ g , 2 )  _~ 2Xa, 

)k 7 r 2 . 2  2 2 1 2 g , 2 )  

rn~ = 2X10 2 , 2 - -  ~ m  z , 

m 2 = 2X,  ~ m z ,  

m22 = h (  VlV2 h - r) - 10102( g2 + g,2 _ 4 X l )  ' 

following results: 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

(3.14e) 

(3.14f) 

(3.14g) 

(3.14h) 

where the Z ° mass is given by m 2 = ½(v~ + 02)(g  z + g,2). These results indicate that 
supersymmetry imposes strong constraints on the Higgs-doublet model of sect. 2. 

As a check, let us consider the supersymmetric limit by setting Vsort = 0 in eq. (3.8) 
(i.e. m 2 = m22 = m22 = 0). We then find from eqs. (3.14f), (3.14g) and (3.14h) that 

U 1 = U2, (3.15a) 

Xl = ~ ( 8 2 +  g,2), (3.15b) 

r = 0102h. (3.15c) 

Inserting these values into eq. (3.14e) gives X v = 0, i.e. the value of the potential at 
the supersymmetric minimum is zero. 

Using eqs. (3.14a)-(3.14h) and the results of sect. 2, we may immediately obtain 
the spectrum of physical Higgs particles. The results are: 

m~,~ = ½(4X 1 - g,2)(0~ + v~), (3.16) 

m2,~,= m2~ - maw + h2(v 2 + v2), (3.17) 

m 2/t~,. tf~' -- ~1 [ m ~ +  m2+_ ~ - t - / 3 7 2 )  2 -  4m2m~0cos22fl - 32h20202~ t ] 

(3.18) 

m2o + rn2~,- 2h2( o 2 + 022) 
t an2a  = tan2/3 257A- - -~  , 

m it~ - m z 
( 3 . 1 9 )  
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where  H ± are the charged Higgs fields, /4, ° (i = 1,2, 3) are the neutral  Higgs fields, 

tan/9  -= v2/v  ~ and a is the mixing angle which leads to the H °, H ° eigenstates. As 
usual,  m2w =Tg~-2"'2tv~+v22) and m2=5(~  g 2 + g , 2 ) ( v 2 + v ~ ) "  

The  results of  eqs. (3.17)-(3.19) have been obta ined in refs. [8] and [23] in the case 
of  h = 0. In  that  case, we see that  one of the neutral  Higgs scalars must  have mass 

less than or equal  to m z and that  the charged Higgs scalar must  be heavier than 

m w. Ne i the r  of  these two condit ions needs to be true for h ~ 0. Note  that even when 
h ¢ 0, the mass  relation: 

m21, + m2~? = m2~, + m 2 (3.20) 

still holds.  The  supersymmetr ic  limit is also of  interest. In this limit, the complex N 
scalar  consists of  two degenerate states of mass m u = h2(v 2 + v2). In addition, eqs. 

(3.15b) and  (3.16) imply that  m , +  = m w from which it follows that  m,~, = m,~, = m N 
and m , o =  m z. This result was expected. In the supersymmetr ic  limit, the H + 
b e c o m e  the scalar superpar tners  of  the W +- (along with some appropr ia te  combina-  

t ion of the gauginos and higgsinos) and one scalar field, H °, becomes the scalar 
supe rpa r tne r  of  the Z ° [14]. The remaining neutral  Higgs fields are degenerate  and 

live in their own chiral superfield along with the appropr ia te  higgsino. 

Case 2." I~ 4= O, N field not present. This case corresponds  to taking h = m3 = m 4 
= m 5 = r = A = 0 in eqs. (3.8) and (3.9). Again, the results of sect. 2 are applicable.  
In this case, eqs. (3 .14d-h)  are replaced by 

_ 1 v g , 2 )  
~ 5 = ~ 6 = 2 ~ 1  5 ( g - +  , (3.21a) 

x T =  - v )2(g 2 + g ,2 ) ,  (3.21b) 

m 2 = - I N 2 + 2 X l v 2 2 -  I 2 2mz (3.21c) 

m ~ = - ] ~ l  2 + 2 ) t l v  2 l 2 
_ ~mz (3.21d) 

mZ2= ½VlV2(4~l - g 2 -  g'2 ) ,  (3.21e) 

whereas  eqs. (3 .14a-c)  remain unchanged.  The masses of  the physical  Higgs bosons 
and  the mixing  angle a are given by  eqs. (3.16)-(3.19) with h = 0. We may  obtain  a 
useful  express ion for the mass of H~ ~ as follows. Using eqs. (3.21c-e),  we find 

m 2 + m 2 + 2[/~12 = m22(tan j8 + cot ~8), (3.22) 

m~2 
)t I = ¼(g2 + g,2) + _ _  (3.23) 

2vlv  2 
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Using  eqs. (2.9c) and (3.21a), we end up with 

m ~ , = r n ~ + r n ~ +  21~12 . (3.24) 

We  have a l ready noted that  we may  choose v a and v 2 both  non-negative,  which 
implies  (by our  convention)  that  0 ~< fl ~< 57r.1 Fur thermore ,  if we use eq. (2.13) 
(which by  our  definit ion implies that  rnH~, >/rnHo ), it follows that  s i n2a  ~< 0 for this 
case; so we m a y  take - 57rl ~< a ~< 0. One interesting limit is v a = v2; in this case, 
/ ~  -~- - - a  ~ ~qr,X and m Ho - - 0  (at tree level). Useful  formulas  for s in(a  +_ fl) and 

cos (a  _+ fl) in terms of the neutral  Higgs boson  masses (these factors often appear  in 
the F e y n m a n  rules, see sects. 4 and 5) may  be found in ref. [19]. 

The  supersymmet r i c  limit consists of  setting rn 1 = rn 2 = rn~2 = 0. However ,  in this 
limit, eqs. (3 .21c-e)  are inconsistent (under  the assumpt ion  that  /~ ~ 0 and a 

nonvan i sh ing  vacuum expectat ion value). The  reason for the p rob lem here is s imply 

that  the potent ia l  V [eqs. (3.8) an (3.9)] with h = rn 3 = m 4 = rn 5 = r = A = 0 does not 

spon taneous ly  break  S U ( 2 ) x  U(1) (i.e. v 1 = v 2 = 0). Thus,  in a supersymmetr ic  
mode l  with only two Higgs doublets  but  with no singlet Higgs fields, sof t -supersym- 

me t ry  b reak ing  terms are required in order  to (spontaneously)  break the SU(2) × U(1) 
gauge symmet ry .  

Case 3: ~ 4= 0 or A 1 4: O, N field present. This is the general case where the 
poten t ia l  is given by  eqs. (3.8) and (3.9). We shall s imply indicate some of the 

resul t ing complexit ies.  
First,  let us assume that  ( N )  = 0, This depends on the values of the parameters  r, 

A, m ] and rn~ which are relevant in determining the mass  matrix of the two states 

Re N and I m  N. The  term 

( H[*H; + i. i ) ( ~ , h N  + g 2 H 2 h.c.) + hAlrn3ei/H~g~N + h.c. (3.25) 

leads to mixing of the complex N scalar with all three l~hysical Higgs scalars 
H,°(i = 1,2, 3). This  would require a 5 × 5 neutral  Higgs boson  mass  matrix.  No te  
that  this implies CP-violat ion in the Higgs sector which has entered due to the 
complex  coupl ings of N with the other scalar fields. If  we impose CP-conservat ion  
on the Higgs parameters ,  then some simplification occurs: namely,  Re N mixes with 

H~ ~ and H ° and Im N mixes with H ° 3 as can be seen f rom eq. 3.25. If we now allow 

for ( N )  ~ 0, no new complexit ies arise. 
Fo r  the remainder  of this paper ,  we shall concentra te  on cases 1 and 2, described 

above.  There  are a number  of reasons for this choice. First, we believe that  it is 
useful to have analytic expressions for the Higgs-boson masses and eigenstates. 
Second,  we think that  the approx imat ions  used in obtaining those expressions are 
sensible. In  models  without  a singlet Higgs field (case 2), our  results are complete ly  
general.  In models  (e.g. case 1) with the singlet field N, we have the convenience of a 
min imal  supersymmet r i c  extension of the s tandard  model  in which SU(2) × U(1) is 

spon taneous ly  broken  at the tree level. 
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4. Feynman rules for Higgs-boson interactions 

In this section we compute the Higgs-boson interactions under the assumptions 
stated in cases 1 and 2, described in sect. 3. The upshot of those assumptions is that 
if a singlet field is present, it does not mix with the neutral weak-doublet Higgs 
fields. This allows us to use eqs. (2.14a d); in terms of the notation of sect. 3, we 

obtain: 

H2 t = H+cos fl, (4.1a) 

H(=H sin/3, (4.1b) 

H ~ = v  1 + ~ - ( H ° c o s  c~ - H°sin a + i l l °s in /3) ,  (4.1c) 

02  = U2 q'- cT ( H('sin ~ + H~)cos a +/Hi 'cos  B ),  (4. ld)  

where tan/3 = v2/v ~ and a is given by eq. (3.19). As discussed previously, we may 
1 choose our phases such that v 1 and v 2 are real and non-negative; hence 0 ~</~ ~< 5¢r. 

In supersymmetric models, the Higgs bosons interact with gauge bosons, quarks, 
leptons, other Higgs bosons and their supersymmetric partners. We shall describe 

(a) H+/ 
/ 

W + / 
,'x,/x./%/-vxX 

N "-, p 

N 

H 7 " 

- i g  sin ( a - B )  ( P+ p/) tL 
2 

( b ) H+/  
/ 

W + /pt 
/ 

- i g  cos (a-B) ( p ,  p/)/~ 
"~, p 2 

( C ) H + /  
. /  

7? 
W + / p t  

/ +cj (p+pq~- 
\ p 2 

X 

H;"  

Fig. 1. F e y n m a n  rules for W ~ H + HI ~ vertices. The direct ion of m o m e n t u m  is ind ica ted  above. 
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each of these interactions in turn. We rely heavily here on the appendices of ref. [18] 
where much of the interaction lagrangian for a supersymmetric extension of the 
standard model has been discussed in great detail. 

4.1. INTERACTION WITH GAUGE BOSONS 

One starts with an interaction lagrangian consisting of HHV and HHVV terms 
(H = Higgs boson, V = vector gauge boson). For example, the interaction with the 

0 
(a)  H3 / 

/ 
Z o / '7 /p  / 

\ 
\ P  

H~'\\ 

g sin ( a - / 3 )  

2 cos 0 w 
(p+pt) ~" 

(b) H ~/,,. 

Z ° / /  p/ 

\ 

H~ \ 

gcos ( a - / ~ )  

2 cos 0 w 
(p+pt)  ~ 

(c)  H+/ / 

Z* ~pl / 

\ 

~ \ P  

H÷\ 

- i g cos 20  w (p +p l )~  

2 cos O w 

(d) H+/ / 

Jp'  
¥ / 

\ 
\ 

N P  
\ 

H + \  

- i e  ( p +  p l )~  

Fig. 2. Feynman rules for (Z°,~,)H+H and 0 0 ~ Note Z H i H i. that Bose symmetry forbids i = j .  In 
addition, CP-invariance forbids a Z ° HI ~ H~ vertex. 
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photon field Au is 

'~ int = ieAIs( H?* "~#H2 - 01" 'OItH1) 4- e2A~,A"(IH1212 + IH~I2). ( 4 . 2 )  

We also need the interaction with the Z ° and W -+ gauge bosons. The required 
expression is given by eq. (C.98) and (C.99) of ref. [18]. One merely has to substitute 
for HI and H~ as given by eq. (4.1). We simply quote the result 

°~int  = ' ~ H H V  + °~HVV + °~HHVV (4.3) 

(a) 
0 

H i 
ig mwcos (B-a  g,~V 

(b )  

Hi 7 
C ig m w s i n ( B - a ) g F V  

(c) 
o 

H i 

ZOL 

ig m z cos( /3_a)g/~  v 
cos8 w 

(d) z °£3-" 

ig m z ~v 
sin ( /~-a)  g 

cos 0 w 

Fig. 3. F e y n m a n  rules for o + - and o o o H i W W H, Z Z vertices (i = 1,2). All other  possible trilinear HVV 
vertices vanish at tree level. 
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where 

J.F. Gunion, H.E. ftaber / Higgs bosons (1) 

~OHH v = -- ½iglYfH-  0~ [Hl°s in(a  - fl)  + H°cos((~ - fl) + i H  °] + h.c. 

ig 
2 cos 0 w Z+,{ iH° '0~ [ H(~sin(a - fl ) + H2°cos(a - fl )] 

- (2s inZOw - 1 ) H  0"H  +} - i e A ~ H -  O'H + , (4.4) 

¢LPHW = gmwW~W~[ H°cos(fl - a) + H°s in ( f l  - a ) ]  

+ I gmz Z~,Z~'[H°cos(fl - a) + H2°sin(fi - cQ] (4.5) 
2 cos 0 w 

,=~HI_IVV = lg2WpW>[(/tf)2--]- (Hf)2-{- (/-/f)2-J - 2 " + "  ] 

+ I g2 Z~Z~*[ ( H ° ) 2 + ( H ° ) 2 + ( H ° ) 2 + 2 c O s 2 2 o w H + H  ] 
8 cos20w 

+e2A~A"H+H + 
eg cos20 w 

cos 0 w 

+ A , Z  H H 

g sin20w ) 
-- ~_g eA ~ - -  Z ~ 

cos 0 w 

x { W + H - [ H l ° s i n ( f l - a ) -  H ° c o s ( f i - a ) -  iH°] + h.c.}.  (4.6) 

No te  that  W~W ~ -  W f W  -~. These results have been previously obtained in a 
nonsupersymmet r ic  two-Higgs doublet  model in ref. [26]. Except for a difference in 
sign convent ion  for the coupling constant g, our results are in agreement. [We 
choose 0,  + i gWfT  u for our covariant derivative.] The relevant Feynman  rules are 
given in figs. 1-6.  We emphasize a few features. First, note the presence of ZH°H1 ° 
and Z H ° H  ° couplings; whereas, CP-invariance forbids a ZHI°H ° vertex. The Higgs 
sector  is effectively CP conserving (more on this later); as we shall see in the next 
subsection,  H ° is a CP-odd scalar and H ° and H ° are CP-even. (Bose statistics 
forbid a Z H ° H  ° vertex.) Second, there is no tree-level W+ZH - vertex; this is a 
general  feature of two-Higgs doublet  models [27]. 

Finally, note  that there are no couplings of the field N to vector bosons for the 
obvious reason that N is an SU(2) x U(1) gauge singlet. 
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(o) 

W + H? 
/ 

-" ig___ 2 
- . \  2 g /~  ( j= l  2,5) 

-% 

H? l 

(b) 

H- 

ig 2 ~.u 
T g 

(c) (c) 
° H~ 

H~ 
(d) 

/ /  

H -  

ig 2 

2 COS2Ow g ~u 

ig 2 COS228W 

2 COS2Ow 

( j=1 ,2 ,5 )  

g~V 

Fig. 4. Feynman rules for four-point Higgs boson-gauge boson couplings (I). 
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4.2. IN T E RA CT IO N  WITH QUARKS AND LEPTONS 

The Higgs-quark-quark coupling is conveniently written down, using two-compo- 
nent spinors for the quarks, as follows: 

<o,= -J~[+o2~HI-~,~DH~] -J2[+o,~uH~-~o2~H~] + b.c. (4.7) 

The four-component quark spinors are defined by: 

(Co, 4'Q, d = (4.8) 
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(a) 

H + 

+ig2sin2Ow 

2 cos O w 
s i n ( B - a )  g~U 

(b) 

j / j  

H + 

- ig2s in20w 

2 cos O w 
cos(B-a)  g ff~ 

(c)  
~ +  Z° H° 

S J) W -+ H- 

_+ g2si n20 w 

2 cos O w 

Fig. 5. Feynman rules for four-point Higgs boson-gauge boson couplings (II). 

Convert ing to four-component notation and using eqs. (4.1a-d), we first identify the 
quark masses which arise due to vacuum expectation values of the Higgs fields: 

gm d gm u 

f l - -  vr~rnwcosfl , f2 ~/~mwsin fl • (4.9) 

Using eq. (4,9), we may compute the trilinear interaction terms: 

gmu [ f lu (H°s in  a + H°cos a ) -  i~T5uH°cosfl] 
,,~°H, g -- 2m wsin fl 

grad [dd(HOcosa_ H ° s i n a ) - i d 7 5 d H ° s i n f l ]  
2mwcosf l  

+ - -  
2~/~-m w 

{ H + u [ ( m d t a n f l  + mucot fl) 

+(mdtanf l -muCOtf l )75] + h.c .} .  (4.10) 
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(a )  

Y / / / 
/ 

\ 
\ 

\ 

H" 

/ / /  

H-"\  

2 ie 2 g,~' 

leg cos 28 w 

cos O w 
g~u 

(c) 

/ 
/ 

\ 
\ 

\ 
\ 

H + -, 

(d)  

-~y H~/ 

/ 

N 

+ H+\ 

- i g e  t,~ 
2 s i n ( / 3 - a  ) g 

ige 
--~- cos (B-  a ) g~'~ 

( e )  
- ~ y  H ~ / /  

/ 

+ \ 
H- 

yge ~ 
~ - g  

Fig. 6. Feynman rules for four-point Higgs boson-gauge boson couplings (III). Note that in (e) the sign 
of the rule depends on the direction of the flow of electric charge (as indicated). 
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Ca) u o < 
HI - i g m  u s ina 

2 m  w sin/3 

(b) 

d 

- i g m  d cosa 

2 m w cos/3 

( c )  o < 
H 2 

u 

- i g m  u coscz 

2m w sin/3 

(d) 

2 

d 

igm d s ina  

2 mw cosB 

Fig. 7. Feynman rules for H°Tm and H°dd, (i = 1,2). 

The Feynman rules are displayed in figs. 7 and 8. As we have mentioned before, eq. 
(4.10) allows us to identify H ° and H2 ° as CP-even (jPc = 0++) and H ° as CP-odd 
(jpc= 0-+) .  Because the Higgs sector is effectively CP-conserving, the neutral 
states must separately conserve C and P in their interactions. 

Note  that there are no couplings of the SU(2) × U(1) gauge singlet scalar field N 
to quarks. This follows simply from gauge invariance. Otherwise, one would be able 
to construct gauge-invariant mass terms for the quarks, which is not possible. 

The interactions with leptons are easily obtained by replacing (u, d)  with (p, e ). 
Note  that although we have discussed only one generation of quarks, the extension 
to the multi-generation case is straightforward (see appendix B). The particular form 
of eq. (4.7) is a consequence of eq. (1.1) which implies that H 1 alone is responsible 
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(o) u 

- g m  u cot/3 
2m w )'5 
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(b)  o < 
H 3 

d 

-gm d tanB 
2m w Y5 

(c) 

d 

2)2mw[ (md ton /3+muCOt /3 )+  
(m d tcln/3 - mucot/3 )75] 

(d) 

u 

ig [(md tan/3 + mu co,f /3) _ 
2.vr2 m W 

(md tan/3 - muCOt/3 )Y5] 

Fig. 8. Feynman rules for H!~u~, H~dd and H ±ud. In the charged Higgs-boson interactions, all quark 
mixing angles have been neglected. (See appendix B.) 

for the mass of down-type quarks and H 2 alone is responsible for the mass of 
up-type quarks. General theorems [28] tell us that such models have no flavor 
changing neutral currents at tree level. In addition, the charged Higgs-quark cou- 
plings involve the Kobayashi-Maskawa matrix in the same way as the W + q q  ' 

couplings. If the neutrinos are massless, no such matrix is required in the lepton 
sector. Henceforth, we will ignore the presence of other quark and lepton genera- 
tions for the sake of simplicity. 

4.3. SELF-COUPLING OF THE HIGGS BOSONS 

It is a straightforward, although tedious task to insert eqs. (4.1a-d) into eq. (3.12) 
to obtain the desired interaction terms. The trilinear pieces are of the most interest 
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since if the masses are appropriate, then the decay of one Higgs boson into two other 
Higgs bosons  is allowed. In a model with no Higgs-singlet field, the end result is 

• ,£#Hv, n = - g r o w  H + H -  [HOcos(# - a) + H°sin(# - ~)] 

gmz [H°cos(fl + a) + H°sin(fl + a)] 
4 cos 0w 

X {cos 2a[(H ° ) 2 -  (H o)2] _ 2 H O H O s i n 2 a  

- [ ( H ° ) 2  + 2H+H-]cos2#}.  (4.11) 

(a )  

H? 

H + /  
/ 

/ 
/ 

( 
\ 

\ 
\ 

\ 
H -  \ 

m-----~--z +a)] 
-ig[mWcos(/3-a)- 2cosew cos2/3cos(/3 

(b) 

o 

H2 

H + /  
/ 

/ 
/ 

< 
\ 

\ 
_ \  

\ 
H 

mz 
- ig  wsin(/3-a)+ 2cosew cos2Bsin(/3+a 

(c) H~ / / 
/ 

o / 

H I  / 
< 

\ 
\ 

\ 
\ 

HI 

-3ira z 

2cos0 w 
- -  cos2acos(B+a) 

(d) 
o 

H2 

H~,,  
/ 

/ 
/ 

/ 
< 

\ 
\ 

\ 
\ 

H~ " 

-3ira z 

2cosOw 
-- cos2 ct sin (/3 +a) 

Fig.  9. Feynman rules for H + H  H ° a n d  [HI)]  3 ve r t i ces  ( i  = 1 ,2) .  CP-invariance forbids i = 3. 
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o 
H 2 / 

/ 
/ 

/ 

< 
\ 

\ 
\ 

\ 

'gmz [2sin 2asin(/3+a)-cos(/9+a) cos 2a] 
Z COS ~W L 

o / 
H S /  

/ 
/ 

/ 

\ 
\ 

\ 

H~ \ \  

igmz 
2 cos 0 w - -  cos2/~ cos(B+a) 
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(c)  

o 
H 2 

H~// 
/ 

/ 
/ 

< 
\ 

\ 
\ 

\ 
o \ 

H I 

igmz [2 
COSb'  w 

sin 2a cos(/3+a) + sin(B+a) cos 2a] 

(d) 

o 

H2 

H~/~ 
/ 

/ 
/ 

\ 
\ 

\ 
\ 

o \ 
H $  

- igm Z 
2 cosO w 
- -  COS 2/5' sin(/3+ct) 

Fig. 10. F e y n m a n  rules for o 0 o H, Hj  H / vertices (i  ~ j ) .  CP- invar iance  forbids vertices where  H ° occurs  
singly. 

The Feynman rules are displayed in figs. 9 and 10. Note that the restrictions of 
supersymmetry have led to a very simple form for 5gHH H. Expressions for three-Higgs 
couplings in a general (nonsupersymmetric) two-Higgs doublet model are notori- 
ously complicated as illustrated in the last two papers of ref. [26]. 

There are also three-Higgs vertices involving the N field. If we consider case 1 of 
sect. 3, the only vertices involved are of the form N , ~ H  ° or NiNjN k, where N a and 
N 2 are the mass-eigenstates obtained by diagonalizing the (Re N, Im N )  mass matrix. 
These interactions are easily obtained from eqs. (3.8) and (3.9) by inserting the 
expressions given by eq. (4.1) and picking out the trilinear terms. The exact terms 
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obtained depend on the unknown N mass matrix, so we will not dwell on them. The 
quartic Higgs couplings are of lesser interest and will be omitted here. 

4.4. INTERACTION WITH SCALAR-QUARKS AND SCALAR-LEPTONS 

We begin with a discussion of the scalar-quark and scalar-lepton sector of the 
theory. In eqs. (3.8) and (3.9), we omitted the scalar-quark and scalar-lepton fields. 
These terms arise from three sources. First, there are the F-terms [see eq. (3.5) and 
eq. (3.6a)] due to the presence of W F [eq. (3.4)] in the superpotential. Second, there 
are the D-terms [see eq. (3.5) and eq. (3.6b, c)]. Finally, we must add the most 
general set of soft supersymmetry breaking terms to the scalar potential. We write 

where 

V= VF+ V D + V~ort, (4.12) 

VF= ( h ' H I * N *  + t**H[* + f2(~i*U*)( hH(N + tzH~ + f2Q//.7/) 

+ (h*H~*N* + l~*H~ * + f l O i * b * ) ( h H ~ N  + ixH~ +f lO' l ) )  

+f12 ] eij H[Q q2 + f22[eij H~Q q2 

+ ( f lH[  *b* - f2 H~*O * )( f~H(b  - f2H~U ), (4.1 3) 

VD = lg2{ 4]U;,Oi]2 + 41H~,(~i]2 _ 2(Qi*Q') [ z / * z {  + H~*H~] + (Qi*O_ ~)2) 

+ 1 g , 2 [  , .  , , .  , - - H2 H2 _ Ha H1 + yqQi,Qi + y , ( j , O  + ydZ),b] 2 (4.14) 

+ rn6( e°f lA aH(QJD - ei'f2A,,n~OJU + h.c.), (4.15) 

where yq = ~, Yu = - ~, Yd = 3" We have omitted the terms involving scalar-leptons; 
they are easy to obtain from the above expressions with appropriate choice of the 
hypercharges. Presumably, the mass terms in V, or , are responsible for making the 
scalar quarks sufficiently heavy such that they would not have been observed to 
date. 
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However, contributions to the masses of the scalar-quarks also arise from other 
terms. First the supersymmetric piece of the scalar-quark masses arises from V F 
when the Higgs bosons acquire vacuum expectation values. Mass terms may also 
arise in a similar way from V o and V~oft. To compute them, insert eqs. (4.1a-d) in 
eqs. (4.13)-(4.15) [and use eq. (4.9)]. We shall henceforth use more conventional 
notation for the scalar-quarks. 

0i----[fiL}/\ /-)*=fiR l ) * = d R .  (4.16) 
dL ' \ / 

Notice the complex conjugation in eq. (4.16). This has been inserted so that the 
electric charges of fL and fir are equal to eu --= + ~; similarly the electric charge of 
a7 L and a7 R is given by e d - - ~. We find for the scalar-quark mass terms: 

- -~m = U~fL [m~  -k mzCOS (2~ ) (  1 _ eusin20w ) + m2u] 

+ f ~ f R  [37/2 + m2zcos(2fl)eusin20w + m2] 

+ ff~dL [)17/~-- m2cos(2/8)( 1 + edsin2Ow)+ m 2] 

+ d¢dR [ ~ 2  + m 2cos(2B) e dSinROw + m 2] 

+ (d¢dL + d ~ d a ) m d ( d d m 6  + t~ tan 13) 

+ ( f~ fL  + f F ' ~ ) m d A u m 6  + ~ cot/~). (4.17) 

Thus, in general, the scalar-quark eigenstates are 

ql = qL cOS 0q q- 0Rsin 0q, 

02 = - g/L sin 0q + 0RCOS 0q. 

(4.18a) 

(4.18b) 

One needs to diagonalize a 2 × 2 mass matrix. General formulas can be found in ref. 
[291; see also eqs. (C.2)-(C.4) of ref. [18]. 
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The interaction terms £'°H~ ~ can be found by using the familiar procedure. It is 
convenient to express the results in the qL -- OR basis 

g (m2tan fl + m2uCOt fl - m2wsin2fl)(H+rt[dL + h.c.) 
Y'Hq~ -- v~-m w 

gmumd(cot  fl + tanf l )  
+ ~/~m w ( H + ~ d R  + h.c.) 

gma (m6Adtan f l -  I,)( H+~[dR + h.c.) 
+ ~/~m w 

gm u 
+ ~ (m6Aucot fl - /~ ) (  H + U~d L -{- h.c.) 

gmz E [( TB _ e,sin2Ow )gl~LgliL + e,sin2Ow0*a0,a] 
cos 0 w i 

× [H°cos(a  + fl) - U2°sin(a + fl)] 

gm2 (d~dL + d~dR)(Ht 'cos  a - H°sin cQ 
m wCOS fl 

gm:u /~ (~UL "1- u~ua) (  H°sinc~ + H2°c°s cQ 
mwsin 

gmd ( d~dL + dtdR) 
2mwCOSfl 

× [(/.t sin a + m6AdCOSa)H ° + (/, cos a -  m6Adsina)H°2] 

gm u 

2mwsinf l  
(a~L + a~aR) 

× [(~COSa + m6Ausina)H ° + ( - / z s i n a  + m6AuCOSa)H °] 

igm~ a (m6Adtan fl -- t,)( d~d e - d~dR)H ° 
2row 

igmu (m6Aucot fl -/~)(fi~fiL -- fi~-fiR) H°  
2mw 

- h  [muCOt flNfi[~ R + mdtan BNd~dR + h.c.]. (4.19) 
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TABLE 2 
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~ 

hi*all cos 0uCOS 0d sin 0usin 0 d cos 0usin 0 a sin 0,cos 0 d 
~ 

l 'd ,  - cos 0<, sin 0 d sin 0uCOS 0 d COS 0uCOS 0 d -- sin 0 u sin 0 d 
~ 

~ * d  I sin 0ucos 0 d cos  0~, sin 0 a sin 0~, sin 0 d COS 0tiCOb 0 d 
~ 

~*d 2 sin 0~, sin 0 d COS 0uCOS O<l - sin 0ucos 0 d cos 0osin 0 d 

Using this table, we can convert Feynman rules for Xc~c~ vertices (where X is a one- or two-particle 
state) from the qt. ~p. basis to the ql ~2 basis. If V(Xh*~//) is the desired Feynman rule (i, 1 =  1 or 
2), then 

v(x~,%) = E r,,~,v(xh:,7,), 
I , , [ = I . , R  

where T,,;a; is the appropriate entry in the table above. For the case of identical scalar-quarks, simply 
replace the symbol u (or d)  with d (or u) in all expressions. 

One clarification is required. The term in eq. (4.19) proportional to m z contains a 
sum over qi = u ,d .  In the sum we must remember that* er," = e~L---+ ~ and 

ed~=e& ~- -- ~ As usua lT  3 =  + i 1 • 5, - ? for hi,, aTL respectively. The Feynman rules 
for the Hqq vertices in the g/k -- OR basis are given in figs. 11-15.  Note  that we do 
not display separately the rules for H2°~q vertices. These may be obtained from the 

rules for H~t~Ctq vertices (figs. 12-13)  by making the replacement: a ---, a + ~r and ,8 
unchanged.  In reality, the appropriate Feynman rules to use are those involving the 
scalar-quark mass eigenstates [given by eq. (4.18)]• These rules can be easily obtained 
from figs. 1 1 - 1 5  by making use of table 2. Schematically, if V(Hh,d/)  and 

V(H~kd  I) are the Feynman rules in the qt - qz and c?L - qR bases respectively, then 

V( X~dj) = ~ T~jkIV( Xh~ddl), (4.20) 
k , l = L , R  

where the T,j~.; are the appropriate entries in table 2. We give two examples. For H~ ~ 

interactions, 

V ( H 3 0 l ~ ] l )  = V'H°-*~{  3qRqk (4.21) 

* A  comment  at this point is appropriate. Consider the following expression which appears in eqs. 
(4.19) and (4.23): 

• 9 ~ .  ~ • v ~ .  ~ 

(T~, - e, sm-Ow)qii .qi  k + e, sm-Owq, Rq, R . 

The term proportional to e, changes sign when we go from ql. to qR- The origin of this sign change is 
related to the fact that we have defined /~'= h~ and 7) = t]~. in table 1. Thus. the scalar-quarks which 
appear  in the 0 chiral supermultiplet have the opposite electric charge from the scalar-quarks which 
appear in the U and 19 chiral supermultiplet. 
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(o) ;L / 
/ 

H ÷ /"4 
_ _ _ ~ - - (  

\ 
\ 

(b )  ~'R / 
/ 

H ÷ / _ _ _ >  _ - -<  
N 

\ 

igmumd 

M/'2m W 
(co) B + tanB) 

(c) ~L/  
/ 

-4 
H + / 
_ _ ~ - - - - (  

\ 
\ 

- i g m  d 

v/'~ mw 
m 6 t o n ~ )  

(d )  '~R / / 
/ 

H + / _ _ _>_  - (  
N 

\ 

dL \ 

- i gm u 

%/r2 rnw 
- -  (~-Aum6Cot/3 ') 

Fig. 11. Feynman rules for the ft+rad vertices in the q l . -  OR basis. To get appropriate rules in the 
ql - 02 basis, see table 2 and discussion in text following eq. (4.19). 

A more complicated example would be: 

V( H°fi l f i l  ) = ~ cos( fl + a)  [cos2(0u )(½ - e~sin20w ) + sin2(0u) e~sin20w ] 
COS u W 

igm ~sin a igrn usin 2 0 u 
[ A ,m6s in  a + > cos a ] .  (4.22) 

mwsin/3  2rnwsin/3 

It is important to note that even in the limit of zero quark masses (mu = ma = 0), 
some terms survive in eq. (4.19). These terms originated from V D [eq. (4.14)]. 
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( a )  'U'L / 
/ 

< 
N 

N 
X 

-igm z igm 2 
cosO w (I/2-eusin2Ow)cos(e+/3)- mwsin/3 - -  sins 
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(b )  U'R / 
/ 

/ 
H~' / --< 

\ 
\ 

N 
N 

- igm z igm 2 
cosO w eusin2Owcos (e+B) mwsin/3 - -  s ins 

(C) "U'L / "  
/ 

/ 
H ° I / -K 

N 
\ 

\ 
X 

-igmu [- +/xcosa] 
2-m-~w sin/3 L Au m6 sine 

Fig. 12. F e y n m a n  rules for the HCl)hh vert ices in the q i , -  qr~ basis. Rules  for the H°[ffa vertices are 
o b t a i n e d  by  the fo l lowing replacement :  c~ ---, c~ + t 2 ~v, and ,13 unchanged [i.e. sin c~ - ,  cos c~, cos c~ - ,  sin c~ 

and  cos( f l  + cO -~ - s in(f l  + a). To get appropr ia te  rules in the ql - q2 basis,  see table 2 and discuss ion 
in text fol lowing eq. (4.19)]. 

Explicit ly,  we have: 

,L-PH~(m u = m d = 0) = -- ~_2gmws in2 f i (H+~dL  + b.c.) 

gmz  [Hl°COS(O~ + fl) - H~)sin(o~ + ,8)] cos--0\ 
x[ ( ' 2  e . s in2Ow)b~c  + - * ~  • ~ --  U R U R e u S I n - 0  w 

~ f f ¢ ~  - 9 
- ( ~  + edsin2Ow)d~dL + dRdRedSln'OW] . (4.23) 

The  in te rpre ta t ion  of this term in the supersymmetr ic  limit is as follows. As 
men t ioned  in sect. 3, the H + become the scalar superpar tners  of the W ~. Similarly, 
one c o m b i n a t i o n  of the neutral  Higgs scalars becomes the scalar superpar tner  of  the 
Z °. Hence,  eq. (4.23) is related by supersymmet ry  to the WqC t '  and ZqC t interactions. 

The  s t ructure  of  eq. (4.23) is quite interesting. Suppose we a t tempt  to produce  H I  ~ 
or  H2 ° via gluon-gluon fusion. A class of contr ibut ing diagrams is shown in fig. 16. If 
he,  fiR, dc  and ct R are all degenerate  in mass, then the sum total of the contr ibu-  
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(o) 
o H~ 
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d'L / / 
/ 

/ 
-< 

\ 
\ 

\ 

d'L \ 

igmz 
cos8 w ( I /2 + edsin2Ow)COS (a +/~) 

igm 2 d 
m w cos/~ - - C O S ~  

(b) 

H? 

d ' R /  / 
,/ 

/ 
< 

% 

d'R \ 

- igm z igm 2 
cosO w edsin2O w cos (a+ /3 ) -  mwcosB - -  COSa 

(c) ~'Lz," 
/ 

D 

H I / -< 
\ 

\ 
\ 

-igmd ~- sine] 

Fig. 13. Feynman rules for the H~)dd vertices in the qL -- ~tR basis. See caption to fig. 12 for the recipc 
for obtaining rules for the H°dd vertices and the appropriate rules in the qt - q2 basis. 

(a) u% 
/ 

u L 

~ m  u 
(m6AuCOJ/3-~) 

2m w 

(bl ~R 
/ 

H°3 /;>7 

dL 

gm d 
2m w (m6 Adtan/3-H') 

Fig. 14. Feynman rules for the ]:'I0~IRUL and H°dRClL vertices. To obtain the appropriate rules in the 
~]t - q2 basis, simply replace L with 1 and R with 2. The directions of the scalar-quark momenta are 

indicated by the arrows. Reversing the arrows leads to an extra factor of - 1 as depicted in fig. 15. 
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J 
/::7 / O  

= -- -~.. 

qi q i /  
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Fig. 15. Behaviour of the Feynman rules for H3°44 vertices under a change of sign of the scalar-quark 
momentum. The indices i, j refer to either the qL 4R or 41 -- q2 bases. Note thal this rule implies that 

for i =j, the vertex vanishes. 

tions of scalar-quark loops due to eq. (4.23) vanishes! The remaining contributions 
which enter according to eq. (4.19) are all proportional to quark masses. However, in 
the supersymmetric limit, the scalar-quarks are not all degenerate but are equal in 
mass to the corresponding quarks. Thus, amusingly, we find that in this limit, the 
total contribution of the terms of eq. (4.23) to fig. 16 is also proportional to the 
quark mass. 

For completeness, we mention the interaction of scalar-quarks with the gauge 

singlet N-field (case 1 of sect. 3). Using eq. (4.13) we can immediately write down 
the Feynman rules for the N ~  vertices. The interaction terms are as follows: 

~N~,~ = - m,cot  ~ [ h * N * ~ L ~  + h.c.] - mdtan/~ [h*N*aCLd~ + h.c.] .  (4.24) 

The precise Feynman rules require knowledge of the mass eigenstates N 1 and N 2 
obtained by diagonalizing the (Re N, Im N)  mass matrix. 

We now turn to the quartic interactions of the form HH~q. These terms are 
required, for example, in the calculation of multi-Higgs production via gluon fusion. 

(a) 

-,____ H o i 

(b) 

,. F---H 

g 

Fig. 16. A class of diagrams which contribute to the production of neutral Higgs bosons via gluon fusion. 
The internal loop consists of all possible flavors of scalar-quarks, qL and qR. 
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Note that because these terms are dimension four, they arise only from the 
supersymmetric part of the theory. However, these interaction terms are sensitive to 
the soft-supersymmetry breaking sector of the theory to the extent that it is this 
sector which determines the precise scalar-quark and Higgs boson mass eigenstates. 

There are two sources for the HHqq interaction terms: the F-terms given by eq. 
(4.13) and the D-terms given by eq. (4,14). The computation involves inserting eqs. 
(4.1a-d) into these terms and extracting the quartic pieces. The results are fairly 
involved, and we summarize them in Feynman rules given in figs. 17 and 18. (See eq. 
(B.22) in appendix B for the extension to the case of more than one generation of 
scalar-quarks.) We may also consider case 1 of sect. 3, i.e., a neutral gauge singlet 
complex field N which does not mix with the doublet Higgs fields. In this case, we 
get additional four-point interactions which result from eq. (4.13). The relevant 

(a) 

H~ / / qkL 
. /  

~ J 

o / "" qkL H i 

Cb) 
o qkR Hj ~ / 

H~ ~" "~ qkR 

2 cos2Ow / m 2 

ig2 [Cj ek sin2ew mq 2 , ' ]  

2_ L COS~eW m2 W Dj 

(c) 
o H l ~ / qkL 

o ~ 

H2 / ~ qkL 

ig2sin2a IT +(/T3k-eksin28w m2 1 

(d) 
o H I "- / qkR 

H~ / ' "  / / ~ "  ~" " "  q'kR 

ig2sin2a [eksin28w m 2 ] 
4 cos28w rn 2 Dk 

Fig. 17. Feynman rules for four-point interactions among scalar-quarks and neutral Higgs bosons. The 
index j labels the neutral Higgs bosons, while k = 1,2 corresponds to up-type and down-type flavors, 
respectively. For definitions of the quantum numbers T~ and e, see table 1, The coefficients C/, D/~ and 

D k are given in table 3. (Note that there is no H° HCl)~q vertex, j = 1,2.) 
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(a) 

H+ ~ ~ .  / / i  qkL 

J ~ 

H / " qkL 

[- -eksi°2' w l ig2 cos2X3 2T3k + k _ ig 2 
2 cosZOw }J 2Tw2 
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Ek 

(b) 
+ qkR 

f 

qkR 

ig2 cos2/3' eksin2Ow ig2 
2 cos20w 2m 2 Fk 

(c) 

--.< 

/-7" T.. 
H- I" "~. UL 

2 ~  j-  --m2 Sj---m2 w T 

(d) 

/" 
;Y ~. .  

1" 
H ~ ~ R 

igZmumdcos (B-e) 
q/-2- m 2 sin2/3 

(e) 

7f ~-.. 
H- "" "" "uR 

ig2mumd sin (B-a) 
~'2 m~ sinZ~ 

Fig. 18. Feynman rules for the four-point interaction among scalar-quarks and Higgs bosons. See caption 
to fig. 17. The coefficients E~, F~, R~, S i and T~ are defined in table 3. (Note that there is no 

o H3H dR~R vertex.) 

interaction term is given by: 

ghmu r cos a o sin a ] 
N~RU~ [ ~ H i  sin/~ 920 -~- ~ O N H O c ]  = - -  2m----~ - - -  

iH o 

ghm d ~ ~ [ s i n a  
2mw NdRd~ [ c~--~s~ H° 

+ 

c o s  a o iH3Ol q 

+ ~ H 2  + J 
gh 

[mu?tr~d~NH + mddR?t~NH +] + h.c. (4.25)  
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TABLE 3 

:.jl q o/, D. 

1 - cos 2 c~ (sin2o)/sin2fl (cos2a)/cos2fl 
2 cos 2 a (cos2~)/sin2,8 ( sin2c~)/cos2fi 
3 cos 2fl cot2fl tan2fl 

(j) Rj s, T, 

1 sin( a + fl ) (sin a cos fi )/sin2fl (cos (~ sin f l ) /cos2f l  
2 cos( a + fl ) (cos a cos fi )/sin2fl - (sin a sin fl )/cos2fl 
3 i cos 2fl i cot2fi - i tan2fi 

(k) D k E~ F/, 

l 1/sin2fl m~tan2fi m-~cot -fi ? ? 

? _ 1/cos2f l  " 2 " 2 m~tan ,8 _ m-ucot fl 

We list coefficients which appear in the rules given in figs. 17 and 18 for ltHglg I four-point vertices. 
The index j labels the neutral Higgs boson, while k = 1,2 corresponds to up-type and down-type flavors, 
respectively. 

T o  der ive  F e y n m a n  rules f rom eq. (4.25), one would have to de te rmine  the p rope r  N 

eigensta tes .  

It m a y  also turn out  that  the p rope r  sca lar -quark  mass  eigenstates  are mixtures  of 

~/L and  OR as discussed below eq. (4.19). As before,  we may  use the results of table  2 

to conver t  rules in the F /L -  qR basis to the 0 1 -  q2 basis.  All  one has to do is to 

m a k e  use of  eq. (4.20) where X here s tands  for the app rop r i a t e  two-Higgs-boson  

c o m b i n a t i o n .  

F ina l ly ,  we note  that  the F e y n m a n  rules for H H d d  vertices involving scalar- lep-  

tons  m a y  be ob t a ined  f rom figs. 17 and 18 by  using the app rop r i a t e  values for the T 3 

and  e q u a n t u m  numbers ,  as well as the app rop r i a t e  masses.  

4.5. INTERACTION WITH CHARGINOS AND NEUTRALINOS 

In this sec t ion  we compute  the in terac t ion  of the Higgs bosons  with the supersym- 

me t r i c  p a r t n e r s  of  the gauge and Higgs bosons  (the gauginos  and higgsinos).  Af te r  

the  s p o n t a n e o u s  b reak ing  of SU(2) x U(1), the gauginos  and higgsinos with the same 

elect r ic  charge  can  mix. This mixing is mode l  dependen t  [30-32] and  is discussed in 

A p p e n d i x  A. ( F o r  further details ,  see append ix  C of ref. [18].) The resul t ing mass  

e igens ta tes  are cal led charginos,  2+ ,  and  neutral inos,  2 °. W e  proceed now to 

c o m p u t e  the H 2 X  in terac t ion  terms.  
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The  source of the (dimension-four)  interaction terms (in two-componen t  notat ion)  

is [24,18], 

a2w t 
" ~ i n t  = ig~/'2 T,~X"+jA* - ½ O~ii ff-A/ ) +i6i + h.c. ,  (4.26) 

where  W is given by eq. (3.3) (including terms involving the N field, if desired) and 
q~ and  A s tand for generic two-componen t  fermion and scalar fields. Writ ing out the 

results  explicitly, 

° ~ i n t  = ig( Hl*?~+'t̀-I " ' fH 1 + Hz*x-~°tl + n~*~+~b°t~_ + H 2 * ~  ~t+t2) 

_ 2 .  0 + /(gx3 _ , 2  
. ~ ' l  " l / I l l  _ 

+  i( x3 + g,x,) ( --2'41",' - ) 

+ h ~ b N (  2 + 1 1 0 2 0 Hx + m + H2 ~b., . - H i +  H2 - H2 +.~ ) 

+ _ ,r,o ,r,0 ] _ 2 A N f N f  u + h.c. (4.27) 

In  addi t ion,  there are mass terms which are responsible for the chargino and 
neu t ra l ino  mass  matrices.  They arise from three sources. First, quadrat ic  terms in W 

when  inserted into eq. (4.26) lead to ~ mass  terms: 

0 0 + -~-__ n~ uSy= ~.~( +111+H2- ~//1 ~bH2) . (4.28) 

Second,  there is a sof t - supersymmetry-breaking  mass term for the gauginos: 

5¢m ~°ft = -- MMX" - M ' l ' ) t '  + h.c. (4.29) 

(No te  that  explicit supersymmetry-break ing  mass terms for the higgsinos are not soft 
accord ing  to the definit ion of ref. [9]). Finally, because H 1 and H 2 acquire vacuum 
expec ta t ion  values when we insert eq. (4.1) into eq. (4.27), one finds the following 
mass  te rms due to SU(2) × U(1) symmet ry  breaking: 

.~.breaking = ig(vlX+~b~q, + Va)k ~dt4~2 ) 

 2+Ol) + h.e., (4.30t 

where  X -+ = f ~ ( X  1 -Y- iX2). 

We  shall now sketch the derivation of the H2+2 rules. For  all other cases we 
s imply  summar ize  the final results. Starting with the first term in eq. (4.27), we 
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convert to four-component notation. Then, using the spinor fields defined by eq. 
(A.11), we find 

~int  "~ -- g { H:*fflPLI~V" q- H2*WPL ~I q- h.c.  }, (4.31) 

where PmL = ½(1 _+ 73). The I~ a n d / 4  fields are not mass eigenstates. To obtain the 
desired Feynman rules, we express 17¢" and /~ in terms of 2~- and 2~ using eqs. 
(A.13a-d).  Finally, we insert the proper Higgs boson mass eigenstates using eq. 
(4.1). The end result is 

,£aH~ ~ = - g ( H ° c o s  a -  H°sina)~i[Q~pL + QjiPR]2 ~] 

- g ( H ° s i n  a + H°cosa)~+[Si~PL + S~iPR]2 ~] 

+ ig H°sin 32 + [Q~PL - QjiPR] 2 ~] 

+ igH°cosfl~; [ SiTPL - S:iPRl y( ; , (4.32) 

where summation over i, j is implied and Q and S are defined in terms of the 
matrices U and V which diagonalize the chargino mass matrix [see eqs. (A.4), (A.5)]: 

Q,j = ~-2 U,2bl, (4.33) 

Si/= ~ Uilb2 . (4.34) 

We can rewrite eq. (4.32) in another form by relating S to Q and the chargino mass 
matrix. From eqs. (4.28)-(4.30) and eq. (A.4), the chargino mass matrix can be 
written as follows: 

--,,~(+ ) = Y/2 ~(: {[ g( u1Q 3 q- u2Si~ ) q- V/~mwe~j] PL 

+ [g( vlQji + v?s~i) + ~/2mwRj,] PR } 2 : ,  (4.35) 

where Q and S are defined in eqs. (4.33) and (4.34) and R is defined by 

1 
Rij= 2 m ~ [  M * U a b  t + .*Ui2V/.2] . (4.36) 

However, U and V are chosen specifically such that: 

_5¢m~+) £~t~+)~,+¢,+ )~,+~,+ (4.37) = " " 1  ,~1 ,~1 + M 2  ~+ , , 2 , ~ 2  - 

Equating eqs. (4.35) and (4.37) leads to: 

] SiJ - sin/3 2m~-w 3~j - Qijcos/3 - Ri  / . (4.38) 
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Inserting this expression into eq. (4.32) gives us our desired form: 

gM'(+) [ ( H / M n a  + H2°cosa)~+~ + + iH3°Y(+ysy(+cosfi] 
£~'n~'~ - 2~wS~- nfl  

g - 
- sin~-fi ~ 7 [ (Q~sin( fl - a) - R ~s sin a) P L 

+ ( Q j , s i n ( 3 -  a ) -  Rj,sina)PR]~]H ° 

g = +  
+ si~fiX/ [(Q3c°s(fl - a )  + R*/cosa)P L 

+ ( o, ,cos(  e - + e , ,cos  PR ] n ° 

ig [(Q3cos2fl + R~cosfl)& 
- s i n ~  + 

- (Qs,cos2fl + Rj,cosfi)eR] 5~;H °. (4.39) 

The corresponding Feynman rules are shown in fig. 19. Note that if Q and R are 
real matrices then CP is conserved, and indeed the diagonal couplings H - ÷ - ,X/Xi are 
purely scalar for H °, H ° and pseudoscalar for H °. 

Next, we consider the H+2 20 interactions. Here the analysis is straightforward 
and we quote the final result: 

~H i ~  ° = - H  ~°[Q;LP K +Q;~PR]X,: +h .c . ,  (4.40) 

where we have defined: 

Q:}=gcosfl[N,:Vj.~ + ~22 (N,~ + Ndtan0w)~' ] - h N , ~ s i n f i ,  (4.41) 

Q;~ g s inf l [N, ,~ ,  q- = -- ~/~ (Ni2  + N i l t a n O w ) U j 2  ] - h*Ni5g j2cos t~ .  (4.42) 

The matrix N diagonalizes the neutralino mass matrix as shown in eqs. (A.20)-(A.21). 
The corresponding Feynman rule is shown in fig. 20. 

As an interesting exercise, suppose that the 9 is a neutralino mass eigenstate, to be 
identified with ~o. Then it follows from eqs. (A.17) and (A.23) that NI' 1 = 1 and 
N£x = N{k = 0 for k ~ 1. Using eq. (A.23), this implies that Nil = cos O w, N12 = sin 0 w 
and Nlk = 0 for k = 3,4,(5). Inserting these results into eqs. (4.40)-(4.42), we find 
(using e = g sin 0w): 

5f H ~+~ = --v~eH-{[~PLCOS f l -  Uj2PRsin,8]2 ~ + h.c., (4.43) 
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-( Qji cos 2/~ + Rji COS/3)(I + )'5)/ 
J 

Fig. 19. Feynman rules for the H°2+~ vertices where 2,~ are the charginos, with masses aT/,c +). The 
matrices Q,j and Rii are defined in eqs. (4.33) and (4.36), respectively. 

which is displayed in fig. 20. In order to make the physical origin of this result clear, 
it is useful to make use of the "interaction" eigenstate/)  [see eq. (A.11)]. Using eqs. 
(A.13c-d), eq. (4.43) may be written as: 

~ H  ~+~, = -- v / 2 e H - { [ P L C ° S / 3  - PRsin/3] ~ + h.c. (4.44) 

Thus we see that eq. (4.43) is the supersymmetric version of the H + H Y vertex. One 
final limiting case of interest is the supersymmetric limit [see eqs. (A.7) (A.8)]. In 
this limit, the charginos are degenerate in mass with the W -+ and H -+ (these particles 
belong to a common massive supermultiplet). It is convenient to make use of the 
wiggsinos &i as the chargino mass eigenstates [see eq. (A.9)-(A.10)]. Then in the 
supersymmetric limit (where sin/3 = cos/3 = f~-5 ), we find: 

~,~susy+ = _ v ~  e H -  ~f( p L & ;  _ pR  go( ) + h.c. H 2 9  (4.45) 

Finally, we turn to the , ,0~o~o ra, x j x k  interaction. The procedure is similar to the one 
described above. However, there is one subtlety which must be considered. Because 
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, /  

> - -  ( , - r s )  +Q(j ( ,+r5 

(b)H - 7~ 
-i,/~e 

Fig. 20. (a) Feynman rules for the H+2 20 vertex. The matrices Q;} and Q[~ are defined in eqs. (4.41) 
and (4.42), respectively; (b) Feynman rules for the H+2 ~ vertex. Here we assume that the photino 

corresponds to one of the neutralino mass eigenstates (2(1 ~). 

X j~° is a Majorana  fermion, one must note the following identity which holds for 
an t i commut ing  four-component  Majorana spinors: 

~°(  1 -+ Ys)X ° = ~° (  1 -+ 75)X~- (4.46) 

This implies that  the , ,0~ 0~ o ra, XjXk interaction must be symmetric under interchange of j 
and k. Start ing from eq. (4.27), we arrive at: 

~ 0 t t : ~  5°n~"~ ° =  - ½ g (  H°c°s  a -  H°s in  a)X,  (Q,,  PL + ~gi.jrR ),~0X/ 

+ ½g( H1 °s ina  + H°cos  a)XiZ°'~"*'~a,/r L + S[TPa)~!] 

+ ~igH°~°[(O"*sinfl~ij - Sij"*cosfl)P L - (Q ' ; s in  fl - Sijcosfl)PR]" Xi~°, 

(4.47) 

where 

gQi ' ;=~[Ni3 (gNj2 -g 'N j , )+v /2h*Ni4N;5+( i~ - -~ j ) ] ,  (4.48) 

g S i 7  = ~ _ [ N , 4 ( g N j 2  - g%l)  - ~Sh*N,3G5 + (i o j ) ] .  (4.49) 

We can rewrite eq. (4.47) in another  form by using the neutral ino mass matrix. 
Using eqs. (4.28)-(4.30) and eq. (A.20), the neutral ino mass matrix can be written as 
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follows: 
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1 "ZO tt¢~ - em {[ g(vlQ;;* - v2S ,  j ) + (SmwR:',*IPL 

+ [ g ( v  ~q . . . .  V ~ m w R , , ] P R }  ~° (4.50) l ~ i j  -- u 2 S i j  ) q- tt g . /  , 

where Q" and S "  are defined in eqs. (4.48) and (4.49) and R"  is defined by: 

1 
R : i -  2mw [M*Ni2Nj2+M'*NilNjl-II*(Ni?Nj4+NiaNj3)]. (4.51) 

However, the matrix N is chosen specifically such that: 

--&°m(0) = ~37/i'0)~0~( ] , (4.52) 

where summation over i = 1 . . . . .  5 is implied. Equating eqs. (4.50) and (4.52) leads 
to :  

sinfll [3),~°) 8 ] S / } -  [ 2 ~  w g i -  Q;;cosfl - R:} . (4.53) 

We now insert this into eq. (4.47) in order to get the desired form: 

"WHY('~"-- 4mwsin fl [( H°sin a + g°cos  a ) ~ ° ~  ° + iH3°Y(°~,sY(°cosfl] 

2sgn fl~0[(Q;~,sin(fi  - a) - R'i~*sin a ) PL 

+ ( Q ,';sin( fi - a ) - R :i sin a ) Pa ] " iHl° 

+ 2s~n B ~°[(O;?cos(~-~)+ R:;,*cos a)P~ 

+ (O;~cos(~-~)+ R,,)cos ~)e~] ~°H ° 

2s~n fl ~° [(Q;;*c°s 2¢ + R : ; * c ° s f l ) P L  

_ (Qijcos2 + R , / cos f l )pR  ] , ,  xjH3-O o, (4.54) 

where summation over i, j = 1 . . . . .  5 is implied. Note that Q;} and R~ are symmet- 
ric under interchange of i ~ j  as required. Eq. (4.54) is closely analogous to the 
H 2 + 2  - interaction given by eq. (4.39) and the remarks we made there also apply 
here. Note  that the extra factor of 1 between the two equations is simply a 
consequence of the Majorana nature of the neutralinos. This factor of ½ must be 
removed when writing down the Feynman rules as shown in fig. 21. These rules 
allow the index i to run from 1 . . . . .  5. If the model contains no SU(2) × U(1) gauge 
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[M(~)Sijc°sB 75+(Qij cos2/3+ t/, I ":'k Rij c o s / 3 ) ( - ) ' 5 )  
mw 

0 - 0 ~ 0  ~ 0  Fig. 21. Feynman rules for the H X, X/ vertices where X, are the neutralinos with masses ~/10). The 
index runs from 1 . . . . .  4 or 5 depending on whether one has a gauge singlet N field (and its higgsino 
partner) in the theory. The svmmetric matrices Qi'j' and R',' I are defined in eqs. (4.48) and (4.51), 

respectively. 

singlet N-field (and hence no 20), one must simply set N s j =  N, 5 = 0 above (or 

equivalent ly set h = 0) and not allow i = 5. 

Let  us once again examine the case where one (or both) of  the neutralinos is the 

phot ino.  As before, we set N n = cos0  w, N12 = sin0 w and Nlk = 0 for k = 3,4,(5). 
Us ing  eqs. (4.48), (4.51) and (4.53), we find that in this limit, 

Q[~, = S"lk = O,  (4.55) 

zf/9 (4.56) R{~ = 2m w 81k' 

37/9 = M sin20w + M'cos20w . (4.57) 

Inserting these results into eq. (4.54) we find that 

~ H ~  = ~°H~"~ ---- 0.  (4.58) 
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This result is not surprising as there is no corresponding supersymmetric version of 
these vertices. Note that the fact that LP,.~9 = 0 is algebraically nontrivial and serves 
as an additional check on the correct form for eq. (4.54). 

The last interaction vertices we consider involve the gauge single N field. As 
before, these interactions will depend on the unknown N mass matrix. The relevant 
interaction terms can be obtained from eq. (4.27) and the result is: 

= Nf  h U , V . Z + n  ~+ °'~gNyfy( ~ i2 j2Xi  I 'LXj  

1 , , , , N , N , l = 0 n  -0 -~[h(U,3U~4 +N;4G3)+nA ;5 isIX;rLXj} +h.c. (4.59) 

This completes our study of the interaction of charginos and neutralinos with the 
Higgs bosons. 

5. Feynman rules for related interactions 

In this section we discuss Feyman rules for the interaction of quarks and 
scalar-quarks with charginos and neutralinos, i.e. the qq2+ and qq20 vertices. There 
are two contributions to the above vertices. The first contribution is the supersym- 
metric analog of the qq-W + and qqZ ° interactions. These have been discussed in 
detail in appendix C of ref. [18]. The second contribution is the supersymmetric 
analog of the qqH interaction. This contribution is proportional to the quark mass 
and depends on the properties of the Higgs bosons in the supersymmetric model. 
The source of these two contributions corresponds to the two terms given in eq. 
(4.26). In this case the relevant part of W used in eq. (4.26) is given by W F [see eq. 

(3.4)1. 
Consider first the qq2 + interaction. We convert from two-component notation to 

four-component notation as discussed in sect. 4.5. We then find: 

_ _  m 

,,~qel2+ = - -g[  WPLUd~_ + ITVcpL dfi~] 

grad [ I~PLuNI~ + dPL /4¢~L1 
+ Vr~m wCOS ]~ 

gmu [fiPL/4dL +/~cPL dfi~ ] + h.c., 
+ v~mwsin ~ 8 

(5.1) 

where u and d are four-component quark spinors, and the "interaction" eigenstates 
and /4 are defined in eq. (A.11). An unusual feature of eq. (5.1) is the appearance 
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of charge-conjugated  states.* (See appendix  A of ref. [18] for a summary  of our  
nota t ion . )  This  arises due to the existence of a nonconserved fe rmion-number  which 
is a s t andard  feature of supersymmetr ic  models. We shall discuss this further after  

we have wri t ten down the final F e y n m a n  rules. The next step is to convert  eq. (5.1) 
to an express ion involving the chargino mass eigenstates X~," + i = 1, 2. This is done by 
using eqs. (A.13a d). In addition, we need four addit ional  equations involving the 
charge  conjugated  fields. It is easy to derive an appropr ia te  recipe. For  example,  

PR li/~ = P ~ (  Vta2~ + G , ; ~ )  • (5.2) 

(We employ  the notat ion:  X) ~ - ( X + )  ~ which is a negatively charged fermion.) Thus 
the recipe is s imply to charge conjugate all fields in eqs. (A .13a-d)  and interchange 

the matr ices  U and V. The final result is: 

+ 
gm d 

d m  wCOS B 
- -  * ~ ¢  * ~ C  

[UPR(U,2x ;  + U22X;)CtR + dPL(U12x 1 + U22X2)~L] 

gmu [UPL( * "  + * -  + ' ' :  + ~/~mwsin fi V12X1 + V22X2)~tL+dPR(Vt2xl+ V22~)hR]  + h . c .  

(5.3) 

The  F e y n m a n  rules are given in fig. 22. As ment ioned above, the appearance  of both 
charg ino  fields and their charge-conjugates in eq. (5.3) is a consequence of fermion- 

n u m b e r  violat ion which natural ly occurs in supersymmetr ic  models. This violation is 
well unders tood  in the case of neutral  Majorana  fields. In the present  context,  2 [  

and  - + X 2 are charged Dirac fields. Nevertheless,  f e rmion-number  violation m a y  still 
occur  when a given interaction involves both 2 + and 2~ fields. This is apparen t  in 
the F e y n m a n  rules exhibited in fig. 22. In figs. 22c and 22d the flow of fe rmion-num- 
ber  as indicated by the direction of the arrows on the (solid) fermion lines is not 
cont inuous .  This  leads to the explicit appearance  of the charge-conjugat ion matr ix  C 
in the rules themselves [33,18]. (The C arises f rom eq. (5.3) s imply because 
X c = C~T).  It is not difficult to deal with f e rmion-number  violating propagators  and 
vertices. A comple te  discussion of the appropr ia te  rules can be found in appendix  D 
of  ref. [18]. 

* This feature did not occur in the H 2~.~° vertices [eq. (4.40)]. The reason is that 20 is a Majorana 
field, i.e., (2o)c = :~o, so we were above to avoid the appearance of (~")" fields. In the present case, 
if one were to make use of a similar techniquc, one would end up with the appearance of 
charge-conjugated quark fields. We prefer not to do that. 
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Fig. 22. Feynman  rules for the q ~ +  vertices. The matrices U and V are defined in eqs. A.4) and (A.5). 
The arrows denote direction of flow of electric charge: + 1 in the ease of ~+ and eq in the case of q and 
( e  u = ~, e a = - ~). The charge conjugation matrix, C, appears when there is a discontinuous flow of 
fermion number  as indicated by the arrows. Diagrams should always be read in such a way that the quark 
lines are traversed in the usual direction, i.e. opposite to its arrow. This rule indicates the proper 
placement  of suppressed spinor indices. See appendix D of ref. [18] for a discussion on Feynman rules 

involving the charge conjugation matrix. 

O n e  must  also consider four more  diagrams which are obtained by reversing all 
arrows in fig. 22. ( N o t e  that the arrows indicate the direction of  f low of  a particular 

~+ and eq for and 0, where  e ,  32 and e a electric charge: + 1 for the X j ,  q = = - 3-) 
The  F e y n m a n  rules for the four new diagrams are easily stated. First, in all four 
cases,  m a k e  the fo l lowing interchanges: U ~  U*,  V ~  V*,  (1 + 3'5) ~ (1 - Vs)- Sec- 
ond,  for the diagrams corresponding to fig. 22c and 22d, remove  the factor of  C 
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which appears on the right and insert a factor of - C-  1 which should be placed on 
the left. (This rule arises because 2c = - C 1Xv.) This is illustrated in fig. 23. 

We next consider the qgt2 ° interaction. After converting to four component 
notation, we find: 

~gqgt5(o: - - ~  ~.L~[ g<PLIA q'- yqgt~PL u ] 

1 ~* 

grad [~IP~dJ¢ + dP> H~JL] 
 -mwCOS/  

gmu [ / ~ . ~ p L . ~ q _ ~ p L / ) 2 ~ L ]  + h . c .  ' 
~/2rn wsin fl 

(5.4) 

where the "interaction" eigenstates W3, B, H1 and /)2 are defined in eq. (A.24). 
Note that even in models with a gauge singlet Higgs field, N, the higgsino field 
does not appear in eq. (5.4). 

It is straightforward to convert eq. (5.4) into an equation involving the chargino 
mass eigenstates 20, by using eqs. (A.25a-b) and similar equations involving 1~/3 and 
B. In addition, we find it convenient to replace the matrix elements N/1 and N/2 by 
Nj{ and Nj~ defined in eq. (A.23). 

One last trick is to eliminate the hypercharges yq, Yu and Yd in favor of the 
electric charges e u = ~ and e d = - 3- This is done most easily by using yq = - - 1  + 
2eu = 1 + 2e d, Yu = -2e~ ,  and Yd = --2%. The final result is: 

~q'qe~2"= -v/2gl'{ gmq'Nj*s-ipL + [eeiN/ + g~N/2(T~'-e'sin2Ow)]PR} w B, cos 0 w - 

[( geisin2Ow ) gmq,Nj,5-, pRJf(ogli R +v/2Cli eeiNj~* cos0 w NJ'2* PL+ 2mwB i + h.c.,  

(5.5) 
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Fig. 23. Feynman rules for the q~t2 ~ vertices. See caption to fig. 22. This figure differs from fig. 22 in 
that all arrows are reversed. 

where a summation over i = 1, 2 and j is implied, and 

( sin fi t .  

The quantum numbers T3, and e, are the weak-isospin and electric charge (in units 
of e > 0) of the quarks q~. We emphasize that g/m and q~i~ have the same electric 
charge as the quarks qv The Feynman rules are depicted in fig. 24. Note that if the 
supersymmetric model involves the gauge singlet N field, then one must sum over 

j = 1, 2 . . . . .  5; otherwise the sum stops at j = 4. 
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Fig. 24. Feynman rules for the q~20 vertices. The quark charges are given by e u = ~, e d = - ~. The 
matrices N and N' are defined in eqs. (A.20), (A.21), and (A.23). 

The  results obtained in this section can also be used to obtain the couplings of 

leptons and scalar-leptons. One need only insert the correct quan tum numbers  (i.e., 

:£3, and ei) as specified in table 1. 

6. Comments on the supersymmetric parameters 

In the F e y n m a n  rules presented in this paper, many parameters appear  that are 
no t  fixed by  general principles. For  example, all possible soft supersymmetry 

breaking terms (consistent with the gauge symmetry and possibly some discrete 
symmetr ies)  are allowed a priori; their coefficients must  be taken as free parameters 
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in a general approach. This can result in too much freedom when we apply our rules 
to phenomenological questions. It is often useful to make use of specific models as a 
guide to suggest (possible) likely values for many of the free parameters. One of the 
most popular approaches that one finds in the literature is that of low-energy 
supergravity [10-13]. In this approach, one obtains an effective lagrangian which is 
relevant at the Planck scale. One then uses the renormalization group equations to 
obtain the values of the parameters at a scale of order mw. The resulting parameters 
are the ones which appear in the Feynman rules given in sects. 4 and 5. 

Of course, the results given in this paper are for the most part model-independent. 
But, given the results of a particular model, one may easily use the techniques and 
results of this paper to obtain all the Higgs boson vertices which appear. We think it 
is useful to illustrate some of the aspects of the procedure by which one obtains the 
appropriate low-energy parameters from a supergravity model. However, it is not 
our purpose to review supergravity model building techniques here [10, 11]. Fairly 
detailed models have been studied in the literature (see e.g. ref. [13]) which satisfy 
the necessary phenomenological requirements. For the purposes of illustration, we 
exhibit below some of the features of one of the original low-energy supergravity 
models studied in ref. [12]. Our choice here is motivated by one of simplicity a 
minimum of algebra helps to make the procedure quite transparent. Note, however, 
that this model is certainly not realistic (it requires a very heavy top-quark); the 
reader is referred to the literature [10, 11,13] for more realistic examples. 

The model of ref. [12] consists of a minimal supersymmetric extension of the 
standard model, with two Higgs-doublet fields but with no Higgs-singlet field. At the 
Planck scale (Mr,), the parameters of this model satisfy: 

/~/Q = J~/u = M D  = ml = rn2 = m 6  = / ~ / g ,  (6.1) 

m122 = B/x 37/g, (6.2) 

A 1 ~ - A z - ~ A , ~ A j ~ A  o, (6.3) 

where A 0 and B are constants of order unity and 37/g is the gravitino mass which is 
expected to be of order m w. The parameter/~ is less certain and one can imagine 
either t~ - 437/g or/~ - 37/g (where a is some small coupling constant). In the former 
case, bt is small and to first approximation can be neglected. Then because 
rn~, m~ > 0, SU(2) × U(1) is unbroken. However, upon evolution down to scales of 
order m w, one finds that rn~ < 0. In ref. [12], this is triggered by a large Higgs-fer- 
mion Yukawa coupling (such as the top-quark). We sketch here some of the details 
for this particular example. In the evolution of scalar masses, we ignore all couplings 
except for the top-quark - Higgs-Yukawa coupling. The solution to the renormaliza- 
tion group equations takes the simple form [10,12] 

mZ( t )=3C -l~_Mg ~ 2  , (6.4) 

37/2 ( t )  = 2C, (6.5) 

l ~ 2 (6.6) 



J.F. Gunion, H.E. ttaber / Higgs bosons (1) 51 

where 

3 1 -- [ ] '  (6.7) 

3aot 
~( t )  = , (6.8) 

qT" 

m W 
t =  l n - -  (6.9) 

Mp ' 

a -  1 - ~ '  (6.10) 

A o 
.4 - 1 - ~' '  (6.11) 

where  a o = )k2/4~ " is the top-quark Yukawa coupling [analogous to eq. (4.9)], A 0 is 
given in eq. (6.3), and a and A are the corresponding quantities at the low-energy 
scale. No te  that in eqs. (6.5) and (6.6) we use the subscript 3 to denote the third 
generat ion scalar-quark masses. In the approximat ion we are using, all other  
scalar-quark and Higgs masses do not  run but  are fixed at 37/g [cf., eq. (6.1)]. 

We need one boundary  condit ion to fix t-ln(mw/Mp). This is obtained by 
insert ing eq. (3.23) into eq. (3.14g), resulting in 

m 2 = _ S m z + S U 1 ~ g l  2 1 . 2 t _ 2 + g , 2 ) + m 1 2 2 c o t f l .  (6.12) 

In the approximat ion  where ~ is neglected, we may take m22 = 0 [see eq. (6.2)]. Also, 
because m 2 does not run (i.e. ml 2 = 37/g 2 > 0), it is clear that o I = 0. Therefore,  eq. 
(6.12) reduces to m~(t)= 1 2 - ~m z. This implies that C =  i ~ 2 ~(M~ - m~) and plugging 
back into eqs. (6.5), (6.6) yields the scalar-quark mass parameters.  It then follows 
that  [12]: 

j ~ f 2  2 ~ 2  = . ~ M ~ - ~ m  z ,  2 (6.13) 
Q3 

37/2 = ~ (37/g2 - m ~ ) ,  t:~ (6.14) 

)0~ = 37/2, i = 1 , 2 ,  (6.15) 

/ • f 2  
~ 

t:, = 3)/g 2 , i =  1 ,2 ,  (6.16) 

/ • f 2  
~ 

D=M~, i = 1 , 2 , 3 .  (6.17) 

It is these parameters  which are to be inserted into eq. (4.17) to obtain the desired 



52 J.F. Gunion, H.E. Haber / Higgs bosons (1) 

scalar-quark mass matrix. The appropriate value of A [eq. (6.11)] would also have to 
be used in eq. (4.17). Note, however, that under the assumptions being considered 
here, the term in the scalar-quark mass matrix which mixes ?/L with g/R is non-negli- 
gible only for massive quarks (the t-quark or heavier). 

Clearly, the above calculation is unrealistic since the approximations we have used 
implied that v 1 = 0. An improvement can be made by taking into account the effects 
of the parameter ~a. According to eq. (6.2), m2z ~ 0 and this can induce a vacuum 
expectation value for H 1. Using eqs. (3.21c-e) one finds to leading order in /~ 

m212o2 
vl--  m 2 + m~ '  (6.18) 

Note  that m 2 > 0 and m 2 < 0. We may now go back and recompute C based on the 
boundary condition given by eq. (6.12). Now, we may no longer omit the last two 
terms of eq. (6.12) (they are both of the same order in t~-m22/Bif/Ig). We can 
rewrite eq. (6.12) as: 

m~ = lm~cos 2fl + m122cot ft. (6.19) 

The solution for C [from eq. (6.4)] becomes 

C =  5(/17/2 + m2c°s213 + 2mZzc°t fl) • (6.20) 

(This equation reduces to the one we obtained previously, since for v 1 = 0, fl -- 90°). 
Plugging into eqs. (6.5) and (6.6), we obtain: 

A~/2 2 - 2 16m~:cos2 fl + l Q3 = ~Mg + ~m~2cot 13, (6.21) 

~/2 I ~ 2 l m~:cos213+ 2 2 u~ = ~Mg + ~m12cot 13, (6.22) 

which are to be used in eq. (4.17) to obtain the scalar-quark masses. These mass 
formulas have been previously obtained in ref. [10].* 

Of course, realistic models require numerical solution of a complicated set of 
renormalization group equations. The resulting scalar-quark masses as well as other 
parameters of the model must be obtained numerically. Typical results have been 
presented in refs. [13, 34]. Nevertheless, the analytic formulas displayed above give a 
rough guide as to possible values for the supersymmetric parameters. 

There have also been low-energy supergravity models which make use of the Higgs 
singlet field N. However, realistic models do not appear to satisfy the requirements 
of t~ = 0, ( N )  =/= 0 which we impose in sect. 3 in order to obtain analytic expressions 
for the neutral Higgs ( H  °, H °, N)  mixing. In particular, we point out that in an 
interesting model discussed in ref. [16] where all dimensionful parameters in eqs. 

• Note  that in the notation of ref. [10], their angle a is equal to ~v 13. 
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(3.8) (/~, r and A) are set to zero, one finds that necessarily ( N )  4= 0 in order to get 
a realistic particle spectrum. Therefore, in such models with a Higgs singlet field, 
although the Feynman rules of sect. 4 are still correct, H °, H~ ~ and N will no longer 
be mass-eigenstates. One will be required to diagonalize numerically a more com- 
plicated mass matrix in order to obtain Feynman rules involving physical particles. 

The final set of remarks in this section are concerned with the possible appearance 
of CP-violating phases in the theory [35-37]. We have emphasized in sects. 2 and 3 
that in a supersymmetric two-Higgs doublet model, we are free to choose the phases 
of the weak-doublet fields H 1 and H 2 such that no CP-violating phases appear in 
the pure H 1, H 2 sector of the theory. This also allows us to choose the vacuum 
expectation values v 1 and v 2 to be real and non-negative. Having implemented this 
convention, CP-violating phases can in general appear elsewhere in the theory. 
These can arise from a number of sources [see eqs. (3.8), (3.9), (4.15) and (4.29)]. 
First, the parameters t~, M, M' ,  A~, A> A u and A d are in general complex. This 
can lead to CP-violation in the H°qq interactions [eq. (4.19)] and the H ° ~  
interactions [eqs. (4.39) and (4.54)]. The easiest way to identify CP-violation is as 
follows. In a CP-invariant theory, we have shown that H ° and H ° are CP-even 
states and H ° is a CP-odd state. Violations of these conditions are a signal of 
CP-violation. For example, in eqs. (4.39) and (4.54), CP-invariance requires the 
diagonal H°~i~ ,  interaction to be of the form 

"~('H"22 = (a iH1 ° + biH°)Y(i~(i  + iciH°Y(,Ts~(i , (6.23) 

where a i, b~ and c, are real constants. In eq. (6.23) ;~ stands for either a chargino or 
neutralino field. This implies that the diagonal elements of the coupling matrices Q, 
R, Q "  and R "  [defined in eqs. (4.33), (4.36), (4.48) and (4.51)] are real. Second, if 
the singlet N field is present, then h, r, m ~ and a possible vacuum expectation value 
( N )  (which would depend on some of the previously mentioned parameters) can 
also be complex. One could choose the phases of N and the scalar-quark fields to 
eliminate a few of the phases but some non-trivial phases must remain. This could be 
a serious constraint on supersymmetric models [35 37]. For example, the absence of 
an observed neutron electric dipole moment [36] requires that such phases be very 
small (if not absent altogether). A natural explanation of the smallness of such 
phases would be highly desirable. 

One can peruse the Feynman rules for the occurrence of possible sources of 
CP-violation. Some examples: if there is a singlet Higgs field N, one has in general 
complex H H N  couplings. In general, the Hqq couplings [eq. (4.19)] will exhibit 
CP-violating phases due to the presence of complex ~ and A-parameters. It is 
interesting to note that in the neutral Higgs couplings to quarks, no CP-violating 
phases occur. Thus, our claim that H( ~ and H ° are CP-even states and H3 ° is a 
CP-odd state remain valid (at least at tree-level) as far as its interactions with the 
quarks are concerned. Likewise, no CP-violating phases occur in the tree-level 
interactions of the Higgs bosons with the vector gauge bosons. 
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In models with three or more generations, the charged Higgs interactions with 
quarks involve the Cabibbo-Kobayashi-Maskawa (CKM) [38] matrix which pos- 
sesses the usual CP-violating phases. In addition, new generation mixing matrices 
must be introduced due to the generational mixing of scalar-quarks. These new 
matrices can also introduce new CP-violating phases. The modification of the 
Feynman rules due to more than one generation of quarks and scalar-quarks is 
discussed in appendix B. 

7. Conclusion 

It has been obvious for many years that the Higgs sector of electroweak theories is 
the most sensitive to the nature of interactions at mass scales higher than those 
currently probed experimentally. Thus many theoretical uncertainties regarding the 
Higgs sector have emerged. In particular, there are the problems of hierarchy and 
naturalness, the number of Higgs doublets, the possibility of higher Higgs represen- 
tations, composite Higgs and so forth. Of the existing models which propose to solve 
the hierarchy and naturalness problems, supersymmetric theories are unique in two 
respects: 

(i) They are completely consistent internally and at present suffer no known 
phenomenological defects. 

(ii) They have the potential to solve the hierarchy/naturalness problems while 
maintaining the elementarity of the Higgs. 

In this paper we have chosen to examine in detail minimal supersymmetric 
theories. At least two Higgs doublets are required in order to give mass to both up 
and down type quarks. In the absence of other scalar Higgs fields, SU(2) x U(1) is 
not broken until soft supersymmetry breaking terms are added. Thus we have also 
considered the case in which an additional complex scalar field, an SU(2)x U(1) 
gauge singlet, is introduced so that SU(2) x U(1) may be broken at tree level even in 
the absence of supersymmetry breaking. 

While supersymmetric theories provide a direct motivation for a two-Higgs 
doublet model, they simultaneously impose severe constraints on the otherwise 
enormously model-dependent self-coupling of the Higgs. Of course, as part of the 
solution to the hierarchy problem, couplings to new supersymmetric partners of 
the ordinary particles appear. The purpose of this paper has been to enumerate all 
the Higgs couplings that are of most immediate phenomenological interest. These 
include: 

(a) couplings to gauge particles, figs. 1-6; 
(b) couplings to ordinary fermions, figs. 7-8; 
(c) self-couplings, figs. 9-10; 
(d) couplings to scalar quarks, figs. 11-15 and 17-18; and 
(e) couplings to charginos and neutralinos, figs. 19-21. 
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For completeness, we have also derived rules for the coupling of quarks and 
scalar-quarks to charginos and neutralinos shown in figs. 22-24. These are related 
(in part) by supersymmetry to (b) and (d) above, and are therefore sensitive to the 
Higgs boson sector of the model. 

All of the couplings we have obtained under (a) and (b), above, are the same as 
those which appear in certain non-supersymmetric two-doublet models in which a 
fully general choice of vacuum expectation values is allowed for. There are, however, 
many aspects of these couplings and constraints among them which have not been 
fully explored in the literature. For instance 1~ -- tan l (v: /Vl)  and the mixing angle 
a which results from diagonalization of the neutral Higgs boson mass matrix yield 
potentially enhanced couplings of the charged Higgs couplings to quarks. In some 
low-energy supergravity models, these angles tend to take on extreme values which 
could result in unexpected phenomenological consequences. Also, the absence of 
certain couplings (e.g. no W Z H  vertex) can have important phenomenological 
implications for expectations regarding Higgs production. 

The Higgs self-couplings become of phenomenological importance when one 
Higgs is much more massive than others, and its decay into two lighter Higgs is 
allowed. Trilinear Higgs couplings also yield new sources of single Higgs production 
through a process analogous to the effective W approximation [41], in which the 
fusing virtual gauge particles are replaced by virtual Higgs. 

The couplings of Higgs bosons and scalar-quarks yield new contributions (through 
scalar quark loops) to the gluon-gluon fusion mechanism for Higgs production [42]. 
Due to cancellations, these are not as large as the order g couplings which appear in 
the Feynman rules of figs. 12-13 might suggest [as discussed below eq. (4.23)], but 
can result in a significant enchancement to Higgs production cross sections. The 
order g couplings are certainly important to the phenomenology of Higgs decays if 
the scalar quarks are sufficiently light that these channels are open. 

In a future paper [19] we shall explore some of the above phenomenological 
consequences of minimal two-Higgs doublet supersymmetric theories. The Higgs 
sector in such theories, while varied and complex, is tightly constrained. Above 
threshold for production of Higgs particles, the phenomenology of their production, 
interaction and decay will provide an important testing ground for the theory and 
help constrain the nature of supersymmetry breaking. As an example, a Higgs 
doublet with enhanced couplings to both up- and down-quarks would be incompati- 
ble with the two-doublet Higgs supersymmetry model [42]. In general, the discovery 
of multiple Higgs doublets (or convincing evidence for only one doublet) would 
provide important insight into the viability of low-energy supersymmetry. 

In the absence of the gauge singlet field, the minimal two-Higgs doublet model 
requires that one of the neutral Higgs lies below the mass of the Z. It could well 
appear in toponium decays and other reactions that will soon be available. In such 
models, the H + is always heavier than the W +. However, in models with a gauge 
singlet field present, there is a range of parameters for which the H + is sufficiently 
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light so that it could appear in W and Z decays. In general the minimal supersym- 
metric models suggest that some of the Higgs masses are modest in size and perhaps 

accessible in the near future. Thus, the Higgs sector may play a crucial role in 
suggesting the nature of new physics beyond the standard model as well as revealing 
the nature of spontaneous symmetry breaking and the generation of the electroweak 

scale. 

We are grateful to Larry Hall for his comments concerning CP-violating phases. 
In addition, we acknowledge Christian Preitschopf for discussions regarding aspects 
of supergravity model building. 

Appendix A 

CHARGINO AND NEUTRALINO MIXING 

In this appendix, we will summarize the required formalism needed to obtain the 
mass-eigenstates in the gaugino-higgsino sector of the theory. For details, we direct 

the reader to appendix C of ref. [18].* (See also refs. [30-32].) 
A . 1 .  C h a r g i n o s .  The charginos, ~ f  (i = 1,2), are four-component Dirac fermi- 

ons which arise due to the mixing of the winos, q¢-, W +, and the charged higgsinos, 
~ + 

I7t{ and H 2 . Because there are actually two independent mixings, (W-,I7/1) and 
(qq+, I7t~), we shall need to define two unitary mixing matrices [31]. We define: 

~ ;  = ( - - i ) k + , + ~ I z ) ,  

@7 = ( - i X - ,  4'I~), j = 1 ,2 ,  (A.1) 

where we have used the notation of table 1. In eq. (A.1), the fields are two-compo- 
nent fermion fields, with X ± ,/T(?d -Y- iX2). The mass term in the lagrangian is: 

where 

(o 
"~m = --  2 ( ~ ~ ) X + -  , (A.2) 

M m wV~ sin 13 ) 
X = m w7~- cos 13 /t 

(A.3) 

where M is a Majorana mass term for the winos, # is defined in eq. (3.3) and 
tan f l  = v 2 / v  1. Note that m~v = ~gl-2~'tv12 + v22), where the v i are defined in eq. (3.7). 

* The notation in this appendix is identical to that of ref. [18] with two exceptions. We denote here 
(Hi) = v 1, (H22) = v 2 and tanfl =- t,2/v 1, whereas in ref. [18] v i is replaced by ~ v  i and tanfl is 
replaced by cot 0,.. 



J.F. Gunion, H.E. ftaber / Higgs bosons (I) 57 

We define two-component mass-eigenstates via: 

X/  = U,s~f , i, j =  1,2,  (1 .4)  

where U and V are unitary matrices chosen such that: 

U * X V  1 = M D ,  (A.5) 

where M D is the diagonal chargino mass matrix. In particular, U and V can be 
chosen so that the elements of the diagonal matrix M D are real and non-nega t ive .  

The proper  four-component mass-eigenstates are the charginos which are defined in 

terms of the two-component X + fields as: 

2~=(X~)X~. (A.6) 

The supersymmetric limit can be taken where SU(2) × U(1) remains broken if the 
model possesses a gauge singlet N-field. In this limit (taking M =/z = 0), we find: 

sin fl = cos fl = f~2, (A.7) 

1 1 1 V= (A.8) 
U =  - 1  1 ' 1 - 1  " 

Note  that U 4: V; the difference in the two matrices has been arranged so that the 
masses of the chargino eigenvalues are positive. In the above limit, we can write the 
chargino states as 

where w 1 and w2 are the wiggsinos: 

--iX+ ) 

-+ ( } - ( - + _  
X 2  = ~ 1  , (A.9) 

~ ;  : l i~_ ~ (A.10) 

Furthermore,  in this limit, the chargino states are the wiggsinos which are degenerate 
in mass with the W +. In fact, from eqs. (3.15) and (3.16) we see that mn~ = mw± in 
this limit. It follows that ( H - ;  ~ ;  W - )  and (H+; ~ ;  W +) make up two massive 
supermultiplets consisting of particles with mass equal to rn w. 

It is sometimes convenient to work with four-component fields which are not 
mass-eigenstates but which lead to simpler expressions for interaction terms. We 
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choose to work with 14/and / )  defined by: 

-iX+ ) 
1717= iX " (A.11) 

If one has an interaction lagrangian involving IYV and /~, it is a simple matter to 
convert it to the appropriate expression involving the chargino mass-eigenstates. 
Define: 

PR = ~(1 + 7s), (A.12) 

which project out respectively the top two components and the bottom two compo- 
nents of a four-component spinor. Then, using eqs. (A.4), (A.6) and (A.11) we find: 

PLIU = PL(V~2, + V2T22), 

PRI~ = PR(UllX1 q- U21X2), 

PL ~ = PL(VI'~2~ + V2~22), 

(A.13a) 

(A.13b) 

(A.13c) 

(A.13d 

Using these equations, one can write out any interaction term involving/4 and W m 
terms of the charginos, 2. Note that from eqs. (A.13a)-(A.13d) one can derive 
additional equations, such as: 

I~P R = (Vll~l + V21~2)PR, (A.14) 

where as usual, ~ -- ~b+~, °. 
A.2. Neutralinos. We turn next to the neutralinos, 20 which are due to the 

mixing of the photino, zino and neutral higgsinos. Here, j = 1 . . . . .  4 in the minimal 
model with no gauge singlet N-field. If an N-field is included in the model, then the 
model necessarily contains an extra higgsino resulting in five neutralinos, so we must 
take j = 1 . . . . .  5. We shall consider the two possible cases in turn. 

In the case with four neutralinos, we define the two-component fermion fields: 

0 +o = (-;x, ,  -;x, ,  +5,  +.2).  (A.lS) 

Again using the notation of table 1, X 3 is the neutral wino and X' is the bino. These 
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fields can also be expressed in terms of the (two-component) photino and zino via: 

X z = X3cos 0 w - X'sin 0 w , (A.16a) 

Xv = X3sin 0w + X'cos 0 w . (A.16b) 

Occasionally, it will be useful to define 

~b~ ° =  (- iX~, -i)t:, ~o , ~o2) (A.17) 

in place of eq. (A.15). The mass term in the lagrangian is given by: 

1 ~0 T 0 .9.0 m =  - ~( ) Yq~ + h .c . ,  (A .18 )  

where Y is in general a complex symmetric matrix* given by: 

y =  

M '  0 - mzs in0wcosf i  mzsin  0wsin fl 

0 M mzCOS 0wCOS/3 - mzCOS 0wsin/3 

-mzsinOwcos B mzcosOwcosB 0 - ~  
mzsin  0wsin fl -mzCOS 0wsinB -/~ 0 

(A.19) 

{ X°i ) ( i  = 1 . . . .  4 ) .  (A .22 )  

Note  that the ~0 are Majorana fermions. 

* The fact that Y is symmetric follows from eq. (4.46) and is due to the Majorana nature of the 
neutralinos. As a result, only one diagonalizing matrix N [eq. (A.21)] is required in this case. 

M '  is the Majorana mass for the bino; all other terms above have been previously 
defined. As usual, m~ = 1 2 g ( g  + g'Z)(v12 + t~2). We define two-component m a s s -  

eigenstates using: 

X ° = N.j~bj0, i, j = 1 . . . . .  4, (A.20) 

where N is a unitary matrices satisfying: 

N *YN- 1 = ND ' (A.21) 

where N D is the diagonal neutralino mass matrix. One can choose N such that the 
elements of the diagonal matrix N D are real and non-negative. The proper four-com- 
ponent  mass-eigenstates are the neutralinos which are defined in terms of the 
two-component  ~0 fields as 
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If we had wished to make use of eq. (A.17) instead of eq. (A.15) then the matrix Y 

would be replaced by a matrix Y’ and the unitary matrices N would be replaced by 

a new matrix N’ given by: 

N,; = N,,cos 8, + N,,sin 8, , 

N,; = - N,,sin 8, t N,,cos 8,, 

N’; = $3 

N,> = Nj4. (A.231 

As above, interactions often look simpler in terms of four-component fields which 

are not mass eigenstates. We define the following four-component (neutral) Majorana 

spinors: 

We may then relate the above spinors [eq. (A.24)] to the mass eigenstates [eq. (A.22)] 

using relations analogous to those given in eq. (A.13). For example, 

PI& = P,cN,:,+,ji;, (A.25a) 

(A.25b) 

where we have used the fact that N is unitary, with similar equations for $ and l&. 

It is sometimes convenient to introduce the four-component photino (7) and zino 

(2) Majorana spinors: 

(~.26) 

which are related to I& and i by the obvious relations [see eq. (A.16)]. Then, to 

express p and 2 in terms of the mass eigenstates ji,, we need to use the matrix N’. 

For example, 

PLY = P,cN,;*$ (A.27a) 

PRY = PRx N,;ji:. (A.27b) 
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The analysis above assumed that there were only four neutralino states. If we 

include the SU(2) × U(1) singlet field N, then the (two-component) higgsino field 
~b N must be included in the discussion. As discussed in case 1 of sect. 3, we can 
obtain explicit analytic expressions for all results of interest if we assume that 
/x = ( N )  = 0. In this case we expand our previous definitions. In place of eq. (A.15) 
we have: 

c ° ( - a , , - a  ~,+~,, 0 = ~ n:, +,,' )- (A.28)  

Eq. (A.18) defines the mass matrix, where Y is now a 5 × 5 matrix. Setting/~ = 0, we 

obtain: 

y =  

g '  0 ~ ( - v l g ' )  d(v2g')  0 

0 M V'½ (vlg)  ~/~ ( - v 2 g )  0 

~ ( - ~ ' )  ~(~1~)  o o h,~ 

~3 (v2g' ) f~-21 ( - -v2g)  0 0 hv 1 

0 0 hv 2 hv I 0 

(A.29) 

To  be different, we have replaced m z, 0 w and /?  in eq. (A.19) with 01, v2, g and g' .  
Most of the remaining formulas go through. By using the appropriate generalization 
of eq. (A.25) (i.e. summing over five possible neutralino states), the physical 
neutralinos 20 can then be expressed in terms of the fields of eq. (A.24) and 

The advantage of including the fifth neutralino state is that it permits a supersym- 
metric limit which still breaks the SU(2)×  U(1) symmetry. In this limit (where 
M '  = M = # = 0 and v I = Va), it is convenient to choose the following basis instead 
of eq. (A.28): 

= [ - , x , ,  j (+o - + IA.31) 

The mass matrix is then 

-SY~m°'=-~_2imzXz(t~° --~Y~,)+hv~,~(t)°H +~02)  , (A.32) 

where v = v~ = v 2. Note that in the supersymmetric limit the neutral Higgs-boson 
spectrum is m n~ = m H(' = m N  and m u ' /=  m z [see discussion below eq. (3.20)], where 
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m• = ~f2-hv. We therefore define the ziggsino state: 

~=  - + n 2 )  (A.33) 
1 iXz 

and the higgsino state: 

h= ( ~-2 ( ~tl -~ 1~/2) ) I ~ N  , (A.34) 

which are both four-component D i r a c  spinors. In addition, we have the photino 

- i? t  v 

= i~ v ' 
(A.35) 

which is a four-component Majorana spinor. In the supersymmetric limit, we see 
that the photino is massless, hT/g = m z and )f/~ = m N.  The massive supersymmetric 

0 1 1 . multiplets are then identified as (H°; ~; Z °) and (H °, H 3 , Ref~-2 N, Imp-5 N, h), and 
the (,~; ~,) supermultiplet stays massless. 

Finally, we can compute the values of the diagonalizing matrix N [see eqs. (A.21) 
and (A.29)] which produces the diagonal mass matrix given by eq. (A.32). The result 
is: 

N =  

cos 0 w sin 0 w 0 0 0 

1 1 0 - f~-2 sin0w f~-2 cOS0w ~ 2 

-f~-2isin0 w ~ i c o s 0  w -½i  ½i 0 

0 0 ~ 7 

0 0 9 

(A.36) 

A few subtleties are worth mentioning. The factors of i in the third and fifth rows 
have been chosen so that the neutralino eigenvalues are all non-negative. This is 
possible because of the appearance of N* in eq. (A.21). (An alternative method is to 
allow for negative mass eigenvalues for some of the neutralinos. Then one must 
multiply the corresponding neutralino spinors by ~'5.) Using eq. (A.36), one can read 
off the physical neutralino states by examining the rows of N. For example, the first 
row corresponds to the photino given in eq. (A.16b). However, using this method, 
one gets (in terms of four-component fermions) Majorana fermions (i.e. the ~o) 
rather than the Dirac fermions given by eqs. (A.33) and (A.34). In the supersymmet- 
ric limit the resulting Majorana spinors can be defined as follows: 
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where i = 1, 2 and ~i and ~, are defined below: 

+x = ~-~_ [ - iXz  + ~ ( ~ °  _+(h~)],  (A.38) 

-i+2= ~/~-~ [-iXz- ~ / ' ~ ( ~ , ° -  ~'H2)] ' (1.39) 

~1 = ~ [  +N ~- ~/l_~( ~dO 1 ~- ~O2) ] ' (1.40) 

--i~2= ~[+N-- ~/~(~O + ~ O ) ] .  (1.41) 

In terms of our previous notation, 2¢~ ~ = "Y, X2,3~0 = ~01,2 and 2 °4,5 = ~ 0 .  The factors of 
i in eqs. (A.39) and (A.41) correspond to the factors of i in the matrix N [eq. 
(A.36)]; these factors insure that the neutralino masses are all non-negative. Of 
course, the physical content of eq. (A.37) is identical to eqs. (A.33) and (A.34). 
Namely, a neutral Dirac fermion is equivalent to two Majorana fermions which are 
degenerate in mass. 

The appearance of the factors of i in eqs. (A.39) and (1.41) appear less mysterious 
if we write out the corresponding four-component equations. In the chiral basis 

( - 1  0 ) e q . ( A . 3 9 ) c a n b e w r i t t e n a s :  where Y5 = 0 1 ' 

i'/s~2 = ~ [  Z - - ~ / ~ ( / 4 i - / ) 2 ) ]  - (A.42) 

In eq. (A.42), the factor of i is an irrelevant phase factor which we shall dispose of in 
the next section (see eqs. (A.50) and (A.51)). The factor of Ys is important and 
insures that the mass o f  ~2 is non-negative. 

The " -  0 ~ 0 nX,Xj  rules are easily obtained in the supersymmetric limit. The matrices 
Q" and R'" which appear in eq. (4.54) take on a simple form: 

Q,, _ 
4v~ cos 0w 

0 0 0 0 0 

0 2 0 1 - x i(1 + x) 

0 0 2 i(1 + x )  - 1  + x  

0 1 - x i(1 + x) 2x 0 

0 i(1 + x )  - l + x  0 2x 

, (A.43a) 

(A.43b) e tt ~ 0 

where 

7~-h*cos 0 w 
x - (A.44) 

g 

A.3. The problem of negative mass eigenvalues. In the previous two sections of 
this appendix, we have defined the diagonalizing matrices U, V [eq. (A.5)] and N 
[eq. (A.21)] such that the diagonal elements of the mass matrices were real and 
non-negative. It is sometimes more convenient to allow the (real) mass eigenvalues to 
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be either positive or negative. If the mass eigenvalue is negative, then one must 
replace the corresponding four-component eigenspinor 2 by ~'sX in the interaction 
lagrangian. Let us see how this works out in practice. Replace eqs. (A.4), (A.5), 
(A.20) and (A.21) by the following: 

X+ = W,j~b] , (i, j = 1,2),  (A.45a) 

X7 = U,j~b] , (i, j =  1,2),  (A.45b) 

xO=<,¢ o, ( i , j = l  . . . . .  n ) ,  (A.45c) 

U * X W  -1 = diag(~haT/l(+, ' ~/237/2(+)), (A.46) 

= ~ ( 0 )  Z*YZ -1 diag( el 37/1(°) . . . . .  e . . . .  ),  (A.47) 

where n is the number of neutralino states (either four or five in this paper), "diag" 
means a diagonal matrix (with the diagonal entries listed in parentheses), the ~/~ are 
non-negative masses and e i and ~/~ are either + 1. U, W and Z are unitary matrices. 
Technically, one determines the matrices by solving the eigenvalue problem for XX*, 
X t X  and Y* Y. This determines the diagonal elements of eqs. (A.46) and (A.47) up to 
a sign. We can arrange the phases of these matrices to give non-negative mass 
eigenvalues as we did in previous sections of the appendix. In this section, we allow 
for the appearance of negative eigenvalues as shown in eqs. (A.46) and (A.47). The 
question then arises: how will this change the Feynman rules which we have derived 
in sects. 4 and 5. 

We demand that the lagrangian contain only non-negative masses for the charginos 
and neutralinos. In two-component notation, what appears in the lagrangian is 
(summed over i): 

--~'~gm "= ~il~4i(+)(X+Xi q- X T X T )  + Ei~li(°)(X°iX 0 q- ~(o~(/). ( A . 4 8 )  

We require that in four-component notation, eq. (A.48) must read: 

= + (A.49) 

This implies that we must define our charginos and neutralino fields as follows: 

~ = (~,PL + PR) x7 ) 
27 ' 

20i=(eiPL + eR) X°i ]. 

(A.50) 

(A.51) 

Note that for ~i = - 1 ,  P R -  PL = "fs which confirms the statement made earlier. 
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[For e~ = 1, PL + PR = 1 and there is no change from eqs. (A.6) and (A.22).] In order 
to see how this affects interaction terms, all we need to do is determine how eqs. 
(A.13) and (A.25) change. Clearly, only the equations involving PL change (since 
P~ = PL, PR 2 = P~ and PLPR = 0). The new results are: 

PL~I/= PL(WlCfTI1X1 -4- W2~T~2X2), 

PL/~ = PL(WI~IXI q- W2~T]2X2), 

PL ~Ii = P L Z  Z~,i+ 2EjX° , 
J 

e./?i= e .Ez j ,  i+2  ° 
J 

(A.52) 

(A.53) 

(A.54) 

(A55) 

If we compare now with eqs. (A.13a)-(A.13c) and (A.25), we can make the following 
identification: 

V,j = ~,Wij , (no sum over i ) ,  (A.56) 

N,j~ ° ~ Zij~ ° , (no sum over i ) .  (A.57) 

N*:°---'eZ*~°,o/xg , , jxi , (no sum over i ) .  (A.5S) 

In eqs. (A.57) and (A.58), we have used the arrow to mean "make the replacement" 
since if it were an equality, then eqs. (A.57) and (A.58) would be incompatible. Eqs. 
(A.56)-(A.58) [or eq. (A.59) below] is the appropriate recipe for using in the 
Feynman rules stated in sects. 4 and 5 if negative mass eigenvalues are obtained. 
Note  that eq. (A.57) also implies the substitution rule =0 , =0 , xiN~j --+xiZ, i. Thus, in a 
Feynman rule where the 2 o is annihilated, N~' is replaced by eiZi~ [see eq. (A,58)]. 
But, if the 2 o is created, Ni~ is replaced by Z~. 

There is a second alternative: eqs. (A.57) and (A.58) can be replaced by: 

Nii= exi/Zzij (no sum over i ) .  (A.59) 

This satisfies the requirement that eqs. (A.57) and (A.58) have opposite signs when 
e~ = - 1 since then e~/2 = i changes sign under complex conjugation. 

We give two simple examples of the above procedure by examining the supersym- 
metric limit. First, the chargino mass matrix, X is off-diagonal and real symmetric. 
It can therefore be diagonalized by a single real orthogonal matrix W = U and the 
resulting eigenvalues are + m  w. By eq. (A.56) we see that Vii = Ulj and V2j = - U2j 
which confirms eq. (A.8). Second, the neutralino mass matrix, Y, is off-diagonal and 
real symmetric. It can be diagonalized by a real orthogonal matrix Z and has five 
eigenvalues: 0, +rn z, _+m N. By eq. (A.59), N3j = iZ3j and Nsj = iZsj, Nij = Zi/ for 
i = 1, 2,4. This explains the appearance of the factors of i in eq. (A.36). However, 
when it comes to the Feynman rules involving neutralinos, it is perfectly acceptable 
to make the replacement (A.57) and (A.58) instead of using eq, (A.59). This 
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procedure has the advantage that it avoids the proliferation of factors of i 's  in the 
rules where they are not really needed. In the above example, the two alternatives 
correspond to defining the eigenstate corresponding to the mass eigenvalue of - m  z 
to be i75~2 or Y5~2 (corresponding to eqs. (A.42) and (A.51) respectively). Thus, the 
respective Feynman rules involving one incoming ~2 field differ by a factor of i. Of 
course, in the end, the physical consequences of either set of rules must be identical. 

Appendix B 
EXTENSION TO MORE THAN ONE GENERATION OF QUARKS AND SCALAR-QUARKS 

Although we have confined the discussion in this paper to the case of one 
generation of quarks (and scalar-quarks), the extension to multigenerations is 
straightforward. However, one must be careful since, a priori, the Cabibbo- 
Kobayashi-Maskawa (CKM) [38] angles in the scalar-quark sector can be different 
from the usual CKM angles which appear in the quark sector [39-40]. The precise 
details are a model dependent question, although the absence of flavor-changing 
neutral currents does impose nontrivial (but not impossible) constraints on the 
model-building [39-40]. In this appendix we shall briefly indicate some of the 
changes which occur for the mutligeneration case. If we put in the generational 
indices in eq. (3.4), we obtain for the terms involving the scalar-quarks: 

ab i ~ j ~ ab ~ i j ~ WF= eq[fl H1Q~Dt, + f~ Q,H2Ub] , (B.1) 

where f l  and f2 are now matrices in generation space. 
Eq. (B.1) leads to the following terms in the supersymmetric lagrangian (using 

two-component notation for the fermions): 

I OWF 2 ( 02WF ) 
£.o:_~  ~ _ 12 ~ 0A~j+i~,+h.c. , (B.2) 

where A i is a generic notation for the scalar fields in eq. (B.1). Our first task is to 
diagonalize the quark mass matrix thereby identifying f l  and f2 in eq. (B.1). Here, 
we can simply use the same mixing formalism which we employed for the charginos 
in appendix A. We denote the two-component "interaction" eigenstates as: 

q%,, = (4,0~ ~, ~kO~ ) , (B.3a) 

+K,, = (+e;,,, +o,,), (B.3b) 

corresponding to the left- and right-handed quarks, respectively, where b is a 
generation label. The quark eigenstates of definite mass are defined by: 

~ia = ViabfQil, (B.4a) 

~., = U,.b~a,~, (B.4b) 
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then: 
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(i = 1, 2) are unitary matrices. The four-component quark spinors are 

( tko~. 
UOa -~ ~U~ ' 

( 1ol 
Ua= l ~}la]' 

= (B s)  d°o 1 G  ° ' 

\ ~ 2 a ] "  

We can simply transcribe the desired results from eqs. (A.4)-(A.6). The quark mass 
term is given by 

2 

- - ~ m  = E ~PRi~SiabtPQib -}- h . c .  ( B . 7 a )  
i=1 

2 

~_, Tl,aMz~bg;i + h.c., (B.7b) 
i=1 

where Mi are the diagonal quark mass matrices: 

M 1 ~ M u = d i a g ( m u l  , m u 2  . . . . .  ) ,  

M 2 ~ M d = d i a g ( m d l  , rod2 . . . .  , ) ,  

(B.8a) 

(B.8b) 

and the quark mass matrices X i are obtained by inserting eq. (B.1) into eq. (B.2) and 
setting ( H I )  = vi3ij. 

S la  b = u2f2 ba ' 

X i and Mi are related by: 

S2ab ~ V l f  ba • 

(B.9a) 

(B.9b) 

U,*XsV,- ' = M,. (B.10) 

From eqs. (A.11)- (A.13) ,  we find, for example: 

PRUOa = PRUlhaUb, PLIIOa = PLVI*baUb, 

PRdoa = PRU2badb, PLdoa = PLV2badb. 

These equations immediately yield the CKM matrix (denoted by K): 

-£Pq,~,w ± = -  ~l g ( W f  ~by~,PeKb, dc + h.c.), (B.12) 

(B.11a) 

(B.11b) 
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K = Vy2*. (B.13) 

The GIM mechanism [43] insures that the qgl(Z °, ~,, H °) vertices are flavor diagonal. 
However, the CKM matrix appears in the qlq2H ± interactions. Using eqs. (B.11a-b), 
we find 

~.'~ql q 2 H ± = 
sin fi ( U2,X2Vlt )~.JdcPL U j H -  + h.c. 

V 1 

cos fi 
+--(UI*XlV2t)~dU(PLdd H+ + h.c.,  (B.14) 

V 2 

which has been obtained from eqs. (B.1)-(B.2) using eqs. (4.1a-b) and (B.9a-b). 
This equation may be cast in a familiar form using: 

cos/3 sin/3 g 

vl v2 
(B.15) 

With the help of eqs. (B.10) and (B.13) we obtain: 

g 
£flql~2H+- v~mwH+ ~[ PRKMatan fi + PL MuK COt fl ]d + h.c. (B.16) 

We now turn to the scalar-quark interactions. First we consider just those terms 
which appear when there is no supersymmetry breaking. The D-terms [which arise 
from gauge interactions - see eqs. (3.5-3.6)] are diagonal in the "interaction" basis 
so we focus on the terms which arise from the first term in eq. (B.2). First consider 
the scalar-quark mass terms which are obtained by setting (H[) = viSis. The result 
is: 

----m~Y = d & (  X2X*: )doR + r*SR( X~X*~ )r~OR + d&( X*2X~)doL + r%( X*~X~)r~oL 

(B.17) 

where the scalar-quark fields fi0L = 0,a,  d0L = 02a, U0R = Ub* and doR = b t ,  are 
vectors in generational space and the subscript zero denotes "interaction" eigen- 
states. In the supersymmetric limit, eq. (B17) is the only source of scalar-quark mass 
terms and we see that the scalar-quarks and quarks have identical mass matrices. 
When supersymmetry breaking is introduced, additional contributions to the scalar- 
quark masses are obtained [see. eq. (4.17)], some of which need not be diagonal in 
the " interact ion" basis. In the scalar-quark sector, one has an additional complica- 



J.F. Gunion, H.E. ttaber / Higgs bosons (1) 69 

tion in that mixing is possible between qL and qR of different generations. To 
simplify the remaining discussion, we will neglect Ok -- OR mixing in what follows 
(see Duncan [40] for further comments). We then introduce the mass eigenstates: 

OiL. = ~.hOiOLh, (B.lSa) 

= UmbqiORb, (B.18b) qiRa ~ * ~ 
an analogy with eq. (B.4). 

Let us now survey the scalar-quark interactions to see how the mixing matrices 
enter. The qqw + interaction involves the super-CKM matrix: 

/£=  /7"1/7"2t (B.19) 

in analogy with eqs. (B.12), (B.13), whereas the ~t (Z °, ¥) interactions are flavor 
diagonal. The OqH and qqHH vertices are more complicated. Before we study these 
vertices, it is convenient to introduce some additional notation. We define new 
matrices: 

I~ = ~G*,  ( i =  1,2) ,  (B.20) 

B, = ~*U, v , (i = 1,2) .  (B.21) 

Using this notation, we now exhibit the structure of the (tqH and qqHH interaction: 

"~Q0int ~--- "~F  -{- "~D -1"- Lebreak , (B.22a) 

.,~t9F.~_ _d~B2M,~B~dRh 1 ~ ,  2 ,~ 
- URBtMuBtURh 2 

-- d~-F 2 [ M g h  3 Jr K ~ M # K h  4] FC2dL - at I'~[ Mghs + g M ~ K  th6] F*l ftL 

+ {d~B2KtMaMuB{~Rh  7 + d ~ F  2 [M~Kth  8 + K*M~h9]UI?~I_ + h.c.}.  

(B.22b) 
The h i (i = 1 . . . . .  9) are combinations of one or two Higgs fields. Explicit expres- 
sions for the h i are listed in table 4. The terms in eq. (B.22a) which are not 
proportional to the quark masses have their origin in the D-terms (denoted by LeD) 
and are generation-diagonal in the "interaction" basis. Finally, Lebreak in eq. 
(B.22a) refers to terms proportional to/~, A u or A d. These terms mix qL with OR and 
can make the scalar-quark mixing problem substantially more complicated. We will 
continue to ignore these terms in this appendix.* 

~' In some low-energy supergravity models, qk OR mixing tends to be small except for the case of the 
)'. Because mixing angles involving the t-quark tend to be small, it should be adequate to deal with the 
{ L -  )'R mixing after the generational mixing has been included. However, the reader should be 
warned that for some physical applications (such as the electric dipole moment of the neutron), the 
above approximations are not adequate and one must treat the full scalar-quark mixing problem 
correctly (A.I. Sanda, private communication). 
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TABLE 4 

h I = h 3 + h 6 

h 2 = h 5 + h 4 

h, g ~  [ ~2 + g ~ Ho )2sin2fl ] 
" 01W COS 1~ [ 4 t'n w--COS/~ [ (q~2) q-( 

= ( g2c°t2fl i H + tt  ha 7G-,  j 

_ _  0 2 2 g [ (~1)2 q_ ( H 3 )  cos fi] 
h5 mwsin, 8 q~l + 4mwsin  fl 

h~ 
g2 tan2fl I H + 

= 2m-G-w! " 
g 

h H 7 V~ m w sin fl cos 13 
g [ Ht'cos(fl a) + H2°sin(,8 a ) ]}  1 + 2 m ~  

] 2rnwcOS fl (02 ill3° sin fl) 

2rngsin]~ ( '#, +iH°c°sf i)]  

h~= gtanf l  [ 
~f2m w H 1 + 

hg=  Lc° t f l l t  [ l + - -  
~/2mw [ 

We list the fields h i which appear in eqs. (B.22b). The following notation is used: 01 = HI )sin a + 
/t~'cos a, 02 = lit'cos a - H°sina.  

Eq. (B.22) can be simplified considerably by making certain model assumptions. 
Here, we follow the analysis of Duncan [40]. We denote the scalar-quark squared 
mass matrix (before diagonalization) by Xi 2 and 2i 2 where i =  172 corresponds to 
up-type and down-type flavors, respectively: 

E0;.o'  - =*  2 2 - 
= XiRabqiORb+ qiOLa iLabqiOLb" 

i 
(B.23) 

In many low-energy supergravity models, one finds that at the Planck scale, ~m 
differs from the supersymmetric mass term given by eq. (B.17) by a universal 
generation independent mass term. However, one must use the renormalization 
group to evolve down to low-energies. At the low-energy scale, Duncan finds [40]: 

2i 2 = _ 2 , (0) I +  "(~X X.* ( i - -  1 2) ,  CVIWP'iR ~ii*, i i ' (B.24) 

1~ 2 fl(O) T (I) y i y  x,~.,L = + ' + ~ x . '  x2  • ,~ WP, lL ~ P, iL~-i ~ l  (B.25a) 

22L = "" W~ 2 L * ~ 2 "  (0) , + t,(~)L X,2X 2 + t,(22)L X,1X1, (B.25b) 
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where I is the identity matrix generation space. The dimensionless numbers/z °) are 
model-dependent, typically of O(1) [40]. The extra term in Xi 2 (i = 1,2) as com- 
pared to )(i~ arises due to the difference in qL and qR interactions given in eq. 
(B.ZZb). 

We find that ~ 2  is easily diagonalized: using eq. (B.10), it follows from eqs. 
(B.21) and eq. (B.24) that: 

= U,, (i = 1,2), (B.26a) 

B i = I .  (B.26b) 

In order to diagonalize Xi]., we consider two special cases: 
Case I: ~(-')= 0. In this case, we see that ~ = ~ (i = 1,2), which implies that 

/~ = K and ~ = I. That is, there is only one CKM matrix for W-interactions with 
quarks and scalar-quarks. The scalar-quarks-Higgs-boson interactions [eq. (B.22b)] 
simplify significantly since F, = Bi = I. Tree-level flavor-changing neutral currents 
due to H0~iL~jL (i :#j) vertices do exist (e.g. K M 2 K  * is not diagonal), although they 
tend to be suppressed by small mixing angles and quark mass differences. (Note that 
in this case, OiL-qR mixing can be easily treated since it decouples from the 
intergenerational scalar-quark mixing.) 

Case II: neglect terms proportional to X ,  tX_, in eq. (B.25). This is suggested in 
supergravity models where a large top-quark mass is responsible for the SU(2) × U(1) 
breaking in the low-energy effective theory. Then I71 = 172 = I71 since both up and 
down flavors of qL are now diagonalized by the same unitary matrix which 
diagonalizes the (left-handed) up-quark mass matrix. In this case, /£ = 1"1 = I and 

F2---K. 
Our final task is to see the effect of generational mixing on the qgl~ + and qq~0 

interactions (see sect. 5). We first focus on the pieces of these interactions which 
arise from the second term of eq. (B.2). This simply requires us to put the 
generational indices correctly in the terms proportional to quark masses in eqs. (5.1) 
and (5.4). 

As an example, one term which appears in eq. (5.1) is fi0PLXld0L/t [where we 
have used eq. (B.9)]. Using the results summarized in table 5, it is simple to verify 
that 

X,  = Mui  r*j  . (B.27) 

The remaining terms are calculated in a similar manner. The terms proportional to g 
and g'  in eqs. (5.1) and (5.4) are generation-diagonal using the "interaction" 
eigenstates. The correct generalization of the q~t2 + [eq. (5.3)] and qq~0 [eq. (5.5)] 
interactions is summarized in table 6, which exhibits a few noteworthy features. 

First, in general there are exactly five independent generational matrices which 
arise when describing interactions of quarks and scalar-quarks: K, Fi t and B{ 
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TABLE 5 
Summary of quark and scalar-quark mixing and mass matrices 

I. Quark sector 

XIV = v2f2 
X T = u l f  1 

PLqiO = PL V~+ qi 

PRqm = PRU~Tqi 
U . X ,  K I = M, 

M. = M l = d i ag (m. ,  m~. rn t . . . .  ) 
M a = M 2 = diag(m d, m~. m b . . . .  ) 
K = V y ~ "  

II, Scalar-quark sector 

~,,~. = U # i .  

III. Other  mixing matrices 

f, (i = 1,2) are the Yukawa couplings of quarks 
to the Higgs bosons H i , where ( H, ) = vi. 

PL = '~(i vs) 

PR = 12(1 + Y5) 

Kobayashi-Maskawa matrix 

mass matrix of OiL in interaction basis 
mass matrix of qiR in interaction basis 

diagonal qL mass-matrix 

diagonal qR mass-matrix 
super-Kobayashi-Maskawa matrix 

I~ = V,,V, t note that K =  I ' I K F  ] 
B i = t ? . ~  v 

We denote the interaction-eigenstate quarks and scalar-quarks by qm and q,o respectively, where 
i = 1,2 corresponds to up-type and down-type flavors respectively. The corresponding mass eigenstates 
are qi and qi. If N is the number  of generations, then the symbols q, 0 above all are N-vectors. All other 
symbols  above are N × N matrices. We neglect q L -  (JR mixing here so that (~,L and q,R are the 
appropriate scalar-quark mass eigenstates. In the expressions above, do not sum over the repeated in- 
dex i. 

(i = 1,2). As argued above, eq. (B.26), we expect to find B i = I which reduces the 
number of independent matrices to three. These remarks are also true for the other 
interactions previously studied, since the super-CKM matrix is not independent but 
can be written as / ( =  FtKFt2. If we make further simplifications (e.g. cases I and II 
above),  then all generational matrices are related to the CKM matrix,* K. 

Second, in the most general case, the qq2 ° interaction terms are flavor nondiago- 
nal. One must therefore be careful lest ones model predict flavor changing neutral 
current processes at too large a rate. In case I the qq20 interaction is exactly flavor 
diagonal. However,  case II probably represents a more realistic supergravity model. 
In such a model,  the ufi2 ° vertex is flavor-diagonal, but the da72 ° vertex is flavor 
nondiagonal  (as emphasized in ref. [40]). Note  that these arguments can also be 

* Note in particular that a "r ight-handed C K M  matrix" (UtU ~)  never appears in the theory. 
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TABLE 6 
Effect of generational mixing on q ~  ~ and qO~0 vertices 
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q ~ +  

Interaction term Mixing matrices Case I Case II 

uo P~. °7OL K F j  K I 
do PR fi 0L K ~ F~ K t K ~ 

Uo PL XI doL M u K F] M u K M~, I 
uo PR X~doR K M  a B~ K M  a KM d 
do PL X2~OL M d K t  F~ Md K t  Md K~ 
do PR X~ ~tOR K + M u B~ K + M u K + M u 

q ~ 0  

Case II 

Interaction term Mixing matrices Case I i = 1 i = 2 

~til) PR ~IiOL i ~ ~ I 1 K + 
qio PL ~IiOR B~ l I 1 

qio PL X, qi0L M, 1 [~ M, M~, M a K ~ 
q, 0 PR X, tqioR M, g~ M i M u 1~4 d 

The  unmixed terms obtained from eqs. (5.3) and  (5.5) respectively are listed in co lumn  1. C o l u m n  2 
lists the appropriate combination of mixing matrices which will appear if " in te rac t ion  e igensta tes"  are 
replaced by mass eigenstates. Columns 3 and 4 list two interesting special cases of column 2: case I: 
U, =/5 , ,  V,, = V i and case II: ~ = U,, V1 = V2 = VI. We denote the diagonal quark mass matrices by ,'v/L, 
and M d. Definitions of mixing and mass matrices are summarized in table 5. 

extended to the qCtg interaction which is given by: 

"~Pq~g= - - ~ / 2 g s T j k (  ~ j  RSc ~ Ftiab'4iLbT'k _{li~PL~,,.B~St~nb + h.c.) , ( B . 2 9 )  

where i sums over u and d-type quarks, j and k are quark color indices, c is the 
gluino color index and a and b are generational labels. 

The entire discussion of this appendix can be equally well applied to leptons. 
Since neutrinos are massless in the standard model, there is no CKM matrix for 
leptons and we may set X l = M  u = 0  and K = I  in the above formulas when 
applying them to leptons. Furthermore, X 2 can be chosen diagonal because all 
interactions involving leptons and scalar-leptons conserve individual lepton numbers 
(one for each generation). Using eqs. (B.24), (B.25), we see that by choosing X 2 
diagonal, one automatically obtains diagonal scalar-lepton mass matrices (again, a 
consequence of lepton number conservation). This is so, despite the fact that both 
charged and neutral scalar-leptons of different generations differ in mass-squared 
(proportional to the difference of the corresponding charged-lepton squared masses). 
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Unlike in the scalar-quark sector, the inclusion of 2 L - •R mixing is straightforward 
since there is no communication among different generations. 
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