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There are only six independent types of symmetry-constrained (renormalizable) scalar potentials in the
two Higgs doublet model (2HDM). For example, the scalar sector symmetry known asZ2 ⊗ Π2, generated
by the simultaneous application of two independent symmetries acting on the scalar fields, and the
generalized CP symmetry known as GCP2 yield equivalent 2HDM scalar potentials. A similar situation
arises for the scalar sector symmetries known as Uð1Þ ⊗ Π2 and GCP3, respectively. In this paper, we show
that this “degeneracy” remains when the definitions of the corresponding symmetries are extended to the
Yukawa sector with three quark generations. The proof involves the exploration of all possible extensions
of the corresponding symmetries to the Yukawa sector, consistent with the phenomenological constraints of
nonzero quark masses and a nontrivial quark mixing matrix. Moreover, we find that this result is a
peculiarity of a Yukawa sector with three quark generations. In particular, with two quark generations, we
find that models based on the extension of Z2 ⊗ Π2 to the Yukawa sector are inequivalent with those based
on GCP2.
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I. INTRODUCTION

The discovery at LHC in 2012 of a neutral scalar (h125)
with mh ≃ 125 GeV [1,2] was a major milestone in
particle physics. In particular, the Standard Model (SM)
of fundamental particles and their interactions posits the
existence of an elementary SUð2ÞL doublet of scalar
fields. The spontaneous breaking of the SUð2ÞL × Uð1ÞY
gauge symmetry generates masses for the gauge bosons,
quarks, and charged leptons, while leaving one
physical scalar degree of freedom—the Higgs boson. In
the analysis of LHC data collected over the past 13 yrs, the
observed properties of h125 are consistent with the
predictions of the SM within the statistical uncertainties

of the measurements [3,4]. Nevertheless, one cannot
currently rule out the possibility that additional scalar
particles exist with masses of order the electroweak scale.
Indeed, in light of the nonminimality of the quark and
lepton sectors of the SM, which exhibits three replicas
(families/generations) of each fermion type, one might
expect a nonminimal scalar sector as well. Therefore, it is
of fundamental interest to ascertain the number of
elementary scalars in nature.
One of the simplest extensions of the SM scalar sector is

the two-Higgs doublet model (2HDM) [5]. In spite of its
apparent simplicity, the 2HDM has a very rich and vast
phenomenology, having been used, for example, to propose
the origin of CP violation as a consequence of a sponta-
neously broken symmetry [6], to explain the baryon–
antibaryon asymmetry [7], and to provide a plausible
dark-matter candidate [8,9]. The diversity in its phenom-
enology is due in part to the fact that the most general
2HDM scalar potential initially consists of 14 real param-
eters, and the corresponding Higgs-quark Yukawa sector
initially consists of 72 real parameters (prior to identifying
the independent physical parameters of the model). Thus,
as in any model of an extended Higgs sector, it is of central
importance to impose additional global (discrete or
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continuous) symmetries to increase the predictability of the
model by reducing the number of parameters, to avoid
(tree-level) flavor-changing neutral couplings mediated by
scalars [10,11], and/or to explain some relations among
observables [12].
Many theoretical aspects of the 2HDM are now known.

The impact of symmetries in the scalar sector has
been studied in detail by many authors. Symmetries can
be of two types: flavor symmetry transformations, which
change a given scalar field into linear combinations of
scalar fields (but not their complex conjugates),
and generalized CP (GCP) symmetry transformations,
which transform a given scalar field into linear combina-
tions of complex conjugated scalar fields. It has
been shown that in the 2HDM there are only six inequi-
valent symmetry-constrained (renormalizable) scalar
potentials [13,14]. As an example, consider the symmetries

Z2∶ Φ1 → Φ1; Φ2 → −Φ2; ð1Þ

Π2∶ Φ1 ↔ Φ2: ð2Þ

The scalar potential invariant under a Z2 ⊗ Π2

[Uð1Þ ⊗ Π2] symmetry is the same scalar potential,
although in a different scalar field basis, as the scalar
potential invariant under a generalized CP symmetry,
which is denoted by GCP2 (GCP3) [14–19]. These
features can be understood by considering basis invariant
quantities [15,20]. More recently, a more sophisticated
method that employs novel invariant theory techniques
has been shown to yield the same conclusions noted
above [21–23].
The extension of flavor symmetries to the Yukawa sector

was initiated with an examination of Abelian symmetries in
Refs. [24–26]. Extensions of generalized CP transforma-
tions into the Yukawa sector of the 2HDM were considered
in Ref. [27], where it was shown that there is only onemodel
that is consistent with nonzero quark masses and a non-
diagonal Cabibbo-Kobayashi-Maskawa (CKM) matrix.1

However, there are subtleties involved in the study of
symmetries. Indeed, when extending symmetries to the
Yukawa sector, two different scalar symmetries that yield
the same scalar potential can result in different Yukawa
couplings [24]. For example, the scalar potential of the
Z3-symmetric 2HDM coincides with the scalar potential
of the Z4-symmetric 2HDM. Nevertheless, when extended
to the Yukawa sector, the Z3-symmetric 2HDM
and the Z4-symmetric 2HDM yield different Yukawa
textures.2

Hence, the following two questions arise, which we
propose to address in this paper:

(i) Is it possible to impose symmetries in the Yukawa
sector in such a way that the resulting Yukawa
matrices are both compatible with a Z2 ⊗ Π2

[Uð1Þ ⊗ Π2] symmetry of the scalar sector and
consistent with experimental observations?

(ii) Are the Yukawa sectors of the Z2 ⊗ Π2

[Uð1Þ ⊗ Π2]-symmetric 2HDM and the GCP2
[GCP3]-symmetric 2HDM equivalent, or is there
a “removal of the degeneracy”?

In Sec. II, we introduce our notation, examine the
consequences of flavor and of GCP symmetries, and
review the six inequivalent symmetries that can be
imposed on the 2HDM scalar potential. Our primary goal
is to determine whether an extension of the Z2 ⊗ Π2 or
Uð1Þ ⊗ Π2 symmetry to the Yukawa sector can yield a
phenomenologically viable model. In Sec. IV, we show
that all Yukawa coupling matrices arising in models with
the Z2 ⊗ Π2 symmetry extended to the Yukawa sector
with three quark generations must possess at least one
massless quark. For the Uð1Þ ⊗ Π2 model, we show in
Sec. V that only one case exists in which the Yukawa
coupling matrices yield nonzero quark masses, mixing
angles, and a CP-violating phase that can be compatible
with experimental observations. Moreover, as shown in
Sec. VI, under a change of scalar field basis, the
corresponding Yukawa coupling matrices of the Uð1Þ ⊗
Π2 model coincide with those of the GCP3 model. Next
we consider models with two quark generations that yield
nonvanishing, nondegenerate quark masses and a nonzero
Cabibbo angle. We show in Sec. VII that the Z2 ⊗ Π2 and
GCP2 symmetries can be extended to the Yukawa sector
with two quark generations. However, the corresponding
Yukawa matrices obtained in Z2 ⊗ Π2 models with two
generations are not compatible with those found for the
Yukawa matrices of the GCP2 model. This result dem-
onstrates that the two questions posed above are indeed
relevant. Although the Z2 ⊗ Π2 and GCP2 models cannot
be extended to the three-generation Yukawa sector in a
way compatible with experiment, they can both be
extended to the two-generation Yukawa sector.
However, the extension of Z2 ⊗ Π2 and GCP2 to the
Yukawa sector yields inequivalent models. That is, in this
case the degeneracy of the two symmetries of the scalar
potential is removed by the extension to the Yukawa
sector. We outline our conclusions in Sec. VIII. For
completeness, we have included some useful details in
four Appendixes.

II. NOTATION

Consider the most general (renormalizable) 2HDM
scalar potential VH, parametrized by

1Very recently, this study has been generalized to the
GCP-symmetric 3HDM with Yukawa interactions in Ref. [28].

2This is analogous to the usual quantum mechanical removal
of degeneracies by the addition of a new term in the Hamiltonian.
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VH ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ λ7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:

�
; ð3Þ

where H.c. stands for Hermitian conjugate; m2
12, λ5, λ6, λ7

are potentially complex parameters; and all other scalar
potential parameters are real.
The scalar potential may also be written in a more

compact notation as

VH ¼ YijðΦ†
iΦjÞ þ Zij;klðΦ†

iΦjÞðΦ†
kΦlÞ; ð4Þ

where i; j; k;l∈ f1; 2g with an implicit sum over repeated
indices and Hermiticity implies

Yij ¼ Y�
ji; Zij;kl ≡ Zkl;ij ¼ Z�

ji;lk: ð5Þ

We assume that the parameters of the scalar potential have
been chosen such that the minimization of VH yields charge
preserving scalar field vacuum expectation values (VEVs)
hΦii ¼ ð0; viÞT. In the spirit of Refs. [24,27–29], we allow
the VEVs vi to take any complex value, consistent with
possible soft-symmetry breaking terms that one might wish
to add to the potential for phenomenological reasons. Note
that

v2 ≡ jv1j2 þ jv2j2; ð6Þ

where v≡ ð2 ffiffiffi
2

p
GFÞ−1=2 ≃ 174 GeV is fixed by the value

of the Fermi constant.
As for the quark Yukawa sector, it involves the n

generations of left-handed quark doublets (qL), right-
handed down-type quarks (nR), and right-handed up-type
quarks (pR). The Yukawa Lagrangian may be written in the
interaction-eigenstate basis as (e.g., see Ref. [30])

−L Y ¼ q̄L½ðΓ1Φ1 þ Γ2Φ2ÞnR þ ðΔ1Φ̃1 þ Δ2Φ̃2ÞpR�
þ H:c:; ð7Þ

where Φ̃≡ iτ2Φ� [with iτ2 ≡ ð 0
�1

1
0
Þ], and qL, nR, and pR

are n-component vectors in flavor space.3 The n × n
matrices Γi, Δi, contain the complex Yukawa couplings
to the right-handed down-type quarks and up-type quarks,
respectively. After spontaneous symmetry breaking, the
quark mass terms appear as

−L Y ⊃ n̄LMnnR þ p̄LMppR þ H:c:; ð8Þ

where

Mn ¼ Γ1v1 þ Γ2v2; ð9Þ

Mp ¼ Δ1v�1 þ Δ2v�2: ð10Þ

In general, the matrices Mn and Mp are not diagonal,
corresponding to the fact that the interaction-eigenstate
fermion fields nL, nR, pL, and pR are not mass-eigenstate
fields. To obtain the physical fermion fields, we perform the
transformations

n̄L ¼ d̄LV
†
dL; p̄L ¼ ūLV

†
uL; ð11Þ

nR ¼ VdRdR; pR ¼ VuRuR; ð12Þ

where the unitary matrices VdL, VdR, VuL, and VuR are
chosen such that

diagðmd;ms;mbÞ ¼ Dd ¼ V†
dLMnVdR; ð13Þ

diagðmu;mc;mtÞ ¼ Du ¼ V†
uLMpVuR; ð14Þ

where the diagonal entries of Dd and Du are real and non-
negative (corresponding to the singular value decomposi-
tion of the mass matricesMd andMu, respectively), and dL,
dR, uL, and uR are mass-eigenstate fermion fields. The
basis change from interaction eigenstates to mass eigen-
states in the left-handed quark sector yields the couplings of
quarks of different generations to the W bosons that are
governed by the unitary CKM matrix

VCKM ≡ V†
uLVdL: ð15Þ

We now define the Hermitian matrices

Hd ¼ MnM
†
n; Hu ¼ MpM

†
p: ð16Þ

Notice that these matrices are bilinear in left-handed spaces
(dL and uL, respectively); effectively, the right-handed
spaces have been traced over. It immediately follows
that

D2
d ¼ V†

dLHdVdL; D2
u ¼ V†

uLHuVuL: ð17Þ
3In Secs. III–VI, we will take the number of quark generations

to be n ¼ 3. However, in Sec. VII and in Appendixes C and D, we
will discuss some toy models with n ¼ 2.
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For definiteness, let us take the usual generation number
n ¼ 3. Then, several consequences follow. First, the quark
masses (say, those of the down-type quarks) may be
accessed by looking at the three invariants that are obtained
from Hd, which can be taken to be either: (i) the three
eigenvalues of Hd; (ii) TrðHdÞ, detðHdÞ, and the third
coefficient of the characteristic equation; or (iii) the traces
of Hd, H2

d, and H3
d. Second, the elements of the CKM

matrix can be accessed by beating Hd against Hu and
taking traces. For example, one can find the four indepen-
dent magnitudes of CKM matrix elements by calculating
TrðHdHuÞ, TrðHdH2

uÞ, TrðH2
dHuÞ, and TrðH2

dH
2
uÞ [31,32].

This does not define the sign of the CP violating CKM
phase, which can be inferred through the Jarlskog invariant
JCP [33–35]. Following Refs. [20,36],

JCP ¼ Im fTrðHuHdH2
uH2

dÞg ¼ ðm2
t −m2

cÞðm2
t −m2

uÞðm2
c −m2

uÞðm2
b −m2

sÞðm2
b −m2

dÞðm2
s −m2

dÞ JCKM; ð18Þ

where

JCKM ¼ j Im ðVαaVβbV�
αbV

�
βaÞj; ð19Þ

for any choice of up-type and down-type quark flavor
indices, α ≠ β and a ≠ b, respectively. Alternatively, one
can note that [33,35,37]:

Tr½Hu;Hd�3 ¼ 3 det ½Hu;Hd� ¼ 6i Im fTrðHuHdH2
uH2

dÞg:
ð20Þ

Clearly, through the squared-mass prefactors, JCP vanishes
whenever two same-charge quark masses are degenerate.
Moreover, JCP vanishes (through JCKM) if the CP-violating
phase in the CKM matrix vanishes. Finally, JCP vanishes
(again through JCKM) whenever the CKM matrix is block
diagonal.

A. Basis transformations and flavor symmetries

Physical observables are independent of the choice of the
basis for the scalar fields and fermion fields employed in
the Higgs Lagrangian. Since the Lagrangian parameters are
basis-dependent quantities, some care is needed in identi-
fying the physical parameters of the theory. Moreover, the
presence of a symmetry can impart physical significance to
the parameters of a particular basis choice.
The Higgs Lagrangian specified in Sec. II was written in

terms of fields Φi, qL, nR, and pR. The most general basis
transformation that preserves the form of the gauge
covariant kinetic energy terms yields new scalar and
fermion fields,

Φi → Φ0
i ¼ UijΦj; qL → q0L ¼ ULqL; ð21Þ

nR → n0R ¼ UnRnR; pR → p0
R ¼ UpR

pR; ð22Þ

where U is an arbitrary 2 × 2 unitary matrix and
UL;UnR; UpR

are arbitrary n × n unitary matrices (where
n is the number of quark generations). With respect to the
transformed basis of scalar and quark fields, the scalar
potential parameters and VEVs likewise transform as

Yij → Y 0
ij ¼ UikYklU�

jl; ð23Þ

Zij;kl → Z0
ij;kl ¼ UimUkoZmn;opU�

jnU
�
lp; ð24Þ

vi → v0i ¼ Uijvj; ð25Þ

whereas the Yukawa matrices transform as

Γi → Γ0
i ¼ ULΓjU

†
nRðU†Þji; ð26Þ

Δi → Δ0
i ¼ ULΔjU

†
pRðUTÞji: ð27Þ

Since physical observables do not depend on the choice of
basis, only basis invariant combinations of the Higgs
Lagrangian parameters are physical [15,20] (which can
be experimentally measured).
In contrast to basis transformations, consider the impli-

cations of a flavor symmetry transformation of fields. The
flavor symmetry transformation groups are subgroups of
the corresponding groups of basis transformations of scalar
and fermion fields that leave the Higgs Lagrangian invari-
ant. We shall denote the corresponding Higgs and fermion
flavor symmetry transformations by

Φi → ΦS
i ¼ SijΦj; qL → qSL ¼ SLqL; ð28Þ

nR → nSR ¼ SnRnR; pR → pS
R ¼ SpR

pR; ð29Þ

where S is a 2 × 2 unitary matrix and SL; SnR; SpR
are

unitary n × n matrices such that the corresponding Higgs
Lagrangian parameters are left invariant. The flavor sym-
metry corresponding to the transformation of scalar fields is
sometimes called a Higgs family (HF) symmetry. If the
Higgs Lagrangian is invariant under a HF symmetry
transformation, then the scalar potential parameters defined
in Eq. (4) satisfy

Yij ¼ YS
ij ¼ SikYklS�jl; ð30Þ

Zij;kl ¼ ZS
ij;kl ¼ SimSkpZmn;prS�jnS

�
lr: ð31Þ
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Likewise, if the Yukawa Lagrangian is invariant under the
HF and quark flavor symmetry transformations, then the
Yukawa matrices defined in Eq. (7) satisfy

Γi ¼ SLΓjS
†
nRðS†Þji; ð32Þ

Δi ¼ SLΔjS
†
pRðSTÞji: ð33Þ

The HF symmetry is unbroken if vi ¼ vSi , and it is
spontaneously broken if vi ≠ vSi , where

vSi ≡ Sijvj: ð34Þ

Note that the symmetry transformation matrices intro-
duced in Eqs. (28) and (29) are defined with respect to a
particular basis choice for the scalar and fermions fields.
One can perform a basis transformation specified in
Eqs. (21) and (22) to express the corresponding symmetry
transformation matrices with respect to the new basis of
scalar and fermion fields [24],

S0 ¼ USU†; S0L ¼ ULSLU
†
L; ð35Þ

S0nR ¼ UnRSnRU
†
nR; S0pR

¼ UpR
SpR

U†
pR: ð36Þ

When expressed in terms of the new basis fields, one can
check that the corresponding basis-transformed parameters
are invariant with respect to the symmetry transformations
exhibited in Eqs. (35) and (36). In studies of all possible
inequivalent symmetries, it is often useful to employ a basis
corresponding to the choice of unitary matricesU,UL,UnR ,
and UpR

such that S0, S0L, S0nR , and S0pR
are diagonal

matrices.

B. GCP symmetries

The flavor symmetries discussed in the previous section
are not the only type of symmetries that leave the gauge
covariant kinetic terms invariant. In addition, one can also
consider GCP symmetries that transform the fields into
linear combinations of the corresponding CP conjugate
fields. These symmetries act on the scalar and fermion
fields as

Φiðt; x⃗Þ → ΦGCP
i ðt; x⃗Þ ¼ XijΦ�

jðt;−x⃗Þ; ð37Þ

QLðt; x⃗Þ → QGCP
L ðt; x⃗Þ ¼ XLγ

0CQ̄T
Lðt;−x⃗Þ; ð38Þ

nRðt; x⃗Þ → nGCPR ðt; x⃗Þ ¼ XnRγ
0Cn̄TRðt;−x⃗Þ; ð39Þ

pRðt; x⃗Þ → pGCP
R ðt; x⃗Þ ¼ XpR

γ0Cp̄T
Rðt;−x⃗Þ; ð40Þ

where X, XL, XnR , and XpR
are generic unitary matrices in

the respective flavor spaces, γ0 is a Dirac matrix, and C is

the charge conjugation matrix. Henceforth, we will sup-
press the reference to the spacetime coordinates.
Invariance of the Higgs Lagrangian under the GCP

transformations exhibited in Eqs. (37)–(40) implies that

Y�
ij ¼ X�

kiYklXlj ¼ ðX†YXÞij; ð41Þ

Z�
ij;kl ¼ X�

miX
�
pkZmn;prXnjXrl; ð42Þ

Γ�
j ¼ X†

LXijΓiXnR; ð43Þ

Δ�
j ¼ X†

LX
�
ijΔiXpR

: ð44Þ

One can again perform a basis transformation specified in
Eqs. (21) and (22) to express the corresponding GCP
symmetry transformation matrices with respect to the new
basis of scalar and fermion fields,

X0 ¼ UXUT; X0
L ¼ ULXLUT

L; ð45Þ

X0
nR ¼ UnRXnRU

T
nR; X0

pR
¼ UpRXpR

UT
pR: ð46Þ

In the special cases where the unitary X matrices are also
symmetric, then one can prove that a unitary matrix V
exists such that X ¼ VTV (e.g., see Appendix B of
Ref. [38]). Then, the basis choice of U¼V yields X0 ¼ 1
(the identity matrix), with a similar result for X0

L, X
0
nR , and

X0
pR
. In these special cases, the GCP transformations reduce

to ordinaryCP transformations. More generally, the unitary
X matrices are not symmetric, in which case one cannot
employ a basis (corresponding to a choice of unitary
matrices U, UL, UnR , and UpR

) in which the transformed
X matrices are diagonal. However, it is still possible to
reduce the general form of the X matrices by using a
theorem proved in Ref. [39], which states that for any
unitary matrix X, there exists a unitary matrix U such that
the transformed X matrices above can be reduced to the
forms

X0 ¼
�

cθ sθ
−sθ cθ

�
; X0

σ ¼

0
B@

cθσ sθσ 0

−sθσ cθσ 0

0 0 1

1
CA;

with σ ∈ fL; nR; pRg; ð47Þ

where cθ ≡ cos θ, sθ ≡ sin θ, and all angles lie in the closed
interval ½0; π=2�. This result is very useful in classifying the
GCP symmetries and in studying their effects in the
Yukawa sector.
Alternatively, one can start from Eq. (47) and make a

further basis transformation using Eqs. (21) and (22) with
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U¼e3iπ=4ffiffiffi
2

p
�
1 i

i 1

�
;

UL¼UnR ¼UpR
¼e3iπ=4ffiffiffi

2
p

0
B@
1 i 0

i 1 0

0 0
ffiffiffi
2

p
e−3iπ=4

1
CA; ð48Þ

to obtain the corresponding GCP symmetry transformation
matrices

X00 ¼
�

0 e−iθ

eiθ 0

�
; X00

σ ¼

0
B@

0 e−iθσ 0

eiθσ 0 0

0 0 1

1
CA;

with σ ∈ fL; nR; pRg: ð49Þ

Note that the basis choices introduced above can be made
independently on each of the four spaces (i.e., the scalar,
qL, nR, and pR spaces).

C. The inequivalent symmetries of the 2HDM potential

Consider the most general renormalizable 2HDM scalar
potential VH given in Eq. (3). To reduce the number of
scalar potential parameters, one can impose symmetries on
the Higgs Lagrangian that leave the gauge covariant scalar
and fermion kinetic terms unchanged. These symmetries
can be classified according to two different types: flavor
symmetries exhibited in Eqs. (28) and (29), or GCP
symmetries exhibited in Eqs. (37)–(40). Moreover, contrary
to what one might expect, imposing two different
symmetries on the scalar fields does not necessarily give
rise to two different scalar potentials. As shown in
Refs. [14,40,41], there are only six inequivalent symmetries
that can be imposed on the scalar potential which leave
invariant the gauge covariant kinetic energy terms of the
scalar fields. Of these six inequivalent symmetries, three are
HF symmetries and three are GCP symmetries. The three
HF symmetries are Z2, the Peccei-Quinn symmetry
U(1) [42], and the maximal Higgs flavor symmetry
Uð2Þ=Uð1ÞY . With respect to a certain basis, the HF
symmetries act on the scalar fields as4

Z2∶ Φ1 → Φ1; Φ2 → −Φ2; ð50Þ

Uð1Þ∶Φ1→Φ1; Φ2→eiθΦ2; 0<θ<2π; ð51Þ

Uð2Þ=Uð1ÞY∶Φa→ΦS
a¼SabΦb; with S∈Uð2Þ=Uð1ÞY:

ð52Þ

The three GCP symmetries are the standard CP trans-
formation (sometimes called GCP1), GCP2, and GCP3.
Their action on the scalar fields is given by

StandardCP∶ Φ1 → Φ�
1; Φ2 → Φ�

2; ð53Þ

GCP2∶ Φ1 → Φ�
2; Φ2 → −Φ�

1; ð54Þ

GCP3∶
�Φ1 → cθΦ�

1 þ sθΦ�
2

Φ2 → cθΦ�
2 − sθΦ�

1

; 0 < θ <
1

2
π: ð55Þ

In the case of GCP3, any choice of 0 < θ < 1
2
π imposes the

same conditions on the scalar potential parameters.
In principle, any subgroup of U(2) provides a possible

HF symmetry that can be imposed on the 2HDM scalar
potential. But, any such symmetry must be equivalent to
Z2, U(1), or Uð2Þ=Uð1ÞY. For example, suppose one
imposes a discrete symmetry Zn (with integer n ≥ 3) on
the scalar potential. Then, one obtains a scalar potential that
is in fact (accidentally) invariant under the full continuous
U(1) symmetry.
In this work, we will consider yet another HF symmetry,

Π2, defined as

Π2∶ Φ1 ↔ Φ2: ð56Þ

However, the Π2 symmetry is equivalent to the Z2

symmetry specified in Eq. (50) after performing a change
of scalar field basis [15]. In particular, with U given by

U ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; ð57Þ

Eq. (35) implies that the Π2 symmetry transformation
matrix changes to

1ffiffiffi
2

p
�
1 1

1 −1

��
0 1

1 0

�
1ffiffiffi
2

p
�
1 1

1 −1

�
¼
�
1 0

0 −1

�
;

ð58Þ

which we recognize as the Z2 symmetry transformation
matrix.
If we now impose the symmetries discussed above in the

scalar field basis fΦ1;Φ2g where they are written as
Eqs. (50)–(56), we obtain the constraints on the parameters
of the scalar potential listed in Table I.
So far, we have only considered the case where we

impose symmetries on the scalar sector Lagrangian with
one symmetry generator, dubbed simple symmetries in
Ref. [43]. However, one could also require the scalar
potential to be invariant under multiple symmetries in
the ðΦ1;Φ2Þ basis. For example, consider a potential
invariant under Z2 or U(1). One can, in addition, impose
in the same basis that the scalar potential is also symmetric

4In light of electroweak gauge invariance, the scalar potential is
invariant under a hypercharge Uð1ÞY transformation Φi → eiθΦi
(for i ¼ 1, 2) for arbitrary choice of scalar potential parameters.
Thus, we remove this symmetry from the definition of the
maximal U(2) flavor symmetry in Eq. (52).

CARROLO, HABER, LOURENCO, and SILVA PHYS. REV. D 112, 035024 (2025)

035024-6



under the action of another simple symmetry such as Π2. In
such cases, we say that the potential is invariant under
Z2 ⊗ Π2 or Uð1Þ ⊗ Π2, respectively.5 Furthermore, it
follows from the analysis in Ref. [14], that both of these
must be equivalent to one of the six symmetries presented
above. In particular, concerning the impact on the scalar
potential, Z2 ⊗ Π2 was shown to be equivalent to GCP2
and Uð1Þ ⊗ Π2 was shown to be equivalent to GCP3. To be
more precise, there is a change of basis that can take the
potential invariant under Z2 ⊗ Π2 to the expression of the
potential invariant under GCP2, and similarly for Uð1Þ ⊗
Π2 and GCP3. The specific basis choices that relate these
symmetry relations can be found in Ref. [19].
From a phenomenological point of view, one must be

careful in imposing a U(1), Uð2Þ=Uð1ÞY , or GCP3 sym-
metry on the scalar potential. In particular, if any of these
symmetries are spontaneously broken, then the scalar
spectrum will contain an unwanted massless scalar [43].
In such cases, one will need to softly break the correspond-
ing symmetry with dimension-two squared-mass terms to
give a phenomenologically acceptable mass to the would-
be Goldstone boson.

III. EXTENSIONS OF SYMMETRIES TO THE
YUKAWA SECTOR

So far, we have only considered and classified the effect
of symmetries in the scalar sector. Now, we will be

interested in determining how these symmetries can be
extended to the Yukawa sector.
We will start by considering flavor symmetries. Recall

from Sec. II A that requiring invariance under this type of
symmetries implies that the Yukawa matrices must satisfy
Eqs. (32) and (33). On the other hand, if we consider GCP
symmetries, we require that the Lagrangian is invariant
under the transformations in Eqs. (37)–(40), which in turn
means that the Yukawa matrices must satisfy Eqs. (41)–
(44). What we then mean by extending the symmetry S (X)
of the scalar sector to the Yukawa sector is to find a set
fSL; SnR; SpRg (fXL; XnR; XpR

g) such that the Yukawa
couplings are compatible with experimental observations;
i.e., (i) non-vanishing quark masses and (ii) a non zero
Jarlskog invariant JCP. Recall from Eqs. (18)–(20) that the
latter means that there exists a nonzero CP-violating CKM
phase and the CKM matrix is not block diagonal. The first
condition is equivalent to requiring

detHd ≠ 0; detHu ≠ 0: ð59Þ

The second condition can be directly extracted from

detf½Hu;Hd�g ≠ 0: ð60Þ

In 2010, Ferreira and Silva [27] performed a complete
study of the extensions of GCP symmetries to the Yukawa
sector and have found two interesting results. First, they
proved that GCP2 cannot be extended to the Yukawa sector
in a way compatible with the two criteria discussed above.
Second, they proved that there was only one possible
extension of the GCP3 symmetry to the fermions, with the
angles in the reduced form of Eq. (47) given by
θ ¼ θL ¼ θnR ¼ π=3. In this model, the corresponding
down-type quark Yukawa matrices were given by

Γ1¼

0
B@
ia11 ia12 a13
ia12 −ia11 a23
a31 a32 0

1
CA; Γ2¼

0
B@

ia12 −ia11 −a23
−ia11 −ia12 a13
−a32 a31 0

1
CA;

ð61Þ

where the aij are real parameters.
This result prompts us to ask the following question: Can

the symmetries Z2 ⊗ Π2 and Uð1Þ ⊗ Π2 be extended to
the quark sector in a way compatible with the two
conditions discussed above? And, if so, how do they relate
to the extensions of GCP2 and GCP3? This is what we
propose to address in the following sections.

IV. Z2 ⊗ Π2 FOR THREE GENERATIONS

We begin our analysis by considering how the symmetry
Z2 ⊗ Π2 should act on the quark fields such that the
Yukawa Lagrangian is invariant with respect to Z2 ⊗ Π2

transformations of the scalars and quarks. In their study of

TABLE I. Classification of 2HDM scalar potential symmetries
[13,14] defined in Eqs. (50)–(55) and their impact on the
parameters of the scalar potential with respect to the basis
fΦ1;Φ2g defined in Eq. (3). Empty entries correspond to a lack
of constraints on the corresponding parameters. Note that Π2

[defined in Eq. (56)], Z2 ⊗ Π2, and Uð1Þ ⊗ Π2 are not inde-
pendent from other symmetry conditions, since a change of scalar
field basis can be performed in each case to yield a new basis in
which the Z2, GCP2, and GCP3 symmetries, respectively, are
manifestly realized.

Symmetry m2
22 m2

12 λ2 λ4 Reλ5 Im λ5 λ6 λ7

Z2 0 0 0
U(1) 0 0 0 0 0
Uð2Þ=Uð1ÞY m2

11
0 λ1 λ1 − λ3 0 0 0 0

CP real 0 Real Real
GCP2 m2

11
0 λ1 −λ6

GCP3 m2
11

0 λ1 λ1 − λ3 − λ4 0 0 0
Π2 m2

11
Real λ1 0 λ�6

Z2 ⊗ Π2 m2
11

0 λ1 0 0 0
Uð1Þ ⊗ Π2 m2

11
0 λ1 0 0 0 0

5Because we are requiring the symmetries to be imposed on the
same basis, there is no unitary change of basis one can make that
simultaneously diagonalizes both the generator of Z2 [or U(1)]
and that of Π2.
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the extension of Abelian symmetries to the Yukawa sector,
the authors of Ref. [24] found all possible extensions of the
Z2 symmetry to the fermions. For the convenience of the
reader, the list given in Ref. [24] of all possible extensions
of the Z2 symmetry to the down-type quark Yukawa
couplings is provided in Table V of Appendix A. The
various models listed there correspond to choosing the Z2

symmetry matrices SðZ2Þ ¼ diagf1;−1g while surveying

over possible choices for the Z2 symmetry matrices SðZ2Þ
L

and SðZ2Þ
nR such that the Z2 symmetry equations given in

Eqs. (30) and (32) are satisfied. For example, the Models
67, 71, and 73 of Ref. [24]6 can be obtained by
choosing7

Case I∶ SðZ2Þ ¼ diagf1;−1g; SðZ2Þ
L ¼ 1; SðZ2Þ

nR ¼ diagf1; 1;−1g; ð62Þ

Case II∶ SðZ2Þ ¼ diagf1;−1g; SðZ2Þ
L ¼ diagf1; 1;−1g; SðZ2Þ

nR ¼ 1; ð63Þ

Case III∶ SðZ2Þ ¼ diagf1;−1g; SðZ2Þ
L ¼ SðZ2Þ

nR ¼ diagf1; 1;−1g; ð64Þ

where 1 is the 3 × 3 identity matrix. These choices yield the
following forms for the down-type quark Yukawa coupling
matrices:

Case I∶ Γ1 ¼

0
B@

x x 0

x x 0

x x 0

1
CA; Γ2 ¼

0
B@

0 0 x

0 0 x

0 0 x

1
CA; ð65Þ

Case II∶ Γ1 ¼

0
B@

x x x

x x x

0 0 0

1
CA; Γ2 ¼

0
B@

0 0 0

0 0 0

x x x

1
CA; ð66Þ

Case III∶ Γ1 ¼

0
B@

x x 0

x x 0

0 0 x

1
CA; Γ2 ¼

0
B@

0 0 x

0 0 x

x x 0

1
CA; ð67Þ

where x stands for an arbitrary complex number. These
three cases will be of particular interest in the analysis that
follows.
With the list all possible extensions of the Z2 symmetry

to the Yukawa sector in hand, the problem of finding the
extensions of Z2 ⊗ Π2 to the Yukawa sector is equivalent
to imposing the Π2 symmetry equations on the Yukawa
coupling matrices listed in Appendix A,

Γ1 ¼ SLΓ2S
†
nR; Γ2 ¼ SLΓ1S

†
nR; ð68Þ

Δ1 ¼ SLΔ2S
†
pR; Δ2 ¼ SLΔ1S

†
pR; ð69Þ

after employing Eqs. (32) and (33) with S ¼ ð0
1
1
0
Þ, where

SL, SnR, and SpR are arbitrary 3 × 3 unitary matrices.8 We
can now immediately exclude Models 66 and 69
of Appendix A, since for these two models one obtains
Γ1 ¼ Γ2 ¼ 0 after imposing Eq. (68), which would imply
vanishing quark masses. One can further reduce the number
of inequivalent models by noting that the Π2 symmetry that
interchanges Φ1 and Φ2 retains the same form under the
change of basis

�Φ0
1

Φ0
2

�
¼
�
0 1

1 0

��Φ1

Φ2

�
: ð70Þ

Hence, when imposing Π2, it is equivalent to work in the
original fΦ1;Φ2g-basis or in the transformed fΦ0

1;Φ0
2g-

basis. In particular, any two models that are related by the
basis change specified in Eq. (70) will be affected by the
Π2 symmetry in the same way. Consequently, the elements
of the model pairs f67; 68g, f71; 79g, and f73; 75g can be
viewed as equivalent models. We are therefore left with
three models, f67; 71; 73g, that cannot be related by any
family permutations, with corresponding down-type
quark Yukawa matrices given by Eqs. (65)–(67) prior
to imposing the Π2 symmetry. We will treat the models
corresponding to these three cases independently in the
following.

6The model numbers refer to the corresponding equation num-
bers appearing in Ref. [24], which are replicated in Appendix A.

7There is some phase freedom in defining the symmetry
matrices as the matrices employed in Eqs. (62)–(64) are not
the unique choices that yield the Yukawa matrices exhibited in
Eqs. (65)–(67). For example, in Eq. (62), one would also obtain
Eq. (65) by choosing S ¼ diagf1; eiθg, SL ¼ eiη1, and SnR ¼
eiηdiagf1; 1; e−iθg for 0 < θ < 2π and 0 ≤ η < 2π. Strictly
speaking, the corresponding symmetry group is Z2 only in the
case of θ ¼ 1

2
π. Nevertheless, the resulting constraint on the

down-type quark Yukawa matrices yields Eq. (65) for all allowed
values of θ and η.

8Note that when applying the Π2 symmetry conditions, the
matrices SL, SnR, and SpR are taken to be arbitrary because the
freedom of choosing a basis for the quarks is fixed, up to
permutations, once the Z2 symmetry matrix SðZ2Þ is chosen to be
diagonal. See Sec. (II.C) of Ref. [24] for further details.
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Starting from the basis where Γ1 and Γ2 take the forms
shown in Eqs. (65)–(67), we now impose the Π2 symmetry,
which adds the additional constraints exhibited in Eq. (68).
The impact of the additional constraints can be determined
by employing the following analysis. Consider the quantity

Hðc1;c2Þ≡ðc1Γ1þc2Γ2Þðc1Γ1þc2Γ2Þ†
¼jc1j2Γ1Γ†

1þc1c�2Γ1Γ†
2þc�1c2Γ2Γ†

1þjc2j2Γ2Γ†
2;

ð71Þ

where c is an arbitrary complex number. In light of
Eq. (68),

Γ1Γ
†
1 ¼ SLðΓ2Γ

†
2ÞS†L; Γ1Γ

†
2 ¼ SLðΓ2Γ

†
1ÞS†L; ð72Þ

Γ2Γ
†
1 ¼ SLðΓ1Γ

†
2ÞS†L; Γ2Γ

†
2 ¼ SLðΓ1Γ

†
1ÞS†L: ð73Þ

Inserting these results back into Eq. (71), we see that under
the Π2 symmetry Hðc1; c2Þ is transformed into

H0ðc1;c2Þ≡SLHðc1;c2ÞS†L
¼jc2j2Γ1Γ

†
1þc�1c2Γ1Γ

†
2þc1c�2Γ2Γ

†
1þjc1j2Γ2Γ

†
2

¼Hðc2;c1Þ: ð74Þ

Note that detH0ðc1; c2Þ ¼ detHðc1; c2Þ since SL is a
unitary matrix.
In both Case I [Eq. (65)] and Case II [Eq. (66)], an

explicit computation of the determinants of the right-hand
sides of Eqs. (71) and (74) yields

det Hðc1; c2Þ ¼ jc1j4jc2j2j det ðΓ1 þ Γ2Þj2; ð75Þ

det H0ðc1; c2Þ ¼ jc1j2jc2j4j det ðΓ1 þ Γ2Þj2: ð76Þ

Consequently,

det Hðc1; c2Þ − det H0ðc1; c2Þ
¼ jc1j2jc2j2ðjc1j2 − jc2j2Þj det ðΓ1 þ Γ2Þj2 ¼ 0: ð77Þ

Noting that a multinomial (in jc1j and jc2j) is zero if and
only if all of its coefficients are zero, it follows that
detðΓ1 þ Γ2Þ ¼ 0. That is, the impact of the Π2 symmetry
is to impose the condition detðΓ1 þ Γ2Þ ¼ 0 on the matrices
specified in Eqs. (65) and (66). Inserting this result back
into Eq. (75), we obtain det Hðc1; c2Þ ¼ 0. Finally, using
Eqs. (9) and (16), it follows that

det Hd ¼ det½ðΓ1v1 þ Γ2v2ÞðΓ1v1 þ Γ2v2Þ†�
¼ det Hðv1; v2Þ ¼ 0; ð78Þ

which implies that at least one of the down-type quarks is
massless.
In Case III [Eq. (67)], an explicit calculation yields

detHðc1;c2Þ¼ jc1j2jc21 detΓ1þc22 det ðΓ̃1þΓ2Þj2; ð79Þ

detH0ðc1;c2Þ¼ jc2j2jc22detΓ1þc21detðΓ̃1þΓ2Þj2; ð80Þ

where Γ̃1 is obtained from Γ1 by setting ðΓ1Þ33 ¼ 0. That is,

Γ̃1 ¼

0
B@

x x 0

x x 0

0 0 0

1
CA: ð81Þ

Consequently,

det Hðc1; c2Þ − det H0ðc1; c2Þ ¼ ðjc1j6 − jc2j6Þj det Γ1j2 − jc1j2jc2j2ðjv1j2 − jv2j2Þj detðΓ̃1 þ Γ2Þj2
þ ½c1c2ðc�31 c2 − c�32 c1Þ det Γ�

1 detðΓ̃1 þ Γ2Þ þ c:c:� ¼ 0; ð82Þ

where c.c. stands for complex conjugate of the preceding
term. Since Eq. (82) is a multinomial in the variables c1, c�1,
c2, and c�2, it is equal to zero if and only if all of its
coefficients are zero. It follows that9

detΓ1 ¼ detðΓ̃1 þ Γ2Þ ¼ 0: ð83Þ

In light of Eqs. (78), (79), and (83) we again obtain
det Hd ¼ 0. As in Case I and Case II, it follows that at
least one of the down-type quarks is massless.
It is noteworthy that the analysis presented above does not

require one to determine the exact form of the Yukawa
matrices after the application of both the Z2 and Π2

symmetries. We were able to exclude all cases based
exclusively on basis invariant considerations. Since all the
possible extensions ofZ2 ⊗ Π2 to theYukawa sector lead to
at least onemassless down-type quark, we conclude that it is
impossible to extend Z2 ⊗ Π2 to the fermions in a way
compatible with experimental results. Thus, in the 2HDM
with three fermion generations, there is no difference
between imposing GCP2 (as shown in Ref. [27]) and

9Note that det Γ1 ¼ 0 implies that either ðΓ1Þ33 ¼ 0 or
ðΓ1Þ11ðΓ1Þ22 ¼ ðΓ1Þ12ðΓ1Þ21. In either case, detðΓ1 þ Γ2Þ is
independent of the value of ðΓ1Þ33 ¼ 0 due to the form of Γ2

specified in Eq. (67). It then follows that detðΓ1 þ Γ2Þ ¼
detðΓ̃1 þ Γ2Þ ¼ 0. In particular, the impact of the Π2 symmetry
is to impose the conditions det Γ1 ¼ detðΓ1 þ Γ2Þ ¼ 0 on the
matrices specified in Eq. (67).
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Z2 ⊗ Π2 on the Yukawa Lagrangian. In both cases, the
corresponding models are phenomenologically unaccept-
able due to the presence of at least one massless down-
type quark.
One can now examine the consequences of Eq. (69),

which governs the up-type quark Yukawa couplings. The
first step would be to determine the possible structures of
Δ1 and Δ2 after imposing the Z2 symmetry constraints.
Using Eq. (33), we would make use of the choices of SðZ2Þ

and SðZ2Þ
L employed in Eqs. (62)–(64), while surveying all

possible choices for SðZ2Þ
pR . Of course, since we have already

concluded that none of the models governed by Cases I–III
are phenomenologically viable, there is no need to study
further the possible extensions of the Z2 symmetry to the
up-type quark sector.

V. EXTENDING Uð1Þ ⊗ Π2 FOR THREE
GENERATIONS

In this section, we consider how the symmetry Uð1Þ ⊗
Π2 should act on the quark fields such that the Yukawa
Lagrangian is invariant with respect to Uð1Þ ⊗ Π2 trans-
formations of the scalars and quarks. Following a similar
strategy to the one employed in Sec. IV, we begin with a list
of all possible extensions of U(1) to the fermions obtained
in Ref. [24], which we have organized in Tables VI–IX.
Examining the possible models, one can check that most

of them are actually equivalent to or subcases of the
extensions of Z2 analyzed before (up to permutations of
the quark doublets and/or scalar doublets). This should not
come as a surprise, as U(1) contains a Z2. However, one
can also consider a discrete Z3 symmetry, which when

applied to the scalar sector results in a U(1)-symmetric
scalar potential. Extensions of Z3 to the fermions do not
necessarily yield a Yukawa Lagrangian that is invariant
under the Z2 symmetry previously analyzed (where the
Yukawa matrices Γ1 and Γ2 are specified by one of the
models of Table V). That is, not all models with a U(1)-
symmetric scalar potential, when extended to the Yukawa
sector, are equivalent to or subcases of the extensions of the
Z2 symmetry analyzed previously. These are the models
that we focus on in this section. Once again, we discard
models that after imposing Eq. (68) yield Γ1 ¼ Γ2 ¼ 0.
Then, there are only two inequivalent classes of models,
f57; 92g, that cannot be related by any family permuta-
tions,

Case IV∶ Γ1 ¼

0
B@
0 0 0

0 0 x

x x 0

1
CA; Γ2 ¼

0
B@
x x 0

0 0 0

0 0 x

1
CA; ð84Þ

Case V∶ Γ1 ¼

0
B@

x 0 0

0 x 0

0 0 x

1
CA; Γ2 ¼

0
B@

0 x 0

0 0 x

x 0 0

1
CA; ð85Þ

where x stands for an arbitrary complex number. Note that
we have obtained Eqs. (84) and (85) by requiring that the
Higgs Lagrangian is invariant under a Z3 Higgs and quark
flavor symmetry transformation [the former resulting in a U
(1)-symmetric scalar potential]. In particular, the Z3 sym-
metry equations [Eqs. (32) and (33)] have been applied
with,10

Case IV∶ SðZ3Þ ¼ diagfω; 1g; SðZ3Þ
L ¼ diagf1;ω2;ωg; SðZ3Þ

nR ¼ diagf1; 1;ωg; ð86Þ

Case V∶ SðZ3Þ ¼ diagf1;ωg; SðZ3Þ
L ¼ SðZ3Þ

nR ¼ diagf1;ω2;ωg; ð87Þ

where 1, ω, and ω2 [with ω≡ exp ð2iπ=3Þ] are the three
cube roots of unity. We are now ready to find the
corresponding extension of Uð1Þ ⊗ Π2 to the Yukawa
interactions of the down-type quarks by imposing the Π2

symmetry equations given in Eq. (68). We will treat the two
models corresponding to Cases IV and V independently in
the following section.

A. Check for massless quarks

We begin by applying to these cases the same test of
looking at the effect of the Π2 symmetry equations
[Eq. (68)] on detðHdÞ. We again introduce Hðc1; c2Þ as
in Eq. (71). Then, in Case IV we find that Eqs. (75)–(77)
are satisfied, which implies that detðΓ1 þ Γ2Þ ¼ 0. Hence,

det Hd ¼ Hðv1; v2Þ ¼ 0, which implies the existence of at
least one massless down-type quark.
In Case V [Eq. (85)], an explicit calculation yields

det Hðc1; c2Þ ¼ jc31 det Γ1 þ c32 det Γ2j2; ð88Þ

det H0ðc1; c2Þ ¼ jc32 det Γ1 þ c31 det Γ2j2: ð89Þ

10As noted in footnote 7 there is some additional phase
freedom in defining the symmetry matrices exhibited in Eqs. (86)
and (87). Without loss of generality, we have simplified the form
of the symmetry matrices by setting such phases to zero.

CARROLO, HABER, LOURENCO, and SILVA PHYS. REV. D 112, 035024 (2025)

035024-10



Using

det Hðc1; c2Þ − det H0ðc1; c2Þ ¼ ðjc1j6 − jc2j6Þðj det Γ1j2 − j det Γ2j2Þ − 4 Imðc31c�32 Þ Imðdet Γ1 det Γ�
2Þ ¼ 0; ð90Þ

it follows that

j det Γ1j ¼ j det Γ2j; Imðdet Γ1 det Γ�
2Þ ¼ 0; ð91Þ

which implies that det Γ2 ¼ � det Γ1. In particular,

det Hdðv1; v2Þ ¼ jv31 � v32j2j det Γ1j2; ð92Þ

which is nonzero in general. Hence, Case V is compatible
with the existence of nonzero down-type quark masses.
It is noteworthy that Eq. (92) has been derived under the

assumption that a specific basis for the scalar fields and
quark fields has been chosen. In particular, under a change
basis of the scalar fields and quark fields, Hd → ULHdU

†
L,

after making use of Eqs. (9), (16), (25), and (26).
Consequently, the left-hand side of Eq. (92) is a manifestly
basis independent quantity, whereas the right-hand side has
been obtained in a specific basis. It is straightforward to
show that one cannot flip the sign in Eq. (92) by the
transformation Φ2 → −Φ2, since such a transformation

also changes Γ2 → −Γ2 [cf. Eq. (26)], in which case Mn ¼
Γ1v1 þ Γ2v2 (and likewise, Hd ¼ MnM

†
n) are unchanged.

B. Case V

We now take a closer look at the down-type quark mass
matrix in Case V and the corresponding constraints
imposed by the Π2 symmetry. We parametrize the down-
type Yukawa matrices as

Γ1¼

0
B@
x11 0 0

0 x22 0

0 0 x33

1
CA; Γ2¼

0
B@

0 x12 0

0 0 x23
x31 0 0

1
CA; ð93Þ

where the xij are complex numbers. Using the first relation
given in Eq. (68), we obtain

Γ1 ¼ diagðx11; x22; x33Þ ¼ SLΓ2S
†
nR: ð94Þ

It follows that

diagðjx11j2; jx22j2; jx33j2Þ ¼ Γ1Γ
†
1 ¼ SLðΓ2Γ

†
2ÞS†L ¼ SLdiagðjx12j2; jx23j2; jx31j2ÞS†L; ð95Þ

diagðjx11j2; jx22j2; jx33j2Þ ¼ Γ†
1Γ1 ¼ SnRðΓ†

2Γ2ÞS†nR ¼ SnRdiagðjx31j2; jx12j2; jx223jÞS†nR: ð96Þ

Since Γ1Γ†
1 and Γ2Γ†

2 are related by a similarity trans-
formation, they possess the same eigenvalues (and likewise
for Γ†

1Γ1 and Γ†
2Γ2). Hence, SL and SnR are permutation

matrices multiplied by a diagonal matrix of phases.
In general, a n × n permutation matrix P is a real

orthogonal matrix that consists of matrix elements such
that 1 appears exactly once in each row and columnwhile the
remaining n2 − n entries are 0. For an arbitrary n × nmatrix
A, the matrix AP permutes the columns of A and the matrix
PA permutes the rows ofA. For the n! possible permutations
corresponding to the symmetric group Sn, we shall employ
the cycle notation [44]. In particular, S3 is the group of
permutation of three numbers f1; 2; 3g, whose elements are
denoted by fId; ð12Þ; ð13Þ; ð23Þ; ð123Þ; ð132Þg, where Id is
the identity element, (12) corresponds to 1 ↔ 2, 3 → 3;
(123) corresponds to 1 → 2, 2 → 3, 3 → 1; etc. The corre-
sponding permutation matrices will be denoted byPg where
g∈ S3. For example [44],

Pð123Þ ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ð97Þ

One can check that Pð123ÞðΓ2Γ†
2ÞPT

ð123Þ ¼ Γ†
2Γ2. It then

follows that

KSL ¼ SnRPð123Þ; ð98Þ
where K is a diagonal matrix of phases. Without loss of
generality, wemay choose SnR to be a permutationmatrix by
absorbing any additional phases of SnR into K.
Using the second equation of Eq. (68), the roles of Γ1 and

Γ2 are interchanged. Thus, instead of Eq. (94), we now have
Γ2 ¼ SLΓ1S

†
nR. Inserting this result back into Eq. (94) yields

Γ1S2nR ¼ S2LΓ1: ð99Þ
We will see shortly that Eqs. (98) and (99) constrain the
diagonal matrix of phases, K. Moreover, one can use the
second equation of Eq. (68) to derive a relation analogous to
Eq. (98), ðKSLÞ† ¼ S†nRPð123Þ, which is equivalent to

KSL ¼ PT
ð123ÞSnR: ð100Þ

Combining Eqs. (98) and (100) yields

Pð123ÞSnRPð123Þ ¼ SnR: ð101Þ
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Having defined SnR to be a permutation matrix, one can
easily check (using the S3 group multiplication table) that
only the odd permutation matrices,11 Pð12Þ, Pð23Þ, and Pð13Þ,
satisfy Eq. (101). Moreover, when SnR is an odd permuta-
tion, KSL given by Eq. (98) is also an odd permutation.
Hence there are three possible cases:
(1) SnR ¼ Pð12Þ, and KSL ¼ Pð23Þ;
(2) SnR ¼ Pð23Þ, and KSL ¼ Pð13Þ;
(3) SnR ¼ Pð13Þ, and KSL ¼ Pð12Þ.

Note that these cases are related by a basis change of the
quark fields where two of the generations are interchanged.
Thus,without loss of generality, it suffices to consider one of
the three models listed above.
Focusing on the third case above,

KSL¼

0
B@
0 1 0

1 0 0

0 0 1

1
CA; SnR¼S†nR¼

0
B@
0 0 1

0 1 0

1 0 0

1
CA: ð102Þ

In light of Eq. (99), it follows that

K ¼ diagðeiθ; e−iθ;�1Þ; ð103Þ

where θ is arbitrary (mod 2π) and either choice of sign is
allowed. Then, the right-hand side of Eq. (94) yields

diagðx11; x22; x33Þ ¼ diagðe−iθx23; eiθx12;�x31Þ: ð104Þ

Hence, Eqs. (93) and (104) yield

Γ2 ¼

0
B@

0 e−iθx22 0

0 0 eiθx11
�x33 0 0

1
CA: ð105Þ

Using Eqs. (9), (93), and (105), it follows that

Mn ¼ v1Γ1 þ v2Γ2 ¼

0
B@

v1x11 v2x22e−iθ 0

0 v1x22 v2x11eiθ

�v2x33 0 v1x33

1
CA;

ð106Þ

and

det Hd ≡ detðMnM
†
nÞ ¼ jv31 � v32j2j det Γ1j2; ð107Þ

independently of the value of θ, in agreement with the result
obtained in Eq. (92). As noted in the previous subsection,
Eq. (107) generically implies that all down-type quark

masses are nonzero, 12 as required for a viable candidate for
a model that is invariant under a Uð1Þ ⊗ Π2 symmetry
transformation.
One can now examine the consequences of Eq. (69),

which governs the up-type quark Yukawa couplings. The
first step would be to determine the possible structures ofΔ1

and Δ2 after imposing the Z3 symmetry constraints. Using

Eq. (33), wewouldmake use of the choices ofSðZ3Þ andSðZ3Þ
L

employed in Eqs. (86) and (87), while surveying all possible

choices for SðZ3Þ
pR . If we now impose aΠ2 symmetry with SpR

given by SnR in Eq. (102), we obtain Δ1 and Δ2 with the
same textures as Γ1 and Γ2, respectively. This provides us
with enough freedom to produce a model with nonzero
CKM mixing angles and a nonvanishing JCP. We conclude
that it is possible to extend Uð1Þ ⊗ Π2 to the fermions in a
way compatible with phenomenological constraints.

VI. EQUIVALENCE OF Uð1Þ ⊗ Π2 AND GCP3
MODELS WITH THREE QUARK GENERATIONS

In Sec. II C, we recalled that the GCP3-symmetric and the
Uð1Þ ⊗ Π2-symmetric scalar potentials were related by a
change of scalar field basis [14]. Moreover, as noted in
Sec. III, it was shown in Ref. [27] that there is only one
possible extension of GCP3 to the fermions in a model with
three generations.We also showed in Sec. V that it is possible
to extend the Uð1Þ ⊗ Π2 symmetry of the scalar potential to
the Yukawa sector. Hence, one can now pose the following
question: do the Yukawa extended GCP3 model and the
Yukawa extended Uð1Þ ⊗ Π2 model coincide?
In Ref. [14], it was shown that given a GCP3-invariant

scalar potential VðΦ0Þ, expressed in the scalar field basis
fΦ0

1;Φ0
2g, one can find a basis transformation,

�Φ1

Φ2

�
¼ 1ffiffiffi

2
p
�
1 0

0 eiλ

��
1 −i
−i 1

��Φ0
1

Φ0
2

�

¼ 1ffiffiffi
2

p
�

1 −i
−ieiλ eiλ

��Φ0
1

Φ0
2

�
; ð108Þ

such that the scalar potential VðΦÞ, expressed in the scalar
field basis fΦ1;Φ2g, is invariant with respect to Uð1Þ ⊗ Π2

transformations. In Eq. (108), we have introduced an
arbitrary phase factor eiλ that will prove useful in the
following. One can check that if the parameters of VðΦ0Þ
satisfy the GCP3 parameter relations specified in Table I,
then the parameters of VðΦÞ satisfy the Uð1Þ ⊗ Π2

parameter relations given in the same table.
Suppose that the down-type quark Yukawa matrices

satisfy the GCP3 conditions specified in Eq. (61), which we
shall henceforth denote by Γ0

1 and Γ0
2. Using the inverse of

Eq. (26), we can perform basis transformations in both the11The odd permutations are permutations that canbe expressed as
products of an odd number of 2-cycles. Thus, fId; ð123Þ; ð132Þg
are even permutations whereas fð12Þ; ð23Þ; ð13Þg are odd permu-
tations.

12In the special cases where v31 ¼∓ v32, the model will contain
a massless down-type quark and thus must be excluded.
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scalar and the Yukawa sectors to obtain the corresponding
Yukawa matrices in the new basis (denoted by Γ1 and Γ2,
respectively), which we will then compare with the results
obtained in Sec. V. It then follows that

Γ1¼U†
L
1ffiffiffi
2

p ðΓ0
1þ iΓ0

2ÞUnR; Γ2¼U†
L
e−iλffiffiffi
2

p ðiΓ0
1þΓ0

2ÞUnR:

ð109Þ

In light of Eq. (93), we perform a singular value decom-
position by choosing the matrices UL and UnR such that Γ1

is diagonal:

U†
L¼

1ffiffiffi
2

p

0
B@
−i 1 0

1 −i 0

0 0
ffiffiffi
2

p

1
CA; UnR¼

1ffiffiffi
2

p

0
B@
−i 0 1

1 0 −i
0

ffiffiffi
2

p
0

1
CA:

ð110Þ

Equation (109) then yields

Γ1 ¼ diagð
ffiffiffi
2

p
ða12 − ia11Þ; a13 − ia23; a31 − ia32Þ

¼ diagðx11; x22; x33Þ; ð111Þ

where we have introduced x11, x22, and x33 to match the
notation of Eq. (93), and

Γ2 ¼ e−iλ

0
B@

0 a13 þ ia23 0

0 0 −
ffiffiffi
2

p ða11 − ia12Þ
a31 þ ia32 0 0

1
CA

¼ e−iλ

0
B@

0 x�22 0

0 0 ix�11
x�33 0 0

1
CA: ð112Þ

Note that Γ2 does not quite match the corresponding
Yukawa matrix that appears in Eq. (93) after identifying its
parameters using Eq. (104). However, we still have some
phase freedom in defining the matrices UL and UR of the
singular value decomposition. Indeed, if we make the
following replacements:

U†
L → diagðe−iϕ1 ; e−iϕ2 ; e−iϕ3ÞU†

L;

UR → URdiagðeiϕ1 ; eiϕ2 ; eiϕ3Þ; ð113Þ

then Eq. (111) is unmodified, whereas Γ2 is trans-
formed into

Γ2 ¼

0
BB@

0 e−iðϕ12þα2þλÞjx22j 0

0 0 ie−iðϕ23þα1þλÞjx11j
e−iðϕ31þα3þλÞjx33j 0

1
CCA; ð114Þ

where ϕij ≡ ϕi − ϕj and αi ≡ arg xii.
In Eq. (105), the expression obtained for Γ2 contained

the parameter θ and a choice of sign,

Γ2 ¼

0
B@

0 jx22jeiðα2−θÞ 0

0 0 jx11jeiðα1þθÞ

�jx33jeiα3 0 0

1
CA: ð115Þ

We can therefore equate Eqs. (114) and (115) if the
following equations are satisfied mod 2π:

2α1 ¼
1

2
π − θ − λ − ϕ23; ð116Þ

2α2 ¼ θ − λ − ϕ12; ð117Þ

2α3 þmπ ¼ −λþ ϕ12 þ ϕ23; ð118Þ

where m ¼ 0 or 1 and we have used ϕ12 þ ϕ23 þ ϕ31 ¼ 0
to eliminate ϕ31. We can use Eqs. (116)–(118) to solve for
λ, ϕ12, and ϕ23 in terms of the αi, m, and θ. Thus, we have
demonstrated that the down-type Yukawa coupling

matrices in the GCP3 model and the Uð1Þ ⊗ Π2 model
can be related by an appropriate change of basis of the
scalar fields and quark fields.
We conclude that there is a one-to-one correspondence

between the Yukawa extended GCP3 model and the
Yukawa extended Uð1Þ ⊗ Π2 models that simply reflects
a different choice of the scalar field and quark field basis.
The addition of the three-generation Yukawa sector did not
“remove the degeneracy” of the GCP3 and Uð1Þ ⊗ Π2

models that was present when only the symmetries of the
scalar potential were considered.

VII. (NON)EQUIVALENCE OF Z2 ⊗ Π2 AND GCP2
MODELS WITH TWO QUARK GENERATIONS

In previous sections, we showed that although there is no
distinction between a scalar potential of the 2HDM that
respects the GCP2 or Z2 ⊗ Π2 symmetry, no viable model
(i.e., a model that possesses nonzero quark masses and a
nontrivial CKM matrix) exists in which the GCP2 and/or
the Z2 ⊗ Π2 symmetry can be consistently extended to the
Yukawa sector with n ¼ 3 generations of quarks. Likewise,
there is no distinction between a scalar potential that
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respects the GCP3 or Uð1Þ ⊗ Π2 symmetry, although both
these symmetries can be extended to the three-generation
Yukawa sector to produce a viable model. However, we
also showed that this extension does not “remove the
degeneracy” present in the scalar sector between GCP3 and
Uð1Þ ⊗ Π2, as the two models are related by a particular
change of the scalar field and quark field basis.
To seewhether these results are specific to the 2HDMwith

n ¼ 3 quark generations, we shall consider a version of the
2HDMwith n different from three. The case of n ¼ 1 can be
discarded,13 since one would quickly conclude using the
methods employed in this section that there are no consistent
extensions of these symmetries to the Yukawa sector unless
all Yukawa couplings vanish [48]. In this section, we
consider the 2HDM with n ¼ 2 quark generations. In
particular, we shall examine the relation between two-
generation models with GCP2 and Z2 ⊗ Π2 symmetries
appropriately extended to the Yukawa sector.

A. GCP2 for two generations

In the case of two generations of fermions, the
Yukawa couplings are 2 × 2 matrices that can be para-
metrized as

Γ1 ¼
�
x11 x12
x21 x22

�
; Γ2 ¼

�
y11 y12
y21 y22

�
; ð119Þ

where all parameters are complex. Furthermore, using the
result in Eq. (47), we choose the quark basis where the GCP
symmetry matrices take the simple form

XL ¼
�

cα sα
−sα cα

�
; XnR ¼

�
cβ sβ
−sβ cβ

�
; ð120Þ

where cα ≡ cos α, cβ ≡ cos β, sα ≡ sin α, and sβ ≡ sin β,
with 0 ≤ α; β ≤ 1

2
π [as noted below Eq. (47)]. The GCP2

symmetry equations given by Eqs. (41)–(44) are obtained
by setting

X ¼
�

0 1

−1 0

�
; ð121Þ

in light of Eqs. (37) and (54). We can then rewrite
Eq. (43) as

XLΓ�
1 þ Γ2XnR ¼ 0; XLΓ�

2 − Γ1XnR ¼ 0: ð122Þ

Since XL and XnR are real orthogonal matrices, we can
eliminate Γ2 to obtain

X2
LΓ1 þ Γ1X2

nR ¼ 0: ð123Þ

Substituting the parametrization of Eq. (119) into
Eq. (122), we obtain eight complex linear equations in
eight complex variables, which one can write in matrix
form as

Ax ¼ 0; where x ¼ ðx�11; x�12; x�21; x�22; y11; y12; y21; y22ÞT;
ð124Þ

and A is a real 8 × 8 matrix that can be written in block
matrix form as

A ¼

0
BBBB@

cα1 sα1 XT
nR 0

−sα1 cα1 0 XT
nR

−XT
nR 0 cα1 sα1

0 −XT
nR −sα1 cα1

1
CCCCA; ð125Þ

where 1 is the 2 × 2 identity matrix and 0 is the eight-
component zero vector in Eq. (124) and the 2 × 2 zero
matrix in Eq. (125). Since x ≠ 0, it follows that det A ¼ 0,
which will constrain the values of α and β as we now
demonstrate. Indeed, in Appendix B, we provide an explicit
evaluation of detA, which yields

det A ¼ 16ðc2αc2β − s2αs2βÞ2
¼ 16 cos2ðαþ βÞcos2ðα − βÞ ¼ 0. ð126Þ

Since 0 ≤ α, β ≤ 1
2
π, it then follows that

αþ β ¼ 1

2
π: ð127Þ

Using Eq. (127) in evaluating Eq. (123) then yields

X2
L

�
1

2
π − β

�
Γ1 þ Γ1X2

nRðβÞ

¼
�

x21 − x12 x11 þ x22
−x11 − x22 −x12 þ x21

�
sin 2β ¼ 0; ð128Þ

which leads to three possible cases:

I∶ αþ β ¼ 1

2
π with α; β ≠ 0;

1

2
π ⇒ x21 ¼ x12; x22 ¼ −x11; ð129Þ

II∶ α ¼ 1

2
π; β ¼ 0; ð130Þ

III∶ α ¼ 0; β ¼ 1

2
π: ð131Þ

13If one were to expand the 2HDM Yukawa sector to include,
e.g., up-type and down-type vectorlike quarks [45], then it would
be possible to extend the Z2 ⊗ Π2 and Uð1Þ ⊗ Π2 symmetries of
the scalar sector to a one-generation Yukawa sector [46,47]. Such
models are beyond the scope of this work.
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After imposing the constraints corresponding to one of
these three cases, we are left with a single symmetry
equation constraining the down-type Yukawa coupling
matrices [cf. Eq. (122)]:

Γ�
2 ¼ X†

LΓ1XnR: ð132Þ

1. Case I

In this case, α and β can take any values in the open
interval ð0; π=2Þ that satisfy the equation αþ β ¼ π=2.
Constraining the couplings with Eqs. (129) and (132), we
obtain the following Γ matrices:

Γ1 ¼
�
x11 x12
x12 −x11

�
; Γ2 ¼

�−x�12 x�11
x�11 x�12

�
: ð133Þ

2. Case II

In the case α ¼ π=2 and β ¼ 0, there are no constraints
on Γ1. Using Eqs. (130) and (132), we obtain the following
Γ matrices:

Γ1 ¼
�
x11 x12
x21 x22

�
; Γ2 ¼

�−x�21 −x�22
x�11 x�12

�
: ð134Þ

3. Case III

In the case α ¼ 0 and β ¼ π=2, there are no constraints
on Γ1. Using Eqs. (131) and (132), we obtain the following
Γ matrices:

Γ1 ¼
�
x11 x12
x21 x22

�
; Γ2 ¼

�−x�12 x�11
−x�22 x�21

�
: ð135Þ

4. Cabibbo angle and summary of cases

In contrast to Case I where Γ1 and Γ2 are fixed by two
independent complex parameters, Cases II and III are
governed by four complex parameters. This distinction
will be significant when we compare the Yukawa sectors of
the two-generation models constrained by the GCP2
and the Z2 ⊗ Π2 symmetry, respectively, in Sec. VII C.
Moreover, it is straightforward to compute det Hd for all
three cases:

Case I∶ detHd ¼ jðv1x11 − v2x�12Þ2 þ ðv1x12 þ v2x�11Þ2j2;
Case II∶ detHd ¼ jðv1x11 − v2x�21Þðv1x22 þ v2x�12Þ − ðv1x12 − v2x�22Þðv1x21 þ v2x�11Þj2;
Case III∶ detHd ¼ jðv1x11 − v2x�12Þðv1x22 þ v2x�21Þ − ðv1x12 þ v2x�11Þðv1x21 − v2x�22Þj2: ð136Þ

In all three cases, det Hd is nonzero for a generic choice of
parameters,14 which implies that the two down-type quark
masses are generically nonzero. The same analysis yields
the up-type quark Yukawa matrices Δ1 and Δ2 with
precisely the same textures as the ones obtained for Γ1

and Γ2 above, which implies that the two up-type quark
masses are also generically nonzero. Even though XpR

and
XnR are initially unrelated, the application of the GCP2
symmetry equations analogous to Eq. (122) to the up-type
Yukawa coupling matrices,

XLΔ�
1 þ Δ2XpR

¼ 0; XLΔ�
2 − Δ1XpR

¼ 0; ð137Þ

yields the same three cases as in Eqs. (129)–(131), with
the angle β replaced by a new angle γ that is likewise
constrained by the value of the angle α. It follows that the
textures of the Γ andΔmatrices must match, implying that
there are three distinct classes of GCP2 models in total,

which we shall denote below by I=I, II=II, and III=III to
indicate the corresponding textures of the Γ and Δ
matrices, respectively.
In the case of two quark generations, one can build a

basis invariant quantity measuring the Cabibbo angle θc
using

Jc ≡ detf½Hu;Hd�g ¼ det½V†D2
uVD2

d −D2
dV

†D2
uV�

¼ ðm2
d −m2

sÞ2ðm2
c −m2

uÞ2cos2θcsin2θc; ð138Þ

where V is now the 2 × 2 Cabibbo mixing matrix

V ¼
�

cos θc sin θc
− sin θc cos θc

�
: ð139Þ

In Model I=I, Hd and Hu are given by

Hd ¼
�

A B

−B A

�
; Hu ¼

�
C D

−D C

�
; ð140Þ

where
14For example, in Case 1, det Hd ¼ 0 only if v1=v2 ¼ x11=x�12

and Reðv1=v2Þ ¼ 0.
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A≡ jv1x11 − v2x�12j2 þ jv1x12 þ v2x�11j2 ¼ ðjv1j2 þ jv2j2Þðjx11j2 þ jx12j2Þ;
B≡ ðv1x11 − v2x�12Þðv�1x�12 þ v�2x11Þ − ðv1x12 þ v2x�11Þðv�1x�11 − v�2x12Þ: ð141Þ

and C and D are obtained from A and B by replacing
the corresponding elements of the Γ matrices with those of
the Δ matrices. The form of Hd and Hu given in
Eq. (140) immediately yield ½Hu;Hd� ¼ 0. Thus, Jc ¼ 0,
which implies that sin 2θc ¼ 0, which is experimentally
excluded. In contrast, in Models II=II and III=III, the four
matrix elements of Hd and Hu, respectively, are indepen-
dent quantities so that ½Hu;Hd� ≠ 0. In particular,
detf½Hu;Hd�g ≠ 0, or equivalently Jc ≠ 0. Thus, we are
left with two possible classes of two-generation models
that extend the GCP2 symmetry to the Yukawa sector,
each of which is governed by four complex parameters in
the down-type quark and up-type quark sectors, respec-
tively.

B. Z2 ⊗ Π2 for two generations

Having found that GCP2 can be extended to the
fermions with two generations, we now want to check
whether an extension also exists for Z2 ⊗ Π2, and if such
an extension corresponds to GCP2 in another choice of
scalar field and quark field basis. Following the analysis of
the three generation model of Sec. IV, we begin by
determining all possible extensions of the Z2 symmetry
defined in Eq. (50) to the Yukawa sector. To do this, we will
employ a simplified version of the method used
in Ref. [24].

1. Extensions of Z2 to the Yukawa sector: The basics

As noted in Ref. [24], due to the unitarity of the
quark symmetry matrices, one can always choose a basis
such that Z2 symmetry matrices, SðZ2Þ

L and SðZ2Þ
nR , are

diagonal. In this basis, the symmetry matrices can be
written as

SðZ2Þ ¼
�
1 0

0 −1

�
; SðZ2Þ

L ¼
�
eiα1 0

0 eiα2

�
;

SðZ2Þ
nR ¼

�
eiβ1 0

0 eiβ2

�
: ð142Þ

This implies that the Z2 symmetry equation given by
Eq. (32) can be written in the simple form

ðΓ1Þab ¼ ðΓ1Þabeiθab ; ðΓ2Þab ¼ ðΓ2Þabeiðθab−πÞ; ð143Þ

where a; b∈ f1; 2g are left-handed quark generation indi-
ces and we have adopted the notation such that

θab ≡ αa − βb: ð144Þ
From Eq. (143), we can readily see that there are only three
possibilities:
(1) θab ¼ 0, then ðΓ1Þab can take any value, and

ðΓ2Þab ¼ 0;
(2) θab ¼ π, then ðΓ2Þab can take any value, and

ðΓ1Þab ¼ 0;
(3) θab ≠ 0; π, then ðΓ1Þab ¼ ðΓ2Þab ¼ 0;

where all conditions on θab are taken to be mod 2π.

2. Extensions of Z2 to the Yukawa sector:
Left space constraints

Consider the following combinations of Yukawa
matrices:

ΓiΓ
†
j ¼ ð−1Þð1−δijÞSLΓiΓ

†
jS

†
L; ð145Þ

ΔiΔ
†
j ¼ ð−1Þð1−δijÞSLΔiΔ

†
jS

†
L; ð146Þ

where we have used Eq. (32) with S given in Eq. (142). We
can see that, contrary to the right-handed symmetries that
act on either the up or the down quarks, the left-handed
symmetries affect both, and are thus very constraining. For
example, Eq. (145) yields the following constraint:

ðΓiΓ
†
jÞab ¼ ðΓiΓ

†
jÞabeiðαa−αbÞþiπð1−δijÞ; ð147Þ

after inserting the expression for SL given in Eq. (142). In
particular, the phase on the right-hand side of Eq. (147) is
given by

αa − αb þ πð1 − δijÞ ¼

8>>><
>>>:

�
0 α1 − α2

α2 − α1 0

�
ab

; for i ¼ j;

�
π π þ α1 − α2

π þ α2 − α1 π

�
ab

; for i ≠ j;

ð148Þ
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where a,b∈ f1; 2g label the elements of the 2 × 2 matrices
above. Thus, there are three possibilities:
(1) If α1 − α2 ¼ 0, then Γ1Γ

†
2 ¼ Γ2Γ

†
1 ¼ 0, with Γ1Γ

†
1,

and Γ2Γ†
2 unconstrained.

(2) If α1 − α2 ¼ π, then Γ1Γ
†
1 and Γ2Γ

†
2 are diagonal,

whereas Γ1Γ†
2 and Γ2Γ†

1 are off-diagonal.
(3) If α1 − α2 ≠ 0; π, then Γ1Γ

†
1, Γ2Γ

†
2 are diagonal,

whereas Γ1Γ
†
2 ¼ Γ2Γ

†
1 ¼ 0. This implies that Hd is

diagonal. A similar analysis of the up-type
quark sector yields a diagonal Hu in this case.
Hence, detf½Hu;Hd�g ¼ 0 which yields Jc ¼ 0. It
follows that sin 2θc ¼ 0, which is experimentally
excluded.

In Case 1 above where α1 ¼ α2, the matrix θab is given by

θ ¼
�
θ11 θ12

θ11 θ12

�
: ð149Þ

InCase 2 abovewhereα2 ¼ π þ α1, thematrixθab is givenby

θ ¼
�

θ11 θ12

θ11 þ π θ12 þ π

�
; ð150Þ

where the elements of the matrix θ are evaluated mod 2π.
Combining the results obtained in this section with those
found below Eq. (143), we obtain all the possible extensions
of Z2 in Table II, where x stands for an arbitrary complex
number.
The cases in Table II that are related by the inter-

change of Γ1 and Γ2 are physically equivalent, as this
transformation simply corresponds to a change of the
scalar field basis in which Φ1 and Φ2 are interchanged.
We can therefore choose the form of the Yukawa matrices
Γ1 and Γ2 for the four inequivalent cases as exhibited
below:

Case 0∶ Γ1 ¼
�
x x

x x

�
; Γ2 ¼

�
0 0

0 0

�
; ð151Þ

Case 1∶ Γ1 ¼
�
x x

0 0

�
; Γ2 ¼

�
0 0

x x

�
; ð152Þ

Case 2∶ Γ1 ¼
�
x 0

x 0

�
; Γ2 ¼

�
0 x

0 x

�
; ð153Þ

Case 3∶ Γ1 ¼
�
x 0

0 x

�
; Γ2 ¼

�
0 x

x 0

�
: ð154Þ

These cases correspond, respectively, to the followingZ2

symmetry matrices in a scalar field basis where SðZ2Þ ¼ σZ:

Case 0 ½θ11 ¼ θ12 ¼ 0;α1 ¼ α2�∶ SðZ2Þ
L ¼ eiα11; SðZ2Þ

nR ¼ eiα11; ð155Þ

Case 1 ½θ11 ¼ θ12 ¼ 0; α2 ¼ π þ α1�∶ SðZ2Þ
L ¼ eiα1σZ; SðZ2Þ

nR ¼ eiα11; ð156Þ

Case 2 ½θ11 ¼ 0; θ12 ¼ π;α1 ¼ α2�∶ SðZ2Þ
L ¼ eiα11; SðZ2Þ

nR ¼ eiα1σZ; ð157Þ

Case 3 ½θ11 ¼ 0; θ12 ¼ π;α2 ¼ π þ α1�∶ SðZ2Þ
L ¼ eiα1σZ; SðZ2Þ

nR ¼ eiα1σZ; ð158Þ
where

σZ ≡
�
1 0

0 −1

�
: ð159Þ

TABLE II. Extensions of the Z2 symmetry to the Yukawa
sector consisting of two quark generations.

α1 ¼ α2

θ11 θ12 Γ1 Γ2

0 0
�
x x
x x

� �
0 0

0 0

�
π 0

�
0 x
0 x

� �
x 0

x 0

�
0 π

�
x 0

x 0

� �
0 x
0 x

�
π π

�
0 0

0 0

� �
x x
x x

�

α2 ¼ π þ α1

θ11 θ12 Γ1 Γ2

0 0
�
x x
0 0

� �
0 0

x x

�
π 0

�
0 x
x 0

� �
x 0

0 x

�
0 π

�
x 0

0 x

� �
0 x
x 0

�
π π

�
0 0

x x

� �
x x
0 0

�
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Without loss of generality, we may simply set the remain-
ing global phase α1 ¼ 0, as it plays no role in constraining
the forms of Γ1 and Γ2.

3. Extensions of Z2 to the two generation quark sector:
Compatibility with Π2

If the scalar potential exhibits a Z2 ⊗ Π2 symmetry, then
the scalar potential is also invariant under the interchange of
Φ1 and Φ2, corresponding to the Π2 symmetry matrix
SðΠ2Þ ¼ σΠ, where

σΠ ≡
�
0 1

1 0

�
: ð160Þ

When extending the Z2 symmetry to Z2 ⊗ Π2 in the
Yukawa sector, one must satisfy the additional constraint
given by Eq. (68), which we repeat here in a more explicit
notation,

Γ1 ¼ SðΠ2Þ
L Γ2½SðΠ2Þ

nR �†; Γ2 ¼ SðΠ2Þ
L Γ1½SðΠ2Þ

nR �†: ð161Þ

These constraints immediately eliminate Case 0 [Eqs. (151)
and (155)], since the imposition of Eq. (161) would yield
Γ1 ¼ Γ2 ¼ 0, corresponding to vanishing couplings of the
down-type quarks to the Higgs doublet fields.
To determine all possible viable models with the Z2 ⊗

Π2 symmetry extended to the Yukawa sector, one must
determine all possible forms for the symmetry matrices

SðΠ2Þ
L and SðΠ2Þ

nR . We proceed as follows. We first consider
the simpler problem of extending the Π2 to the Yukawa
sector. But a Π2-symmetric scalar potential is equivalent to
a Z2-symmetric scalar potential in another scalar field basis
as shown in Eqs. (56)–(58). Thus, as a first step we perform
a scalar field basis transformation so that the Π2 symmetry
matrix is SðΠ2Þ ¼ σZ. We can now extend the Π2 symmetry
to the Yukawa sector by using the results of Sec. VII B 1.
Wewill then end up with three potential cases for the choice
of SL and SnR given by Eqs. (156)–(158), where we shall
again set the global phase to zero with no loss of generality.
We can now transform back to the basis in which the Π2

symmetry matrix is SðΠ2Þ ¼ σΠ. That is, we chooseU given
by Eq. (57) and

SðΠ2Þ
L ¼ ULSLU

†
L; SðΠ2Þ

nR ¼ UnRSLU
†
nR; ð162Þ

where SL and SnR are taken to be the symmetry matrices
corresponding to one of the following three cases:

ðSL; SnRÞ∈ fðσZ; 1Þ; ð1; σZÞ; ðσZ; σZÞg: ð163Þ

Having obtained the symmetry matrices for the Π2

symmetry extended to the Yukawa sector, we can now
consider the constraints on Γ1 and Γ2 obtained in
Eqs. (152)–(154) under the Z2 ⊗ Π2 symmetry extended

to the Yukawa sector. We simply insert the results of
Eq. (162) into Eq. (161) to obtain

Γ1ðUnRSnRU
†
nRÞ ¼ ðULSLU

†
LÞΓ2; ð164Þ

Γ2ðUnRSnRU
†
nRÞ ¼ ðULSLU

†
LÞΓ1; ð165Þ

where the three possible cases for fΓ1;Γ2g are given in
Eqs. (152)–(154). Note that for any of the three sets of
choices of SL and SnR given in Eq. (163), the two equations
above are equivalent.
As a result of this analysis, we can consider nine possible

models, corresponding to the three possible choices for Γ1

and Γ2 exhibited in Eqs. (152)–(154) and the three possible
sets of SL and SnR listed in Eq. (163), which we shall
henceforth denote by sets 1, 2, and 3. The resulting model
corresponding to Case n for the choice of Γ1 and Γ2 and the
mth set of possible choices for SL and SnR will be denoted
in the following by Model (n-m). Thus, there are nine
possible models to consider.
At this stage, we have yet to fix the unitary matrices UL

and UnR . We shall employ the parametrization

Uσ ¼eiϕσ

�
eiασ cosθσ e−iβσ sinθσ
−eiβσ sinθσ e−iασ cosθσ

�
; with σ∈fL;nRg:

ð166Þ

The global phase ϕσ has no effect on the transformation of
the symmetry matrices, so we may set ϕσ ¼ 0 without loss
of generality. In this convention,Uσ ∈SUð2Þ, and the entire
SU(2) group manifold can be covered by taking the ranges
of the remaining parameters to be 0 ≤ θσ ≤ 1

2
π and

0 ≤ ασ , βσ < 2π.
As an example, consider Model (1-3), where Γ1 and Γ2,

which take the form given by Eq. (152), can be para-
metrized as

Γ1 ¼
�
x11 x12
0 0

�
; Γ2 ¼

�
0 0

x21 x22

�
; ð167Þ

and SL ¼ SnR ¼ σZ, as specified in the third set of
Eq. (163). Plugging these choices along with Eq. (166)
into Eq. (164) yields

cos 2θL ¼ 0; ð168Þ

x21eiðαL−βLÞ sin 2θL ¼ x12e−iðαR−βRÞ sin 2θR − x11 cos 2θR;

ð169Þ

x22eiðαL−βLÞ sin 2θL ¼ x11eiðαR−βRÞ sin 2θR þ x12 cos 2θR;

ð170Þ
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where we have simplified the R subscript in writing
αR ≡ αnR , βR ≡ βnR , and θR ≡ θnR . Since 0 ≤ θL ≤ 1

2
π, it

follows that θL ¼ π=4. Then, Eq. (162) yields

SðΠ2Þ
L ¼ ULσZU

†
L ¼

�
0 −eiðαL−βLÞ

−e−iðαL−βLÞ 0

�
; ð171Þ

SðΠ2Þ
nR ¼UnRσZU

†
nR

¼
�

cos2θR −eiðαR−βRÞ sin2θR
−e−iðαR−βRÞ sin2θR −cos2θR

�
: ð172Þ

The Z2 ⊗ Π2 symmetry constraints do not fix the remain-
ing free parameter, αL, βL, αR, βR, and θR. Indeed, one is
free to transform to a different quark field basis as long as

the Z2 symmetry matrices SðZ2Þ
L ¼ σZ and SðZ2Þ

nR ¼ 1 are
unchanged. In light of Eqs. (35) and (36), we shall
transform

SðΠ2Þ
L → U0

LS
ðΠ2Þ
L U0†

L ; SðΠ2Þ
nR → U0

nRS
ðΠ2Þ
nR U0†

nR; ð173Þ

where U0
L ¼ diagðeiðγþδÞ; eiðγ−δÞÞ is the most general 2 × 2

unitary matrix that leaves SðZ2Þ
L unchanged and U0

nR is an

arbitrary 2 × 2 unitary matrix that (trivially) leaves SðZ2Þ
nR

unchanged. With this freedom, it is convenient to choose γ,
δ, and the matrix elements ofU0

nR such that Eq. (173) yields

αL − βL ¼ αR − βR ¼ π; θR ¼ 1

4
π: ð174Þ

Using these results and Eq. (168) to simplify Eqs. (169) and
(170), we end up with x21 ¼ x12 and x22 ¼ x11. That is,
Model (1-3) is equivalent to a model in which the Yukawa
coupling matrices and the Π2 symmetry matrices are
given by

Γ1 ¼
�
x11 x12
0 0

�
; Γ2 ¼

�
0 0

x12 x11

�
;

SðΠ2Þ
L ¼ σΠ; SðΠ2Þ

nR ¼ σΠ; ð175Þ

where σΠ is defined in Eq. (160).
Moreover, it is straightforward to compute

Hd ¼ ðv1Γ1 þ v2Γ2Þðv1Γ1 þ v2Γ2Þ† and its trace and
determinant, which yield

TrHd ¼ ½jx11j2 þ jx12j2�v2; ð176Þ

det Hd ¼ jv1j2jv2j2jx211 − x212j2; ð177Þ

where v is defined in Eq. (6). Note that detHd is nonzero
for a generic choice of parameters, which implies that the
two down-type quark masses are generically nonzero.

In Appendix C, we analyze the remaining eight models.
Some of these models can be immediately excluded as they
contain either a massless down-type quark or else vanishing
down-type Yukawa coupling matrices. Furthermore, we
find that Model (3,3) actually represents a class of models
that are parametrized by the angles ðθL; θRÞ. Two of these
models, corresponding to ðθL; θRÞ ¼ ð0; 1

4
πÞ and ð1

4
π; 0Þ,

which shall be denoted by ð3-3Þ0 and ð3-3Þ1, respectively,
are phenomenologically viable. In the remaining models,
collectively denoted by ð3-3ÞX, all down-type quarks are
massive. However, when the up-type quark Yukawa cou-
plings are taken into account, the resulting models predict a
vanishing Cabibbo angle (as shown in Appendix C) and
hence are phenomenologically excluded.

4. Summary of viable two-generation
Z2 ⊗ Π2-symmetric models

In addition to Model (1,3) analyzed above, we show in
Appendix C that in Models (2-3), (3-1), (3-2), ð3-3Þ0,
ð3-3Þ1, and ð3-3ÞX all down-type quarks are massive. As
noted above, the class of models denoted by ð3-3ÞX is
phenomenologically excluded. The symmetry matrices and
the corresponding Yukawa coupling matrices of the
remaining models are listed in Table III below.
To determine the viability of the possible two-generation

models, one must now consider the corresponding results
for the up-type Yukawa coupling matricesΔ1 andΔ2. In the
analysis of the possible forms forΔ1 andΔ2 consistent with

the Z2 ⊗ Π2 symmetry, one must use the same SðZ2Þ
L and

SðΠ2Þ
L employed in the analysis of the down-type Yukawa

sector. One is still free to fix SðZ2Þ
pR and SðΠ2Þ

pR consistent with
the symmetry requirements. The end result is a table
identical with Table III, with the possible forms for Δ1

and Δ2 coinciding with those of Γ1 and Γ2 but with
different nonzero matrix elements (which we shall denote
by yij). Consequently, none of the allowed choices for Δ1

and Δ2 yield massless up-type quarks for a generic choice
of the parameters. The resulting Yukawa sector models are

specified by a pair of model types that share the same SðZ2Þ
L

and SðΠ2Þ
L , which are listed above in Table IV. It is now

straightforward to check that for all models listed in
Table IV, detf½Hu;Hd�g ≠ 0, or equivalently Jc ≠ 0 [cf.
Eq. (138)]. Hence, all the models of Table IV possess a
nonzero Cabibbo angle, as required by experimental data.
The models exhibited in Table IVare not all inequivalent,

as some of the listed models are related by a change in the
Higgs field and the quark field basis. In particular, we show
in Appendix D that there are five sets of model pairs,
specified in Eqs. (D9), (D11), and (D12), where the two
models that make up a given pair are related by an
appropriate set of basis transformations. We may take
the first seven models listed in Table IV to constitute the
list of inequivalent models. Each of the remaining five
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models is shown in Appendix D to be equivalent to one of
the seven inequivalent models in Table IV.

C. (Non)Correspondence between Z2 ⊗ Π2 and GCP2
with two quark generations

The question now arises: are the Yukawa-extended two-
generation GCP2-symmetric models of Sec. VII A equiv-
alent (i.e., the same model but expressed in different
choices of the Higgs field and quark field basis) to the

corresponding Z2 ⊗ Π2-symmetric models of Sec. VII B?
In Sec. VII A, we classified the possible Yukawa-extended
GCP2-symmetric models. We found three distinct classes
of models, denoted by I=I, II=II, and III=III, all of which
exhibited nonzero up-type and down-type quark masses for
generic choices of the parameters. In model class I=I, the
corresponding down-type and up-type Yukawa coupling
matrices exhibited forms that each depended on two
independent complex parameters. In light of these forms,
we demonstrated that the Cabibbo angle vanished. In model
classes II=II and III=III, the corresponding down-type and
up-type Yukawa coupling matrices exhibited forms that
each depended on four independent complex parameters,
which implied a nonvanishing Cabibbo angle.
In Sec. VII B, we classified the possible Yukawa-

extended Z2 ⊗ Π2-symmetric models. In all cases but
one, the corresponding down-type and up-type Yukawa
coupling matrices exhibited forms that each depended on
two independent complex parameters. Some of these
models possessed at least one massless quark. Among
the class of models with nonzero up-type and down-type
quark masses, we showed the existence of seven inequi-
valent models, each of which allowed for a nonvanishing
Cabibbo angle. The one exceptional case (with Yukawa
coupling matrices that each depend on only one indepen-
dent parameter) was shown to have a vanishing Cabibbo
angle in Appendix C.
Naively, one might have expected that the GCP2-

symmetric models with down-type and up-type Yukawa
coupling matrices that each depended on two independent
complex parameters could be related via a basis trans-
formation to the corresponding Z2 ⊗ Π2-symmetric mod-
els with the same number of independent parameters.
However, the Cabibbo angle necessarily vanishes in the
former, whereas it is generically nonzero in the latter. Thus,
we conclude that in contrast to the behavior of these
symmetries in the scalar sector of the 2HDM, GCP2,
and Z2 ⊗ Π2 are inequivalent symmetries when extended
to the Yukawa sector.
Is it possible that the Yukawa-extended GCP2-symmetric

models (Models II=II and III=III), with down-type and up-
type Yukawa coupling matrices that each depend on four
independent complex parameters, could be related via a basis
transformation to the corresponding Z2 ⊗ Π2-symmetric
models, which depend on half the number of independent
complex parameters? The answer is clearly negative.
Although the Cabibbo angle is nonvanishing in all these
models, there are other physical observables that would
distinguish the Yukawa-extended GCP2-symmetric models
from the correspondingZ2 ⊗ Π2-symmetric models. Hence,
we have demonstrated that the extension of theGCP2 and the
Z2 ⊗ Π2 symmetries from the scalar sector (where the
corresponding scalar potentials are related by a change in
the scalar field basis) to the Yukawa sector effectively
“removes the degeneracy” and yields inequivalent models.

TABLE IV. Z2 and Π2 symmetry matrices for each viable
Yukawa sector model that is compatible with the Z2 ⊗ Π2

symmetry of the 2HDM scalar potential in a scalar field basis
where SðZ2Þ ¼ σZ and SðΠ2Þ ¼ σΠ. Of the 12 models listed below,
the first seven models are inequivalent with respect to basis
changes. Each of the last five models can be shown to be
equivalent to one of the first seven models listed below via a
particular change in the scalar field and quark field basis, as
shown in Appendix D. The corresponding equivalent models are
given in Eqs. (D9), (D11), and (D12).

Down/up sector models SðZ2Þ
L SðZ2Þ

nR SðZ2Þ
pR SðΠ2Þ

L SðΠ2Þ
nR SðΠ2Þ

pR

ð1-3Þ=ð1-3Þ σZ 1 1 σΠ σΠ σΠ
ð1-3Þ=ð3-1Þ σZ 1 σZ σΠ σΠ 1
ð1-3Þ=ð3-3Þ1 σZ 1 σZ σΠ σΠ σZ
ð2-3Þ=ð2-3Þ 1 σZ σZ σΠ σΠ σΠ
ð3-3Þ0=ð3-3Þ0 σZ σZ σZ σZ σΠ σΠ
ð3-3Þ1=ð1; 3Þ σZ σZ 1 σΠ σZ σΠ
ð3-3Þ1=ð3; 3Þ1 σZ σZ σZ σΠ σZ σZ
ð3-1Þ=ð1-3Þ σZ σZ 1 σΠ 1 σΠ
ð3-1Þ=ð3-1Þ σZ σZ σZ σΠ 1 1
ð3-1Þ=ð3-3Þ1 σZ σZ σZ σΠ 1 σZ
ð3-2Þ=ð3-2Þ σZ σZ σZ 1 σΠ σΠ
ð3-3Þ1=ð3; 1Þ σZ σZ σZ σΠ σZ 1

TABLE III. Symmetry matrices for viable two-generation
Z2 ⊗ Π2-symmetric models in a scalar field basis where SðZ2Þ ¼
σZ and SðΠ2Þ ¼ σΠ, with the corresponding forms for the Z2 and
Π2 symmetry matrices of the down-type Yukawa sector and the
corresponding Yukawa coupling matrices.

Model SðZ2Þ
L SðZ2Þ

nR SðΠ2Þ
L SðΠ2Þ

nR Γ1 Γ2

(1-3) σZ 1 σΠ σΠ
�
x11 x12
0 0

� �
0 0

x12 x11

�
(2-3) 1 σZ σΠ σΠ

�
x11 0

x21 0

� �
0 x21
0 x11

�
(3-1) σZ σZ σΠ 1

�
x11 0

0 x22

� �
0 x22
x11 0

�
(3-2) σZ σZ 1 σΠ

�
x11 0

0 x22

� �
0 x11
x22 0

�
ð3-3Þ0 σZ σZ σZ σΠ

�
x11 0

0 x22

� �
0 x11

−x22 0

�
ð3-3Þ1 σZ σZ σΠ σZ

�
x11 0

0 x22

� �
0 −x22
x11 0

�
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VIII. CONCLUSIONS

In this paper we have explored the curious connection
between the 2HDM scalar potential obtained by imposing
invariance under the Higgs-flavor symmetry, Z2 ⊗ Π2, and
the scalar potential obtained by imposing invariance under
the generalized CP symmetry, GCP2. As first noticed in
Ref. [15], the resulting scalar potentials after imposing
Z2 ⊗ Π2 and GCP2 were related by a transformation of the
scalar field basis, and thus could be considered as physi-
cally equivalent. The objective of this paper was to extend
these symmetries to the Yukawa sector, to see whether the
extended Z2 ⊗ Π2-symmetric 2HDM was still equivalent
to the extended GCP2-symmetric 2HDM, or whether the
extension to the Yukawa sector removes the degeneracy
between the two models. In Ref. [27], Ferreira and Silva
proved that one could not extend the GCP2 symmetry to the
Yukawa sector in a way that was consistent with nonzero
quark masses and a CKMmixing angle that were consistent
with experimental observations. The more difficult case of
extending the Z2 ⊗ Π2 symmetry to the three-generation
Yukawa sector is addressed in this paper for the first time.
We find that, similar to the results obtained for the
GCP2 symmetry in Ref. [27], there is no extension of
the Z2 ⊗ Π2 symmetry that is consistent with experimental
observations.
In analogy with the connection between Z2 ⊗ Π2 and

GCP2, there is also a similar relation between the 2HDM
scalar potential obtained by imposing invariance under the
Higgs-flavor symmetry, Uð1Þ ⊗ Π2, and the scalar poten-
tial obtained by imposing invariance under the generalized
CP symmetry, GCP3. It was also observed in Ref. [14] that
the corresponding scalar potentials were related by a
transformation of the scalar field basis. In Ref. [27], it
was shown that there is a unique extension of the GCP3
symmetry to the Yukawa sector that yields a model with
nonzero quark masses and a nonvanishing CKM angle.
This provided the possibility of a realistic fully GCP3-
symmetric 2HDM, although further analysis presented in
Ref. [27] showed that the model was unable to yield a CKM
mixing matrix that was fully compatible with experimen-
tal data.
In this paper, we examined for the first time all possible

extensions of the Uð1Þ ⊗ Π2 symmetry to the Yukawa
sector. We found that there is again a unique model with
nonzero quark masses and a nonvanishing CKM angle.
Moreover, we showed that the corresponding three-gen-
eration Yukawa-extended GCP3-symmetric and
Uð1Þ ⊗ Π2-symmetric 2HDM are related by a simulta-
neous transformation of the Higgs field basis and the quark
field basis.
It was tempting to conclude that the results described

above imply that the physical equivalence of the models
obtained by imposing a Z2 ⊗ Π2 (Uð1Þ ⊗ Π2) and GCP2
(GCP3) symmetry was a general feature of the 2HDM. In
this paper, we have also proved that this conclusion is not

generally correct by focusing on a 2HDM toy model with
two quark generations. We have classified all such two-
generation GCP2-symmetric and Z2 ⊗ Π2-symmetric
models, where the corresponding symmetries have been
extended to the Yukawa sector. We have found inequivalent
GCP2-symmetric and Z2 ⊗ Π2-symmetric models that
possess nonzero quark masses and a nonzero Cabibbo
angle. For example, the corresponding down-type Yukawa
coupling matrices of the GCP2-symmetric models generi-
cally depend on four complex parameters, whereas those of
the Z2 ⊗ Π2-symmetric models generically depend on two
complex parameters. Indeed, there are no scalar field and
quark field basis transformations that can relate the phe-
nomenologically viable GCP2-symmetric and Z2 ⊗ Π2-
symmetric models. That is, the degeneracy between these
two symmetry classes has been removed.
One can perform a similar classification of two-gener-

ation GCP3-symmetric and Uð1Þ ⊗ Π2-symmetric models,
where the corresponding symmetries have been extended to
the Yukawa sector. We again find inequivalent GCP3-
symmetric and Uð1Þ ⊗ Π2-symmetric models that possess
nonzero quark masses and a nonzero Cabibbo angle.
Details of this analysis, which mirrors the calculations
presented in Sec. VII, can be found in Ref. [48]. Once
again, the degeneracy between these two symmetry classes
has been removed. We conclude that the physical equiv-
alence of the models obtained by imposing a Z2 ⊗ Π2

[Uð1Þ ⊗ Π2] and GCP2 [GCP3] symmetry is an accidental
feature of the 2HDM with three quark generations.
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APPENDIX A: EXTENSIONS OF U(1) AND Z2
SYMMETRIES OF THE 2HDM SCALAR
POTENTIAL TO THE YUKAWA SECTOR

In this appendix, wewill list all the extensions ofZ2 andU
(1) symmetries of the 2HDM scalar potential to the Yukawa
sector that were obtained in Ref. [24]. We shall employ the
notation of Ref. [24], where the x represents the freedom to
choose any complex number for that matrix element.

1. Extensions of Z2 to the Yukawa sector

In the list of independent forms obtained in Ref. [24] for
the down-type Yukawa coupling matrices Γ1 and Γ2 that are
compatible with the Z2 symmetry of the 2HDM scalar
potential when extended to the Yukawa sector, extensions
that were equivalent with respect to the permutations of
quark flavors were excluded from the list. In contrast,
extensions that are related by a permutation of the scalar

doublets were not removed. In Table V, we exhibit the list
as presented in Ref. [24].

2. Extensions of U(1) to the Yukawa sector

A list of the independent forms obtained in Ref. [24] for
the down-type Yukawa coupling matrices Γ1 and Γ2 that are
compatible with a global U(1) symmetry of the 2HDM
scalar potential when extended to the Yukawa sector is
given in Tables VI–IX below.

APPENDIX B: EVALUATION OF A
DETERMINANT

In this appendix, we provide an explicit evaluation of the
determinant of the 8 × 8 matrix given in Eq. (125). We
begin by noticing that one can express A in 2 × 2 block
matrix form consisting of 4 × 4 matrix blocks that can be
written in terms of Kronecker products of 2 × 2 matrices,

A ¼

0
BBBBB@

cα1 sα1 XT
nR 0

−sα1 cα1 0 XT
nR

−XT
nR 0 cα1 sα1

0 −XT
nR −sα1 cα1

1
CCCCCA

¼
 

XL ⊗ 1 1 ⊗ XT
nR

−1 ⊗ XT
nR XL ⊗ 1

!
; ðB1Þ

where 1 is the 2 × 2 identity matrix and 0 is the 2 × 2 zero
matrix in Eq. (B1).
Using the well-known formula for the determinant of a

2 × 2 block matrix (e.g., see Ref. [49]),

det

�
M N

P Q

�
¼ det M detðQ − PM−1NÞ; ðB2Þ

where Q − PM−1N is the Schur complement of M (under
the assumption that M is invertible), and noting that
detðXL ⊗ 1Þ ¼ 1 and X−1

L ¼ XT
L, we obtain

det A ¼ det½XL ⊗ 1þ ð1 ⊗ XT
nRÞðXT

L ⊗ 1Þð1 ⊗ XT
nRÞ�:
ðB3Þ

We can manipulate Eq. (B3) into a more useful form by
using the properties of the Kronecker product of two
matrices,

det A ¼ det½XL ⊗ 1þ ð1 ⊗ XT
nRÞðXT

L ⊗ XT
nRÞ�

¼ detfðXL ⊗ 1Þ½14 þ ðXT
L ⊗ XT

nRÞ2�g
¼ det½14 þ ðXT

L ⊗ XT
nRÞ2�; ðB4Þ

after using ðXL ⊗ 1ÞðXT
L ⊗ 1Þ ¼ 14, where 14 is the 4 × 4

identity matrix. Noting that XL ⊗ XnR is an orthogonal
4 × 4 matrix with unit determinant, it follows that

TABLE V. Independent forms for the down-type Yukawa
coupling matrices Γ1 and Γ2 that are compatible with the Z2

symmetry of the 2HDM scalar potential when extended to the
Yukawa sector, labeled by the corresponding equation numbers
of Ref. [24].

Eqs. Γ1 Γ2

66  x x x
x x x
x x x

!  
0 0 0

0 0 0

0 0 0

!

67  x x 0

x x 0

x x 0

!  
0 0 x
0 0 x
0 0 x

!

68  x 0 0

x 0 0

x 0 0

!  
0 x x
0 x x
0 x x

!

69  
0 0 0

0 0 0

0 0 0

!  x x x
x x x
x x x

!

Eqs. Γ1 Γ2

71  x x x
x x x
0 0 0

!  
0 0 0

0 0 0

x x x

!

73  x x 0

x x 0

0 0 x

!  
0 0 x
0 0 x
x x 0

!

75  x 0 0

x 0 0

0 x x

!  
0 x x
0 x x
x 0 0

!

79  
0 0 0

0 0 0

x x x

!  x x x
x x x
0 0 0

!
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14 ¼ ðXL ⊗ XnRÞðXT
L ⊗ XT

nRÞ and

det A ¼ det½ðXT
L ⊗ XT

nRÞðXL ⊗ XnR þ XT
L ⊗ XT

nRÞ�
¼ det½XL ⊗ XnR þ XT

L ⊗ XT
nR�: ðB5Þ

Explicitly, we have

XL ⊗ XnR þ XT
L ⊗ XT

nR

¼
 

cαðXnR þ XT
nRÞ sαðXnR − XT

nRÞ
−sαðXnR − XT

nRÞ cαðXnR þ XT
nRÞ

!

¼
�

2cαcβ1 2sαsβJ

−2sαsβJ 2cαcβ1

�
; ðB6Þ

where J≡ ð 0
−1

1
0
Þ. Using Eq. (B2) to evaluate the determi-

nant of Eq. (B6) with J2 ¼ −1, one quickly obtains

detA ¼ 16ðc2αc2β − s2αs2βÞ2; ðB7Þ

as indicated in Eq. (126).

APPENDIX C: EXTENSIONS OF Z2 ⊗ Π2 TO THE
YUKAWA SECTOR OF THE 2HDM WITH TWO

QUARK GENERATIONS

In Sec. VII B 3, we identified nine classes of models that
are compatible with the extension of the Z2 ⊗ Π2 sym-
metry to the two-generation Yukawa sector. These models
were obtained by determining the unitary matrices UL and
UnR that satisfy

Γ1ðUnRSnRU
†
nRÞ ¼ ðULSLU

†
LÞΓ2; ðC1Þ

where the Yukawa coupling matrices fΓ1;Γ2g have the
form given by Cases 1, 2, or 3 specified in Eqs. (152)–(154)
and the choices of the symmetry matrices SL and SnR
correspond to one of the following three choices exhibited
in Eq. (163), which we repeat here for the convenience of
the reader:

ðSL; SnRÞ∈ fðσZ; 1Þ; ð1; σZÞ; ðσZ; σZÞg; ðC2Þ

TABLE VI. Independent forms for the down-type Yukawa
coupling matrices Γ1 and Γ2 that are compatible with the global
U(1) symmetry of the 2HDM scalar potential when extended to
the Yukawa sector, labeled by the corresponding equation
numbers of Ref. [24]—Part 1.

Eqs. Γ1 Γ2

57  
0 0 0

0 0 x
x x 0

!  x x 0

0 0 0

0 0 x

!

58  
0 0 0

0 0 0

x x 0

!  x x 0

0 0 x
0 0 0

!

59  
0 0 x
x x 0

0 0 0

!  
0 0 0

0 0 0

x x 0

!

60  
0 0 0

x x 0

0 0 x

!  
0 0 x
0 0 0

x x 0

!

Eqs. Γ1 Γ2

61  x 0 0

0 x 0

0 0 x

!  
0 0 x
0 0 0

0 x 0

!

62  x 0 0

0 0 0

0 0 x

!  
0 0 x
0 x 0

0 0 0

!

63  x 0 0

0 x 0

0 0 0

!  
0 0 0

0 0 x
0 x 0

!

64  
0 0 0

0 x 0

x 0 0

!  x 0 0

0 0 x
0 x 0

!

TABLE VII. Independent forms for the down-type Yukawa
coupling matrices Γ1 and Γ2 that are compatible with the global U
(1) symmetry of the 2HDM scalar potential when extended to the
Yukawa sector, labeled by the corresponding equation numbers
of Ref. [24]—Part 2.

Eqs. Γ1 Γ2

66  x x x
x x x
x x x

!  
0 0 0

0 0 0

0 0 0

!

67  x x 0

x x 0

x x 0

!  
0 0 x
0 0 x
0 0 x

!

68  x 0 0

x 0 0

x 0 0

!  
0 x x
0 x x
0 x x

!

69  
0 0 0

0 0 0

0 0 0

!  x x x
x x x
x x x

!

Eqs. Γ1 Γ2

71  x x x
x x x
0 0 0

!  
0 0 0

0 0 0

x x x

!

72  x x 0

x x 0

0 0 0

!  
0 0 x
0 0 x
x x 0

!

74  x 0 0

x 0 0

0 0 0

!  
0 x x
0 x x
x 0 0

!

76  x x 0

x x 0

0 0 x

!  
0 0 0

0 0 0

x x 0

!
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where σZ is defined in Eq. (159). This yields nine possible
model types, denoted by (n-m), corresponding to the Case
n Yukawa coupling matrices and the mth set of possible
choices for SL and SnR given in Eq. (C2).
To solve Eq. (C1), we parametrize the unitary matrices

UL and UnR as in Eq. (166),

Uσ ¼
�

eiασ cos θσ e−iβσ sin θσ
−eiβσ sin θσ e−iασ cos θσ

�
; with σ ∈ fL; nRg;

ðC3Þ

where an arbitrary global phase has been set to zero,
0 ≤ θσ ≤ 1

2
π, and 0 ≤ ασ, βσ < 2π. In the analysis of the

possible model types below, we shall make use of the
following quantity:

UσσZU
†
σ ¼

 
cos 2θσ −eiðασ−βσÞ sin 2θσ

−e−iðασ−βσÞ sin 2θσ − cos 2θσ

!
:

ðC4Þ

1. Model (1-1)

Γ1 ¼
�
x11 x12
0 0

�
; Γ2 ¼

�
0 0

x21 x22

�
;

SL ¼ σZ; SnR ¼ 1: ðC5Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

cos 2θL ¼ 0; ðC6Þ

x11 ¼ −x21eiðαL−βLÞ sin 2θL; ðC7Þ

x12 ¼ −x22eiðαL−βLÞ sin 2θL: ðC8Þ

It follows that θL ¼ π=4 and

Γ2 ¼ −e−iðαL−βLÞ
�

0 0

x11 x12

�
: ðC9Þ

Finally, we compute

TABLE IX. Independent forms for the down-type Yukawa
coupling matrices Γ1 and Γ2 that are compatible with the global
U(1) symmetry of the 2HDM scalar potential when extended to
the Yukawa sector, labeled by the corresponding equation
numbers of Ref. [24]—Part 4.

Eqs. Γ1 Γ2

86  
0 0 0

0 0 0

x x 0

!  x 0 0

0 x 0

0 0 x

!

89  x x 0

0 0 x
0 0 x

!  
0 0 0

0 0 x
x x 0

!

90  x x 0

0 0 0

0 0 x

!  
0 0 0

0 0 x
x x 0

!

91  x 0 0

0 x x
0 0 0

!  
0 x x
0 0 0

x 0 0

!

Eqs. Γ1 Γ2

92  x 0 0

x x 0

0 0 x

!  
0 x 0

0 0 x
x 0 0

!

93  x 0 0

0 0 0

0 x x

!  
0 0 0

0 x x
x 0 0

!

94  
0 0 0

x x 0

0 0 x

!  x x 0

0 0 x
0 0 0

!

95  
0 0 0

x 0 0

0 x x

!  x 0 0

0 x x
0 0 0

!

TABLE VIII. Independent forms for the down-type Yukawa
coupling matrices Γ1 and Γ2 that are compatible with the global U
(1) symmetry of the 2HDM scalar potential when extended to the
Yukawa sector, labeled by the corresponding equation numbers
of Ref. [24]—Part 3.

Eqs. Γ1 Γ2

77  x 0 0

x 0 0

0 0 x

!  
0 x 0

0 x 0

x 0 0

!

78  
0 0 0

0 0 0

0 0 x

!  x x 0

x x 0

0 0 0

!

79  
0 0 0

0 0 0

x x x

!  x x x
x x x
0 0 0

!

81  x x 0

x x 0

0 0 x

!  
0 0 x
0 0 x
0 0 0

!

Eqs. Γ1 Γ2

82  x 0 0

x 0 0

0 x x

!  
0 x x
0 x x
0 0 0

!

83  x x 0

x x 0

0 0 0

!  
0 0 0

0 0 0

0 0 x

!

84  x 0 0

x 0 0

0 x 0

!  
0 x 0

0 x 0

0 0 x

!

85  
0 0 0

0 0 0

x x x

!  x x x
x x x
0 0 0

!
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Hd ¼ ðv1Γ1 þ v2Γ2Þðv1Γ1 þ v2Γ2Þ†

¼ ½jx11j2 þ jx12j2�
 

jv1j2 −v1v�2eiðαL−βLÞ

−v�1v2e−iðαL−βLÞ jv2j2

!
:

ðC10Þ

Thus, detHd ¼ 0, corresponding to the existence of a
massless down-type quark. Thus, we discard this model.

2. Model (1-2)

Γ1 ¼
�
x11 x12
0 0

�
; Γ2 ¼

�
0 0

x21 x22

�
;

SL ¼ 1; SnR ¼ σZ: ðC11Þ

Plugging these results into Eq. (C1) and using Eq. (C3)
yields x21 ¼ x22 ¼ 0. In light of Eq. (C1), Γ1 ¼ Γ2 ¼ 0,
and the model is discarded.

3. Model (1-3)

Γ1¼
�
x11 x12
0 0

�
; Γ2¼

�
0 0

x21 x22

�
; SL¼SnR ¼σZ:

ðC12Þ

This case has been treated explicitly in Sec. VII B 3. We
found that x21 ¼ x12 and x22 ¼ x11, and

TrHd ¼ ½jx11j2 þ jx12j2�v2; ðC13Þ

det Hd ¼ jv1j2jv2j2jx211 − x212j2; ðC14Þ

where v2 ≡ jv1j2 þ jv2j2. Thus, the two down-type quarks
are generically nonzero. In addition, the corresponding Π2

symmetry matrices obtained from Eq. (162) are

SðΠ2Þ
L ¼ σΠ; SðΠ2Þ

nR ¼ σΠ; ðC15Þ

where σΠ is defined in Eq. (160).

4. Model (2-1)

We start in Case 2 of Z2:

Γ1¼
�
x11 0

x21 0

�
; Γ2¼

�
0 x12
0 x22

�
; SL¼σZ; SnR¼1:

ðC16Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields x11 ¼ x21 ¼ 0. In light of Eq. (C1), Γ1 ¼ Γ2 ¼ 0,
and the model is discarded.

5. Model (2-2)

Γ1¼
�
x11 0

x21 0

�
; Γ2¼

�
0 x12
0 x22

�
; SL¼1; SnR¼σZ:

ðC17Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

cos 2θR ¼ 0; ðC18Þ

x12 ¼ −x11eiðαR−βRÞ sin 2θR; ðC19Þ

x22 ¼ −x21eiðαR−βRÞ sin 2θR; ðC20Þ

where we have simplified the R subscript in writing
αR ≡ αnR , βR ≡ βnR , and θR ≡ θnR . It follows that
θR ¼ π=4 and

Γ2 ¼ −eiðαR−βRÞ
�
0 x11
0 x21

�
: ðC21Þ

Finally, we compute

Hd¼ðv1Γ1þv2Γ2Þðv1Γ1þv2Γ2Þ†¼v2
� jx11j2 x11x�21
x�11x21 jx21j2

�
:

ðC22Þ

Thus, detHd ¼ 0, corresponding to the existence of a
massless down-type quark. Thus, we discard this
model.

6. Model (2-3)

Γ1¼
�
x11 0

x21 0

�
; Γ2¼

�
0 x12
0 x22

�
; SL¼SnR ¼σZ: ðC23Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

cos 2θR ¼ 0; ðC24Þ

x11eiðαR−βRÞ sin 2θR ¼ x22e−iðαL−βLÞ sin 2θL − x12 cos 2θL;

ðC25Þ

x21eiðαR−βRÞ sin 2θR ¼ x12eiðαL−βLÞ sin 2θL þ x22 cos 2θL:

ðC26Þ

It follows that θR ¼ π=4. Then, Eq. (162) yields
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SðΠ2Þ
L ¼ULσZU

†
L¼
�

cos2θL −eiðαL−βLÞsin2θL
−e−iðαL−βLÞsin2θL −cos2θL

�
;

ðC27Þ

SðΠ2Þ
nR ¼ UnRσZU

†
nR ¼

�
0 −eiðαR−βRÞ

−e−iðαR−βRÞ 0

�
: ðC28Þ

The Z2 ⊗ Π2 symmetry constraints do not fix the remain-
ing free parameter, αL, βL, αR, βR, and θL. Indeed, one is
free to transform to a different quark field basis as long as

the Z2 symmetry matrices SðZ2Þ
L ¼ eiα1σZ and SðZ2Þ

nR ¼ eα11
are unchanged. In light of Eqs. (35) and (36), we shall
transform

SðΠ2Þ
L → U0

LS
ðΠ2Þ
L U0†

L ; SðΠ2Þ
nR → U0

nRS
ðΠ2Þ
nR U0†

nR; ðC29Þ

where U0
L ¼ diagðeiðγþδÞ; eiðγ−δÞÞ is the most general 2 × 2

unitary matrix that leaves SðZ2Þ
L unchanged and U0

nR is an

arbitrary 2 × 2 unitary matrix that (trivially) leaves SðZ2Þ
nR

unchanged. With this freedom, it is convenient to set

αL − βL ¼ αR − βR ¼ π; θL ¼ 1

4
π: ðC30Þ

With this choice, Eqs. (C24)–(C26) yield x12 ¼ x21 and
x22 ¼ x11. That is, Model (2-3) corresponds to

Γ1 ¼
�
x11 0

x21 0

�
; Γ2 ¼

�
0 x21
0 x11

�
;

SðΠ2Þ
L ¼ eiξ2σΠ; SðΠ2Þ

nR ¼ eiξ2σΠ: ðC31Þ

It is straightforward to compute Hd ¼ ðv1Γ1 þ v2Γ2Þ
ðv1Γ1 þ v2Γ2Þ† and its trace and determinant, which yield

TrHd ¼ ½jx11j2 þ jx21j2�v2; ðC32Þ

det Hd ¼ jv1j2jv2j2jx211 − x221j2: ðC33Þ

Note that detHd is nonzero for a generic choice of
parameters, which implies that the two down-type quark
masses are generically nonzero.

7. Model (3-1)

Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 x12
x21 0

�
;

SL ¼ σZ; SnR ¼ 1: ðC34Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

cos 2θL ¼ 0; ðC35Þ

x11 ¼ −x21eiðαL−βLÞ sin 2θL; ðC36Þ

x22 ¼ −x12e−iðαL−βLÞ sin 2θL: ðC37Þ

It follows that θL ¼ π=4 and

Γ2 ¼
�

0 −x22eiðαL−βLÞ

−x11e−iðαL−βLÞ 0

�
: ðC38Þ

Then, Eq. (162) yields

SðΠ2Þ
L ¼ ULσZU

†
L ¼

�
0 −eiðαL−βLÞ

−e−iðαL−βLÞ 0

�
;

SðΠ2Þ
nR ¼ UnRU

†
nR ¼ 1: ðC39Þ

Once again, we are free to change the quark field basis
using Eq. (C29) where U0

L ¼ diagðeiðγþδÞ; eiðγ−δÞÞ is the

most general 2 × 2 unitary matrix that leaves SðZ2Þ
L

unchanged and U0
nR is an arbitrary 2 × 2 unitary matrix

that (trivially) leaves SðZ2Þ
nR unchanged. With this freedom, it

is convenient to set αL − βL ¼ π, which yields

Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 x22
x11 0

�
;

SðΠ2Þ
L ¼ σΠ; SðΠ2Þ

nR ¼ 1: ðC40Þ

It is straightforward to compute Hd ¼ ðv1Γ1 þ v2Γ2Þ
ðv1Γ1 þ v2Γ2Þ† and its trace and determinant, which yield

TrHd ¼ ½jx11j2 þ jx22j2�v2; ðC41Þ

det Hd ¼ jx11j2jx22j2jv21 − v22j2: ðC42Þ

Note that det Hd is nonzero for a generic choice of
parameters, which implies that the two down-type quark
masses are generically nonzero.

8. Model (3-2)

Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 x12
x21 0

�
;

SL ¼ 1; SnR ¼ σZ: ðC43Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

cos 2θR ¼ 0; ðC44Þ

x12 ¼ −x11eiðαR−βRÞ sin 2θR; ðC45Þ
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x21 ¼ −x22e−iðαR−βRÞ sin 2θR: ðC46Þ

It follows that θR ¼ π=4 and

Γ2 ¼
�

0 −x11eiðαR−βR

−x22e−iðαR−βR 0

�
: ðC47Þ

Then, Eq. (162) yields

SðΠ2Þ
L ¼UnLU

†
nL ¼1;

SðΠ2Þ
nR ¼URσZU

†
R¼
�

0 −eiðαR−βRÞ

−e−iðαR−βRÞ 0

�
: ðC48Þ

We are free again to change the quark field basis using
Eq. (C29) where U0

R ¼ diagðeiðγþδÞ; eiðγ−δÞÞ is the most

general 2 × 2 unitary matrix that leaves SðZ2Þ
nR unchanged

and U0
L is an arbitrary 2 × 2 unitary matrix that (trivially)

leaves SðZ2Þ
L unchanged. With this freedom, it is convenient

to set αR − βR ¼ π, which yields

Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 x11
x22 0

�
;

SðΠ2Þ
L ¼ 1; SðΠ2Þ

nR ¼ σΠ: ðC49Þ

It is straightforward to compute Hd ¼ ðv1Γ1 þ v2Γ2Þ
ðv1Γ1 þ v2Γ2Þ† and its trace and determinant, which yield

TrHd ¼ ½jx11j2 þ jx22j2�v2; ðC50Þ

det Hd ¼ jx11j2jx22j2jv21 − v22j2: ðC51Þ

Note that detHd is nonzero for a generic choice of
parameters, which implies that the two down-type quark
masses are generically nonzero.

9. Models (3-3)

We shall see below that there are a number of possible
submodels within the class of Models (3-3). This model
class is defined by the following Yukawa coupling matrices
and symmetry matrices:

Γ1¼
�
x11 0

0 x22

�
; Γ2¼

�
0 x12
x21 0

�
; SL ¼ SnR ¼ σZ:

ðC52Þ

Plugging these results into Eq. (C1) and using Eq. (C4)
yields

x11 cos 2θR þ x21eiðαL−βLÞ sin 2θL ¼ 0; ðC53Þ

x11eiðαR−βRÞ sin 2θR þ x12 cos 2θL ¼ 0; ðC54Þ

x22e−iðαR−βRÞ sin 2θR − x21 cos 2θL ¼ 0; ðC55Þ

x22 cos 2θR − x12e−iðαL−βLÞ sin 2θL ¼ 0: ðC56Þ

This is a homogeneous system of four linear equations in
the variables x11, x12, x21, and x22. Nontrivial solutions
exist only if

det

0
BBBBBB@

cos 2θR 0 eiðαL−βLÞ sin 2θL 0

eiðαR−βRÞ sin 2θR cos 2θL 0 0

0 0 − cos 2θL e−iðαR−βRÞ sin 2θR
0 −e−iðαL−βLÞ sin 2θL 0 cos 2θR

1
CCCCCCA

¼ 0; ðC57Þ

which simplifies to

sin2 2θL sin2 2θR − cos2 2θL cos2 2θR ¼ 0: ðC58Þ

The solution to this equation is

cos½2ðθL � θRÞ� ¼ 0: ðC59Þ

We now consider separately the following submodels.

10. Model ð3; 3Þ0: θL = 0 and θR = π=4

Equation (C53)–(C56) yields x12 ¼ −x11eiðαR−βRÞ and
x21 ¼ x22e−iðαR−βRÞ. Using Eq. (162) yields

SðΠ2Þ
L ¼ULσZU

†
L¼σZ;

SðΠ2Þ
nR ¼UnRσZU

†
nR ¼

�
0 −eiðαR−βRÞ

−e−iðαR−βRÞ 0

�
: ðC60Þ

As in previous cases, one can transform to another quark
field basis where αR − βR ¼ π, which yields
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Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 x11

−x22 0

�
;

SðΠ2Þ
L ¼ σZ; SðΠ2Þ

nR ¼ σΠ: ðC61Þ

It is straightforward to compute Hd ¼ ðv1Γ1 þ v2Γ2Þ
ðv1Γ1 þ v2Γ2Þ† and its trace and determinant, which yield15

TrHd ¼ ½jx11j2 þ jx22j2�v2; ðC62Þ

det Hd ¼ jx11j2jx22j2jv21 þ v22j2: ðC63Þ

Note that detHd is nonzero for a generic choice of
parameters, which implies that the two down-type quark
masses are generically nonzero.

11. Model ð3; 3Þ1: θL = π=4 and θR = 0

Equation (C53)–(C56) yields x21 ¼ −x11e−iðαL−βLÞ and
x12 ¼ x22eiðαL−βLÞ. The computation is similar to the case of
Model ð3; 3Þ0. Transforming to another quark field basis
where αL − βL ¼ π, we end up with

Γ1 ¼
�
x11 0

0 x22

�
; Γ2 ¼

�
0 −x22
x11 0

�
;

SðΠ2Þ
L ¼ σΠ; SðΠ2Þ

nR ¼ σZ: ðC64Þ

We again obtain

TrHd ¼ ½jx11j2 þ jx22j2�v2; ðC65Þ

det Hd ¼ jx11j2jx22j2jv21 þ v22j2; ðC66Þ

corresponding to nonzero down-type quark masses for a
generic choice of parameters.

12. Models ð3-3ÞX: θL, θR ≠ 0;π=4

The class of submodels under consideration here corre-
spond to solutions of Eq. (C59) where neither θL nor θR is
equal to 0 or π=4. There are four possible cases, denoted by
Cases (i)–(iv), which are defined in Table X. Using
Eqs. (C53)–(C56), one easily obtains the constraints on
the elements of the Yukawa coupling matrices in Cases (i)–
(iv), which are listed in Table X. It is convenient to write

xij ¼ ξijx12; ðC67Þ

where ξ12 ¼ 1 and ξij ¼ �1 for ij ¼ 12, 21, and 22, where
the signs are determined from the xij listed in Table X.
As previously noted, one can simplify the analysis by a

judicious choice of the quark field basis. Following
Eqs. (C29) and (C30), we shall fix the phases
αL − βL ¼ αR − βR ¼ π. With this choice, the Yukawa
coupling matrices are given by

Γ1 ¼ x11

�
1 0

0 ξ22

�
; Γ2 ¼ x11

�
0 ξ12

ξ21 0

�
; ðC68Þ

and the Π2 symmetry matrices, which are obtained from
Eq. (162), are given by

SðΠ2Þ
L ¼

�
cos 2θL sin 2θL
sin 2θL − cos 2θL

�
;

SðΠ2Þ
nR ¼

�
ξ21 sin 2θL ξ12 cos 2θL
ξ12 cos 2θL −ξ21 sin 2θL

�
: ðC69Þ

It is straightforward to compute Hd ¼ ðv1Γ1 þ v2Γ2Þ
ðv1Γ1 þ v2Γ2Þ† and its trace and determinant:

Hd ¼ ðΓ1v1 þ Γ2v2ÞðΓ1v1 þ Γ2v2Þ†

¼ jx211j
�

v2 2iξ21 Imðv1v�2Þ
−2iξ21 Imðv1v�2Þ v2

�
; ðC70Þ

TrHd ¼ 2jx11j2v2; ðC71Þ

TABLE X. Submodels within the class of Models (3-3). Cases (i)–(iv) comprise models where neither θL nor θR is equal to π=4. Since
0 ≤ θL, θR ≤ π=2, it follows that 0 < θL < π=4 in Cases (i) and (ii) above and π=4 < θL < π=2 in Cases (iii) and (iv) above. The
relations among the xij are obtained from Eqs. (C53)–(C56) in a quark field basis where αL − βL ¼ αR − βR ¼ π. For Cases (i)–(iv), the
ξij are defined such that xij ≡ ξijx11 with ξ11 ¼ 1.

Model θR sin 2θR cos 2θR xij relations ξij

θL ¼ 0 1
4
π 1 0 x12 ¼ x11 and x21 ¼ −x22

θL ¼ 1
4
π 0 0 1 x21 ¼ x11 and x12 ¼ −x22

Case (i) 1
4
π − θL cos 2θL sin 2θL x11 ¼ −x22 ¼ x12 ¼ x21 ξ12 ¼ ξ21 ¼ 1, ξ22 ¼ −1

Case (ii) 1
4
π þ θL cos 2θL − sin 2θL x11 ¼ x22 ¼ x12 ¼ −x21 ξ12 ¼ ξ22 ¼ 1, ξ21 ¼ −1

Case (iii) 3
4
π − θL − cos 2θL − sin 2θL x11 ¼ −x22 ¼ −x12 ¼ −x21 ξ12 ¼ ξ21 ¼ ξ22 ¼ −1

Case (iv) − 1
4
π þ θL − cos 2θL sin 2θL x11 ¼ x22 ¼ −x12 ¼ x21 ξ21 ¼ ξ22 ¼ 1, ξ12 ¼ −1

15Note that in general v2 ≡ jv1j2 þ jv2j2 ≠ v21 þ v22, since v1
and v2 are generically complex [cf. Eq. (6)].
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det Hd ¼ jx11j4v4; ðC72Þ

where ξ21 ¼ �1, with the sign depending on the case
chosen. As in the previous (3-3) submodels, the down-type
quark masses are nonzero. However, in contrast to Models
ð3; 3Þ0 and ð3; 3Þ1, we note that the down-type quark
masses are degenerate if Imðv1v�2Þ ¼ 0.
The analysis of the up-type quark Yukawa coupling

matrices yields the same textures forΔ1 andΔ2 exhibited in
Eq. (C68), with the matrix element x11 replaced by y11 and

sign factors ξij replaced by ξ0ij. In addition, S
ðΠ2Þ
L is given by

Eq. (C69) and SðΠ2Þ
pR is obtained from SðΠ2Þ

nR by replacing ξij
with ξ0ij. It therefore follows that

Hu ¼ ðΔ1v1 þ Δ2v2ÞðΔ1v1 þ Δ2v2Þ†

¼ jy11j2
�

v2 2iξ021 Imðv1v�2Þ
−2iξ021 Imðv1v�2Þ v2

�
; ðC73Þ

where ξ021 ¼ �1, with the sign depending on the case
chosen. Since det Hu ¼ jy11j4v2, it follows that the up-type
quark masses are nonzero. However, note that

½Hu;Hd� ¼ 0; ðC74Þ

for either choice of ξ21ξ
0
21 ¼ �1. In particular,

detf½Hu;Hd�g ¼ 0 or equivalently Jc ¼ 0 [cf. Eq. (138)],
corresponding to a vanishing Cabibbo angle. Thus, it
follows that all Models ð3-3ÞX are phenomenologically
excluded.

APPENDIX D: EQUIVALENT TWO-
GENERATION Z2 ⊗ Π2-SYMMETRIC MODELS

In Table IV, we classified all phenomenologically viable
two-generation Yukawa-extended Z2 ⊗ Π2-symmetric
models (i.e., models with nonzero quark masses and a

nonzero Cabibbo angle). However, the models that appear
in Table IV, are not all inequivalent, as certain pairs of
models are related by a particular change in the Higgs field
and the quark field basis. Suppose we transform to a new
basis characterized by the basis transformation matrices

U ¼ UL ¼ UnR ¼ UpR
¼ 1ffiffiffi

2
p
�
1 1

1 −1

�
: ðD1Þ

Using Eq. (26), it follows that the Model (1-3) down-type
Yukawa coupling matrices listed in Table III transform into

Γ0
1 ¼

�
x011 0

0 x022

�
; Γ0

2 ¼
�

0 x022
x011 0

�
; ðD2Þ

where

x011 ¼ x021 ¼
x11 þ x12ffiffiffi

2
p ; x012 ¼ x022 ¼

x11 − x12ffiffiffi
2

p : ðD3Þ

That is, the textures of Γ0
1 and Γ0

2 precisely match those of
Model (3-1) listed in Table III. Moreover, in light of
Eq. (25), the VEVs are transformed into

v01 ¼
1ffiffiffi
2

p ðv1 þ v2Þ; v02 ¼
1ffiffiffi
2

p ðv1 − v2Þ: ðD4Þ

It follows that the trace and determinant of Hd given in
Eqs. (176) and (177) are transformed into

TrHd ¼ ½jx011j2 þ jx012j2�v2; ðD5Þ

detHd ¼ jx011j2jx022j2jv021 − v022 j2; ðD6Þ

in agreement with the Model (3-1) results obtained in
Eqs. (C41) and (C42). Finally, if we make use of Eqs. (35)
and (36), we obtain the corresponding symmetry matrices

S0ðZ2Þ ¼ σΠ; S0ðZ2Þ
L ¼ σΠ; S0ðZ2Þ

nR ¼ 1; S0ðΠ2Þ ¼ σZ; S0ðΠ2Þ
L ¼ σZ; S0ðΠ2Þ

nR ¼ σZ: ðD7Þ

We cannot directly compare this result to Table III, as the results of this table have assumed a scalar field basis where
SðZ2Þ ¼ σZ and SðΠ2Þ ¼ σΠ. But, we can overcome this impediment simply by interchanging the roles of the Z2 and Π2

symmetries, in which case Eq. (D7) becomes

S0ðZ2Þ ¼ σZ; S0ðZ2Þ
L ¼ σZ; S0ðZ2Þ

nR ¼ σZ; S0ðΠ2Þ ¼ σΠ; S0ðΠ2Þ
L ¼ σΠ; S0ðΠ2Þ

nR ¼ 1; ðD8Þ

which precisely matches the symmetry matrices of Model
(3-1) listed in Table III. Hence, we conclude that Models
(1-3) and (3-1) are simply related by a basis change and
hence can be regarded as equivalent.
Note that the basis transformation matrices given in

Eq. (D1) are equal to their inverses. Thus, if we start with

the Model (3-1) down-type Yukawa coupling matrices and
apply the same procedure as outlined above, one ends up
with corresponding Yukawa coupling matrices of Model
(1-3). Likewise, applying the same basis transformation
matrices followed by interchanging the identification of the
Z2 and Π2 symmetries also converts down-type Yukawa
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coupling matrices of Model (2-3) into those of Model (3-2)
and vice versa.
The same arguments also apply to the up-type Yukawa

coupling matrices. In particular, the textures of Δ1 and Δ2

mirror those of Γ1 and Γ2 given in Table III. For the basis

transformation characterized by the matrices specified in
Eq. (D1), we can use the same treatment that was employed
above in the analysis of the down-type Yukawa coupling
matrices to conclude that the two models in each of the
following model pairs that appear in Table IV,

fð1-3Þ=ð1-3Þ; ð3-1Þ=ð3-1Þg; fð1-3Þ=ð3-1Þ; ð3-1Þ=ð1-3Þg; fð2-3Þ=ð2-3Þ; ð3-2Þ=ð3-2Þg; ðD9Þ

are equivalent (i.e., they correspond to the same model with a different choice of basis). However, the above analysis also
shows that, e.g., Models (1-3)/(3-1) and (1-3)/(1-3) are not equivalent, since one must employ the same basis transformation
matrices to both the down-type and the up-type Yukawa coupling matrices.
One can also consider a change of basis for which UpR

≠ UnR . Suppose we take U, UL, and UpR
given in Eq. (D1) and

UnR ¼ σZ. Using Eq. (26), it follows that Model ð3; 3Þ1 is the unique model of Table III such that Γ0
i ¼ Γi in the transformed

basis. The transformed symmetry matrices of Model ð3-3Þ1 are obtained using Eqs. (35) and (36),

S0ðZ2Þ ¼ σΠ; S0ðZ2Þ
L ¼ σΠ; S0ðZ2Þ

nR ¼ σZ; S0ðΠ2Þ ¼ σZ; S0ðΠ2Þ
L ¼ σZ; S0ðΠ2Þ

nR ¼ σZ: ðD10Þ

Finally, after interchanging the identification of the Z2 and
Π2 symmetries, we reproduce the original symmetry
matrices of Model ð3-3Þ1. Consequently, it follows that
the two models in the following model pair are equivalent:

fð3-3Þ1=ð1-3Þ; ð3-3Þ1=ð3-1Þg: ðD11Þ

Similarly, suppose we take U, UL, and UnR given in
Eq. (D1) andUpR

¼ σZ. Using the same analysis as the one
just given, where Eq. (27) is now employed, it follows that

Δ0
i ¼ Δi in the transformed basis. Hence, the two models in

the following model pair are equivalent:

fð1-3Þ=ð3-3Þ1; ð3-1Þ=ð3-3Þ1g: ðD12Þ

This completes the search for equivalent models. Taking
Eqs. (D9), (D11), and (D12) into account, there are seven
inequivalent models for the Yukawa sector in Table IV.
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