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The exceptional region of the parameter space (ERPS) of the two Higgs doublet model (2HDM) is
defined to be the parameter regime where the scalar potential takes on a very special form. In the standard
parametrization of the 2HDM scalar potential with squared mass parameters m2

11, m2
22, m2

12, and
dimensionless couplings, λ1; λ2;…; λ7, the ERPS corresponds to λ1 ¼ λ2, λ7 ¼ −λ6, m2

11 ¼ m2
22 and

m2
12 ¼ 0, corresponding to a scalar potential with an enhanced generalized CP symmetry called GCP2.

Many special features persist if λ1 ¼ λ2 and λ7 ¼ −λ6 are retained while allowing for m2
11 ≠ m2

22 and/or
m2

12 ≠ 0, corresponding to a scalar potential with a softly broken GCP2 symmetry, which we designate as
the ERPS4. In this paper, we examine many of the special features of the ERPS4, as well as even more
specialized cases within the ERPS4 framework in which additional constraints on the scalar potential
parameters are imposed. By surveying the landscape of the ERPS4, we complete the classification of
2HDM scalar potentials that exhibit an exact Higgs alignment (where the tree-level couplings of one neutral
scalar coincide with those of the Standard Model Higgs boson), due to a residual symmetry that is unbroken
in the vacuum. One surprising aspect of the ERPS4 is the possibility that the scalar sector is CP-conserving
despite the presence of a complex parameter of the scalar potential whose complex phase cannot be
removed by separate rephasings of the two scalar doublet fields. The significance of the ERPS4 regime for
custodial symmetry is also discussed, and the cases where a custodial symmetric 2HDM scalar potential
preserves an exact Higgs alignment are elucidated.
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I. INTRODUCTION

After the discovery of the Higgs boson at the LHC [1,2],
the ATLAS and CMS collaborations have ascertained
that the observed properties of the Higgs boson are
consistent with the corresponding predictions of the
Standard Model (SM). Various production mechanisms
and decay channels have been detected, and many of the
observed signal strengths are consistent with SM expect-
ations given the current precision of the LHC Higgs data,
typically in the range of 10%–20% depending on the final
state observable [3–6].
Can it be true that the scalar sector of the SM consists of

a single spin-0 boson? In light of the nonminimal nature
of the SM fermions (which consist of three generations of
quarks and leptons) as well as the nonminimal nature of the

SM gauge group [which is the direct product of two non-
Abelian groups and the weak hypercharge Uð1ÞY], it would
be surprising if the scalar sector did not possess a non-
minimal structure as well. Extended Higgs sectors have
been proposed and explored in the literature since the birth
of the Standard Model. Indeed, an important part of the
LHC Higgs program is to search for the existence of new
scalar states related to the observed Higgs boson, and to
study their properties if found.
Of course, an arbitrary extended Higgs sector can in

many cases be ruled out by current experimental data. The
observed electroweak ρ parameter [7–10], which is close to
1, and the absence of tree-level Higgs-mediated flavor
changing neutral currents (FCNCs) that otherwise would
lead to observable FCNC effects, in conflict with current
experimental bounds, impose significant constraints on any
theory with an extended Higgs sector. The two Higgs
doublet model (2HDM), which is one of the simplest
extensions of the SM, possesses two scalar doublet fields
Φ1 and Φ2 [11–13], each with the same hypercharge Y ¼ 1
(in a convention where the electric charge is given by
Q ¼ T3 þ 1

2
Y). Nearly all of the new scalar physics

phenomena expected in theories of extended Higgs models
can be found in the 2HDM—charged scalars, CP-odd
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scalars (in models with a CP-conserving scalar sector) and/
or scalars of indefinite CP-quantum numbers (in models
with a CP-violating scalar sector). Moreover, the 2HDM
predicts a tree-level value of ρ ¼ 1 and is also compatible
with the absence of tree-level Higgs-mediated FCNCs with
a suitably chosen Higgs-fermion Yukawa interaction
[14,15].1 Finally, the 2HDM has often been employed in
theories that introduce physics beyond the SM to solve
other conceptual problems of the Standard Model. Two
well-known examples are the minimal supersymmetric
extension of the Standard Model (MSSM), which employs
the Higgs sector of the 2HDM [19–22] and has been used to
provide an explanation of the origin of the energy scale of
electroweak symmetry breaking [23], and the inert doublet
model (IDM) [24,25], which is a special case of the 2HDM
that provides a candidate for dark matter [26–28].
Despite the simplicity of the 2HDM, the corresponding

scalar sector in its most general form is governed by 11
independent parameters [29]. However, additional theo-
retical assumptions can be brought to bear to reduce this
large number of parameters. For example, to avoid the
presence of tree-level Higgs mediated FCNCs in a natural
way (i.e., without a fine-tuning of parameters in the
Yukawa Lagrangian), one can introduce a Z2 discrete
symmetry under which one of the Higgs doublet fields
is even and the other is odd. An appropriate assignment of
Z2 quantum numbers to the fermion fields then provides a
symmetry explanation for the absence of Higgs-mediated
tree-level FCNCs [14,15]. In fact, this result is robust even
in the presence of a soft breaking of the Z2 symmetry by
squared mass parameters appearing in the scalar potential.
The softly broken Z2-symmetric 2HDM is governed by
nine independent parameters and is called the complex
2HDM (C2HDM) [30–38].
There is some motivation to try to reduce the parameter

count even further. For example, imposing CP invariance
on the scalar potential [11] would reduce the number of
independent parameters to eight, corresponding to the
vacuum expectation value, v ≃ 246 GeV, four scalar
masses, two real angles, and one scalar self-coupling. As
another example, consider the requirement that one of the
scalar states of the 2HDM should resemble the SM Higgs
boson. One way of achieving this result is to posit an
additional symmetry of the scalar potential, which would
further reduce the number of independent scalar sector
parameters [39,40].
The exceptional region of the parameter space of the

2HDM, first introduced in Ref. [29], and designated by
the acronym ERPS in Ref. [41], corresponds to a special
parameter regime in which the coefficients of ðΦ†

1Φ1Þ2 and
ðΦ†

2Φ2Þ2 appearing in the 2HDM scalar potential are set

equal and the coefficient of ðΦ†
1Φ2ÞðΦ†

1Φ1Þ is the negative
of the coefficient of ðΦ†

1Φ2ÞðΦ†
2Φ2Þ. In addition, the

squared mass coefficients of Φ†
1Φ1 and Φ†

2Φ2 are set equal
and the squared mass coefficient of Φ†

1Φ2 þ H:c: is set to
zero. The number of free parameters of the ERPS is five,
consisting of v and the four scalar masses. The ERPS
conditions can be enforced by a global symmetry. Allowing
for the conditions on the quadratic terms of the scalar
potential to be relaxed, which would constitute a soft
breaking of the global symmetry, still yields a rather
exceptional region of the 2HDM parameter space, which
we shall henceforth denote as the ERPS4 in order to
emphasize that the global symmetry of the ERPS is still
respected by the dimension-four terms of the scalar
potential.
The ERPS4 is governed by eight parameters in its most

general form, and the corresponding scalar potential is
explicitly CP violating. If in addition one imposes a CP
symmetry on the scalar potential (which may or may not be
violated by the vacuum), the number of parameters is
reduced by one. One can identify the seven parameters as v,
four scalar masses, one real angle and one scalar self-
coupling. One may also impose additional softly broken
symmetries within the class of the ERPS4 scalar potentials,
which yields a subset of the ERPS4 with additional
exceptional features. All scalar potentials obtained in this
way automatically possess a CP-conserving scalar poten-
tial and vacuum. The 2HDM employed in the MSSM
provides one such example.
It is worth highlighting a number of the exceptional

features of scalar potentials that reside within the ERPS4.
First, in contrast to a generic 2HDM, if the conditions on
the scalar potential parameters that define the ERPS4 hold
in one scalar field basis,2 then they are satisfied in all scalar
field bases.
Second, in a softly broken Z2-symmetric 2HDM, there

are two potentially complex coefficients of the scalar
potential, denoted by m2

12 and λ5 in Eq. (2.1), since the
other two complex coefficients in Eq. (2.1) are λ6 ¼ λ7 ¼ 0
as a consequence of the Z2 symmetry. Generically, one
finds that the scalar potential is explicitly CP conserving if
and only if Imðλ�5½m2

12�2Þ ¼ 0, since the latter condition
implies that one can rephase the scalar fields Φ1 and Φ2 to
remove the complex phases of m2

12 and λ5. The resulting

1Radiative corrections to the predicted value of ρ and the size
of Higgs-mediated FCNCs impose some interesting constraints
on the 2HDM parameter space (e.g., see Refs. [16–18]).

2One is always free to change the scalar field basis by
redefining the scalar fields, Φa → Uab̄Φb (summed over
b ¼ 1, 2 following the index notation of Ref. [29]), where U
is an arbitrary U(2) matrix. A particular choice for Φ1 and Φ2 is
called a choice of scalar field basis. In a generic 2HDM, the
squared mass coefficients and dimensionless quartic coefficients
that appear in the scalar potential will be transformed by a change
of scalar field basis. Often, relations among parameters that are
valid in one basis cease to be valid in a different basis. The ERPS4
conditions are notable in that they hold in all scalar field bases.
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scalar potential is then invariant with respect to the CP
transformation, Φ → Φ�. Remarkably, the “only if” part of
this statement is no longer true in the ERPS4. We find
that in the special case of hΦ0

1i ¼ hΦ0
2i, the scalar

potential is explicitly CP conserving despite the fact that
Imðλ�5½m2

12�2Þ ≠ 0. Indeed, we can identify the modified
definition of CP that governs the ERPS4 in this special
case. Moreover, if we constrain the ERPS4 by adding an
additional softly broken global symmetry, we find that the
“only if” part of the original statement is no longer true
independently of the scalar field vacuum expectation
values. Once again, we can understand this behavior
by identifying an appropriately redefined generalized
CP-transformation law (as shown explicitly in the
Appendix C).
Third, the Higgs alignment limit [42–47] (in which the

tree-level properties of one neutral scalar coincide with
those of the SM Higgs boson) can be achieved by imposing
a symmetry on the scalar potential [39,40]. For example,
exact Higgs alignment is realized in the IDM, where the
scalar potential and vacuum both respect a Z2 symmetry. It
is of interest to classify all possible symmetries of the scalar
potential beyond the Z2 symmetry of the IDM in which the
Higgs alignment is exact. All scalar potentials of the ERPS
fall within this class. But, one can also maintain exact
Higgs alignment in some cases in which the symmetry is
softly broken, corresponding to the ERPS4. Including these
cases completes the classification of all symmetry based
explanations for exact Higgs alignment in the 2HDM.
Fourth, it is known that custodial symmetry is an

accidental symmetry of the SM Higgs potential [48,49].
In the 2HDM, the custodial symmetry is an accidental
symmetry of the scalar potential if an additional constraint
is imposed [50–54]. A custodial symmetric 2HDM scalar
potential is automatically CP conserving. Additional acci-
dental symmetries can arise in special regions of the
parameter space. Of particular interest is the case of a
custodial symmetric scalar potential that preserves an exact
Higgs alignment. Indeed, with two exceptions, the resulting
scalar potential is necessarily in the ERPS4 regime.
In Sec. II, we introduce the 2HDM with a softly broken

Z2-symmetric scalar potential. The possible enhanced
global symmetries of the 2HDM scalar potential beyond
the Z2 symmetry are summarized in Sec. III, and their
connections to the ERPS are exhibited in Sec. IV. In this
section, we provide a set of basis-independent conditions
that correspond to the ERPS4 and special subregions of the
ERPS4 where additional global symmetries (perhaps softly
broken) are imposed.
A convenient scalar field basis for the ERPS4 is one

where the softly broken Z2 symmetry and a softly broken
permutation symmetry (that interchanges Φ1 ↔ Φ2) are
simultaneously imposed. We examine the properties of the
resulting scalar sector in Sec. V and note that for generic
choices of the parameters, the scalar potential is CP

violating. If the corresponding scalar potential is explicitly
CP conserving, then CP may or may not be spontaneously
broken by the vacuum. The CP-conserving ERPS4 is
examined in detail and we exhibit the special parameter
regime where CP is conserved, despite the fact that a
simple rephasing ofΦ1 andΦ2 is not sufficient to produce a
scalar potential whose parameters are all real. In Sec. VI,
we extend the softly broken Z2 symmetry to U(1) and
explore the properties of this special subregion of the
ERPS4. One can show that the corresponding scalar
potential respects a generalized CP symmetry (denoted
by GCP3) when expressed in a different scalar field basis.
The implications of the scalar potential when expressed in
terms of the GCP3 basis of scalar fields are exhibited in
Sec. VII and the relations between the scalar potential
parameters in the two different basis choices is made
explicit in Sec. VIII.
As noted above, exact Higgs alignment is realized in the

ERPS. If soft-symmetry breaking squared mass terms are
included, the resulting ERPS4 may or may not exhibit exact
Higgs alignment. In Sec. IX, we provide a complete
classification of the symmetries (which in some cases is
softly broken) that naturally yield a neutral scalar mass
eigenstate whose tree-level properties are identical to those
of the SM Higgs boson. In Sec. X, we combine exact Higgs
alignment with the constraint of custodial symmetry and
exhibit the implications for the ERPS4 regime. Conclusions
and future directions appear in Sec. XI, followed by five
Appendixes that provide additional details on the conse-
quences of the ERPS4 for CP symmetry and other related
matters.

II. 2HDM WITH A SOFTLY BROKEN
Z2-SYMMETRIC SCALAR POTENTIAL

Let Φ1 and Φ2 denote two complex Y ¼ 1, SUð2ÞL
doublet scalar fields. The most general gauge invariant
renormalizable scalar potential (in the Φ-basis) is given by

V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2

þ ½λ6ðΦ†
1Φ1Þ þ λ7ðΦ†

2Φ2Þ�Φ†
1Φ2 þ H:c:

�
: ð2:1Þ

In general,m2
12, λ5, λ6 and λ7 can be complex. To avoid tree-

level Higgs-mediated FCNCs, we shall impose a softly
broken discrete Z2 symmetry, Φ1 → þΦ1 and Φ2 → −Φ2

on the quartic terms of Eq. (2.1), which implies that
λ6 ¼ λ7 ¼ 0, whereas m2

12 ≠ 0 is allowed. In this basis
of scalar doublet fields (denoted as the Z2 basis), the
discrete Z2 symmetry of the quartic terms of Eq. (2.1) is
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manifestly realized. In the Z2 basis, it is convenient to
rephase the scalar fields such that λ5 is real. Then, the
requirement that V is bounded from below yields the
following conditions [55,56]3:

λ1 > 0; λ2 > 0; λ3 > −ðλ1λ2Þ1=2;
λ3 þ λ4 � λ5 > −ðλ1λ2Þ1=2: ð2:2Þ

The scalar fields will develop nonzero vacuum expect-
ation values (vevs) if the Higgs mass matrix m2

ij has at least
one negative eigenvalue. We assume that the parameters of
the scalar potential are chosen such that the minimum of the
scalar potential respects the Uð1ÞEM gauge symmetry.
Then, the scalar field vevs are of the form

hΦ1i ¼
vffiffiffi
2

p
�

0

cβ

�
; hΦ2i ¼

vffiffiffi
2

p
�

0

eiξsβ

�
; ð2:3Þ

where cβ ≡ cos β ¼ v1=v and sβ ≡ sin β ¼ v2=v with
v≡ ðv21 þ v22Þ1=2 ≃ 246 GeV. By convention, 0 ≤ β ≤ 1

2
π

and 0 ≤ ξ < 2π.
The parameters v1, v2 and ξ are determined by minimiz-

ing the scalar potential. The resulting minimization con-
ditions in the case of λ6 ¼ λ7 ¼ 0 and real λ5 are given by

m2
11v1 ¼ Reðm2

12e
iξÞv2 −

1

2
λ1v31 −

1

2
λ345v1v22; ð2:4Þ

m2
22v2 ¼ Reðm2

12e
iξÞv1 −

1

2
λ2v32 −

1

2
λ345v2v21; ð2:5Þ

Imðm2
12e

iξÞv1 ¼
1

2
λ5v21v2 sin 2ξ; ð2:6Þ

Imðm2
12e

iξÞv2 ¼
1

2
λ5v22v1 sin 2ξ; ð2:7Þ

where λ345 ≡ λ3 þ λ4 þ λ5 cos 2ξ. Note that both Eqs. (2.6)
and (2.7) are provided in case one of the vevs vanishes. If
both v1 ≠ 0 and v2 ≠ 0, then the minimization conditions
simplify,

m2
11 ¼ Reðm2

12e
iξÞ tan β − 1

2
λ1v2c2β −

1

2
λ345v2s2β; ð2:8Þ

m2
22 ¼ Reðm2

12e
iξÞ cot β − 1

2
λ2v2s2β −

1

2
λ345v2c2β; ð2:9Þ

Imðm2
12e

iξÞ ¼ 1

2
λ5v2sβcβ sin 2ξ: ð2:10Þ

The value of the potential at the minimum is given by

Vmin ¼
1

2
v2
�
m2

11c
2
β þm2

22s
2
β − 2Reðm2

12e
iξÞsβcβ

þ 1

4
λ1v2c4β þ

1

4
λ2v2s4β þ

1

2
λ345v2s2βc

2
β

�

¼ −
1

8
v4½λ1c4β þ λ2s4β þ 2λ345s2βc

2
β�; ð2:11Þ

after making use of Eqs. (2.8) and (2.9). In light of
Eq. (2.2), Vmin < 0, which means that the extremum
with v1 ¼ v2 ¼ 0 always is less favorable than the asym-
metric minimum, assuming that there is a solution to
Eqs. (2.4)–(2.7) with nonvanishing vevs.
If one of the two vevs vanishes, then the minimization

conditions are given by

m2
12¼0; m2

22¼−
1

2
λ2v2; if v1¼0 and v2¼v; ð2:12Þ

m2
12¼0; m2

11¼−
1

2
λ1v2; if v2¼0 and v1¼v: ð2:13Þ

This corresponds to an inert phase in which there exists a
Z2 symmetry that is respected both by the scalar potential
and the vacuum. This phase exists if and only if m2

12 ¼ 0

and m2
22 < 0 [m2

11 < 0] in the case of v1 ¼ 0 [v2 ¼ 0].
These two cases are physically equivalent, as they are
related by a basis change where Φ1 ↔ Φ2. The inert
phase is stable if all the physical scalar squared masses
are non-negative.

III. ENHANCED GLOBAL SYMMETRIES
OF THE SCALAR POTENTIAL

The possible global symmetries of the 2HDM scalar
potential have been classified in Refs. [41,57–59]. Starting
from a generic Φ-basis, these symmetries fall into two
separate categories: (i) Higgs family symmetries of the
form Φa → UabΦb, and (ii) generalized CP (GCP) sym-
metries of the form Φa → UabΦ�

b, where U resides in a
subgroup (either discrete or continuous) of U(2). Although
it might appear that the number of possible symmetries is
quite large, it turns out that different choices of U often
yield the same constraints on the 2HDM scalar potential
parameters.
The full global U(2) Higgs family symmetry trans-

formation is the largest global symmetry group under
which the gauge covariant kinetic terms of the scalar fields
are invariant. Moreover, the scalar potential is invariant
under a global hypercharge transformation, Uð1ÞY, which
is a subgroup of U(2). Thus, any enhanced Higgs family
symmetries that are respected by the scalar potential would

3If Eq. (2.2) is satisfied then the softly broken Z2-symmetric
tree-level scalar potential is said to be stable in the strong sense. If
we replace > with ≥ in one of the above inequalities (corre-
sponding to a particular direction in field space) and then impose
the condition that the sum of the quadratic terms in the same field
direction is strictly positive, then the scalar potential is said to be
stable in the weak sense [56].
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be a subset of the U(2) transformations that do not contain
Uð1ÞY as a subgroup. We summarize below possible
discrete and continuous Higgs family symmetries modulo
the Uð1ÞY hypercharge symmetry that can impose con-
straints on the 2HDM scalar potential in Tables I and II.
Note that the list of symmetries in Table I contains a

redundancy. Although it might appear that the Z2 and Π2

discrete symmetries are distinct (as they yield different

constraints on the 2HDM scalar potential parameters in the
Φ-basis), one can show that starting from a Π2-symmetric
scalar potential, one can find a different basis of scalar
fields in which the corresponding scalar potential mani-
festly exhibits the Z2 symmetry, and vice versa [29]. In
Table III, the constraints of the various possible Higgs
family symmetries and GCP symmetries on the 2HDM
scalar potential in a genericΦ-basis are exhibited. In the list
of symmetries, U(1) corresponds to Uð1ÞPQ (henceforth, we
shall suppress the PQ subscript).
One can also consider applying two of the symmetries

listed above simultaneously in the same basis. It was shown
in Refs. [41,57] that no new independent models arise in
this way. For example, applying Z2 and Π2 in the same
basis yields a Z2 ⊗ Π2-symmetric scalar potential that is
equivalent to GCP2 when expressed in a different basis.
Similarly, applying U(1) and Π2 in the same basis yields a
Uð1Þ ⊗ Π2-symmetric scalar potential that is equivalent to
a GCP3-symmetric scalar potential when expressed in a
different basis. This equivalence of GCP3 and Uð1Þ ⊗ Π2

is explicitly demonstrated in Sec. VIII.
There are a number of additional Higgs family sym-

metries and generalized CP symmetries that are closely
related to the ones displayed in Tables I and II that will be
useful in our work. In Tables IVand V, we have listed three
additional Higgs family symmetries and two additional
GCP symmetries that can be used to constrain the param-
eters of the 2HDM scalar potential. The corresponding
constraints are exhibited in Table VI. Given scalar poten-
tials where Π2, Uð1Þ0 and GCP3 symmetries are manifestly
realized, the basis change,

Φ1 → Φ1; Φ2 → iΦ2; ð3:1Þ

yields m2
12 → im2

12, λ5 → −λ5, λ6 → iλ6 and λ7 → iλ7, and
produces a scalar potential where Π0

2, Uð1Þ00 and GCP30

symmetries, respectively, are manifestly realized.

TABLE I. Classification of the Higgs family symmetries of the
scalar potential in a generic Φ-basis where the symmetries are
manifestly realized [41,57–59]. Note that Z2 is a subgroup of
Uð1ÞPQ. The corresponding constraints on the 2HDM scalar
potential parameters are shown in Table III.

Symmetry Transformation law

Z2 Φ1 → Φ1; Φ2 → −Φ2

Π2 (mirror symmetry) Φ1 ↔ Φ2

Uð1ÞPQ (Peccei-Quinn
symmetry [60])

Φ1 → e−iθΦ1; Φ2 → eiθΦ2,
for − 1

2
π < θ ≤ 1

2
π

SO(3) (maximal Higgs
flavor symmetry)

Φa → UabΦb, where U ∈ Uð2Þ=Uð1ÞY

TABLE II. Classification of the generalized CP (GCP) sym-
metries of the scalar potential in the Φ-basis [41,57–59]. Note
that a GCP3 symmetry transformation with any value of θ that
lies between 0 and 1

2
π yields the same constrained 2HDM scalar

potential. The corresponding constraints on the 2HDM scalar
potential parameters are shown in Table III.

Symmetry Transformation law

GCP1 Φ1 → Φ�
1; Φ2 → Φ�

2

GCP2 Φ1 → Φ�
2; Φ2 → −Φ�

1

GCP3
�
Φ1→Φ�

1 cosθþΦ�
2 sinθ

Φ2→−Φ�
1 sinθþΦ�

2 cosθ
, for 0 < θ < 1

2
π

TABLE III. Classification of 2HDM scalar potential symmetries and their impact on the parameters of the scalar
potential [cf. Eq. (2.1)] in the Φ-basis [41,57–59]. Empty entries correspond to a lack of constraints on the
corresponding parameters. Note that Π2, Z2 ⊗ Π2 and Uð1Þ ⊗ Π2 are not independent from other symmetry
conditions, since a change of scalar field basis can be performed in each case to yield a new basis in which the Z2,
GCP2 and GCP3 symmetries, respectively, are manifestly realized.

Symmetry m2
22 m2

12 λ2 λ4 Reλ5 Imλ5 λ6 λ7

Z2 0 0 0
Π2 m2

11
Real λ1 0 λ�6

Z2 ⊗ Π2 m2
11

0 λ1 0 0 0
U(1) 0 0 0 0 0
Uð1Þ ⊗ Π2 m2

11
0 λ1 0 0 0 0

SO(3) m2
11

0 λ1 λ1 − λ3 0 0 0 0
GCP1 Real 0 Real Real
GCP2 m2

11
0 λ1 −λ6

GCP3 m2
11

0 λ1 λ1 − λ3 − λ4 0 0 0
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The origin of Uð1Þ0 is slightly more subtle and is derived
in Sec. VIII. It arises in the following way. We have noted
above that the Uð1Þ ⊗ Π2 and GCP3 symmetries are
equivalent in the sense that the scalar field bases in which
these symmetries are manifestly realized are related by a
change in basis. Moreover, as shown in Sec. VIII, by
transforming from the Uð1Þ ⊗ Π2 basis to the GCP3 basis,
the U(1) symmetry constraints are mapped onto the Uð1Þ0
symmetry constraints.
Starting from a GCP1 symmetry transformation in theΦ-

basis, consider an arbitrary basis change, Φ → Φ0 ¼ UΦ.
Then, Eqs. (C18) and (C28) yield the corresponding GCP
transformation in theΦ0-basis,Φ → VΦ�, where V ≡UUT

is a symmetric unitary matrix. The choice of V ¼ ð0
1
1
0
Þ

corresponds to the definition of GCP10 exhibited in
Tables V and VI. In contrast to the GCP1 symmetry, the
GCP10 symmetry transformation is especially noteworthy
in that it does not enforce reality conditions on the
potentially complex parameters m2

12, λ5, λ6 and λ7.
Finally, it should be noted that the constraints on the

scalar potential in a scalar field basis where the GCP3
symmetry is manifestly realized are precisely the same as
the constraints due to the Uð1Þ0 ⊗ Z2 family symmetry
when imposed in the same basis of scalar fields. This
should be contrasted with the Uð1Þ ⊗ Π2-symmetric scalar
potential, which is equivalent to the GCP3-symmetric
scalar potential when expressed with respect to a different
scalar field basis. Likewise the parameter constraints in a
basis where the GCP30 symmetry is manifestly realized
coincide with those that arise from the Uð1Þ00 ⊗ Z2 family
symmetry.

IV. AN EXCEPTIONAL REGION OF THE
2HDM PARAMETER SPACE

The exceptional region of the parameter space (ERPS) of
the 2HDM corresponds to a regime in which the parameters
of the scalar potential satisfy the following conditions:
m2

11 ¼ m2
22, m

2
12 ¼ 0, λ1 ¼ λ2 and λ7 ¼ −λ6. These con-

ditions can be imposed by a GCP2 symmetry,

TABLE IV. 2HDM scalar potential Higgs family symmetries in a generic Φ-basis that are related by a simple
change of basis to the family symmetries of Table I. As in the case of the Peccei-Quinn symmetry, a scalar potential
that respects the U(1) symmetries above must be invariant for any value of − 1

2
π < θ ≤ 1

2
π. Note that Π0

2 [Π2] is a
subgroup of Uð1Þ0 [Uð1Þ00], respectively. The corresponding constraints on the 2HDM scalar potential parameters
are shown in Table VI.

Symmetry Transformation law Related symmetry

Π0
2 Φ1 → Φ2; Φ2 → −Φ1 Π2

Uð1Þ0 Φ1 → Φ1 cos θ þΦ2 sin θ; Φ2 → −Φ1 sin θ þΦ2 cos θ Uð1ÞPQ
Uð1Þ00 Φ1 → Φ1 cos θ þ iΦ2 sin θ; Φ2 → iΦ1 sin θ þΦ2 cos θ Uð1ÞPQ

TABLE V. Generalized CP (GCP) symmetries of the scalar
potential in theΦ-basis that are related by a change of basis to the
GCP symmetries of Table II. Note that a GCP30 symmetry with
any value of θ that lies between 0 and 1

2
π yields the same

constrained 2HDM scalar potential. The corresponding con-
straints on the 2HDM scalar potential parameters are shown in
Table VI.

Symmetry Transformation law
Related
symmetry

GCP10 Φ1 → Φ�
2; Φ2 → Φ�

1 GCP1
GCP30

�
Φ1→Φ�

1 cosθ− iΦ�
2 sinθ

Φ2→ iΦ�
1 sinθ−Φ�

2 cosθ
, for 0 < θ < 1

2
π

GCP3

TABLE VI. The impact of the 2HDM scalar potential symmetries listed in Tables IV and Von the parameters of
the scalar potential [cf. Eq. (2.1)] in the Φ-basis. Empty entries correspond to a lack of constraints on the
corresponding parameters. Note that the constraints on the scalar potential parameters due to the Z2 ⊗ Π2, GCP3
and GCP30 symmetries coincide with those of the Π2 ⊗ Π0

2, Uð1Þ0 ⊗ Z2 and Uð1Þ00 ⊗ Z2 symmetries, respectively.

Symmetry m2
22 m2

12 λ2 Reλ5 Imλ5 λ6 λ7

Π0
2 m2

11
Pure imaginary λ1 0 −λ�6

Π2 ⊗ Π0
2 m2

11
0 λ1 0 0 0

Uð1Þ0 m2
11

Pure imaginary λ1 λ1 − λ3 − λ4 0 0 0
Uð1Þ00 m2

11
Real λ1 λ3 þ λ4 − λ1 0 0 0

Uð1Þ0 ⊗ Z2 m2
11

0 λ1 λ1 − λ3 − λ4 0 0 0
Uð1Þ00 ⊗ Z2 m2

11
0 λ1 λ3 þ λ4 − λ1 0 0 0

GCP10 m2
11

λ1 λ6
GCP30 m2

11
0 λ1 λ3 þ λ4 − λ1 0 0 0
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Φ1 → Φ�
2; Φ2 → −Φ�

1: ð4:1Þ

However, in the case of a softly broken GCP2 symmetry,
the conditions on the m2

ij are relaxed. In general, one can
take m2

11 ≠ m2
22 and allow for nonzero complex values of

m2
12. The resulting parameter regime maintains many of the

exceptional characteristics of the ERPS and will henceforth
be designated as the ERPS4.
If the relations, λ1 ¼ λ2 and λ7 ¼ −λ6, hold in one scalar

field basis, then they hold in all choices of the scalar field
basis. Indeed, one can construct a quantity, Z, which is
explicitly given in Eq. (B5), which is manifestly basis
invariant under a change of scalar field basis. Evaluating
this invariant in a generic Φ-basis, we obtain

Z ¼ 1

4
ðλ1 − λ2Þ2 þ jλ6 þ λ7j2: ð4:2Þ

Thus, the invariant condition for the ERPS4 is Z ¼ 0,
which yields λ1 ¼ λ2 and λ7 ¼ −λ6 for any choice of the
scalar field basis. Moreover as first noted in Ref. [29], there
exists a choice of basis such that λ6 ¼ λ7 ¼ 0 and λ5 is real.
This basis corresponds to an enhanced symmetry obtained
by simultaneously imposing a Z2 and Π2 symmetry,

Z2∶ Φ1 → Φ1; Φ2 → −Φ2; ð4:3Þ

Π2∶ Φ1 ↔ Φ2; ð4:4Þ

on the quartic terms of the scalar potential. Indeed, this
symmetry adds the constraints, λ6 ¼ λ7 ¼ 0 and λ5 ∈ R to
the ERPS4 conditions. That is, a softly broken GCP2-
symmetric scalar potential can be realized as a softly
broken Z2 ⊗ Π2-symmetric scalar potential in a different
scalar field basis. A simple proof of this result is given
below Eq. (4.20).
One can impose an additional constraint on the ERPS4

by imposing a GCP3 symmetry,

Φ1 → Φ�
1 cos θ þΦ�

2 sin θ;

Φ2 → −Φ�
1 sin θ þΦ�

2 cos θ; ð4:5Þ

for all 0 < θ < 1
2
π. This symmetry adds the additional

constraint, λ5 ¼ λ1 − λ3 − λ4 (which implies that λ5 is real).
We will allow for a general soft breaking of the GCP3
symmetry so that one can again take m2

11 ≠ m2
22 and allow

for nonzero complex values of m2
12. Another possible

choice for an enhanced symmetry is to impose simulta-
neously a U(1) and Π2 symmetry [41],

Uð1Þ∶ Φ1 → e−iθΦ1; Φ2 → eiθΦ2; ð4:6Þ

Π2∶ Φ1 ↔ Φ2; ð4:7Þ

for any 0 < θ < 1
2
π. This symmetry adds the constraint

λ5 ¼ 0 to the Z2 ⊗ Π2 symmetry. As shown explicitly in
Sec. VIII, if the 2HDM scalar potential respects a GCP3
symmetry, then there exists a basis of scalar fields in which
the symmetry can be identified as Uð1Þ ⊗ Π2.
A basis-invariant condition can be found that corre-

sponds to the case in which the quartic terms of the scalar
potential respect the GCP3 symmetry in some basis. The
invariant was first constructed in Ref. [41]4 and then
rederived using a different technique in Appendix B of
Ref. [61]. Below, we shall review the method employed in
Ref. [61] while providing additional details of the
derivation.
First, we make use of the notation of Eq. (C4) to

assemble the 2HDM scalar potential couplings into a rank
four tensor denoted by Zab;cd. It is also convenient to
introduce a related rank four tensor,

Z̄ab;cd ≡ Zba;cd ¼ Zab;dc; ð4:8Þ

where the two expressions for Z̄ab;cd given above are
equivalent in light of Eqs. (C2) and (C4). Next, we define
a three-vector whose components PB (for B ¼ 1, 2, 3) are
given by

PB ¼ 1

4
ðZab;cd þ Z̄ab;cdÞδcaσBdb; ð4:9Þ

and a 3×3 real symmetric matrix whose elements DAB are
given by [61,62]5

DAB¼
1

4
ðZab;cdþ Z̄ab;cdÞσAcaσBdb−

1

12
ðZab;abþ Z̄ab;abÞδAB;

ð4:10Þ

where the σA are the Pauli matrices and there is an implicit
sum over repeated indices. Under a change of scalar field
basis, Φ → Φ0 ¼ UΦ, Eq. (C8) yields

PB → P0
B ¼ RBDPD;

DAB → D0
AB ¼ RACRBDDCD ¼ ðRDRTÞAB; ð4:11Þ

after employing the identity U†σAU ¼ RABσ
B, where R is

a real orthogonal matrix that is explicitly given by

4The published version of Ref. [41] contains some typographi-
cal errors—in Eq. (39), det Λ̃ should be replaced by − det Λ̃ and
in Eq. (44), 1

2
should be replaced by 1

3
. All other equations in

Sec. II E of Ref. [41] are correct.
5Quantities that are invariant with respect to scalar field basis

transformations can be constructed out of objects such as DAB.
Although DAB is not an invariant, related objects such as TrD,
detD and the eigenvalues of D can be used to construct invariant
quantities. Ivanov published the first paper that presented this
strategy in Ref. [62].
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RAB ¼ 1

2
TrðU†σAUσBÞ: ð4:12Þ

Using the Kronecker product notation introduced in
Eqs. (C9) and (C14), we can rewrite Eq. (4.10) in a
convenient form in terms of two 4 × 4 matrices, Z and
Z̄, where Z is defined in Eq. (C5) and Z̄ is obtained from Z
by interchanging λ3 ↔ λ4. Then, the equivalent forms of
Eqs. (4.9) and (4.10) are given by

PB ¼ 1

4
Tr½ð13×3 ⊗ σBÞðZ þ Z̄Þ�; ð4:13Þ

where 13×3 is the 3 × 3 identity matrix, and

DAB ¼
1

4
Tr½ðσA ⊗ σBÞðZþ Z̄Þ�− 1

12
TrðZþ Z̄ÞδAB: ð4:14Þ

Using Zab;cd ¼ Zba;dc [cf. Eq. (4.8)], it follows that

Tr½ðσA ⊗ σBÞðZ þ Z̄Þ� ¼ Tr½ðσB ⊗ σAÞðZ þ Z̄Þ�; ð4:15Þ

which shows that D is a symmetric matrix. Moreover,X
C

Tr½ðσC ⊗ σCÞðZþ Z̄Þ� ¼TrðZþ Z̄Þ

¼ 2ðλ1þλ2þλ3þλ4Þ; ð4:16Þ
which implies that D is a traceless matrix. Indeed, a
straightforward calculation yields

P ¼
�
Reðλ6 þ λ7Þ − Imðλ6 þ λ7Þ

1

2
ðλ1 − λ2Þ

�
; ð4:17Þ

and6

D ¼

0
BB@

− 1
3
Δþ Reλ5 −Imλ5 Reðλ6 − λ7Þ
−Imλ5 − 1

3
Δ − Reλ5 −Imðλ6 − λ7Þ

Reðλ6 − λ7Þ −Imðλ6 − λ7Þ 2
3
Δ

1
CCA;

ð4:18Þ
where

Δ≡ 1

2
ðλ1 þ λ2Þ − λ3 − λ4: ð4:19Þ

In particular, the following condition for the ERPS4, which
makes use of the vector PB [cf. Eq. (4.17)], reproduces the
invariant previously given in Eq. (4.2),

Z≡X
B

PBPB¼
1

4
ðλ1−λ2Þ2þjλ6þλ7j2¼0: ð4:20Þ

We now prove that if λ1 ¼ λ2 and λ7 ¼ −λ6 in the
Φ-basis, then there exists a Φ0-basis, defined by Φ0 ¼ UΦ,
in which λ01 ¼ λ02 and Imλ05 ¼ λ06 ¼ λ07 ¼ 0. In light of
Eq. (4.17), if λ1 ¼ λ2 and λ7 ¼ −λ6 in the Φ-basis then
it follows that P ¼ 0. Moreover, D is a real traceless
symmetric matrix [cf. Eq. (4.18)], which can always be
transformed into a real diagonal matrix via an orthogonal
similarity transformation. Thus, there exists a real orthogo-
nal matrix R [explicitly given in terms of U in Eq. (4.12)]
such that P0 ¼ RP ¼ 0 and D0 ¼ RDRT is diagonal.
Noting the explicit forms of P and D given above,
it follows that λ01 ¼ λ02 and Imλ05 ¼ λ06 ¼ λ07 ¼ 0 in the
Φ0-basis, as previously asserted.
Next, we demonstrate, following Ref. [61], that there

exists a basis in which the Peccei-Quinn U(1) symmetry of
the quartic terms of the scalar potential is manifestly
realized if and only if PB and DAB can be written in the
following forms:

PB ¼ c2qB; DAB ¼ c3

�
qAqB −

1

3
δAB

�
; ð4:21Þ

where the qB are components of a real three-vector of unit
length and c2 and c3 are constants. It then follows that

TrD ¼ 0; TrðD2Þ ¼ 2

3
c23;

detD ¼ 1

3
TrðD3Þ ¼ 2

27
c33; ð4:22Þ

which yields a characteristic equation for the eigenvalues of
D [cf. Eqs. (4.27)–(4.30)],

x3−
1

3
c23x−

2

27
c33¼

�
xþ1

3
c3

�
2
�
x−

2

3
c3

�
¼0: ð4:23Þ

Hence, the eigenvalues ofD are − 1
3
c3, − 1

3
c3, and 2

3
c3. That

is, ifD ≠ 0 then two of the eigenvalues ofD are degenerate.
Moreover, in light of the eigenvalue equation,

DABqB ¼ c3

�
qAqB −

1

3
δAB

�
qB ¼ 2

3
c3qA; ð4:24Þ

it follows that qA is the eigenvector of the nondegenerate
eigenvalue. Thus, in a scalar field basis in which D as
defined by Eq. (4.18) is diagonal with two degenerate
diagonal elements, it follows that λ5 ¼ 0 and λ6 ¼ λ7, in
which case we can identify c3 ¼ Δ and the unit vector
q ¼ ð0 0 1Þ. Applying this result for qB in Eq. (4.21) and
comparing with Eq. (4.17) then yields c2 ¼ 1

2
ðλ1 − λ2Þ and

λ7 ¼ −λ6. Hence, we conclude that λ5 ¼ λ6 ¼ λ7 ¼ 0 in the

6The matrix D is related to Λ̃ employed in Ref. [41] by
D ¼ Λ̃ − 1

3
ðTrΛ̃Þ13×3. Thus, if λ is an eigenvalue of Λ̃ then

λ − 1
3
TrΛ̃ is the corresponding eigenvalue of D. Consequently,

the condition for degenerate eigenvalues is the same if applied to
either D or Λ̃. There are some advantages to employing
Eq. (4.18), as the condition TrD ¼ 0 simplifies the algebraic
manipulations.
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D-diagonal basis, corresponding to a softly broken Uð1ÞPQ-
symmetric scalar potential.
If we now impose the ERPS4 condition on the softly

broken Uð1ÞPQ-symmetric scalar potential then λ1 ¼ λ2,
which implies that P ¼ 0. In this case, the quartic terms of
the scalar potential respect a Uð1Þ ⊗ Π2 symmetry. Given a
softly broken Uð1Þ ⊗ Π2-symmetric scalar potential in the
Φ-basis, one can perform a basis change Φ0 ¼ UΦ such
that7

R ¼

0
BB@

1 0 0

0 0 −1
0 1 0

1
CCA: ð4:25Þ

Then, Eq. (4.11) yields P0 ¼ 0, Imλ05 ¼ λ06 ¼ λ07 ¼ 0 and

−
1

3
Δ0 þ Reλ05 ¼

2

3
Δ0 ¼ −

1

3
Δ: ð4:26Þ

It follows that Δ0 ¼ Reλ05. That is, λ
0
1¼λ02¼λ03þλ04þλ05,

and Imλ05 ¼ λ06 ¼ λ07 ¼ 0, which are the conditions for a
softly broken GCP3-symmetric scalar potential in the
Φ0-basis.
Finally, if D ¼ P ¼ 0 then λ1 ¼ λ2 ¼ λ3 þ λ4 and

λ5 ¼ λ6 ¼ λ7 ¼ 0, corresponding to a scalar potential
whose quartic terms respect an SO(3) symmetry. In
summary, we have successfully provided simple basis-
invariant conditions for the 2HDM with a softly broken
U(1), GCP2 [or Z2 ⊗ Π2], GCP3 [or Uð1Þ ⊗ Π2] and
SO(3) symmetry, respectively.
Thus, we seek a condition that guarantees that the matrix

D given in Eq. (4.18) possesses two degenerate eigenval-
ues. In general, the characteristic equation of a generic
3 × 3 matrix D is of the form

x3 þ a2x2 þ a1xþ a0 ¼ 0; ð4:27Þ

where

a0 ¼ − detD ¼ −
1

6
ðTrDÞ3 þ 1

2
TrDTrðD2Þ − 1

3
TrðD3Þ;

ð4:28Þ

a1 ¼
1

2
ðTrDÞ2 − 1

2
TrðD2Þ; ð4:29Þ

a2 ¼ −TrD: ð4:30Þ

The cubic equation given in Eq. (4.27) has exactly two
degenerate roots if the following two conditions are
satisfied [63,64]:

D≡ 9

2
a0a1a2 − a0a32 þ

1

4
a21a

2
2 − a31 −

27

4
a20 ¼ 0

and a22 ≠ 3a1: ð4:31Þ

Since the matrix D given in Eq. (4.18) is symmetric and
traceless, the conditions that D possesses exactly two
degenerate eigenvalues simplify to

D ¼ −a31 −
27

4
a20 ¼

1

8
½TrðD2Þ�3 − 3

4
½TrðD3Þ�2 ¼ 0

and D ≠ 0: ð4:32Þ

If the quartic terms of the scalar potential exhibit a
Uð1Þ ⊗ Π2 symmetry, then it follows that Z ¼ D ¼ 0.
Thus, we conclude that the basis-invariant condition,
I ≡ Z þD2 ¼ 0, is satisfied if and only if the quartic
terms of the scalar potential exhibit a Uð1Þ ⊗ Π2 symmetry
in some basis (which implies that the quartic terms of the
scalar potential exhibits a GCP3 symmetry in some other
basis). One can determine this condition explicitly by
setting λ≡ λ1 ¼ λ2 and λ7 ¼ −λ6 when evaluating the
characteristic equation of the matrix D, which yields

TrðD3Þ¼2

9
Δ3þ2Δð2jλ6j2− jλ5j2Þþ12Reðλ�5λ26Þ; ð4:33Þ

TrðD2Þ ¼ 2

3
Δ2 þ 2jλ5j2 þ 8jλ6j2: ð4:34Þ

Inserting the above results into Eq. (4.32) yields an
expression for D. First, we assume that λ6 ≠ 0, in which
case the end result is

D¼½2jλ6j2−R56ðΔþR56Þ�2½ðΔ−R56Þ2þ16jλ6j2�þCI256;

ð4:35Þ

where Δ≡ λ − λ3 − λ4,

C≡ ðΔ2 − jλ5j2 −R2
56Þ2 −R2

56jλ5j2
þ 2jλ6j2½Δ2 þ 9ðΔþR56Þ2 þ 3I2

56 þ 3jλ5j2 þ 24jλ6j2�;
ð4:36Þ

and

R56 ≡ Reðλ�5λ26Þ
jλ6j2

; I56 ≡ Imðλ�5λ26Þ
jλ6j2

: ð4:37Þ

Note that R2
56 þ I2

56 ¼ jλ5j2.
The product of the first two factors on the right-hand side

of Eq. (4.35) is non-negative definite. Thus, one solution to
the equation D ¼ 0 can be obtained by setting

jλ6j2 ¼
1

2
R56ðΔþR56Þ> 0; ð4:38Þ7Using the explicit form for U given by Eq. (8.1) in Eq. (4.12)

yields the result exhibited in Eq. (4.25).
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which implies that Δ=R56 > −1 [after dividing byR2
56].

8 It
then follows from Eq. (4.35) that either I56 ¼ 0 or C ¼ 0.
We now demonstrate that the latter possibility is never
realized. After inserting Eq. (4.38) into the expression for C
given in Eq. (4.36), we obtain

C ¼ I4
56 þ ð9R2

56 þ 6ΔR56 − 2Δ2ÞI2
56

þ ðΔþR56ÞðΔþ 3R56Þ3; ð4:39Þ

which is a quadratic equation whose discriminant is
given by

Disc¼ð9R2
56þ6ΔR56−2Δ2Þ2−4ðΔþR56ÞðΔþ3R56Þ3

¼−R56ð4Δþ3R56Þ3: ð4:40Þ

If Δ=R56 > − 3
4
then Disc < 0 and it follows that C > 0 for

all values of I56. Finally, if −1 < Δ=R56 ≤ − 3
4
, then

Eq. (4.39) yields C > 0 for any nonzero value of I56.
Thus, we have shown that for λ6 ≠ 0, if Eq. (4.38) is
satisfied then D ¼ 0 if and only if

jλ6j2 ¼
1

2
R56ðΔþR56Þ > 0 and I56 ¼ 0: ð4:41Þ

One can rewrite the two conditions given in Eq. (4.41) as a
single complex equation,

λ25λ
�
6 þ λ5λ6ðλ1 − λ3 − λ4Þ − 2λ36 ¼ 0; ð4:42Þ

which must hold true for any choice of scalar field basis.
If C > 0 were valid for all nonzero values of λ6, then it

would immediately follow that Eq. (4.41) is the unique
solution of the equation D ¼ 0. However one can verify
that regions of the parameter space exist in which C < 0.
This seems to leave open the possibility that if λ6 ≠ 0 then
D ¼ 0 can be satisfied with a nonzero value of I56 due to a
cancellation between terms in Eq. (4.35).9

Nevertheless, we shall now argue that under the
assumption that λ6 ≠ 0, the condition D ¼ 0 holds if and
only if Eq. (4.41) is satisfied. Recall that Eq. (4.32) states
that the 3 × 3 traceless real symmetric matrix D (assumed
to be nonzero) possesses a doubly degenerate eigenvalue if
and only if D ¼ 0. Moreover, any 3 × 3 traceless real

symmetric matrix that possesses a doubly degenerate
eigenvalue must have the form specified in Eq. (4.21).10

We can then use the discussion below Eq. (4.24) to
conclude that in the D-diagonal basis, λ5 ¼ λ6 ¼ λ7 ¼ 0.
Performing a basis transformation to an arbitrary basis
[e.g., cf. Eqs. (A9) and (A10) of Ref. [37] ], it follows
that Imðλ�5λ26Þ ¼ 0 in any scalar field basis. Thus, we are
justified in setting I56 ¼ 0 in Eq. (4.35), in which case
Eqs. (4.41) and (4.42) must be valid for any choice of scalar
field basis.
In the case of λ6 ¼ 0, one can either evaluate D directly

using Eq. (4.32) or simply set jλ6j ¼ 0 in Eq. (4.35) while
keepingR56 and I56 fixed. Both procedures yield the same
result:

D ¼ jλ5j2ðΔ2 − jλ5j2Þ2: ð4:43Þ

In particular, if λ6 ¼ 0 then we can rephase Φ2 such that λ5
is real, in which case either

λ5 ¼ 0 or λ5 ¼ �ðλ1 − λ3 − λ4Þ; ð4:44Þ

corresponding to the manifest realization of Uð1Þ ⊗ Π2 and
GCP3=GCP30, respectively, as indicated by the quartic
coupling relations exhibited in Tables III and VI.

V. THE Z2 ⊗ Π2 SCALAR FIELD BASIS

Since the softly broken GCP2-symmetric scalar potential
is equivalent to a softly broken Z2 ⊗ Π2-symmetric scalar
potential in a different scalar field basis, we henceforth
focus on the Z2 ⊗ Π2 basis, where λ≡ λ1 ¼ λ2, λ5 ≠ 0 is
real and λ6 ¼ λ7 ¼ 0. The softly broken parameters, m2

11,
m2

22 and m
2
12, are arbitrary with m2

12 potentially complex. If
we demand that the potential is bounded from below, the
following conditions must be satisfied:

λ> 0; λþ λ3 > 0; λþ λ3 þ λ4 − jλ5j> 0; ð5:1Þ

modulo the remarks of footnote 3. It is convenient to
introduce the parameter,

R≡ λ3 þ λ4 þ λ5
λ

: ð5:2Þ
Using the definition of λ345 given below Eq. (2.7), it follows
that

λ345 ¼ λR − 2λ5 sin2 ξ: ð5:3Þ
8Note that R56 and/or Δ can be zero. If these quantities are

nonvanishing, then their individual signs can be either positive or
negative.

9If such a solution existed, it would not be continuously
connected to the solution given by Eq. (4.41), since any small
perturbation of the scalar potential parameters from Eq. (4.41)
would still yield C > 0. We have numerically checked in
Mathematica using graphical techniques that in the region of
parameter space where C < 0, there are no solutions toD ¼ 0 for
I56 ≠ 0 and λ6 ≠ 0. However, it is disappointing that we are
unable to analytically establish the condition I56 ¼ 0 directly
from D ¼ 0 when λ6 ≠ 0.

10Given a 3 × 3 traceless real symmetric matrix D with eigen-
values−c,−c and 2c (where c ∈ R), it then follows that there exists
a real orthogonal matrix R such that D ¼ Rdiagð−c;−c; 2cÞRT.
However in this case one can write diagð−c;−c; 2cÞAB ¼
c3ðqAqB − 1

3
δABÞ with q ¼ ð0; 0; 1Þ and c3 ¼ 3c. Hence, we

conclude that D ¼ c3ðq0Aq0B − 1
3
δABÞ with unit vector

q0A ¼ RABqB.
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A. The softly broken Z2 ⊗ Π2-symmetric scalar
potential with v1 ≠ 0 and v2 ≠ 0

We shall first assume that v1 and v2 are both nonzero, or
equivalently, sin 2β ≠ 0. We then use Eqs. (2.8)–(2.10)
(with λ≡ λ1 ¼ λ2) to fix the values of β and ξ. In particular,

c2β ¼
m2

22 −m2
11

m2
11 þm2

22 þ λv2
; ð5:4Þ

cos ξ ¼ 2Rem2
12

s2β½m2
11 þm2

22 þ 1
2
λð1þ RÞv2� ; ð5:5Þ

sin ξ ¼ −2Imm2
12

s2β½m2
11 þm2

22 þ ð1
2
λð1þ RÞ − λ5Þv2�

; ð5:6Þ

where s2β≡sin2β and c2β≡cos2β.Writingm2
12¼jm2

12jeiθ12
in Eqs. (5.5) and (5.6) and imposing cos2 ξþ sin2 ξ ¼ 1
yields an equation that determines the phase θ12 in terms of ξ
and the other scalar potential parameters. Thus, the ERPS4 is
governed by eight real parameters: λ, λ3, λ4, λ5, jm2

12j, v, β
and ξ.

It is convenient to introduce the Higgs basis as follows
[29,37,65–69]. The Higgs basis fields H1 and H2 are
defined by the linear combinations of Φ1 and Φ2 such that
hH0

1i ¼ v=
ffiffiffi
2

p
and hH0

2i ¼ 0. That is,

H1 ≡ cβΦ1 þ sβe−iξΦ2;

H2 ¼ eiη½−sβeiξΦ1 þ cβΦ2�; ð5:7Þ

where we have introduced (following Ref. [37]) the
complex phase factor eiη to account for the nonuniqueness
of the Higgs basis, since one is always free to rephase the
Higgs basis field whose vacuum expectation value van-
ishes. In particular, eiη is a pseudoinvariant quantity [37]
that is rephased under the unitary basis transformation,
Φa → Uab̄Φb, as

eiη → ðdetUÞ−1eiη; ð5:8Þ

where detU is a complex number of unit modulus. In terms
of the Higgs basis fields defined in Eq. (5.7), the scalar
potential is given by

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ½Y3e−iηH

†
1H2 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
�
1

2
Z5e−2iηðH†

1H2Þ2 þ ½Z6e−iηðH†
1H1Þ þ Z7e−iηH

†
2H2Þ�H†

1H2 þ H:c:

�
: ð5:9Þ

The coefficients of the quadratic and quartic terms of the
scalar potential in Eq. (5.9) are independent of the initial
choice of theΦ-basis. It then follows that Y3, Z5, Z6 and Z7

are also pseudoinvariant quantities [69] that are rephased
under Φa → Uab̄Φb as

½Y3; Z6; Z7� → ðdetUÞ−1½Y3; Z6; Z7� and

Z5 → ðdetUÞ−2Z5: ð5:10Þ

It is straightforward to compute the corresponding Higgs
basis parameters. The Yi are given by

Y1 ¼ m2
11c

2
β þm2

22s
2
β − Reðm2

12e
iξÞs2β; ð5:11Þ

Y2 ¼ m2
11s

2
β þm2

22c
2
β þ Reðm2

12e
iξÞs2β; ð5:12Þ

Y3¼
h1
2
ðm2

22−m2
11Þs2β−Reðm2

12e
iξÞc2β−iImðm2

12e
iξÞ
i
e−iξ:

ð5:13Þ

Employing Eqs. (2.8)–(2.10) (with λ≡ λ1 ¼ λ2) to elimi-
nate m2

11, m
2
22 and Imðm2

12e
iξÞ, it follows that

Y2 ¼
2Reðm2

12e
iξÞ

s2β
−
1

2
λv2

þ 1

2
v2½λð1 − RÞ þ 2λ5 sin2 ξ�

�
1 −

1

2
s22β

�
; ð5:14Þ

Z1 ¼ Z2 ¼ λ −
1

2
½λð1 − RÞ þ 2λ5 sin2 ξ�s22β; ð5:15Þ

Z3 ¼ λ3 þ
1

2
½λð1 − RÞ þ 2λ5 sin2 ξ�s22β; ð5:16Þ

Z4 ¼ λ4 þ
1

2
½λð1 − RÞ þ 2λ5 sin2 ξ�s22β; ð5:17Þ

Z5 ¼
�
1

2
½λð1 − RÞ þ 2λ5sin2ξ�s22β

þ λ5ðcos 2ξþ ic2β sin 2ξÞ
�
e−2iξ; ð5:18Þ

Z6 ¼−Z7

¼
�
−
1

2
½λð1−RÞþ2λ5sin2ξ�c2βþ

1

2
iλ5 sin2ξ

�
s2βe−iξ:

ð5:19Þ
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One can also check that the scalar potential minimization
conditions in the Higgs basis,

Y1 ¼ −
1

2
Z1v2; Y3 ¼ −

1

2
Z6v2; ð5:20Þ

are satisfied. The eight parameters that specify the ERPS4
can now be identified as v, Y2, Z1, Z3, Z4, ReZ5, ImZ5, and
jZ6j after using the freedom to rephase the Higgs basis field
H2 to remove the complex phase from Z6 and Z7

[cf. Eq. (5.10)].
The subregion of the ERPS4 where Z6 ¼ 0 is worthy of

special attention. The ERPS4 condition, Z6 ¼ −Z7, along
with Eq. (5.20) yields Y3 ¼ Z6 ¼ Z7 ¼ 0, which signals
the presence of a Z2 symmetry that is manifestly realized
in the Higgs basis and is unbroken by the vacuum. We
recognize this scenario as a special case of the IDM, and
hence we shall refer to this parameter regime as the inert
limit of the softly broken Z2 ⊗ Π2-symmetric scalar
potential. Moreover, Higgs alignment is exact in the inert
limit, as discussed in Sec. IX. The conditions for achieving
the inert limit will be elucidated below Eq. (5.59).

Three additional limiting cases are noteworthy. First, if
λ5 ¼ 0, then the quartic terms of the scalar potential exhibit
a Uð1Þ ⊗ Π2 symmetry, which will be discussed in more
detail in Sec. VI. Second, if R ¼ 1, then the quartic terms of
the scalar potential exhibit a GCP3 symmetry, which will
be discussed in more detail in Sec. VII. Both of these limits
yield the same physical scalar sector, since they correspond
to the softly broken GCP3-symmetric scalar potential
expressed in two different choices of the scalar field basis.
Finally, if λ5 ¼ 0 and R ¼ 1, then the quartic terms of the
scalar potential exhibit an SO(3) symmetry.
The charged Higgs mass is given by

m2
H� ¼ Y2 þ

1

2
Z3v2

¼ 2Reðm2
12e

iξÞ
s2β

−
1

2
v2ðλ4 þ λ5 cos 2ξÞ: ð5:21Þ

The squared masses of the neutral Higgs bosons are
given by the eigenvalues of the neutral scalar squared-
mass matrix,

M2 ¼ v2

0
BB@

Z1 ReðZ6e−iηÞ −ImðZ6e−iηÞ
ReðZ6e−iηÞ 1

2
½Z34 þ ReðZ5e−2iηÞ� þ Y2=v2 − 1

2
ImðZ5e−2iηÞ

−ImðZ6e−iηÞ − 1
2
ImðZ5e−2iηÞ 1

2
½Z34 − ReðZ5e−2iηÞ� þ Y2=v2

1
CCA; ð5:22Þ

which is expressed with respect to the f ffiffiffi
2

p
ReH0

1 − v;ffiffiffi
2

p
ReH0

2;
ffiffiffi
2

p
ImH0

2g basis, where11

Z34 ≡ Z3 þ Z4 ¼ λ½Rþ s22βð1 − RÞ� − λ5ð1 − 2s22β sin
2 ξÞ;

ð5:23Þ

after making use of Eqs. (5.16) and (5.17). The eigenvalues
of M2 are independent of the choice of η, since these
cannot depend on the phase choice used in the definition of
the Higgs basis field H2. Hence, in practical calculations,
one can choose η to facilitate the analysis.
For example, if we choose η ¼ −ξ, then the neutral

scalar squared-mass matrix is given by

M2 ¼ v2

0
BBB@

λ − Ls22β −Ls2βc2β − 1
2
λ5s2β sin 2ξ

−Ls2βc2β
2Reðm2

12
eiξÞ

v2s2β
þ Ls22β − 1

2
λ5c2β sin 2ξ

− 1
2
λ5s2β sin 2ξ − 1

2
λ5c2β sin 2ξ

2Reðm2
12
eiξÞ

v2s2β
− λ5 cos 2ξ

1
CCA; ð5:24Þ

where

L≡ 1

2
λð1 − RÞ þ λ5 sin2 ξ: ð5:25Þ

If Z6 ≠ 0 and/or Z7 ≠ 0 then the neutral scalar squared-
mass matrix has a block diagonal form consisting of a 2 × 2

block and a 1 × 1 block if and only if ImðZ5e−2iηÞ ¼ 0 and
ReðZ6e−iηÞImðZ6e−iηÞ ¼ 0. In such cases, the scalar poten-
tial and vacuum areCP conserving, and we shall employ the
following convention for the names of the neutral scalarmass
eigenstates: the CP-even scalars whose squared masses are
the eigenvalues of the2 × 2 blockwill be denoted byh andH
wheremh ≤ mH, and the 1 × 1 block will be identified with
the squared mass of the CP-odd scalar, A.

11The expressions given for m2
H� in Eq. (5.21) and for M2 in

Eqs. (5.22) and (5.23) in terms of the Higgs basis parameters are
valid for the most general 2HDM scalar potential.
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B. The softly broken Z2 ⊗ Π2-symmetric scalar
potential with one vanishing vev

In the case where one of the vevs vanishes (i.e., s2β ¼ 0),
Eqs. (2.12) and (2.13) imply that m2

12 ¼ 0. For example, if
v1 ¼ v and v2 ¼ 0 then Y2 is a free parameter, Zi ¼ λi,
c2β ¼ 1, and ξ is indeterminate. In particular, Y3 ¼ Z6 ¼
Z7 ¼ 0, which signals the presence of a Z2 symmetry,
H1 → þH1,H2 → −H2, that is not broken by the vacuum.
This is a special case of the IDM and corresponds to the
inert limit of the softly broken Z2 ⊗ Π2-symmetric scalar
potential. In particular, Y2 ¼ m2

22 is a free parameter that is
generically not equal to Y1 ¼ m2

11 ¼ − 1
2
λv2. To obtain the

neutral scalar squared-mass matrix from Eq. (5.22), we
must make a choice of η. For reasons discussed below
Eq. (8.60), we shall choose e−2iη ¼ −1. The neutral scalar
squared-mass matrix is then diagonal and we may identify

m2
A ¼ Y2 þ

1

2
λv2R; ð5:26Þ

m2
H� ¼ Y2 þ

1

2
Z3v2 ¼ m2

A −
1

2
ðλ4 þ λ5Þv2; ð5:27Þ

m2
h ¼ λv2; ð5:28Þ

m2
H ¼ m2

A − λ5v2; ð5:29Þ

where we have denoted the mass-eigenstate neutral scalar
fields in the inert limit by

h≡ ffiffiffi
2

p
ReH0

1−v; H≡ ffiffiffi
2

p
ReH0

2; A≡ ffiffiffi
2

p
ImH0

2: ð5:30Þ

This nomenclature (where no mass ordering is implied) will
be employed in all subsequent occurrences of the inert limit
in this work, and differs from the convention adopted in the
paragraph following Eq. (5.25) for the CP-conserving case
where Z6 ≠ 0 and/or Z7 ≠ 0.
If v1 ¼ 0 and v2 ¼ v, then one transforms to the Higgs

basis viaΦ → UΦwithU ¼ ð0
1
1
0
Þ. In this case, Y2 ¼ m2

11 is
a free parameter, Y1 ¼ m2

22 ¼ − 1
2
λv2, Y3 ¼ Z6 ¼ Z7 ¼ 0,

Zi ¼ λi, c2β ¼ −1, and ξ ¼ 0. The scalar squared masses
are again given by Eqs. (5.26)–(5.29).
In the inert limit where Y3 ¼ Z6 ¼ Z7 ¼ 0, the scalar

potential and vacuum are automatically CP conserving. In
particular, in the inert limit the neutral scalars consist of a
CP-even neutral scalar h whose properties coincide with
those of the SM Higgs boson and two neutral scalarsH and
A with opposite sign CP-quantum numbers. However, one
cannot separately assign uniqueCP-quantum numbers toH
and A, respectively, based on the interactions of the scalars
with the gauge bosons and the scalar self-interactions.12

CP-conserving interactions of the scalars with other sectors
of the theory, if present, will often resolve the ambiguity
and identify A as the neutral CP-odd scalar of the inert
scalar doublet.
For example, the most general form for CP-conserving

neutral Higgs interactions with one generation of fermions
in the inert limit is obtained by setting q11 ¼ 1, q22 ¼ 1,
q32 ¼ i (with all other qkj ¼ 0), ρD� ¼ ρD, and ρU� ¼ ρU

in Eq. (58) of Ref. [37], which yields13

−LY ¼ 1

v
ðmdd̄dþmuūuÞhþ 1ffiffiffi

2
p ðρDd̄dþ ρUūuÞH

þ iffiffiffi
2

p ðρDd̄γ5d − ρUūγ5uÞA; ð5:31Þ

indicating that h behaves like the SMHiggs boson,H is CP
even and A is CP odd. Note that ρD ¼ ρU ¼ 0 in the IDM,
since H2 is the only Z2-odd field of the model, in which
case the individual CP-quantum numbers of H and A are
not resolved.

C. Noncoexistence of an inert phase
and a mixed phase

Let us examine more closely when a vacuum in which
one of the two vevs vanishes can arise. Here, we shall
extend the analysis of Ref. [70] to the case of λ5 ≠ 0.
First, we require that R > −1 due to Eq. (5.1). If v1 ¼ v
and v2 ¼ 0, then Eq. (2.13) yields m2

12 ¼ 0 and
m2

11 ¼ − 1
2
λv2 < 0. The value of the scalar potential at

the minimum is Vmin ¼ −ðm2
11Þ2=ð2λ2Þ. The positivity of

m2
A given in Eq. (5.29) yields m2

22 þ 1
2
λRv2 > 0. Hence, it

follows that

m2
22 > Rm2

11: ð5:32Þ

The above inequality is equivalent to

ð1þ RÞðm2
11 −m2

22Þ < ð1 − RÞðm2
11 þm2

22Þ: ð5:33Þ

Since 1þ R is always positive, it follows that

m2
22 −m2

11 > −
�
1 − R
1þ R

�
ðm2

11 þm2
22Þ: ð5:34Þ

In the case of v1 ¼ 0 and v2 ¼ v, the roles of m2
11 and

m2
22 are interchanged. That is,

12Indeed, the choice of e−2iη ¼ 1 would have interchanged the
identities of H and A in Eqs. (5.26)–(5.29).

13Introducing Yukawa interactions constitutes a hard breaking
of the symmetries responsible for the ERPS. Thus, in this paper
we shall not entertain such terms further.
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m2
22 −m2

11 <

�
1 − R
1þ R

�
ðm2

11 þm2
22Þ: ð5:35Þ

Although the vanishing of one of the two vevs requires
thatm2

12¼0, the converse is not necessarily true. Ifm2
12 ¼ 0

then two different phases of the 2HDM are possible—an
inert phase where one of the two vevs vanishes and a mixed
phase where both vevs are nonzero. To analyze the latter
possibility in more detail, we again extend the analysis
presented in Ref. [70] to the case of λ5 ≠ 0. If m2

12 ¼ 0 and
v1, v2 ≠ 0, then Eqs. (2.4)–(2.7) yield

m2
11 ¼ −

1

2
λðv21 þ Rv22Þ; ð5:36Þ

m2
22 ¼ −

1

2
λðv22 þ Rv21Þ; ð5:37Þ

0 ¼ λ5 sin 2ξ: ð5:38Þ

Since λ5 ≠ 0 by assumption, it follows that sin 2ξ ¼ 0 and
cos 2ξ ¼ �1. One is always free to rephase one of the
scalar doublet fields so that ξ ¼ 0, since the only possible
effect on the scalar potential parameters is a sign change
of λ5. In the convention where ξ ¼ 0, Eq. (5.24) yields
m2

A ¼ −λ5v2, which implies that λ5 < 0. Equation (2.11)
then yields

Vmin ¼ −
1

8
λðv41 þ v42 þ 2Rv21v

2
2Þ: ð5:39Þ

It is convenient to eliminate v1 and v2 in favor of the scalar
potential parameters. Using Eqs. (5.36) and (5.37), one
easily obtains

v21 ¼
2

λ

�
m2

22R −m2
11

1 − R2

�
;

v22 ¼
2

λ

�
m2

11R −m2
22

1 − R2

�
: ð5:40Þ

Plugging these values into Eq. (5.39) yields

Vmin ¼ −
1

2λð1 − R2Þ ½m
4
11 þm4

22 − 2Rm2
11m

2
22�

¼ −
1

4λ

�ðm2
11 þm2

22Þ2
1þ R

þ ðm2
11 −m2

22Þ2
1 − R

�
: ð5:41Þ

One can work out a number of inequalities that must be
satisfied if the mixed phase is stable. We again require
that R > −1 in light of Eq. (2.2). Using Eq. (5.24) with
m2

12 ¼ ξ ¼ 0, the trace and determinant of the 2 × 2 neutral
CP-even scalar squared-mass matrix yield

m2
hþm2

H ¼ λv2; m2
hm

2
H ¼ 1

4
λ2v4s22βð1−R2Þ: ð5:42Þ

Hence, the positivity of the scalar squared masses implies
that jRj < 1.
Next, we employ Eqs. (5.36) and (5.37) along with

jRj < 1 to obtain

m2
11 þm2

22 ¼ −
1

2
λv2ð1þ RÞ < 0; ð5:43Þ

m2
11 þm2

22 þ λv2 ¼ 1

2
λv2ð1 − RÞ> 0: ð5:44Þ

Using Eq. (5.4) and jc2βj ≤ 1, it follows that m2
11 ≥ − 1

2
λv2

and m2
22 ≥ − 1

2
λv2. However, it is again more useful to

provide inequalities that are independent of the vevs. In
light of Eq. (5.40), the requirement that v21 and v22 are
strictly positive implies that

m2
22R >m2

11; m2
11R >m2

22: ð5:45Þ

The above inequalities are equivalent to

�
1 − R
1þ R

�
ðm2

11 þm2
22Þ < m2

22 −m2
11

< −
�
1 − R
1þ R

�
ðm2

11 þm2
22Þ: ð5:46Þ

Comparing Eq. (5.46) with Eqs. (5.34) and (5.35), it
follows that the mixed phase and the inert phase do not
coexist [57,70,71].

D. CP properties of the softly broken
Z2 ⊗ Π2-symmetric scalar potential with m2

12 ≠ 0

Returning to the more general case where m2
12 ≠ 0, the

scalar sector is CP conserving if and only if ImðZ�
5Z

2
6Þ ¼ 0.

A straightforward computation yields

ImðZ�
5Z

2
6Þ ¼ −

1

4
λλ5ð1 − RÞs22βc2β sin 2ξ½λð1 − RÞ þ 2λ5�

¼ −
1

4
λ5ðλ − λ3 − λ4 − λ5Þðλ − λ3 − λ4 þ λ5Þ
× s22βc2β sin 2ξ: ð5:47Þ

The case of s2β ¼ 0 corresponds to the inert limit, which
has already been treated above. In light of Eq. (4.44), the
conditions λ5 ¼ 0 and λ − λ3 − λ4 ¼ �λ5 correspond to the
ERPS4 where a U(1) symmetry is manifestly realized in
some basis. In particular, λ ¼ λ3 þ λ4 � λ5 correspond to
GCP3 and GCP30, respectively, whereas λ5 ¼ 0 corre-
sponds to Uð1Þ ⊗ Π2, which is equivalent to GCP3 and
GCP30 in different choices of the scalar field basis. For
example, GCP30 is related to GCP3 via the basis change
specified in Eq. (3.1). These enhanced symmetry cases will
be treated separately in Secs. VI–VIII.
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In this section, we shall assume that s2β ≠ 0, λ ≠
λ3 þ λ4 � λ5 and λ5 ≠ 0, in which case CP is conserved
if either (or both) of the following two conditions hold:

c2β ¼ 0 and=or sin 2ξ ¼ 0: ð5:48Þ

1. cos 2β = 0

In the case of c2β ¼ 0, it follows that CP is conserved
despite the fact that one cannot separately rephase Φ1 and
Φ2 in the Z2 ⊗ Π2 basis such that all the parameters of the
scalar potential are real if Imðλ�5½m2

12�2�Þ ≠ 0, as was already
noticed in Ref. [37]. To understand the origin of this result,
note that Eq. (5.4) implies that m2

11 ¼ m2
22 when c2β ¼ 0.

Together with the ERPS4 conditions, it follows that the
scalar potential is invariant with respect to a GCP10

transformation (cf. Tables V and VI). Moreover, the
condition of c2β ¼ 0 ensures that the GCP10 symmetry
is preserved by the vacuum.
When c2β ¼ 0, Eq. (5.24) is rendered block diagonal,

with the 2 × 2 block identified as the squared-mass matrix
of the neutral CP-even scalars. It then follows that

m2
A ¼ 2Reðm2

12e
iξÞ þ 1

2
λv2ð1 − RÞ þ λ5v2 sin2 ξ; ð5:49Þ

m2
H� ¼ m2

A −
1

2
v2½λð1 − RÞ þ λ4 þ λ5�; ð5:50Þ

where A ¼ φ2 ≡
ffiffiffi
2

p
ReH0

2. The squared-mass matrix of the
neutral CP-even scalars is

M2
H ¼

� 1
2
λv2ð1þ RÞ − λ5v2 sin2 ξ −λ5v2 sin ξ cos ξ

−λ5v2 sin ξ cos ξ m2
A − 1

2
λv2ð1 − RÞ − λ5v2 cos2 ξ

�
; ð5:51Þ

with respect to the fφ1;φ3g basis, where φ1≡
ffiffiffi
2

p
ReH0

1−v
and φ3 ≡

ffiffiffi
2

p
ImH0

2. The neutral CP-even scalar mass
eigenstates are given by

H ¼ φ1cβ−α − φ3sβ−α; h ¼ φ1sβ−α þ φ3cβ−α; ð5:52Þ

where 0≤β−α≤π, sβ−α≡sinðβ−αÞ and cβ−α≡cosðβ−αÞ,

m2
H;h ¼

1

2

n
m2

A þ ðλR − λ5Þv2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A − v2ðλþ λ5 cos 2ξÞ�2 þ λ25v
4sin22ξ

q o
;

ð5:53Þ

with mh ≤ mH, and
14

cβ−α ¼
λ5v2 sin 2ξ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞ½m2

H − 1
2
λv2ð1þ RÞ þ λ5v2 sin2 ξ�

q :

ð5:54Þ
2. sin 2ξ = 0

In the case of sin 2ξ ¼ 0, Eqs. (5.5) and (5.6) imply
that Im½ðm2

12Þ2� ¼ 2Rem2
12Imm2

12 ¼ 0. If sin ξ ¼ 0 then
Imm2

12 ¼ 0 and all scalar potential parameters are real,
whereas if cos ξ ¼ 0 then Rem2

12 ¼ 0 and a rephasing

Φ2 → iΦ2 changes the sign of the real parameter λ5
while removing the complex phase of m2

12. Hence a real
basis exists,15 which implies that the scalar potential
and the vacuum are CP conserving. The neutral scalar
squared-mass matrix given in Eq. (5.24) is block diagonal
when sin 2ξ ¼ 0, with the 33 element identified as the
squared mass of the CP-odd scalar, A ¼ φ3 ≡

ffiffiffi
2

p
ImH0

2.
For sin ξ ¼ 0, it follows from Eqs. (5.21) and

(5.24) that

m2
A ¼ � 2Rem2

12

s2β
− λ5v2;

m2
H� ¼ m2

A þ 1

2
ðλ5 − λ4Þv2; ð5:55Þ

where the choice of signs corresponds to cos ξ ¼ �1. The
upper 2 × 2 block of Eq. (5.24) is identified as the squared-
mass matrix of the CP-even neutral scalars,

M2
H¼
 
λv2½1−1

2
s22βð1−RÞ� −1

2
λv2s2βc2βð1−RÞ

−1
2
λv2s2βc2βð1−RÞ m2

Aþλ5v2þ1
2
λv2s22βð1−RÞ

!
;

ð5:56Þ

with respect to the fφ1;φ2g basis, where φ1≡
ffiffiffi
2

p
ReH0

1−v
and φ2 ≡

ffiffiffi
2

p
ReH0

2. Hence,14In obtaining Eq. (5.54), we have employed Eqs. (9.1) and
(9.5), where the real quantity Z6v2 in these equations is to be
identified with the off-diagonal element of M2

H given in
Eq. (5.51).

15A real basis is defined to be a scalar field basis in which the
scalar potential parameters and the vevs are simultaneously real.
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m2
H;h ¼

1

2

n
m2

A þ ðλþ λ5Þv2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A þ λ5v2 − λv2ðc22β þ Rs22βÞ�2 þ λ2s22βc
2
2βð1 − RÞ2v4

q o
; ð5:57Þ

with mh ≤ mH, and

cβ−α ¼
λv2s2βc2βð1 − RÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞ½m2

H − λv2ð1 − 1
2
s22βð1 − RÞÞ�

q :

ð5:58Þ

For cos ξ ¼ 0, the results of Eqs. (5.55)–(5.58) are
modified by the following substitutions:

�Rem2
12 → ∓Imm2

12; λ5 → −λ5;

R → R̄≡ ðλ3 þ λ4 − λ5Þ=λ; ð5:59Þ

where the choice of signs in front of Imm2
12 corresponds to

sin ξ ¼ �1. Note that R̄ ≠ 1 under the assumption specified
above Eq. (5.48). If R̄ ¼ 1 then the (softly broken)
Z2 ⊗ Π2 symmetry of the scalar potential is promoted
to GCP30, as discussed below Eq. (5.47).

3. cos 2β= sin 2ξ = 0

If c2β ¼ sin 2ξ ¼ 0 then Eqs. (5.19) and (5.20) yield
Y3 ¼ Z6 ¼ Z7 ¼ 0, corresponding to an inert limit of the
softly broken Z2 ⊗ Π2-symmetric scalar potential. If
sin ξ ¼ 0, then one can obtain the scalar squared masses
either by taking the sin ξ ¼ Imm2

12 ¼ 0 limit of Eqs. (5.49)–
(5.51) or by taking the c2β ¼ 0 limit of Eqs. (5.55)–(5.57).
Recall that we have identified the neutral scalar mass
eigenstates in the convention specified in Eq. (5.30). Taking
into account that M2

H is exhibited with respect to the
fφ1;φ3g basis in Eq. (5.51) and with respect to the
fφ1;φ2g basis in Eq. (5.56), respectively, it follows that

m2
h ¼

1

2
λv2ð1þ RÞ; m2

A ¼ �2Rem2
12 − λ5v2;

m2
H ¼ m2

A þ λ5v2 þ
1

2
λv2ð1 − RÞ;

m2
H� ¼ m2

A þ 1

2
ðλ5 − λ4Þv2: ð5:60Þ

If cos ξ ¼ 0, then Eq. (5.60) is modified by applying the
substitutions indicated in Eq. (5.59). In the inert limit, the
vacuum preserves the Π2 symmetry (whereas the Z2

symmetry remains softly broken since m2
12 ≠ 0).

4. Spontaneous vs explicit CP violation

Spontaneous CP violation can occur when Im½m2
12�2 ¼ 0

(with m2
12 ≠ 0) and sin 2ξ ≠ 0. In addition, as noted in

Appendix A below Eq. (A25), one must assume that λ5 > 0
in order to guarantee that this CP-violating vacuum

solution is a local minimum. If Imm2
12 ¼ 0 and

sin 2ξ ≠ 0, then Eq. (5.6) implies that m2
11 þm2

22 þ
1
2
λð1þ RÞv2 ¼ λ5v2. Inserting this result into Eq. (5.5)

yields cos ξ ¼ Rem2
12=ðλ5v2sβcβÞ; i.e., spontaneous CP

violation occurs if [42]

0 < jm2
12j < λ5v2sβcβ: ð5:61Þ

Likewise, if Rem2
12 ¼ 0 and sin 2ξ ≠ 0, then Eq. (5.5)

implies that m2
11 þm2

22 þ 1
2
λð1þ RÞv2 ¼ 0. Inserting this

result into Eq. (5.6) yields sin ξ ¼ Imm2
12=ðλ5v2sβcβÞ. Once

again, spontaneous CP violation occurs if Eq. (5.61) is
satisfied.
If ImðZ�

5Z
2
6Þ ≠ 0 then the scalar potential is explicitlyCP

violating. In this case, one must diagonalize the 3 × 3
neutral scalar squared-mass matrix given in Eq. (5.24) to
determine the neutral scalar mass eigenstates. The inert
limit cannot be realized in this case, so the presence of
scalar-mediated CP-violating effects necessarily implies
that the tree-level properties of any of the three neutral
scalar mass eigenstates must deviate from those of the SM
Higgs boson. This is a special case of the C2HDM that has
been explored in Ref. [37].

E. Scalar potential with an unbroken
Z2 ⊗ Π2-symmetry

The Z2 ⊗ Π2 symmetry of the scalar potential is
unbroken if m2

11 ¼ m2
22 and m2

12 ¼ 0. First, we suppose
that both vevs are nonzero. Then Eq. (5.13) implies that
Y3 ¼ 0, which yields Y3 ¼ Z6 ¼ Z7 ¼ 0 in light of
Eq. (5.20) and the ERPS condition, corresponding to
the inert limit of the Z2 ⊗ Π2-symmetric scalar potential.
Moreover in light of Eqs. (2.10) and (5.4), c2β ¼ sin 2ξ ¼ 0

in the Z2 ⊗ Π2 symmetry limit, and it follows that the
vacuum breaks Z2 but conserves Π2. The scalar squared
masses in the limit of c2β ¼ sin ξ ¼ 0 and m2

12 ¼ 0 are
given by the m2

12 ¼ 0 limit of Eq. (5.60). Stability of the
scalar potential requires that the squared masses of the
scalars are positive, which yields λ5 ¼ −jλ5j < 0, λ4 < jλ5j
and jRj < 1. Likewise, for c2β ¼ cos ξ ¼ 0, the scalar
squared masses are given by m2

12 ¼ 0 limit of Eq. (5.60)
after replacing λ5 → −λ5 and R → R̄ [cf. Eq. (5.59)], in
which case the stability requirement yields λ5 > 0, λ4 < λ5
and jR̄j < 1.
If one of the vevs vanishes (i.e., s2β ¼ 0) then the

Z2 ⊗ Π2 symmetry limit of Eq. (5.26) corresponds to
setting Y2 ¼ Y1 ¼ − 1

2
λv2 [cf. Eqs. (2.12) and (2.13)],

which yields
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m2
A ¼ 1

2
λv2ðR − 1Þ; ð5:62Þ

which requires that R > 1. The squared masses of H�, h
and H in terms of m2

A given in Eqs. (5.27)–(5.29) remain
unchanged. In this case, the vacuum breaks Π2 but
conserves Z2.

F. The landscape of ERPS4—Part I: Scalar potential
with a softly broken or unbroken Z2 ⊗ Π2 symmetry

The landscape of scalar potentials in the ERPS4 that
respects a softly broken or exact Z2 ⊗ Π2 symmetry (but
no larger symmetry) is summarized in Table VII.

VI. THE Uð1Þ ⊗ Π2 SCALAR FIELD BASIS

Consider the softly broken Uð1Þ ⊗ Π2-symmetric scalar
potential where λ≡ λ1 ¼ λ2 and λ5 ¼ λ6 ¼ λ7 ¼ 0. The
softly broken parameters, m2

11, m
2
22 and m2

12, are arbitrary
with m2

12 potentially complex. If we demand that the
potential is bounded from below, the following conditions
must be satisfied (modulo the remarks of footnote 3),

λ> 0; λþ λ3 > 0; λþ λ3 þ λ4 > 0: ð6:1Þ

A. The softly broken Uð1Þ ⊗ Π2 or SO(3)-symmetric
scalar potential with v1 ≠ 0 and v2 ≠ 0

We shall first assume that v1 and v2 are both nonzero, or
equivalently sin 2β ≠ 0. We then use Eqs. (2.8)–(2.10)
(with λ≡ λ1 ¼ λ2) to obtain

m2
11 ¼ Reðm2

12e
iξÞ tanβ− 1

2
λv2c2β −

1

2
ðλ3 þ λ4Þv2s2β; ð6:2Þ

m2
22¼Reðm2

12e
iξÞcotβ−1

2
λv2s2β−

1

2
ðλ3þλ4Þv2c2β; ð6:3Þ

Imðm2
12e

iξÞ ¼ 0: ð6:4Þ

Equations (6.2) and (6.3) fix the value of β. In particular,

c2β ¼
m2

22 −m2
11

m2
11 þm2

22 þ λv2
: ð6:5Þ

Sincem2
12 is the only potentially complex parameter, one

can assume without loss of generality that m2
12 is real and

non-negative after an appropriate rephasing of one of the
two Higgs doublet fields. Hence, Eq. (6.4) implies that the
scalar sector is CP conserving. Nevertheless, in the analysis
presented in this section, we find it convenient to retain all
factors of eiξ for later purposes, which simply means that
m2

12e
iξ ¼ Reðm2

12e
iξÞ ≥ 0, in light of Eq. (6.4) and the

requirement that m2
A ≥ 0 [cf. Eq. (6.14)].

The corresponding parameters of the Higgs basis are
obtained by setting λ5 ¼ 0 in Eqs. (5.14)–(5.19),

Y2 ¼
2Reðm2

12e
iξÞ

s2β
−
1

2
λv2
�
Rþ 1

2
s22βð1 − RÞ

�
; ð6:6Þ

Z1 ¼ Z2 ¼ λ

�
1 −

1

2
s22βð1 − RÞ

�
; ð6:7Þ

Z3 ¼ λ3 þ
1

2
λs22βð1 − RÞ; ð6:8Þ

Z4 ¼ λ4 þ
1

2
λs22βð1 − RÞ; ð6:9Þ

Z5 ¼
1

2
λs22βð1 − RÞe−2iξ; ð6:10Þ

Z6 ¼ −Z7 ¼ −
1

2
λs2βc2βð1 − RÞe−iξ; ð6:11Þ

where

R≡ λ3 þ λ4
λ

: ð6:12Þ

TABLE VII. Landscape of the ERPS4—Part I: Scalar potentials of the 2HDM with either an unbroken or softly broken Z2 ⊗ Π2

symmetry that is manifestly realized in theΦ-basis. In all cases, λ≡ λ1 ¼ λ2 ≠ λ3 þ λ4 � λ5, where λ5 is real and nonzero, λ6 ¼ λ7 ¼ 0,
and λ, λþ λ3, and λþ λ3 þ λ4 − jλ5j are all positive. Note that ifm2

12 is pure imaginary, one can rephaseΦ2 → iΦ2 to obtain a new basis
where m2

12 is real and λ5 flips sign. An exact Higgs alignment in the ERPS4 is realized in the inert limit where Y3 ¼ Z6 ¼ Z7 ¼ 0.

β sin 2ξ m2
11, m

2
22 m2

12 CP violation? Higgs alignment Comment

s2β ≠ 0 ≠ 0 m2
11 ≠ m2

22
Complex Explicit No Im½m2

12�2 ≠ 0

s2β ≠ 0 ≠ 0 m2
11 ≠ m2

22 Im½m2
12�2 ¼ 0 Spontaneous No 0 < jm2

12j < 1
2
λ5v2s2β

s2β ≠ 0 ≠ 0 m2
11 ≠ m2

22 Im½m2
12�2 ¼ 0 No No jm2

12j > 1
2
λ5v2s2β

c2β ¼ 0 ≠ 0 m2
11 ¼ m2

22
Complex No No m2

12 ≠ 0

s2βc2β ≠ 0 0 m2
11 ≠ m2

22 Im½m2
12�2 ¼ 0 No No

s2β ¼ 0 m2
11 ≠ m2

22
0 No Yes

c2β ¼ 0 0 m2
11 ¼ m2

22 Im½m2
12�2 ¼ 0 No Yes m2

12 ≠ 0

s2β ¼ 0 m2
11 ¼ m2

22
0 No Yes Unbroken Z2 ⊗ Π2

c2β ¼ 0 0 m2
11 ¼ m2

22
0 No Yes Unbroken Z2 ⊗ Π2
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Note that R > −1 in light of Eq. (6.1).16 The limit of R ¼ 1
corresponds to the softly broken SO(3)-symmetric scalar
potential, where the conditions λ1 ¼ λ2 ¼ λ3 þ λ4 and λ5 ¼
λ6 ¼ λ7 ¼ 0 hold for all choices of the scalar field basis.
The Higgs basis parameters Y1 and Y3 are fixed by the

potential minimum conditions given in Eq. (5.20). Note
that ImðZ�

5Z
2
6Þ ¼ 0, which implies that a real Higgs basis

exists after an appropriate rephasing of the Higgs basis field
H2. That is, there is no CP violation (neither explicit nor
spontaneous) arising from a scalar potential that exhibits a
softly broken Uð1Þ ⊗ Π2 symmetry. Using Eqs. (6.7)–
(6.11), it follows that the following conditions are satisfied:

½ReðZ�
5Z

2
6Þ�2 þ ReðZ�

5Z
2
6ÞjZ6j2ðZ1 − Z34Þ − 2jZ6j6 ¼ 0

and ImðZ�
5Z

2
6Þ ¼ 0: ð6:13Þ

We recognize these conditions as equivalent to Eq. (4.41)
when applied in the Higgs basis.
The squared masses of the neutral Higgs bosons are

obtained by computing the eigenvalues of Eq. (5.22).
In light of Eqs. (6.10) and (6.11), it is convenient to
take η ¼ −ξ in Eq. (5.22), since this choice yields
ImðZ5e−2iηÞ ¼ ImðZ6e−iηÞ ¼ 0. One can then immediately
identity the squared mass of the CP-odd neutral scalar
A ¼ φ3 ≡

ffiffiffi
2

p
ImH0

2,

m2
A¼

1

2
v2½Z34−ReðZ5e2iξÞ�þY2¼

2Reðm2
12e

iξÞ
s2β

: ð6:14Þ

Combining Eqs. (6.2), (6.3) and (6.14) yields an alternative
expression,

m2
A ¼ m2

11 þm2
22 þ

1

2
λv2ð1þ RÞ: ð6:15Þ

Likewise, the charged Higgs squared mass is given by

m2
H� ¼ Y2 þ

1

2
Z3v2 ¼ m2

A −
1

2
λ4v2; ð6:16Þ

after making use of Eq. (6.14). Finally, the squared masses
of the CP-even neutral scalars, denoted by h and H, are the
eigenvalues of the 2 × 2 matrix,

M2
H ¼

�
Z1v2 ReðZ6eiξÞv2

ReðZ6eiξÞv2 m2
A þ ReðZ5e2iξÞv2

�

¼
 
λv2½1 − 1

2
s22βð1 − RÞ� − 1

2
λv2s2βc2βð1 − RÞ

− 1
2
λv2s2βc2βð1 − RÞ m2

A þ 1
2
λv2s22βð1 − RÞ

!
;

ð6:17Þ

with respect to the fφ1;φ2g basis,17 where φ1 ≡ffiffiffi
2

p
ReH0

1 − v and φ2 ≡
ffiffiffi
2

p
ReH0

2. The neutral CP-even
scalar masses are given by

m2
H;h ¼

1

2

n
m2

A þ λv2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A − λv2ðc22β þ Rs22βÞ�2 þ λ2s22βc
2
2βð1 − RÞ2v4

q o
; ð6:18Þ

with mh ≤ mH, and

cβ−α ¼
λv2s2βc2βð1 − RÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞ½m2

H − λv2ð1 − 1
2
s22βð1 − RÞÞ�

q :

ð6:19Þ

A stable minimum requires that the scalar squared
masses should be non-negative. This condition implies that

Reðm2
12e

iξÞ ≥ 0 and m2
A ≥

1

2
λ4v2: ð6:20Þ

In addition, we demand that

TrM2
H ¼ m2

A þ λv2 ≥ 0; ð6:21Þ

1

v2
detM2

H ¼ 1

4
λ2v2s22βð1 − R2Þ þ λm2

A

�
1 −

1

2
s22βð1 − RÞ

�
≥ 0: ð6:22Þ

Sincem2
A ≥ 0 by assumption, Eq. (6.21) is automatically

satisfied in light of Eq. (6.1). On the other hand, Eq. (6.22)
is satisfied only if R lies below a critical positive value that
depends on λ, β and m2

A=v
2,

−1 < R ≤
m2

A

λv2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

A

λv2
− 1

�
2

þ 4m2
A

λv2s22β

s
; ð6:23Þ17The computation of the squared-mass matrix of the CP-even

neutral scalars in the Φ-basis is given in Appendix D.

16If R ¼ −1 then the quartic terms of the scalar potential
exhibit a flat direction. One can then ensure the stability of the
scalar potential in the weak sense (cf. footnote 3) if m2

11 þm2
22 >

2jm2
12j [56,72].
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after employing Eq. (6.1).18 It follows that Eq. (6.22) is
satisfied for all values of β if

−1 < R ≤ 1þ 2m2
A

λv2
: ð6:24Þ

One can fix the parameter space of the softly broken
Uð1Þ ⊗ Π2 scalar potential by specifying the values of six
real parameters: λ, λ4, R, β, mA and v ¼ 246 GeV. By
replacing λwithmh [see Eq. (131) of Ref. [70] ] and λ4 with
mH� , the independent parameters of the softly broken
Uð1Þ ⊗ Π2 scalar potential can be taken as mh, mA,
mH� , v, R and β, in which case m2

H ¼ m2
A −m2

h þ λv2

[cf. Eq. (6.21)] is a derived quantity.

B. The inert limit of the softly broken Uð1Þ ⊗ Π2 or
SO(3)-symmetric scalar potential

The inert limit of the scalar potential, where Y3 ¼ Z6 ¼
Z7 ¼ 0, possesses an exact Z2 symmetry despite the
presence of squared mass parameters that softly break
the Uð1Þ ⊗ Π2 symmetry. The inert limit arises if either
v1 ¼ 0 or v2 ¼ 0, but is more general. Indeed, Eqs. (2.2)
and (6.11) imply that the inert limit arises if any one of the
three conditions, R ¼ 1, c2β ¼ 0, or s2β ¼ 0, is satisfied.

1. Softly broken SO(3)-symmetric scalar potential (R = 1)

The case of R ¼ 1 corresponds to the softly broken
SO(3) scalar potential as noted below Eq. (6.12). In light
of Eqs. (6.2)–(6.4), it follows that if s2βc2β ≠ 0 then
m2

11 ≠ m2
22 and Reðm2

12e
iξÞ ≠ 0. In this case, the squared

masses of the Higgs bosons are given by

m2
h ¼ λv2; m2

H ¼m2
A; m2

H� ¼m2
A −

1

2
λ4v2; ð6:25Þ

where m2
A ¼ 2Reðm2

12e
iξÞ=s2β. The mass degeneracy of H

and A arises due to an unbroken U(1) symmetry of the
scalar potential in the Higgs basis (since Y3 ¼ Z5 ¼
Z6 ¼ Z7 ¼ 0) that is preserved by the vacuum. The Π2

symmetry remains softly broken (since Y1 ≠ Y2).

2. The softly broken Uð1Þ ⊗ Π2-symmetric scalar
potential with cos 2β = 0

In the case of c2β ¼ 0, Eq. (6.5) implies that m2
11 ¼ m2

22.
Equations (6.14)–(6.18) yield

m2
h ¼

1

2
λv2ð1þ RÞ; m2

H ¼ m2
A þ 1

2
λv2ð1 − RÞ;

m2
H� ¼ m2

A −
1

2
λ4v2; ð6:26Þ

where m2
A ¼ 2Reðm2

12e
iξÞ, in agreement with the λ5 ¼ 0

limit of Eq. (5.60). In this limiting case, after rephasing one
of the two Higgs doublet fields to set ξ ¼ 0, the vacuum
preserves the Π2 symmetry [whereas the U(1) symmetry
remains softly broken since m2

12 ≠ 0].

3. The softly broken Uð1Þ ⊗ Π2-symmetric scalar
potential with one vanishing vev

The case where one of the vevs vanishes (i.e., s2β ¼ 0)
should be treated separately and implies that m2

12 ¼ 0 in
light of Eqs. (2.12) and (2.13). One can check that
Eqs. (6.7)–(6.11) remain valid after setting s2β ¼ 0. In this
case, the U(1) symmetry of the scalar potential is unbroken,
whereas the Π2 symmetry is softly broken if m2

11 ≠ m2
22.

First, suppose that v2 ¼ 0 and v1 ¼ v. Then, Eq. (5.26)
yields

m2
A ¼ Y2 þ

1

2
λv2R; ð6:27Þ

where Y2 is a free parameter of the scalar potential that is no
longer given by Eq. (6.6). Moreover, Eq. (6.5) is no longer
valid since Y2 ¼ m2

22 is independent of the squared mass
parameterm2

11; only the latter is fixed by the scalar potential
minimum condition. The squared masses of the other
scalars are given by Eqs. (5.27)–(5.29) by setting λ5 ¼ 0,

m2
h ¼ λv2; m2

H ¼m2
A; m2

H� ¼m2
A −

1

2
λ4v2: ð6:28Þ

Note that the U(1) symmetry is preserved by the vacuum,
which results in the mass degeneracy ofH and A. Second, if
v1 ¼ 0 and v2 ¼ v, then it follows that Y2 ¼ m2

11 is a free
parameter and Y1 ¼ m2

22 ¼ − 1
2
λv2. Equations (6.7)–(6.11)

remain valid after setting β ¼ 1
2
π. Moreover, the Higgs

masses given by Eqs. (6.27) and (6.28) also remain valid.

C. The mixed phase of the softly broken
Uð1Þ ⊗ Π2-symmetric scalar potential with m2

12 = 0

Although the vanishing of one of the two vevs requires
that m2

12 ¼ 0, the converse is not necessarily true, as
previously noted. That is, if m2

12 ¼ 0, then both an inert
phase and a mixed phase of the 2HDM are possible. The
inequalities previously obtained that distinguish the inert
and mixed phases in Eqs. (5.34), (5.35) and (5.46) still
apply (after setting λ5 ¼ 0), and again imply that the inert
and mixed phases do not coexist. In the mixed phase
with m2

12 ¼ 0, the scalar potential respects the U(1)
symmetry, which is spontaneously broken by the vacuum.

18Apart from the upper bound given in Eq. (6.23), one can
obtain an independent upper bound by imposing either tree-level
unitarity [73–77] or a perturbativity constraint. One would then
expect R=ð4πÞ≲Oð1Þ.
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Consequently, m2
A ¼ 0 and the other scalar squared masses

are given by

m2
H;h ¼

1

2
λv2
h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22β þ R2s22β

q i
;

m2
H� ¼ −

1

2
λ4v2; ð6:29Þ

with mh ≤ mH. Stability of the vacuum requires that
λ4 < 0.

D. Scalar potential with an unbroken Uð1Þ ⊗ Π2
or SO(3) symmetry

The Uð1Þ ⊗ Π2 symmetry of the scalar potential is
unbroken if m2

11 ¼ m2
22 and m2

12 ¼ 0. Then, as noted at
the end of Sec. V, the squared mass conditions yield
Y3 ¼ Z6 ¼ Z7 ¼ 0, corresponding to the inert limit of
the Uð1Þ ⊗ Π2-symmetric scalar potential.
First, we suppose that both vevs are nonzero. Then in the

Uð1Þ ⊗ Π2 symmetry limit, Eqs. (6.2)–(6.4) imply that
ðR − 1Þc2β ¼ 0. Hence, the Uð1Þ ⊗ Π2 symmetry limit
arises in two distinct cases. If m2

12 ¼ c2β ¼ 0 and R ≠ 1,
then Eqs. (6.14)–(6.17) yield

m2
h ¼

1

2
λv2ð1þ RÞ; m2

H ¼ 1

2
λv2ð1 − RÞ;

m2
A ¼ 0; m2

H� ¼ −
1

2
λ4v2: ð6:30Þ

Note that a stable minimum exists if λ4 < 0 and jRj < 1.
The Π2 symmetry is preserved by the vacuum, whereas the
U(1) symmetry is spontaneously broken by the vacuum and
results in a massless Goldstone boson.

If m2
11 ¼ m2

22, m2
12 ¼ 0 and R ¼ 1, then an SO(3)

symmetry is explicitly preserved by the scalar potential
and Eqs. (6.14)–(6.17) yield

m2
h ¼ λv2; m2

H ¼m2
A ¼ 0; m2

H� ¼ −
1

2
λ4v2: ð6:31Þ

The SO(3) symmetry is spontaneously broken by the
vacuum, leaving a residual unbroken U(1) symmetry,
which results in two massless Goldstone bosons, H and A.
If one of the vevs vanishes (i.e., s2β ¼ 0), then setting

λ5 ¼ 0 in Eq. (5.62) and in Eqs. (5.27)–(5.29) yields

m2
h ¼ λv2; m2

H ¼ m2
A ¼ 1

2
λv2ðR − 1Þ;

m2
H� ¼ m2

A −
1

2
λ4v2; ð6:32Þ

which corresponds to a stable minimum if R > 1. Note that
in this case the Π2 symmetry is broken by the vacuum,
whereas the U(1) symmetry is preserved by the vacuum and
results in the mass degeneracy of H and A. In the limit
of R ¼ 1, corresponding to an SO(3)-symmetric scalar
potential, the resulting scalar masses are again given by
Eq. (6.31).

E. The landscape of ERPS4—Part II(a): Scalar
potential with a softly broken or unbroken

Uð1Þ ⊗ Π2 or SO(3) symmetry

Table VIII provides a summary of the landscape of scalar
potentials in the subspace of the ERPS4 regime where the
Uð1Þ ⊗ Π2 or SO(3) symmetry of the scalar potential is
either softly broken (m2

11 ≠ m2
22 and/or m

2
12 ≠ 0) or unbro-

ken (m2
11 ¼ m2

22 and m2
12 ¼ 0).

TABLE VIII. Landscape of the ERPS4—Part II(a): Scalar potentials of the 2HDM with either an unbroken or softly broken Uð1Þ ⊗
Π2 symmetry that is manifestly realized in the Φ-basis, where λ≡ λ1 ¼ λ2, λ5 ¼ λ6 ¼ λ7 ¼ 0, and CP is conserved by the scalar
potential and vacuum. The parameterm2

12e
iξ is real and non-negative [as a consequence of Eqs. (6.4) and (6.14)]; ifm2

12 ¼ 0 and s2β ≠ 0

then a massless neutral scalar is present in the neutral scalar spectrum. The parameter R≡ ðλ3 þ λ4Þ=λ> −1; when R ¼ 1 the (softly
broken) Uð1Þ ⊗ Π2 symmetry is promoted to a (softly broken) SO(3) symmetry. An exact Higgs alignment in the ERPS4 is realized in
the inert limit where Y3 ¼ Z6 ¼ Z7 ¼ 0.

β m2
11, m

2
22 m2

12e
iξ R Higgs alignment Comment

s2βc2β ≠ 0 m2
11 ≠ m2

22
>0 R ≠ 1 No See Eq. (6.23)

s2βc2β ≠ 0 m2
11 ≠ m2

22
0 jRj < 1 No m2

A ¼ 0

c2β ¼ 0 m2
11 ¼ m2

22
>0 R ≠ 1 Yes −1 < R ≤ 1þ 2m2

A=ðλv2Þ
s2β ¼ 0 m2

11 ≠ m2
22

0 R ≠ 1 Yes m2
H ¼ m2

A > 0

c2β ¼ 0 m2
11 ¼ m2

22
0 jRj < 1 Yes One massless scalar

s2β ¼ 0 m2
11 ¼ m2

22
0 R > 1 Yes m2

H ¼ m2
A > 0

s2βc2β ≠ 0 m2
11 ≠ m2

22
>0 R ¼ 1 Yes m2

H ¼ m2
A > 0

c2β ¼ 0 m2
11 ¼ m2

22
>0 R ¼ 1 Yes m2

H ¼ m2
A > 0

s2β ¼ 0 m2
11 ≠ m2

22
0 R ¼ 1 Yes m2

H ¼ m2
A > 0

m2
11 ¼ m2

22
0 R ¼ 1 Yes m2

H ¼ m2
A ¼ 0
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It is noteworthy that the tree-level Higgs scalar potential
of the MSSM exhibits a softly broken Uð1Þ ⊗ Π2 sym-
metry with m2

11 ≠ m2
22, m2

12 ≠ 0, s2β ≠ 0 and R ¼ −1
[22,78], corresponding to the first line of Table VIII.19

Of course, radiative corrections to the scalar potential of
the MSSM are significant [79] and yield an effective
2HDM scalar potential below the energy scale of super-
symmetry breaking that lies outside the domain of the
ERPS4 [80].

VII. THE GCP3 SCALAR FIELD BASIS

Consider a softly broken GCP3 symmetric scalar poten-
tial whose parameters (denoted with prime superscripts)
satisfy the following conditions: λ0≡λ01¼λ02¼λ03þλ04þλ05
and Imλ05 ¼ λ06 ¼ λ07 ¼ 0. The softly broken parameters
m02

11, m02
12 and m02

12 are arbitrary (with m02
12 potentially

complex). If we demand that the potential is bounded
from below, then

λ0 > 0; λ0 þ λ03 > 0; λ05 < λ0: ð7:1Þ

A. The softly broken GCP3 symmetric scalar
potential with v1 ≠ 0 and v2 ≠ 0

Assuming that v01 and v02 are both nonzero, Eqs. (2.8)–
(2.10) yield

m02
11 ¼ Reðm02

12e
iξ0 Þ tan β0 − 1

2
λ0v2 þ λ05v

2s2β0 sin
2 ξ0; ð7:2Þ

m02
22 ¼ Reðm02

12e
iξ0 Þ cot β0 − 1

2
λ0v2 þ λ05v

2c2β0 sin
2 ξ0; ð7:3Þ

Imðm02
12e

iξ0 Þ ¼ 1

2
λ05v

2sβ0cβ0 sin 2ξ0: ð7:4Þ

Equations (7.2)–(7.4) fix the value of β0 and ξ0. In
particular,

c2β0 ¼
m02

22 −m02
11

m02
11 þm02

22 þ λ0v2
; ð7:5Þ

cos ξ0 ¼ 2Rem02
12

s2β0 ðm02
11 þm02

22 þ λ0v2Þ ; ð7:6Þ

sin ξ0 ¼ −2Imm02
12

s2β0 ½m02
11 þm02

22 þ ðλ0 − λ05Þv2�
: ð7:7Þ

As noted below Eq. (5.6), inserting m02
12 ¼ jm02

12jeiθ
0
12 in

Eqs. (7.6) and (7.7) and imposing cos2 ξ0 þ sin2 ξ0 ¼ 1
yields an equation that determines the phase θ012 in terms of
ξ0 and the other GCP3 scalar potential parameters.
The corresponding parameters of the Higgs basis are

obtained by setting R ¼ 1 in Eqs. (5.14)–(5.19),

Y2¼
2Reðm02

12e
iξ0 Þ

s2β0
−
1

2
λ0v2þλ05v

2

�
1−

1

2
s2
2β0

�
sin2ξ0; ð7:8Þ

Z1 ¼ Z2 ¼ λ0 − λ05s
2
2β0 sin

2 ξ0; ð7:9Þ

Z3 ¼ λ03 þ λ05s
2
2β0 sin

2 ξ0; ð7:10Þ

Z4 ¼ λ04 þ λ05s
2
2β0 sin

2 ξ0; ð7:11Þ

Z5 ¼ λ05e
−2iξ0 ðcos ξ0 þ ic2β0 sin ξ0Þ2; ð7:12Þ

Z6¼−Z7¼ iλ05s2β0 sinξ
0e−iξ0 ðcosξ0þic2β0 sinξ0Þ: ð7:13Þ

The Higgs basis parameters Y1 and Y3 are fixed by the
potential minimum conditions given in Eq. (5.20). Note
that Eq. (6.13) is satisfied, as expected. In addition, in the
limit of λ05 ¼ 0, we recover the softly broken SO(3)-
symmetric scalar potential, where the conditions λ01 ¼ λ02 ¼
λ03 þ λ04 and λ05 ¼ λ06 ¼ λ07 ¼ 0 hold for all choices of the
scalar field basis.
One can check that CP is conserved in light of the

relation,

Z2
6 ¼ −λ05s22β0 sin

2 ξ0Z5; ð7:14Þ

which implies that ImðZ�
5Z

2
6Þ ¼ 0. Thus, there exists an

appropriate rephasing of theHiggs basis such thatZ5,Z6 and
Z7 are real. This is remarkable in light of the fact that λ5 is
real butm2

12 can be complex, which implies that one cannot
perform a simple rephasing of the scalar doublet fields in
the GCP3 basis to render all parameters real. In light of the
CP invariance of a softly broken GCP3-symmetric scalar
potential, it must be possible to find a residual generalized
CP transformation under which the scalar potential and the
vacuum in the GCP3 basis is left invariant. In Appendix C,
we provide an explicit construction of this residual gener-
alizedCP transformation. Of course, the existence of such a
transformation is a foregone conclusion given that the
existence of the residual CP symmetry in the Uð1Þ ⊗ Π2

basis can be established by inspection.
The scalar masses can now be evaluated. First, Eq. (5.21)

is still valid,

m2
H� ¼ Y2 þ

1

2
Z3v2

¼ 2Reðm02
12e

iξ0 Þ
s2β0

−
1

2
v2ðλ04 þ λ05 cos 2ξ

0Þ: ð7:15Þ

19Since R ¼ −1, the scalar potential stability conditions
require that m2

11 þm2
22 > 2jm2

12j as noted in footnote 16. More-
over, m2

11m
2
22 < jm2

12j2 in order to have electroweak symmetry
breaking [72], thereby excluding m2

11 ¼ m2
22.
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Next, consider the neutral scalar squared-mass matrix,
which is given by Eq. (5.22). Noting that the complex
number, cos ξ0 þ ic2β0 sin ξ0 appears in both Eqs. (7.12)
and (7.13), it is convenient to define the complex
phase ψ via

cos ξ0 þ ic2β0 sin ξ0 ¼ ð1 − s2
2β0 sin

2 ξ0Þ1=2eiψ : ð7:16Þ

In order to make use of Eq. (5.22), we must choose a value
for η. Following Eq. (5.8), we shall transform η ¼ −ξ
[which was employed in the Uð1Þ ⊗ Π2 basis] to the
GCP3 basis. The derivation is provided in Sec. VIII
[cf. Eqs. (8.58)–(8.60)] and instructs us to choose

η ¼ ψ − ξ0 −
1

2
π: ð7:17Þ

Inserting this result into Eq. (5.22), it then follows that

Z5 ¼ −λ05ð1 − s2
2β0 sin

2 ξ0Þe2iη; ð7:18Þ

Z6 ¼ −λ05s2β0 sin ξ0ð1 − s2
2β0 sin

2 ξ0Þ1=2eiη: ð7:19Þ

In particular, ImðZ5e−2iηÞ ¼ ImðZ6e−iηÞ ¼ 0. Thus, we can
immediately read off the squared mass of the CP-odd
neutral scale from Eq. (5.22),

m2
A ¼ Y2 þ

1

2
v2½Z3 þ Z4 − ReðZ5e−2iηÞ�

¼ 2Reðm02
12e

iξ0 Þ
s2β0

þ λ05v
2 sin2 ξ0; ð7:20Þ

where A ¼ φ3 ≡
ffiffiffi
2

p
ImH0

2. Combining the results of
Eqs. (7.2), (7.3) and (7.20) yields

m2
A ¼ m02

11 þm02
22 þ λ0v2: ð7:21Þ

In addition, Eqs. (7.15) and (7.20) yield

m2
H� ¼ m2

A −
1

2
ðλ04 þ λ05Þv2: ð7:22Þ

The squared masses of the CP-even neutral scalars, h
and H are the eigenvalues of the 2 × 2 matrix exhibited
below,20

M2
H ¼

�
Z1v2 −ImðZ6eiðξ

0−ψÞÞv2
−ImðZ6eiðξ

0−ψÞÞv2 m2
A − ReðZ5e2iðξ

0−ψÞÞv2
�

¼
 ðλ0 − λ05s

2
2β0 sin

2 ξ0Þv2 −λ05v2s2β0 sin ξ0ð1 − s2
2β0 sin

2 ξ0Þ1=2
−λ05v2s2β0 sin ξ0ð1 − s2

2β0 sin
2 ξ0Þ1=2 m2

A − λ05v
2ð1 − s2

2β0 sin
2 ξ0Þ

!
; ð7:23Þ

with respect to the fφ1;φ2g basis, where φ1 ≡
ffiffiffi
2

p
ReH0

1 − v and φ2 ≡
ffiffiffi
2

p
ReH0

2. The neutral CP-even scalar masses are
given by

m2
H;h ¼

1

2

n
m2

A þ ðλ0 − λ05Þv2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A − ðλ0 þ λ05Þv2�2 þ 4λ05v
2ðm2

A − λ0v2Þs2
2β0sin

2ξ0
q o

; ð7:24Þ

where mh ≤ mH, and

cβ−α¼
λ05v

2s2β0 sinξ0ð1−s2
2β0 sin

2ξ0Þ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H−m2
hÞ½m2

H−ðλ0−λ05s
2
2β0 sin

2ξ0Þv2�
q : ð7:25Þ

A stable minimum requires that the scalar squared
masses should be non-negative. This condition implies that

Reðm2
12e

iξ0 Þ þ 1

2
λ05v

2s2β sin2 ξ0 ≥ 0

and m2
A ≥

1

2
ðλ04 þ λ05Þv2: ð7:26Þ

In addition, we demand that

TrM2
H ¼ m2

A þ ðλ0 − λ05Þv2 ≥ 0; ð7:27Þ

1

v2
detM2

H ¼m2
Aðλ0− λ05s

2
2β0 sin

2 ξ0Þ− λ0λ05v
2ð1− s2

2β0 sin
2 ξ0Þ

≥ 0: ð7:28Þ

Since m2
A ≥ 0 by assumption, Eq. (7.27) is automatically

satisfied in light of Eq. (7.1). On the other hand, Eq. (7.28)
is satisfied if and only if

λ05 ≤ min
�
λ0;

λ0m2
A

λ0v2 þ s2
2β0sin

2ξ0ðm2
A − λ0v2Þ

�
: ð7:29Þ

One can fix the parameter space of the softly broken
GCP3 scalar potential by specifying the values of λ0, λ04, λ

0
5,

20The computation of the squared-mass matrix of the CP-even
neutral scalars starting from the Φ0-basis is much more difficult.
Details are provided in Appendix D.
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s2β0 sin ξ0, mA and v. In particular, once mA is fixed, we see
that β0 and ξ0 do not appear independently in any 2HDM
observable. By replacing λ with mh and λ4 with mH� , the
independent parameters of the softly broken GCP3 scalar
potential can be taken to be mh, mA, mH� , v, λ05 and
s2β0 sin ξ0. That is, just as in the case of the softly broken
Uð1Þ ⊗ Π2 scalar potential, the parameter space is fixed by
six real parameters.

B. The inert limit of the softly broken
GCP3-symmetric scalar potential

The inert limit of the softly broken GCP3-symmetric,
corresponding to Y3 ¼ Z6 ¼ Z7 ¼ 0, arises if either v1 ¼ 0
or v2 ¼ 0, but is more general. Indeed, Eq. (7.13) implies
that the inert limit requires that one of the following three
conditions, s2β0 sin ξ0 ¼ 0, c2β0 ¼ cos ξ0 ¼ 0, or λ05 ¼ 0, is
satisfied.

1. The softly broken GCP3-symmetric scalar potential
with one vanishing vev

The case where one of the vevs vanishes (i.e., s2β0 ¼ 0)
implies that m02

12 ¼ 0 in light of Eqs. (2.12) and (2.13).
Then, setting R ¼ 1 in Eqs. (5.26)–(5.29) yields

m2
h ¼ λ0v2; m2

H ¼ m2
A − λ05v

2;

m2
H� ¼ m2

A −
1

2
ðλ04 þ λ05Þv2; ð7:30Þ

where m2
A ¼ Y2 þ 1

2
λ0v2 and Y2 is a free parameter.

Likewise, if sin ξ0 ¼ 0, then Eqs. (7.20)–(7.23) also yield
Eq. (7.30), where m2

A ¼ 2jRem02
12j=s2β0 .21 That is, if

s2β0 sin ξ0 ¼ 0 then Eq. (7.30) is satisfied where

m2
A ¼

(2jRem02
12j

s2β0 ; if sinξ0 ¼ 0 and s2β0 ≠ 0;

Y2þ 1
2
λ0v2; if s2β0 ¼ 0:

ð7:31Þ

Note that if sin ξ0 ¼ 0, s2β0c2β0 ≠ 0 and m02
11 ≠ m02

22, then it
follows that Rem02

12 ≠ 0 in light of Eqs. (7.2)–(7.4).

2. The softly broken GCP3-symmetric scalar potential
with cos 2β0 = cos ξ0 = 0

Second, if c2β0 ¼ cos ξ0 ¼ 0, then it follows from
Eqs. (7.20)–(7.23) that

m2
h ¼ ðλ0 − λ05Þv2; m2

H ¼ m2
A ¼ �2Imm02

12 þ λ05v
2;

m2
H� ¼ m2

A −
1

2
ðλ04 þ λ05Þv2: ð7:32Þ

Using the results of Sec. VIII, this case corresponds to
s2β ¼ 0 in the Uð1Þ ⊗ Π2 basis. Then the choice of plus
(minus) sign in the expression for m2

H;A in Eq. (7.32)
corresponds to β ¼ 0 (β ¼ 1

2
π), respectively. Moreover,

recall that an unbroken GCP3 symmetry is equivalent to
Uð1Þ0 ⊗ Z2 (cf. Table VI). Although the Z2 symmetry is
explicitly broken (due to m02

12 ≠ 0), a residual Uð1Þ0
symmetry survives that is preserved by the vacuum if
c2β0 ¼ cos ξ0 ¼ 0 since

�
cos θ sin θ

− sin θ cos θ

��
1

�i

�
¼ e�iθ

�
1

�i

�
; ð7:33Þ

which results in the mass degeneracy of H and A.

3. Softly broken SO(3)-symmetric
scalar potential (λ05 = 0)

Third, if λ05 ¼ 0, then the softly broken GCP3 symmetry
is promoted to a softly broken SO(3) symmetry. In light
of Eqs. (7.2)–(7.4), it follows that if s2β0c2β0 ≠ 0 then
m02

11 ≠ m02
22 and Reðm02

12e
iξ0 Þ ≠ 0. We then obtain,

m2
h ¼ λ0v2; m2

H ¼ m2
A ¼ 2Reðm02

12e
iξ0 Þ

s2β0
;

m2
H� ¼ m2

A −
1

2
λ04v

2; ð7:34Þ

in agreement with Eq. (6.25), as expected. Using the
results of Sec. VIII, this case corresponds to R ¼ 1 in
the Uð1Þ ⊗ Π2 basis.

C. Scalar potential with an unbroken
GCP3 symmetry

Finally, if m02
11 ¼ m02

22 and m02
12 ¼ 0 then the GCP3

symmetry is explicitly preserved by the scalar potential.
In light of Eqs. (5.13) and (5.20) and the ERPS condition, it
follows that Y3 ¼ Z6 ¼ Z7 ¼ 0, corresponding to the inert
limit of the scalar potential. If both vevs are nonzero,
then it follows from Eqs. (7.2)–(7.4) that λ05c2β0 sin2 ξ0 ¼
λ05 sin ξ

0 cos ξ0 ¼ 0. Consequently, the GCP3 symmetry
limit arises in the following three distinct cases.
First, if λ05 ≠ 0 and sin ξ0 ¼ 0, then Eqs. (7.30) and (7.31)

yield

m2
h ¼ λ0v2; m2

H ¼ −λ05v2;

m2
A ¼ 0; m2

H� ¼ −
1

2
ðλ04 þ λ05Þv2; ð7:35Þ

which corresponds to a stable minimum if λ05 < 0 and
λ04 < −λ05. The GCP3 symmetry is spontaneously broken by
the vacuum, resulting in a massless scalar.
Second, if λ05 ≠ 0, c2β0 ¼ 0 and cos ξ0 ¼ 0, then

Eq. (7.32) yields

21If sin ξ0 ¼ 0 then Reðm02
12e

iξ0 Þ ¼ �Rem02
12 ¼ jRem02

12j after
choosing the sign that yields m2

A ≥ 0.
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m2
h ¼ ðλ0 − λ05Þv2; m2

H ¼ m2
A ¼ λ05v

2;

m2
H� ¼ 1

2
ðλ05 − λ04Þv2; ð7:36Þ

which corresponds to a stable minimum if 0 < λ05 < λ0 and
λ04 < λ05. The mass degeneracy of H and A is again a result
of a residual Uð1Þ0 symmetry that is preserved by the
vacuum.
Third, if λ05 ¼ 0, then the GCP3 symmetry of the scalar

potential is promoted to an SO(3) symmetry. In this case,

m2
h¼λ0v2; m2

H¼m2
A¼0; m2

H� ¼−
1

2
λ04v

2; ð7:37Þ

corresponding to a stable minimum if λ04 < 0. In particular,
the SO(3) symmetry is spontaneously broken down to U(1),
which yields two massless scalars H and A.
If only one of the two vevs is nonzero (i.e., s2β ¼ 0), then

Eqs. (2.12) and (2.13) yield m02
12 ¼ 0. Setting R ¼ 1 and

Y1 ¼ Y2 ¼ − 1
2
λ0v2 in Eqs. (5.26)–(5.29), we end up with

m2
h ¼ λ0v2; m2

H ¼ −λ05v2;

m2
A ¼ 0; m2

H� ¼ −
1

2
ðλ04 þ λ05Þv2; ð7:38Þ

which coincides with the mass spectrum given in
Eq. (7.35). If in addition we set λ05 ¼ 0, then we obtain
the mass spectrum of Eq. (7.37).

D. The landscape of ERPS4—Parts II(b) and II(c):
Scalar potential with a softly broken or unbroken

GCP3 or SO(3) symmetry

Tables IX and X provide summaries of the landscape of
possible scalar potentials in the subspace of the ERPS4
regime where the GCP3 or SO(3) symmetry of the
scalar potential is either softly broken (m02

11 ≠ m02
22 and/or

m02
12 ≠ 0) or unbroken (m02

11 ¼ m02
22 and m02

12 ¼ 0).
Using the results of Sec. VIII, one can check that each

entry of Tables IX and X can be matched up with a
corresponding entry of Table VIII (and vice versa).
The analysis presented in this section can be repeated for

the closely related GCP30 basis, where λ01¼λ02¼λ03þλ04−λ05
and Imλ05 ¼ λ06 ¼ λ07 ¼ 0. Details are left for the reader.

VIII. TRANSFORMING BETWEEN THE
Uð1Þ ⊗ Π2 BASIS AND GCP3 BASIS

In Ref. [41], it was shown that the Uð1Þ ⊗ Π2 and
GCP3-symmetric scalar potentials are in fact the same
scalar potential expressed in different scalar field bases.

TABLE IX. Landscape of the ERPS4—Part II(b): Scalar potentials of the 2HDM with either an unbroken or softly broken GCP3
symmetry that is manifestly realized in the Φ-basis. In all cases, λ≡ λ01 ¼ λ02 ¼ λ03 þ λ04 þ λ05, (with λ05 real and nonzero) and
λ06 ¼ λ07 ¼ 0, and CP is conserved by the scalar potential and vacuum. An exact Higgs alignment in the ERPS4 is realized in the inert
limit where Y3 ¼ Z6 ¼ Z7 ¼ 0.

β0 ξ0 m02
11, m

02
22 m02

12e
iξ0 Higgs alignment Comment

s2β0c2β0 ≠ 0 sin 2ξ0 ≠ 0 m02
11 ≠ m02

22
Complex No

s2β0c2β0 ≠ 0 cos ξ0 ¼ 0 m02
11 ≠ m02

22
Real No

c2β0 ¼ 0 sin 2ξ0 ≠ 0 m02
11 ¼ m02

22
Real (≠ 0) No

c2β0 ¼ 0 sin ξ0 ¼ 0 m02
11 ¼ m02

22
Real (≠ 0) Yes

c2β0 ¼ 0 cos ξ0 ¼ 0 m02
11 ¼ m02

22
Real (≠ 0) Yes m2

H ¼ m2
A > 0

s2β0c2β0 ≠ 0 sin ξ0 ¼ 0 m02
11 ≠ m02

22
Real (≠ 0) Yes

s2β0 ¼ 0 m02
11 ≠ m02

22
0 Yes

s2β0 ≠ 0 sin ξ0 ¼ 0 m02
11 ¼ m02

22
0 Yes One massless scalar

c2β0 ¼ 0 cos ξ0 ¼ 0 m02
11 ¼ m02

22
0 Yes m2

H ¼ m2
A > 0

s2β0 ¼ 0 m02
11 ¼ m02

22
0 Yes One massless scalar

TABLE X. Landscape of the ERPS4—Part II(c): Scalar potentials of the 2HDM with either an unbroken or softly broken SO(3)
symmetry that is manifestly realized in the Φ-basis. In all cases, λ≡ λ01 ¼ λ02 ¼ λ03 þ λ04 and λ

0
5 ¼ λ06 ¼ λ07 ¼ 0, and CP is conserved by

the scalar potential and vacuum. In all cases of an unbroken or softly broken SO(3) symmetric scalar potential, an exact Higgs alignment
is realized as a consequence of Y3 ¼ Z6 ¼ Z7 ¼ 0.

β0 m02
11, m

02
22 m02

12e
iξ0 Higgs alignment Comment

s2β0c2β0 ≠ 0 m02
11 ≠ m02

22
Real (≠ 0) Yes m2

H ¼ m2
A > 0

c2β0 ¼ 0 m02
11 ¼ m02

22
Real (≠ 0) Yes m2

H ¼ m2
A > 0

s2β0 ¼ 0 m02
11 ≠ m02

22
0 Yes m2

H ¼ m2
A > 0

m02
11 ¼ m02

22
0 Yes m2

H ¼ m2
A ¼ 0
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In this section, we extend this result to the softly broken
Uð1Þ ⊗ Π2 and GCP3-symmetric scalar potentials by
providing an explicit mapping between the corresponding
scalar potential parameters.
Consider the following unitary transformation:

U ¼ eiϕffiffiffi
2

p
�

1 −i
−i 1

�
; ð8:1Þ

where the phase ϕ is determined in Eq. (8.13). Starting
from the Uð1Þ ⊗ Π2 basis defined in Sec. VI, it then
follows that (independently of the choice of ϕ)

λ0 ¼ λ01 ¼ λ02 ¼
1

2
λð1þ RÞ; ð8:2Þ

λ03 ¼ λ3 þ
1

2
λð1 − RÞ; ð8:3Þ

λ04 ¼ λ4 þ
1

2
λð1 − RÞ; ð8:4Þ

λ05 ¼ −
1

2
λð1 − RÞ; ð8:5Þ

λ06 ¼ −λ07 ¼ 0; ð8:6Þ

where R≡ ðλ3 þ λ4Þ=λ. In particular, λ05 ¼ λ0 − λ03 − λ04 is
real and λ06 ¼ λ07 ¼ 0, corresponding to the GCP3 basis
defined in Sec. VII. In addition, the corresponding soft-
breaking squared mass parameters are

m02
11 ¼

1

2
ðm2

11 þm2
22Þ þ Imm2

12; ð8:7Þ

m02
22 ¼

1

2
ðm2

11 þm2
22Þ − Imm2

12; ð8:8Þ

m02
12 ¼ Rem2

12 þ
1

2
iðm2

22 −m2
11Þ: ð8:9Þ

Finally, the vevs in the GCP3 basis are given by

v01 ¼
eiϕffiffiffi
2

p ðv1 − iv2eiξÞ;

v02e
iξ0 ¼ −eiϕ

iffiffiffi
2

p ðv1 þ iv2eiξÞ; ð8:10Þ

where v01 ≡ vcβ0 and v02 ≡ vsβ0 are real and positive. Hence,

cβ0 ¼
1ffiffiffi
2

p ð1þ s2β sin ξÞ1=2;

sβ0 ¼
1ffiffiffi
2

p ð1 − s2β sin ξÞ1=2; ð8:11Þ

and it immediately follows that

s2
2β0 ¼ 1 − s22β sin

2 ξ: ð8:12Þ

By convention, 0 ≤ β0 ≤ 1
2
π (or equivalently, sin 2β0 ≥ 0).

The phase ϕ is determined by the positivity of v01. Hence,
it follows that

eiϕ ¼ cβ þ isβe−iξ

ð1þ s2β sin ξÞ1=2
: ð8:13Þ

Then, Eq. (8.10) yields

eiξ
0
sβ0 ¼ −

iffiffiffi
2

p c2β þ is2β cos ξ

ð1þ s2β sin ξÞ1=2
: ð8:14Þ

Likewise, the relative phase ξ0 is given by

eiξ
0 ¼ s2β cos ξ − ic2β

ð1 − s22β sin
2 ξÞ1=2 : ð8:15Þ

That is,

sin ξ0 ¼ −c2β
ð1 − s22β sin

2 ξÞ1=2 ;

cos ξ0 ¼ s2β cos ξ

ð1 − s22β sin
2 ξÞ1=2 : ð8:16Þ

Consequently, Eqs. (8.12) and (8.16) yield

s2β0 sin ξ0 ¼ −c2β: ð8:17Þ

Finally, if β ¼ 1
4
π and sin ξ ¼ �1, then one of the vevs

vanishes. It then follows that s2β0 ¼ 0, in which case ξ0 is
indeterminate if sβ0 ¼ 0 and ξ0 ¼ 0 if cβ0 ¼ 0.
Using Eqs. (8.9), (8.12) and (8.15), it is instructive to

note that

2Reðm02
12e

iξ0 Þ
s2β0

¼2Reðm2
12Þs2βcosξþc2βðm2

22−m2
11Þ

1−s22β sin
2ξ

: ð8:18Þ

In light of Eq. (6.4), it follows that

Rem2
12 ¼ Reðm2

12e
iξÞ cos ξþ Imðm2

12e
iξÞ sin ξ

¼ Reðm2
12e

iξÞ cos ξ: ð8:19Þ

Hence, after using Eqs. (6.2) and (6.3) for m2
22 −m2

11

and Eq. (8.19) for Rem2
12, it then follows that Eq. (8.18)

yields

2Reðm02
12e

iξ0 Þ
s2β0

¼ 2Reðm2
12e

iξÞ
s2β

þ λv2ð1 − RÞc22β
2ð1 − s22β sin

2 ξÞ : ð8:20Þ

In particular, Eq. (7.20) yields
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m2
A ¼

2Reðm02
12e

iξ0 Þ
s2β0

þ λ05v
2 sin2 ξ0 ¼ 2Reðm2

12e
iξÞ

s2β
; ð8:21Þ

after employing Eqs. (8.5) and (8.16). Comparing with
Eq. (6.14), we see that one obtains the same result form2

A in
the GCP3 basis and the Uð1Þ ⊗ Π2 basis respectively, as
required. Note that the same conclusion can be drawn by
plugging the results of Eqs. (8.2), (8.7) and (8.8) into
Eq. (7.21), which reproduces the result of Eq. (6.15).
For completeness, we check that the scalar mass spec-

trum derived from the softly broken Uð1Þ ⊗ Π2 and GCP3-
symmetric scalar potentials coincide, as required. Plugging
in the results of Eqs. (8.4) and (8.5) into Eq. (7.22)
reproduces the result of Eq. (6.16) for m2

H�. To check
the squared masses of the neutral CP-even scalars, we plug
the results of Eqs. (8.2) and (8.5) into Eq. (7.27), which
reproduces the result of Eq. (6.21). Finally, we plug in the
results of Eqs. (8.2), (8.5) and (8.17) into Eq. (7.28), which
reproduces the result of Eq. (6.22).
As a final check of our computations, one can verify that

the invariant quantities, Y2, Z1;…; Z4, jZ5j, jZ6j and Z�
5Z

2
6

are independent of the choice of basis. For example,
starting from the GCP3 basis,

Z�
5Z

2
6 ¼ −λ05s22β0 sin

2 ξ0jZ5j2
¼ −λ035 s

2
2β0 sin

2 ξ0ð1 − s2
2β0 sin

2 ξ0Þ2

¼ 1

8
λ3ð1 − RÞ3c22βs42β; ð8:22Þ

in agreement with Eqs. (6.10) and (6.11). One can also
check that all the other invariants yield the same values in
the GCP3 and Uð1Þ ⊗ Π2 bases.
Given a softly broken Uð1Þ ⊗ Π2-symmetric scalar

potential that is displayed in the Uð1Þ ⊗ Π2 basis where
the softly broken symmetry is manifestly realized, it may
turn out that the scalar potential is invariant under some
discrete or continuous subgroup of Uð1Þ ⊗ Π2. It is of
interest to determine implications of this invariance for the
scalar potential parameters when expressed in the GCP3
basis. We proceed by assuming that the scalar potential,
which is specified in Eq. (C1) in terms of squared mass
parameters Yab̄ and dimensionless parameters Zab;cd

[defined in Eq. (C4)], is invariant under the transformation,

Φa → Xab̄Φb; Φ†
ā → Φ†

b̄
X†
bā: ð8:23Þ

That is [cf. Eqs. (C7) and (C8)],

Y ¼ XYX†; Z ¼ ðX ⊗ XÞZðX† ⊗ X†Þ: ð8:24Þ

Consider a change of scalar field basis specified by U
[e.g., U specified in Eq. (8.1) transforms the Uð1Þ ⊗ Π2

basis into the GCP3 basis]. In light of Eqs. (C7) and (C8),
Y 0 ¼ UYU† yields the squared mass parameters in the new

basis, and Z0 ¼ ðU ⊗ UÞZðU† ⊗ U†Þ yields the dimen-
sionless parameters in the new basis. In the new basis, the
symmetry transformation matrix X will be denoted by X0.
That is, Y 0 ¼ X0Y 0X0†, since the parameters in the new basis
are invariant with respect to the transformations induced by
X0. It then follows that UYU† ¼ X0ðUYU†ÞX0†, which
yields

Y ¼ ðU†X0UÞYðU†X0UÞ†: ð8:25Þ

Comparing this result with Eq. (8.24), we can conclude that

X0 ¼ eiζUXU†; ð8:26Þ

where the complex phase factor eiζ is arbitrary and can be
chosen for convenience as it corresponds to an additional
hypercharge Uð1ÞY transformation, which has no effect on
the scalar potential parameters. One can now check that
Z0 ¼ ðX0 ⊗ X0ÞZ0ðX0† ⊗ X0†Þ by inserting Eq. (8.26) for X0
and evaluating the products and Hermitian conjugates
according to Eqs. (C10) and (C11).
We shall now employ Eq. (8.26) in several examples.

First, suppose that the softly broken Uð1Þ ⊗ Π2-symmetric
scalar potential is invariant with respect to Z2. Using
Table I, it follows that X ¼ ð1

0
0
−1Þ. Hence, when trans-

formed to the GCP3 basis using U specified in Eq. (8.1),
and choosing eiζ ¼ −i, it follows that

X0 ¼
�

0 1

−1 0

�
; ð8:27Þ

which corresponds to the Π0
2 symmetry defined in Table IV.

This is easily checked using Eqs. (8.7)–(8.9). In particular,
if Imm2

12 ¼ 0 and m2
11 ≠ m2

22, then it follows that m02
11 ¼

m02
22 and Rem02

12 ¼ 0 (cf. Table VI).
Second, suppose that the softly broken Uð1Þ ⊗ Π2-

symmetric scalar potential is invariant with respect to
Π2. Using Table I, it follows that X ¼ ð0

1
1
0
Þ. Hence, when

transformed to the GCP3 basis using U specified in
Eq. (8.1), and choosing eiζ ¼ 1, it follows that X0 ¼ X.
That is, the scalar potential in the GCP3 basis also
exhibits a Π2 symmetry. This is easily checked using
Eqs. (8.7)–(8.9). Namely, if m2

11 ¼ m2
22 and Imm2

12 ¼ 0

(cf. Table III), then the same relations also hold for the
primed parameters.
Third, suppose that the softly broken Uð1Þ ⊗ Π2-

symmetric scalar potential is invariant with respect to
U(1). Using Table I, it follows that X ¼ ðe−iθ

0
0
eiθÞ, where

− 1
2
π < θ ≤ 1

2
π. Transforming to the GCP3 basis using U

given in Eq. (8.1), and choosing eiζ ¼ 1, we obtain

X0 ¼
�

cos θ sin θ

− sin θ cos θ

�
; for −

1

2
π < θ ≤

1

2
π; ð8:28Þ
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which defines the Uð1Þ0 symmetry transformation. In
particular, if λ1 ¼ λ2 and m2

12 ¼ λ5 ¼ λ6 ¼ λ7 ¼ 0 then
Eqs. (8.2)–(8.9) yield, m02

11 ¼ m02
22, Rem02

12 ¼ 0, λ05 ¼
λ0 − λ03 − λ04 is real and λ06 ¼ λ07 ¼ 0, which are the con-
straints due to Uð1Þ0 as indicated in Table VI.
As our final example, we reconsider the residual unbro-

ken symmetry in the case of a softly broken Uð1Þ ⊗ Π2-
symmetric scalar potential when c2β ¼ 0. Below Eq. (6.26),
we noted that in this limiting case, after performing a
rephasing to set ξ ¼ 0, the residual symmetry of the scalar
potential and vacuum was Π2. However, in this example,
we shall keep ξ arbitrary. In order to accommodate ξ ≠ 0
we define a new discrete symmetry,

ΠðαÞ
2 ∶ Φ1 → e−iαΦ2; Φ2 → eiαΦ1;

where α is a fixed real parameter: ð8:29Þ

Note that when ΠðαÞ
2 is applied twice, one obtains the

identity. This means that for any fixed value of α, the ΠðαÞ
2

symmetry is equivalent to a Z2 symmetry that is manifestly
realized in a different scalar field basis.
Of course, for α ¼ 0, we regain the Π2 symmetry.

Moreover, up to an overall hypercharge Uð1ÞY transforma-
tion, the Π0

2 symmetry corresponds to α ¼ 1
2
π. If the scalar

potential in the Φ-basis is invariant under ΠðαÞ
2 , then it

follows that

m2
11 ¼ m2

22; Imðm2
12e

iαÞ ¼ 0; λ1 ¼ λ2;

Imðλ5e2iαÞ ¼ 0; λ7 ¼ λ�6e
−2iα: ð8:30Þ

In light of Eq. (6.4), it follows that for c2β ¼ 0, the residual
symmetry of the softly broken Uð1Þ ⊗ Π2-symmetric

scalar potential and vacuum is ΠðξÞ
2 (for any fixed value

of ξ).
Suppose that the ΠðαÞ

2 symmetry is unbroken by the
scalar potential in the Uð1Þ ⊗ Π2 basis. Then, we can
deduce the corresponding symmetry in the GCP3 basis. In
this example, X ¼ ð 0

e−iα
eiα
0
Þ, where α is a fixed real param-

eter. Hence, when transformed to the GCP3 basis using U
specified in Eq. (8.1), and choosing eiζ ¼ 1, it follows that

X0 ¼
�
sin α cos α

cos α − sin α

�
; for a fixed real value of α:

ð8:31Þ

Without loss of generality, we may take − 1
2
π < α ≤ 1

2
π

[since α → αþ π yields a hypercharge Uð1ÞY transforma-
tion]. We shall denote this symmetry by

Π̄ðαÞ
2 ∶ Φ1 → Φ1 sin αþΦ2 cos α;

Φ2 → Φ1 cos α −Φ2 sin α: ð8:32Þ

Note that for α ¼ 0 [α ¼ 1
2
π], the Π̄ðαÞ

2 symmetry coincides

with Π2 [Z2]. That is, Π̄ðαÞ
2 provides an interpolation

from the Π2 to the Z2 symmetry.
Imposing the Π̄ðαÞ

2 symmetry on the parameters of the
scalar potential in theΦ-basis for a fixed value of α ≠ 0, 1

2
π,

it follows that

Imm2
12 ¼ Im λ5 ¼ Im λ6 ¼ Im λ7 ¼ 0; ð8:33Þ

m2
22 −m2

11 ¼ 2 tan αRem2
12; ð8:34Þ

λ1 − λ2 ¼ 2 tan αReðλ6 þ λ7Þ; ð8:35Þ

λ1þλ2−2ðλ3þλ4þReλ5Þ¼4 cot2αReðλ6−λ7Þ: ð8:36Þ

Applying the above results to the softly broken
GCP3-symmetric scalar potential, we set λ0 ≡ λ01 ¼ λ02 ¼
λ03 þ λ04 þ λ05 and Imλ05 ¼ λ06 ¼ λ07 ¼ 0. Note that
Eqs. (8.33)–(8.36) are consistent with these constraints.
In addition, the softly broken GCP3-symmetric scalar

potential preserves the Π̄ðαÞ
2 symmetry in two cases: (i) if

m02
12 is real and nonzero then m02

11 ≠ m02
22 [in which case,

α is determined from Eq. (8.34)]; or (ii) if m02
12 ¼ 0 then

m02
11 ¼ m02

22 (in which case Π̄
ðαÞ
2 , which is a symmetry of the

scalar potential for all values of α, is promoted to an
unbroken GCP3 symmetry).
For example, in the inert limit of the softly broken

GCP3-symmetric scalar potential, where s2β0c2β0 ≠ 0,
sin ξ0 ¼ 0, m02

11 ≠ m02
22 and m02

12e
iξ0 is real [See Table IX],

we see that the conditions for the Π̄ðαÞ
2 symmetry are

satisfied. Moreover, one can show that the Π̄ðαÞ
2 symmetry is

unbroken by the vacuum as follows. Using Eqs. (7.2)–(7.4)
under the assumption that sin ξ0 ¼ 0, it follows that
m02

12e
iξ0 ¼ m02

12 cos ξ
0 ¼ �m02

12 is real (where � corresponds
to ξ0 ¼ 0 or ξ0 ¼ π, respectively), and

m02
22 −m02

11 ¼ � 2m02
12c2β0

s2β0
: ð8:37Þ

Hence, Eq. (8.34) yields tan α ¼ � cot 2β0. In the con-
vention where − 1

2
π < α ≤ 1

2
π and 0 ≤ β0 ≤ 1

2
π, it follows

that sinα ¼ � cos 2β0 and cos α ¼ sin 2β0, or equivalently

α ¼ �
�
1

2
π − 2β0

�
: ð8:38Þ

The Π̄ðαÞ
2 symmetry is unbroken by the vacuum if

X0
�

v01
v02e

iξ0

�
¼ �

�
v01

v02e
iξ0

�
; ð8:39Þ
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where the � sign reflects the fact that fhΦ0
1i; hΦ0

2ig is
equivalent to f−hΦ0

1i;−hΦ0
2ig, as the two are related by a

hypercharge Uð1ÞY transformation. After using the value of
α obtained in Eq. (8.38) to determine X0 [cf. Eq. (8.31)], it
follows that the Π̄ðαÞ

2 symmetry is unbroken by the vacuum
since the following equation is an identity:

��c2β0 s2β0

s2β0 ∓c2β0

��
cβ0

�sβ0

�
¼ �

�
cβ0

�sβ0

�
: ð8:40Þ

Consequently, one can conclude that the Π̄ðαÞ
2 symmetry is

responsible for the inert limit (and the attendant exact Higgs
alignment) in this case.
In some applications, it is useful to invert the relations

obtained in Eqs. (8.2)–(8.9). This can be achieved by
starting from the GCP3 basis and employing the unitary
transformation

U−1 ¼ e−iϕffiffiffi
2

p
�
1 i

i 1

�
: ð8:41Þ

The resulting Uð1Þ ⊗ Π2 basis parameters are

λ ¼ λ0 − λ05; ð8:42Þ

λ3 ¼ λ03 þ λ05; ð8:43Þ

λ4 ¼ λ04 þ λ05; ð8:44Þ

λR ¼ λ0 þ λ05; ð8:45Þ

λ5 ¼ λ6 ¼ λ7 ¼ 0: ð8:46Þ

In addition, the corresponding soft-breaking squared mass
parameters are

m2
11 ¼

1

2
ðm02

11 þm02
22Þ − Imm02

12; ð8:47Þ

m2
22 ¼

1

2
ðm02

11 þm02
22Þ þ Imm02

12; ð8:48Þ

m2
12 ¼ Rem02

12 −
1

2
iðm02

22 −m02
11Þ: ð8:49Þ

Finally, the vevs in the Uð1Þ ⊗ Π2 basis are given by

v1 ¼
e−iϕffiffiffi
2

p ðv01 þ iv02e
iξ0 Þ;

v2eiξ ¼ e−iϕ
iffiffiffi
2

p ðv01 − iv02e
iξ0 Þ; ð8:50Þ

where v1 and v2 are real and positive. Hence,

cβ ¼
1ffiffiffi
2

p ð1 − s2β0 sin ξ0Þ1=2;

sβ ¼
1ffiffiffi
2

p ð1þ s2β0 sin ξ0Þ1=2; ð8:51Þ

and it immediately follows that

s22β ¼ 1 − s2
2β0 sin

2 ξ0: ð8:52Þ

By convention, 0 ≤ β ≤ 1
2
π (or equivalently, sin 2β ≥ 0).

The phase ϕ is again fixed by the positivity of v1, which
yields

e−iϕ ¼ cβ0 − isβ0e−iξ
0

ð1 − s2β0 sin ξ0Þ1=2 ; ð8:53Þ

and is consistent with Eq. (8.13) after employing
Eqs. (8.51) and (8.55). Then, Eq. (8.50) yields

eiξsβ ¼
iffiffiffi
2

p c2β0 − is2β0 cos ξ0

ð1 − s2β0 sin ξ0Þ1=2
: ð8:54Þ

Likewise, ξ is given by

eiξ ¼ s2β0 cos ξ0 þ ic2β0

ð1 − s2
2β0 sin

2 ξ0Þ1=2 : ð8:55Þ

That is,

sin ξ ¼ c2β0

ð1 − s2
2β0 sin

2ξ0Þ1=2 ;

cos ξ ¼ s2β0 cos ξ0

ð1 − s2
2β0 sin

2 ξ0Þ1=2 : ð8:56Þ

Hence Eqs. (8.52) and (8.56) yield

s2β sin ξ ¼ c2β0 : ð8:57Þ

Once the Uð1Þ ⊗ Π2 basis parameters have been derived,
one can perform one further rephasing to remove the
phase ξ (which is unphysical). Finally, if β0 ¼ 1

4
π and

sin ξ0 ¼ �1, then one of the vevs vanishes. It then follows
that s2β ¼ 0, in which case ξ is indeterminate if sβ ¼ 0 and
ξ ¼ 0 if cβ ¼ 0.
The scalar masses obtained in the Uð1Þ ⊗ Π2 basis and

the GCP3 basis were derived by applying Eq. (5.22). In
employing this equation, a specific value of η was chosen.
The eigenvalues of M2 are independent of this choice.
However, the identification of H and A depend on this
choice in the inert limit. For a consistent treatment of the
two basis choices, one should also transform η when
changing the scalar field basis according to Eq. (5.8). In
particular, given the choice of η ¼ −ξ that was employed in
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the Uð1Þ ⊗ Π2 basis, the corresponding η0 in the GCP3
basis is given by

e−iη
0 ¼ ðdetUÞe−iη ¼ e2iϕ eiξ

¼ ðcβ0 þ isβ0eiξ
0 Þ2ðs2β0 cos ξ0 þ ic2β0 Þ

ð1 − s2β0 sin ξ0Þð1 − s2
2β0 sin

2 ξ0Þ1=2 ; ð8:58Þ

after employing Eq. (8.1) to obtain detU ¼ e2iϕ and
making use of Eqs. (8.53) and (8.55).
The numerator of Eq. (8.58) can be simplified with a

little algebra,

ðcβ0 þ isβ0eiξ
0 Þ2ðs2β0 cos ξ0 þ ic2β0 Þ

¼ eiξ
0 ½c2β0 cos ξ0 þ iðs2β0 − sin ξ0Þ�ðs2β0 cos ξ0 þ ic2β0 Þ

¼ eiξ
0 ðc2β0 sin ξ0 þ i cos ξ0Þð1 − s2β0 sin ξ0Þ:

¼ ieiðξ0−ψÞð1 − s2β0 sin ξ0Þð1 − s2
2β0 sin

2 ξ0Þ1=2; ð8:59Þ

where we have used Eq. (7.16) in the final step. Inserting
this result back into Eq. (8.58) yields

η0 ¼ ψ − ξ0 −
1

2
π; ð8:60Þ

which justifies the choice of η that was employed in
Eq. (7.17). Note that if s2β0 ¼ 0, then one of the two vevs
in the GCP3 basis vanishes. If c2β0 ¼ 1, then Eq. (7.16)
yields ψ ¼ ξ0 and we conclude that η0 ¼ − 1

2
π. If c2β0 ¼ −1,

then ψ ¼ ξ0 ¼ 0 (since in this case hΦ0
2i ¼ v=

ffiffiffi
2

p
is real

and positive) and we again find that η0 ¼ − 1
2
π. That is,

e−2iη
0 ¼ −1, which is the motivation for the choice of η

employed in obtaining Eqs. (5.26)–(5.29).22
For a satisfying check of Eq. (8.60), one can compute the

value of Z5 in the GCP3 basis starting from its value in the
Uð1Þ ⊗ Π2 basis given in Eq. (6.10). In performing this
computation, one must remember to rephase Z5 as indi-
cated in Eq. (5.10). After making use of Eqs. (8.42), (8.45),
(8.60) and (7.16), it then follows that

Z5 ¼
1

2
λs22βð1 − RÞe−2iξe−4iϕ

¼ −λ05ð1 − s2
2β0sin

2ξ0Þe2iη0

¼ λ05e
−2iξ0 ð1 − s2

2β0sin
2ξ0Þe2iψ

¼ λ05e
−2iξ0 ðcos ξ0 þ ic2β0 sin ξ0Þ2; ð8:61Þ

in agreement with Eq. (7.12).
Although cases in which one of the two vevs vanish

appear to be isolated from the parameter regimes in which

both vevs are nonvanishing, in fact the two parameter
regimes can be regarded as being continuously connected.
For example, starting from the GCP3 basis, the parameter
regime in which one of the two vevs vanishes (i.e., s2β0 ¼ 0)
implies that m02

12 ¼ 0 due to Eqs. (2.12) and (2.13).23 In
light of Eq. (8.9), it follows that in terms of the Uð1Þ ⊗ Π2

basis parameters, Rem2
12 ¼ 0 and m2

11 ¼ m2
22, but in gen-

eral Imm2
12 ≠ 0. Moreover, Eq. (6.5) then yields β ¼ 1

4
π. As

expected, this parameter regime can be identified as the
inert limit, independently of the basis choice. Nevertheless,
it is clear that β ¼ 1

4
π is continuously connected to other

regions of the parameter space in the Uð1Þ ⊗ Π2 basis.
Similarly, the case of one vanishing vev in the Uð1Þ ⊗ Π2

basis corresponds to s2β0 sin ξ ¼ �1, which implies that
β0 ¼ 1

4
π in the GCP3 basis. Finally, the inert limit in the

Uð1Þ ⊗ Π2 basis when R ¼ 1 corresponds to the inert limit
in the GCP3 basis when λ05 ¼ 0.

IX. THE HIGGS ALIGNMENT LIMIT

The neutral scalar squared-mass matrix, M2, given in
Eq. (5.22) is expressed with respect to a basis of neutral
scalar interaction eigenstates, f ffiffiffi

2
p

ReH0
1−v, ReH0

2; ImH0
2g,

where H0
1 and H0

2 are the neutral components of the Higgs
basis fields. The neutral scalar interaction eigenstate,
φ1 ≡

ffiffiffi
2

p
ReH0

1 − v, possesses tree-level couplings to SM
particles that coincide precisely with those of the SM Higgs
boson. Consequently, if the mixing of φ1 with ReH0

2 and
ImH0

2 were to vanish exactly, then φ1 would be a mass
eigenstatewith tree-level properties that are indistinguishable
from those of the SMHiggs boson. In this case, the direction
ofφ1 in field space is exactly alignedwith the direction of the
vacuum expectation value v. Hence, the limit of zero mixing
described above is called the Higgs alignment limit [42–47].
In light of Eq. (5.22), it follows that the Higgs alignment

is realized exactly if and only if Z6 ¼ 0, in which case we
can identifym2

φ1
¼ Z1v2. In this limit, the masses of the two

other neutral scalars are not immediately constrained
(beyond experimental bounds based on the absence of
any newly discovered scalar states at the LHC). Although
the observed Higgs boson at the LHC is SM-like, the
precision of the current data allows for 10%–20% devia-
tions from SM behavior of the Higgs boson couplings to
vector bosons and third generation quarks and charged
leptons [3–6]. Thus, the present Higgs data requires only an
approximate Higgs alignment, which allows for a small
mixing of φ1 with the other two neutral scalar interaction
eigenstates. This small mixing can be achieved in one

22If s2β ¼ 0 in the Uð1Þ ⊗ Π2 basis then Z5 ¼ 0, in which case
mH ¼ mA and the results of Eqs. (5.26)–(5.29) do not depend on
the choice of η.

23Note that it follows that the ratio Reðm02
12e

iξ0 Þ=s2β0 that
appears in Eq. (7.20) is indeterminate, in which case it can be
replaced by m2

A − λ05v
2 sin2 ξ0, with m2

A being regarded as a free
parameter.
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of two ways—either jZ6j ≪ 1 or Y2 ≫ v2. The latter
corresponds to the decoupling limit of the 2HDM [42,81].
For example, if CP is conserved then the squared-mass

matrix, M2, of the neutral scalars, expressed with respect
to Higgs basis fields, breaks up into a 2 × 2 block and a
1 × 1 block,

M2 ¼

0
B@

Z1v2 Z6v2 0

Z6v2 m2
A þ Z5v2 0

0 0 m2
A

1
CA: ð9:1Þ

Once again, we see that Z6 ¼ 0 corresponds to exact Higgs
alignment, whereas approximate Higgs alignment is real-
ized when jZ6j ≪ 1 and/or mA ≫ v.
Diagonalizing the 2 × 2 block yields the CP-even Higgs

mass eigenstates H and h,

�
H

h

�
¼
�
cβ−α −sβ−α
sβ−α cβ−α

�� ffiffiffi
2

p
ReH0

1 − vffiffiffi
2

p
ReH0

2

�
; ð9:2Þ

where mh ≤ mH, cβ−α ≡ cosðβ − αÞ and sβ−α ≡ sinðβ − αÞ
in a convention where 0 ≤ β − α ≤ π. In a realΦ-basis with
real non-negative vevs, hΦ0

ai ¼ va=
ffiffiffi
2

p
(a ¼ 1, 2), tan β ¼

v2=v1 and α is the mixing angle that diagonalizes the
CP-even Higgs squared-mass matrix when expressed
with respect to the f ffiffiffi

2
p

ReΦ0
1 − v1;

ffiffiffi
2

p
ReΦ0

2 − v2g basis.
Nevertheless, the quantity sβ−α is independent of the choice
of the scalar field basis.
After diagonalizing the matrixM2

H, the neutral CP-even
scalar masses are given by

m2
H;h ¼

1

2

n
m2

A þ ðZ1 þ Z5Þv2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A − ðZ1 − Z5Þv2�2 þ jZ6j2v4
q o

; ð9:3Þ

where mh ≤ mH, and

sβ−αcβ−α ¼
−Z6v2

m2
H −m2

h

;

c2β−α − s2β−α ¼
m2

A − ðZ1 − Z5Þv2
m2

H −m2
h

: ð9:4Þ

We shall henceforth assume that h ≃
ffiffiffi
2

p
ReH0

1 − v is
SM-like and thus should be identified with the observed
Higgs boson with mh ≃ 125 GeV. Under this assumption,
it follows from Eq. (9.2) that cβ−α → 0 in the Higgs
alignment limit. Indeed, one can use Eq. (9.4) to
derive [82,83]

cβ−α ¼
−Z6v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
H −m2

hÞðm2
H − Z1v2Þ

p ð9:5Þ

in a convention where sβ−α ≥ 0. Having identified h as
SM-like, it follows that m2

H > Z1v2, which confirms that
cβ−α → 0 in the Higgs alignment limit.24

One can now ask the following question—is there a
symmetry that can be imposed on the 2HDM scalar
potential such that the Higgs alignment limit is exact,
corresponding to the condition that Z6 ¼ 0. In fact, it is
straightforward to identify the complete list of all possible
symmetries that enforce the Z6 ¼ 0 condition in the 2HDM
by noting that the scalar potential minimum condition
[cf. Eq. (5.20)] would then imply that Y3 ¼ 0. Thus, in light
of Eq. (5.13), the Higgs alignment limit is exact if

Y3¼
�
1

2
ðm2

22−m2
11Þs2β−Reðm2

12e
iξÞc2β−iImðm2

12e
iξÞ
�
e−iξ

¼0: ð9:6Þ

A sufficient (but not necessary) condition for satisfying
Eq. (9.6) can be obtained by settingm2

12 ¼ 0, in which case
either s2β ¼ 0 or m2

11 ¼ m2
22.

If s2β ¼ 0, then the Z2 symmetry is unbroken by the
vacuum. This corresponds to the IDM, where an unbroken
Z2 symmetry is present in the Higgs basis, which implies
that Y3 ¼ Z6 ¼ Z7 ¼ 0. In the IDM, the Higgs basis field
H2 is odd under the Z2 symmetry, whereas H1 along with
all other SM fields are Z2-even. If in addition, one imposes
the condition Z5 ¼ 0, then the IDM scalar potential
will exhibit an unbroken U(1) symmetry that is preserved
by the vacuum (resulting in a mass-degenerate pair of inert
neutral scalars, mH ¼ mA). In both cases, one can identify
φ1 ¼

ffiffiffi
2

p
ReH0

1 − v as the SM Higgs boson at tree level.
Deviations of the properties of φ1 from that of the SM
Higgs boson can arise due to the other Higgs fields (beyond
φ1) contributing to radiative loop corrections to physical
observables (e.g., the charged Higgs boson loop that
contributes to φ1 → γγ decay).
Note that ifm2

11 ¼ m2
22 andm

2
12 ≠ 0 then one can achieve

Y3 ¼ 0 by simultaneously imposing a Π2 symmetry and a
GCP1 symmetry in the Φ-basis. Consulting Table III, these
symmetries taken together yield the following constraints
on the scalar potential:

m2
11¼m2

22; m2
12;λ5∈R; λ1¼ λ2; λ6¼ λ7∈R: ð9:7Þ

24If H were SM-like (with mH ≥ mh) then m2
H → Z1v2 in the

Higgs alignment limit, in which case Eq. (9.5) would not be very
useful. Indeed, in this case sβ−α → 0 in the Higgs alignment limit,
and a more useful formula to replace Eq. (9.5) would be sβ−α ¼
−Z6v2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞðZ1v2 −m2

hÞ
p

in an alternative convention
where cβ−α ≥ 0 [84]. However, in the conventions adopted in this
paper h is always SM-like in the Higgs alignment limit in light of
Eq. (5.30), irrespective of the mass ordering of h and H.
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Such a scalar potential does not lie within the ERPS4. One
can now determine the scalar potential minimum conditions
[see Eq. (E3) of Ref. [37] ], which yield

c2β ¼ 0 and sin ξ ¼ 0: ð9:8Þ

Hence, a scalar potential whose parameters satisfy
Eqs. (9.7) and (9.8) yields Y3 ¼ 0 [cf. Eq. (9.6)], corre-
sponding to an exact Higgs alignment [85]. Moreover,
Eqs. (E1)–(E6) are satisfied after employing Eqs. (9.7) and
(9.8), which implies that Y3 ¼ Z6 ¼ Z7 ¼ 0. That is, the
scalar potential parameters of Eq. (9.7) corresponds to the
IDM in a particular scalar field basis. Indeed, one can adopt
a definition of the IDM scalar potential as corresponding to
the existence of a scalar field basis in which the Π2 and
GCP1 symmetries are both manifestly preserved by the
2HDM scalar potential and vacuum.
If s2β ≠ 0 then Eq. (9.6) is automatically satisfied if

m2
12 ¼ 0 andm2

11 ¼ m2
22. Consulting the results of Table III,

it follows that exact Higgs alignment is automatically
implemented if the 2HDM scalar potential respects one
of the following symmetries: Z2 ⊗ Π2, Uð1Þ ⊗ Π2, SO(3),
GCP2, or GCP3. Of course, given that GCP2 is equivalent
to Z2 ⊗ Π2 in a different scalar field basis and GCP3 is
equivalent to Uð1Þ ⊗ Π2 in a different scalar field basis, it
follows that there are three inequivalent symmetries of the
2HDM scalar potential beyond the IDM that yield exact
Higgs alignment. What is common to these three inequi-
valent symmetries is that they all reside in the ERPS.
The conditions that m2

11 ¼ m2
22 and m2

12 ¼ 0 imply that
the symmetries identified above are preserved by the scalar
potential. In particular, in the ERPS (where λ≡ λ1 ¼ λ2
and λ7 ¼ −λ6), Eq. (A10) of Ref. [37] yields

Z6 ¼ e−iξ
�
−
1

2
s2βc2βðλ − λ345Þ þ

1

2
is2βImðλ5e2iξÞ

þ c4βReðλ6eiξÞ þ ic2βImðλ6eiξÞ
�
; ð9:9Þ

where λ345 ≡ λ3 þ λ4 þ Reðλ5e2iξÞ. We have already noted
that the inert limit of the scalar potential in the ERPS
regime, where exact Higgs alignment is achieved, corre-
sponds to Y3 ¼ 0, which then implies that Z6 ¼ 0 via
Eq. (5.20) and Z7 ¼ 0 due to the ERPS conditions. For
example, in the case of a Z2 ⊗ Π2-symmetric scalar
potential, applying the conditions exhibited in Table III
yields the expression for Z6 given in Eq. (5.19). Because
m2

11 ¼ m2
22 and m2

12 ¼ 0, it automatically follows that
Y3 ¼ 0 which implies that Z6 ¼ 0. The vanishing of Z6

[although not immediately evident from Eq. (9.9)] is a
consequence of the scalar potential minimum conditions of
the ERPS which yield

λð1 − RÞc2β ¼ λ5s2β sin 2ξ ¼ 0 or s2β ¼ 0; ð9:10Þ

where R≡ ðλ3 þ λ4 þ λ5Þ=λ. Since R ≠ 1 and λ5 ≠ 0
(otherwise, the symmetry group of the scalar potential is
larger than Z2 ⊗ Π2), it then follows that either c2β ¼
sin 2ξ ¼ 0 or s2β ¼ 0. Inserting these conditions in
Eq. (9.9) along with the Z2 ⊗ Π2 symmetry conditions,
Imλ5 ¼ λ6 ¼ λ7 ¼ 0, yields Z6 ¼ 0 as expected.
In the case of an unbroken Uð1Þ ⊗ Π2 symmetry, we

simply add one additional condition, λ5 ¼ 0 to the scalar
potential parameters (while maintaining R ≠ 1). In this
case, Eq. (9.10) implies that either c2β ¼ 0 or s2β ¼ 0 (with
no restriction on ξ, which is an unphysical phase that can be
rephased away), and again Eq. (9.9) yields Z6 ¼ 0.
It is instructive to consider the GCP3-symmetric

scalar potential, which can be obtained from the
Z2 ⊗ Π2-symmetric scalar potential by adding one addi-
tional constraint, R ¼ 1 (while maintaining λ5 ≠ 0). The
case of an unbroken GCP3 symmetry is not physically
distinct from the previous case since it is equivalent to a
Uð1Þ ⊗ Π2 symmetry in a different scalar field basis. The
minimum conditions of the GCP3-symmetric scalar poten-
tial (where we now employ primed parameters) yield

λ05c2β0 sin
2ξ0 ¼ λ05s2β0 sin 2ξ0 ¼ 0 or s2β0 ¼ 0: ð9:11Þ

These conditions guarantee that Z6 ¼ 0 [cf Eq. (7.13)],
independently of the parameters of the GCP3-symmetric
scalar potential. In particular, exact Higgs alignment is
achieved for all values of β0 in cases of an unbroken and
some softly broken GCP3-symmetric scalar potentials, in
contrast to the cases of Z2 ⊗ Π2 and Uð1Þ ⊗ Π2 where
exact Higgs alignment is satisfied only when β ¼ 0, 1

4
π

or 1
2
π.25

In Refs. [39,40], Higgs alignment enforced by a sym-
metry is defined to be “natural” if Z6 ¼ 0 is achieved
independently of the value of β. Based on the discussion
above, this definition eliminates the Z2 ⊗ Π2, GCP2 and
Uð1Þ ⊗ Π2-symmetric scalar potentials from the list of
potentials that exhibit a natural Higgs alignment.26

25The reader might wonder how it is possible that exact
alignment can be achieved for all values of β0 but only special
values of β in light of the fact that the Uð1Þ ⊗ Π2 and GCP3-
symmetric scalar potentials can be transformed into one another
by an appropriate change of basis. The answer can be seen by
examining Eq. (8.52). Employing Eq. (9.11) with λ05 ≠ 0, it
follows that either sin ξ0 ¼ 0, in which case all values of β0 are
permitted, or c2β0 ¼ cos ξ0 ¼ 0. Using Eq. (8.52), it follows that
the possible values of β0 correspond to either s2β ¼ 0 or c2β ¼ 0.

26In Refs. [39,40], the maximal symmetry groups associated
with the GCP3 and SO(3)-symmetric scalar potentials, which
exhibit a natural Higgs alignment, are identified as Z2 ⊗ Oð2Þ ⊗
Oð2Þ and Oð3Þ ⊗ Oð2Þ, respectively. In addition, if the Uð1ÞY
hypercharge gauge coupling g0 ¼ 0 in the gauge covariant kinetic
terms of the scalar fields, then an SO(3)-symmetric scalar
potential with λ4 ¼ λ5 ¼ 0 (cf. Table XII) yields an SO(5)-
symmetric scalar Lagrangian that also exhibits a natural Higgs
alignment.
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In particular, the GCP3-symmetric scalar potential exhibits
a natural alignment in the sense of Refs. [39,40], whereas
the Uð1Þ ⊗ Π2-scalar potential does not. However, this
distinction is problematical given that the GCP3-symmetric
and Uð1Þ ⊗ Π2-symmetric scalar potentials are physically
equivalent and can be transformed into each other by an
appropriate change of scalar field basis (as shown explicitly
in Sec. VIII). To avoid such an undesirable feature, a better
definition of natural alignment in the spirit of Refs. [39,40]
would be to require that the conditions, Y3 ¼ Z6 ¼ 0,
should be independent of the scalar potential minimum
conditions. Under this stricter definition, the GCP3-
symmetric scalar potential would not exhibit a natural
Higgs alignment. In contrast, the SO(3)-symmetric scalar
potential with m2

11 ¼ m2
22, m

2
12 ¼ 0, λ1 ¼ λ2 ¼ λ3 þ λ4 and

λ5 ¼ λ6 ¼ λ7 ¼ 0 does satisfy Y3 ¼ Z6 ¼ 0 independently
of the scalar potential minimum conditions [cf. Eq. (9.9)]
and thus would exhibit a natural Higgs alignment according
to the stricter definition proposed above.
However, our preference is to employ the concept of

naturalness as introduced by ‘t Hooft in Ref. [86], which
implies that a small parameter of a theory should be
considered natural if the symmetry of the Lagrangian is
increased by setting the parameter to zero. In the present
context, the small parameters are the potentially soft-
breaking parameters, m2

11 −m2
22 and m2

12, of the ERPS4
that could potentially generate departures from exact Higgs
alignment. All symmetry groups of the ERPS—GCP2,
Z2 ⊗ Π2, GCP3, Uð1Þ ⊗ Π2 and SO(3)—yield an exact
Higgs alignment naturally in the sense of ‘t Hooft. Indeed,
exact Higgs alignment realized in this way is stable under
renormalization group running, which is further evidence
that the symmetry based approach that we have adopted is
correct.27

The conditions that m2
11 ¼ m2

22 and m2
12 ¼ 0 are suffi-

cient but not necessary for exact Higgs alignment. In
particular, exact Higgs alignment arises in any inert limit
of the 2HDM. Thus to obtain a complete classification of
2HDM scalar potentials that yield an exact Higgs alignment
due to a symmetry, it suffices to enumerate the inert limits
of the softly broken Z2 ⊗ Π2, Uð1Þ ⊗ Π2 or GCP3, and
SO(3)-symmetric scalar potentials.28 These results can be
found in Tables VII–X. We proceed to list all the relevant
subcases below.
Given a softly broken Z2 ⊗ Π2-symmetric scalar poten-

tial, exact Higgs alignment arises in two subcases, as shown
in Sec. V: (i) s2β ¼ sin 2ξ ¼ 0, m2

11 ≠ m2
22 and m2

12 ¼ 0,

which preserves a Z2 symmetry that is unbroken in the
vacuum, and (ii) c2β ¼ sin 2ξ ¼ 0, m2

11 ¼ m2
22 and

Im½m2
12�2 ¼ 2Rem2

12Imm2
12 ¼ 0, which preserves a Π2

[Π0
2] symmetry if Imm2

12 ¼ 0 [Rem2
12 ¼ 0] that is unbroken

in the vacuum. In the absence of soft breaking, the
constraints on the scalar potential parameters due to Π2

and Π0
2 are identical. The Z2, Π2 or Π0

2 residual symmetries
are responsible for maintaining the exact Higgs alignment.
Given a softly broken Uð1Þ ⊗ Π2-symmetric scalar

potential, exact Higgs alignment arises in two subcases,
as shown in Sec. VI: (i) s2β ¼ 0, m2

11 ≠ m2
12 and m2

12 ¼ 0,
which preserves a U(1) symmetry that is unbroken in the
vacuum, and (ii) c2β ¼ 0, m2

11 ¼ m2
22 and m2

12 ≠ 0. In light
of Eq. (6.4), one can rephaseΦ2 → e−iξΦ2 to achieve a real
basis, in which case the scalar potential in subcase
(ii) preserves a Π2 symmetry that is unbroken in the
vacuum. If one does not remove the (unphysical) parameter
ξ, then Eq. (8.30) can be used to identify the unbroken

vacuum symmetry as ΠðξÞ
2 , which is Π2 in the rephased

scalar field basis. In the case of an unbroken Uð1Þ ⊗ Π2-
symmetric scalar potential, the Uð1Þ ⊗ Π2 symmetry is
spontaneously broken down to U(1) if s2β ¼ 0 or to Π2

if c2β ¼ 0.
Although a softly broken GCP3-symmetric scalar poten-

tial is equivalent to a softly broken Uð1Þ ⊗ Π2-symmetric
scalar potential in a different basis, it is instructive to
enumerate the cases in which a softly broken GCP3-
symmetric scalar potential exhibits exact Higgs alignment.
Using the results of Sec. VII, exact Higgs alignment arises
in four subcases in terms of the primed GCP3 basis
parameters: (i) s2β0 ¼ 0, m02

11 ≠ m02
22 and m02

12 ¼ 0, which
preserves a Z2 symmetry that is unbroken in the vacuum;
(ii) c2β0 ¼ cos ξ0 ¼ 0, m02

11 ¼ m02
22 and Imm02

12 ≠ 0, which
preserves a Uð1Þ0 symmetry that is unbroken in the vacuum;
(iii) c2β0 ¼ sin ξ0 ¼ 0, m02

11 ¼ m02
22 and Rem02

12 ≠ 0, which
preserves a Π2 symmetry that is unbroken by the vacuum;
and (iv) s2β0c2β0 ≠ 0, sin ξ0 ¼ 0,m02

11 ≠ m02
22 and Rem

02
12 ≠ 0,

which preserves a Π̄ðαÞ
2 vacuum symmetry, where α ¼

ð1
2
π − 2β0Þ cos ξ0 ¼ �ð1

2
π − 2β0Þ. This result is derived in

Sec. VIII, where the Π̄ðαÞ
2 symmetry is introduced in

Eq. (8.32) and the relation that yields α in terms of β0 is
obtained in Eq. (8.38). Finally, in the case of an unbroken
GCP3-symmetric scalar potential, the GCP3 symmetry,
which is equivalent to a Uð1Þ0 ⊗ Z2 symmetry, is sponta-
neously broken down to Uð1Þ0 [Z2] if c2β ¼ cos ξ0 ¼ 0

[s2β0 ¼ 0], or to Π̄ðαÞ
2 with α ¼ �ð1

2
π − 2β0Þ if s2β0 ≠ 0

and cos ξ0 ¼ �1.
Finally, we examine the case of a softly broken SO(3)-

symmetric scalar potential. We noted above that in this case
Z6 ¼ 0 independently of the scalar potential minimum
conditions. This means that all softly broken SO(3)-
symmetric scalar potentials exhibit exact Higgs alignment,

27In general, renormalization group running does not preserve
the scalar field basis. However, the group theoretic properties of
the symmetries of the scalar potential, whose specific realization
may change in different choices of the scalar field basis, do not
depend on the basis choice.

28The possibility of natural Higgs alignment in the presence of
soft symmetry-breaking squared mass terms has also been treated
in Ref. [85].
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since the scalar potential minimum conditions will guar-
antee that Y3 ¼ 0 even when m2

11 ≠ m2
22 and/or m2

12 ≠ 0.
Below Eq. (6.25), we noted the presence of mass-

degenerate scalars, H and A, which was attributed
to a Peccei-Quinn U(1) symmetry in the Higgs basis,
H1 → H1, H2 → e2iθH2 (for any value of 0 ≤ θ < π),
which is unbroken by the vacuum.29 It is instructive to
ascertain the precise form of the U(1) symmetry in the
Φ-basis. To accomplish this, we employ Eq. (8.26), where
the unitary matrix

U ¼
�

cβ −e−iðξþηÞsβ
eiξsβ e−iηcβ

�
; ð9:12Þ

transforms the Higgs basis into the Φ-basis. The phase eiη,
which appears in Eq. (5.9) and reflects the freedom to
rephase the Higgs basis field H2, cancels exactly when
Eq. (8.26) is applied. Starting with X ¼ ð1

0
0

e2iθÞ, we make
use of Eq. (8.26) with ζ ¼ −θ to obtain

X0 ¼
�
cos θ − ic2β sin θ −ie−iξs2β sin θ

−ieiξs2β sin θ cos θ þ ic2β sin θ

�
: ð9:13Þ

Thus, in the Φ-basis characterized by tan β ¼ jhΦ0
2i=hΦ0

1ij
and ξ ¼ arg½hΦ0

1i�hΦ0
2i�, the Peccei-Quinn symmetry,

which we designate by Uð1ÞH (to remind the reader that
it has been first applied in the Higgs basis), is given by

Uð1ÞH∶ Φ1 → ðcos θ − ic2β sin θÞΦ1 − ie−iξs2β sin θΦ2;

Φ2 → −ieiξs2β sin θΦ1 þ ðcos θ þ ic2β sin θÞΦ2:

ð9:14Þ

Imposing the Uð1ÞH symmetry on the parameters of a
general 2HDM scalar potential in the Φ-basis yields the
following constraints:

Imðm2
12e

iξÞ ¼ λ5 ¼ λ6 ¼ λ7 ¼ 0; ð9:15Þ

λ≡ λ1 ¼ λ2 ¼ λ3 þ λ4; ð9:16Þ

m2
22 −m2

11 ¼ 2 cot 2βReðm2
12e

iξÞ: ð9:17Þ

These constraints correspond to a softly broken SO(3)-
symmetric scalar potential and scalar potential minimum
conditions [cf. Eqs. (7.2)–(7.4) with λ ¼ λ3 þ λ4 and
λ5 ¼ 0]. Moreover,

X0
� cβ

sβeiξ

�
¼ e−iθ

� cβ

sβeiξ

�
; ð9:18Þ

which confirms that the vacuum is invariant under the
Uð1ÞH transformation [up to an overall hypercharge Uð1ÞY
transformation that has no effect on the scalar potential
parameters].
We conclude that for a generic softly broken SO(3)-

symmetric scalar potential, a Uð1ÞH subgroup remains
unbroken and is responsible for the mass degeneracy of
H and A as well as the exact Higgs alignment.30 In the case
of an unbroken SO(3)-symmetric scalar potential, the
SO(3) symmetry is spontaneously broken down to
Uð1ÞH, in which case both H and A can be identified as
massless Goldstone bosons (of opposite CP-quantum
numbers).
This completes the classification of all unbroken or

softly broken symmetries of the 2HDM scalar potential that
yield an exact Higgs alignment. This classification is
summarized in Table XI. Many aspects of this table
can be easily understood by employing the results of
Appendix E. Applying the ERPS4 conditions (λ1 ¼ λ2
and λ7 ¼ −λ6) in Eqs. (E1)–(E6), the parameters of the
scalar potential in the ERPS4 regime in the Φ-basis satisfy

Imðm2
12e

iξÞ ¼ 0; ð9:19Þ

ðm2
22 −m2

11Þs2β ¼ 2Reðm2
12e

iξÞc2β; ð9:20Þ

c4βReðλ6eiξÞ ¼
1

2
s2βc2β½λ − λ3 − λ4 − Reðλ5e2iξÞ�; ð9:21Þ

c2βImðλ6eiξÞ ¼ −
1

2
s2βImðλ5e2iξÞ: ð9:22Þ

Equations (9.19)–(9.22) provide the necessary and suffi-
cient conditions for the inert limit of the scalar potential in
the ERPS4 regime, thereby producing an exact Higgs
alignment.
One can check that all the entries listed in Table XI

[including the first two lines, which correspond respec-
tively to the Z2-symmetric IDM and the U(1)-symmetric
IDM, outside of the domain of the ERPS4] satisfy the four
conditions specified in Eqs. (9.19)–(9.22). For example,
starting from the softly broken or unbroken GCP2-
symmetric scalar potential transformed to the basis in
which λ5 is real and λ6 ¼ λ7 ¼ 0, one easily obtains the
following correlations of the parameters β and ξ for the
symmetry cases listed in Table XI:

29The version of the Peccei-Quinn symmetry transformation
that is used here corresponds to Uð1ÞPQ given in Table I followed
by a hypercharge Uð1ÞY transformation, which is also a sym-
metry of the vacuum in the Higgs basis.

30In the case of s2β ¼ 0, the Φ-basis coincides with the Higgs
basis (up to a possible discrete Π2 transformation), in which case
Uð1ÞH reduces to the standard Uð1ÞPQ symmetry.
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Z2 ⊗ Π2∶ s2βs2ξ ¼ 0 or s2βc2β ¼ 0; ð9:23Þ

Uð1Þ ⊗ Π2∶ s2βc2β ¼ 0; ð9:24Þ

GCP3∶ s2β0s2ξ0 ¼ 0; ð9:25Þ

SOð3Þ∶ no constraints: ð9:26Þ

One can then employ Eqs. (9.19) and (9.20) to determine
the allowed soft breaking due tom2

11 ≠ m2
22 and/orm

2
12 ≠ 0

that is consistent with exact Higgs alignment.

X. IMPLICATIONS OF
CUSTODIAL SYMMETRY

One of the possible symmetries of the scalar potential
that does not appear in Table III is custodial symmetry.

This symmetry is necessarily violated by the hypercharge
Uð1ÞY gauge interactions.31 Nevertheless, in the limit of
g0 → 0 this is a potential symmetry of the bosonic sector of
the 2HDM. Given that custodial symmetry is an approxi-
mate symmetry of nature in light of the small deviation of
the electroweak ρ-parameter from its custodial symmetric
value of ρ ¼ 1, it is of interest to consider the possibility
that the 2HDM scalar potential respects the custodial
symmetry. In more detail, if the 2HDM scalar potential
is symmetric under SUð2ÞL ⊗ SUð2ÞR transformations
where SUð2ÞL is identified with the SU(2) part of the
electroweak gauge group and SUð2ÞR is a global symmetry
group, then after the symmetry breaking of SUð2ÞL the
residual custodial symmetry can be identified with an
unbroken diagonal SUð2ÞLþR global symmetry.

TABLE XI. Classification of symmetries of the 2HDM scalar potential that yield exact Higgs alignment, where the tree-level
properties of one of the neutral scalar mass eigenstates coincides with those of the SM Higgs boson. Note that m2

11 ¼ m2
22 and

Reðm2
12e

iξÞ ¼ Imðm2
12e

iξÞ ¼ 0 (and similarly for the primed parameters) unless otherwise indicated. The unprimed parameters
correspond to the Z2 ⊗ Π2 or Uð1Þ ⊗ Π2 basis, whereas the primed parameters correspond to the GCP3 basis. All such basis choices
are consistent with the ERPS4 with λ6 ¼ λ7 ¼ 0 and real λ5; the corresponding parameter constraints for the softly broken GCP2-

symmetric scalar potential are given in Eqs. (9.19)–(9.22). In cases where the residual symmetry is given by Π̄ðαÞ
2 , the value of

α ¼ ð1
2
π − 2β0Þ cos ξ0, where cos ξ0 ¼ �1. Although separate listings are provided for scalar potentials that exhibit the Uð1Þ ⊗ Π2 or

GCP3 symmetry (either of which may be softly broken), they represent the same scalar potential expressed in two different choices of
the scalar field basis.

Residual unbroken symmetry of

Symmetry Soft breaking Parameter constraints Scalar potential Vacuum

Z2 None s2β ¼ 0 Z2 Z2

U(1) None s2β ¼ 0 U(1) U(1)
Z2 ⊗ Π2 m2

11 ≠ m2
22

s2β ¼ 0 Z2 Z2

Z2 ⊗ Π2 Rem2
12 ≠ 0 c2β ¼ sin ξ ¼ 0 Π2 Π2

Z2 ⊗ Π2 Imm2
12 ≠ 0 c2β ¼ cos ξ ¼ 0 Π0

2 Π0
2

Z2 ⊗ Π2 None s2β ¼ 0 Z2 ⊗ Π2 Z2

Z2 ⊗ Π2 None c2β ¼ sin 2ξ ¼ 0 Z2 ⊗ Π2 Π2

Uð1Þ ⊗ Π2 m2
11 ≠ m2

22
s2β ¼ 0 U(1) U(1)

Uð1Þ ⊗ Π2 Reðm2
12e

iξÞ ≠ 0 c2β ¼ 0 ΠðξÞ
2 ΠðξÞ

2

Uð1Þ ⊗ Π2 None s2β ¼ 0 Uð1Þ ⊗ Π2 U(1)
Uð1Þ ⊗ Π2 None c2β ¼ 0 Uð1Þ ⊗ Π2 Π2

GCP3 m02
11 ≠ m02

22, Rem
02
12 ≠ 0 s2β0c2β0 ≠ 0, sin ξ0 ¼ 0 Π̄ðαÞ

2 Π̄ðαÞ
2

GCP3 m02
11 ≠ m02

22
s2β0 ¼ 0 Z2 Z2

GCP3 Rem02
12 ≠ 0 c2β0 ¼ 0, sin ξ0 ¼ 0 Π2 Π2

GCP3 Imm02
12 ≠ 0 c2β0 ¼ 0, cos ξ0 ¼ 0 Uð1Þ0 Uð1Þ0

GCP3 None s2β0 ¼ 0 Uð1Þ0 ⊗ Z2 Z2

GCP3 None s2β0 ≠ 0, sin ξ0 ¼ 0 Uð1Þ0 ⊗ Z2 Π̄ðαÞ
2

GCP3 None c2β0 ¼ 0, cos ξ0 ¼ 0 Uð1Þ0 ⊗ Z2 Uð1Þ0
SO(3) m02

11 ≠ m02
22, Reðm02

12e
iξ0 Þ ≠ 0 s2β0c2β0 ≠ 0 Uð1ÞH Uð1ÞH

SO(3) Reðm02
12e

iξ0 Þ ≠ 0 c2β0 ¼ 0 Uð1ÞH Uð1ÞH
SO(3) m02

11 ≠ m02
22

s2β0 ¼ 0 U(1) U(1)
SO(3) None None SO(3) Uð1ÞH

31That is, the custodial symmetry is violated by the gauge
covariant kinetic term of the scalar fields that is proportional to g0.
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Details of the SUð2ÞL ⊗SUð2ÞR transformation laws are
given in Refs. [50,52–54]. As shown in Ref. [52], aΦ-basis
exists for any 2HDM custodial symmetric scalar potential
such that32

λ4 ¼ Reλ5 and m2
12; λ5; λ6; λ7 ∈ R: ð10:1Þ

Hence, all 2HDM custodial symmetric scalar potentials
are explicitly CP conserving. In the case of an unbroken
Z2-symmetric scalar potential where m2

12 ¼ λ6 ¼ λ7 ¼ 0,
one is always free to rephaseΦ2 → iΦ2,

33 in which case the
custodial symmetry condition of Eq. (10.1) specializes to

λ4 ¼ �Reλ5 and m2
12 ¼ Imλ5 ¼ λ6 ¼ λ7 ¼ 0: ð10:2Þ

Additional information is provided by minimizing the
scalar potential and determining the Higgs basis. Then, as
shown in Ref. [53], the scalar potential respects the
custodial symmetry if the Higgs basis parameters satisfy

Z4 ¼ Z5e−2iη ∈ R; Y3e−iη ¼ −
1

2
Z6e−iηv2 ∈ R;

Z7e−iη ∈ R; ð10:3Þ
where the phase η represents the freedom to rephase the
Higgs basis field H2. It follows that one can choose η such
that the parameters of the scalar potential in the Higgs basis
are all real, which implies that GCP1 is a symmetry of the
scalar potential and vacuum. In particular, in a real Higgs
basis, Eq. (10.3) yields two possible solutions,

Z4 ¼ Z5; ð10:4Þ
or

Z4 ¼ �Z5; and Y3 ¼ Z6 ¼ Z7 ¼ 0: ð10:5Þ
Equation (10.4) is a consequence of choosing η ¼ 0

(mod π). In the case of Y3 ¼ Z6 ¼ Z7 ¼ 0, the condition
Z4 ¼ −Z5 is now possible by choosing η ¼ 1

2
π (mod π), as

indicated in Eq. (10.5). Note that if the Yukawa interactions
are neglected then the sign of Z5 in a real Higgs basis is not
physical since one can always redefine H2 → iH2 while
maintaining the reality of the Higgs basis. Thus, Eq. (10.5)
can be understood to mean that Z4 ¼ �jZ5j in a real Higgs

basis, which corresponds to two physically inequivalent
conditions.
Moreover, employing the results of Eq. (10.3) in

Eqs. (5.21)–(5.23), it follows that if Z6 ≠ 0 then we can
identify the squared mass of the CP-odd mass eigenstate as
corresponding to the 33 element of the squared-mass matrix
M2 given in Eq. (5.22), namelym2

A ¼ m2
H�. If Z6 ¼ 0, then

M2 is diagonal; nevertheless, one can determine the CP
properties of the neutral Higgs mass eigenstates via the
three-scalar and four-scalar interaction terms assuming that
Z7 ≠ 0 [69]. One can again confirm that the CP-odd mass
eigenstate corresponds to the 33 element of M2, in which
case we also conclude that m2

A ¼ m2
H� .

Finally, in the case of a custodially symmetric
scalar potential with Y3 ¼ Z6 ¼ Z7 ¼ 0, an exact Higgs
alignment is realized and we can identify m2

h ¼ Z1v2

following the convention of Eq. (5.30), and m2
H;A ¼

m2
H� þ 1

2
ðZ4 � Z5Þv2. Although the CP-quantum numbers

of H and A are of opposite sign, there are no bosonic
interactions that can uniquely identifywhich of the two states
H andA isCP even andwhich isCP odd, as previously noted
in Sec. V. Ultimately, the CP-quantum numbers ofH and A
may be fixed by the Higgs-fermion Yukawa couplings (if
these interactions areCP conserving), except in special cases
where the ambiguity persists [cf. Eq. (5.31)]. Assuming that
the CP-quantum numbers of H and A are unambiguously
determined by the Yukawa couplings, then the sign of Z5 is
promoted to a physical parameter in the case of
Y3 ¼ Z6 ¼ Z7 ¼ 0. It then follows that [53]

m2
H� ¼

�
m2

A if Z4 ¼ Z5 and Z6 ¼ Z7 ¼ 0;

m2
H if Z4 ¼ −Z5 and Z6 ¼ Z7 ¼ 0;

ð10:6Þ

in a real Higgs basis. In particular,

mh <mH if Z4 ¼−Z5; Z6 ¼Z7 ¼ 0 and m2
H� >Z1v2;

mh>mH if Z4 ¼−Z5; Z6 ¼Z7 ¼ 0 and m2
H� <Z1v2:

ð10:7Þ

Indeed, the transformationH2 → iH2 changes the sign ofZ5

while also changing the scalar Yukawa coupling into a
pseudoscalar Yukawa coupling and vice versa.
In this section, we propose to classify all 2HDM custo-

dial-symmetric scalar potentials that exhibit exact Higgs
alignment due to an unbroken or softly broken symmetry.
All such scalar potentials will satisfy the Higgs basis
conditions given in Eq. (10.5). If the parameters of the
corresponding Higgs potential lie in the ERPS4 regime, then
this classification amounts to supplementing the results of
Table XI with the conditions of custodial symmetry.
As a first step, we review the classification of custodial

symmetric 2HDM scalar potentials first obtained in
Refs. [59,87] (and recently reproduced in Ref. [88]). If

32If λ4 ¼ λ5 in the Φ-basis where λ5 ∈ R, then λ4 ¼ λ5 in any
real basis, Φ0 ¼ UΦ, such that U is a real orthogonal matrix.
However, if m2

12 ¼ λ6 ¼ λ7 ¼ 0, then one can perform a basis
transformation whereU is unitary but not real orthogonal that still
preserves the reality of the basis. For such basis transformations
the relation λ4 ¼ λ5 is no longer preserved. Equation (10.2)
provides a trivial example of this. A more interesting example is
provided by the basis transformation that converts Eq. (10.10)
into Eq. (10.11). Of course, if U is not real orthogonal, then the
basis transformation will not preserve the reality of the vevs.

33Although this rephasing maintains the reality of the scalar
potential parameters, it introduces a relative phase, ξ ¼ 1

2
π, in the

vevs.
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the scalar potential respects a custodial symmetry, then the
Higgs Lagrangian can exhibit seven additional global
symmetries in the limit of g0 ¼ 0 beyond the symmetries
listed in Tables I and II. Three of the seven symmetries
correspond to GCP1, the Peccei-Quinn U(1) and Π2, which
when combined with the custodial symmetry yield maxi-
mal symmetry groups of SO(3), SO(4) and Z2 ⊗ Oð3Þ,
respectively [87]. The case of GCP1 corresponds to the
minimal implementation of custodial symmetry in the most
general 2HDM scalar potential. Indeed, the custodial-
symmetric scalar potential of the 2HDM must be CP
conserving as noted below Eq. (10.2). A custodial sym-
metric, Π2-symmetric scalar potential is equivalent to a
custodial symmetric, Z2 symmetric scalar potential in
another scalar field basis. To validate this remark, we first
combine Eq. (10.1) with the constraints of theΠ2 symmetry
shown in Table III to obtain

m2
11 ¼ m2

22; λ1 ¼ λ2; λ4 ¼ Reλ5; λ6 ¼ λ7;

Imm2
12 ¼ Im λ5 ¼ Im λ6 ¼ Im λ7 ¼ 0; ð10:8Þ

in the Φ-basis. We now transform to a new basis by
defining Φ0

1 ¼ ðΦ1 þΦ2Þ=
ffiffiffi
2

p
and Φ0

2 ¼ ðΦ2 −Φ1Þ=
ffiffiffi
2

p
.

In this new basis, the corresponding scalar potential
parameters are

m02
11 ¼ m2

11 − Rem2
12; m02

22 ¼ m2
11 þ Rem2

12; m02
12 ¼ 0;

λ01 ¼
1

2
ðλ1 þ λ3 þ 2λ4 þ 4λ6Þ;

λ02 ¼
1

2
ðλ1 þ λ3 þ 2λ4 − 4λ6Þ;

λ03 ¼
1

2
ðλ1 þ λ3 − 2λ4Þ; λ04 ¼ Reλ05 ¼

1

2
ðλ1 − λ3Þ;

Imλ05 ¼ λ06 ¼ λ07 ¼ 0; ð10:9Þ

which combines the constraints of Eq. (10.1) with the
constraints of the Z2 symmetry.
The remaining four symmetry cases of Ref. [87] corre-

spond to Z2 ⊗ Π2, Uð1Þ ⊗ Π2, GCP3 and SO(3), which
when combined with custodial symmetry [cf. Eq. (10.2)]
yields a maximal symmetry group of Z2 ⊗ Z2 ⊗ SOð3Þ,
Oð2Þ ⊗ Oð3Þ, Z2 ⊗ Oð4Þ and SO(5), respectively.34

In light of Eq. (9.6), each of these symmetry cases
corresponds to the inert limit in the ERPS, and thus satisfy
Eq. (10.5) in a real Higgs basis. The case of Oð2Þ ⊗ Oð3Þ

requires some clarification. In Table 1 of Ref. [87],
the constraints on the scalar potential parameters corre-
sponding to the Oð2Þ ⊗ Oð3Þ symmetry are

m2
11 ¼ m2

22; m2
12 ¼ 0; λ1 ¼ λ2 ¼ λ3;

λ5 ¼ λ6 ¼ λ7 ¼ 0: ð10:10Þ

This is a Uð1Þ ⊗ Π2-symmetric scalar potential, but it does
not satisfy Eq. (10.1). However, if we transform to the
GCP3 basis then Eqs. (8.2)–(8.9) yield

m02
11 ¼ m02

22; m02
12 ¼ 0; λ01 ¼ λ02 ¼ λ03 þ λ04 þ Reλ05;

λ04 ¼ Reλ05; Imλ05 ¼ λ06 ¼ λ07 ¼ 0; ð10:11Þ

which corresponds to custodial-symmetric,GCP3-symmetric
scalar potential.
We are now ready to present the classification of

custodial-symmetric 2HDM scalar potentials that satisfy
exact Higgs alignment due to an unbroken or softly broken
symmetry. Exact Higgs alignment requires Y3 ¼ Z6 ¼ 0,
and then to achieve Higgs alignment via a symmetry also
requires Z7 ¼ 0. Two immediate examples are the IDM
with either an unbroken Z2 or U(1) symmetry in the Higgs
basis. Supplementing these two examples with the con-
dition that Z4 ¼ �Z5 yields a custodial symmetric scalar
potential with exact Higgs alignment.
In light of the classification of custodial symmetric scalar

potentials discussed above, we now consider cases in which
additional unbroken or softly broken symmetries are present.
It is clear that at minimum, a softly brokenZ2 symmetry that
is manifestly realized in the Φ-basis must be present.
Consequently, let us consider a softly broken Z2-symmetric
scalar potential in the Φ-basis that is distinct from the Higgs
basis which satisfies Y3 ¼ Z6 ¼ Z7 ¼ 0. Since λ6 ¼ λ7 ¼ 0
holds in a Φ-basis such that s2β ≠ 0, the ERPS4 conditions
must be satisfied as we now demonstrate.
First, we shall employ Eqs. (A.26)–(A.28) of Ref. [37]

with s2β ≠ 0, λ6 ¼ λ7 ¼ 0 and Z6 ¼ Z7 ¼ 0 to obtain

s2β½Z1c2β − Z2s2β − Z34c2β − ReðZ5e2iξÞc2β − iImðZ5e2iξÞ�
¼ 0; ð10:12Þ

s2β½Z1s2β − Z2c2β þ Z34c2β þ ReðZ5e2iξÞc2β þ iImðZ5e2iξÞ�
¼ 0; ð10:13Þ

where Z34 ≡ Z3 þ Z4. Adding and subtracting these two
equations yields

s2βðZ1 − Z2Þ ¼ 0; ð10:14Þ

s2βfc2β½Z1 þ Z2 − 2Z34 − 2ReðZ5e2iξÞ� − 2iImðZ5e2iξÞg
¼ 0: ð10:15Þ

34Since a GCP3-symmetric scalar potential is a Uð1Þ ⊗ Π2-
symmetric scalar potential in a different scalar field basis, one
cannot unambiguously associate Oð2Þ ⊗ Oð3Þ and Z2 ⊗ Oð4Þ
with either ERPS symmetry. A physical criterion for distinguish-
ing these two maximal symmetry groups is provided by the two
Higgs basis conditions specified in Eq. (10.19) and exhibited in
Table XII and in the discussion that follows.
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Moreover, we can use Eqs. (A20) of Ref. [37] along with
Eq. (5.20) to obtain

m2
12e

iξ ¼ 1

2
ðY2 − Y1Þs2β: ð10:16Þ

It follows that

Imðm2
12e

iξÞ ¼ 0: ð10:17Þ

Imposing the scalar potential minimum condition given by
Eq. (2.10), it follows that either sin 2ξ ¼ 0 or λ5 ¼ 0. If
λ5 ¼ 0 then the only remaining complex parameter of the
scalar potential, m2

12, can be arbitrarily rephased. Thus
without loss of generality, we may assume that sin 2ξ ¼ 0

holds in all cases, or equivalently e2iξ ¼ �1. Moreover,
having assumed that s2β ≠ 0, we see that Eqs. (10.14) and
(10.15) yields Z1 ¼ Z2 and ImZ5 ¼ 0. That is, the Higgs
basis parameters satisfy the ERPS4 conditions.35

In the case of s2βc2β ≠ 0 and e2iξ ¼ �1 (and
Z6 ¼ Z7 ¼ 0), Eqs. (10.14) and (10.15) yield

Z1 ¼ Z2 ¼ Z3 þ Z4 � Z5 and ImZ5 ¼ 0: ð10:18Þ

Hence, the quartic terms of the scalar potential satisfy the
GCP3 or GCP30 symmetry conditions in the Higgs basis. If
we now also impose the custodial symmetry condition,
Z4 ¼ �Z5, where the sign choice is uncorrelated with the
� sign appearing in Eq. (10.18), then it follows that two
relations are possible that are physically distinguishable,

Z1 ¼ Z2 ¼ Z3 þ 2Z4 or Z1 ¼ Z2 ¼ Z3: ð10:19Þ

Moreover, we can use Eqs. (A21)–(A28) of Ref. [37]
along with Eq. (10.18) to obtain the scalar potential
parameters in the Φ-basis,

λi ¼ Zi for i ¼ 1; 2;…; 7: ð10:20Þ

When Y3 ¼ Z6 ¼ Z7 ¼ 0, it is always possible to
rephase the Higgs basis field, H2 → iH2, such that
Z1 ¼ Z2 ¼ Z3 þ Z4 þ Z5. Then, in a GCP3 basis (where
parameters in the Φ-basis are indicated with prime super-
scripts), Eqs. (10.19) and (10.20) respectively yield

λ01 ¼ λ02 ¼ λ03 þ λ04 þ λ05; where λ04 ¼ λ05; ð10:21Þ
or

λ01 ¼ λ02 ¼ λ03; where λ04 ¼ −λ05: ð10:22Þ

In both cases, the GCP3 conditions are manifestly
realized by the quartic terms of the scalar potential in
the Φ-basis. In light of Eq. (10.11), in the case of unbroken
GCP3 and custodial symmetry, Eq. (10.21) yields a
maximal symmetry group of Oð2Þ ⊗ Oð3Þ in the classi-
fication of Ref. [87]. To determine the maximal symmetry
group of the scalar potential whose parameters satisfy
Eq. (10.22), we transform to the Uð1Þ ⊗ Π2 basis. Then
Eqs. (8.42)–(8.46) yield λ1 ¼ λ2 ≠ λ3 and λ4 ¼ λ5 ¼ λ6 ¼
λ7 ¼ 0, corresponding to a maximal symmetry group
of Z2 ⊗ Oð4Þ in the classification of Ref. [87]. Note that
the custodial symmetry is preserved in the presence of soft
breaking of the GCP3 symmetry by allowing for m02

12 ≠ 0

subject to the condition, m02
22 −m02

11 ¼ 2m02
12c2β0=s2β0

[cf. Eqs. (7.2) and (7.3)].
If Z5 ¼ 0, then Eq. (10.20) together with the custodial

symmetry condition Z4 ¼ �Z5 imply that λ04 ¼ λ05 ¼ 0. In
light of Eqs. (10.21) and (10.22), the SO(3) conditions are
manifestly realized by the quartic terms of the scalar
potential. Indeed, in this case the quartic terms are given
by V ∋ 1

2
λðΦ†

1Φ1 þΦ†
2Φ2Þ2, which corresponds to the

maximally symmetric SO(5) limit of the 2HDM (after
including the gauge covariant kinetic terms of the scalar
fields with g0 ¼ 0) analyzed in Ref. [39]. Soft breaking of
the SO(3) symmetry due to m02

12 ≠ 0 is again allowed
subject to the condition, m02

22 −m02
11 ¼ 2m02

12c2β0=s2β0 .
In the case of c2β ¼ sin 2ξ ¼ 0, Eqs. (10.14) and (10.15)

yield Z1 ¼ Z2 and ImZ5 ¼ 0. Hence, the quartic terms of
the scalar potential in the real Higgs basis satisfy the
Z2 ⊗ Π2 symmetry conditions. Using Eqs. (A21)–(A25) of
Ref. [37], we obtain

λ1 ¼ λ2 ¼ Z1 −
1

2
ðZ1 − Z345Þ;

λi ¼ Zi þ
1

2
ðZ1 − Z345Þ; for i ¼ 3; 4;

λ5 ¼ Z5 �
1

2
ðZ1 − Z345Þ; λ̃345 ¼ Z1 þ

1

2
ðZ1 − Z345Þ;

λ6 ¼ λ7 ¼ 0; ð10:23Þ

where Z345 ≡ Z3 þ Z4 � Z5 and λ̃345 ≡ λ3 þ λ4 � λ5.
Assuming that Z1 ≠ Z345 [otherwise, Eq. (10.18) is
satisfied and we return to the previous case], it follows
that λ1 ≠ λ̃345. That is, the Z2 ⊗ Π2 symmetry of the
quartic terms of the scalar potential of the Φ-basis is
manifestly realized. Soft breaking of the Z2 ⊗ Π2 sym-
metry due tom2

12 ≠ 0, wherem2
12 is real (pure imaginary) if

sin ξ ¼ 0 (cos ξ ¼ 0), is allowed subject to the condi-
tion m2

11 ¼ m2
22.

If we now impose the custodial symmetry condition,
Z4 ¼ �Z5, then it follows that two parameter relations are
possible,

35As expected, if s2β ¼ 0 then Eqs. (10.14) and (10.15) are
automatically satisfied, in which case no enhanced symmetry
beyond Z2 is present for generic parameters of the scalar
potential.
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λ1 ¼ λ2 ≠ λ̃345; where λ4 ¼ �λ5; ð10:24Þ
or

λ1 ¼ λ2 ¼ λ3; where λ4 ≠ �λ5: ð10:25Þ

Equations (10.24) and (10.25) are related by a change of
scalar field basis. For example, if sin ξ ¼ 0 then we replace
the � sign with a plus sign in the above expressions.
Starting from Eq. (10.25) and employing Eq. (8.1) to
transformΦ → Φ̄ ¼ UΦ, the scalar potential parameters in
the new basis satisfy m̄2

11 ¼ m̄2
22, m̄

2
12 ≠ 0 and

λ̄1 ¼ λ̄2 ¼ λ3 þ
1

2
ðλ4 − λ5Þ; λ̄3 ¼ λ3 −

1

2
ðλ4 − λ5Þ;

λ̄4 ¼ λ̄5 ¼
1

2
ðλ4 þ λ5Þ: ð10:26Þ

Since λ̄3 þ λ̄4 þ λ̄5 − λ̄1 ¼ 2λ5, Eq. (10.24) is satisfied in
the Φ̄-basis, assuming that λ5 ≠ 0. However, if λ5 ¼ 0, then
λ̄1 ¼ λ̄2 ¼ λ̄3 þ λ̄4 þ λ̄5 is satisfied, corresponding to a
softly broken GCP3-symmetric scalar potential in the
Φ̄-basis. The case of cos ξ ¼ 0 can be similarly treated
by rephasing Φ2 → iΦ2, and yields a softly broken
GCP30-symmetric scalar potential.
Finally, if s2β ¼ 0, then one can impose the unbroken

or softly broken symmetries of the ERPS4 and the
custodial symmetry condition directly in the Higgs basis.
In Table XII, we provide a complete classification of the
2HDM scalar potentials that possess an unbroken custodial
symmetry and exhibit exact Higgs alignment. For

convenience, we have included entries corresponding to
both Uð1Þ ⊗ Π2 and GCP3, which correspond to physi-
cally equivalent points in the ERPS4 in light of the results
of Sec. VIII.
It is noteworthy that two maximal symmetry groups are

associated with both Uð1Þ ⊗ Π2 and GCP3. These two
cases are distinguished by the corresponding Higgs basis
conditions. Indeed, one can check that Oð2Þ ⊗ Oð3Þ is
physically distinguished from Z2 ⊗ Oð4Þ. In particular, in
the cases of softly broken or unbroken Uð1Þ ⊗ Π2 and
GCP3-symmetric scalar potentials, Oð2Þ ⊗ Oð3Þ is asso-
ciated with the mass relation, mH� ¼ mH ≠ mA. In con-
trast, Z2 ⊗ Oð4Þ is associated with the mass relation
mH� ¼ mA, which includes the possibility ofmH� ¼ mA ¼
mH if in addition Z4 ¼ Z5 ¼ 0. The latter is an example of
the more general result that any custodial symmetric
2HDM scalar potential with Z4 ¼ Z5 ¼ Z6 ¼ Z7 ¼ 0

exhibits a Peccei-Quinn U(1) symmetry that is unbroken
by the scalar potential and vacuum and thus possesses a
scalar spectrum where H� is degenerate in mass with both
H and A.

XI. CONCLUSIONS AND
FUTURE DIRECTIONS

There is a fascinating region of parameter space of the
2HDM that can be implemented by imposing the gener-
alized CP symmetry, GCP2, on the quartic terms of the
scalar potential, which enforces the relations, λ1 ¼ λ2 and

TABLE XII. Classification of 2HDM scalar potentials that possess an unbroken custodial symmetry and satisfy the inert conditions,
Y3 ¼ Z6 ¼ Z7 ¼ 0, thereby exhibiting exact Higgs alignment. The Higgs basis field H2 has been rephased such that Z5 is real. In the
symmetry limit, the scalar Lagrangian symmetry that is manifestly realized in the Φ-basis is shown along with the corresponding
maximal symmetry group (that includes the custodial symmetry in the limit of g0 → 0) according to the classification provided in
Ref. [87]. Excluding the first two lines of the table, all entries correspond to the ERPS4 regime. The corresponding ERPS symmetry may
be softly broken if m2

11 ≠ m2
22 and/or m

2
12 ≠ 0 as indicated in Table XI. Since GCP3 is equivalent to Uð1Þ ⊗ Π2 when expressed in a

different scalar field basis, there is a one-to-one mapping between their corresponding entries above that is consistent with the results of
Sec. VIII.

Higgs basis conditions
(all cases satisfy
Y3 ¼ Z6 ¼ Z7 ¼ 0)

Custodial symmetry
conditions

Additional real
Φ-basis constraints

Scalar Lagrangian
symmetry

Maximal
symmetry group

Z4 ¼ �Z5 ≠ 0 s2β ¼ 0 Z2 Z2 ⊗ Oð3Þ
Z4 ¼ Z5 ¼ 0 s2β ¼ 0 U(1) SO(4)

Z1 ¼ Z2 ≠ Z345 Z4 ¼ �Z5 ≠ 0 c2β sin 2ξ ¼ 0, λ ¼ λ3 or λ4 ¼ �λ5 Z2 ⊗ Π2 Z2 ⊗ Z2 ⊗ SOð3Þ
Z1 ¼ Z2 ≠ Z345 Z4 ¼ �Z5 ≠ 0 s2β ¼ 0, λ4 ¼ �λ5 Z2 ⊗ Π2 Z2 ⊗ Z2 ⊗ SOð3Þ
Z1 ¼ Z2 ¼ Z3 þ 2Z4 Z4 ¼ �Z5 ≠ 0 c2β ¼ 0, λ ¼ λ3, λ4 ≠ 0 Uð1Þ ⊗ Π2 Oð2Þ ⊗ Oð3Þ
Z1 ¼ Z2 ¼ Z3 Z4 ¼ �Z5 ≠ 0 c2β ¼ 0, λ ≠ λ3, λ4 ¼ 0 Uð1Þ ⊗ Π2 Z2 ⊗ Oð4Þ
Z1 ¼ Z2 ≠ Z3 Z4 ¼ Z5 ¼ 0 s2β ¼ 0, λ ≠ λ3, λ4 ¼ 0 Uð1Þ ⊗ Π2 Z2 ⊗ Oð4Þ
Z1 ¼ Z2 ¼ Z3 þ 2Z4 Z4 ¼ Z5 ≠ 0 s2β0 sin ξ0 ¼ 0, λ04 ¼ λ05 ≠ 0 GCP3 Oð2Þ ⊗ Oð3Þ
Z1 ¼ Z2 ¼ Z3 Z4 ¼ −Z5 ≠ 0 s2β0 sin ξ0 ¼ 0, λ04 ¼ −λ05 ≠ 0 GCP3 Z2 ⊗ Oð4Þ
Z1 ¼ Z2 ≠ Z3 Z4 ¼ Z5 ¼ 0 c2β0 ¼ cos ξ0 ¼ 0, λ04 ¼ −λ05 ≠ 0 GCP3 Z2 ⊗ Oð4Þ
Z1 ¼ Z2 ¼ Z3 Z4 ¼ Z5 ¼ 0 λ4 ¼ λ5 ¼ 0 SO(3) SO(5)
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λ7 ¼ −λ6. We call this region the ERPS4, generalizing the
exceptional region of the parameter space (ERPS) of the
2HDM introduced in Refs. [29,41], where the GCP2
symmetry is also respected by the quadratic terms of the
scalar potential and yields the additional constraints,m2

11 ¼
m2

22 andm
2
12 ¼ 0. That is, the ERPS4 is the parameter space

of a softly broken GCP2-symmetric scalar potential. In this
paper, we have provided a comprehensive study of the
many interesting properties of this 2HDM parameter
regime, including limiting cases of the ERPS4 parameters
that extend the unbroken or softly broken symmetries of the
scalar potential beyond GCP2.
We have enumerated the basis invariant conditions that

characterize the softly broken GCP2 symmetries and their
extensions and evaluated the scalar squared masses and
neutral scalar mixing matrices in each of these cases. We
have discussed intricacies that arise when scalar potentials
originating from two different symmetry conditions yield
physically equivalent results. In such cases, although the
parameter constraints imposed by the symmetry conditions
may differ, one can show that a unitary transformation
relates the scalar field bases in which each of the sym-
metries is manifestly realized. Indeed, a GCP2-symmetric
scalar potential is related by a unitary basis transformation
to a scalar potential that is invariant with respect to
Z2 ⊗ Π2, and a GCP3-symmetric scalar potential is related
by a unitary basis transformation to a scalar potential that is
invariant with respect to Uð1Þ ⊗ Π2. These considerations
persist even if the corresponding symmetries are softly
broken.
The equivalence of the softly broken GCP2 and Z2 ⊗

Π2 symmetries, as demonstrated below Eq. (4.20), does
not yield a simple analytic formula that relates the
parameters of the GCP2 basis and the Z2 ⊗ Π2 basis.
In this work, our analysis of the ERPS4 always starts from
the Z2 ⊗ Π2 basis, from which all subsequent special
cases can be analyzed. In contrast, the translation between
the GCP3 basis and the Uð1Þ ⊗ Π2 basis can be made
explicit, and a translation between the parameters defined
in each of the two basis choices has been provided in
Sec. VIII. The results for the softly broken SO(3)-
symmetric scalar potential, which are different limiting
cases of the GCP3 and Uð1Þ ⊗ Π2 basis choices, ulti-
mately yield identical results given that the form of the
softly broken SO(3)-symmetric scalar potential is invari-
ant with respect to an arbitrary unitary transformation of
the scalar field basis.
In examining the CP-invariance properties of scalar

potentials in the ERPS4, we encountered an interesting
feature that runs contrary to a statement usually found in the
literature. In a softly broken Z2 ⊗ Π2-symmetric scalar
potential where the magnitudes of the two neutral scalar
field vevs are equal, we originally noticed in Ref. [37] that
the scalar potential and vacuum were both CP conserving
even though the relative phase between the potentially

complex parameters m2
12 and λ5 could not be removed by

separate rephasings of the scalar fields Φ1 and Φ2.
In contrast, outside of the ERPS4 regime, it is straightfor-
ward to show that if λ6 ¼ λ7 ¼ 0 and Imðλ�5½m2

12�2Þ ≠ 0,
then the corresponding scalar potential is explicitly CP
violating. We were able to identify an alternative definition
of CP, denoted by GCP10 in Tables V and VI, which
provides an explanation for why the softly broken
Z2 ⊗ Π2-symmetric scalar potential with v1 ¼ v2 always
preserves a CP symmetry.
Perhaps even more astonishing was that in a

softly broken GCP3-symmetric scalar potential with
Imðλ�5½m2

12�2Þ ≠ 0, the scalar potential and vacuum are
always CP invariant independently of the vevs. In this
case, the identification of the relevant CP transformation
law is more obscure (see Appendix C). Of course, this
result becomes almost trivial by transforming to the
Uð1Þ ⊗ Π2 basis, where a simple rephasing can be
performed to remove all potential complex phases
from the corresponding scalar potential parameters.
Moreover, in both CP-conserving examples above where
Imðλ�5½m2

12�2Þ ≠ 0, a more general unitary transformation of
the scalar fields exists that can transform directly to a real
scalar field basis in which the CP invariance of the scalar
potential is manifest. Because the scalar potentials of the
ERPS4 are quite constrained, such a unitary transformation
is still consistent with the parameter constraints imposed by
the softly broken Z2 ⊗ Π2 and GCP3 symmetries.
A very important subset of the ERPS4 is the so-called

inert limit where the Higgs basis parameters satisfy
Y3 ¼ Z6 ¼ Z7 ¼ 0. In this parameter regime Higgs align-
ment is exact, which means that there exists a neutral
scalar whose tree-level properties coincide with those of
the SM Higgs boson. Indeed, the LHC Higgs data have
already confirmed at the 10%–20% level that the proper-
ties of the observed Higgs boson (of mass 125 GeV) are
consistent with the predictions of the Standard Model.
Consequently, any phenomenologically viable extended
Higgs sector must exhibit at least an approximate Higgs
alignment. One can achieve an approximate Higgs align-
ment automatically in the decoupling limit where the
masses of all additional scalars are significantly larger
than 125 GeV. However, it is of interest to consider the
possibility of approximate Higgs alignment without
decoupling, as this scenario would provide more options
for potential discoveries of new scalars of an extended
Higgs sector in future LHC runs. Higgs alignment without
decoupling can be achieved without a fine-tuning of scalar
sector parameters if a symmetry is present that can enforce
the Higgs alignment. Thus, in the 2HDM it is especially
useful to provide a complete classification of all such
symmetries. The simplest example of a 2HDM with this
property is the IDM which possesses an unbroken Z2

or U(1) symmetry in the Higgs basis. All other 2HDM
scenarios that provide a natural explanation for exact
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Higgs alignment lie in the ERPS4 regime. The complete
classification has been provided in Table XI.
A phenomenologically viable extended Higgs sector

must also be consistent with precision electroweak con-
straints. The observation that the electroweak ρ-parameter
is approximately equal to one strongly suggests that the
scalar potential should be invariant under a custodial
symmetry. The ERPS4 enters in these considerations as
well, since one of the two ways to satisfy the requirements
of custodial symmetry is provided by the inert limit. Thus,
combining the requirements of exact Higgs alignment and
custodial symmetry yields a classification of 2HDM
scenarios that is exhibited in Table XII.
Finally, there is one aspect of the 2HDM that has been

almost completely ignored in our comprehensive study of
the ERPS4—namely, the Higgs-fermion Yukawa inter-
actions. There is a reason for this neglect. In a 2HDM
with one generation of quarks and leptons, it is not possible
to construct a Yukawa Lagrangian that respects a GCP2
symmetry or any of its symmetry extensions. If three
generations of quarks and leptons are present, then it is
possible to construct a set of Yukawa interactions that
respect a GCP2 or GCP3 symmetry by positing trans-
formation laws that involve fermions of different gener-
ations. However, all such constructions are inconsistent
with the constraints of experimental observations with the
possible exception of one very special implementation of
the GCP3 symmetry in Ref. [89]. It is not clear whether
these remarks also hold if one were to construct a Yukawa
Lagrangian that respects a Z2 ⊗ Π2 or Uð1Þ ⊗ Π2 sym-
metry. Scalar Lagrangians that are constrained by sym-
metries that are physically the same when only the scalar
sector is considered might be different once fermions are
included. This possibility is presently under study.
If there is no phenomenologically successful 2HDM

Yukawa Lagrangian consistent with the ERPS4 regime,
then there are two possible approaches. In one approach
advocated in Refs. [39,90], the ERPS4 conditions are
imposed at the Planck scale. The Yukawa interactions
represent a hard breaking of the symmetries responsible for
the ERPS4 regime. Hence, renormalization group evolution
down to the electroweak scale will generate an effective
2HDM that deviates from the ERPS4 but might retain some
of its best features (e.g., approximate Higgs alignment and
approximate custodial symmetry). The second approach
follows the proposals of Refs. [70,91], where vectorlike
quark and lepton partners are introduced in an extended
Yukawa Lagrangian. In this case, one can construct a
Yukawa Lagrangian that is consistent with the ERPS4
regime (even in a one generation model of fermions and the
vectorlike partners). To ensure that the vectorlike fermions
are sufficiently heavy to avoid current LHC search limits,
one can introduce explicit mass terms for the vectorlike
fermions, which then generate the soft-breaking squared
mass terms of the ERPS4.

In either of these two approaches, one can determine
parameter regimes that are consistent with observed Higgs
boson phenomena, while setting useful targets for pre-
cision Higgs studies at the LHC and future Higgs
factories now under development. It is also of theoretical
interest to seek out ultraviolet complete models that
include the Yukawa sector to ultimately explain the
origin of the fundamental symmetries that underlie
the approximate symmetries governing the 2HDM at
the electroweak scale.36 We shall defer such matters to
future studies. Given that the ERPS4 provides a simple
framework for the scalar potential of an extended Higgs
sector with a reduced number of free parameters, we
would anticipate that useful correlations could emerge,
such as relations among various three-scalar couplings, if
deviations from SM Higgs properties are detected and/or
new scalar states are discovered.
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APPENDIX A: THE POSSIBILITY OF
SPONTANEOUS CP VIOLATION

Consider the case of an explicitly CP-conserving,
softly broken Z2-symmetric scalar potential written in a
real scalar field basis, where λ6 ¼ λ7 ¼ 0 and the two
potentially complex scalar potential parameters, m2

12 and
λ5, are real and nonzero. In this case, spontaneous CP
violation is possible [68,98,99].37 It is instructive to
examine the minimum and stability conditions under the
assumption that hΦ0

1i ¼ v1=
ffiffiffi
2

p
and hΦ0

2i ¼ v2eiξ=
ffiffiffi
2

p
,

where v1 and v2 are real and positive. Following the
analysis of Appendix B of Ref. [42], the vacuum value
of the scalar potential is

36For example, attempts to construct ultraviolet complete
models that yield Higgs alignment without decoupling in the
2HDM can be found in Refs. [92–97].

37Spontaneous CP violation is also possible if m2
12 is purely

imaginary and λ5 is real. In this case, one can redefineΦ2 → iΦ2,
which renders m2

12 real while transforming λ5 → −λ5 and
ξ → ξþ 1

2
π.
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Vvac¼
1

2
m2

11v
2
1þ

1

2
m2

22v
2
2−m2

12v1v2 cosξþ
1

8
ðλ1v41þ λ2v42Þ

þ1

4
ðλ3þ λ4−λ5Þv21v22þ

1

2
λ5v21v

2
2cos

2ξ: ðA1Þ

The scalar potential minimum conditions are

0 ¼ ∂Vvac

∂v1 ¼ m2
11v1 −m2

12v2 cos ξþ
1

2
λ1v31 þ

1

2
λ345v1v22;

ðA2Þ

0 ¼ ∂Vvac

∂v2 ¼ m2
22v2 −m2

12v1 cos ξþ
1

2
λ2v32 þ

1

2
λ345v21v2;

ðA3Þ

0 ¼ 1

v
∂Vvac

∂ξ ¼ v1v2
v

ðm2
12 − λ5v1v2 cos ξÞ sin ξ; ðA4Þ

where λ345 is defined below Eq. (2.7). The vacuum is CP
conserving if sin 2ξ ¼ 0 [98,100],38 whereas the vacuum is
potentially CP violating if sin 2ξ ≠ 0.
First consider the case of sin 2ξ ¼ 0. Having excluded

m2
12 ¼ 0 from consideration (cf. footnote 38), it follows

that sin ξ ¼ 0. Without loss of generality, we may take
cos ξ ¼ 1 by rephasingΦ2 → −Φ2 (which also changes the

sign of m2
12 but otherwise has no effect on the other scalar

potential parameters). Then, Eqs. (A2) and (A3) yield

m2
11 ¼ m2

12

v2
v1

−
1

2
λ1v21 −

1

2
ðλ3 þ λ4 þ λ5Þv22; ðA5Þ

m2
22 ¼ m2

12

v1
v2

−
1

2
λ2v22 −

1

2
ðλ3 þ λ4 þ λ5Þv21: ðA6Þ

The stability conditions can be discerned from the
Hessian. Computing the relevant second derivatives,

∂2Vvac

∂v21 ¼ m2
11 þ

3

2
λ1v21 þ

1

2
ðλ3 þ λ4 þ λ5Þv22

¼ m2
12

v2
v1

þ λ1v21; ðA7Þ

∂2Vvac

∂v22 ¼ m2
22 þ

3

2
λ2v22 þ

1

2
ðλ3 þ λ4 þ λ5Þv21

¼ m2
12

v1
v2

þ λ2v22; ðA8Þ

∂2Vvac

∂v1∂v2 ¼ −m2
12 þ ðλ3 þ λ4 þ λ5Þv1v2; ðA9Þ

after applying the results of Eqs. (A5) and (A6). Thus, the
Hessian matrix is given by

H ¼
� m2

12
v2
v1
þ λ1v21 −m2

12 þ ðλ3 þ λ4 þ λ5Þv1v2
−m2

12 þ ðλ3 þ λ4 þ λ5Þv1v2 m2
12

v1
v2
þ λ2v22

�
: ðA10Þ

Stability requires that TrH > 0 and detH > 0. In addition,
we demand that the squared masses of the neutral Higgs
bosons should be positive. Using the results of Ref. [42],
the following quantities all must be positive:

m2
A ¼

�
m2

12

v1v2
− λ5

�
v2; ðA11Þ

m2
h þm2

H ¼ m2
A þ λ1v21 þ λ2v22; ðA12Þ

m2
hm

2
H ¼ m2

A

v2
½λ1v41 þ λ2v42 þ 2ðλ3 þ λ4Þv21v22�

þ ½λ1λ2 − ðλ3 þ λ4Þ2�v21v22: ðA13Þ

Note that the trace and determinant of the Hessian matrix
are related to the squared masses of the neutral scalars,

TrH ¼ m2
h þm2

H þ λ5v2; ðA14Þ

detH ¼ m2
hm

2
H þ λ5

��
λ5 þ

2m2
A

v2

�
v21v

2
2 þ λ1v41 þ λ2v42

�
:

ðA15Þ

Next, consider the case of sin 2ξ ≠ 0. In this case, it is
convenient to replace Eq. (A4) with

0 ¼ 1

v
∂Vvac

∂ cos ξ ¼
v1v2
v

ð−m2
12 þ λ5v1v2 cos ξÞ; ðA16Þ

which yields m2
12 ¼ λ5v1v2 cos ξ. Inserting this result into

Eqs. (A2) and (A3), it follows that

m2
11 ¼ −

1

2
λ1v21 −

1

2
ðλ3 þ λ4 − λ5Þv22; ðA17Þ

m2
22 ¼ −

1

2
λ2v22 −

1

2
ðλ3 þ λ4 − λ5Þv21: ðA18Þ

The elements of the 3 × 3 Hessian matrix are given by
the following second derivatives:

38If cos ξ ¼ 0 then Eq. (A4) yieldsm2
12 ¼ 0. In this case the Z2

symmetry of the scalar potential is explicitly preserved and
spontaneous CP violation does not occur [98] (see also Theorem
23.3 of Ref. [68]).
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∂2Vvac

∂v21 ¼ m2
11 þ

3

2
λ1v21 þ

1

2
ðλ3 þ λ4 þ λ5 cos 2ξÞv22

¼ λ1v21 þ λ5v22cos
2ξ; ðA19Þ

∂2Vvac

∂v22 ¼ m2
22 þ

3

2
λ2v22 þ

1

2
ðλ3 þ λ4 þ λ5 cos 2ξÞv21

¼ λ2v22 þ λ5v21cos
2ξ; ðA20Þ

∂2Vvac

∂v1∂v2 ¼ −m2
12 cos ξþ ðλ3 þ λ4 þ λ5 cos 2ξÞv1v2

¼ ðλ3 þ λ4 − λ5sin2ξÞv1v2; ðA21Þ

1

v2
∂2Vvac

∂ðcos ξÞ2 ¼
λ5v21v

2
2

v2
; ðA22Þ

1

v
∂2Vvac

∂v1∂ cos ξ ¼
λ5v1v22 cos ξ

v
; ðA23Þ

1

v
∂2Vvac

∂v2∂ cos ξ ¼
λ5v21v2 cos ξ

v
: ðA24Þ

Thus, the Hessian matrix is given by

H ¼ v2

0
BB@

λ1c2β þ λ5s2βcos
2ξ ðλ3 þ λ4 − λ5sin2ξÞsβcβ λ5v2s2βcβ cos ξ

ðλ3 þ λ4 − λ5sin2ξÞsβcβ λ2s2β þ λ5c2βcos
2ξ λ5sβc2β cos ξ

λ5s2βcβ cos ξ λ5sβc2β cos ξ λ5s2βc
2
β

1
CCA; ðA25Þ

where sβ ≡ v2=v and cβ ≡ v1=v. Stability requires thatH is
positive definite. By Sylvester’s criterion [101], it follows
that the principal minors must all be positive. A necessary
(although not sufficient) condition is that all diagonal
elements of H must be positive. In light of Eq. (2.2), we
conclude that λ5 > 0 is a necessary condition for sponta-
neous CP violation.

APPENDIX B: AN INVARIANT
CHARACTERIZATION OF THE ERPS4 AND

CONSEQUENCES FOR CP SYMMETRY

In Eq. (4.20), we provided an invariant characterization
of the ERPS4 that is defined by λ1 ¼ λ2 and λ7 ¼ −λ6,
which if realized in one scalar field basis is then satisfied in
all scalar field bases. Using Eq. (4.9) and employing the
identify,

σBabσ
B
cd ¼ 2δadδbc − δabδcd; ðB1Þ

it follows that the ERPS4 invariant can be rewritten in terms
of the quartic coefficients of the scalar potential,

Z ¼ 1

8
Trð½Zð1Þ þ Zð2Þ�2Þ − 1

16
ðTrZð1Þ þ TrZð2ÞÞ2; ðB2Þ

where, following Ref. [29], we have defined

Zð1Þ
ad ≡ δbcZab;cd ¼ Zab;bd ¼

�
λ1 þ λ4 λ6 þ λ7

λ�6 þ λ�7 λ2 þ λ4

�
; ðB3Þ

Zð2Þ
bd ≡ δacZab;cd ¼ Zab;ad ¼

�
λ1 þ λ3 λ6 þ λ7

λ�6 þ λ�7 λ2 þ λ3

�
; ðB4Þ

and the Zab;cd are defined in terms of the quartic couplings
of the scalar potential in Eq. (C4). One can simplify
Eq. (B2) using the symmetry properties of the Zab;cd to
obtain a slightly more compact form than was originally
obtained in Ref. [29],

Z ≡ 1

2
TrfðZð1ÞÞ2g − 1

4
½TrZð1Þ�2

¼ 1

4
ðλ1 − λ2Þ2 þ jλ6 þ λ7j2: ðB5Þ

As noted below Eq. (4.20), the ERPS4 corresponds to the
invariant condition, Z ¼ 0, which implies that λ1 ¼ λ2 and
λ7 ¼ −λ6. This condition is invariant with respect to
changes in the scalar field basis, Φa → Uab̄Φb for any
U ∈ Uð2Þ. Thus, if λ1 ¼ λ2 and λ7 ¼ −λ6 in one basis,
then the same relation holds in any scalar field basis. In
particular, it holds in the Higgs basis, which implies that
Z1 ¼ Z2 and Z7 ¼ −Z6.
One can make an even stronger statement that for any

scalar potential of the ERPS4, there exists a scalar field
basis where λ6 ¼ λ7 ¼ 0 and Imλ5 ¼ 0 (the latter after an
appropriate rephasing of Φ2), which defines the Z2 ⊗ Π2

basis of Sec. V. A simple proof of this statement was
provided below Eq. (4.20). Moreover, if CP is conserved
then the scalar field basis in which λ6 ¼ λ7 ¼ 0 can be
explicitly identified, as shown in Appendix B of Ref. [37]
and summarized below.
The first step is to go to the Higgs basis of the ERPS4

where Z1 ¼ Z2 and Z7 ¼ −Z6. If Z6 ¼ 0 then it trivially
follows that λ6 ¼ λ7 ¼ 0 in the Higgs basis. If Z6 ≠ 0, then
consider a U(2) transformation from the Higgs basis to the
Φ-basis with neutral vevs v1=

ffiffiffi
2

p
and v2eiξ=

ffiffiffi
2

p
where v1

and v2 are positive, tan β≡ v2=v1, and 0 ≤ ξ < 2π. It is
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straightforward to derive aΦ-basis expression for λ6 ¼ −λ7
in terms of Higgs basis parameters,

λ6eiξ ¼
1

2
s2βc2β½Z1 − Z34 − ReðZ5e2iξÞ� −

1

2
is2βImðZ5e2iξÞ

þ c4βReðZ6eiξÞ þ ic2βImðZ6eiξÞ; ðB6Þ

where Z34 ≡ Z3 þ Z4. We now search for values of β and ξ
such that λ6 ¼ 0. Moreover, since λ7 ¼ −λ6 in the ERPS4,
it follows that if ðβ; ξÞ yield λ6 ¼ 0 then so does
ð1
2
π − β; ξþ πÞ, corresponding to the interchange of the

scalar doublet fields, Φ1 ↔ Φ2.
Since Z6 ≠ 0, we may write Z6 ¼ jZ6jeiθ6 . It is then

convenient to define

ξ̄≡ ξþ θ6; ðB7Þ

where ξ̄ is defined modulo π. In the case where
CP is preserved by the scalar potential and vacuum,
ImðZ�

5Z
2
6Þ ¼ 0, as noted above Eq. (5.47).39 Inserting eiξ ¼

eiξ
0
Z�
6=jZ6j and ImðZ�

5Z
2
6Þ ¼ 0 into Eq. (B6), we search for

values of β and ξ such that

s2β ReðZ�
5Z

2
6Þ sin 2ξ̄ ¼ 2c2βjZ6j3 sin ξ̄; ðB8Þ

s2βc2β½jZ6j2ðZ1 − Z34Þ − ReðZ�
5Z

2
6Þ cos 2ξ̄�

¼ −2c4βjZ6j3 cos ξ̄: ðB9Þ

We can immediately obtain one solution to Eq. (B8),
sin ξ̄ ¼ 0 or equivalently cos ξ̄ ¼ �1. The twofold ambi-
guity was anticipated in the remarks below Eq. (B6).
Inserting cos ξ̄ ¼ �1 into Eq. (B9) yields a quadratic
equation for cot 2β,

2jZ6jcot22β�
�
Z1 −Z34 −

ReðZ�
5Z

2
6Þ

jZ6j2
�
cot2β− 2jZ6j ¼ 0;

ðB10Þ

which possesses two real roots whose product is equal to
−1. As a result, one ends up with four choices of ðβ; ξÞ,
where 0 ≤ β ≤ 1

2
π and cos ξ̄ ¼ �1, for which Eqs. (B8)

and (B9) are satisfied.
Moreover, additional solutions can be found if sin ξ̄ ≠ 0,

in which case one can divide Eq. (B8) by sin ξ̄. Solving
Eq. (B8) for c2β=s2β and inserting this result into Eq. (B9)
yields

cos ξ̄f½ReðZ�
5Z

2
6Þ�2 þ ReðZ�

5Z
2
6ÞjZ6j2ðZ1 − Z34Þ − 2jZ6j6g

¼ 0: ðB11Þ

One immediate solution to this equation is cos ξ̄ ¼ 0, which
we can then plug back into Eq. (B8) to obtain cos 2β ¼ 0.
Thus, we learn that ðβ ¼ 1

4
π; ξ̄ ¼ 1

2
πÞ and ðβ ¼ 1

4
π; ξ̄ ¼ 3

2
πÞ

are also solutions to Eqs. (B8) and (B9).
The above results are consistent with the result of Sec. V.

Equation (5.19) provides a relation between Z6 and the
scalar potential parameters of the Z2 ⊗ Π2 basis, which is
of the form Z6 ¼ ðxþ iyÞe−iξ. Thus, xþ iy ¼ jZ6jeiξ̄ and
we can identify

tan ξ̄ ¼ y
x
¼ −

λ5 sin 2ξ
½λð1 − RÞ þ 2λ5sin2ξ�c2β

: ðB12Þ

Taking into account the values of ðβ; ξ̄Þ obtained above
that provide solutions to Eqs. (B8) and (B9), we see that
sin ξ̄ ¼ 0 corresponds to sin 2ξ ¼ 0 and cos ξ̄ ¼ 0 corre-
sponds to c2β ¼ 0. Since this analysis was based on the
assumption that ImðZ�

5Z
2
6Þ ¼ 0, we have reproduced the

result of Eq. (5.48).
It is now instructive to compute Imðλ�5½m2

12�2Þ in the
Z2 ⊗ Π2 basis. Using Eq. (B11) of Ref. [37], written in a
slightly different form under the assumption that c4β ≠ 0,
we obtain40

Imðλ�5½m2
12�2Þ ¼ −

jZ6jv4s2β sin ξ̄
8c4β

�
c4β

�
2Y2

v2

�
2

−
2Y2

v2
½s22βZ1 þ ð1 − 3c22βÞZ34� − c22βR

2
5

þ
�
Z1 þ

2Y2

v2

�
R5 þ Z34ðZ34c22β − Z1s22βÞ

−
4c4β
s22β

jZ6j2sin2ξ̄
�
; ðB13Þ

where

R5 ≡ ReðZ5e2iξÞ

¼ ReðZ�
5Z

2
6Þ cos 2ξ̄þ ImðZ�

5Z
2
6Þ sin 2ξ̄

jZ6j2
: ðB14Þ

Under the assumption that ImðZ�
5Z

2
6Þ ¼ 0, the results

obtained above imply that either sin ξ̄ ¼ 0 or cos ξ̄ ¼ 0. If
sin ξ̄ ¼ 0 then it immediately follows that Imðλ�5½m2

12�2Þ ¼ 0.
That is, one can rephase the scalar doublet fields in theGCP2
basis to obtain a scalar potential whose coefficients are
all real in a scalar field basis where the vevs are also real.39If CP is violated, then ImðZ�

5Z
2
6Þ ≠ 0 and the existence

of the scalar field basis where λ6 ¼ λ7 ¼ 0 can be identified
numerically, although no simple analytic expressions exist for β
and ξ [37,102].

40If c4β ¼ 0, then the expression given in Eq. (B11) of Ref. [37]
is more useful.
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In contrast, if cos ξ̄ ¼ 0, which implies that c2β ¼ 0 as noted
below Eq. (B11), then Eq. (B13) yields

Imðλ�5½m2
12�2Þ ¼ �v4jZ6j

8

�
4jZ6j2 −

�
Z1 þ

2Y2

v2

�
2

þ
�
Z1 þ

2Y2

v2

��
Z1 − Z34 −

ReðZ�
5Z

2
6Þ

jZ6j2
��

;

ðB15Þ

which is generically nonzero. Thus, it follows that if
β ¼ 1

4
π and Imm2

12 ≠ 0 in the GCP2 basis, then one
cannot remove all complex phases from the scalar
potential with a simple rephasing of the Higgs doublet
fields. Nevertheless, the scalar potential and vacuum are
CP conserving since ImðZ�

5Z
2
6Þ ¼ 0 implies that a real

Higgs basis exists (i.e., all Higgs basis scalar potential
parameters are real after an appropriate rephasing of the
Higgs basis field H2).
In the analysis presented above, we used Eq. (B11) to

conclude that cos ξ̄ ¼ 0. However, there is an alternative
solution to Eq. (B11) where the coefficient of cos ξ̄
vanishes. Indeed, this alternative solution corresponds
to the case of the softly broken GCP3-symmetric
2HDM where Eq. (6.13) is satisfied. In this case, division
of Eq. (B8) by sin ξ̄ is permitted when sin ξ̄ ≠ 0, which
yields

cos ξ̄ ¼ jZ6j3 cot 2β
ReðZ�

5Z
2
6Þ

: ðB16Þ

Plugging this result into Eq. (B13) yields Imðλ05½m02
12�2Þ ≠ 0

for generic values of the scalar potential parameters and β.
In particular, in the GCP3 basis (where the scalar potential
parameters are designated with prime superscripts), there
exists a residual CP invariance despite the fact that
Imðλ05½m02

12�2Þ ≠ 0 when sin ξ̄0 ≠ 0, independently of the
value of β0. In contrast, λ5 ¼ 0 and Z6 ¼ jZ6jeiθ6 ¼
�jZ6je−iξ [cf. Eq. (6.11)] in the Uð1Þ ⊗ Π2 basis, in which
case Eq. (B7) yields sin ξ̄ ¼ 0.

APPENDIX C: CP INVARIANCE OF THE
SOFTLY BROKEN GCP3-SYMMETRIC

SCALAR POTENTIAL

The softly broken GCP3 scalar potential contains a
complex parameter, m02

12, in a basis in which the only
other potentially complex parameter, λ05, is taken to be
real. Moreover, there is a relative phase between the two
vevs. Thus, naively one would conjecture that the scalar
sector of the softly broken GCP3-symmetric 2HDM is
CP violating. However, we have demonstrated that by
changing the scalar field basis, this scalar potential can
be transformed into a softly broken Uð1Þ ⊗ Π2 scalar
potential in which λ5 ¼ 0. Then, one can rephase either

Φ1 or Φ2 to remove the phase of m2
12, which yields an

explicitly CP-conserving scalar potential. Moreover, one
can show that the scalar potential minimum condition in
the explicitly CP-conserving basis yields two vevs with
no relative complex phase. Hence, it follows that the
softly broken GCP3-symmetric 2HDM is explicitly CP
conserving, and the vacuum also preserves the CP
symmetry. These observations imply that in the original
GCP3 basis, one should be able to identify a residual
generalized CP transformation under which the GCP3
scalar potential and vacuum are invariant. The purpose of
this Appendix is to provide the explicit construction of
this generalized CP transformation.
We begin by rewriting Eq. (2.1) following the notation of

Ref. [29],

VðΦÞ ¼ Yab̄ðΦ†
āΦbÞ þ

1

2
Zab̄cd̄ðΦ†

āΦbÞðΦ†
c̄ΦdÞ; ðC1Þ

where the indices a, b̄, c and d̄ can take one of two
values 1, 2 (with an implicit sum over barred and unbarred
index pairs of the same letter), and Hermiticity and
symmetry under the interchange of barred and unbarred
indices imply that

Yab̄ ¼ ðYbāÞ�; Zab̄cd̄ ≡ Zcd̄ab̄ ¼ ðZbādc̄Þ�: ðC2Þ

Note that as a matrix,

Y ¼
�
Y11 Y12

Y�
12 Y22

�
¼
�

m2
11 −m2

12

−ðm2
12Þ� m2

22

�
; ðC3Þ

where the minus sign in the definition of m2
12 is conven-

tional. It is convenient to assemble the elements of the
tensor Zabcd into a 4 × 4 Hermitian matrix (denoted by Z)
as follows. First, we introduce a slightly different notation
for the components of Z,

Zac;bd ≡ Zab̄cd̄; ðC4Þ

where the first pair of indices of Zac;bd consists of unbarred
indices and the second pair consists of barred indices. In
this notation, it is conventional to omit the bars in the
second pair of indices.41 With this notation, each element
of a row of the matrix Z is denoted by a pair of sub-
scripts. These index pairs arranged in the order 11, 12, 21
and 22, and similarly for the pair of subscripts denoting
each element of a column of Z. The matrix Z is then
given by

41The reader is cautioned that in contrast to Eq. (C4), the
symbol Zab;cd employed in Ref. [41] is equivalent to Zab̄cd̄
without an interchange of the indices b and c.
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Z ¼

0
BBB@

Z11;11 Z11;12 Z11;21Z11;22

Z12;11 Z12;12 Z12;21Z12;22

Z21;11 Z21;12 Z21;21Z21;22

Z22;11 Z22;12 Z22;21Z22;22

1
CCCA

¼

0
BBB@

λ1 λ6 λ6 λ5

λ�6 λ3 λ4 λ7

λ�6 λ4 λ3 λ7

λ�5 λ�7 λ�7 λ2

1
CCCA: ðC5Þ

Under a basis transformation,

Φa → Φ0
a ¼ Uab̄Φb; Φ†

ā → Φ0†
ā ¼ Φ†

b̄
U†

bā; ðC6Þ
where U ∈ Uð2Þ is a 2 × 2 unitary matrix (U†

bāUac̄ ¼ δbc̄).
Under this unitary basis transformation, the vevs are
transformed as hΦ0

ai → hΦ00
a i ¼ Uab̄hΦ0

bi. Moreover, the
gauge covariant kinetic terms of the scalar fields are
invariant under a unitary basis transformation, whereas
the coefficients Yab̄ and Zab;cd transform covariantly with
respect to U(2) transformations as

Yab̄ → Y 0
ab̄

¼ Uab̄Ycd̄U
†
db̄

¼ ðUYU†Þab̄; ðC7Þ

Zab;cd → Z0
ab;cd ¼ UaēUbḡZeg;fhU

†
fc̄U

†
hd̄

¼ ½ðU ⊗ UÞZðU† ⊗ U†Þ�ab;cd; ðC8Þ

where the Kronecker product of two 2 × 2 matrices is a
4 × 4 matrix given in block matrix form by

A ⊗ B ¼
�
A11B A12B

A21B A22B

�
: ðC9Þ

The Kronecker product of two matrices satisfies the
following properties [103]:

ðA ⊗ BÞðC ⊗ DÞ ¼ AC ⊗ BD; ðC10Þ

ðA ⊗ BÞ† ¼ A† ⊗ B†; ðC11Þ

ðA ⊗ BÞ⊤ ¼ A⊤ ⊗ B⊤; ðC12Þ

ðA⊗BÞ−1¼A−1⊗B−1; if A−1 and B−1 exist: ðC13Þ

In particular, if A and B are unitary then so is A ⊗ B. The
Kronecker product A ⊗ B can be represented by a rank
four tensor whose components are given by

ðA ⊗ BÞab;cd ≡ AacBbd; ðC14Þ

where a row of the matrix A ⊗ B is denoted by a pair of
subscripts that are arranged in the order 11, 12, 21 and 22

(and similarly for the pair of subscripts denoting the
columns of A ⊗ B). This convention yields the 4 × 4
matrix representation of A ⊗ B given in Eq. (C9).
Hence, it follows that

UaēUbḡZeg;fhU
†
fc̄U

†
hd̄

¼ ðU ⊗UÞab;egZeg;fhðU† ⊗U†Þfh;cd
¼ ½ðU ⊗UÞZðU† ⊗U†Þ�ab;cd;

ðC15Þ

as indicated in Eq. (C8). That is, Eqs. (C7) and (C8) are
equivalent to the matrix equations,

Y 0 ¼ UYU†; Z0 ¼ ðU ⊗ UÞZðU† ⊗ U†Þ: ðC16Þ

It is common to consider the standard CP transformation
of the scalar fields as

Φaðt; x⃗Þ → ΦCP
a ðt; x⃗Þ ¼ Φ�

aðt;−x⃗Þ; ðC17Þ

where we shall no longer distinguish between barred and
unbarred indices, and the reference to the time (t) and space
(x⃗) coordinates will henceforth be suppressed. However,
in the presence of several scalars with the same quantum
numbers, U(2) basis transformations can be included in
the definition of the CP transformation. This yields the
generalized CP transformation (GCP) [68,104],42

ΦGCP
a ¼ eiγXabΦ�

b ≡ eiγXabðΦ†
bÞ⊤; ðC18Þ

Φ†GCP
a ¼ e−iγX�

abΦ⊤
b ≡ e−iγX�

abðΦ†
bÞ�; ðC19Þ

where X is an arbitrary unitary matrix of unit determinant
and γ ∈ R. We will indicate below Eq. (C25) how the
complex phase factor eiγ is determined.
Note that the transformation Φa → ΦGCP

a , where ΦGCP
a is

given by Eq. (C18), leaves invariant the gauge covariant
kinetic terms of the scalar fields. The GCP transformation
of a scalar field bilinear yields

Φ†GCP
a ΦGCP

b ¼ X�
acXbdðΦcΦ

†
dÞ⊤; ðC20Þ

which does not depend on the complex phase factor eiγ.
Under this GCP transformation, the quadratic terms of the
potential may be written as

42For early work on generalized CP transformations,
see Refs. [105–107]. Generalized CP transformations in the
context of the 2HDM have been treated in
Refs. [30,41,58,59,67,87,89,108–112].
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YabΦ
†GCP
a ΦGCP

b ¼ YabX�
acXbdΦ

†
dΦc

¼ XbdY�
baX

�
acΦ

†
dΦc

¼ XcaY�
cdX

�
dbΦ

†
aΦb

¼ ðX†YXÞ�abΦ†
aΦb; ðC21Þ

after making use of the Hermiticity of Y [cf. Eq. (C2)]
and appropriately relabeling the indices. A similar argu-
ment can be made for the quartic terms, by employing
the properties of the Kronecker product given in Eqs. (C10)–
(C13). We conclude that the scalar potential is invariant
under the GCP transformation exhibited in Eq. (C18) if and
only if the scalar potential coefficients obey

Y�
ab ¼ X�

caYcdXdb ¼ ðX†YXÞab; ðC22Þ

Z�
ab;cd ¼ X�

eaX�
gbZeg;fhXfcXhd; ðC23Þ

or equivalently,

Y� ¼ X†YX; Z� ¼ ðX† ⊗ X†ÞZðX ⊗ XÞ: ðC24Þ

Finally, we must check to see whether the GCP sym-
metry is preserved by the vacuum, in which case the
following condition must be satisfied:

hΦ0
ai ¼ eiγXabhΦ†0

b i: ðC25Þ

The complex phase factor eiγ will be chosen subject to the
convention where hΦ0

1i is real and non-negative. The latter
can always be arranged by performing an appropriate
hypercharge Uð1ÞY transformation on the scalar doublet
fields, which has no effect on the coefficients of the scalar
potential.
So far, we have assumed that all statements apply in the

Φ-basis. If we now perform a basis transformation to the
Φ0-basis as indicated by Eq. (C6), then we can express
the scalar potential in terms of the Φ0-basis scalar potential
parameters,

VðΦ0Þ ¼ Y 0
abðΦ0†

aΦ0
bÞ þ

1

2
Z0
ac;bdðΦ0†

aΦ0
bÞðΦ0†

c Φ0
dÞ; ðC26Þ

where Y 0
ab and Z0

ac;bd are given by Eqs. (C7) and (C8),
respectively.
Suppose that VðΦÞ is invariant under the GCP trans-

formation of Eq. (C18) with the matrix X. Equation (C22)
guarantees that Y� ¼ X†YX. Now, Eq. (C7) relates the
coefficients in the two bases through Y ¼ U†Y 0U. It then
follows that

U⊤Y 0�U� ¼ X†ðU†Y 0UÞX; ðC27Þ

which implies that

Y 0� ¼ ðU�X†U†ÞY 0ðUXU⊤Þ ¼ X0†Y 0X0; ðC28Þ

where X0 ¼ UXU⊤. A similar argument can be made for
the quartic terms, by employing the properties of the
Kronecker product given in Eqs. (C10)–(C13). Thus, we
conclude that VðΦ0Þ is invariant under a new GCP trans-
formation with matrix

eiγ
0
X0 ¼ eiγ

0
UXU⊤: ðC29Þ

The phase γ0 is not fixed by this computation and must
instead be determined by examining Eq. (C25) in the
Φ0-basis in a convention where hΦ00

1 i is real and non-
negative.
To construct the residual GCP transformation that is a

symmetry of the softly broken GCP3-symmetric scalar
potential, we begin our analysis in the Uð1Þ ⊗ Π2 basis.
The parameters of the quadratic part of the scalar potential
are specified in Eq. (C3), where Y12 ≡ jY12jeiθ12 is poten-
tially complex.43 In addition, the parameters of the quartic
part of the scalar potential satisfy [cf. Eq. (C5)]

λ ¼ Z11;11 ¼ Z22;22; λ3 ¼ Z12;12 ¼ Z21;21;

λ4 ¼ Z12;21 ¼ Z21;12; ðC30Þ

and all the other Zab;cd vanish. The softly broken
Uð1Þ ⊗ Π2-symmetric scalar potential is invariant with
respect to a GCP transformation with matrix

eiγX ¼
�
1 0

0 e−2iθ12

�
: ðC31Þ

The phase γ ¼ −θ12 has been chosen in anticipation of
Eq. (C34) below.
To establish the presence of the residual GCP symmetry,

we first verify that Eq. (C22) is satisfied,

�
Y11 jY12je−iθ12

jY12jeiθ12 Y22

�

¼
�
1 0

0 e2iθ12

��
Y11 jY12jeiθ12

jY12je−iθ12 Y22

��
1 0

0 e−2iθ12

�
:

ðC32Þ

Next, we verify that Eq. (C23) is satisfied:

43Here, we are assuming that Y12 ≠ 0. In the case of Y12 ¼ 0,
one can choose γ ¼ ξ and replace θ12 with −ξ in the definition
of X given in Eq. (C31) to ensure that Eqs. (C32)–(C34) are
all satisfied, thereby establishing invariance of the scalar
potential and the vacuum under the residual generalized CP
transformation.
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0
BBB@

λ 0 0 0

0 λ3 λ4 0

0 λ4 λ3 0

0 0 0 λ

1
CCCA ¼

0
BBB@

1 0 0 0

0 e2iθ12 0 0

0 0 e2iθ12 0

0 0 0 e4iθ12

1
CCCA

×

0
BBB@

λ 0 0 0

0 λ3 λ4 0

0 λ4 λ3 0

0 0 0 λ

1
CCCA

×

0
BBB@

1 0 0 0

0 e−2iθ12 0 0

0 0 e−2iθ12 0

0 0 0 e−4iθ12

1
CCCA:

ðC33Þ
Finally, the GCP symmetry is preserved by the vacuum if

Eq. (C25) is satisfied. The vevs are given by va ¼
ðv1; v2eiξÞ, where v1 and v2 are positive and ξ is determined
by the scalar potential minimum condition [cf. Eq. (6.4)],
ImðY12eiξÞ ¼ 0, which yields sinðθ12 þ ξÞ ¼ 0, under the
assumption that Y12 ≠ 0 (cf. footnote 43). It then follows
that θ12 þ ξ ¼ 0 mod π, which demonstrates that Eq. (C25)
is indeed satisfied. That is,�

v1
v2eiξ

�
¼
�
1 0

0 e−2iθ12

��
v1

v2e−iξ

�
: ðC34Þ

In the GCP3 basis, λ05 ¼ λ01 − λ03 − λ04 is real and nonzero.
Now, it is not immediately obvious that the softly broken
GCP3-symmetric 2HDM preserves a CP symmetry, since
Imðλ�5½m2

12�2Þ ≠ 0, which implies that one cannot rephase
the scalar doublet fields to remove the phase of m2

12.
Nevertheless, we know that CP is a symmetry of the softly
broken GCP3-symmetric scalar potential and vacuum since
it corresponds to a softly broken symmetric Uð1Þ ⊗ Π2

scalar potential expressed in a different basis. Thus, it
should be possible to explicitly construct the residual
generalized CP transformation that preserves the softly
broken GCP3-symmetric scalar potential and vacuum by
employing Eq. (C29), with U given by Eq. (8.1). Indeed,
we will construct X0 below and explicitly verify that
Eqs. (C24) and (C25) are satisfied when expressed in
terms of the GCP3 basis parameters.
Equations (8.1) and (C29) yield44

eiγ
0
X0 ¼ −ieiγ0

�−s12 c12
c12 s12

�
; ðC35Þ

where s12 ≡ sin θ12 and c12 ≡ cos θ12. Using Eq. (8.49),
which we can rewrite as

Y12 ¼ ReY 0
12 þ

1

2
iðY 0

22 − Y 0
11Þ; ðC36Þ

it follows that

c12 ¼
ReY 0

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReY 0

12Þ2 þ 1
4
ðY 0

22 − Y 0
11Þ2

q ;

s12 ¼
Y 0
22 − Y 0

11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReY 0

12Þ2 þ 1
4
ðY 0

22 − Y 0
11Þ2

q : ðC37Þ

One can check that Eq. (C22) is satisfied in the GCP3 basis
by rewriting this equation as

�
Y 0
11 Y 0�

12

Y 0
12 Y 0

22

�
−
�−s12 c12

c12 s12

��
Y 0
11 Y 0

12

Y 0�
12 Y 0

22

��−s12 c12
c12 s12

�
¼0:

ðC38Þ

To verify Eq. (C38), we multiply out the left-hand side
above to obtain

½2s12ReY 0
12 − c12ðY 0

22 − Y 0
11Þ�
�
c12 s12
s12 −c12

�
¼ 0; ðC39Þ

which is equal to the zero matrix after making use of
Eq. (C37).
Next, we check the validity of Eq. (C23) in the GCP3

basis. The explicit form of X0 ⊗ X0 is given by

X0 ⊗X0 ¼

0
BBB@

s212 −s12c12 −s12c12 c212
−s12c12 −s212 c212 s12c12
−s12c12 c212 −s212 s12c12
c212 s12c12 s12c12 s212

1
CCCA: ðC40Þ

In the GCP3 basis,

Z0 ¼

0
BBB@

λ0 0 0 λ0 − λ03 − λ04
0 λ03 λ04 0

0 λ04 λ03 0

λ0 − λ03 − λ04 0 0 λ0

1
CCCA: ðC41Þ

Indeed, Eq. (C23) is satisfied in the GCP3 basis, inde-
pendently of the value of θ12.
Our final check involves confirming the validity of

Eq. (C25) in the GCP3 basis. This computation will
then determine the phase γ0. Before performing the

44In obtaining Eq. (C35), we have absorbed the phase ϕ
[cf. Eq. (8.1)] into the definition of γ0.
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computation, we shall record an important result that is a
consequence of the scalar potential minimum condition
that is used to fix ξ0. In light of Eqs. (7.5) and (7.6), it
follows that45

cos ξ0 ¼ −
c12c2β0

s12s2β0
; ðC42Þ

after employing Eq. (C37).
Thus, we must verify

� cβ0

eiξ
0
sβ0

�
¼ −ieiγ0

�−s12 c12
c12 s12

�� cβ0

e−iξ
0
sβ0

�

¼
�−ieiγ0 ð−s12cβ0 þ c12sβ0e−iξ

0 Þ
−ieiγ0 ðc12cβ0 þ s12sβ0e−iξ

0 Þ

�
: ðC43Þ

We can immediately determine γ0 from the equation for cβ0
in Eq. (C43),

−ieiγ0 ¼ −s12 þ c12eiξ
0
tan β0: ðC44Þ

One can verify that −s12 þ c12eiξ
0
tan β0 is a complex

number of unit modulus after making use of Eq. (C42),
which provides one independent check of the validity of
Eq. (C43). The explicit form of the residual GCP symmetry
in the GCP3 basis has now been fixed.
Finally, we must verify the second complex equation for

eiξ
0
sβ0 given in Eq. (C43),

sβ0 ¼ −ieiðγ0−ξ0Þðc12cβ0 þ s12sβ0e−iξ
0 Þ: ðC45Þ

Straightforward algebra shows that Eq. (C45) is an identify
after making use of Eqs. (C42) and (C44) to eliminate cos ξ0

and eiγ
0
.

Thus, we have verified that the scalar potential and
vacuum of the softly broken GCP3-symmetric 2HDM are
invariant with respect to a residual GCP transformation
with matrix

eiγ
0
X0 ¼ ðc12eiξ0 tan β0 − s12Þ

�−s12 c12
c12 s12

�
; ðC46Þ

where s12 and c12 are given by Eq. (C37) and β0 and ξ0 are
determined by the GCP3 scalar potential parameters as
indicated in Eqs. (7.5)–(7.7). Note that although the form of

eiγ
0
X0 depends on the parameters of the softly broken GCP3

scalar potential, our calculation demonstrates that for any
choice of the parameters (and in particular for any choice of
the parameters that softly breaks the GCP3 symmetry),
there exists a residual GCP symmetry characterized by the
matrix eiγ

0
X0.

These results are not surprising given that we knew
from the beginning that the softly broken GCP3-symmetric
scalar potential is equivalent to a softly broken Uð1Þ ⊗ Π2-
symmetric scalar potential where the residual CP-
symmetry transformation law is identified as GCP1, after
removing all complex phases from the coefficients of the
scalar potential parameters by an appropriate rephasing of
the scalar doublet fields. Nevertheless, it is satisfying to
explicitly identify the residual GCP symmetry of the softly
broken GCP3-symmetric scalar potential independently of
the relations between Uð1Þ ⊗ Π2 basis and the GCP3 basis
obtained in Sec. VIII.

APPENDIX D: SCALAR SQUARED MASS
MATRICES IN THE Φ-BASIS

In Secs. VI and VII, the neutral scalar squared mass
matrices were evaluated in the Higgs basis. Of course, the
same scalar squared masses can be obtained by computing
the eigenvalues of the neutral scalar squared mass matrices
evaluated in the Φ-basis (under the assumption that
s2β ≠ 0). This computation provides a check of the results
obtained in Secs. VI and VII.
For example, for a softly broken Uð1Þ ⊗ Π2-symmetric

scalar potential, the calculation of the eigenvalues of the
neutral scalar squared-mass matrix is most easily done after
rephasing m2

12 as described below Eq. (6.5). In this case,
one obtains m2

A ¼ 2m2
12=s2β and the squared masses of h

and H (with mH ≤ mH) correspond to the eigenvalues of
the 2 × 2 matrix,

M2
H

¼
� m2

As
2
βþ λv2c2β −sβcβ½m2

A− ðλ3þλ4Þv2�
−sβcβ½m2

A− ðλ3þλ4Þv2� m2
Ac

2
βþ λv2s2β

�
;

ðD1Þ

with respect to the f ffiffiffi
2

p
ReΦ0

1 − vcβ;
ffiffiffi
2

p
ReΦ0

2 − vsβg
basis. One can verify that Eqs. (6.21) and (6.22) are
satisfied, as these equations are independent of the choice
of scalar field basis.
For a softly broken GCP3-symmetric scalar potential

(where parameters and fields are denoted with prime
superscripts), the computation of the neutral scalar
squared-mass matrix in the Φ0-basis (where s2β0 ≠ 0) is
more challenging. After employing the GCP3 condition,
λ03 þ λ04 ¼ λ0 − λ05, the 4 × 4 neutral scalar squared-mass
matrix is given by

45Equation (C42) can also be deduced from Eq. (8.56) after
making use of tan ξ ¼ − tan θ12, which is a consequence of the
scalar potential minimum condition, sinðθ12 þ ξÞ ¼ 0, obtained
above Eq. (C34).
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M2
N4 ¼

0
BBBBB@

sβ0
cβ0
R0 þ λ0v2c2β0 − cos ξ0½R0 − ðλ0 − λ05sin

2ξ0Þv2sβ0cβ0 �
− cos ξ0½R0 − ðλ0 − λ05sin

2ξ0Þv2sβ0cβ0 � cβ0
sβ0
R0 þ ðλ0s2βcos2ξ0 þ λ05c

2
βsin

2ξ0Þv2
1
2
λ05v

2s2β0 sin 2ξ
0 sin ξ0½R0 þ λ05v

2sβ0cβ0sin2ξ0�
− sin ξ0½R0 − ðL0 − λ05cos

2ξ0Þv2sβ0cβ0 � 1
2
λ0v2s2β0 sin 2ξ

0

1
2
λ05v

2s2β0 sin 2ξ
0 − sin ξ0½R0 − ðL0 − λ05cos

2ξ0Þv2sβ0cβ0 �
sin ξ0½R0 þ λ05v

2sβ0cβ0sin2ξ0� 1
2
λ0v2s2β0 sin 2ξ

0

sβ0
cβ0
R0 − λ05v

2s2β0 cos 2ξ
0 − cos ξ0½R0 − λ05v

2sβ0cβ0cos2ξ0�
− cos ξ0½R0 − λ05v

2sβ0cβ0cos2ξ0� cβ0
sβ0
R0 þ ðλ0s2β0sin2ξ0 − λ05c

2
β0cos

2ξ0Þv2

1
CCCCCA; ðD2Þ

with respect to the f ffiffiffi
2

p
ReΦ00

1 − vcβ0 ;
ffiffiffi
2

p
ReΦ00

2 − vsβ0 cos ξ0;
ffiffiffi
2

p
ImΦ00

1 ;
ffiffiffi
2

p
ImΦ00

2 − vsβ0 sin ξ0g basis,

where

R0 ≡ Reðm02
12e

iξ0 Þ; L0 ≡ λ0 − 2λ05 sin
2 ξ0: ðD3Þ

The next step is to identify the neutral Goldstone boson,
which resides in the Higgs basis field H1, and corresponds
to the eigenvector of M2

N4 with zero eigenvalue,

1ffiffiffi
2

p G0 ¼ ImH0
1

¼ −sβ0 sin ξ0ReΦ00
2 þ cβ0 ImΦ00

1 þ sβ0 cos ξ0 ImΦ00
2 :

ðD4Þ

Defining the real orthogonal matrix,

R ¼

0
BBB@

1 0 0 0

0 cos ξ0 0 sin ξ0

0 cβ0 sin ξ0 sβ0 −cβ0 cos ξ0

0 −sβ0 sin ξ0 cβ0 sβ0 cos ξ0

1
CCCA; ðD5Þ

one then finds that RM2
N4R

T is a matrix with respect to
the rotated basis whose fourth row and column consists
entirely of zeros (due to the Goldstone boson). Removing
the fourth row and fourth column yields a 3 × 3 squared-
mass matrix,

M2
N3 ¼

0
BBB@

sβ0
cβ0
R0 þ λ0v2c2β0 −R0 þ L0v2sβ0cβ0 1

2
λ05v

2sβ0 sin 2ξ0

−R0 þ L0v2sβ0cβ0
cβ0
sβ0
R0 þ λ0v2s2β

1
2
λ05v

2cβ0 sin 2ξ0

1
2
λ05v

2sβ0 sin 2ξ0 1
2
λ05v

2cβ0 sin 2ξ0 R0
sβ0cβ0

− λ05v
2 cos 2ξ0

1
CCCA; ðD6Þ

with respect to the f ffiffiffi
2

p
ReΦ00

1 − vcβ0 ;
ffiffiffi
2

p
Reðe−iξ0Φ00

2 Þ − vsβ0 ;
ffiffiffi
2

p ½sβ0ImΦ00
1 − cβ0Imðe−iξ0Φ00

2 Þ�g basis.

The normalized eigenstate corresponding toA is given by

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

2β0sin
2ξ0

q
0
B@

sβ0 cos ξ0

−cβ0 cos ξ0

−c2β0 sin ξ0

1
CA; ðD7Þ

with corresponding eigenvalue,

m2
A ¼ Reðm02

12e
iξ0 Þ

sβ0cβ0
þ λ05v

2sin2ξ0; ðD8Þ

in agreement with Eq. (7.20). In particular,

A ¼ ð1 − s2
2β0sin

2ξ0Þ−1=2
ffiffiffi
2

p
fsβ0 ðcos ξ0ReΦ00

1 − c2β0 sin ξ0ImΦ00
1 Þ þ cβ½c2β0 sin ξ0Imðe−iξ0Φ00

2 Þ − cos ξ0Reðe−iξ0Φ00
2 Þ�g

¼ ð1 − s2
2β0sin

2ξ0Þ−1=2
ffiffiffi
2

p
Im½iðcos ξ0 þ ic2β0 sin ξ0Þðsβ0Φ00

1 − cβ0e−iξ
0Φ00

2 Þ�
¼

ffiffiffi
2

p
Im½ieiψ ðsβ0Φ00

1 − cβ0e−iξ
0Φ00

2 Þ� ¼
ffiffiffi
2

p
Im½eiη0 ð−sβ0eiξ0Φ00

1 þ cβ0Φ00
2 Þ�

¼
ffiffiffi
2

p
ImH0

2; ðD9Þ
after making use of Eqs. (5.7), (7.16) and (8.60).
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One can then identify two other mutually orthogonal
normalized vectors orthogonal to A,

ffiffiffi
2

p
ReH0

1−v¼

0
B@
cβ0

sβ0

0

1
CA and

ffiffiffi
2

p
ReH0

2¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−s2
2β0sin

2ξ0
q

0
B@
−sβ0c2β0 sinξ0

cβ0c2β0 sinξ0

−cosξ0

1
CA; ðD10Þ

where the identification of the vectors above with the Higgs
basis fields follows the same procedure that yielded
Eq. (D9). Hence, if we construct a 3 × 3 real orthogonal
matrix O whose rows are given by the transposes of the
column vectors exhibited in Eqs. (D10) and (D7), respec-
tively, then it is straightforward to verify thatOM2

N3O
T is a

block diagonal matrix with respect to the f ffiffiffi
2

p
ReH0

1 − v;ffiffiffi
2

p
ReH0

2;
ffiffiffi
2

p
ImH0

2g basis. The upper 2 × 2 block of
OM2

N3O
T can be identified with the 2 × 2 CP-even neutral

scalar squared-mass matrix,

M2
H ¼

� ðλ0 − λ05s
2
2β0sin

2ξ0Þv2 −λ05v2s2β0 sin ξ0ð1 − s2
2β0sin

2ξ0Þ1=2
−λ05v2s2β0 sin ξ0ð1 − s2

2β0sin
2ξ0Þ1=2 m2

A − λ05v
2ð1 − s2

2β0sin
2ξ0Þ

�
; ðD11Þ

which reproduces the result of Eq. (7.23), and the squared
mass of theCP-odd scalar,m2

A [which is given by Eq. (D8)],
is the 33 element of OM2

N3O
T.

Clearly this is not the preferred method for computing
the squared masses of the neutral scalars that derive from a
softly broken GCP3-symmetric scalar potential, in light
of the much simpler Higgs basis computation given in
Sec. VII.

APPENDIX E: THE IDM IN THE Φ-BASIS

The inert doublet model (IDM) can be defined as a
2HDM in which the 2HDM Lagrangian and vacuum are
invariant under a Z2 symmetry, H1 → H1, H2 → −H2, in
the Higgs basis. In particular, H2 is odd under the Z2

symmetry, whereas all other fields of the 2HDM (i.e., H1,
the gauge bosons, and the fermions) are even under the Z2

symmetry. Of course, one is free to transform the scalar
field basis from the Higgs basis to an arbitrary Φ-basis by
employing the unitary matrix U given in Eq. (9.12).
Suppose one is given a 2HDM scalar potential in

a Φ-basis, where the vevs of the scalar fields yield tan β ¼
jhΦ0

2i=hΦ0
1ij and ξ ¼ arg½hΦ0

1i�hΦ0
2i�. What are the con-

ditions on the scalar potential parameters that imply
that the model under consideration is the IDM? To
answer this question, we start in the Higgs basis with
Y3 ¼ Z6 ¼ Z7 ¼ 0, as mandated by the Z2 symmetry.
Employing Eqs. (A18)–(A28) of Ref. [37], it then follows
that in the Φ-basis, the scalar potential parameters must
satisfy the following conditions:

Imðm2
12e

iξÞ ¼ 0; ðE1Þ

ðm2
22 −m2

11Þs2β ¼ 2Reðm2
12e

iξÞc2β; ðE2Þ

c4βRe½ðλ6 − λ7Þeiξ�

¼ 1

2
s2βc2β½λ1 þ λ2 − 2ðλ3 þ λ4 þ Reðλ5e2iξÞÞ�; ðE3Þ

c2βIm½ðλ6 − λ7Þeiξ� ¼ −s2βImðλ5e2iξÞ; ðE4Þ

c2βRe½ðλ6 þ λ7Þeiξ� ¼
1

2
s2βðλ1 − λ2Þ; ðE5Þ

Im½ðλ6 þ λ7Þeiξ� ¼ 0: ðE6Þ

Note that if the scalar potential parameters satisfy Eq. (9.7)
then Eqs. (E1)–(E6) yield c2β ¼ sin ξ ¼ 0 as expected
based on the corresponding scalar potential minimum
conditions.
When written in a generic Φ-basis, the form of the Z2

symmetry that is respected by the scalar potential and
vacuum becomes somewhat obscure. Nevertheless, it is
straightforward to check that if Eqs. (E1)–(E6) are satisfied,
then the scalar potential and vacuum are invariant with
respect to the following discrete symmetry of order 2 in the
Φ-basis,

Z2H∶Φ1 → c2βΦ1 þ e−iξs2βΦ2;

Φ2 → eiξs2βΦ1 − c2βΦ2; ðE7Þ

which can be obtained from Eq. (9.14) by setting θ ¼ 1
2
π

and applying a hypercharge Uð1ÞY transformation to
remove an overall factor of −i. Note that the square of
the Z2H transformation is equal to the identity, as adver-
tised. As a final check, note that if we set c2β ¼ sin ξ ¼ 0

[cf. Eqs. (9.7) and (9.8)], then we can identifyZ2H with Π2.
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