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The complex 2HDM (C2HDM) is the most general CP-violating two Higgs-doublet-model that
possesses a softly broken Z2 symmetry. However, the physical consequences of the model cannot depend
on the basis of scalar fields used to define it. Thus, to get a better sense of the significance of the C2HDM
parameters, we have analyzed this model by employing a basis-independent formalism. This formalism
involves transforming to the Higgs basis (which is defined up to an arbitrary complex phase) and
identifying quantities that are invariant with respect to this phase degree of freedom. Using this method, we
have obtained the constraints that enforce the softly broken Z2 symmetry. One can then relate the C2HDM
parameters to basis-independent quantities up to a twofold ambiguity. We then show how this remaining
ambiguity is resolved. We also examine the possibility of spontaneous CP violation when the scalar
potential of the C2HDM is explicitly CP conserving. Basis-independent constraints are presented that
govern the presence of spontaneous CP violation.
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I. INTRODUCTION

The two-Higgs-doublet model (2HDM) is one of the
most well-studied extensions of the Standard Model (SM).
Various motivations for adding a second hypercharge-one
complex Higgs doublet to the Standard Model have been
advocated in the literature [1–12]. In most cases, the
structure of the 2HDM scalar potential is constrained in
some way. For example, many papers assume a CP-
conserving scalar potential and vacuum in order to simplify
the resulting Higgs phenomenology. In such models, the
three neutral Higgs bosons are states of definite CP,
consisting of two CP-even scalars and one CP-odd scalar.
The assumption of CP conservation in the bosonic sector

of the 2HDM may not be tenable in light of the CP-
violating effects that necessarily exist in the Higgs-fermion
Yukawa couplings [which are the source of the phase of
the Cabibbo-Kobayashi- Maskawa (CKM) matrix that
governs flavor physics]. However, the most general 2HDM
scalar potential and Yukawa couplings generically yield

Higgs-mediated flavor-changing neutral currents (FCNCs)
at tree level in conflict with experimental observations
(which imply that FCNCs are significantly suppressed).
The simplest way to avoid tree-level Higgs-mediated
FCNCs is to impose a discrete Z2 symmetry on the Higgs
Lagrangian [13–15]. Remarkably, such a symmetry, if exact,
removes tree-level Higgs-mediated FCNCs in the Yukawa
sector while eliminating all CP-violating phases in the
bosonic sector of the theory. However, the imposition of
an exact Z2 symmetry is too restrictive. For example, no
decoupling limit exists in the Z2-symmetric 2HDM [16].
Since the LHC Higgs data imply that the observed Higgs
boson is SM-like in its properties, one can only achieve
approximate Higgs alignment without decoupling by a fine-
tuning of the Higgs scalar potential parameters [16–23].
It is possible to satisfy the phenomenological constraint

of suppressed Higgs-mediated FCNCs by introducing a soft
breaking of the Z2 symmetry. Having introduced such a
symmetry breaking term in the Higgs Lagrangian, it is now
possible that unremovable complex phases in the scalar
potential exist, in which case Higgs-mediated CP-violating
effects will be present. The 2HDM with a softly broken Z2

symmetry and unremovable complex phases in the scalar
potential is called the complex 2HDM (often denoted as the
C2HDM) [24–32].
The C2HDM is typically exhibited in a scalar field basis

in which the Z2 symmetry of the dimension-four terms
of the Higgs Lagrangian is manifest. Nevertheless, the
physical consequences of the C2HDM are independent
of the choice of basis. It is often convenient to employ a
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basis-independent formalism [33], in which the relevant
parameters of the model are manifestly independent of
the basis choice. Indeed, basis-independent couplings
(in principle) can always be directly related to physical
observables. Thus, it is useful to express the parameters
of the C2HDM, defined in the basis in which the Z2 sym-
metry is manifestly realized, in terms of basis-independent
quantities.
To see utility of the basis-independent approach, con-

sider the well-known quantity,

tan β≡ jhΦ0
2ij

jhΦ0
1ij

; ð1Þ

given by the ratio of the absolute values of the two neutral
Higgs field vacuum expectation values defined in some
basis of the scalar fields. In the most general 2HDM,
this quantity is basis dependent and thus no physical
observable can depend on it. In the C2HDM, tan β is
defined via the Higgs-fermion Yukawa couplings in a basis
where the Z2 symmetry of the dimension-four terms of the
Higgs Lagrangian is manifestly realized. However, even
given such a definition, some residual basis dependence
remains. Moreover, no coupling in the bosonic sector of the
C2HDM depends on tan β [34].
In this paper, we follow the basis-independent formalism

of Refs. [33,34], which was inspired by an elegant formu-
lation of the 2HDM in Ref. [8] that was subsequently des-
cribed in more detail in Ref. [9]. An alternative approach
to basis-independent methods in the 2HDM based on
employing a set of independent physical couplings is given
in Refs. [31,35]. The translation between these two
approaches can be found in Appendix D of Ref. [23].
The bilinear formalism of the 2HDM employed in
Refs. [36–41] also provides a powerful framework for
establishing basis-independent results that can be applied
in numerous applications.
In order to make this paper self-contained, we recapitu-

late in Sec. II the ingredients of the basis-independent
treatment of the 2HDM developed in Refs. [33,34] in full
detail. In particular, we emphasize the singular importance
of the Higgs basis (defined to be a basis in which one of the
two neutral scalar fields has zero vacuum expectation
value), which possesses some important invariant features.
In this regard, we tweak the formalism of Ref. [34] to
emphasize the significance of the complex phase degree of
freedom associated with the definition of the Higgs basis.
This allows us to define invariant Higgs basis scalar fields,
which simplifies the subsequent analysis.
In Sec. III, we obtain expressions for the charged

and neutral Higgs mass-eigenstate fields in terms of the
invariant Higgs basis fields, which can then be expressed in
terms of the scalar fields of the original basis. The neutral
Higgs mass eigenstates arise after the diagonalization of a
3 × 3 squared-mass matrix, which yields three invariant
mixing angles. Although we have slightly modified the

formalism of Ref. [34], we can explicitly show that
one invariant mixing angle combines additively with a
parameter that represents the phase dependence implicit in
the definition of the Higgs basis. Hence, only two of the
three invariant mixing angles can be related to physical
observables.
In Sec. IV, we introduce a basis-invariant description of

the Higgs-fermion Yukawa interactions. We again tweak
the formalism of Ref. [34] in order to construct matrix
invariant Yukawa couplings. We then introduce the Type-I
and Type-II Yukawa Higgs-quark couplings [42–44] by
imposing a (softly broken) Z2 symmetry that defines the
parameter tan β and guarantees the absence of tree-level
Higgs-mediated FCNCs. Although the physics literature
treats tan β as a physical parameter of the 2HDM,1 we
emphasize that a residual basis dependence is still present
and associated with the freedom to interchange the two
Higgs fields in a basis where the softly broken Z2

symmetry is manifestly realized.
In Sec. V, a basis-independent treatment of the softly

broken Z2 symmetry (which is needed in the construction
of the Type-I and Type-II Yukawa interactions) is pre-
sented. Formal basis-independent expressions were origi-
nally given in Ref. [33], and explicit results in the case of
the CP-conserving 2HDM were presented in Ref. [45]. In
this paper, we provide the corresponding results that are
applicable if CP violation is present in the 2HDM, with a
careful analysis of all possible special cases. We sub-
sequently noticed that some equivalent results can also be
found in a paper by Lavoura [46], although the basis-
independent nature of Lavoura’s results was not initially
appreciated.
In Sec. VI, we are finally ready to carry out the basis-

independent treatment of the C2HDM. In the literature, the
parameters of the C2HDM are typically defined in the basis
where the softly broken Z2 symmetry is manifest and
where the two scalar field vacuum expectation values are
real and positive. Our goal was to provide a translation
between these parameters and the corresponding parame-
ters of the basis-independent formalism. In doing so, one
gains insight into the nature of the original C2HDM
parameters and their relations to physical quantities. We
again emphasize the significance of the residual basis
dependence associated with the interchange of the two
scalar fields.
In Sec. VII, we return to the paper of Lavoura [46]. We

provide the necessary detail to derive Lavoura’s results
and indicate where his results fall short (i.e., special cases

1The definition of the term “physical parameter” requires some
care. In this paper, we identify a Lagrangian parameter as a
physical parameter if it can be uniquely related to quantities that
can be obtained (in principle) from direct experimental measure-
ments. Note that parameters that cannot be defined in terms of
quantities that are invariant with respect to field redefinitions are
not physical parameters.
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in which Lavoura’s results do not apply). Lavoura
attempted to find two invariant conditions for identifying
the presence of spontaneous CP violation in the 2HDM. He
was able to find one of the conditions but unable to find the
second one. We complete his search and discuss various
special cases in which only one invariant condition is
required.
We briefly summarize our conclusions in Sec. VIII.

Additional details are relegated to five appendices.
Appendix A provides the necessary formulae for trans-
forming between two scalar field bases. In particular, we
exhibit how the parameters of the original basis of the
2HDM are expressed in terms of the parameters of the
Higgs basis. Appendix B treats the so-called exceptional
region of the 2HDM parameter space (the nomenclature
was introduced in Ref. [47]). Indeed, in this parameter
regime, special attention is mandated as some of our
derivations of basis-independent conditions provided in
the main text are not applicable in this case. Appendix C

demonstrates that the formal basis-independent conditions
for a (softly broken) Z2 symmetry given in Ref. [33] are
equivalent to the results of the explicit derivation given
in Sec. V. Appendix D provides a simple proof for the
existence of a particular basis of scalar field in which
the CP-odd invariants employed in Sec. VII take on
especially convenient forms. Finally, Appendix E examines
the mixing of the three neutral physical scalars of the
2HDM in a generic basis of the two scalar fields.

II. BASIS-INDEPENDENT FORMALISM
OF THE 2HDM

The fields of the two-Higgs-doublet model (2HDM)
consist of two identical complex hypercharge one, SU(2)
doublet scalar fields ΦaðxÞ≡ ðΦþ

a ðxÞ;Φ0
aðxÞÞ, where the

“Higgs flavor” index a ¼ 1; 2 labels the two-Higgs-doublet
fields. The most general renormalizable SUð2ÞL × Uð1ÞY
invariant scalar potential is given by

V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:� þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ ½λ6ðΦ†
1Φ1Þ þ λ7ðΦ†

2Φ2Þ�Φ†
1Φ2 þ H:c:

�
; ð2Þ

where m2
11, m

2
22, and λ1;…; λ4 are real parameters and m2

12,
λ5, λ6 and λ7 are potentially complex parameters. We
assume that the parameters of the scalar potential are
chosen such that the minimum of the scalar potential
respects the Uð1ÞEM gauge symmetry. Then, the scalar
field vacuum expectations values (vevs) are of the form

hΦ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i ¼

1ffiffiffi
2

p
�

0

v2eiξ

�
; ð3Þ

where v1 and v2 are real and non-negative, 0 ≤ ξ < 2π, and
v is determined by the Fermi constant,

v≡ ðv21 þ v22Þ1=2 ¼
2mW

g
¼ ð

ffiffiffi
2

p
GFÞ−1=2 ¼ 246 GeV:

ð4Þ

In writing Eq. (3), we have used a global Uð1ÞY hyper-
charge transformation to eliminate the phase of v1. The
bosonic part of the Higgs Lagrangian consists of a sum of
the scalar potential [Eq. (2)] and the gauge invariant kinetic
energy term,

LKE ¼ ðDμΦÞ†āðDμΦÞa: ð5Þ

In Eq. (5), the covariant derivative of the electroweak gauge
group acting on the scalar fields yields

DμΦa ¼
 ∂μΦþ

a þ½ igcW ð12− s2WÞZμþ ieAμ�Φþ
a þ igffiffi

2
p Wþ

μ Φ0
a

∂μΦ0
a−

ig
2cW

ZμΦ0
aþ igffiffi

2
p W−

μΦþ
a

!
;

ð6Þ

where sW ≡ sin θW and cW ≡ cos θW .
Since the scalar doublets Φ1 and Φ2 have identical

SUð2Þ × Uð1Þ quantum numbers, one is free to express the
scalar potential in terms of two orthonormal linear combi-
nations of the original scalar fields. The parameters
appearing in Eq. (2) depend on a particular basis choice
of the two scalar fields (denoted henceforth as the Φ basis).
The most general redefinition of the scalar fields that
leaves LKE invariant corresponds to a global U(2) trans-
formation, Φa → Uab̄Φb [and Φ†

ā → Φ†
b̄
U†

bā], where the

2 × 2 unitary matrix U satisfies U†
bāUac̄ ¼ δbc̄. In our

convention of employing unbarred and barred indices,
there is an implicit sum over unbarred–barred index pairs
such as a and ā.2

Following Refs. [8,9,33], the scalar potential can be
written in U(2)-covariant form,

2Note that replacing an unbarred index with a barred index is
equivalent to complex conjugation. An alternative but equivalent
convention makes use of lower and upper Higgs flavor indices in
place of barred and unbarred indices, in which case there is an
implicit sum over a repeated upper-lower index pair.
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V ¼ Yab̄Φ
†
āΦb þ

1

2
Zab̄cd̄ðΦ†

āΦbÞðΦ†
c̄ΦdÞ; ð7Þ

where the quartic couplings satisfy Zab̄cd̄ ¼ Zcd̄ab̄. The
hermiticity of the scalar potential implies that Yab̄ ¼ ðYbāÞ�
and Zab̄cd̄ ¼ ðZbādc̄Þ�. Under a flavor-U(2) transformation,
the tensors Yab̄ and Zab̄cd̄ transform covariantly: Yab̄ →

Uac̄Ycd̄U
†
db̄

and Zab̄cd̄ → UaēU
†
fb̄
UcḡU

†
hd̄
Zef̄gh̄. The coef-

ficients of the scalar potential depend on the choice of
basis. The transformation of these coefficients under a U(2)
basis change, exhibited explicitly in Eqs. (A2)–(A11), are
precisely the transformation laws of Y and Z given above.
For the convenience of the reader, we recapitulate the

ingredients of the basis-independent approach employed in
Ref. [34], in order to make this paper self-contained. In an
arbitrary scalar basis, the vevs of the two-Higgs-doublet
fields [cf. Eq. (3)] can be written compactly as

hΦai ¼
vffiffiffi
2

p
�

0

v̂a

�
; ð8Þ

where v̂ ¼ ðv̂1; v̂2Þ is a complex vector of unit norm. The
v̂a are the nonzero solutions to the equation obtained by
minimizing the scalar potential,

v̂�̄a

�
Yab̄ þ

1

2
v2Zab̄cd̄v̂

�̄
cv̂d

�
¼ 0: ð9Þ

A second unit vector ŵ can be defined that is orthogonal
to v̂,

ŵb ¼ v̂�̄aϵab; ð10Þ

where ϵ12 ¼ −ϵ21 ¼ 1 and ϵ11 ¼ ϵ22 ¼ 0. Indeed, v̂ and ŵ
are orthogonal due to the vanishing of the complex dot
product, v̂�̄

b
ŵb ¼ 0. Note that under a U(2) transformation,

v̂a → Uab̄v̂b; which implies that ŵa → ðdet UÞ−1Uab̄ŵb:

ð11Þ

Since the tensors Yab̄ and Zab̄cd̄ exhibit tensorial proper-
ties with respect to global U(2) transformations in the
Higgs flavor space, one can easily construct invariants with
respect to the U(2) by forming U(2)-scalar quantities. It is
convenient to define two Hermitian projection operators,

Vab̄ ≡ v̂av̂�̄b; Wab̄ ≡ ŵaŵ�̄
b
¼ δab̄ − Vab̄: ð12Þ

The matrices V and W can be used to define the following
manifestly basis-invariant real quantities that depend on the
scalar potential parameters [cf. Eq. (7)]:

Y1 ≡ TrðYVÞ; Y2 ≡ TrðYWÞ; ð13Þ

Z1 ≡ Zab̄cd̄VbāVdc̄; Z2 ≡ Zab̄cd̄WbāWdc̄; ð14Þ

Z3 ≡ Zab̄cd̄VbāWdc̄; Z4 ≡ Zab̄cd̄Vbc̄Wdā: ð15Þ

In addition, we shall define the following pseudoinvariant
(potentially complex) quantities:

Y3 ≡ Yab̄v̂
�̄
aŵb; ð16Þ

Z5 ≡ Zab̄cd̄v̂
�̄
aŵbv̂�̄cŵd; ð17Þ

Z6 ≡ Zab̄cd̄v̂
�̄
av̂bv̂

�̄
cŵd; ð18Þ

Z7 ≡ Zab̄cd̄v̂
�̄
aŵbŵ�̄

cŵd: ð19Þ

In particular, Eq. (11) implies that under a basis trans-
formation, Φa → Uab̄Φb,

½Y3; Z6; Z7� → ðdet UÞ−1½Y3; Z6; Z7� and

Z5 → ðdet UÞ−2Z5: ð20Þ

Note that Z�
5Z

2
6, Z�

5Z
2
7, and Z�

6Z7 are basis-invariant
quantities that can be obtained from the pseudoinvariants
Z5, Z6, and Z7.
Once the scalar potential minimum is determined, which

defines v̂a, one can introduce new Higgs-doublet fields that
define the Higgs basis,

H1 ¼ ðHþ
1 ; H

0
1Þ≡ v̂�̄aΦa; H2 ¼ ðHþ

2 ; H
0
2Þ≡ ŵ�̄

aΦa:

ð21Þ

The definitions of H1 and H2 imply that

hH0
1i ¼

vffiffiffi
2

p ; hH0
2i ¼ 0; ð22Þ

where we have used Eq. (8) and the fact that v̂ and ŵ are
complex orthogonal unit vectors. Note that the definition of
the scalar field H1 is basis independent, whereas the scalar
fieldH2 is a pseudoinvariant field due to the transformation
properties of ŵ given in Eq. (11). That is,H2 → ðdet UÞH2

under Φa → Uab̄Φb, where det U is a pure phase. The
pseudoinvariant nature of H2 is ultimately due to the fact
that one can rephase H2 while maintaining Eq. (22) which
defines the Higgs basis. Thus, one should really speak of a
class of Higgs bases that is characterized by an arbitrary
phase angle.
The significance of the quantities defined by Eqs. (13)–

(19) becomes clearer after rewriting the scalar potential in
terms of the Higgs basis fields,
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V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ½Y3H

†
1H2 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
�
1

2
Z5ðH†

1H2Þ2 þ ½Z6ðH†
1H1Þ þ Z7ðH†

2H2Þ�H†
1H2 þ H:c:

�
: ð23Þ

The minimization of the scalar potential in the Higgs basis
yields

Y1 ¼ −
1

2
Z1v2; Y3 ¼ −

1

2
Z6v2: ð24Þ

In light of Eq. (20), the form of the scalar potential is
invariant under the rephasing of the pseudoinvariant Higgs
basis field H2. However, one can make the basis invariance
of the scalar potential even more explicit by introducing
invariant Higgs basis fields,

H1 ≡H1; H2 ≡ eiηH2; ð25Þ

where eiη is a pseudoinvariant quantity that transforms
under the basis transformation, Φa → Uab̄Φb as

e−iη → ðdet UÞe−iη: ð26Þ

Equation (25) provides a new way of exhibiting explicitly
the existence of the class of Higgs bases parametrized by
the phase angle η. Equivalently, one can write

Φa ¼ H1v̂a þ e−iηH2ŵa: ð27Þ

In terms of the invariant Higgs basis fields, the scalar
potential is given by

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ½Y3e−iηH

†
1H2 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
�
1

2
Z5e−2iηðH†

1H2Þ2 þ ½Z6e−iηðH†
1H1Þ þ Z7e−iηðH†

2H2Þ�H†
1H2 þ H:c:

�
: ð28Þ

Due to Eqs. (20) and (26), all the coefficients of the scalar
potential given in Eq. (28) are manifestly basis invariant.
It is instructive to see what happens if one transforms

between two Higgs bases. That is, suppose that hΦ0
1i ¼

v=
ffiffiffi
2

p
and hΦ0

2i ¼ 0. To transform to another Higgs basis,
one can employ the U(2) transformation Φa → Uab̄Φb,
where U ¼ diagð1; eiχÞ. Then, Eq. (26) implies that
η → η − χ. It then follows that

½Y3; Z6; Z7� → e−iχ ½Y3; Z6; Z7� and Z5 → e−2iχZ5:

ð29Þ

In contrast, Y1, Y2, and Z1;2;3;4 are invariant when trans-
forming between two Higgs bases.
To summarize, the class of Higgs bases corresponds to

v̂ ¼ ð1; 0Þ and ŵ ¼ ð0; 1Þ; different Higgs basis choices are
parametrized by the phase angle η via H2 ¼ eiηΦ2 after
inserting ŵ ¼ ð0; 1Þ into Eq. (21). Indeed, inserting the
Higgs basis values of v̂ and ŵ into Eqs. (13)–(19) and then
rewriting the scalar potential [Eq. (7)] in terms of the
invariant Higgs basis fields defined in Eq. (21) yields
Eq. (28) as expected.
Finally, we note that the 2HDM scalar potential and

vacuum are CP invariant if one can find a choice of η such

that all the coefficients of the scalar potential in Eq. (28) are
real after imposing the scalar potential minimum conditions
given in Eq. (24). This condition is satisfied if and only if
[48] (see also Refs. [33,34])

ImðZ�
5Z

2
6Þ ¼ ImðZ�

5Z
2
7Þ ¼ ImðZ�

6Z7Þ ¼ 0: ð30Þ

III. THE CHARGED AND NEUTRAL HIGGS
MASS EIGENSTATES

To determine the Higgs mass eigenstates, one must
examine the terms of the scalar potential that are
quadratic in the scalar fields (after imposing the scalar
potential minimum conditions and defining shifted fields
with zero vevs). We have slightly tweaked the procedure
that was carried out in Ref. [34], and we summarize the
results here.
We parameterize the invariant Higgs basis fields H1 and

H2 as follows:

H1 ¼
� Gþ

1ffiffi
2

p ðvþ φ0
1 þ iG0Þ

�
; H2 ¼

� Hþ

1ffiffi
2

p ðφ0
2 þ ia0Þ

�
;

ð31Þ
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whereGþ (and its Hermitian conjugate) are the charged Goldstone bosons andG0 is the neutral Goldstone boson. The three
remaining neutral fields mix, and the resulting neutral Higgs squared-mass matrix in the φ0

1–φ0
2–a0 basis is

M2 ¼ v2

0B@ Z1 ReðZ6e−iηÞ −ImðZ6e−iηÞ
ReðZ6e−iηÞ 1

2
½Z34 þ ReðZ5e−2iηÞ� þ Y2=v2 − 1

2
ImðZ5e−2iηÞ

−ImðZ6e−iηÞ − 1
2
ImðZ5e−2iηÞ 1

2
½Z34 − ReðZ5e−2iηÞ� þ Y2=v2

1CA; ð32Þ

where Z34 ≡ Z3 þ Z4.
The squared-mass matrix M2 is real symmetric; hence, it can be diagonalized by a special real orthogonal

transformation,

RM2RT ¼ M2
D ≡ diagðm2

1; m
2
2; m

2
3Þ; ð33Þ

where R is a real matrix such that RRT ¼ I, det R ¼ 1 and the m2
i are the eigenvalues of M

2. A convenient form for R is

R ¼ R12R13R̄23 ¼

0B@ c12 −s12 0

s12 c12 0

0 0 1

1CA
0B@ c13 0 −s13

0 1 0

s13 0 c13

1CA
0B@ 1 0 0

0 c̄23 −s̄23
0 s̄23 c̄23

1CA
¼

0B@ c13c12 −s12c̄23 − c12s13s̄23 −c12s13c̄23 þ s12s̄23
c13s12 c12c̄23 − s12s13s̄23 −s12s13c̄23 − c12s̄23
s13 c13s̄23 c13c̄23

1CA; ð34Þ

where cij ≡ cos θij and sij ≡ sin θij. We have written c̄23 ≡
cos θ̄23 and s̄23 ≡ sin θ̄23 to distinguish between the angle
θ23 defined in Ref. [34] and the angle θ̄23 defined above.
Indeed, the angles θ12, θ13, and θ̄23 defined above are all
invariant quantities since they are obtained by diagonaliz-
ing M2 whose matrix elements are manifestly basis
invariant.
The neutral physical Higgs mass eigenstates are denoted

by h1, h2, and h3,

0B@ h1
h2
h3

1CA ¼ R

0B@φ0
1

φ0
2

a0

1CA ¼ RW

0B@
ffiffiffi
2

p
ReH0

1 − v

H0
2

H0 †
2

1CA; ð35Þ

which defines the unitary matrix W. A straightforward
calculation yields [34]

RW ¼

0BB@
q11

1ffiffi
2

p q�12e
iθ̄23 1ffiffi

2
p q12e−iθ̄23

q21
1ffiffi
2

p q�22e
iθ̄23 1ffiffi

2
p q22e−iθ̄23

q31
1ffiffi
2

p q�32e
iθ̄23 1ffiffi

2
p q32e−iθ̄23

1CCA; ð36Þ

where the qkl are listed in Table I. Employing Eqs. (21) and
(35), it follows that

hk ¼
1ffiffiffi
2

p ½Φ̄0 †
ā ðqk1v̂a þ qk2ŵae−iθ23Þ

þ ðq�k1v̂�̄a þ q�k2ŵ
�̄
ae

iθ23ÞΦ̄0
a�; ð37Þ

for k ¼ 1; 2; 3, where the shifted neutral fields are defined
by Φ̄0

a ≡Φ0
a − vv̂a=

ffiffiffi
2

p
. It is straightforward to verify that

Eq. (37) also applies to the neutral Goldstone boson if we
denote h0 ≡G0 and define q01 ¼ i and q02 ¼ 0 as indi-
cated in Table I.
We have also introduced the quantity,3

θ23 ≡ θ̄23 þ η: ð38Þ

Note that e−iθ23 is a pseudoinvariant quantity. In particular,
in light of Eq. (26), it follows that

e−iθ23 → ðdet UÞe−iθ23 ð39Þ

under a U(2) basis transformation, Φa → Uab̄Φb. This
transformation law is consistent with Eq. (11) and the fact
that the neutral Higgs mass-eigenstates hk are invariant
fields.4

3Note that θ23 corresponds precisely to the angle of the same
name employed in Ref. [34].

4The remaining freedom to define the overall sign of hk is
associated with the convention adopted for the domains of the
mixing angles θij, as discussed in Ref. [34], and is independent of
scalar field basis transformations.
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5Here we differ slightly from Ref. [34] where a noninvariant charged Higgs field, Hþ ¼ ŵ�̄
aΦþ

a , is employed.

For completeness, we note that Eqs. (21) and (31) yield
expressions for the massless charged Goldstone field,
Gþ ¼ v̂�̄aΦþ

a , and the charged Higgs field, Hþ¼eiηŵ�̄
aΦþ

a ,
with corresponding squared mass,

m2
H� ¼ Y2 þ

1

2
Z3v2: ð40Þ

Nevertheless, one is always free to rephase the charged
Higgs field without affecting any observable of the model.
It is convenient to rephase, Hþ → e−iθ̄23Hþ, which yields

Hþ ¼ eiθ̄23Hþ
2 ¼ eiθ23ŵ�̄

aΦþ
a : ð41Þ

Note that this rephasing is conventional and does not alter
the fact that Hþ is an invariant field with respect to scalar
field basis transformations.
Finally, one can invert Eq. (37) and include the charged

scalars to obtain5

Φa ¼
� Gþv̂a þHþe−iθ23ŵa

vffiffi
2

p v̂a þ 1ffiffi
2

p
P

3
k¼0 ðqk1v̂a þ qk2e−iθ23ŵaÞhk

�
:

ð42Þ

Although θ̄23 is an invariant parameter, it has no physical
significance, since it only appears in Eq. (42) in the
combination defined in Eq. (38). Indeed, if we now insert
Eq. (42) into the expression for the scalar potential given in
Eq. (7) to derive the bosonic couplings of the 2HDM, one
sees that θ̄23 never appears explicitly in any observable.
Consequently, one can simply set θ̄23 ¼ 0 without loss of
generality, which would identify η ¼ θ23 as the pseudoin-
variant phase angle that specifies the choice of Higgs basis.
It is useful to rewrite the neutral Higgs mass diagonal-

ization equation [Eq. (33)] as follows. With R≡ R12R13R̄23

given by Eq. (34), we define

fM2 ≡ R̄23M2R̄T
23 ¼ v2

0B@ Z1 ReðZ6e−iθ23Þ −ImðZ6e−iθ23Þ
ReðZ6e−iθ23Þ ReðZ5e−2iθ23Þ þ A2=v2 − 1

2
ImðZ5e−2iθ23Þ

−ImðZ6e−iθ23Þ − 1
2
ImðZ5e−2iθ23Þ A2=v2

1CA; ð43Þ

where A2 is the auxiliary quantity,

A2 ≡ Y2 þ
1

2
½Z3 þ Z4 − ReðZ5e−2iθ23Þ�v2: ð44Þ

Note that we have employed Eq. (38), which results in the appearance of e−iθ23 in the appropriate places given that
the matrix elements of fM2 are invariant quantities (but with no separate dependence on the invariant angle θ̄23). The
diagonal neutral Higgs squared-mass matrix is then given by

R̃fM2R̃T ¼ M2
D ¼ diagðm2

1; m
2
2; m

2
3Þ; ð45Þ

where the diagonalizing matrix R̃≡ R12R13 depends only on the invariant angles θ12 and θ13,

R̃ ¼

0B@ c12c13 −s12 −c12s13
c13s12 c12 −s12s13
s13 0 c13

1CA ¼

0B@q11 Re q12 Im q12
q21 Re q22 Im q22
q31 Re q32 Im q32

1CA: ð46Þ

Explicit expressions for the neutral Higgs boson squared masses requires one to solve a cubic characteristic equation that

yields the eigenvalues of fM2. The resulting expressions are unwieldy and impractical. Nevertheless, one can derive useful

relations by rewriting Eq. (45) as fM2 ¼ R̃TM2
DR̃ and employing Eq. (46). It then follows that

TABLE I. The U(2)-invariant quantities qkl are functions of the
neutral Higgs mixing angles θ12 and θ13, where cij ≡ cos θij and
sij ≡ sin θij. The neutral Goldstone boson corresponds to k ¼ 0.

k qk1 qk2

0 i 0
1 c12c13 −s12 − ic12s13
2 s12c13 c12 − is12s13
3 s13 ic13
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Z1 ¼
1

v2
X3
k¼1

m2
kðqk1Þ2; ð47Þ

Z4 ¼
1

v2

�X3
k¼1

m2
kjqk2j2 − 2m2

H�

�
; ð48Þ

after making use of Eq. (40) in the evaluation of Eq. (48),
and

Z5e−2iθ23 ¼
1

v2
X3
k¼1

m2
kðq�k2Þ2; ð49Þ

Z6e−iθ23 ¼
1

v2
X3
k¼1

m2
kqk1q

�
k2: ð50Þ

The conditions for a CP-invariant scalar potential and
vacuum were given in Eq. (30). These conditions are
satisfied in the following two cases:

1: ImðZ5e−2iθ23Þ ¼ ImðZ6e−iθ23Þ ¼ ImðZ7e−iθ23Þ ¼ 0;

ð51Þ

or

2: ImðZ5e−2iθ23Þ ¼ ReðZ6e−iθ23Þ ¼ ReðZ7e−iθ23Þ ¼ 0:

ð52Þ

In both cases, the neutral scalar squared-mass matrix given
in Eq. (43) assumes a block diagonal form consisting of a
2 × 2 mass matrix that yields the squared masses of two
neutral CP-even Higgs bosons and a 1 × 1 mass matrix
corresponding to the squared mass of a neutral CP-odd
Higgs boson. In this paper, our primary focus is the 2HDM
with a scalar sector that exhibits either explicit or sponta-
neous CP violation, in which case neither Eq. (30) nor
Eqs. (51) and (52) are satisfied.

IV. HIGGS-FERMION YUKAWA
INTERACTIONS

The Higgs boson couplings to the fermions arise from
the Yukawa Lagrangian. We shall slightly tweak the results
that were initially presented in Ref. [34] (with some
corrections subsequently noted in Ref. [49]). In terms of
the quark mass-eigenstate fields, the Yukawa Lagrangian in
the Φ basis is given by

−LY ¼ ŪLΦ0 �
ā hUa UR − D̄LK†Φ−

ā h
U
a UR þ ŪLKΦþ

a h
D †
ā DR þ D̄LΦ0

ah
D †
ā DR þ H:c:; ð53Þ

whereQR;L ≡ PR;LQ, with PR;L ≡ 1
2
ð1� γ5Þ [forQ ¼ U;D], K is the CKMmixing matrix, and the hU;D are 3 × 3Yukawa

coupling matrices. We can construct invariant matrix Yukawa couplings κQ and ρQ by defining6

κQ ≡ v̂�̄ah
Q
a ; ρQ ≡ eiθ23ŵ�̄

ah
Q
a : ð54Þ

Inverting these equations yields

hQa ¼ κQv̂a þ e−iθ23ρQŵa: ð55Þ

Inserting the above result into Eq. (53) and employing Eqs. (21), (25), and (38), we end up with the Yukawa Lagrangian
in terms of the invariant Higgs basis fields,

−LY ¼ ŪLðκUH0 †
1 þ e−iθ̄23ρUH0 †

2 ÞUR − D̄LK†ðκUH−
1 þ e−iθ̄23ρUH−

2 ÞUR

þ ŪLKðκD†Hþ
1 þ eiθ̄23ρD†Hþ

2 ÞDR þ D̄LðκD†H0
1 þ eiθ̄23ρD †H0

2ÞDR þ H:c: ð56Þ

In light of Eq. (22), κU and κD are proportional to the (real non-negative) diagonal quark mass matrices MU and MD,
respectively. In particular,

MU ¼ vffiffiffi
2

p κU ¼ diagðmu;mc;mtÞ; MD ¼ vffiffiffi
2

p κD† ¼ diagðmd;ms;mbÞ: ð57Þ

In contrast, the matrices ρU and ρD are independent complex 3 × 3 matrices.

6We have modified the definition of ρQ as compared to the one employed in Refs. [33,34,49] by including a factor of eiθ23 . This new
definition has been adopted as a matter of convenience since ρQ defined as in Eq. (54) is invariant with respect to basis transformations
of the scalar fields.
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One can now reexpress the Higgs basis fields in terms of mass-eigenstate charged and neutral Higgs fields by inverting
Eq. (35) and employing Eq. (41) to obtain the Yukawa couplings of the quarks to the physical scalars and to the Goldstone
bosons. Of course, the same result can be obtained directly by inserting Eq. (42) into Eq. (53). The end result is

−LY ¼ 1

v
D̄

�
MDðqk1PR þ q�k1PLÞ þ

vffiffiffi
2

p ½qk2ρD†
PR þ q�k2ρ

DPL�
�
Dhk

þ 1

v
Ū
�
MUðqk1PL þ q�k1PRÞ þ

vffiffiffi
2

p ½q�k2ρUPR þ qk2ρU†PL�
�
Uhk

þ
�
Ū½KρD †PR − ρU †KPL�DHþ þ

ffiffiffi
2

p

v
Ū½KMDPR −MUKPL�DGþ þ H:c:

�
; ð58Þ

where there is an implicit sum over k ¼ 0, 1, 2, 3 (and
h0 ≡G0).
As expected, the Higgs-quark Yukawa couplings depend

only on invariant quantities, namely, MQ and ρQ (for
Q ¼ U, D) and the invariant angles θ12, θ13, while all
dependence on θ̄23 has canceled. Since ρQ is in general a
complex matrix, Eq. (58) exhibits CP-violating neutral-
Higgs-fermion interactions. Moreover, Higgs-mediated
FCNCs are present at tree level in cases where the ρQ

are not flavor diagonal.
To avoid tree-level Higgs-mediated FCNCs, we shall

impose a Z2 symmetry on the Higgs Lagrangian specified
by Eqs. (2), (5), and (53). If the scalar potential respects
the discrete symmetry Φ1 → Φ1 and Φ2 → −Φ2, then it
follows that m2

12 ¼ λ6 ¼ λ7 ¼ 0. However, phenomeno-
logical considerations allow for the presence of a soft
Z2-breaking term, m2

12 ≠ 0. Consequently, we shall
henceforth apply the Z2 symmetry exclusively to the
dimension-four terms of the Higgs Lagrangian. Note that
the action of the Z2 symmetry on the scalar fields is basis
dependent. In Sec. V, we shall recast this action in a basis-
independent form.
One must also impose the Z2 symmetry on the Yukawa

Lagrangian, which defines the so-called Z2 basis. Four
possible Z2 charge assignments are exhibited in Table II,

Type Ia∶ hU1 ¼ hD1 ¼ 0; Type Ib∶ hU2 ¼ hD2 ¼ 0;

ð59Þ

Type IIa∶ hU1 ¼ hD2 ¼ 0; Type IIb∶ hU2 ¼ hD1 ¼ 0:

ð60Þ

Of course, the above conditions are basis dependent. Types
Ia and Ib (collectively denoted by Type I) and Types IIa
and IIb (collectively denoted by Type II) are essentially
equivalent, respectively, differing only in which scalar is
denoted byΦ1 and which is denoted byΦ2. In Ref. [34], the
following basis-independent conditions were given:

Type I∶ ϵā b̄h
D
a hUb ¼ ϵabh

D†
ā hU†

b̄
¼ 0; ð61Þ

Type II∶ δab̄h
D†
ā hUb ¼ 0; ð62Þ

which are clearly satisfied in the Z2 basis. Employing
Eq. (55) yields the invariant conditions,

Type I∶ κDρU − κUρD ¼ 0; ð63Þ

Type II∶ κDκU þ ρD†ρU ¼ 0; ð64Þ

where we have used the fact that κQ is a real matrix
[cf. Eq. (57)].
In the Z2 basis, Eq. (3) yields v̂ ¼ ðcos β; eiξ sin βÞ and

ŵ ¼ ð−e−iξ sin β; cos βÞ, where tan β≡ jv2j=jv1j. Hence,
using Eqs. (54) and (57), one obtains

TABLE II. Four possible Z2 charge assignments that forbid tree-level Higgs-mediated FCNC effects in the 2HDM Higgs-quark
Yukawa interactions and the corresponding invariant Yukawa coupling matrix parameters. The Type Ia and Ib cases (collectively
referred to as Type I) and the Type IIa and IIb cases (collectively referred to as Type II) differ, respectively, by the interchange of
Φ1 → Φ2 or equivalently by the interchange of cot β → tan β. The presence of the Z2 symmetry fixes ρU and ρD to be diagonal matrices
as exhibited below.

Φ1 Φ2 UR DR UL, DL ρU ρD

Type Ia þ − − − þ eiðξþθ23Þð ffiffiffi
2

p
MU=vÞ cot β eiðξþθ23Þð ffiffiffi

2
p

MD=vÞ cot β
Type Ib þ − þ þ þ −eiðξþθ23Þð ffiffiffi

2
p

MU=vÞ tan β −eiðξþθ23Þð ffiffiffi
2

p
MD=vÞ tan β

Type IIa þ − − þ þ eiðξþθ23Þð ffiffiffi
2

p
MU=vÞ cot β −eiðξþθ23Þð ffiffiffi

2
p

MD=vÞ tan β
Type IIb þ − þ − þ −eiðξþθ23Þð ffiffiffi

2
p

MU=vÞ tan β eiðξþθ23Þð ffiffiffi
2

p
MD=vÞ cot β
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Type Ia∶ ρU ¼ eiðξþθ23Þ
ffiffiffi
2

p
MU cot β

v
; ρD ¼ eiðξþθ23Þ

ffiffiffi
2

p
MD cot β

v
; ð65Þ

Type Ib∶ ρU ¼ −
eiðξþθ23Þ

ffiffiffi
2

p
MU tan β

v
; ρD ¼ −

eiðξþθ23Þ
ffiffiffi
2

p
MD tan β

v
; ð66Þ

Type IIa∶ ρU ¼ eiðξþθ23Þ
ffiffiffi
2

p
MU cot β

v
; ρD ¼ −

eiðξþθ23Þ
ffiffiffi
2

p
MD tan β

v
; ð67Þ

Type IIb∶ ρU ¼ −
eiðξþθ23Þ

ffiffiffi
2

p
MU tan β

v
; ρD ¼ eiðξþθ23Þ

ffiffiffi
2

p
MD cot β

v
; ð68Þ

which we have also recorded in Table II. Indeed, ρU and ρD

are proportional to the diagonal quark matrices MU and
MD, respectively, indicating that the tree-level Higgs-quark
couplings are flavor diagonal. Since the ρQ are basis
invariants, the quantity, eiðξþθ23Þ tan β, is a physical param-
eter in the 2HDM with Type-I or Type-II Yukawa cou-
plings.
In particular, note that one still has the freedom to make a

transformation that interchanges Φ1 ↔ Φ2 in the Z2 basis.
In performing such a basis transformation, one must also
interchange tan β ↔ cot β while changing the sign of the
quantity eiðξþθ23Þ [as we shall demonstrate in Eq. (75)].
These two parameter transformations simply result in the
interchange of the a and b versions of the Type-I and Type-
II Yukawa couplings. Once a specific discrete symmetry is
chosen (among the four specified in Table II), tan β is
promoted to a physical parameter of the model. It then
follows that eiðξþθ23Þ is also physical. However, the param-
eters ξ and θ23 separately retain their basis-dependent
nature.
In contrast, the parameter tan β does not appear in the

bosonic couplings of the 2HDM. This statement is easily
checked by inserting Eq. (42) into Eqs. (2) and (5), which
yields the Higgs self-couplings and the Higgs couplings to
vector bosons [34]. The couplings of the Higgs bosons to
the gauge bosons depend only on the gauge couplings and
the invariant mixing angles θ12 and θ13 by virtue of Eqs. (5)
and (42).7 The Higgs self-couplings will additionally
depend on invariant combinations of the Zi and e−iθ23 . If
there exists a scalar field basis in which λ6 ¼ λ7 ¼ 0, then
this basis is related to the Higgs basis by a rotation by the
angle β. The existence of such a basis will yield an invariant
relation among the Zi that will be derived in the next
section. It is only through this relation [cf. Eqs. (82) and

(83)] that tan β can be indirectly probed via the Higgs self-
couplings.

V. BASIS-INDEPENDENT TREATMENT
OF THE Z2 SYMMETRY

The Z2 symmetry of the 2HDM scalar potential is
manifestly realized in a scalar field basis where
m2

12 ¼ λ6 ¼ λ7 ¼ 0, and is softly broken if m2
12 ≠ 0 in a

basis where λ6 ¼ λ7 ¼ 0. Of course, such a description is
basis dependent. In this section, we explore a basis-
independent characterization of the Z2 symmetry, where
the symmetry is either exact or softly broken. We obtain
conditions in terms of Higgs basis parameters that are
independent of the initial choice of scalar field basis. Our
analysis generalizes results previously obtained in
Refs. [25,45,46]. The connection of the results obtained
in this section with the basis-independent conditions that
are independent of the vacuum, derived in Ref. [33], is
discussed in Appendix C. An alternative basis-independent
treatment of the Z2 symmetry based on the bilinear
formalism of the 2HDM scalar potential can be found in
Refs. [36,39,40].

A. The inert doublet model

A very special case of the 2HDM is the so-called
inert doublet model (IDM). In this model, the Higgs basis
exhibits an exact Z2 symmetry,H1 → H1 andH2 → −H2.
Imposing this symmetry on the scalar potential given in
Eq. (28) yields

Y3 ¼ Z6 ¼ Z7 ¼ 0: ð69Þ

The conditions given in Eq. (69) are basis independent
given that Y3, Z6, and Z7 are pseudo-invariant quantities.
Note that it is sufficient to impose the Z2 symmetry on the
dimension-four terms of Eq. (28), since if Z6 ¼ 0 then
Y3 ¼ 0 due to the scalar potential minimum conditions of
Eq. (24). Thus, in this case, it is not possible to softly break
the Z2 symmetry.
To complete the definition of the IDM, the Higgs-

fermion Yukawa couplings are fixed by imposing the

7Note that the Type-I or Type-II conditions remove two of the
four gauge invariant Yukawa couplings [cf. Eqs. (59) and (60)],
which ultimately provide meaning for the parameter tan β. In
contrast, the imposition of the (softly broken) Z2 symmetry does
not remove any of the Higgs boson–gauge boson couplings,
whose forms are fixed by gauge invariance.
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condition that all fermion fields are even under the Z2

symmetry. This corresponds to Type-Ib Yukawa couplings
as specified in Table II with tan β ¼ 0. In this case,
ρU ¼ ρD ¼ 0, which implies that the doublet H2 does
not couple to the fermions. Consequently, H2 is called an
inert doublet. Due to the fact that Z6 ¼ 0, the tree-level
couplings of the neutral scalar that resides in the doubletH1

are precisely those of the SM Higgs boson. Moreover, in
the bosonic sector of the theory, the scalar fields that reside
in the doublet H2 can only couple in pairs to the gauge
bosons and to the SM Higgs boson.
In light of Eq. (69), Z5 is the only potentially complex

parameter of the IDM scalar potential. This means that one
is free to rephase the pseudoinvariant Higgs basis field H2

such that all Higgs basis scalar potential parameters are
real. Hence, the IDM scalar potential and vacuum are CP
conserving. Since the main interest of this paper is the
2HDMwith a softly brokenZ2 symmetry and CP violation,
we shall henceforth assume that the Z2 symmetry of the
dimension-four terms of the scalar potential is manifestly
realized in a basis that is not the Higgs basis. That is, Z6 and
Z7 are not both simultaneously equal to zero. This
assumption will allow for the possibility of a 2HDM scalar
sector that exhibits either explicit or spontaneous CP
violation.

B. A softly broken Z2 symmetry

Suppose that the Z2 symmetry of the dimension-four
terms of the scalar potential is manifestly realized in some
scalar field basis (henceforth denoted as the Z2 basis),
which implies that λ6 ¼ λ7 ¼ 0 in this basis. In light of
Eqs. (A29) and (A30), it follows that the Z2 basis exists if
and only if values of β and ξ can be found such that

1

2
s2βðZ1 − Z2Þ þ c2βReðZ67eiξÞ þ iImðZ67eiξÞ ¼ 0; ð70Þ

1

2
s2βc2β½Z1 þ Z2 − 2Z34 − 2ReðZ5e2iξÞ�
− is2βImðZ5e2iξÞ þ c4βRe½ðZ6 − Z7Þeiξ�
þ ic2βIm½ðZ6 − Z7Þeiξ� ¼ 0; ð71Þ

where Z34 ≡ Z3 þ Z4 and Z67 ≡ Z6 þ Z7. The real and
imaginary parts of Eqs. (70) and (71) yield four indepen-
dent real equations.
The Z2 basis is not unique. Suppose, we choose a Φ

basis in which λ6 ¼ λ7 ¼ 0. To maintain the conditions,
λ6 ¼ λ7 ¼ 0, it is still possible to transform to a new Φ0
basis that is related to the Φ basis according to
Φ0

a ¼ Uab̄Φb, where

U ¼
�

0 e−iξ

eiζ 0

�
: ð72Þ

In particular, by noting that� sβ

cβeiζ

�
¼ U

� cβ

sβeiξ

�
; ð73Þ

it immediately follows that β0 ¼ 1
2
π − β and ξ0 ¼ ζ.

Moreover, after employing Eq. (20), where detU ¼
−eiðζ−ξÞ, it follows that if Φa → Uab̄Φb with U given by
Eq. (72), then

Z5e2iξ → Z5e2iξ; Z6eiξ → −Z6eiξ;

Z7eiξ → −Z7eiξ; s2β → s2β; c2β → −c2β: ð74Þ

That is, the left-hand side of Eq. (70) [Eq. (71)] is
transformed into [the negative of] its complex conjugate,
and the four real equations obtained from Eqs. (70) and (71)
are unchanged. Likewise, using Eq. (39), it follows that if
Φa → Uab̄Φb with U given by Eq. (72), then

eiðξþθ23Þ → −eiðξþθ23Þ; ð75Þ
which shows that the phase factor, eiðξþθ23Þ, appearing in the
expressions for ρQ exhibited in Eqs. (65)–(68), changes
sign when transforming from the Φ basis to the Φ0 basis.
Consequently, the effect of this scalar field transformation
is to interchange the a and b versions of the Type-I and
Type-II Yukawa couplings as asserted below Eq. (68).
Returning to Eqs. (70) and (71), we first take the

imaginary part of Eq. (70) to obtain

ImðZ67eiξÞ ¼ 0: ð76Þ
Assuming that Z67 ≠ 0 (we will return to the case of
Z67 ¼ 0 later), we shall denote

Z67 ¼ jZ67jeiθ67 : ð77Þ
Then, Eq. (76) implies that ξþ θ67 ¼ nπ, for some integer
n, or equivalently

eiξ ¼ �e−iθ67 : ð78Þ
The two possible sign choices in Eq. (78) correspond to the
Φ and Φ0 basis choices identified above in which λ6 ¼
λ7 ¼ 0 is satisfied. Employing Eq. (78) in Eqs. (70) and
(71) yields

1

2
s2βðZ1 − Z2Þ � c2βjZ67j ¼ 0; ð79Þ

1

2
s2βc2β½Z1 þ Z2 − 2Z34 − 2ReðZ5e−2iθ67Þ�
− is2βImðZ5e−2iθ67Þ � c4βRe½ðZ6 − Z7Þe−iθ67 �
� ic2βIm½ðZ6 − Z7Þe−iθ67 � ¼ 0: ð80Þ
Assuming Z1 ≠ Z2 (we will return to the case of Z1 ¼ Z2

below), Eq. (79) yields
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s2β
c2β

¼ � 2jZ67j
Z2 − Z1

: ð81Þ

Since 0 ≤ β ≤ 1
2
π, it follows that

s2β ¼
2jZ67jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ2 − Z1Þ2 þ 4jZ67j2
p ;

c2β ¼
�ðZ2 − Z1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ2 − Z1Þ2 þ 4jZ67j2
p : ð82Þ

In particular,

tan β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β
1þ c2β

s
; ð83Þ

which demonstrates that tan β in the Φ basis corresponds to
cot β in the Φ0 basis. Moreover,

eiðξþθ23Þ ¼ �eiðθ23−θ67Þ ¼ � jZ67j
Z67e−iθ23

¼
�

Z2 − Z1

2Z67e−iθ23

�
s2β
c2β

:

ð84Þ
Note that Eq. (84) is consistent with the result of Eq. (75).
Plugging the results of Eq. (82) back into Eq. (80),

jZ67jðZ2 − Z1Þ½Z1 þ Z2 − 2Z34 − 2ReðZ5e−2iθ67Þ� þ ½ðZ2 − Z1Þ2 − 4jZ67j2�Re½ðZ6 − Z7Þe−iθ67 �
� iDfðZ2 − Z1ÞIm½ðZ6 − Z7Þe−iθ67 � − 2jZ67jImðZ5e−2iθ67Þg ¼ 0; ð85Þ

where D≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ2 − Z1Þ2 þ 4jZ67j2

p
. We can use Eq. (77) to write e−iθ67 ¼ Z�

67=jZ67j. It then follows that

ðZ2 − Z1Þ½jZ67j2ðZ1 þ Z2 − 2Z34Þ − 2ReðZ�
5Z

2
67Þ� þ ½ðZ2 − Z1Þ2 − 4jZ67j2�½jZ6j2 − jZ7j2�

� 2iDfðZ1 − Z2ÞImðZ�
6Z7Þ þ ImðZ�

5Z
2
67Þg ¼ 0: ð86Þ

Taking the real and imaginary parts of Eq. (86) and massaging the real part yield

ðZ1 − Z2Þ½Z34jZ67j2 − Z2jZ6j2 − Z1jZ7j2 − ðZ1 þ Z2ÞReðZ�
6Z7Þ þ ReðZ�

5Z
2
67Þ� − 2jZ67j2ðjZ6j2 − jZ7j2Þ ¼ 0; ð87Þ

ðZ1 − Z2ÞImðZ�
6Z7Þ þ ImðZ�

5Z
2
67Þ ¼ 0: ð88Þ

It is convenient to multiply Eq. (88) by −i and add the result to Eq. (87). This yields a single complex equation. Finally,
since Z67 ≠ 0 by assumption, one can divide this complex equation by Z�

67 and take the complex conjugate of the result
to obtain

ðZ1 − Z2Þ½Z34Z�
67 − Z1Z�

7 − Z2Z�
6 þ Z�

5Z67� − 2Z�
67ðjZ6j2 − jZ7j2Þ ¼ 0: ð89Þ

The cases where Z1 ¼ Z2 and/or Z67 ¼ 0 are easily
treated. First, if Z1 ¼ Z2 and Z67 ≠ 0, then Eqs. (79) and
(80) imply that s2β ¼ 1 and c2β ¼ 0, and it follows that
ImðZ�

5Z
2
67Þ ¼ 0 and jZ6j ¼ jZ7j. Second, if Z67 ¼ 0 and

Z1 ≠ Z2, then Eq. (70) yields s2β ¼ 0, which when inserted
into Eq. (71) implies that Z6eiξ ¼ 0. That is, if Z67 ¼ 0,
then Z6 ¼ Z7 ¼ 0, and the Z2 symmetry is manifest in the
Higgs basis, as noted in Sec. VA. In this latter case, one
must employ the Type-Ib Yukawa interactions, which yield
ρU ¼ ρD ¼ 0. This corresponds to the case of tan β ¼ 0 in
Eq. (66).8 Likewise, in the case of Type-II couplings,MU ¼
ρD ¼ 0 and ρU is a arbitrary complex matrix. In the IDM
(corresponding to a Type-Ib Yukawa sector with

Z6 ¼ Z7 ¼ 0), the fermions couple only to the Z2-even
scalar doublet H1, whose tree-level interactions exactly
coincide with those of the SM Higgs doublet.
Finally, the case of Z1 ¼ Z2 and Z67 ¼ 0 requires special

treatment; this case has been dubbed the “exceptional
region” of the 2HDM parameter space in Ref. [47]. The
analysis of Appendix B shows that in this exceptional case,
there always exists a scalar field basis in which the softly
broken Z2 symmetry is manifestly realized. Furthermore,
Eqs. (88) and (89) are trivially satisfied in the exceptional
region of the 2HDM parameter space.
In conclusion, Eq. (89) is a necessary condition for the

presence of a softly broken Z2 symmetry. It is also a
sufficient condition in all cases with one exception.
Namely, if Z1 ¼ Z2, Z5 ≠ 0, and Z67 ≠ 0, then Eq. (89)
must be supplemented with the additional constraint
of ImðZ�

5Z
2
67Þ ¼ 0.

8If one were to employ Type-Ia Yukawa couplings, then one
would find that MU ¼ MD ¼ 0, while ρU and ρD are arbitrary
complex matrices.
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In the case of the CP-conserving 2HDM, it is possible to
rephase the pseudoinvariant Higgs basis field H2 such that
all of the Zi are real. In this real basis, Eq. (89) reduces to

ðZ1 − Z2Þ½ðZ34 þ Z5ÞZ67 − Z2Z6 − Z1Z7�
− 2Z2

67ðZ6 − Z7Þ ¼ 0; ð90Þ

a result previously given in eq. (54) of Ref. [45]. The scalar
basis in which λ6 ¼ λ7 ¼ 0 is obtained from the Higgs basis
by a rotation by an angle β, which is determined by
Eq. (81),

cot 2β ¼ Z2 − Z1

2Z67

; ð91Þ

in a convention where v1 and v2 are non-negative [in which
case ξ ¼ 0 so that sgnZ67 ¼ �1 in light of Eq. (78)]. Once
again, the exceptional region of parameter space where
Z1 ¼ Z2 and Z67 ¼ 0 must be treated separately. Using
Eqs. (B2) and (B3) with ξ ¼ 0 and real Zi, it follows that
cot 2β is a solution of Eq. (B7), where Z5 and Z6 are real
and� is identified with sgnZ6 (or equivalently, replace jZ6j
with Z6 and replace � with a plus sign).

C. Softly broken Z2 symmetry and spontaneously
broken CP symmetry

Suppose that the conditions for a softly broken Z2-
symmetric scalar potential obtained in Sec. V B are
satisfied. Then a Z2 basis exists (which is not unique) in
which λ6 ¼ λ7 ¼ 0. If in addition,

Imðλ�5½m2
12�2Þ ¼ 0; ð92Þ

then one can rephase one of the scalar fields such that m2
12

and λ5 are simultaneously real. In this case, the scalar
potential is explicitly CP invariant. In addition, if in this so-
called real Z2 basis there is an unremovable complex phase
in the vevs, that is,

Imðv�1v2Þ ¼
1

2
v2s2β sin ξ ≠ 0; ð93Þ

then the CP symmetry of the scalar potential is sponta-
neously broken.
Using Eqs. (A20) and (A25),

Imðλ�5½m2
12�2Þ ¼

�
1

4
s22β½Z1 þ Z2 − 2Z345� þ ReðZ5e2iξÞ þ s2βc2βRe½ðZ6 − Z7Þeiξ�

�
× ½ðY1 − Y2Þs2β þ 2ReðY3eiξÞc2β�ImðY3eiξÞ

−
�
1

4
½ðY1 − Y2Þs2β þ 2ReðY3eiξÞc2β�2 − ½ImðY3eiξÞ�2

�
× ½c2βImðZ5e2iξÞ þ s2βIm½ðZ6 − Z7Þeiξ��; ð94Þ

where Z345 ≡ Z34 þ ReðZ5e2iξÞ. Next, we employ the
potential minimum conditions [Eq. (24)], Y1 ¼ − 1

2
Z1v2

and Y3 ¼ − 1
2
Z6v2, and we make use of Eq. (82) for s2β and

c2β. To make further progress, we first assume that Z1 ≠ Z2

and Z67 ≠ 0. In this case, we can use Eqs. (77) and (78) to
write eiξ ¼ �Z�

67=jZ67j. It is convenient to introduce the
following notation:

f1 ≡ jZ67j2; f2 ≡ jZ7j2 − jZ6j2; f3 ≡ ImðZ6Z�
7Þ:
ð95Þ

It then follows that

ReðZ6eiξÞ ¼ �ReðZ6Z�
7Þ þ jZ6j2

jZ67j
¼ � 1

2
ðf1 − f2Þf−1=21 ;

ð96Þ

ImðZ6eiξÞ ¼ � ImðZ6Z�
7Þ

jZ67j
¼ �f3f

−1=2
1 ; ð97Þ

Re½ðZ6 − Z7Þeiξ� ¼ �
�jZ6j2 − jZ7j2

jZ67j
�

¼∓ f2f
−1=2
1 ;

ð98Þ

Im½ðZ6 − Z7Þeiξ� ¼ � 2ImðZ6Z�
7Þ

jZ67j
¼ �2f3f

−1=2
1 : ð99Þ

Finally, we employ Eqs. (87) and (88) to obtain

ReðZ5e2iξÞ ¼
ReðZ�

5Z
2
67Þ

jZ67j2
¼ 2f2

Z2 − Z1

þ 1

2
ðZ1 þ Z2Þ

− Z34 þ
ðZ1 − Z2Þf2

2f1
; ð100Þ

ImðZ5e2iξÞ ¼ −
ImðZ�

5Z
2
67Þ

jZ67j2
¼ ðZ2 − Z1Þf3

f1
: ð101Þ
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Plugging the above results into Eq. (94), we end up with

Imðλ�5½m2
12�2Þ ¼ ∓ v4f3F

16f21ðZ1 − Z2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ2 − Z1Þ2 þ 4f1

p ; ð102Þ

where the function F is given by9

F ¼ f21

�
16ðZ1 − Z2Þ

�
Y2

v2

�
2

þ 16½f2 þ ðZ1 − Z2ÞZ34�
�
Y2

v2

�
þ 4f2ðZ1 þ Z2Þ − ðZ2

1 − Z2
2ÞðZ1 þ Z2 − 4Z34Þ

�
− ðf22 þ 4f23ÞðZ1 − Z2Þ3 − 2f1f2ðZ1 − Z2Þ2ðZ1 þ Z2 − 2Z34Þ þ 4f1ðf22 − 4f23ÞðZ1 − Z2Þ: ð103Þ

Thus, Imðλ�5½m2
12�2Þ ¼ 0 if one of two conditions

are satisfied: f3 ¼ 0 and/or F ¼ 0. If f3 ¼ 0, then it
follows that ImðZ5e2iξÞ ¼ ImðZ6eiξÞ ¼ ImðZ7eiξÞ ¼ 0.
This implies that one can rephase the Higgs basis field
H2 such that Z5, Z6, and Z7 are simultaneously real
[which also implies that Y3 is real by Eq. (24)]. That is,
all the coefficients of the scalar potential in the Higgs
basis and the corresponding vevs are real, implying
that the scalar potential and the vacuum are CP
conserving. In contrast, if f3 ≠ 0 and F ¼ 0, then the
scalar potential is explicitly CP conserving as noted
below Eq. (92). However, in the Z2 basis in which all
scalar potential parameters are real, the vevs exhibit a
complex phase that cannot be removed by a basis trans-
formation while maintaining real coefficients in the
scalar potential. In particular, ImðZ6Z�

7Þ ≠ 0 implies
that no real Higgs basis exists, which is a signal of
CP violation.10 Thus, f3 ≠ 0 and F ¼ 0 is a basis-
independent signal of spontaneous CP violation.11

If F ¼ 0, then Eq. (103) provides a quadratic equation
for Y2 that yields Y2 ∼OðZiÞ. In contrast, the decoupling
limit of the 2HDM corresponds to Y2 ≫ v [34]. Since
jZij=4π ≲Oð1Þ as a consequence of tree-level unitarity
[49–55], it follows that the 2HDM with a softly broken Z2

symmetry and spontaneous CP violation possesses no
decoupling limit [56].

To complete the analysis of this subsection, we must
address the special cases in which either Z1 ¼ Z2 and/or
Z67 ¼ 0. As noted below Eq. (89), if Z1 ¼ Z2 and Z67 ≠ 0,
then Eqs. (79) and (80) imply that s2β ¼ 1 and c2β ¼ 0, and
it follows that ImðZ�

5Z
2
67Þ ¼ 0 and jZ6j ¼ jZ7j in light of

Eqs. (87) and (88). Then, Eq. (94) yields

Imðλ�5½m2
12�2Þ

¼ ∓ v4f3
8f3=21

�
f1

�
4

�
Y2

v2

�
2

þ 2Y2

v2
ðZ1 þ Z34Þ þ Z1Z34

�
− 4f23 −

�
Z1 þ

2Y2

v2

�
ReðZ�

5Z
2
67Þ
�
: ð104Þ

Note that in contrast to Eq. (100), ReðZ�
5Z

2
67Þ is not

determined in terms of the Zi, f1, and f2, since in the
case of Z1 ¼ Z2, this quantity is not constrained by
Eqs. (87) and (88). Indeed, another way to derive
Eq. (104) is to use Eq. (100) to solve for f2 in terms of
ReðZ�

5Z
2
6Þ and substitute this result back into Eq. (103). In

this way, the factor of Z1 − Z2 in the denominator of
Eq. (102) is canceled. The resulting expression is signifi-
cantly more complicated than the one given in Eq. (103).
Nevertheless, by setting Z1 ¼ Z2 in this latter expression,
we have checked that one recovers the result of Eq. (104).
Thus, we again conclude that spontaneous CP violation
occurs if f3 ≠ 0 and the following basis-independent
condition is satisfied:

f1

�
4

�
Y2

v2

�
2

þ 2Y2

v2
ðZ1 þ Z34Þ þ Z1Z34

�
− 4f23 −

�
Z1 þ

2Y2

v2

�
ReðZ�

5Z
2
67Þ ¼ 0: ð105Þ

Next, as noted below Eq. (89), if Z67 ¼ 0 and Z1 ≠ Z2,
then Eqs. (70) and (71) imply that Z6 ¼ Z7 ¼ 0. Thus, an
unbroken Z2 symmetry is manifestly realized in the Higgs
basis. That is, in this case, one identifies m2

12 ¼ 0 and thus
Imðλ�5½m2

12�Þ ¼ 0 is trivially satisfied. Moreover, one can
rephase the Higgs basis fieldH2 such that Z5 is real. Hence,

9An expression forF was first derived by Lavoura in Ref. [46],
although his eq. (22) contains a misprint in which the factor of f2
in the coefficient of ðZ1 − Z2Þ2ðZ1 þ Z2 − 2Z34Þ in Eq. (103)
was inadvertently dropped.

10We define a real Higgs basis to be the basis in which the
potentially complex parameters Z5, Z6, and Z7 are simultane-
ously real. In this case, Y3 is also real in light of Eq. (24).
Note that a real Higgs basis exists if and only if ImðZ2

6Z
�
5Þ ¼

ImðZ2
7Z

�
5Þ ¼ ImðZ6Z�

7Þ ¼ 0, in which case one can rephase the
Higgs basis fieldH2 appropriately to achieve the real Higgs basis.
In the 2HDM, the existence of a real Higgs basis is a necessary
and sufficient condition for a CP-conserving scalar potential and
vacuum.

11Basis-independent conditions for spontaneous CP violation
have also been obtained in the bilinear formalism of the 2HDM in
Refs. [37,38].
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a real Higgs basis exists which implies that both the scalar
potential and the vacuum are CP conserving.
So far, in all cases considered above, the conditions λ6 ¼

λ7 ¼ 0 and Imðλ�5½m2
12�2Þ ¼ 0 in theΦ basis were necessary

and sufficient for an explicitly CP-conserving scalar poten-
tial. One encounters a surprising result when considering
the final case of the exceptional region of parameter space,
where Z1 ¼ Z2 and Z7 ¼ −Z6 ≠ 0, where the only poten-
tially CP-violating invariant is ImðZ�

5Z
2
6Þ. Suppose that the

Higgs basis parameters satisfy ImðZ�
5Z

2
6Þ ¼ 0, Z1 ¼ Z2 and

Z7 ¼ −Z6 ≠ 0. Then, there exists a Φ basis that satisfies
λ6 ¼ λ7 ¼ 0, β ¼ 1

4
π, and cosðξþ θ6Þ ¼ 0, where

θ6 ¼ argZ6. It follows that

ImðZ5e2iξÞ ¼
ImðZ�

5Z
2
6Þ

jZ6j2
¼ 0;

ReðZ6eiξÞ ¼ ReðZ7eiξÞ ¼ 0; ð106Þ

ReðZ5e2iξÞ ¼ −
ReðZ�

5Z
2
6Þ

jZ6j2
;

ImðZ6eiξÞ ¼ −ImðZ7eiξÞ ¼ �jZ6j; ð107Þ

where the sign choice in Eq. (107) is correlated with
sinðξþ θ6Þ ¼ �1. In light of Eqs. (A26) and (A27), it
follows that λ6 ¼ λ7 ¼ 0. If we now insert the above results
into Eqs. (A20) and (A25) and employ the scalar potential
minimum conditions [Eq. (24)], then

m2
12e

iξ ¼ 1

4
v2
��

Z1 þ
2Y2

v2

�
� 2ijZ6j

�
;

λ5e2iξ ¼
1

2

�
Z1 − Z34 −

ReðZ�
5Z

2
6Þ

jZ6j2
�
� 2ijZ6j: ð108Þ

Hence, for generic choices of the remaining scalar potential
parameters, one can conclude that a parameter regime
within the exceptional region of the parameter space exits
where

Imðλ�5½m2
12�2Þ

¼ � v4

8jZ6j
�
jZ2

6j
�
4jZ6j2 −

�
Z1 þ

2Y2

v2

�
2
�

þ
�
Z1 þ

2Y2

v2

�
½jZ6j2ðZ1 − Z34Þ − ReðZ�

5Z
2
6Þ�
�

≠ 0;

ð109Þ

in which the scalar potential is explicitly CP conserving,
and moreover CP is not spontaneously broken! In this case,
CP is conserved despite the fact that no Z2 basis exists in
which all the scalar potential parameters are real (for further
details, see Ref. [57]).

In the exceptional region of parameter space where λ6 ¼
λ7 ¼ 0 is achieved for β ≠ 1

4
π, one finds once again that

Imðλ�5½m2
12�2Þ ¼ 0 is both a necessary and sufficient con-

dition for an explicit CP-conserving scalar potential.
Moreover, if Imðλ�5½m2

12�2Þ ¼ 0 and ImðZ�
5Z

2
6Þ ≠ 0, then

CP is spontaneously broken. Further details are provided at
the end of Appendix B.

D. Imposing the convention of non-negative
real vevs in the Z2 basis

In some applications, it is convenient to adopt a con-
vention in which ξ ¼ 0 in the basis where λ6 ¼ λ7 ¼ 0. If
this condition is not satisfied initially, it is straightforward
to impose this condition by an appropriate rephasing of the
Higgs-doublet field Φ2. In this convention, the real and
imaginary parts of Eqs. (70) and (71) yield

1

2
s2βðZ1 − Z2Þ þ c2βReZ67 ¼ 0; ð110Þ

ImZ67 ¼ 0; ð111Þ

1

2
s2βc2β½Z1 þ Z2 − 2Z34 − 2ReZ5� þ c4βReðZ6 − Z7Þ ¼ 0;

ð112Þ

s2βImZ5 − c2βImðZ6 − Z7Þ ¼ 0: ð113Þ

Equations (110)–(112) are equivalent to eq. (3.16) of
Ref. [58]. Because we have fixed ξ ¼ 0 in the Φ basis,
we must choose ξ ¼ ζ ¼ 0 in Eq. (72) in defining the Φ0
basis in order to maintain our convention in which the vevs
v1 and v2 are real and non-negative. That is, Φ0

a ¼ Uab̄Φb

where U ¼ ð0
1

1
0
Þ. Since det U ¼ −1, it follows that pseu-

doinvariant quantities will change sign between the Φ and
Φ0 bases. Indeed, the effect of transforming from the Φ
basis to the Φ0 basis is to modify the Φ-basis parameters
such that

m2
11 ↔ m2

22; m2
12 → m2�

12; λ1 ↔ λ2;

λ5 → λ�5; v1 ↔ v2; ð114Þ

whereas λ3, λ4, and λ6 ¼ λ7 ¼ 0 are unchanged. In light of
Eq. (20), the Higgs basis parameters obtained starting from
the Φ0 basis differ from those obtained starting from the Φ
basis by the following sign changes:

fY3; Z6; Z7g → f−Y3;−Z6;−Z7g; ð115Þ

In particular, the Higgs basis parameter Z5 is unchanged
since ðdet UÞ2 ¼ 1.
As previously noted, tan β is not yet a physical param-

eter, since the effect of transforming from theΦ basis to the
Φ0 basis is to modify β → 1

2
π − β. In light of these remarks,
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one can check that Eqs. (110)–(113) are invariant with
respect to the transformation Φ0

a ¼ Uab̄Φb, and thus define
the invariant conditions for the existence of a scalar field
basis with λ6 ¼ λ7 ¼ 0 and non-negative real scalar vevs
(i.e., ξ ¼ 0).
Consider first the case of Z67 ≠ 0. By virtue of Eq. (111),

it follows that the pseudo-invariant quantity Z67 is real. This
condition fixes the Higgs basis up to a twofold ambiguity
that depends on the sign of Z67. This ambiguity is simply a
consequence of the freedom to change from the Φ basis to
the Φ0 basis, while maintaining the Z2-basis conditions,
λ6 ¼ λ7 ¼ 0, as discussed above. Likewise, the pseudoin-
variant quantity eiθ23 is determined up to a twofold
ambiguity, as its sign can be flipped by transforming from
the Φ basis to the Φ0 basis.
One can obtain an explicit expression for eiθ23 in terms of

pseudoinvariant quantities by setting ξ ¼ 0 in Eq. (84),

eiθ23 ¼
�

Z2 − Z1

2Z67e−iθ23

�
s2β
c2β

: ð116Þ

Under Φ1 ↔ Φ2, c2β changes sign, and we conclude that
θ23 is determined modulo π. However, a more practical
expression can be obtained as follows. Writing Z6 ≡
jZ6jeiθ6 and Z7 ≡ jZ7jeiθ7 , Eq. (111) is equivalent to the
equation, jZ6j sin θ6 þ jZ7j sin θ7 ¼ 0. One can eliminate
θ7 and solve for θ6 to obtain

tan θ6 ¼
ImðZ6Z�

7Þ
jZ6j2 þ ReðZ6Z�

7Þ
; ð117Þ

which implies that θ6 is determined modulo π. Under the
assumption that Z6 ≠ 0, one can obtain an explicit formula
for eiθ23,

eiθ23 ¼ jZ6jeiθ6
Z6e−iθ23

; ð118Þ

where the numerator and denominator on the right-hand
side of Eq. (118) are evaluated by employing Eqs. (117)
and (50), respectively. As expected, θ23 is thus determined
modulo π.
If Z6 ¼ 0, then Eq. (111) yields sin θ7 ¼ 0, which

implies that Z2
7 ¼ jZ7j2. In this case, assuming

Z5 ≡ jZ5jeiθ5 ≠ 0, it follows that

cos θ5 ¼
ReðZ�

5Z
2
7Þ

jZ5jjZ7j2
; sin θ5 ¼ −

ImðZ�
5Z

2
7Þ

jZ5jjZ7j2
;

in the case of Z6 ¼ 0: ð119Þ

Hence,

e2iθ23 ¼ jZ5jeiθ5
Z5e−2iθ23

; ð120Þ

where the numerator and denominator on the right-hand
side of Eq. (120) are evaluated by employing Eqs. (119)
and (49), respectively. Taking the square root of Eq. (120)
determines θ23 modulo π.
If Z5 ¼ Z6 ¼ 0, then the squared-mass matrix of the

neutral Higgs scalars is diagonal. In this case, the mass
basis and the Higgs basis (with Z7 real) coincide and the
scalar potential and vacuum are CP conserving.
The case of Z67 ¼ 0 must be separately considered. If

Z67 ¼ 0 and Z1 ≠ Z2, then as discussed below Eq. (89), it
follows that Z6 ¼ Z7 ¼ 0 corresponding to the IDM. The
exceptional region of parameter space corresponding to
Z67 ¼ 0, Z6 ≠ 0, and Z1 ¼ Z2 is treated in Appendix B. In
this case, Eq. (78) is replaced by

eiξ ¼ eiξ
0
e−iθ6 ; ð121Þ

where Z6 ≡ jZ6jeiθ6 and ξ0 ≡ ξþ θ6 is a pseudoinvariant
quantity that is determined modulo π in Appendix B. Once
again, we see that in a convention where ξ ¼ 0, theZ2 basis
is uniquely defined up to a twofold ambiguity correspond-
ing to the fact that ξ0, and hence θ6 and θ23, have been
determined modulo π.
Finally, in light of the remarks at the end of Sec. IV, we

can conclude that in a convention in which ξ ¼ 0, once a
specific discrete symmetry is chosen (among the four
specified in Table II), both tan β and θ23 are promoted to
physical parameters of the model.

E. An exact Z2 symmetry

In Sec. V B, we defined theZ2 basis to be the scalar basis
in which λ6 ¼ λ7 ¼ 0. If in addition m2

12 ¼ 0 in the same
basis, then the scalar potential possesses an exact Z2

symmetry; i.e., it is invariant under Φ1 → Φ1 and
Φ2 → −Φ2. In this case, the condition m2

12 ¼ 0 yields
additional constraints. In light of Eq. (A20),

1

2
ðY2 − Y1Þs2β − ReðY3eiξÞc2β − iImðY3eiξÞ ¼ 0; ð122Þ

where ξ and β have been determined previously by
Eqs. (78) and (81), respectively, under the assumption that
Z67 ≠ 0. Hence, employing eiξ ¼ �e−iθ67 ¼ �Z�

67=jZ67j in
Eq. (122), it follows that

ðY2 − Y1ÞjZ67j2 − ðZ2 − Z1ÞReðY3Z�
67Þ ¼ 0; ð123Þ

ImðY3Z�
67Þ ¼ 0: ð124Þ

Due to Eq. (124), one can replace ReðY3Z�
67Þ in Eq. (123)

by Y3Z�
67 and then divide the resulting equation by Z�

67. It
follows that for Z67 ≠ 0, one can replace Eq. (123) by

ðY2 − Y1ÞZ67 − Y3ðZ2 − Z1Þ ¼ 0: ð125Þ
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The analysis above relied on the assumption that Z67 ≠ 0.
Thus, we now examine the relevant conditions for an
exactly Z2-symmetric scalar potential when Z67 ¼ 0.
If Z67 ¼ 0 and Z6 ¼ 0, then we also have Z7 ¼ Y3 ¼ 0

[the latter of Eq. (24)], in which case the exact Z2

symmetry is manifest in the Higgs basis. Consequently,
in what follows, we shall assume that Z67 ¼ 0 and Z6 ≠ 0.
If Z67 ¼ 0 and Z1 ≠ Z2, then Eq. (70) implies that

s2β ¼ 0, in which case Eq. (122) yields ReðY3eiξÞ ¼
ImðY3eiξÞ ¼ 0. That is, Y3 ¼ 0, and we again conclude
that Z6 ¼ Z7 ¼ 0 in light of Eq. (24), which reduces to the
previous case considered.
If Z67 ¼ 0, Y1 ¼ Y2, and Z1 ¼ Z2, then it follows from

Eqs. (24) and (122) that β ¼ 1
4
π and ImðZ6eiξÞ ¼ 0. The

real part of Eq. (71) then yields ReðZ6eiξÞ ¼ 0, which
implies Z6 ¼ 0, which again reduces to the previous case
considered.
In the three subcases considered above, Eq. (125)

remains valid. However, there is one last case where
Eq. (125) is trivially satisfied and yet an additional
constraint must be imposed in order to achieve a Z2-
symmetric scalar potential. Consider the case of Z67 ¼ 0,
Y1 ≠ Y2, Z1 ¼ Z2, and Z6 ≠ 0. In this case, ξ and β are
determined from Eq. (122) [since Eq. (70) is no longer
relevant]. We first note that the imaginary part of Eq. (122)
yields ImðZ6eiξÞ ¼ 0 after employing Eq. (24). Denoting
Z6 ≡ jZ6jeiθ6 , it follows that ξþ θ6 ¼ nπ, for some
integer n. Hence, eiξ ¼ �e−iθ6 ¼ �Z�

6=jZ6j, which when
applied in Eqs. (71) and (122) yields

1

2
s2βðY2 − Y1ÞjZ6j ∓ ReðY3Z�

6Þc2β ∓ iImðY3Z�
6Þ ¼ 0;

ð126Þ

s2βc2β½ðZ1 − Z34ÞjZ6j2 − ReðZ�
5Z

2
6Þ� þ is2βImðZ�

5Z
2
6Þ

� 2c4βjZ6j3 ¼ 0: ð127Þ

In light of Y3 ¼ − 1
2
Z6v2, Eq. (126) yields

tan 2β ¼ s2β
c2β

¼ � v2jZ6j
Y1 − Y2

: ð128Þ

Since Z6 ≠ 0, it follows that s2β ≠ 0. Hence, the imaginary
part of Eq. (127) yields

ImðZ�
5Z

2
6Þ ¼ 0: ð129Þ

Dividing the real part of Eq. (127) by s22β and using the
result of Eq. (128), we end up with

v2ðY1 − Y2Þ½ðZ1 − Z34ÞjZ6j2 − ReðZ�
5Z

2
6Þ�

þ 2jZ6j2½ðY1 − Y2Þ2 − v4jZ6j2� ¼ 0: ð130Þ

We can replace Eqs. (129) and (130) by a single complex
equation by multiplying Eq. (129) by −iv2ðY1 − Y2Þ and
adding the result to Eq. (130). Additional simplification
ensues by using Eq. (24) to put jZ6j2ðZ1v2 þ 2Y1Þ ¼ 0. It
then follows that

ðY1 − Y2Þ
�
jZ6j2

�
Z34 þ

2Y2

v2

�
þ Z�

5Z
2
6

�
þ 2jZ6j4v2 ¼ 0:

ð131Þ

In conclusion, Eqs. (89) and (125) are necessary con-
ditions for the presence of an exact Z2 symmetry. These are
also sufficient conditions in all cases with two exceptions.
As previously noted, if Z1 ¼ Z2, Z67 ≠ 0 and Z5 ≠ 0, then
Eq. (89) must be supplemented with the additional con-
straint of ImðZ�

5Z
2
67Þ ¼ 0. In addition, if Z1 ¼ Z2, Z67 ¼ 0,

Y1 ≠ Y2, and Z6 ≠ 0, then Eq. (125) must be supplemented
by Eq. (131).
In this paper, we are primarily interested in the case

where either the scalar potential or the vacuum is CP
violating. However, it is easy to see that if the Z2 symmetry
is exact, then both the scalar potential and vacuum are CP
conserving. In the Z2 basis, since m2

12 ¼ λ6 ¼ λ7 ¼ 0, the
only potentially complex scalar potential parameter is λ5,
whose phase can be removed by an appropriate rephasing
of the Higgs fields. Moreover, if hΦ†

1Φ2i ¼ 1
2
v1v2eiξ, then

the ξ-dependent term of the scalar potential is of the form
V ∋ 1

4
λ5v21v

2
2 cos 2ξ, which is minimized when ξ ¼ 0, 1

2
π or

π (depending on the sign of λ). If ξ ¼ 1
2
π, then one can

rephaseΦ2 → iΦ2, which simply changes the sign λ5 while
rendering the two vevs relatively real. Hence, the vacuum is
CP conserving. Having achieved a scalar potential with
only real parameters and real vevs, it immediately follows
that a real Higgs basis exists. That is, a Higgs basis exists
such that Z5, Z6, and Z7 (and Y3 ¼ − 1

2
Z6v2 via the scalar

potential minimum condition) are simultaneously real.
Nevertheless, it is instructive to show directly that the

existence of a real Higgs basis can be deduced solely from
the relations satisfied by the Higgs basis parameters when
an exact Z2 symmetry is present. First, consider the case
where the exact Z2 symmetry is manifest in the Higgs
basis, i.e., Y3 ¼ Z6 ¼ Z7 ¼ 0. In this case, the only
potentially complex parameter in the Higgs basis is Z5.
The phase of Z5 can be removed by a rephasing of the
Higgs basis fieldH2. Hence, if theZ2 symmetry is manifest
in the Higgs basis, then a real Higgs basis exists and the
scalar potential and the vacuum are CP conserving.
Next, suppose that Z67 ≠ 0. Then, if we combine

Eqs. (88) and (124) and employ the scalar potential
minimum condition, it follows that if the Z2 symmetry
is exact, then

ImðZ�
5Z

2
67Þ ¼ ImðZ�

6Z7Þ ¼ 0: ð132Þ
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Given that Z67 ≠ 0, the two conditions exhibited in
Eq. (132) are sufficient to guarantee the existence of a
real Higgs basis in which Z5, Z6, and Z7 are simultaneously
real. If Z67 ¼ 0 and Z1 ≠ Z2, then Eq. (87) implies that
Z6 ¼ Z7 ¼ 0 in which case the Z2 symmetry is manifest in
the Higgs basis and the previous considerations apply.
Finally, if Z67 ¼ 0, Z6 ≠ 0, and Z1 ¼ Z2, then Eq. (129)
implies the existence of a real Higgs basis. Thus, in all
possible cases, if an exact Z2 symmetry is present in some
scalar field basis, then a real Higgs basis exists and the
scalar potential and vacuum in any scalar basis are CP
conserving.
If the Z2 symmetry is exact, then a real Higgs basis

exists, and the Higgs basis parameters in Eq. (123) can be
taken to be real. Employing Eq. (24) then yields

2Y2

v2
ðZ6 þ Z7Þ þ Z1Z7 þ Z2Z6 ¼ 0: ð133Þ

Equations (90) and (133) are equivalent to eqs. (18) and
(19) of Ref. [46]. Note that Eq. (133) is trivially satisfied if
Z67 ¼ 0 and Z1 ¼ Z2. In this latter case, one must also
impose Eq. (131) to guarantee the presence of an exact Z2

symmetry. This last observation was missed in Ref. [46].

VI. THE C2HDM IN THE Z2 BASIS

The C2HDM is a two-Higgs-doublet model in which
either the scalar potential or the vacuum is CP violating.
To avoid tree-level Higgs-mediated FCNCs, one imposes
a Z2 symmetry on the dimension-four terms of the Higgs
Lagrangian. The symmetry is manifest in the Φ basis by
setting λ6 ¼ λ7 ¼ 0 in Eq. (2). The Z2 symmetry is
assumed to be softly broken by taking m2

12 ≠ 0. If the
CP violation in the scalar potential is explicit, then
Imðλ�5½m2

12�2Þ ≠ 0. Imposing the Z2 symmetry on Eq. (53)
implies that the Higgs-quark Yukawa couplings are either
of Type I or Type II as discussed in Sec. IV.
In Sec. V D, we noted that one is always free to rephase

the Higgs-doublet fields such that the vevs are real. (The
corresponding results prior to rephasing the vevs are given
in Appendix E.) Henceforth, we define the C2HDM in the
Z2 basis such that ξ ¼ argðv�1v2Þ ¼ 0. That is,ffiffiffi

2
p

hΦ0
1i≡ v1 ¼ vcβ;

ffiffiffi
2

p
hΦ0

2i≡ v2 ¼ vsβ; ð134Þ

in the notation of Eqs. (3) and (4), where cβ ≡ cos β and
sβ ≡ sin β, with 0 ≤ β ≤ 1

2
π. In this convention, one may

parametrize the scalar doublets in the Φ basis as

Φ1 ¼
� φþ

1

1ffiffi
2

p ðv1 þ η1 þ iχ1Þ
�
;

Φ2 ¼
� φþ

2

1ffiffi
2

p ðv2 þ η2 þ iχ2Þ
�
: ð135Þ

Setting λ6 ¼ λ7 ¼ ξ ¼ 0 in Eq. (E3) yields the C2HDM
scalar potential minimum conditions,

m2
11 ¼ Rem2

12 tan β −
1

2
v2½λ1c2β þ ðλ3 þ λ4 þ Re λ5Þs2β�;

ð136Þ

m2
22 ¼ Rem2

12 cot β −
1

2
v2½λ2s2β þ ðλ3 þ λ4 þ Re λ5Þc2β�;

ð137Þ

Imm2
12 ¼

1

2
v2sβcβIm λ5: ð138Þ

After eliminating m2
12, m

2
22, and Imm2

12, we are left with
nine real parameters that govern the C2HDM: v, tan β,
Rem2

12, λ1, λ2, λ3, λ4, Re λ5, and Im λ5. By adopting the
convention where both vevs are real and positive, it
follows that if s2β ≠ 0 and Im λ5 ≠ 0 [which implies
that Imm2

12 ≠ 0 via Eq. (138)], then CP is violated in
the scalar sector.
If CP is violated in the scalar sector, then the violation is

either explicit or spontaneous. A scalar potential of the
2HDM is explicitly CP conserving if and only if a real
basis exists [59] (i.e., a basis of scalar fields exists in which
all the scalar potential parameters are real). However, in
transforming to a real basis, the vevs (which were real in
the original basis by convention) may acquire a relative
complex phase that is unremovable by any further basis
change that maintains the reality of the scalar field basis.
This latter scenario corresponds to the case of spontaneous
CP violation. Consequently, both spontaneous and explicit
CP violation are treated simultaneously in the convention
adopted in Eq. (134).
It is instructive to perform the counting of parameters

using the invariants quantities discussed in previous sec-
tions. After employing Eq. (24), one is left initially with six
real parameters, v, Y2, Z1, Z2, Z3, and Z4, and three
complex parameters, Z5, Z6, and Z7, for a total of 12
parameters. Since one can rephase the pseudoinvariant
Higgs basis field H2, this freedom removes one phase
from the three complex parameters. Finally, since a softly
broken Z2 symmetry is present, one obtains one complex
constraint equation (derived in Sec. V) that removes two
additional parameters. This leaves nine independent real
parameters in agreement with our previous counting.
If s2β ¼ 0, then the model corresponds to the IDMwhich

is CP conserving. Consequently, in our considerations of
the C2HDM, we shall henceforth assume that s2β ≠ 0,
which is a necessary ingredient for the presence of CP
violation, as noted below Eq. (138). Since λ6 ¼ λ7 ¼ 0
(in the Z2 basis), it then follows from Eq. (D1) that if
λ1 ≠ λ2, then λ6 þ λ7 is nonzero when evaluated in any
other scalar field basis. In particular, λ1 ≠ λ2 implies that
Z67 ≠ 0. In contrast, if λ1 ¼ λ2 in the Z2 basis, then it
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follows that Z1 ¼ Z2 and Z67 ¼ 0, which corresponds
to the exceptional region of the parameter space (see
Appendix B).
In light of Eqs. (21), (25), and (31), one can identify

the massless would-be neutral Goldstone boson with
G0 ¼ cβχ1 þ sβχ2. Thus, the neutral scalar state orthogonal
to G0 is

η3 ¼ −sβχ1 þ cβχ2: ð139Þ

After diagonalizing the squared-mass matrix of the
neutral scalar fields, η1, η2, and η3, the three neutral
mass-eigenstate scalar fields, h1, h2, and h3, can be
identified as 0B@h1

h2
h3

1CA ¼ R

0B@ η1

η2

η3

1CA: ð140Þ

In the C2HDM literature, the 3 × 3 orthogonal mixing
matrix R is parametrized as [60]

R¼

0B@ c1c2 s1c2 s2
−c1s2s3−s1c3 c1c3−s1s2s3 c2s3
−c1s2c3þ s1s3 −c1s3−s1s2c3 c2c3

1CA; ð141Þ

where si ¼ sin αi and ci ¼ cos αi (i ¼ 1; 2; 3).
It is now straightforward to relate the angles α1, α2, and

α3 of the C2HDM literature to basis-independent quantities
introduced in Sec. II. In Appendix E, we have examined the
mixing of the neutral scalars in the Z2 basis. Setting ξ ¼ 0
in Eqs. (E9)–(E11) yields

Rk1 ¼ qk1cβ − Reðqk2e−iθ23Þsβ; ð142Þ

Rk2 ¼ qk1sβ þ Reðqk2e−iθ23Þcβ; ð143Þ

Rk3 ¼ Imðqk2e−iθ23Þ: ð144Þ

One can relate the mixing angles α1, α2, and α3 to invariant
(or pseudoinvariant) quantities by setting ξ ¼ 0 in
Eqs. (E12) and (E13). It is convenient to define ᾱ1 ≡
α1 − β. We then obtain the results exhibited in Table III.
In the presence of a softly broken Z2 symmetry, Eq. (75)

implies that the quantity eiðξþθ23Þ is determined up to a
twofold ambiguity associated with a residual basis depend-
ence corresponding to the interchange of the two scalar
doublets while maintaining λ6 ¼ λ7 ¼ 0. Having adopted
the C2HDM convention where ξ ¼ 0, it therefore follows
that eiθ23 is determined up to a twofold ambiguity. In parti-
cular, one no longer has the freedom to rephase the Higgs
basis fieldH2, which would result in an additive shift of the
parameter θ23 [cf. Eq. (39)]. In light of Eqs. (72)–(75), it
follows that under the basis transformation that simply

interchanges Φ1 and Φ2 (with no rephasing), sβ ↔ cβ and
eiθ23 → −eiθ23 . Moreover,

s1 → c1; c1 → s1; s2 → −s2;

c2 → c2; s3 → −s3; c3 → −c3; ð145Þ

which yields Rk1 ↔ Rk2 and Rk3 → −Rk3. These results
are consistent with Eqs. (142)–(144) since the qk1 and qk2
are basis-invariant quantities.
Finally, we note that the free parameter Rem2

12 can also
be related to basis-invariant quantities by employing
Eq. (A20) with ξ ¼ 0 and Eq. (24), and making use of
the results of Sec. V D. If λ1 ≠ λ2, then Z67 ≠ 0, in which
case Eqs. (110) and (111) yield

Rem2
12 ¼

1

4
v2s2β

�
Z1 þ

2Y2

v2

−
�jZ6j2 þ ReðZ6Z�

7Þ
jZ67j2

�
ðZ1 − Z2Þ

�
; ð146Þ

where s2β is given by Eq. (82). The case of λ1 ¼ λ2 in the
Z2 basis corresponds to the exceptional region of parameter
space, where Z1 ¼ Z2 and Z67 ¼ 0, as previously noted. In
this case, Eq. (146) does not apply and one must employ the
results of Appendix B. The resulting expression for Rem2

12

is unwieldy and we do not present it here.
It is instructive to identify the nine real parameters of the

C2HDM in terms of the scalar masses and mixing angles.
In order to perform the correct counting, we note the
following sum rule:X

k

m2
kRk3ðRk1cβ −Rk2sβÞ ¼ 0; ð147Þ

which is derived at the end of Appendix E. This sum rule
imposes one relation among the ten real quantities, v, tan β,
α1, α2, α3, m1, m2, m3, Rem2

12, and mH� , resulting in nine
independent parameters. One can repeat the counting of
parameters using basis-invariant quantities. In light of
Eq. (40) and Eqs. (47)–(50), one can eliminate Z1, Z3,
Z4, Z5e−2iθ23 , and Z6e−iθ23 in terms of scalar masses and the
invariant mixing angles θ12 and θ13. This leaves three

TABLE III. The relation between the neutral Higgs mixing
angles αi of the C2HDM defined in the Z2 basis and (pseudo)-
invariant combinations of mixing angles defined in the Higgs
basis. In the notation used below, c̄1 ≡ cos ᾱ1 and s̄1 ≡ sin ᾱ1,
with ᾱ1 ≡ α1 − β.

k qk1 qk2e−iθ23

1 c̄1c2 s̄1c2 þ is2
2 −c̄1s2s3 − s̄1c3 c̄1c3 − s̄1s2s3 þ ic2s3
3 −c̄1s2c3 þ s̄1s3 −c̄1s3 − s̄1s2c3 þ ic2c3
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invariant parameters, Z2, ReðZ7e−iθ23Þ and ImðZ7e−iθ23Þ, of
which two are determined from the one complex constraint
equation arising from the condition of a softly broken Z2

symmetry. For example, if we eliminate the complex
parameter Z7 using Eq. (89), we are left with the following
nine real parameters: v, Y2, Z2, θ12, θ13, m1, m2, m3,
and mH� .
The complete set of Feynman rules for the C2HDM

in terms of the Z2-basis parameters can be found in
Refs. [32,61]. One can check that all the Higgs couplings
obtained this way (after using Eq. (41) to define an invariant
charged Higgs field) are invariant with respect to basis
transformations. As previously noted, all the bosonic cou-
plings of the most general 2HDM (without any imposed
discrete symmetries) can be found in Ref. [34] expressed
directly in terms of invariant quantities qk1, qk2, and the
Higgs basis scalar potential coefficients (including appro-
priate factors of e−iθ23 to ensure basis-independent combi-
nations). The bosonic couplings of the most general 2HDM
also apply to the C2HDM, since as emphasized in Sec. V,
tan β does not appear explicitly in any of these couplings. It
is a straightforward to verify that the cubic and quartic Higgs
self-couplings, which appear in Ref. [34], match precisely
the corresponding C2HDM couplings given in Ref. [61].
Finally, the Type-Ia and Type-IIa Higgs-quark couplings

are obtained from Eq. (58) by employing Eqs. (65) and (67)
with ξ ¼ 0 [in the convention of Eq. (134)]. For example,12

−LType-Ia ¼
1

v
fŪMU½qk1 þ Reðqk2e−iθ23Þ cot β

− iγ5Imðqk2e−iθ23Þ cot β�Uhk

þ D̄MD½qk1 þ Reðqk2e−iθ23Þ cot β
þ iγ5Imðqk2e−iθ23Þ cot β�Dhkg;

ð148Þ

−LType-IIa ¼
1

v
fŪMU½qk1 þ Reðqk2e−iθ23Þ cot β

− iγ5Imðqk2e−iθ23Þ cot β�Uhk

þ D̄MD½qk1 − Reðqk2e−iθ23Þ tan β
− iγ5Imðqk2e−iθ23Þ tan β�Dhkg;

ð149Þ

where there is an implicit sum over the three neutral Higgs
mass-eigenstates hk. Using the results of Table III, one can
reproduce the results of Ref. [32]. Indeed, as previously
noted, tan β and e−iθ23 now appear explicitly in the Yukawa
couplings. However, these quantities are not quite physical
parameters, since under the basis change Φ1 ↔ Φ2, it

follows that cot β ↔ tan β and e−iθ23 change sign. This has
the effect of interchanging the a and b versions of the Type-
I and Type-II Yukawa couplings (cf. footnote 12).
In order to promote tan β and eiθ23 to physical param-

eters, one must remove the remaining freedom to inter-
change Φ1 ↔ Φ2 in the C2HDM. This corresponds to
making a specific choice of the discrete symmetry among
the four specified in Table II. In practice, this can be
achieved by declaring, e.g., that tan β < 1 corresponds to
an enhanced coupling of the neutral Higgs bosons to up-
time quarks. Given this additional proviso, it follows that
the signs of c2β and eiθ23 are then fixed and can now be
considered as physical parameters of the model. Indeed, c2β
can be expressed in terms of basis-invariant parameters as
specified in Eq. (82), where the sign ambiguity is fixed by
the sign of λ1 − λ2 [cf. Eq. (A16)], under the assumption
that λ1 ≠ λ2. Likewise, eiθ23 is uniquely determined by the
formal basis-independent expression given by Eq. (116)
[after employing Eq. (82) for s2β=c2β with the sign
ambiguity fixed as indicated above]. Finally, the excep-
tional region of the parameter space where λ1 ¼ λ2 in the
Z2 basis is treated in Appendix B.

VII. DETECTING DISCRETE SYMMETRIES

In Ref. [46], Lavoura described ways to detect the
presence of discrete symmetries exhibited by the scalar
potential of the 2HDM. Four cases of discrete symmetries
were examined: (i) exact Z2 symmetry; (ii) explicit CP
breaking by a complex softZ2-breaking squared-mass term
(which defines the C2HDM); (iii) softly broken Z2 and
spontaneously broken CP symmetries [62]; and (iv) the Lee
model of spontaneous CP violation [1], where no (unbro-
ken or softly broken) Z2 symmetry is present. For the
reader’s convenience, we provide a translation between
Lavoura’s notation and the notation of this paper,

λ1; λ2; λ5 ⟶
1

2
Z1;

1

2
Z2;

1

2
Z5;

λ3; λ4; λ6; λ7 ⟶ Z3; Z4; Z6; Z7;

μ1; μ2; μ3 ⟶ Y1; Y2; Y3; v ⟶ v=
ffiffiffi
2

p
: ð150Þ

In case (i), Lavoura asserts that Eqs. (18) and (19) of
Ref. [46] are the conditions for an exact Z2-symmetric
scalar potential. We have confirmed that these conditions
are both necessary and sufficient in Sec. V E, as indicated
below Eq. (133).
In case (ii), Lavoura asserts that Eqs. (20) and (21) of

Ref. [46] are the conditions for explicit CP breaking by a
complex soft Z2-breaking term. We have confirmed that
these results are a consequence of Eqs. (87) and (88)
Indeed, Eq. (88) is equivalent to eq. (20) of Ref. [46]. In
addition, by multiplying Eq. (89) by Z6 − Z7 and then
taking the imaginary part of the resulting expression, one
reproduces eq. (21) of Ref. [46],

12As discussed in Sec. IV, the Yukawa couplings for Type Ib
and IIb can be obtained from Eqs. (148) and (149), respectively,
by replacing cot β ↔ tan β and changing the sign of e−iθ23 .
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ðZ1 − Z2ÞIm½Z�
5ðZ2

6 − Z2
7Þ� − ½ðZ1 − Z2ÞðZ1 þ Z2 − 2Z34Þ

þ 4ðjZ6j2 − jZ7j2Þ�ImðZ6Z�
7Þ ¼ 0: ð151Þ

In case (iii), Lavoura asserts that Eqs. (20)–(22) of
Ref. [46] are the conditions for a softly broken Z2-
symmetric scalar potential and spontaneously broken CP
symmetry. We have confirmed Lavoura’s results in Sec. V
C, while noting a typographical error in eq. (22) of
Ref. [46] (see footnote 9). The corresponding corrected
equation (with a different overall normalization) was given
in Eq. (103). Moreover, Lavoura’s results are not applicable
in cases of Z1 ¼ Z2 and/or Z67 ¼ 0. The correct expres-
sions that replace Eq. (103) in these special cases have
been obtained in Sec. V C and Appendix B. Note that if
Z6 ≠ �Z7, then only two of the three equations among
Eqs. (87), (88), and (151) are independent.13

In case (iv), Lavoura attempts to discover the conditions
on the 2HDM Higgs basis parameters that govern the Lee
model of spontaneous CP violation [1]. In this model, the
Z2 symmetry is absent, i.e., there is no basis of scalar fields
in which λ6 ¼ λ7 ¼ 0. A scalar field basis exists in the Lee
model in which all the scalar potential parameters are
simultaneously real, implying that the scalar potential is
explicitly CP conserving. However, there is an unremov-
able relative complex phase between the two vevs hΦ0

1i and
hΦ0

2i. Moreover, no real Higgs basis exists. In terms of the
Higgs basis parameters, the nonexistence of a real Higgs
basis implies that at least one of the following three
quantities, ImðZ2

6Z
�
5Þ, ImðZ2

7Z
�
5Þ, and ImðZ6Z�

7Þ must be
nonvanishing [cf. Eq. (30)]. Hence, the vacuum is CP
violating; that is, the Lee model exhibits spontaneous CP
violation.
When considering the Lee model, Lavoura noted in

Ref. [46] that there should be two relations among the
parameters of the Lee model, corresponding to the two
independent CP-odd invariants. Lavoura found one rela-
tion, that appears in eq. (27) of Ref. [46]. But he was unable
to identify the second invariant condition. We now proceed
to confirm Lavoura’s invariant quantity and to complete his
mission by finding the second invariant quantity that was
missed. Moreover, we shall demonstrate that in certain
regions of the parameter space of the Lee model, Lavoura’s
invariant vanishes, in which case two additional invariant
quantities must be introduced in order to cover all possible
special cases.
Consider the scalar potential of the general 2HDM given

in Eq. (2), with no constraints initially imposed on the
scalar potential parameters. To check for the presence of
explicit CP violation in all possible regions of the 2HDM
parameter space, it is necessary and sufficient to consider

four CP-odd basis-invariant quantities, identified in
Ref. [59], as follows14:

IY3Z ≡ ImðZð1Þ
ac̄ Z

ð1Þ
eb̄
Zbēcd̄YdāÞ; ð152Þ

I2Y2Z ≡ ImðYab̄Ycd̄Zbādf̄Z
ð1Þ
fc̄ Þ; ð153Þ

I6Z ≡ ImðZab̄cd̄Z
ð1Þ
bf̄
Zð1Þ
dh̄
Zfājk̄Zkj̄mn̄Znm̄hc̄Þ; ð154Þ

I3Y3Z ≡ ImðZac̄bd̄ZcēdḡZeh̄fq̄YgāYhb̄Yqf̄Þ: ð155Þ

If all four of these CP-odd invariants vanish, then there
exists a real Φ basis, in which case the scalar potential is
explicitly CP conserving. Aside from special regions in
parameter space, at most two of these invariants are
independent, as we will demonstrate below.
Explicit forms for the above four CP-odd invariants can

be found in Ref. [59]. We proceed to evaluate them in the
Higgs basis. After employing Eq. (24), it follows that

IY3Z ¼ 1

2
v2
�
2f2f3

þ ðZ1 − Z2Þ½ImðZ�
5Z6Z67Þ − ðZ1 − Z34Þf3�

−
�
Z1 þ

2Y2

v2

�
½ImðZ�

5Z
2
67Þ − ðZ1 − Z2Þf3�

�
;

ð156Þ

I2Y2Z ¼ 1

4
v4
�
ðZ1 −Z2ÞImðZ�

5Z
2
6Þ

−
�
Z1 þ

2Y2

v2

�
½ðZ1 −Z34Þf3 þ ImðZ�

5Z6Z67Þ�;

þ
��

Z1 þ
2Y2

v2

�
2

− 2jZ6j2 þ 2ReðZ6Z�
7Þ
�
f3

�
;

ð157Þ
where the fi are defined in Eq. (95). One can check that
−IY3Z=v2 corresponds precisely to the left-hand side of
eq. (27) of Ref. [46]. Thus, I2Y2Z is the second invariant
quantity that governs the Lee model, which is the one that
Lavoura was unable to find.
Apart from special regions of the Lee model parameter

space, IY3Z ¼ I2Y2Z ¼ 0 provide nontrivial relations among
the parameters that must hold for a spontaneously CP-
violating scalar sector. However, there exist special regions

13Note that Im½ðZ6 þ Z7ÞE� ¼ 0 yields Eq. (88) and Im½ðZ6 −
Z7ÞE� ¼ 0 yields Eq. (151), where E denotes the left-hand side of
Eq. (89). It then follows that Re½ðZ6 þ Z7ÞE� ¼ 0, which is
equivalent to Eq. (87).

14Three CP-odd invariants that are equivalent to Eqs. (152)–
(154) were also identified in Ref. [63]. Subsequently, a group-
theoretic formulation of the 2HDM scalar potential was
developed in Refs. [36,37] that provided an elegant form for
the basis-independent conditions governing explicit CP conser-
vation in the 2HDM. The bilinear formalism exploited in the
latter two references has also been employed in the study of the
CP properties of the 2HDM scalar potential in Refs. [38–41].
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of the Lee model parameter space where one or both of the
invariants exhibited in Eqs. (156) and (157) automatically
vanish. One such example arises in the case of a softly
broken Z2 symmetry, corresponding to λ6 ¼ λ7 ¼ 0 in the
Φ basis in which the Lee model is initially defined. This
case was studied in detail in Sec. V C, where it was shown
that IY3Z automatically vanishes and thus provides no
constraint. Lavoura was well aware of this in Ref. [46].

Indeed, he noted that IY3Z is a linear combination of the
left-hand sides of Eqs. (88) and (151). Since both of
these quantities vanish if λ6 ¼ λ7 ¼ 0 in some scalar field
basis, it follows that IY3Z ¼ 0 is automatic in a model
with a softly broken Z2 symmetry. One can check this
explicitly as follows. First, if Z67 ¼ 0, then f3 ¼ 0,
and Eq. (156) immediately yields IY3Z ¼ 0. Next, if
Z67 ≠ 0, then

ImðZ�
5Z6Z67Þ ¼

ImðZ�
5Z

2
67Z

�
67Z6Þ

jZ67j2
¼ ImðZ�

5Z
2
67Þ½jZ6j2 þ ReðZ6Z�

7Þ� þ ReðZ�
5Z

2
67ÞImðZ6Z�

7Þ
jZ67j2

¼ ðf1 − f2ÞImðZ�
5Z

2
67Þ þ 2f3ReðZ�

5Z
2
67Þ

2f1
: ð158Þ

Employing Eqs. (100) and (101) in Eqs. (156) and (158), one can easily verify that IY3Z ¼ 0.
In Eqs. (102) and (103), an invariant condition was identified that guarantees that the scalar sector of the 2HDM

with a softly broken Z2 exhibits spontaneous CP violation. We now demonstrate that this invariant condition is
equivalent to the requirement that f3 ≠ 0 and I2Y2Z ¼ 0. Assuming that Z67 ≠ 0, we shall make use of the following
formulae:

ImðZ�
5Z

2
6Þ ¼

½ðf1 − f2Þ2 − 4f23�ImðZ�
5Z

2
67Þ þ 4f3ðf1 − f2ÞReðZ�

5Z
2
67Þ

4f21
; ð159Þ

ReðZ6Z�
7Þ − jZ6j2 ¼

f2ðf1 − f2Þ − 4f23
2f1

; ð160Þ

which are derived in the same manner as Eq. (158). One can
now evaluate I2Y2Z given in Eq. (157) with the help of
Eqs. (158)–(160). Imposing the conditions of a softly
broken Z2 symmetry by employing Eqs. (100) and
(101), the end result of this computation is

I2Y2Z ¼ v4f3F
16f21ðZ1 − Z2Þ

; ð161Þ

where F is given explicitly in Eq. (103). This result
confirms that f3 ≠ 0 and I2Y2Z ¼ 0 are the invariant
conditions for spontaneous CP violation in the softly
broken Z2-symmetric 2HDM. As discussed in Sec. V C,
Eq. (161) can be used in the case of Z1 ¼ Z2 by employing
Eq. (100) to eliminate f2 in favor of ReðZ�

5Z
2
67Þ. This

procedure will remove the potential singularity due to the
factor of Z1 − Z2 in the denominator of Eq. (161).
Because λ6 ¼ λ7 ¼ 0 in the Φ basis, the only potentially

nontrivial phase is the relative phase between m2
12 and λ5.

Thus, only one invariant condition is needed to determine
whether or not the model exhibits spontaneous CP viola-
tion. In the special case of Z67 ¼ 0 and Z1 ≠ Z2, the
conditions for a softly broken Z2 symmetry given in
Eqs. (70) and (71) yield Y3 ¼ Z6 ¼ Z7 ¼ 0 [after using
Eq. (24)], corresponding to the (CP-conserving) IDM

treated in Sec. VA. In the exceptional region of parameter
space defined by Z67 ¼ 0 and Z1 ¼ Z2, it follows that
I2Y2Z ¼ 0, and one must discover another invariant con-
dition to determine whether the model exhibits spontaneous
CP violation.
In order to exhibit cases where Eqs. (156) and (157) are

not sufficient to determine whether or not the scalar
potential is explicitly CP conserving, we shall make use
of the observation of Ref. [59] that it is always possible to
perform a basis transformation such that in the transformed
basis of scalar fields, λ7 ¼ −λ6 (a simple proof of this result
is presented in Appendix D). Since basis-invariant quan-
tities can be evaluated in any basis without changing their
values, we shall evaluate the four CP-odd invariants listed
in Eqs. (152)–(155) in a basis where λ7 ¼ −λ6, where these
invariants take on the following simpler forms:

IY3Z ¼ ðλ1 − λ2Þ2Imðm2
12λ

�
6Þ; ð162Þ

I2Y2Z ¼ ðλ1 − λ2Þ½Imðλ�5½m2
12�2Þ − ðm2

11 −m2
22ÞImðm2

12λ
�
6Þ�;

ð163Þ

I6Z ¼ −ðλ1 − λ2Þ3Imðλ26λ�5Þ; ð164Þ
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I3Y3Z ¼ 4Imð½m2
12�3ðλ�6Þ3Þ − 2Imð½m2

12�3λ6ðλ�5Þ2Þ
þ ½ðm2

11 −m2
22Þ2 − 6jm2

12j2�ðm2
11 −m2

22ÞImðλ�5λ26Þ
þ ½ðλ1 − λ34Þðλ2 − λ34Þ þ 2jλ6j2 − jλ5j2�ðm2

11 −m2
22ÞImðλ�5½m2

12�2Þ
− fðλ1 − λ2Þ2m2

11m
2
22 þ 2ð2jλ6j2 − jλ5j2Þ½ðm2

11 −m2
22Þ2 − jm2

12j2�gImðm2
12λ

�
6Þ

− ðλ1 þ λ2 − 2λ34Þfðm2
11 −m2

22ÞImð½m2
12�2ðλ�6Þ2Þ þ Imð½m2

12�3λ�5λ�6Þ
− ½ðm2

11 −m2
22Þ2 − jm2

12j2�Imðm2
12λ6λ

�
5Þg; ð165Þ

where λ34 ≡ λ3 þ λ4. If IY3Z ¼ 0, then additional CP-odd
invariants may need to be considered.
In aΦ basis of scalar fields where λ6 ¼ −λ7, the invariant

IY3Z ¼ 0 if any one of the following four conditions hold:
(i) λ6 ¼ 0, (ii) λ1 ¼ λ2, (iii)m2

12 ¼ 0, or (iv) Imðm2
12λ

�
6Þ ¼ 0.

We now examine each of these four cases in turn.
Subsequently, we shall examine two additional special
cases of interest in which IY3Z does not vanish.
Case 1.—λ6 ¼ 0 and λ1 ≠ λ2.
This case corresponds to a scalar potential with a softly

broken Z2 symmetry, since λ6 ¼ λ7 ¼ 0 in the Φ basis.
Equations (162)–(165) yield IY3Z ¼ I6Z ¼ 0 and

I2Y2Z ¼ ðλ1 − λ2ÞImðλ�5½m2
12�2Þ; ð166Þ

I3Y3Z ¼
�½ðλ1 − λ34Þðλ2 − λ34Þ − jλ5j2�ðm2

11 −m2
22Þ

λ1 − λ2

�
I2Y2Z:

ð167Þ

The above results imply that in this case only one invariant
quantity, I2Y2Z, is needed to determine whether the scalar
potential is explicitly CP conserving. Indeed, Eq. (166)

immediately shows that Eq. (102) is proportional to I2Y2Z, a
result that was obtained above by a rather tedious compu-
tation that yielded Eq. (161). Moreover, Eq. (166) provides
a very simple method for computing I2Y2Z in terms of
Higgs basis parameters. Using Eqs. (A21) and (A22), it
follows that

λ1 − λ2 ¼ ðZ1 − Z2Þc2β − 2s2βReðZ67eiξÞ
¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ1 − Z2Þ2 þ 4jZ67j2

q
; ð168Þ

after using Eq. (82) and noting that ReðZ67eiξÞ ¼ �jZ67j
[cf. Eq. (78)]. Hence, by using Eqs. (102), (103), and (168)
in Eq. (166), one immediately reproduces the result
of Eq. (161).
Case 2.—λ1 ¼ λ2.
In light of Eqs. (A5), (A6), (A10), and (A11), it follows

that if λ1 ¼ λ2 and λ6 ¼ −λ7, then these relations hold in
any basis of scalar fields. Hence, it follows that Z1 ¼ Z2

and Z6 ¼ −Z7. This is the exceptional region of the
2HDM parameter space, which is treated in more detail
in Appendix B. In this case, Eqs. (162)–(165) yield IY3Z ¼
I2Y2Z ¼ I6Z ¼ 0 and

I3Y3Z ¼ −
1

8
v6ImðZ�

5Z
2
6Þ
��

Z1 þ
2Y2

v2

�
3

þ 2ðZ1 − Z34Þ
�
Z1 þ

2Y2

v2

�
2

− ½4jZ6j2 þ jZ5j2 − ðZ1 − Z34Þ2�
�
Z1 þ

2Y2

v2

�
− 4½ðZ1 − Z34ÞjZ6j2 þ ReðZ�

5Z
2
6Þ�
�
; ð169Þ

after evaluating I3Y3Z in the Higgs basis and employing
Eq. (24). If ImðZ�

5Z6Þ ¼ 0, then a real Higgs basis exists
and both the scalar potential and vacuum are CP conserv-
ing. If ImðZ�

5Z6Þ ≠ 0 and I3Y3Z ¼ 0, then the model
exhibits spontaneous CP violation. This result provides
the previously missing invariant condition for spontaneous
CP violation in the exceptional region of the 2HDM
parameter space.
Case 3.—m2

12 ¼ 0, and λ1 ≠ λ2.
In this case, Eqs. (162)–(165) yield IY3Z ¼ I2Y2Z ¼ 0

and

I6Z ¼ −ðλ1 − λ2Þ3Imðλ�5λ26Þ; ð170Þ

I3Y3Z ¼ −
�
m2

11 −m2
22

λ1 − λ2

�
3

I6Z: ð171Þ

The above results imply that in this case only one invariant
quantity, I6Z, is needed to determine whether the scalar
potential is explicitly CP conserving. For completeness, we
provide an expression for I6Z when evaluated in the Higgs
basis [59],
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I6Z ¼ −4f22f3 þ jZ5j2f2f3½f1 − ðZ1 − Z2Þ2� þ ðZ1 − Z2ÞImðZ�
5Z

2
67Þg

þ 2f2fðZ1 − Z34Þ½f3ðZ1 − Z2Þ þ ImðZ�
5Z

2
67Þ� − ðZ1 − Z2ÞImðZ�

5Z6Z67Þg
− 2f3ðZ1 − Z2ÞfReðZ�

5Z
2
67Þ − 2ReðZ�

5Z6Z67Þ þ ðZ1 − Z2Þ½ReðZ6Z�
7Þ − jZ6j2�g

þ 2ImðZ�
5Z

2
67ÞReðZ�

5Z
2
67Þ − 2ImðZ�

5Z
2
67ÞReðZ�

5Z6Z67Þ − 2ReðZ�
5Z

2
67ÞImðZ�

5Z6Z67Þ
− ðZ1 − Z2ÞðZ1 − Z34Þ2ImðZ�

5Z
2
67Þ þ ðZ1 − Z2Þ2ðZ1 þ Z2 − 2Z34ÞImðZ�

5Z6Z67Þ
þ 2ðZ1 − Z2Þ½ReðZ6Z�

7ÞImðZ�
5Z

2
67Þ − f1ImðZ�

5Z6Z7Þ� þ ðZ1 − Z2Þ3ImðZ�
5Z6Z7Þ; ð172Þ

where the fi are defined in Eq. (95).
Case 4.—Imðm2

12λ
�
6Þ ¼ 0, m2

12 ≠ 0 and λ1 ≠ λ2.
In this case, Eqs. (162)–(165) yield IY3Z ¼ 0 and

I2Y2Z ¼ ðλ1 − λ2ÞImðλ�5½m2
12�2Þ; ð173Þ

I6Z ¼ −
�ðλ1 − λ2Þ2Re½ðm2

12λ
�
6Þ2�

jm2
12j4

�
I2Y2Z: ð174Þ

As in the case of I6Z, one sees that I3Y3Z is also proportional
to Imðλ�5½m2

12�2Þ. Both results can be understood geomet-
rically by noting that the condition Imðm2

12λ
�
6Þ ¼ 0 implies

that m2
12 and λ6 are aligned in the complex plane, whereas

Imðλ�5½m2
12�2Þ ¼ 0 implies that ½m2

12�2 and λ5 are aligned in
the complex plane. Hence, if I2Y2Z ¼ 0, then ½m2

12�2λ6 and
λ26 are aligned with λ5, and it follows that I6Z ¼ 0 and
I3Y3Z ¼ 0. Once again, only one invariant quantity, I2Y2Z, is
needed to determine whether the scalar potential is explic-
itly CP conserving.
To be complete, we examine two further cases in which

IY3Z ≠ 0, where only one CP-odd invariant is needed to
determine whether the scalar potential is explicitly CP
conserving.
Case 5.—Imðλ�5½m2

12�2Þ¼ðm2
11−m2

22ÞImðm2
12λ

�
6Þ, m2

12≠0
and λ1 ≠ λ2.
In this case, Eqs. (162)–(165) yield I2Y2Z ¼ 0 and

IY3Z ¼ ðλ1 − λ2Þ2Imðm2
12λ

�
6Þ; ð175Þ

I6Z ¼
�ðλ1 − λ2Þ½2Reðm2

12λ
�
6ÞReðλ�5½m2

12�2Þ − ðm2
11 −m2

22ÞRe½ðm2
12λ

�
6Þ2��

jm2
12j4

�
IY3Z: ð176Þ

One can show that I3Y3Z is also proportional to Imðm2
12λ

�
6Þ.

Hence, if IY3Z ¼ 0, then it follows that I6Z ¼ I3Y3Z ¼ 0.
That is, only one invariant quantity, IY3Z, is needed to
determine whether the scalar potential is explicitly CP
conserving.
Case 6.—λ5 ¼ 0 and λ1 ≠ λ2.
In this case, Eqs. (162)–(165) yield I6Z ¼ 0 and

IY3Z ¼ ðλ1 − λ2Þ2Imðm2
12λ

�
6Þ; ð177Þ

I2Y2Z ¼ −
�
m2

11 −m2
22

λ1 − λ2

�
IY3Z: ð178Þ

As in the previous case, one can show that I3Y3Z is also
proportional to Imðm2

12λ
�
6Þ. Hence, if IY3Z ¼ 0, then it

follows that I2Y2Z ¼ I3Y3Z ¼ 0. That is, only one invariant
quantity, IY3Z, is needed to determine whether the scalar
potential is explicitly CP conserving.
In summary, in generic regions of the 2HDM parameter

space, it is sufficient to examine two CP-odd invariant
quantities, IY3Z and I2Y2Z given in Eqs. (156) and (157) in
order to determine whether or not the scalar potential

explicitly breaks the CP symmetry. In special regions of
parameter space examined in the six cases above, one CP-
odd invariant quantity is sufficient, although in some cases a
third CP-odd invariant, I6Z, or a fourth CP-odd invariant,
I3Y3Z, is needed to determine the CP property of the scalar
potential. In the Lee model of spontaneous CP violation, all
four CP-odd invariants vanish, and the scalar potential is
explicitly CP conserving, but at least one of the invariants,
ImðZ2

6Z
�
5Þ, ImðZ2

7Z
�
5Þ, and ImðZ6Z�

7Þ is nonvanishing, sig-
naling that in the absence of explicit CP violation, the source
of the CP violation must be attributed to the properties of the
vacuum.

VIII. CONCLUSIONS

The C2HDM is the most general two-Higgs-doublet
model that possesses a softly broken Z2 symmetry (the
latter is imposed to eliminate tree-level Higgs-mediated
FCNCs). In the so-called Z2 basis where the Z2 symmetry
of the quartic terms in the scalar potential is manifestly
realized, one can rephase the scalar fields such that the vevs
v1 and v2 are real and non-negative. After minimizing the
scalar potential and fixing v ¼ ðv21 þ v22Þ1=2 ¼ 246 GeV,
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the C2HDM is governed by nine additional real parameters:
four scalar masses, one additional squared-mass parameter,
Rem2

12, tan β ¼ v2=v1, and three mixing angles arising from
the diagonalization of the neutral scalar squared-mass
matrix. One sum rule [cf. Eq. (147)] reduces the total
number of independent degrees of freedom (including v)
to nine.
In this paper, we have provided a basis-invariant treat-

ment of the C2HDM. This involves a number of steps.
First, we transformed to the Higgs basis, which is defined
up to an arbitrary rephasing of the Higgs basis field H2

(which by definition possesses no vacuum expectation
value). Consequently, the real parameters of the Higgs
basis scalar potential are invariant quantities, whereas the
complex parameters are pseudoinvariant quantities that
are rephased under H2 → eiχH2. This allows us to easily
identify basis-independent quantities, which are related to
physical observables of the model. The softly broken Z2

symmetry constrains the Higgs basis parameters and yields
one complex invariant constraint equation. Our results are
consistent with the more formal results of Ref. [33] and a
recent computation of Ref. [58] that was carried out in a
convention of real vevs in the Z2 basis. For completeness,
we have also provided the corresponding constraints if the
Z2 symmetry is extended to incorporate the dimension-two
squared-mass terms of the scalar potential.
Having obtained the constraints due to the presence of a

softly broken Z2 symmetry, one can check that the C2HM
is governed by nine basis-independent parameters in agree-
ment with our previous counting above. Moreover, one can
now identify the behavior of the parameters of the C2HDM
under basis transformations. Our analysis revealed that
some combinations of the mixing angles α1, α2, and α3 and
the parameter tan β possess a residual basis dependence due
to the freedom to interchange the two complex scalar
doublet fields of the C2HDM. In practice, this residual
basis dependence is removed by declaring that tan β < 1
corresponds to an enhanced coupling of some of the neutral
Higgs bosons to up-type quarks. Having adopted this
convention (which is implicitly assumed in the literature
but never stated explicitly), the angle parameters of the
C2HDM and the parameter tan β are promoted to basis-
independent quantities that can be directly related to
physical observables.
Our work also resolves an apparent conflict between the

number of physical phases in the matrices that diagonalize
the squared-mass matrix of the neutral Higgs fields that
arise in the two approaches. Indeed, the basis-invariant
calculation exhibited in Sec. III involves two basis-invari-
ant angles (θ12 and θ13), and one unphysical angle (θ23),
whereas the calculations in the C2HDM resulting in
Eq. (141) yields three physical angles α1;2;3. The resolution
of this conundrum is associated with the observation that
the C2HDM is initially defined in a Z2 basis where both
vevs are real. The constraint imposed by the reality of the

two vevs ultimately allows one to ascribe physical signifi-
cance to the pseudoinvariant quantity, θ23. This can be seen
directly in Eq. (77) which relates the relative phase of the
two vevs to the phase of the pseudoinvariant quantity Z67.
Thus, by fixing the phase of the two vevs to be zero,
one fixes the quantity Z67 to be real. This leaves a sign
ambiguity that is resolved once a twofold ambiguity in the
definition of tan β is fixed as indicated above. We have also
examined special cases in which Z67 ¼ 0, where the phase
of Z6 is similarly fixed in the convention of real vevs.15 The
so-called exceptional region of the 2HDM parameter space
where Z1 ¼ Z2 and Z67 ¼ 0 requires special attention and
is treated in Appendix B.
Finally, we have reanalyzed the techniques for detecting

the presence of discrete symmetries originally presented by
Lavoura in Ref. [46]. We have obtained results that are in
agreement with the corresponding results in Lavoura’s paper
(after correcting one typographical error in Ref. [46]). In
addition, we have extended Lavoura’s results in two direc-
tions. First, we noted that the invariant constraints obtained
by Lavoura do not apply in all parameter regimes of the
C2HDM. Some special cases require additional analysis, and
we have provided the appropriate modifications in cases that
cannot be obtained directly from considerations of the
generic regions of the parameter space. Second, Lavoura
was only able to obtain one of two relations that must be
satisfied in the 2HDM with an explicitly CP-conserving
scalar potential but with no (unbroken or broken) Z2

symmetry that exhibits spontaneous CP violation (i.e., the
Lee model [1]). We have provided the second relation that
was missed by Lavoura (using the results obtained in
Ref. [59]), and we have clarified a number of special cases
in which only one relation is sufficient (although that relation
is typically not the one found by Lavoura). It is also
instructive to apply this analysis in the presence of a softly
broken Z2 symmetry. In doing so, we noted a surprising
aspect of a subset of the exceptional region of the parameter
space where no Z2 basis exists where all the scalar potential
parameters are real, and yet the corresponding 2HDM is CP
conserving.
In conclusion, the basis-independent formalism possesses

many advantages. For example, just like covariance in
relativistic theories where an equation can be checked by
ensuring that both sides of the equation behave similarly
under Lorentz transformations in the same way, the basis-
independent formalism affords similar benefits. Indeed,
errors in numerous equations in this paper were avoided
by such considerations. In addition, due to the close connec-
tion of basis-independent quantities to physical observables,
one obtains confidence in appreciating the significance
of the relations among the various 2HDM parametrizations.

15If Z6 ¼ Z7 ¼ 0, then the model reduces to the IDM
discussed in Sec. VA. This model is necessarily CP conserving
and thus is not of further interest to us in this work.
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We hope that the application of basis-independent methods
in the analysis of the C2HDM presented in this paper has
contributed to a better understanding of this model and will
be useful in future phenomenological studies of CP-violating
Higgs phenomena.
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APPENDIX A: CHANGING THE BASIS OF
SCALAR FIELDS IN THE 2HDM

Since the scalar doublets Φ1 and Φ2 have identical
SUð2Þ × Uð1Þ quantum numbers, one is free to define two
orthonormal linear combinations of the original scalar
fields. The parameters appearing in Eq. (2) depend on a
particular basis choice of the two scalar fields. Relative to
an initial (generic) basis choice, the scalar fields in the new
basis are given by Φ0 ¼ UΦ, where U is a U(2) matrix,

U ¼
�

cos β e−iξ sin β

−eiðξþηÞ sin β eiη cos β

�
; ðA1Þ

up to an overall complex phase factor eiψ that has no effect
on the scalar potential parameters, since this corresponds to
a global hypercharge transformation.
With respect to the new Φ0 basis, the scalar potential

takes on the same form given in Eq. (2) but with new
coefficients m02

ij and λ
0
j. For the general U(2) transformation

of Eq. (A1) with Φ0 ¼ UΦ, the scalar potential parameters
(m02

ij, λ
0
i) are related to the original parameters (m2

ij, λi) by

m02
11 ¼ m2

11c
2
β þm2

22s
2
β − Reðm2

12e
iξÞs2β; ðA2Þ

m02
22 ¼ m2

11s
2
β þm2

22c
2
β þ Reðm2

12e
iξÞs2β; ðA3Þ

m02
12e

iðξþηÞ ¼ 1

2
ðm2

11 −m2
22Þs2β þ Reðm2

12e
iξÞc2β þ iImðm2

12e
iξÞ; ðA4Þ

λ01 ¼ λ1c4β þ λ2s4β þ
1

2
λ345s22β þ 2s2β½c2βReðλ6eiξÞ þ s2βReðλ7eiξÞ�; ðA5Þ

λ02 ¼ λ1s4β þ λ2c4β þ
1

2
λ345s22β − 2s2β½s2βReðλ6eiξÞ þ c2βReðλ7eiξÞ�; ðA6Þ

λ03 ¼
1

4
s22β½λ1 þ λ2 − 2λ345� þ λ3 − s2βc2βRe½ðλ6 − λ7Þeiξ�; ðA7Þ

λ04 ¼
1

4
s22β½λ1 þ λ2 − 2λ345� þ λ4 − s2βc2βRe½ðλ6 − λ7Þeiξ�; ðA8Þ

λ05e
2iðξþηÞ ¼ 1

4
s22β½λ1 þ λ2 − 2λ345� þ Reðλ5e2iξÞ þ ic2βImðλ5e2iξÞ − s2βc2βRe½ðλ6 − λ7Þeiξ�

− is2βIm½ðλ6 − λ7Þeiξ�; ðA9Þ

λ06e
iðξþηÞ ¼ −

1

2
s2β½λ1c2β − λ2s2β − λ345c2β − iImðλ5e2iξÞ� þ cβc3βReðλ6eiξÞ þ sβs3βReðλ7eiξÞ

þ ic2βImðλ6eiξÞ þ is2βImðλ7eiξÞ; ðA10Þ

λ07e
iðξþηÞ ¼ −

1

2
s2β½λ1s2β − λ2c2β þ λ345c2β þ iImðλ5e2iξÞ� þ sβs3βReðλ6eiξÞ þ cβc3βReðλ7eiξÞ

þ is2βImðλ6eiξÞ þ ic2βImðλ7eiξÞ; ðA11Þ
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where sβ ≡ sin β, cβ ≡ cos β, etc., and

λ345 ≡ λ3 þ λ4 þ Reðλ5e2iξÞ: ðA12Þ

We shall make use of Eqs. (A2)–(A11) to write out the
explicit relations between the scalar potential parameters of
a generic basis and the Higgs basis. We can employ the
unitary matrix given by Eq. (A1), where

tan β≡ v2
v1

; ðA13Þ

and v1 and v2 are the magnitudes of the vevs of the neutral
components of the Higgs fields in the generic basis, defined
in Eq. (3). In particular,

v1 ¼ v cos β; v2 ¼ v sin β ðA14Þ

are non-negative quantities, which implies that we may
assume that 0 ≤ β ≤ 1

2
π. It follows that the invariant Higgs

basis fields defined in Eq. (25) are given by�
H1

H2

�
¼
�

cos β e−iξ sin β

−eiðξþηÞ sin β eiη cos β

��Φ1

Φ2

�
: ðA15Þ

Consequently, we can identify the primed scalar potential
parameters with the scalar potential coefficients of the
Higgs basis, fH1;H2g, as specified in Eq. (28).
As an example, if the Φ0 basis is identified with the

Higgs basis then, e.g., λ01 ¼ Z1, λ02 ¼ Z2, λ06 ¼ Z6e−iη,
λ07 ¼ Z7e−iη, etc. In particular, the η dependence on the

left-hand side of Eqs. (A4) and (A9)–(A11) cancels out.
Hence, if we identify the Φ basis as a Z2 basis where
λ6 ¼ λ7 ¼ 0, it then follows from Eqs. (A5), (A6), (A10),
and (A11) that

Z1 − Z2 ¼ ðλ1 − λ2Þc2β; Z67eiξ ¼ −
1

2
s2βðλ1 − λ2Þ:

ðA16Þ
Consequently,

1

2
ðZ1 − Z2Þs2β þ c2βZ67eiξ ¼ 0: ðA17Þ

Noting that Eq. (A16) implies that ImðZ67eiξÞ ¼ 0; it
follows that Eqs. (70) and (A17) are consistent equations.
It is convenient to invert the resulting equations and

express the m2
ij and λi in terms of the Yi and Zi. This is

easily done by employing the inverse matrix U−1 ¼ U†,
which simply corresponds to taking β → −β, η → −η and
ξ → ξþ η (the last two replacements are equivalent to the
interchange of ξ ⟷ ξþ η). Hence, it follows that16

m2
11 ¼ Y1c2β þ Y2s2β − ReðY3eiξÞs2β; ðA18Þ

m2
22 ¼ Y1s2β þ Y2c2β þ ReðY3eiξÞs2β; ðA19Þ

m2
12e

iξ ¼ 1

2
ðY2 − Y1Þs2β − ReðY3eiξÞc2β − iImðY3eiξÞ

ðA20Þ

and

λ1 ¼ Z1c4β þ Z2s4β þ
1

2
Z345s22β − 2s2β½c2βReðZ6eiξÞ þ s2βReðZ7eiξÞ�; ðA21Þ

λ2 ¼ Z1s4β þ Z2c4β þ
1

2
Z345s22β þ 2s2β½s2βReðZ6eiξÞ þ c2βReðZ7eiξÞ�; ðA22Þ

λ3 ¼
1

4
s22β½Z1 þ Z2 − 2Z345� þ Z3 þ s2βc2βRe½ðZ6 − Z7Þeiξ�; ðA23Þ

λ4 ¼
1

4
s22β½Z1 þ Z2 − 2Z345� þ Z4 þ s2βc2βRe½ðZ6 − Z7Þeiξ�; ðA24Þ

λ5e2iξ ¼
1

4
s22β½Z1 þ Z2 − 2Z345� þ ReðZ5e2iξÞ þ ic2βImðZ5e2iξÞ

þ s2βc2βRe½ðZ6 − Z7Þeiξ� þ is2βIm½ðZ6 − Z7Þeiξ�; ðA25Þ

λ6eiξ ¼
1

2
s2β½Z1c2β − Z2s2β − Z345c2β − iImðZ5e2iξÞ� þ cβc3βReðZ6eiξÞ

þ sβs3βReðZ7eiξÞ þ ic2βImðZ6eiξÞ þ is2βImðZ7eiξÞ; ðA26Þ

16Note that the sign in front of Y3 in Eq. (28) is positive, whereas the sign in front of m2
12 in Eq. (2) is negative. Thus, we have

identified Y3 ¼ −m02
12 in obtaining Eqs. (A18)–(A20) from Eqs. (A2)–(A4).
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λ7eiξ ¼
1

2
s2β½Z1s2β − Z2c2β þ Z345c2β þ iImðZ5e2iξÞ� þ sβs3βReðZ6eiξÞ

þ cβc3βReðZ7eiξÞ þ is2βImðZ6eiξÞ þ ic2βImðZ7eiξÞ; ðA27Þ

where

Z345 ≡ Z3 þ Z4 þ ReðZ5e2iξÞ: ðA28Þ

It is convenient to take the sum and difference of Eqs. (A26) and (A27) to obtain

ðλ6 þ λ7Þeiξ ¼
1

2
s2βðZ1 − Z2Þ þ c2βRe½ðZ6 þ Z7Þeiξ� þ iIm½ðZ6 þ Z7Þeiξ�; ðA29Þ

ðλ6 − λ7Þeiξ ¼
1

2
s2βc2βðZ1 þ Z2 − 2Z345Þ − is2βImðZ5e2iξÞ þ c4βRe½ðZ6 − Z7Þeiξ� þ ic2βIm½ðZ6 − Z7Þeiξ�: ðA30Þ

As previously noted, all factors of eiη have canceled out due
to the η dependence of the coefficients of the Higgs basis
scalar potential given in Eq. (28).

APPENDIX B: THE EXCEPTIONAL CASE
OF Z1 =Z2 AND Z7 = −Z6

In the exceptional case of Z1 ¼ Z2 and Z7 ¼ −Z6, it
follows from Eqs. (A21)–(A27) that λ1 ¼ λ2 and λ7 ¼ −λ6
in all scalar field bases.17 In this appendix, we show that in
this exceptional case, there exists a Φ basis in which
λ6 ¼ λ7 ¼ 0. That is, there exists a scalar field basis where
the Z2 symmetry of the quartic terms of the scalar potential
is manifest.
It we set Z1 ¼ Z2 and Z67 ¼ 0 in Eqs. (A26) and (A27),

then it follows that a scalar basis with λ6 ¼ λ7 ¼ 0 exists if
and only if values of β and ξ can be found such that

s2βc2β½Z1 − Z34 − ReðZ5e2iξÞ� − is2βImðZ5e2iξÞ
þ 2c4βReðZ6eiξÞ þ 2ic2βImðZ6eiξÞ ¼ 0: ðB1Þ

Taking the real and imaginary parts of Eq. (B1) yields

s2βImðZ5e2iξÞ ¼ 2c2βImðZ6eiξÞ; ðB2Þ

s2βc2β½Z1 − Z34 − ReðZ5e2iξÞ� ¼ −2c4βReðZ6eiξÞ: ðB3Þ

If there exists a scalar basis in which λ6 ¼ λ7 ¼ 0, then this
basis is not unique since the relation λ6 ¼ λ7 ¼ 0 is
unchanged under the basis transformation, Φa → Uab̄Φb,
where U is given by Eq. (72). Indeed, Eqs. (B2) and (B3)
are unchanged under the transformations exhibited in
Eq. (74), as expected. Thus, when solving Eqs. (B2)
and (B3), we expect at least a twofold ambiguity in the
determination of β and ξ (where 0 ≤ β ≤ 1

2
π and

0 ≤ ξ < 2π).
If Z6 ¼ 0, then the scalar potential in the Higgs basis

manifestly exhibits the Z2 symmetry, so we shall hence-
forth assume that Z6 ≠ 0, in which case we may write
Z6 ≡ jZ6jeiθ6 . It is convenient to introduce

ξ0 ≡ ξþ θ6: ðB4Þ

Under the basis transformation Φa → Uab̄Φb, where U is
given by Eq. (72), it follows that eiξ

0
→ −eiξ0 , in light of

Eq. (74). That is, ξ0 is only determined modulo π,
corresponding to the twofold ambiguity anticipated above.
Inserting eiξ ¼ eiξ

0
Z�
6=jZ6j into Eqs. (B2) and (B3)

yields

s2β½ReðZ�
5Z

2
6Þ sin 2ξ0 − ImðZ�

5Z
2
6Þ cos 2ξ0� ¼ 2c2βjZ6j3 sin ξ0;

ðB5Þ

s2βc2β½jZ6j2ðZ1 − Z34Þ − ReðZ�
5Z

2
6Þ cos 2ξ0

− ImðZ�
5Z

2
6Þ sin 2ξ0� ¼ −2c4βjZ6j3 cos ξ0: ðB6Þ

We now consider two cases. First, if we assume that
ImðZ�

5Z
2
6Þ ¼ 0 then sin ξ0 ¼ 0 is a solution to Eq. (B5),

which implies that cos ξ0 ¼ �1; the twofold ambiguity was
anticipated in light of the comment following Eq. (B4).

17We note in passing that the exceptional region of parameter
space where λ1 ¼ λ2 and λ7 ¼ −λ6 was identified in Ref. [47] as
the conditions for a softly broken CP2-symmetric scalar potential,
where CP2 is the generalized CP transformation, Φ1 → Φ�

2 and
Φ2 → −Φ�

1. In general, dimension-two soft CP2-breaking
squared-mass terms are present and violate the CP2-symmetric
conditions, m2

11 ¼ m2
22 and m2

12 ¼ 0. However, the CP2 sym-
metry is also violated by the dimension-four Yukawa interactions,
which constitute a hard breaking of the symmetry [64]. Con-
sequently, the exceptional region of the parameter space is
unnatural and must be regarded as finely tuned.
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Inserting cos ξ0 ¼ �1 into Eq. (B6) then yields a quadratic
equation for cot 2β ¼ c2β=s2β,

2jZ6jcot22β�
�
Z1 −Z34 −

ReðZ�
5Z

2
6Þ

jZ6j2
�
cot2β− 2jZ6j ¼ 0:

ðB7Þ

As expected from Eq. (74), changing the sign of cos ξ0 from
þ1 to −1 simply changes the sign of cot 2β. Moreover,
Eq. (B7) possesses two real roots whose product is equal to
−1. This observation implies that if β is one solution of
Eq. (B7), then the second solution is β � 1

4
π (where the sign

is chosen such that the second solution lies between 0 and
1
2
π). Hence, if Z1 ¼ Z2, Z67 ¼ 0, and ImðZ�

5Z
2
6Þ ¼ 0, then

there are four choices of ðβ; ξÞ, where 0 ≤ β ≤ 1
2
π and

cos ξ0 ¼ �1, in which Eqs. (B2) and (B3) are satisfied.
If ImðZ�

5Z
2
6Þ ¼ 0 and sin ξ0 ≠ 0, then additional solutions

of Eqs. (B5) and (B6) exist. Solving Eq. (B5) for c2β=s2β
and inserting this result into Eq. (B6) yield

cos ξ0f½ReðZ�
5Z

2
6Þ�2 þ ReðZ�

5Z
2
6ÞjZ6j2ðZ1 − Z34Þ

− 2jZ6j6g ¼ 0: ðB8Þ

Since the coefficient of cos ξ0 is generically nonzero, it
follows that cos ξ0 ¼ 0. Plugging this result back into
Eq. (B5) yields cos 2β ¼ 0. Hence, ðβ ¼ 1

4
π; ξ0 ¼ 1

2
πÞ

and ðβ ¼ 1
4
π; ξ0 ¼ 3

2
πÞ are also solutions to Eqs. (B5)

and (B6) when ImðZ�
5Z

2
6Þ ¼ 0. These two solutions are

again related by the basis transformation Φa → Uab̄Φb,
where U is given by Eq. (72).
Second, if we assume instead that ImðZ�

5Z
2
6Þ ≠ 0, then

sin ξ0 ≠ 0. In this case, we follow the method employed in
Appendix C of Ref. [59]. Solving Eq. (B5) for s2β=c2β and

inserting this result into Eq. (B6) yield the following
equation for ξ0:

Fðξ0Þ≡ sinξ0½R sin2ξ0 − I cos2ξ0�
× ½jZ6j2ðZ1 −Z34Þ−R cos2ξ0 − I sin2ξ0�
þ cos ξ0½ðR sin2ξ0 − I cos2ξ0Þ2 − 4jZ6j6sin2ξ0� ¼ 0;

ðB9Þ

where R≡ ReðZ�
5Z

2
6Þ and I ≡ ImðZ�

5Z
2
6Þ. Noting that

Fðξ0 þ πÞ ¼ −Fðξ0Þ, it follows that Eq. (B9) determines
ξ0 modulo π, as expected in light of the comment
below [Eq. (B4)]. Moreover, given that Fðξ0 ¼ 0Þ ¼ I2

and Fðξ0 ¼ πÞ ¼ −I2, there must exist an angle ξ00 such that
0 < ξ00 < π and Fðξ00Þ ¼ 0. Plugging ξ0 ¼ ξ00 back into
Eq. (B5) then yields

cot 2β ¼ R sin 2ξ00 − I cos 2ξ00
2jZ6j3 sin ξ00

: ðB10Þ

As expected, under a basis transformation, Φa → Uab̄Φb,
where U is given by Eq. (72), it follows that ξ00 → ξ00 þ π
and cot 2β → − cot 2β, which is consistent with Eq. (B10).
Thus, we have shown that there are at least two choices

of (β, ξ), where 0 ≤ β ≤ 1
2
π and 0 ≤ ξ < 2π, that satisfy

Eq. (B1). That is, we have proven that if Z1 ¼ Z2 and
Z67 ¼ 0, then a scalar basis exists in which λ6 ¼ λ7 ¼ 0,
where the softly broken Z2 symmetry is manifestly
realized.
We end this appendix with a discussion of spontaneous

CP violation. Starting from Eq. (94), we can eliminate
ReðZ5e2iξÞ and ImðZ5e2iξÞ by employing Eqs. (B2)
and (B3). If we denote R≡ ReðZ6eiξÞ ¼ jZ6j cos ξ0 and
I ≡ ImðZ6eiξÞ ¼ jZ6j sin ξ0, the end result is

Imðλ�5½m2
12�2Þ ¼ −

v4

8c2βs2β
I
�
4c2βs22β

�
Y2

v2

�
2

þ 4s22β

�
Y2

v2

�
½s2βRþ c2βZ34� − 4c2βI2

− 4c2βc4βR2 − 2s2β½c4βZ1 þ c22βðZ1 − 2Z34Þ�R − c2βs22βZ1ðZ1 − 2Z34Þ
�
; ðB11Þ

where λ5 and m2
12 are parameters of the scalar potential

in the Z2 basis, and β and ξ are solutions to Eqs. (B2)
and (B3).
Below Eq. (B6), we showed that if ImðZ�

5Z
2
6Þ ¼ 0, then

one solution to Eqs. (B2) and (B3) is sin ξ0 ¼ 0. In this case,
I ¼ ImðZ6eiξÞ ¼ jZ6j sin ξ0 ¼ 0, and it immediately fol-
lows from Eq. (B11) that Imðλ�5½m2

12�2Þ ¼ 0. We also
showed above that if ImðZ�

5Z
2
6Þ ¼ 0, then a second solution

exists in which c2β ¼ 0 and cos ξ0 ¼ 0. In order to employ
Eq. (B11) in this case, one must first use Eq. (B3) in order
to rewrite Imðλ�5½m2

12�2Þ in terms of I and ReðZ5e2iξÞ.
Having done so, the factor of c2β in the denominator

of the prefactor in Eq. (B11) cancels out, and one
can then set c2β ¼ 0. Finally, we employ ReðZ5e2iξÞ ¼
−ReðZ�

5Z
2
6Þ=jZ6j2 (after using e2iξ ¼ e2iξ

0 ðZ�
6Þ2=jZ6j2 and

cos 2ξ0 ¼ −1). The resulting expression reproduces
Eq. (109) and yields Imðλ�5½m2

12�2Þ ≠ 0, which implies that
no Z2 basis exists in which m2

12 and λ5 are both real.
Nevertheless, because ImðZ�

5Z
2
6Þ ¼ 0 and Z67 ¼ 0, it fol-

lows that a real Higgs basis exists, which signifies that the
scalar sector is CP conserving.
If ImðZ�

5Z
2
6Þ ≠ 0, then no real Higgs basis exists, and

thus the scalar sector violates CP either explicitly or
spontaneously. In this case, sin ξ0 ¼ sin ξ00 ≠ 0, where
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ξ00 is determined as discussed below Eq. (B9). Since CP is
explicitly conserved if Imðλ�5½m2

12�2Þ ¼ 0, it follows from
Eq. (B11) that a basis-invariant condition for spontaneous
CP violation is given by

4c2βs22β

�
Y2

v2

�
2

þ 4s2β

�
Y2

v2

�
½s2βRþ c2βZ34�

− 4c2βðI2 þ c4βR2Þ − 2s2β½c4βZ1 þ c22βðZ1 − 2Z34Þ�R
− c2βs22βZ1ðZ1 − 2Z34Þ ¼ 0; ðB12Þ

where R ¼ jZ6j cos ξ00 and I ¼ jZ6j sin ξ00, and the angle
2β is given by Eq. (B10).

APPENDIX C: BASIS-INVARIANT CONDITIONS
FOR THE Z2 SYMMETRY REVISITED

In Sec. V, conditions for the presence of a Z2 symmetry
in the scalar potential (which may or may not be softly
broken) were derived. These conditions were expressed in
terms of the Higgs basis scalar potential parameters and

were invariant with respect to an arbitrary rephasing of the
Higgs basis field H2 that defines the set of all possible
Higgs bases. In Ref. [33], a set of manifestly basis-invariant
expressions were presented which were sensitive to the
presence of a Z2 symmetry in the 2HDM scalar potential.18

In this appendix, we demonstrate that if these expressions
are evaluated in the Higgs basis, then the results of Sec. V
are recovered.
We begin by defining two U(2)-flavor tensors con-

structed from the 2HDM couplings Zab̄cd̄ defined in Eq. (7),

Zð1Þ
ad̄

≡ δbc̄Zab̄cd̄ ¼ Zab̄bd̄; Zð11Þ
cd̄

≡ Zð1Þ
bā Zab̄cd̄: ðC1Þ

It is straightforward to work out the following explicit
expressions in the Φ basis:

Zð1Þ ¼
�
λ14 λ67

λ�67 λ24

�
ðC2Þ

and

Zð11Þ ¼
�
λ14λ1 þ λ24λ3 þ λ67λ

�
6 þ λ�67λ6 λ14λ6 þ λ24λ7 þ λ67λ4 þ λ�67λ5

λ14λ
�
6 þ λ24λ

�
7 þ λ�67λ4 þ λ67λ

�
5 λ14λ3 þ λ24λ2 þ λ67λ

�
7 þ λ�67λ7

�
: ðC3Þ

In Eqs. (C2) and (C3), we employ the shorthand notation,
λij ≡ λi þ λj.
We now make use of the following result: starting from

an arbitrary Φ basis of scalar fields, one can always
transform to a Φ0 basis in which λ07 ¼ −λ06 [59]. A simple
proof of this result is given in Appendix D. It is then
straightforward to evaluate in the Φ0 basis,

½Zð1Þ; Zð11Þ� ¼ ðλ01 − λ02Þ2
�

0 λ06
−λ0�6 0

�
: ðC4Þ

Assuming that λ01 ≠ λ02 in a basis where λ
0
7 ¼ −λ06, it follows

that if ½Zð1Þ; Zð11Þ� ¼ 0, then λ06 ¼ 0. That is, in theΦ0 basis,
the softly brokenZ2 symmetry is manifestly realized. In the
special case of λ01 ¼ λ02 and λ07 ¼ −λ06, one can check from
Eqs. (A5) to (A11) that λ1 ¼ λ2 and λ7 ¼ −λ6. That is, this
condition holds in all scalar field bases. This result is not

surprising given that in this special case, Zð1Þ
ab̄

¼ λ14δab̄,
which maintains this form under any U(2) transformation.
Moreover, as shown in Appendix B, if λ1 ¼ λ2 and
λ7 ¼ −λ6, then there exists scalar basis in which
λ6 ¼ λ7 ¼ 0.

Hence, it follows that the condition for the existence of a
softly broken Z2 symmetry that is manifest in some scalar
field basis is given by [33]

½Zð1Þ; Zð11Þ� ¼ 0: ðC5Þ

Equation (C5) is covariant with respect to U(2) trans-
formations. Hence, it can be evaluated in any scalar field
basis. Thus, the condition we seek can be determined by
evaluating Eq. (C5) in the Higgs basis.
With the help of Mathematica, we obtain the following

results. In any basis,

½Zð1Þ; Zð11Þ�22 ¼ −½Zð1Þ; Zð11Þ�11;
and ½Zð1Þ; Zð11Þ�12 ¼ −½Zð1Þ; Zð11Þ��21: ðC6Þ

In the Higgs basis,

½Zð1Þ; Zð11Þ�11 ¼ 2ifðZ1 −Z2ÞImðZ�
6Z7Þ þ ImðZ�

5Z
2
67Þg ¼ 0;

ðC7Þ

½Zð1Þ; Zð11Þ�12 ¼ ðZ1 −Z2Þ½Z34Z67 −Z2Z6 −Z1Z7 þZ5Z�
67�

− 2Z67ðjZ6j2 − jZ7j2Þ; ðC8Þ

where Z34 ≡ Z3 þ Z4 and Z67 ≡ Z6 þ Z7.

18The group theoretic analysis of the 2HDM scalar potential
developed in Ref. [36] and the geometric picture of Ref. [40]
provide alternative approaches for obtaining a basis-independent
condition for the presence of a softly broken Z2 symmetry.
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Thus, we arrive at two conditions for the Higgs basis
scalar potential parameters that imply the existence of a
softly broken Z2 symmetry,

ðZ1 − Z2Þ½Z34Z67 − Z2Z6 − Z1Z7 þ Z5Z�
67�

− 2Z67ðjZ6j2 − jZ7j2Þ ¼ 0; ðC9Þ

ðZ1 − Z2ÞImðZ�
6Z7Þ þ ImðZ�

5Z
2
67Þ ¼ 0; ðC10Þ

which reproduce the results of Eqs. (89) and (88),
respectively.
If the Z2 symmetry is exact, then in addition to Eq. (C5),

one must impose a second condition [33],

½Zð1Þ; Y� ¼ 0: ðC11Þ

This result is established by evaluating the commutator in
the Φ0 basis where λ07 ¼ −λ06. Noting that,

½Zð1Þ; Y� ¼ ðλ02 − λ01Þ
�

0 m02
12

m02�
12 0

�
; ðC12Þ

it follows that if λ01 ≠ λ02 and m02
12 ¼ 0, then ½Zð1Þ; Y� ¼ 0.

That is, if Eqs. (C5) and (C11) are both satisfied and

λ01 ≠ λ02, then a basis exists where m02
12 ¼ λ06 ¼ λ07 ¼ 0 and

the Z2 symmetry is manifest.
Evaluating Eq. (C11) in the Higgs basis,�
Z14 Z67

Z�
67 Z24

��
Y1 Y3

Y�
3 Y2

�
¼
�
Y1 Y3

Y�
3 Y2

��
Z14 Z67

Z�
67 Z24

�
;

ðC13Þ

where we have again employed the notation, Zij≡ZiþZj.
This yields two conditions,

ðY1 − Y2ÞZ�
67 þ Y�

3ðZ2 − Z1Þ ¼ 0; ðC14Þ

ImðY�
3Z67Þ ¼ 0; ðC15Þ

which reproduces the results of Eqs. (125) and (124),
respectively.
The exceptional region of parameter space (where λ7 ¼

−λ6 and λ1 ¼ λ2 in all scalar field bases) must be treated
separately, Indeed Eqs. (C14) and (C15) are automatically
satisfied, and additional considerations are warranted.

Following Ref. [33], we introduce Yð1Þ
cd̄

≡ YbāZab̄cd̄, which
is explicitly given in the Higgs basis by

Yð1Þ ¼
�
Y1Z1 þ Y3Z�

6 þ Y�
3Z6 þ Y2Z3 Y1Z6 þ Y3Z4 þ Y�

3Z5 þ Y2Z7

Y1Z�
6 þ Y3Z�

5 þ Y�
3Z4 þ Y2Z�

7 Y1Z3 þ Y3Z�
7 þ Y�

3Z7 þ Y2Z2

�
: ðC16Þ

If Z67 ¼ 0 and Z1 ¼ Z2, then we require that [33]

½Yð1Þ; Y� ¼ 0: ðC17Þ

In the Higgs basis, Eq. (C17) yields

Y3½Y1ðZ3 − Z1Þ þ Y�
3ðZ7 − Z6Þ

þ Y3ðZ�
7 − Z�

6Þ þ Y2ðZ2 − Z3Þ�
þ ðY1 − Y2ÞðY1Z6 þ Y3Z4 þ Y�

3Z5 þ Y2Z7Þ ¼ 0;

ðC18Þ

Y1ImðY3Z�
6Þ þ ImðY2

3Z
�
5Þ þ Y2ImðY3Z�

7Þ ¼ 0: ðC19Þ

By assumption, Z67 ¼ 0 and Z1 ¼ Z2. The end result is

ðY1 − Y2Þ
�
Z�
6

�
Y2 þ

1

2
Z34v2

�
þ 1

2
Z6Z�

5v
2

�
þ Z�

6jZ6j2v4 ¼ 0; ðC20Þ

ImðZ�
5Z

2
6Þ ¼ 0; ðC21Þ

after imposing the scalar potential minimum condition,
Y3 ¼ − 1

2
Z6v2 [cf. Eq. (24)].

19 Multiplying Eq. (C20) by Z6

yields

ðY1 − Y2Þ
�
jZ6j2

�
Z34 þ

2Y2

v2

�
þ Z�

5Z
2
6

�
þ 2jZ6j4v2 ¼ 0;

ðC22Þ

which reproduces Eq. (131). Indeed, the imaginary part of
Eq. (C22) yields Eq. (C21), implying that the latter is not an
independent condition.20

APPENDIX D: PROOF OF THE EXISTENCE OF
A SCALAR FIELD BASIS IN WHICH λ07 = − λ06
Starting from an arbitrary Φ basis of scalar fields,

Eqs. (A2)–(A11) list the coefficients of the scalar potential

19In obtaining Eq. (C20), we made use of Y1Z6 ¼ Y3Z1, which
is a consequence of Eq. (24).

20If Y1 ¼ Y2, Z1 ¼ Z2 and Z67 ¼ 0, then Eq. (C20) implies
that Z6 ¼ 0 and Eq. (C21) is trivially satisfied. Of course, in this
case, the exact Z2 symmetry is manifestly realized in the Higgs
basis, and no further analysis is required.
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in the Φ0 basis that are related to the corresponding
coefficients of the Φ basis by the U(2) transformation
given by Eq. (A1). It then follows that

ðλ06 þ λ07Þeiξ ¼ −
1

2
s2βðλ1 − λ2Þ þ c2βRe½ðλ6 þ λ7Þeiξ�

þ iIm½ðλ6 þ λ7Þeiξ�: ðD1Þ
We assume that λ7 ≠ −λ6. The goal of this appendix is
to show that there exists a choice of β and ξ such
that λ07 ¼ −λ06.
Consider the diagonalization of the matrix Zð1Þ

ab̄
≡

δcd̄Zac̄db̄, which is explicitly given by

Zð1Þ ≡
�
λ1 þ λ4 λ6 þ λ7

λ�6 þ λ�7 λ2 þ λ4

�
: ðD2Þ

Under a basis transformation, Φa → Φ0
a ¼ Uab̄Φb, it fol-

lows that Zð1Þ
ab̄

→ Uac̄Z
ð1Þ
cd̄
U†

db̄
, where the unitary matrixU is

given by Eq. (A1). It is possible to choose η, β, and ξ
such that

UZð1ÞU−1 ¼ diagðλþ; λ−Þ; ðD3Þ
where the λ� are the eigenvalues of Zð1Þ,

λ� ¼ 1

2

h
λ1 þ λ2 þ 2λ4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4jλ6 þ λ7j2

q i
:

ðD4Þ

In determining the diagonalization matrix U, one is free to
take η ¼ 0 without loss of generality.21 By convention, we
shall also take 0 ≤ β ≤ 1

2
π and 0 ≤ ξ < 2π.

It is convenient to introduce the notation,

λ67 ≡ λ6 þ λ7 ≡ jλ67jeiθ67 : ðD5Þ

It is then straightforward to check that the diagonalization
of Zð1Þ is achieved if U is given by Eq. (A1) with η ¼ 0,
ξ ¼ −θ67, and

s2β ¼
2jλ67jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ1 − λ2Þ2 þ 4jλ67j2
p ;

c2β ¼
λ1 − λ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ1 − λ2Þ2 þ 4jλ67j2
p ; ðD6Þ

Indeed, by inserting ξ ¼ −θ67 into Eq. (D1) and using
Eq. (D6), one readily verifies that

ðλ06 þ λ07Þeiξ ¼ −
1

2
s2βðλ1 − λ2Þ þ c2βjλ67j ¼ 0; ðD7Þ

after making use of Eq. (D6) in the final step. Hence, we
conclude that λ06 þ λ07 ¼ 0. That is, it is always possible to
find a basis change such that λ06 ¼ −λ07.
For the record, we verify the diagonalization of Zð1Þ by

computing

UZð1ÞU−1 ¼
�

cβ eiθ67sβ

−e−iθ67sβ cβ

��
λ1 þ λ4 jλ67jeiθ67
jλ67je−iθ67 λ2 þ λ4

��
cβ −eiθ67sβ

e−iθ67sβ cβ

�

¼
�

cβ eiθ67sβ

−e−iθ67sβ cβ

�� ðλ1 þ λ4Þcβ þ jλ67jsβ −eiθ67 ½ðλ1 þ λ4Þsβ − jλ67jcβ�
e−iθ67 ½jλ67jcβ þ ðλ2 þ λ4Þsβ� −jλ67jsβ þ ðλ2 þ λ4Þcβ

�
: ðD8Þ

In particular,

ðUZð1ÞU−1Þ12 ¼ ðUZð1ÞU−1Þ�21
¼ eiθ67

�
jλ6 þ λ7jc2β −

1

2
ðλ1 − λ2Þs2β

�
;

ðD9Þ
which vanishes if

tan 2β ¼ 2jλ67j
λ1 − λ2

: ðD10Þ

Note that this result is consistent with Eq. (D6).

One can also check that ðUZð1ÞU−1Þ11 ¼ λþ and
ðUZð1ÞU−1Þ22 ¼ λ−, where

λ� ¼ 1

2
ðλ1 þ λ2 þ 2λ4Þ �

�
1

2
ðλ1 − λ2Þc2β þ jλ67js2β

�
:

ðD11Þ
Plugging in Eq. (D6) for s2β and c2β into Eq. (D11) then
yields Eq. (D4), as expected.

APPENDIX E: MIXING OF THE NEUTRAL
HIGGS SCALARS IN THE Φ BASIS

In Sec. III, the mixing of the neutral Higgs scalars was
obtained in the Higgs basis. In this appendix, we examine
the mixing in the Φ basis, where the scalar potential is
given by Eq. (2). In the Φ basis, the two scalar doublet
fields can be parametrized by

21In light of Eq. (D3), it follows that the columns of U−1 ¼ U†

are the normalized eigenvectors of Zð1Þ, which are only defined
up to an overall complex phase. Hence, one is free to rephase the
second row of Eq. (A1) in order to set η ¼ 0.
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Φ1 ¼
� φþ

1

1ffiffi
2

p ðv1 þ η1 þ iχ1Þ
�
; Φ2 ¼ eiξ

� φþ
2

1ffiffi
2

p ðv2 þ η2 þ iχ2Þ
�
; ðE1Þ

where

v1 ¼ vcβ; v2 ¼ vsβ; ðE2Þ

cβ ≡ cos β, sβ ≡ sin β, v is defined in Eq. (4), and the ranges of the parameters β and ξ are conventionally chosen to be
0 ≤ β ≤ 1

2
π and 0 ≤ ξ < 2π. The minimum conditions for the 2HDM scalar potential specified in Eq. (2) are

m2
11 ¼ Reðm2

12e
iξÞ tan β − 1

2
v2½λ1c2β þ λ345s2β þ 3Reðλ6eiξÞsβcβ þ Reðλ7eiξÞs2β tan β�;

m2
22 ¼ Reðm2

12e
iξÞ cot β − 1

2
v2½λ2s2β þ λ345c2β þ Reðλ6eiξÞc2β cot β þ 3Reðλ7eiξÞsβcβ�;

Imðm2
12e

iξÞ ¼ 1

2
v2½sβcβImðλ5e2iξÞ þ Imðλ6eiξÞc2β þ Imðλ7eiξÞs2β�; ðE3Þ

where λ345 ≡ λ3 þ λ4 þ Reðλ5e2iξÞ.
In light of Eqs. (21), (25), and (31), one can identify

the neutral Goldstone boson with G0 ¼ cβχ1 þ sβχ2 and
the charged Goldstone boson with Gþ¼cβφ

þ
1 þsβφ

þ
2 . The

neutral scalar state orthogonal to G0 is denoted by η3 and is
given by

η3 ¼ cβχ2 − sβχ1: ðE4Þ

An expression for the neutral Higgs mass-eigenstate
fields was obtained in Eq. (37), which we repeat here for
the convenience of the reader,

hk ¼
1ffiffiffi
2

p ½Φ̄0†
ā ðqk1v̂a þ qk2ŵae−iθ23Þ

þ ðq�k1v̂�̄a þ q�k2ŵ
�̄
ae

iθ23ÞΦ̄0
a�; ðE5Þ

where the shifted neutral fields are defined by Φ̄0
a ≡Φ0

a −
vv̂a=

ffiffiffi
2

p
and the qkl are exhibited in Table I. Plugging

Eq. (E1) into Eq. (E5) yields

hk ¼ ðcβη1 þ sβη2ÞRe qk1 þ ðcβχ1 þ sβχ2ÞIm qk1

þ ðcβη2 − sβη1ÞReðqk2e−iðξþθ23ÞÞ
þ η3Imðqk2e−iðξþθ23ÞÞ; ðE6Þ

after employing Eq. (E4). Recall that for k ¼ 0, we have
q01 ¼ i and q02 ¼ 0, in which case Eq. (E6) yields
h0 ¼ G0, as expected.
Making use of Eqs. (41) and (E5), the physical charged

Higgs field is given by

Hþ ¼ eiðξþθ23Þðcβφþ
2 − sβφ

þ
1 Þ: ðE7Þ

Focusing next on the three physical neutral Higgs bosons,
hk (for k ¼ 1; 2; 3), we introduce the neutral Higgs mixing
matrix, R [cf. Eqs. (140) and (141)],

hk ¼ Rklηl; for k ¼ 1; 2; 3: ðE8Þ
where there is an implicit sum over the repeated index l.
Comparing Eqs. (E6) and (E8) and recalling that the qk1 are
real for k ¼ 1; 2; 3, it immediately follows that

Rk1 ¼ qk1cβ − Reðqk2e−iðξþθ23ÞÞsβ; ðE9Þ
Rk2 ¼ qk1sβ þ Reðqk2e−iðξþθ23ÞÞcβ; ðE10Þ

Rk3 ¼ Imðqk2e−iðξþθ23ÞÞ: ðE11Þ

Not surprisingly, the individual elements of the matrixR are
basis dependent, since there is no physical meaning to the
parameters β and ξ if the 2HDM Lagrangian possesses no
Higgs family symmetry (beyond a global U(1) hypercharge).
Nevertheless, one can construct combinations of the matrix
elements of R that are invariant or pseudoinvariant with
respect to U(2)-basis transformations. For example,

qk1 ¼ Rk1cβ þRk2sβ; ðE12Þ
qk2e−iðξþθ23Þ ¼ −Rk1sβ þRk2cβ þ iRk3: ðE13Þ

Indeed, the above combinations appear in the gauge boson–
Higgs boson couplings [32].22

22The combination of matrix elements on the right-hand side of
Eq. (E13) appears in the couplings of the charged Higgs boson.
The factor of e−iðξþθ23Þ that multiplies the invariant quantity qk2 in
Eq. (E13) cancels against the phase factor appearing in Eq. (E7),
resulting in charged Higgs couplings that are invariant with
respect to U(2)-basis transformations, as expected for the
physical couplings of invariant fields.
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All the results above also apply in the 2HDM with a
softly broken Z2 symmetry, where λ6 ¼ λ7 ¼ 0 in the Φ
basis. In this case, we may use the results of Sec. V B. In
particular, both c2β and e−iðξþθ23Þ are now determined up to
a twofold ambiguity by Eqs. (82) and (84), respectively,
in terms of basis-invariant quantities. This twofold ambi-
guity corresponds to a residual basis dependence associated
with the interchange of the two scalar fields. Under the
interchange of Φ1 ↔ Φ2, it follows from Eqs. (72) to (75)
that eiðξþθ23Þ → −eiðξþθ23Þ and sβ ↔ cβ, in which case
Eqs. (E9)–(E11) imply that Rk1 ↔ Rk2 and Rk3 → −Rk3.

However, θ23 and ξ are not separately determined. This is
not surprising since θ23 and ξ are each additively shifted by a
rephasing of the secondHiggs doublet of theZ2 basis and the
Φ basis, respectively. Nevertheless, the presence of the softly
broken Z2 symmetry ties these two parameter shifts together
such that their sum ξþ θ23 is invariant under a rephasing of
the corresponding scalar doublets. Indeed, the fact that only
the sum ξþ θ23 appears in Eq. (E7) and in Eqs. (E9)–(E11)
could have been anticipated on these grounds.
Using Eqs. (E9)–(E11), one can now derive a useful

sum rule,

1

v2
X3
k¼1

m2
kRk3ðRk1cβ −Rk2sβÞ ¼

1

v2
c2β
X3
k¼1

m2
kqk1Imðqk2e−iðξþθ23ÞÞ − 1

2v2
sβ
X3
k¼1

m2
kImðq2k2e−2iðξþθ23ÞÞ

¼ −c2βImðZ6eiξÞ þ
1

2
s2βImðZ5e2iξÞ; ðE14Þ

after making use of Eqs. (49) and (50). Since λ6 ¼ λ7 ¼ 0
in the Z2 basis, one can employ Eqs. (A9) and (A10) to
obtain23

ImðZ5e2iξÞ ¼ c2βImðλ5e2iξÞ; ImðZ6eiξÞ ¼
1

2
s2βImðλ5e2iξÞ:

ðE15Þ
Inserting these results into Eq. (E14) yields24

X3
k¼1

m2
kRk3ðRk1cβ −Rk2sβÞ ¼ 0: ðE16Þ

Note that this sum rule is independent of the para-
meter ξ.
After setting λ6 ¼ λ7 ¼ 0 in Eq. (E3), m2

11, m
2
22, and

Imðm2
12e

iξÞ are then fixed by the scalar potential mini-
mum conditions. Hence, it follows that the most general
2HDM subject to a softly broken Z2 symmetry is
governed by nine independent parameters that can be
identified by using Eq. (E16) to impose one relation
among the ten real quantities: v, tan β, Reðm2

12e
iξÞ, three

mixing angles, three neutral Higgs masses, and one
charged Higgs mass.
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