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In the standard model, custodial symmetry is violated by the hypercharge U(1) gauge interactions and

the Yukawa couplings, while being preserved by the Higgs scalar potential. In the two-Higgs-doublet

model (2HDM), the generic scalar potential introduces new sources of custodial symmetry breaking. We

obtain a basis-independent expression for the constraints that impose custodial symmetry on the 2HDM

scalar potential. These constraints impose CP-conservation on the scalar potential and vacuum, and in

addition add one extra constraint on the scalar potential parameters. We clarify the mass degeneracies of

the 2HDM that arise as a consequence of the custodial symmetry. We also provide a computation of the

oblique parameters (S, T, and U) for the most general CP-violating 2HDM in the basis-independent

formalism. We demonstrate that the 2HDM contributions to T and U vanish in the custodial symmetry

limit, as expected. Using the experimental bounds on S and T from precision electroweak data, we

examine the resulting constraints on the general 2HDM parameter space.

DOI: 10.1103/PhysRevD.83.055017 PACS numbers: 12.60.Fr, 11.30.Er, 11.30.Fs, 12.15.Lk

I. INTRODUCTION: THE CP-VIOLATING TWO-
HIGGS-DOUBLET MODEL (2HDM)

In the most general two-Higgs-doublet extension of
the standard model (2HDM), the two hypercharge-one-
Higgs-doublet fields �1 and �2 are indistinguishable.
Consequently, all physical observables must be indepen-
dent of a change in the scalar basis, which corresponds to
a redefinition of the scalar doublets by a global U(2)
transformation, �a ! Ua �b�b. In Refs. [1,2], a basis-
independent formalism for the 2HDM was introduced
and developed.1 In particular, a basis-independent form
for the most general 2HDM interactions was obtained in
Ref. [2]. A recap of the basis-independent formalism for
the 2HDM is provided in Sec. II in order to make this
paper self-contained.

However, the most general form of the 2HDM is cer-
tainly not realized in nature. For example, for generic
2HDM parameters, one expects large flavor-changing neu-
tral currents and a significant violation of custodial sym-
metry, in conflict with experimental observations. These
problems are ameliorated in restricted parameter regimes
of the 2HDM. These restricted regions are either fine-tuned
or can be implemented by imposing additional symmetries
(e.g. discrete symmetries or supersymmetry) on the 2HDM
scalar potential. Such additional symmetries would in gen-
eral distinguish between the two-Higgs doublet fields, and
thereby choose a preferred basis. If 2HDM phenomena are
observed in nature, one important goal of experimental

Higgs studies at future colliders will be to determine the
nature of the additional symmetry structures (if present)
that restrict the 2HDM parameters, and the associated
preferred scalar basis. However, prior to determining
whether such a preferred scalar basis exists, the basis-
independent techniques will be critical for exploring the
phenomenological profile of the 2HDM and determining
its theoretical structure.
In this paper, we provide a basis-independent formula-

tion of custodial symmetry for the most general 2HDM. If
custodial symmetry were exact, then there would be no
Higgs sector corrections to the tree-level relation m2

W ¼
m2

Zcos
2�W to all orders in perturbation theory. Of course,

custodial symmetry is not an exact symmetry of the stan-
dard model, as it is violated by the hypercharge gauge
interactions and the Higgs-fermion Yukawa interactions.
The precision measurements of electroweak observables
by LEP and the Tevatron suggest that additional sources of
custodial symmetry breaking beyond that which is con-
tained in the standard model must be small. This imposes
interesting constraints on the most general 2HDM.
The custodial-symmetric 2HDM scalar potential must

be CP-conserving. Thus, in Sec. III we first review the
basis-independent conditions for a CP-conserving 2HDM
potential. We then establish the basis-independent condi-
tions for a custodial-symmetric 2HDM scalar potential in
Sec. IV. These results clarify the significance of the con-
ditions for custodial symmetry in the 2HDM obtained
previously in the literature [7]. The effects of the custodial
symmetry-violating terms on the 2HDM have phenome-
nological consequences. In particular, these terms would
lead to shifts in the Peskin-Takeuchi T and U parameters
[8]. In contrast, shifts in the S parameter [8] can be gen-
erated even in the presence of an exact custodial symmetry.
In Sec. V, we have obtained basis-independent expressions
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1There is an alternative approach, which we do not employ in
this paper, that emphasizes the role of gauge-invariant scalar
field bilinears. For further details, see e.g. Refs. [3–6].
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for the 2HDM contributions to the oblique parameters S, T,
and U. Using these results, we present in Sec. VI a nu-
merical study of the size of the 2HDM contributions to the
oblique parameters as a function of the 2HDM parameter
space. By comparing these results to the experimental
bounds on S and T, we determine some of the features of
the constraints on the 2HDM parameter space. Conclusions
are given in Sec. VII.

Some details have been relegated to the appendices. In
Appendix A, we reproduce the cubic and quartic bosonic
couplings of the 2HDM obtained in Ref. [2]. These cou-
plings are critical for determining the CP-quantum num-
bers of the neutral Higgs states for the CP-conserving
scalar potential. In Appendix B, we record some useful
expressions involving the neutral Higgs masses and invari-
ant mixing angles. In Appendix C, we summarize the
basis-independent treatment of the CP-conserving
2HDM. This appendix also examines a number of special
cases in which some of the neutral Higgs scalars are mass-
degenerate. Appendix D provides details of the computa-
tion of the 2HDM contributions to S, T, and U, along with
the relevant Feynman rules (in the basis-independent for-
malism) and one-loop graphs. Appendix E summarizes the
key features of the decoupling limit of the 2HDM. Finally,
in Appendix F, we examine the tree-level unitarity bounds
on the scalar potential parameters in the basis-independent
formalism. These bounds are implemented in the parame-
ter space scans of Sec. VI.

II. RECAP OF THE BASIS-INDEPENDENT
FORMALISM FOR THE 2HDM

The scalar potential may be written in a basis-
independent form as [1,9]

V ¼ Ya �b�
y
�a�b þ 1

2
Za �bc �dð�y

�a�bÞð�y
�c�dÞ; (2.1)

where Za �bc �d ¼ Zc �da �b and Hermiticity implies Ya �b ¼
ðYb �aÞ� and Za �bc �d ¼ ðZb �ad �cÞ�. The indices a, b, c and d
label the two-Higgs doublets, and there is an implicit sum
over unbarred–barred index pairs. The barred indices help
keep track of which indices transform with U and which
transform with Uy. For example, under a global U(2)
transformation, the parameters of the scalar potential
change according to

Ya �b ! Ua �cYc �dU
y
d �b

and Za �bc �d ! Ua �eU
y
f �b
Uc �gU

y
h �d
Ze �fg �h:

(2.2)

The vacuum expectation values of the two-Higgs fields
can be parametrized as

h�ai ¼ vffiffiffi
2

p
�
0
v̂a

�
; with v̂a � ei�

cos�
sin�ei�

� �
; (2.3)

where v ¼ 246 GeV and � is an arbitrary phase. The unit
vector v̂a satisfies v̂av̂

�
�a ¼ 1, where v̂�

�a � ðv̂aÞ�. If we

define the Hermitian matrix Va �b � v̂av̂
�
�b
, then the scalar

potential minimum condition is given by the invariant
condition

Tr ðVYÞ þ 1

2
v2Za �bc �dVb �aVd �c ¼ 0: (2.4)

The orthonormal eigenvectors of Va �b are v̂b and

ŵ b � v̂�
�a�ab ¼ e�i� � sin�e�i�

cos�

� �
; (2.5)

where �12 ¼ ��21 ¼ 1 and �11 ¼ �22 ¼ 0. Under the U(2)
transformation, v̂a ! Ua �bv̂b, whereas

ŵ a ! ðdetUÞ�1Ua �bŵb;

where detU � ei� is a pure phase. That is, ŵa is a pseu-
dovector with respect to global U(2) transformations. One
can use ŵa and ŵ�

�a � ðŵaÞ� to construct a proper second-
rank tensor, Wa �b � ŵaŵ

�
�b
� �a �b � Va �b.

One can always define the so-called Higgs basis in
which only one of the two-Higgs doublets has a neutral
component with a nonzero vacuum expectation value
[9,10]. The Higgs basis fields are given by

H1 ¼ v̂�
�a�a; H2 ¼ ŵ�

�a�a: (2.6)

Since v̂a and ŵa are orthonormal vectors, it follows that

hH0
1i ¼

vffiffiffi
2

p ; hH0
2i ¼ 0: (2.7)

Note that H1 is an invariant field whereas H2 !
ðdetUÞH2 is a pseudoinvariant field under the global U(2)
transformation. The scalar potential can then be expressed
using the Higgs basis fields as follows:

V ¼ Y1H
y
1H1 þ Y2H

y
2H2 þ ½Y3H

y
1H2 þ H:c:�

þ 1

2
Z1ðHy

1H1Þ2 þ 1

2
Z2ðHy

2H2Þ2

þ Z3ðHy
1H1ÞðHy

2H2Þ þ Z4ðHy
1H2ÞðHy

2H1Þ
þ
�
1

2
Z5ðHy

1H2Þ2 þ ½Z6ðHy
1H1Þ

þ Z7ðHy
2H2Þ�Hy

1H2 þ H:c:

�
; (2.8)

where Y1, Y2 and Z1;2;3;4 are real-valued U(2)-invariants,

Y1 � TrðYVÞ; Y2 � TrðYWÞ; (2.9)

Z1 � Za �bc �dVb �aVd �c; Z2 � Za �bc �dWb �aWd �c; (2.10)

Z3 � Za �bc �dVb �aWd �c; Z4 � Za �bc �dVb �cWd �a; (2.11)

and Y3 and Z5;6;7 are complex ‘‘pseudoinvariants,’’

Y3 � Ya �bv̂
�
�aŵb; Z5 � Za �bc �dv̂

�
�aŵbv̂

�
�cŵd; (2.12)

Z6�Za �bc �dv̂
�
�av̂bv̂

�
�cŵd; Z7�Za �bc �dv̂

�
�aŵbŵ

�
�cŵd: (2.13)
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which transform as

½Y3; Z6; Z7� ! ðdetUÞ�1½Y3; Z6; Z7� and

Z5 ! ðdetUÞ�2Z5:
(2.14)

The scalar potential minimum condition [Eq. (2.4)] fixes

Y1 ¼ � 1

2
Z1v

2; Y3 ¼ � 1

2
Z6v

2: (2.15)

The three physical neutral Higgs boson mass-eigenstates
can be determined by diagonalizing a 3� 3 squared-mass

matrix in the Higgs basis. The diagonalizing matrix is a
3� 3 real orthogonal matrix that depends on three angles:
�12, �13 and �23. As shown in Ref. [2], under a U(2)
transformation,

�12;�13 are invariant and ei�23 !ðdetUÞ�1ei�23 : (2.16)

In particular, with respect to the invariant Higgs basis
neutral fields fRe �H0

1;Reðei�23H0
2Þ; Imðei�23H0

2Þg, where
�H0
1 � H0

1 � ðv= ffiffiffi
2

p Þ, the neutral-Higgs squared-mass
matrix is given by

M2 ¼ v2

Z1 ReðZ6e
�i�23Þ �ImðZ6e

�i�23Þ
ReðZ6e

�i�23Þ A2=v2 þ ReðZ5e
�2i�23Þ � 1

2 ImðZ5e
�2i�23Þ

�ImðZ6e
�i�23Þ � 1

2 ImðZ5e
�2i�23Þ A2=v2

0
BB@

1
CCA; (2.17)

where

A2 � Y2 þ 1

2
½Z3 þ Z4 � ReðZ5e

�2i�23Þ�v2: (2.18)

Note that M2 is manifestly basis-independent, in which
case the neutral Higgs mass-eigenstates are invariant fields
with respect to U(2) transformations. Diagonalizing the
neutral Higgs squared-mass matrix then gives

RM2RT ¼ M2
D ¼ diagðm2

1; m
2
2; m

2
3Þ; (2.19)

where m1, m2 and m3 are the neutral Higgs boson masses
and

R ¼
c12c13 �s12 �c12s13

s12c13 c12 �s12s13

s13 0 c13

0
BB@

1
CCA; (2.20)

where cij � cos�ij and sij � sin�ij. As shown in Ref. [2],
one can choose a convention (without loss of generality)
where � 1

2� � �12, �13 <
1
2�. The neutral Goldstone bo-

son is identified as G0 � ImH0
1 . One can express the mass-

eigenstate neutral Higgs bosons, hk (k ¼ 1, 2, 3) and the
neutral Goldstone boson (h4 � G0) directly in terms of the
original shifted neutral fields, ��0

a � �0
a � vv̂a=

ffiffiffi
2

p
,

hk ¼ 1ffiffiffi
2

p ½ ��0y
�a ðqk1v̂a þ qk2ŵae

�i�23Þ

þ ðq�k1v̂�
�a þ q�k2ŵ

�
�ae

i�23Þ ��0
a�; (2.21)

where qk‘ are basis-independent quantities composed of
the invariant mixing angles �12 and �13 given in Table I.
The charged Goldstone and Higgs bosons are immedi-

ately identified in terms of Higgs basis fields as:G� � H�
1

andH� ¼ H�
2 . The latter implies thatH� ! ðdetUÞ�1H�

under the U(2) transformation. If necessary, one can define
an invariant charged Higgs field, e�i�23H�. The charged
Higgs mass is given by

m2
H� ¼ Y2 þ 1

2
Z3v

2: (2.22)

Finally, inverting Eq. (2.21) yields

�a¼
Gþv̂aþHþŵa

vffiffi
2

p v̂aþ 1ffiffi
2

p P
4
k¼1ðqk1v̂aþqk2e

�i�23ŵaÞhk

 !
: (2.23)

Inserting this result into Eq. (2.1) immediately yields the
basis-independent form of the Higgs self-couplings given
in Appendix A. Likewise, the invariant forms of the Higgs
boson couplings to vector bosons can be obtained by ex-
panding out the covariant derivatives that appear in the
Higgs kinetic energy terms; these couplings are also given
in Appendix A.
The Higgs boson couplings to the fermions arise from

the Yukawa Lagrangian, which can be written in terms of
the quark mass-eigenstate fields as2

�LY ¼ �UL�
0�
�a �U

a UR � �DLK
y��

�a �
U
a UR

þ �ULK�
þ
a �

Dy
�a DR þ �DL�

0
a�

Dy
�a DR þ H:c:;

(2.24)

TABLE I. The U(2)-invariant quantities qk‘, defined in
Ref. [2], are reproduced below. The qk‘ are functions of the
the invariant mixing angles �12 and �13, where cij � cos�ij and

sij � sin�ij. By convention, we choose � 1
2� � �12, �13 <

1
2�.

k qk1 qk2

1 c12c13 �s12 � ic12s13
2 s12c13 c12 � is12s13
3 s13 ic13
4 i 0

2Equation (2.24) corrects an error in Eq. (75) of Ref. [2].
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where K is the Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrix. The �U;D are 3� 3 Yukawa coupling matrices.
We can construct invariant and pseudoinvariant matrix
Yukawa couplings:

	Q � v̂�
�a�

Q
a ; 
Q � ŵ�

�a�
Q
a ; (2.25)

where Q ¼ U or D. Inverting these equations yields �Q
a ¼

	Qv̂a þ 
Qŵa. One can rewrite Eq. (2.24) in the Higgs
basis,3

�LY ¼ �ULð	UH0y
1 þ 
UH0y

2 ÞUR

� �DLK
yð	UH�

1 þ 
UH�
2 ÞUR

þ �ULKð	DyHþ
1 þ 
DyHþ

2 ÞDR

þ �DLð	DyH0
1 þ 
DyH0

2ÞDR þ H:c: (2.26)

Note that under the U(2) transformation,

	Q is invariant and 
Q ! ðdetUÞ
Q: (2.27)

By construction, 	U and 	D are proportional to the (real
non-negative) diagonal quark mass matrices MU and MD,
respectively. In particular,

MU ¼ vffiffiffi
2

p 	U ¼ diagðmu;mc;mtÞ;

MD ¼ vffiffiffi
2

p 	Dy ¼ diagðmd;ms;mbÞ:
(2.28)

The matrices 
U and 
D are independent complex 3� 3
matrices. The final form for the Yukawa couplings of the
mass-eigenstate Higgs bosons and the Goldstone bosons to
the quarks is

�LY ¼ 1

v
�D

�
MDðqk1PR þ q�k1PLÞ þ vffiffiffi

2
p ½qk2½ei�23
D�yPR þ q�k2e

i�23
DPL�
�
Dhk

þ 1

v
�U

�
MUðqk1PL þ q�k1PRÞ þ vffiffiffi

2
p ½q�k2ei�23
UPR þ qk2½ei�23
U�yPL�

�
Uhk

þ
�
�U½K½
D�yPR � ½
U�yKPL�DHþ þ

ffiffiffi
2

p
v

�U½KMDPR �MUKPL�DGþ þ H:c:

�
: (2.29)

By writing ½
Q�yHþ ¼ ½
Qei�23�y½ei�23Hþ�, we see that
the Higgs-fermion Yukawa couplings depend only on in-
variant quantities: the diagonal quark mass matrices,

Qei�23 , and the invariant angles �12 and �13. Since

Qei�23 is in general a complex matrix, Eq. (2.29) contains
CP-violating neutral Higgs-fermion interactions. More-
over, Eq. (2.29) exhibits Higgs-mediated flavor-changing
neutral currents at tree-level in cases where the 
Q are not
flavor-diagonal. Thus, for a phenomenologically acceptable
theory, the off-diagonal elements of 
Q must be small.

Note that the parameter tan� [where the angle � is
defined in Eq. (2.3)] does not appear in any of the Higgs
couplings [cf. Appendix A and Eq. (2.29)]. This is to be
expected, since tan� is a basis-dependent quantity in the
general 2HDM and is therefore an unphysical parameter
[2]. Of course, tan� can be promoted to a physical para-
meter in special situations in which a particular basis is
physical (e.g., in the presence of a discrete symmetry or
supersymmetry, which restricts the form of the scalar po-
tential in a particular basis). In this paper, we do not assume
that any basis (apart from the Higgs basis and the neutral
scalar mass-eigenstate basis) has physical significance.

III. BASIS-INDEPENDENT CONDITIONS
FOR CP-CONSERVATION

At present, all known CP-violating effects can be attrib-
uted to a phase in the CKM matrix K. The source of this

CP-violation is an unremovable complex phase in the
Higgs-fermion Yukawa couplings of the standard model.
When we extend the standard model by adding a second
Higgs doublet, new sources of CP-violation can arise from
potentially complex Higgs self-couplings and new Higgs-
fermion Yukawa couplings. In this section, we determine
the basis-independent conditions that yield no new sources
of CP-violation (at tree-level) beyond the one nontrivial
phase of the CKM matrix, and explore some of its
consequences.
The Higgs scalar potential is explicitly CP-conserving if

there exists a basis, called the real basis, in which all scalar
potential parameters are simultaneously real [11]. In addi-
tion, if there exists a real basis in which the Higgs vacuum
expectation values are simultaneously real, then CP is also
preserved by the vacuum (and is not spontaneously bro-
ken). In the latter case, it is then possible to perform an O
(2) global transformation on the fields of the Higgs basis,
which maintains the reality of the scalar potential parame-
ters. Hence, the condition for a CP-conserving Higgs
potential and vacuum is the existence of a real Higgs basis.
The only surviving basis freedom in defining the Higgs
basis is the rephasing ofH2. Thus, it follows from Eq. (2.8)
that the Higgs scalar potential and vacuum are
CP-conserving if and only if4

Im ðZ�
5Z

2
6Þ ¼ ImðZ�

5Z
2
7Þ ¼ ImðZ�

6Z7Þ ¼ 0; (3.1)

3Equation (2.26) corrects an error in Eq. (76) of Ref. [2].

4No separate condition is required for the complex parameter
Y3 due to the potential minimum condition of Eq. (2.15).
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which are equivalent to conditions first established in
Ref. [10], and subsequently rederived in Ref. [1,11].

We now add in the Higgs-fermion interactions and im-
pose the requirement of CP-conserving neutral Higgs
boson-fermion interactions. This requirement is satisfied
if the coefficients of the neutral Higgs boson-fermion
interactions are simultaneously real in a real Higgs basis.
It then follows from Eq. (2.26) that5

Z5ð
QÞ2; Z6

Q; and Z7


Q are real matrices

ðQ ¼ U;D and EÞ: (3.2)

Note that if Eq. (3.2) is satisfied, then Z1=2
5 
Q is either a

purely real or a purely imaginary matrix. In particular,
given a basis in which Z5 is real and Z6, Z7 and the matrix

Q are purely imaginary, one can always transform to a
real Higgs basis via H2 ! iH2.

It is instructive to provide the explicit basis-independent
form of the CP transformation law. In the Higgs basis, it is
convenient to employ the invariant Higgs fields, H1 and
ei�23H2. Then, under a CP transformation,

UCPH1ð ~x; tÞU�1
CP ¼ Hy

1 ð� ~x; tÞ;
UCP½��ei�23H2ð ~x; tÞ�U�1

CP ¼ ½��ei�23H2ð� ~x; tÞ�y; (3.3)

whereUCP is a unitary operator acting on the Hilbert space
of fields, and � is a basis-independent complex phase
factor to be determined. Applying this transformation to
the Higgs scalar potential in the Higgs basis [Eq. (2.8)], it
follows that the Higgs scalar potential and vacuum is
CP-invariant, i.e. UCPVU�1

CP ¼ V and UCPj0i ¼ j0i, if
Imð�2Z5e

�2i�23Þ ¼ 0; Imð�Z6e
�i�23Þ ¼ 0;

Imð�Z7e
�i�23Þ ¼ 0: (3.4)

These results immediately yield the conditions of Eq. (3.1).
Likewise, if we demand that the neutral Higgs-fermion
Yukawa interaction is CP-invariant, it follows that

Im ð��
Qei�23Þ ¼ 0; ðQ ¼ U;D and EÞ: (3.5)

Combining Eqs. (3.4) and (3.5), we obtain the conditions of
Eq. (3.2).

In a generic basis, the CP transformation law is easily
obtained by applying a global U(2) transformation to the
Higgs basis fields in Eq. (3.3). Using [2]

H1

H2

 !
¼ ŵ2 �ŵ1

�v̂2 v̂1

 !
�1

�2

 !
; (3.6)

it follows that

�að ~x; tÞ ! ðv̂av̂b þ �2e�2i�23ŵaŵbÞ��
�b
ð� ~x; tÞ: (3.7)

One can easily check that the invariance of the scalar
potential in the generic basis [Eq. (2.1)] with respect to
the transformation law of Eq. (3.7) again yields Eq. (3.1),
as expected. Note that the matrix

U ab � v̂av̂b þ �2e�2i�23ŵaŵb (3.8)

is unitary and symmetric. Thus, the CP-transformation law
in the generic basis takes the general form (cf. Ref. [11])

UCP�að ~x; tÞU�1
CP ¼ Uab�

�
�b
ð� ~x; tÞ; (3.9)

and invariance of the vacuum under CP requires [9]

h�ai ¼ Uabh��bi�; (3.10)

where U is any symmetric unitary 2� 2 matrix. Indeed,
Eq. (3.8) satisfies the above conditions.
If Eqs. (3.1) and (3.2) are satisfied, then the neutral Higgs

boson tree-level interactions are CP-conserving, and the
neutral Higgs fields are eigenstates of CP. We follow the
standard notation [12] and denote the CP-odd Higgs field
by A0 and the lighter and heavier CP-even neutral Higgs
fields by h0 and H0, respectively.
The neutral Higgs mass-eigenstates determine the mix-

ing angles �ij. Thus, in theCP-conserving case, the require-

ment6 that the neutral Higgs bosons are CP-eigenstates
determines the phase factor � that appears in Eqs. (3.3),
(3.4), (3.7), (3.8), and (3.11). By examining the Higgs
interaction terms given in Appendix A, one can determine
a consistent set of assignments for theCP quantumnumbers
of the neutral Higgs bosons such that their interactions with
gauge bosons and Higgs bosons is CP-invariant. For
example, the CP-odd Higgs boson can be identified in
general as7

A0 ¼ Imð��ei�23H0
2Þ: (3.11)

5Equation (3.2) corrects an error in Eq. (D3) of Ref. [2], which
incorrectly stated that the matrices of Eq. (3.2) must be
Hermitian. To derive this result, consider the interaction
Lagrangian,

L int ¼ Aij
�QiPLQj þ H:c:;

and note that ðAij
�QiPLQjÞy ¼ A�

ij
�QjPRQi ¼ ðAyÞij �QiPLQj.

Under a CP transformation,

UCPðAij
�QiPLQjÞU�1

CP ¼ Aij
�QjPRQi ¼ ðATÞij �QiPRQj:

Imposing CP-invariance of the interaction Lagrangian yields
Ay ¼ AT ; i.e. A is a real matrix.

6In the case of nondegenerate neutral-Higgs boson masses, it is
automatic that the neutral Higgs mass-eigenstates are simulta-
neously CP-eigenstates. In the case where the CP-odd Higgs
boson is mass-degenerate with a CP-even Higgs boson, it is
always convenient (though not strictly necessary) to choose the
physical mass-degenerate states to be CP-eigenstates.

7In the case of Z6 ¼ Z7 ¼ 
Q ¼ 0, one of the three neutral
Higgs bosons is CP-even and the other two neutral Higgs bosons
have opposite CP quantum numbers. But for this special case,
one cannot determine which of these latter two scalars is
CP-odd. See Sec. III B for further details.
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In Secs. III A, III B, and III C,we have examined all possible
cases for the Higgs scalar parameters in which the scalar
potential and vacuum is CP-conserving, and for each case
the value of the phase factor �2 is determined. For simplic-
ity, we assume that the three neutral Higgs masses are
nondegenerate. The mass-degenerate cases are treated in
Appendix C.

A. The CP-conserving 2HDM with Z6 � 0

For Z6 � 0 (and no restrictions on the possible values
of Z5 or Z7), a CP-invariant Higgs potential can arise in
the 2HDM under one of the three cases listed in Table II.
The derivation of these results (given in Ref. [2]) is
reviewed in Appendix C. Note that Eqs. (3.4) and (3.5)
correlate the overall phases of Z6, Z7 and the 
Q. In
particular, in Case I, ImðZ6e

�i�23Þ ¼ ImðZ7e
�i�23Þ ¼

Imð
Qei�23Þ ¼ 0, whereas ReðZ6e
�i�23Þ ¼ ReðZ7e

�i�23Þ ¼
Reð
Qei�23Þ ¼ 0 in Cases IIa and b.

The U(2)-invariant quantities qk‘ for each of the
three cases shown in Table II are exhibited in Tables III,
IV, and V.
It is convenient to define an invariant quantity, "56, by

the relation

ReðZ�
5Z

2
6Þ ¼ "56jZ5jjZ6j2; "56 � �1: (3.12)

Since ImðZ5e
�2i�23Þ ¼ 0 is satisfied in Cases I and II, it

follows that

ReðZ�
5Z

2
6Þ ¼ ReðZ5e

�2i�23Þ½ReðZ6e
�i�23Þ2 � ImðZ6e

�i�23Þ2�
¼ �jZ6j2 ReðZ5e

�2i�23Þ; (3.13)

where we take the positive [negative] sign depending on
whether ImðZ6e

�i�23Þ ¼ 0 [ReðZ6e
�i�23Þ ¼ 0]. Hence,

Eqs. (3.12) and (3.13) yield

ReðZ5e
�2i�23Þ¼

8<
:�56jZ5j if ImðZ6e

�i�23Þ¼0;

��56jZ5j if ReðZ6e
�i�23Þ¼0:

(3.14)

Note that "56 is the sign of Z5 in the real basis.8 Eq. (3.14)
can be rewritten more compactly as

Re ðZ5e
�2i�23Þ ¼ �2�56jZ5j: (3.15)

One can use Eq. (3.11) to identify the CP-odd Higgs
boson, A0. The identity of A0 is also easily discerned from
Tables III, IV, and V, since any neutral Higgs state hk with
qk1 � 0 must be CP-even. As there is one CP-odd state in
the neutral Higgs spectrum, it must correspond to the
qk1 ¼ 0 entries of Tables III, IV, and V.
The squared-masses of the neutral bosons are given by

m2
h0;H0 ¼ 1

2
v2

8><
>:Y2=v

2þZ1þ1

2
ðZ3þZ4þ"56jZ5jÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Y2=v

2�Z1þ1

2
ðZ3þZ4þ"56jZ5jÞ

�
2þ4jZ6j2

s 9>=
>;;

(3.16)

TABLE II. Basis-independent conditions for a CP-conserving scalar potential and vacuum
when Z6 � 0. The neutral Higgs mixing angles �ij are defined with respect to the mass-ordering

mh1 � mh2 � mh3 . The phase factor �2 governs the CP transformation law [cf. Eq. (3.7)].

Additional conditions in which Z6 is replaced by Z7 and by 
Q� (Q ¼ U, D or E), respectively,
must also hold due to the phase correlations implicit in Eqs. (3.4) and (3.5). In the case where two
of the neutral Higgs masses are equal, one linear combination of neutral Higgs states will be
CP-even and the orthogonal linear combination will be CP-odd. The latter defines the relevant
mixing angle, �12 in Case I and �13 in Case II, respectively.

Cases conditions �2 A0 h0 H0

I s13 ¼ ImðZ5e
�2i�23 Þ ¼ ImðZ6e

�i�23 Þ ¼ 0 þ1 h3 h1 h2
IIa s12 ¼ ImðZ5e

�2i�23 Þ ¼ ReðZ6e
�i�23 Þ ¼ 0 �1 h2 h1 h3

IIb c12 ¼ ImðZ5e
�2i�23 Þ ¼ ReðZ6e

�i�23 Þ ¼ 0 �1 h1 h2 h3

TABLE III. The U(2)-invariant quantities qk‘ for Case I.

k qk1 qk2

1 c12 �s12
2 s12 c12
3 0 i

TABLE IV. The U(2)-invariant quantities qk‘ for Case IIa.

k qk1 qk2

1 0 1

2 �c13 is13
3 s13 ic13

TABLE V. The U(2)-invariant quantities qk‘ for Case IIb.

k qk1 qk2

1 c13 �is13
2 0 1

3 s13 ic13

8In the real Higgs basis as defined above, �23 ¼ n� for an
integer n. Since ImðZ5e

�2i�23 Þ ¼ 0, it follows from Eq. (3.14)
that Z5 ¼ �56jZ5j. That is, "56 is the sign of Z5 in the real Higgs
basis.
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m2
A0 ¼ Y2 þ 1

2
v2ðZ3 þ Z4 � "56jZ5jÞ; (3.17)

where �56 is defined above [cf. Eqs (3.12) and (3.14)]. In
particular, Case I corresponds to the mass-ordering mA0 >
mH0 , and Cases IIa and IIb correspond to mA0 <mH0 .
Moreover, the two separate parameter regimes correspond-
ing to Cases IIa and IIb correspond to the two possible
mass-orderingsmA0 <mh0 andmA0 >mh0 , respectively, as
exhibited in Table II.

B. The CP-conserving 2HDM with Z6 ¼ 0 and Z7 � 0

For the case of Z6 ¼ 0 and Z7 � 0, a CP-invariant
Higgs potential can arise in the 2HDM under any one of
the following six conditions listed in Table VI. The U(2)-
invariant quantities qk‘ for the cases shown in Table VI are
exhibited in Tables VII, VIII, and IX. A derivation of these
results is given in Appendix C.

Cases I’a and I’b correspond to the combination of
Cases I and IIa of Table II. Cases II’a and II’b correspond
to the combination of Cases I and IIb of Table II. Finally,
Cases III’a and III’b are new. In these last two cases,

�� 23 � �23 � �12; ��2 ¼ �2e�2i�12 ¼ �1; (3.18)

play the roles of �23 and �2, respectively. Note that
Eqs. (3.4) and (3.5) correlate the overall phases of Z7 and
the 
Q. In particular,

Cases I0a and II0a: ImðZ7e
�i�23Þ ¼ Imð
Qei�23Þ ¼ 0;

Case III0a: ImðZ7e
�i ��23Þ ¼ Imð
Qei

��23Þ ¼ 0; (3.19)

Cases I0b and II0b: ReðZ7e
�i�23Þ ¼ Reð
Qei�23Þ ¼ 0;

Case III0b: ReðZ7e
�i ��23Þ ¼ Reð
Qei

��23Þ ¼ 0: (3.20)

The Higgs state corresponding to qk1 � 0 in Tables VII,
VIII, and IX is a CP-even Higgs boson. Moreover, as
qk1 ¼ �1 and jqk2j ¼ 0 in each case, it follows from
Appendix A that this state has precisely the couplings of
the standard model Higgs boson. Note that the qk1 vanish
for the other two neutral-Higgs states, and thus cannot be

TABLE VI. Basis-independent conditions for a CP-conserving scalar potential and vacuum
when Z6 ¼ 0, Z7 � 0. The neutral Higgs mixing angles �ij are defined with respect to the mass-

ordering mh1 � mh2 � mh3 , and
��23 � �23 � �12. The phase factor �2 governs the CP trans-

formation law [cf. Eq. (3.7)]. Additional conditions in which Z7 is replaced by 
Q� (Q ¼ U, D
and E), respectively, must also hold due to the phase correlations implicit in Eqs. (3.19) and
(3.20). The two CP-even Higgs bosons are denoted as h01 and h

0
2 respectively, where m

2
h0
1

¼ Z1v
2

and m2
h0
2

¼ Y2 þ 1
2 ðZ3 þ Z4 þ "57jZ5jÞv2. The couplings of h01 coincide precisely with the

couplings of the standard model Higgs boson. The squared-mass of the CP-odd Higgs boson
is given by m2

A0 ¼ Y2 þ 1
2 ðZ3 þ Z4 � "57jZ5jÞv2. If Z1 is chosen such that h01 is degenerate in

mass with either h02 or A0, then �12 in Cases I’ and II’ or �13 in Case III’ are fixed by the

requirement that the properties of the mass-degenerate state h01 coincide with those of the

standard model Higgs boson. Additional cases not included in this table that can arise when two
of the neutral Higgs bosons are degenerate in mass are treated in Table XIII.

Cases conditions �2 A0 h01 h02

I’a s13 ¼ s12 ¼ ImðZ5e
�2i�23 Þ ¼ ImðZ7e

�i�23 Þ ¼ 0 þ1 h3 h1 h2
I’b s13 ¼ s12 ¼ ImðZ5e

�2i�23 Þ ¼ ReðZ7e
�i�23 Þ ¼ 0 �1 h2 h1 h3

II’a s13 ¼ c12 ¼ ImðZ5e
�2i�23 Þ ¼ ImðZ7e

�i�23 Þ ¼ 0 þ1 h3 h2 h1
II’b s13 ¼ c12 ¼ ImðZ5e

�2i�23 Þ ¼ ReðZ7e
�i�23 Þ ¼ 0 �1 h1 h2 h3

III’a c13 ¼ ImðZ5e
�2i ��23 Þ ¼ ImðZ7e

�i ��23 Þ ¼ 0 e2i�12 h1 h3 h2
III’b c13 ¼ ImðZ5e

�2i ��23 Þ ¼ ReðZ7e
�i ��23 Þ ¼ 0 �e2i�12 h2 h3 h1

TABLE VII. The U(2)-invariant quantities qk‘ for Cases I’a
and I’b.

k qk1 qk2

1 1 0

2 0 1

3 0 i

TABLE VIII. The U(2)-invariant quantities qk‘ for Cases II0a
and II0b.

k qk1 qk2

1 0 1

2 �1 0

3 0 i

TABLE IX. The U(2)-invariant quantities qk‘ for Cases III’a
and III’b.

k qk1 qk2

1 0 iei�12

2 0 ei�12

3 �1 0
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used to fix the absolute CP quantum numbers of these two
states. In the Z6 ¼ 0 model, it is Z7 and/or 


Q that deter-
mine which of these two states is CP-even and which is
CP-odd.

It is convenient to define an invariant quantity, "57, by
the relation

ReðZ�
5Z

2
7Þ ¼ "57jZ5jjZ7j2; "57 � �1: (3.21)

Since ImðZ5e
�2i�23Þ ¼ 0 is satisfied in Cases I0 and II0, it

follows that

ReðZ5e
�2i�23Þ¼

8<
:�57jZ5j; if ImðZ7e

�i�23Þ¼0;

��57jZ5j; if ReðZ7e
�i�23Þ¼0;

(3.22)

Note that "57 is the sign of Z5 in the real basis. Eq. (3.22)
can be rewritten more compactly as

Re ðZ5e
�2i�23Þ ¼ �2�57jZ5j: (3.23)

In Case III’, ImðZ5e
�2i ��23Þ ¼ 0, in which case, Eqs. (3.22)

and (3.23) hold with �23 and �
2 are replaced by ��23 and ��2,

respectively.
The masses of the neutral Higgs bosons are as follows.

There is one CP-even Higgs boson whose squared-mass is
given by9:

m2
h0
1

¼ Z1v
2: (3.24)

As noted above, the mass and couplings of h01 are exactly

the same as those of the standard model Higgs boson.10

The squared-masses of the remaining two neutral Higgs
bosons (a CP-even state h02 and a CP-odd state A0) are
given by

m2
h0
2

¼ Y2 þ 1

2
ðZ3 þ Z4 þ "57jZ5jÞv2; (3.25)

m2
A0 ¼ Y2 þ 1

2
ðZ3 þ Z4 � "57jZ5jÞv2: (3.26)

Cases involving mass-degenerate neutral Higgs bosons are
examined in Appendix C.

The above results are valid as long as either Z6 or Z7 is
nonvanishing. If both Z6 ¼ 0 and Z7 ¼ 0, the model has
some extra features, which we examine in the following
section.

C. The 2HDM with Z6 ¼ Z7 ¼ 0

In Secs. III A and III B, we established basis-
independent conditions for which the 2HDM scalar poten-
tial and vacuum were CP-conserving. If Z6 ¼ Z7 ¼ 0 (and
Y3 ¼ 0 by virtue of the potential minimum condition), then
Z5 is the only potentially complex parameter of the scalar
potential in the Higgs basis. Consequently, one can rephase
the Higgs fieldH2 to obtain a real Higgs basis (where Z5 is
real). Hence, if Z6 ¼ Z7 ¼ 0, then the 2HDM scalar
potential and vacuum automatically preserve the CP
symmetry.11

Starting from any real basis of a CP-invariant 2HDM
scalar potential, one can always apply an O(2) transforma-
tion to the Higgs fields to define another generic real basis.
In general, all possible real basis choices can be reached in
this way. However, in the case of Y3 ¼ Z6 ¼ Z7 ¼ 0, there
exists a particular U(2) transformation, diagð1; iÞ, that is
not an O(2) transformation, which has the effect of chang-
ing the sign of Z5. This corresponds to redefining the
second Higgs field by

H2 ! iH2: (3.27)

Following Appendix A of Ref. [11] (where the analogous
arguments for the time-reversal-invariant 2HDM is pre-
sented), the CP transformation law is unique only if all
real basis choices are related by an O(2) transformation. If
all real basis choices are related by a larger global trans-
formation group, Oð2Þ �D 	 Uð2Þ, then the CP transfor-
mation law (within the Higgs/gauge boson sector) is not
unique and the number of inequivalent CP transformation
laws is equal to the number of elements of the (nontrivial)
discrete group D. Applying this to the 2HDM with Y3 ¼
Z6 ¼ Z7 ¼ 0, we identify D ¼ Z2, which is the discrete
group consisting of the identity element and diagð1; iÞ 2
Uð2Þ [the latter changes the sign of Z5]. We conclude that
for the Y3 ¼ Z6 ¼ Z7 ¼ 0 model, there are two inequiva-
lent definitions of CP in the Higgs/gauge boson sector. For
example, in Cases I’ and II’ of Table VI, the two definitions
of CP correspond to �2 ¼ �1 in Eq. (3.7) [for Case III’,
simply replace �23 with ��23 and �2 with ��2].
In particular, consider the U(2)-invariant couplings qk‘

given in Tables VII, VIII, and IX. The Higgs boson h01,
defined here as the scalar hk corresponding to jqk1j ¼ 1, is
CP-even. For either choice of the two inequivalent defini-
tions of CP, the couplings of h01 precisely match those of

the standard model Higgs boson [as previously noted be-
low Eq. (3.20)]. But, for the two-Higgs states h02 and h03
with qk1 ¼ 0, the Higgs/gauge boson interactions are in-
sufficient to uniquely identify the CP-odd Higgs field as
noted above. The squared-mass of the neutral Higgs bosons

9In Eqs. (3.24) and (3.25), we employ the notation h01 and h02
for the two CP-even Higgs bosons (rather than h0 and H0), since
the mass ordering of these states depends on the choice of the
2HDM parameters.
10The standard model properties of h01 are independent of its
mass and the masses of h02 and A

0. In this sense, this case is not a
decoupling limit, although the properties of h01 are identical to
the corresponding properties of the lightest CP-even Higgs
boson in the decoupling limit.

11One can implement Y3 ¼ Z6 ¼ Z7 ¼ 0 by imposing a Z2
symmetry in the Higgs basis. If the Higgs-fermion couplings also
respect this discrete symmetry, then the resulting 2HDM is the
Inert Doublet Model [13], since the model contains no interac-
tion vertices with an odd number of H2 fields.
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must be the same as in the previous subsection (where
Z6 ¼ 0 and Z7 � 0), since the neutral Higgs squared-mass
matrix is independent of Z7. However, when Z7 ¼ 0, we
cannot employ Eqs. (3.25) and (3.26) since "57 is no longer
defined. Nevertheless, one can directly analyze the
squared-mass matrix given by Eq. (2.17), which is
diagonal. Defining Z5 � jZ5je2i�5 , and noting that
ImðZ5e

�2i�23Þ ¼ 0, it follows that �5 � �23 ¼ 1
2n� for

some integer n. Hence ReðZ5e
�2i�23Þ ¼ �jZ5j, where the

� corresponds to the two possible choices �5 � �23 ¼ 0 or
1
2�. We conclude that the squared-masses of h02 and h03 are

given by

m2
h0
2
;h0

3

¼ Y2 þ 1

2
v2ðZ3 þ Z4 � jZ5jÞ; (3.28)

where by convention we choose mh0
2
<mh0

3
.

If the neutral Higgs-fermion Yukawa interactions are
CP-conserving, then the ambiguity of the CP quantum
numbers of h02 and h03 can be resolved. The results of

Table VI still apply if Z7 is replaced by 
Q� (for either
Q ¼ U, D or E). It is convenient to define an invariant
quantity, "5Q, by the relation,

Re ½Z5ð
Q
ijÞ2� ¼ "5QjZ5jj
Q

ijj2; "5Q � �1; (3.29)

where 
Q
ij is any nonvanishing matrix element of 
Q.

Following the derivation of Eqs. (3.21), (3.22), and (3.23),
it then follows that

ReðZ5e
�2i�23Þ¼

8<
:�5QjZ5j; if Imðei�23
QÞ¼0;

��5QjZ5j; if Reðei�23
QÞ¼0;
(3.30)

for Cases I’ and II’ (for Case III’, �23 and�
2 are replaced by

��23 and ��2, respectively). Note that "5Q is the sign of Z5 in

the real Higgs basis in which the scalar potential parameters
and the Higgs-fermion Yukawa coupling matrices are si-
multaneously real. In particular, "5Q is independent of the

choice of i and j in Eq. (3.29) [assuming 
Q
ij � 0]. Even

thoughZ6 ¼ Z7 ¼ 0, the sign ofZ5 in the real Higgs basis is
meaningful due to the presence of the Yukawa couplings.
Eq. (3.30) can be rewritten more compactly as

ReðZ5e
�2i�23Þ ¼ �2�5QjZ5j: (3.31)

The two choices of �2 ¼ �1 are now distinguishable.
For example, in Case I’, the diagonal parts of the QQhk
interactions are given by

LQQh2 ¼
�1ffiffiffi
2

p X3
i¼1

�Qi½Reðei�23
QÞ � i�5 Imðei�23
QÞ�iiQih2;

(3.32)

LQQh3 ¼
�1ffiffiffi
2

p X3
i¼1

�Qi½�i�5Reðei�23
QÞþ Imðei�23
QÞ�iiQih3;

(3.33)

where the upper (lower) sign corresponds to Q ¼ U (Q ¼
D, E). It follows that in Case I’, h3 isCP-odd if�

2 ¼ 1, i.e.
Imðei�23
QÞ ¼ 0 and h2 is CP-even if �2 ¼ �1, i.e.
Reðei�23
QÞ ¼ 0. That is, the neutral Higgs-fermion
Yukawa interaction selects one of the two inequivalent
definitions of CP. Cases II’ and III’ can be similarly
treated. In a real Higgs basis, the uniqueCP transformation
law depends on whether 
Q is a purely real or purely
imaginary matrix. If the neutral Higgs-fermion Yukawa
interactions are CP-violating, then neither h02 nor h03 can

be assigned a definite CP quantum number.

D. CP symmetries in the 2HDM

Generalized CP-transformations (GCPs) in the 2HDM
have been examined in Refs. [14,15]. In a generic basis, a
GCP transformation is of the form given in Eq. (3.9), where
U is an arbitrary 2� 2 unitary matrix. Three classes of
GCPs were identified in Refs. [14,15] according to the
value of UU�:

ðiÞCP1: UU� ¼ 12�2;

i:e:; U is a unitary symmetric matrix; (3.34)

ðiiÞCP2: UU� ¼ �12�2;

i:e:;U is a unitary antisymmetric matrix; (3.35)

ðiiiÞCP3: UU� � �12�2; (3.36)

where 12�2 is the 2� 2 identity matrix. The CP1 trans-
formation corresponds to Eq. (3.8). Imposing CP1 on the
2HDM scalar potential implies that there exists a basis in
which all the scalar potential parameters are real. Imposing
CP2 and CP3 yields additional constraints on the scalar
potential, which are not especially relevant to the matters
addressed in this paper. In Ref. [15], the possibility of
imposing symmetries in a specific basis is discussed.
This can lead to additional conditions on the scalar poten-
tial parameters, which may or may not correspond to a
higher symmetry of the 2HDM. In Refs. [16,17], the CP1
transformation is applied directly in the Higgs basis. In
particular, these authors examine

H1

H2

 !
¼ ei� 0

0 e�i�

 !
H�

1

H�
2

 !
; (3.37)

where 0 � � � �. Imposing this CP1 transformation on
the Higgs basis constrains the potentially complex scalar
potential parameters as follows:

1: If � ¼ 0 ) Y3; Z5; Z6; Z7 2 R; (3.38)

2:If �¼� ) Z52R; Y3¼Z6¼Z7¼0; (3.39)

3: If � � 0; � ) Y3 ¼ Z5 ¼ Z6 ¼ Z7 ¼ 0: (3.40)
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This analysis singles out the importance of the Z6 ¼
Z7 ¼ 0 model discussed in Sec. III C, which is designated
as a ‘‘twisted’’ CP-conserving model in Ref. [16].12 The
case of Z5 ¼ Z6 ¼ Z7 ¼ 0 possesses similar properties to
the former model, with the added feature that the two-
Higgs scalars of indefinite CP quantum number are mass-
degenerate.

IV. BASIS-INDEPENDENT CONDITIONS FOR
CUSTODIAL-SYMMETRY IN THE 2HDM

In the standard model, the tree-level relation, m2
W ¼

m2
Z cos�W , is a consequence of an accidental global sym-

metry of the Higgs potential. In particular, the SM Higgs
Lagrangian possesses an SOð4Þ ffi SUð2ÞL � SUð2ÞR=Z2

global symmetry, whereas the full electroweak
Lagrangian is invariant under SUð2Þ � Uð1ÞY , which is a
subgroup of the larger global symmetry group. The global
custodial SUð2ÞV symmetry, which is the diagonal (vector)
subgroup of SUð2ÞL � SUð2ÞR (where V ¼ Lþ R), is re-
sponsible for the gauge boson tree-level mass relation.

The Uð1ÞY hypercharge gauge interactions and the
Higgs-fermion Yukawa couplings break the custodial
symmetry. This leads to finite one-loop radiative correc-
tions to the gauge boson tree-level mass relation. The
dominant part of these corrections can be parameterized
by a single quantity called T, introduced by Peskin and
Takeuchi [8]. It is convenient to define T relative to a
‘‘reference standard model,’’ in which the Higgs mass is
fixed. A convenient choice is to define T ¼ 0 for a
standard model Higgs mass of 117 GeV.13 Deviations
from T ¼ 0 can be accommodated by either changing
the value of the Higgs mass or adding new custodial-
violating interactions to the theory. Experimentally, T is
observed to be quite small, which suggests that the
custodial-breaking effects of the electroweak Lagrangian
due to new physics beyond the standard model (or a
standard model Higgs mass that differs significantly
from 117 GeV) must be quite small.

In the 2HDM with a generic scalar potential, the
Higgs Lagrangian does not possess a global custodial
symmetry. One can therefore write the Higgs Lagrangian
in the form

L Higgs ¼ LCSC þLCSV; (4.1)

where LCSC and LCSV are the custodial symmetry con-
serving and violating pieces, respectively. The terms that
contribute to LCSV reside in the scalar potential, and do
not effect the gauge boson mass relation at tree-level.
Hence, these terms only contribute a finite correction at
one-loop to the T parameter. Nevertheless, the experi-
mental determination of T can place significant con-
straints on the parameters of the 2HDM scalar
potential. In this section, we formulate a basis-
independent characterization of custodial symmetry.
This will permit a clean basis-independent separation
of the custodial symmetry conserving and violating
pieces of the Higgs Lagrangian as in Eq. (4.1).

A. Custodial symmetry of the Higgs sector

1. Basis-dependent conditions for custodial symmetry

Conditions for custodial symmetry of the Higgs sector in
the 2HDM doublet model has been previous addressed by
Pomarol and Vega [7]. Consider the 2HDM scalar potential
in a generic basis,

V ¼ m2
11�

y
1�1 þm2

22�
y
2�2 � ½m2

12�
y
1�2 þ H:c:�

þ 1

2
�1ð�y

1�1Þ2 þ 1

2
�2ð�y

2�2Þ2

þ �3ð�y
1�1Þð�y

2�2Þ þ �4ð�y
1�2Þð�y

2�1Þ
þ
�
1

2
�5ð�y

1�2Þ2 þ ½�6ð�y
1�1Þ

þ �7ð�y
2�2Þ��y

1�2 þ H:c:

�
; (4.2)

where m2
11, m

2
22, �1, �2, �3, �4 2 R are real parameters,

and m2
12, �5, �6, �7 2 C are potentially complex. The

vacuum expectation values of the neutral Higgs fields,
denoted by

h�0
ai � vaffiffiffi

2
p 2 C; a ¼ 1; 2; (4.3)

are also generically complex. Pomarol and Vega asserted
that the imposition of custodial symmetry on the 2HDM
scalar potential yields two independent cases [in the nota-
tion of Eq. (4.2)]:

Case1: v1;v2 2R;

�4 ¼ �5; and m2
12;�5;�6;�7 2R; (4.4)

Case 2: v1 ¼ v�
2 2 C; m2

11 ¼ m2
22;

�1 ¼ �2 ¼ �3; �6 ¼ �7; and m2
12; �5; �6; �7 2 C:

(4.5)

These conditions are derived as follows.

12In Ref. [16], the twisted model is associated with the Z6 ¼
Z7 ¼ 0 model with custodial symmetry. Here, we see that
custodial symmetry has nothing to do with the existence of
this class of models, but is an additional constraint that can be
imposed on the CP-conserving scalar potential. See Sec. IVA3
for further discussions of this point.
13The choice of Higgs mass is dictated by the global standard
model fit to precision electroweak data [18–20], which suggests
that the Higgs mass must lie above but not too far away from the
lower Higgs mass bound (at 95% CL) of 114.4 GeV established
at LEP [21]. In Ref. [19], a Higgs mass of 117 GeV is chosen for
the reference standard model in the analysis of new physics
contributions to the Peskin-Takeuchi S, T and U parameters.
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In Case 1, one constructs two 2� 2 matrix fields,14

M1 � ð ~�1;�1Þ;M2 � ð ~�2;�2Þ; (4.6)

where ~� � i2�
�. The matrix fields transform under

SUð2ÞL � SUð2ÞR as

Ma ! LMaR
y; a ¼ 1; 2: (4.7)

The SUð2ÞL � SUð2ÞR scalar potential is constructed by
employing the manifestly invariant combinations,

Tr½My
1M1�, Tr½My

2M2� and Tr½My
1M2�.15 Explicitly,

V ¼ 1

2
m2

11 Tr½My
1M1� þ 1

2
m2

22 Tr½My
2M2�

�m2
12 Tr½My

1M2� þ 1

8
�1ðTr½My

1M1�Þ2

þ 1

8
�2ðTr½My

2M2�Þ2 þ 1

4
�3 Tr½My

1M1�Tr½My
2M2�

þ 1

2
�ðTr½My

1M2�Þ2 þ 1

2
ð�6 Tr½My

1M1�
þ �7 Tr½My

2M2�ÞTr½My
1M2�; (4.8)

where Hermiticity implies that all the coefficients above
are real. Thus, imposing the SUð2ÞL � SUð2ÞR symmetry
on the scalar potential and comparing with Eq. (4.2) then
yields � ¼ �4 ¼ �5 and m2

12, �5, �6, �7 2 R. If the scalar
field vacuum expectation values satisfy

hMai ¼ 1ffiffiffi
2

p v�
a 0
0 va

� �
¼ vaffiffiffi

2
p 12�2; (4.9)

then hMai is invariant under the SUð2ÞV custodial symme-
try group, since hMai ! LhMaiRy ¼ hMai when L ¼ R.
Eq. (4.9) imposes the condition va 2 R, and Eq. (4.4) is
thus established.

In Case 2, one constructs the 2� 2 matrix field,

M12 � ð ~�1;�2Þ; (4.10)

which transforms under SUð2ÞL � SUð2ÞR as

M12 ! LM12R
y: (4.11)

The SUð2ÞL � SUð2ÞR scalar potential is constructed
by employing the manifestly invariant combinations

Tr½My
12M12�, detM12, detðM12Þ2 and det½My

12M12�.
Explicitly,

V ¼ m2 Tr½My
12M12� þ ðm2

12 detM2 þ H:c:Þ
þ 1

2
�ðTr½My

12M12�Þ2 þ �4 det½My
12M12�

þ 1

2
ð�5 detðM12Þ2 þ H:c:Þ

þ ð�0 detM12 Tr½My
12M12� þ H:c:Þ: (4.12)

Thus, imposing the SUð2ÞL � SUð2ÞR symmetry on the
scalar potential and comparing with Eq. (4.2) then yields
m2 ¼ m2

11 ¼ m2
22, � ¼ �1 ¼ �2 ¼ �3, �

0 ¼ �6 ¼ �7 and
m2

12, �5, �6, �7 2 C. If the scalar field vacuum expectation
values satisfy

hM12i ¼ 1ffiffiffi
2

p v�
1 0
0 v2

� �
¼ v2ffiffiffi

2
p 12�2; (4.13)

then hM21i is invariant under the SUð2ÞV custodial symme-
try group. Eq. (4.13) imposes the condition v�

1 ¼ v2 2 C,
and Eq. (4.5) is thus established.
Although the two cases of Pomarol and Vega appear to

be distinct, a more careful analysis shows that the two
cases are in fact equivalent, and correspond to the formu-
lation of the 2HDM in two different choices of the scalar
field basis. This can be established as follows. First, we
note that in both Cases 1 and 2, the scalar potential depends
on three independent squared-mass parameters and six
independent scalar self-coupling parameters. Now, sup-
pose one begins with a 2HDM subject to the constraints
of Case 2 [Eq. (4.5)]. It is convenient to define

v̂1 ¼ v̂�
2 ¼

1ffiffiffi
2

p ei�; m2 � m2
11 ¼ m2

22;

� � �1 ¼ �2 ¼ �3; �0 � �6 ¼ �7; (4.14)

where v̂a is defined in Eq. (2.3). By performing a basis
transformation, �a ! Ua �b�b, with

U ¼ 1ffiffiffi
2

p e�i� ei�

�ie�i� iei�

 !
; (4.15)

the coefficients of the scalar potential [cf. Eq. (4.2)] are
transformed to [in the notation of Eq. (2.8)]:

Y1 ¼ m2 � Reðm2
12e

�2i�Þ; (4.16)

Y2 ¼ m2 þ Reðm2
12e

�2i�Þ; (4.17)

Y3 ¼ �Imðm2
12e

�2i�Þ; (4.18)

Z1 ¼ �þ 1

2
�4 þ 1

2
Reð�5e

�4i�Þ þ 2Reð�0e�2i�Þ; (4.19)

Z2 ¼ �þ 1

2
�4 þ 1

2
Reð�5e

�4i�Þ � 2Reð�0e�2i�Þ; (4.20)

Z3 ¼ �� 1

2
�4 � 1

2
Reð�5e

�4i�Þ; (4.21)

14In the notation of Eq. (4.6), ~�a is the first column and �a is
the second column of the matrix Ma (for a ¼ 1, 2).
15One can check that Tr½My

1M2� ¼ Tr½My
2M1� and detMa ¼

1
2 Tr½My

aMa� (for a ¼ 1, 2), so only three independent invariant
quadratic forms are relevant.
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Z4 ¼ Z5 ¼ 1

2
�4 � 1

2
Reð�5e

�4i�Þ; (4.22)

Z6 ¼ 1

2
Imð�5e

�4i�Þ þ Imð�0e�2i�Þ; (4.23)

Z7 ¼ � 1

2
Imð�5e

�4i�Þ þ Imð�0e�2i�Þ; (4.24)

while the normalized scalar field vacuum expectation
values are transformed to

v̂ a ! Ua �bv̂b ¼ �a1: (4.25)

Equation (4.25) defines the Higgs basis fH1; H2g, up to a
phase redefinition of H2. We immediately note that
Z4 ¼ Z5 and the vacuum expectation values and all the
scalar potential parameters are real. Thus, the Higgs basis
satisfies all the conditions of Case 1 of Pomarol and Vega
[cf. Eq. (4.4)]. Moreover, it is easy to check that any addi-
tional O(2) basis transformation preserves �4 ¼ �5 and the
reality of the scalar potential parameters. Thus, we have
confirmed that Cases 1 and 2 of Pomarol and Vega are
equivalent and simply represent different choices of the
scalar field basis.16

Of course, one can also perform arbitrary U(2) trans-
formations of the Higgs fields. The resulting scalar poten-
tial parameters and vacuum expectation values will in
general satisfy neither case 1 nor case 2 of Pomarol and
Vega. Yet, all these parameterizations are physically
equivalent and maintain the custodial symmetry. Clearly,
it is desirable to formulate a basis-independent description
of custodial symmetry. We shall provide such a formula-
tion in the next subsection.

2. The basis-independent condition for
custodial symmetry in the scalar sector

It is possible generalize the two implementations of
custodial symmetry presented in the previous subsection
by constructing an SUð2ÞL � SUð2ÞR invariant scalar po-
tential using the Higgs basis fields, H1 and H2. The advan-
tage of this basis choice is that no supplementary
conditions on the vevs are required. In particular, we define
2� 2 matrix fields:

M1 � ð ~H1; H1Þ; M2 � ð ~H2; H2Þ;
M12 � ð ~H1; H2Þ; M21 � ð ~H2; H1Þ: (4.26)

Since hH0
1i ¼ v=

ffiffiffi
2

p
(where v ¼ 246 GeV) and hH0

2i ¼ 0,
it follows that

hM1i ¼ vffiffiffi
2

p 12�2; hM2i ¼ 0; (4.27)

whereas neither hM12i nor hM21i are proportional to the
identity matrix. Consequently, if we wish to preserve a
custodial SUð2ÞV after electroweak symmetry breaking,
the scalar potential in the Higgs basis must be solely a
function of M1 and M2.
In the Higgs basis, the field H1 is basis-invariant, as it is

defined such that hH0
1i � v=

ffiffiffi
2

p
is real and positive. On the

other hand, since hH0
2i ¼ 0 it follows that H2 is only

defined up to an overall rephasing. That is, H1 is an
invariant field with respect to basis transformations,
whereas H2 is a pseudoinvariant field. As a result, the
SUð2ÞL � SUð2ÞR transformation laws for M1 and M2

are given by

M1 ! LM1R
y; M2 ! LM2R

0y;

L 2 SUð2ÞL; R; R0 2 SUð2ÞR: (4.28)

Since Hi and ~Hi (i ¼ 1, 2) are doublets under the weak
SUð2ÞL gauge transformation, the transformation matrices
L appearing in Eq. (4.28) must be the same in the
SUð2ÞL � SUð2ÞR transformation laws of M1 and M2. As
noted by [16], the same requirement does not hold for the
SUð2ÞR transformation; hence, in general R0 � R.
However, R and R0 are related by the fact that the gauged
U(1) hypercharge operator, Y � diagð�1;þ1Þ, is a diago-
nal generator of SUð2ÞR. In particular, if we write R �
expði�naTa

RÞ where ðn1; n2; n3Þ is a unit vector, then T3
R is

proportional to Y. Since the Hi are hypercharge þ1 fields
and the ~Hi are hypercharge�1 fields, the relation between
R and R0 is fixed by R0 � PRP�1, where P is an SU(2)
matrix and P expði�YÞP�1 ¼ expði�YÞ for all � [16]. By
expanding in �, it follows that PY ¼ YP, which constrains
P to be of the form P ¼ diagðe�i�; ei�Þ, where 0 � �<
2�. We conclude that the most general form for the
SUð2ÞL � SUð2ÞR transformation laws for M1 and M2 is
given by

M1 ! LM1R
y; M2 ! LM2PR

yP�1; (4.29)

where

L 2 SUð2ÞL; R 2 SUð2ÞR;

P � e�i� 0

0 ei�

 !
; ð0 � �< 2�Þ: (4.30)

The phase angle � can be interpreted as representing the
freedom to rephase the field H2. In particular, if one
definesM0

1 � M1 andM
0
2 � M2P, then the transformation

16In Ref. [22], it was shown that in Type-I and Type-II 2HDMs,
the corresponding Higgs-fermion Yukawa couplings (defined in
the standard basis where the discrete symmetry �2 ! ��2 is
manifest) are custodial-symmetric if and only if the scalar
potential parameters satisfy Eqs. (4.4) and (4.5), respectively.
The two ways to implement custodial symmetry given by
Eqs. (4.7) and (4.11), respectively, can be distinguished based
on the presence or absence of the A0GG effective interaction.
This is possible, as the special forms of the Type-I and II Higgs-
Yukawa interactions effectively select a ‘‘preferred’’ basis.

HOWARD E. HABER AND DEVA O’NEIL PHYSICAL REVIEW D 83, 055017 (2011)

055017-12



laws for M0
1 and M0

2 are the same, i.e. M0
a ! LM0

aR
y for

a ¼ 1, 2.
The SUð2ÞL � SUð2ÞR scalar potential is constructed by

employing the manifestly invariant combinations,

Tr½My
1M1�, Tr½My

2M2� and Tr½My
1M2P�.17 Explicitly,

V ¼ 1

2
Y1 Tr½My

1M1�þ 1

2
Y2 Tr½My

2M2�þ ~Y3 Tr½My
1M2P�

þ 1

8
Z1ðTr½My

1M1�Þ2þ 1

8
Z2ðTr½My

2M2�Þ2

þ 1

4
Z3 Tr½My

1M1�Tr½My
2M2�þ 1

2
�ðTr½My

1M2P�Þ2

þ 1

2
ð~Z6 Tr½My

1M1�þ ~Z7 Tr½My
2M2�ÞTr½My

1M2P�;
(4.31)

where Hermiticity implies that all coefficients above are
real. Equation (4.31) is equivalent in form to Eq. (2.8)
where

~Y3 ¼ Y3e
�i� ¼ Y�

3e
i� 2 R;

� ¼ Z4 ¼ Z5e
�2i� ¼ Z�

5e
2i� 2 R;

~Z6 ¼ Z6e
�i� ¼ Z�

6e
i� 2 R;

~Z7 ¼ Z7e
�i� ¼ Z�

7e
i� 2 R: (4.32)

Equation (4.32) implies that

ImðY3e
�i�Þ ¼ ImðZ5e

�2i�Þ ¼ ImðZ6e
�i�Þ

¼ ImðZ7e
�i�Þ ¼ 0; (4.33)

which immediately implies that the scalar potential is
CP-conserving. Hence, according to Eq. (4.32), the con-
ditions for custodial symmetry are given by

Z4¼Z5e
�2i�2R; Z6e

�i�; Z7e
�i�2R: (4.34)

Note that the conditions of Eq. (4.34) are basis-
independent. In particular, under a basis transformation
�a ! Ua �b�b,

ei� ! ðdetUÞ�1ei�: (4.35)

In the case of Z6 � 0 and/or Z7 � 0, one can relate the
angle � to �23. In particular, by comparing Eqs. (3.4) and
(4.33) it follows that e�i� ¼ ��e�i�23 . The� ambiguity is
removed by squaring this result, which yields

e�2i� ¼ �2e�2i�23 : (4.36)

The phase�2 is specified in Tables II and VI for the various
cases under which CP conservation holds. In general, the
basis-independent condition for custodial symmetry is

Z4 ¼ �2 ReðZ5e
�2i�23Þ; (4.37)

where we have used the fact that ImðZ5e
�2i�23Þ ¼ 0 for a

CP-conserving 2HDM scalar potential.18

One can also eliminate the phase angle � using
Eq. (4.32):

e�2i� ¼ Z�
6

Z6

¼ Z�
7

Z7

: (4.38)

Consequently, if Z6 � 0 then Eq. (4.34) is equivalent to19

Z4 ¼ Z5Z
�2
6

jZ6j2
¼ "56jZ5j; (4.39)

where the invariant quantity "56 was introduced initially in
Eq. (3.12). The condition for custodial symmetry given by
Eq. (4.39) is manifestly basis-independent.20 Similarly, if
Z7 � 0, the basis-independent condition for custodial sym-
metry can be written in the following form:

Z4 ¼ Z5Z
�2
7

jZ7j2
¼ "57jZ5j; (4.40)

where the invariant quantity "57 was introduced initially in
Eq. (3.21). Finally, if 
Q � 0, then under the assumption
that Z6 � 0 and/or Z7 � 0, one can use Eqs. (3.31) and
(4.37) to obtain21:

Z4 ¼ "5QjZ5j: (4.41)

In the real Higgs basis, defined as the basis in which the
scalar potential parameters and the Yukawa coupling ma-
trices 
Q are simultaneously real, "56, "57 and "5Q coincide

with the sign of Z5. Thus, Eqs. (4.39), (4.40), and (4.41)
reduce to the simple relation, Z4 ¼ Z5, in the real Higgs
basis. This result is consistent with Eq. (4.22) obtained
previously. Note that the condition Z4 ¼ Z5 is invariant
with respect to H2 ! �H2, which is the only remaining
basis freedom within the real basis.
The special case of Z6 ¼ Z7 ¼ 0 must be treated sepa-

rately. In this case, Y3 ¼ 0 by virtue of Eq. (2.15) and Z5 is
the only potentially complex parameter of the scalar po-
tential in the Higgs basis. The condition for a custodial-
symmetric scalar potential is now given by the single
condition, Z4 ¼ Z5e

�2i� 2 R [cf. Eq. (4.34)]. Writing
Z5 ¼ jZ5je2i�5 , it follows that �5 þ � ¼ n�=2 for some
integer n. That is, the basis-independent condition for
custodial symmetry is given simply by

Z4 ¼ �jZ5j: (4.42)

17Note that Tr½My
1M2P� ¼ Tr½My

2M1P
�1�, so only three inde-

pendent invariant quadratic forms are possible.

18For Case III’ of Table VI, one must replace �23 and �2 with
��23 and ��2, respectively [cf. Eq. (3.18)].
19CP conservation requires that ImðZ5Z

�2
6 Þ ¼ ImðZ5Z

�2
7 Þ ¼ 0.

Hence, the numerators of Eqs. (4.39) and (4.40) are manifestly
real, as required since Z4 is a real parameter.
20Equation (4.39) can also be obtained from Eqs. (3.15) and
(4.37), after noting that �4 ¼ 1.
21In deriving Eq. (4.41) we used the fact that �4 ¼ 1 in Cases I’
and II’, and ��4 ¼ 1 in Case III’.
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In contrast to Eqs. (4.39), (4.40), and (4.41), where Z4 is
uniquely determined (and is equal to Z5 in the real Higgs
basis), in the special case of Z6 ¼ Z7 ¼ 0, there are two
solutions for Z4 that are consistent with a custodial-
symmetric scalar potential. This result can also be deduced
by noting that when Z6 ¼ Z7 ¼ 0, Eqs. (3.4) and (4.33)
yield e�2i� ¼ ��e�2i�23 , where the � ambiguity cannot
be removed [in contrast to Eq. (4.36)]. Hence, when Z6 ¼
Z7 ¼ 0, the basis-independent condition for custodial sym-
metry is [cf. Footnote 18]

Z4 ¼ ��2 ReðZ5e
�2i�23Þ; (4.43)

which again exhibits two possible solutions. Since �2 ¼
�1 and ImðZ5e

�2i�23Þ ¼ 0, Eq. (4.43) is equivalent to
Eq. (4.42) as expected.

The above results do not depend on the Yukawa coupling
matrix 
Q. If 
Q ¼ 0, then one is free to redefine H2 !
iH2, which has the effect of transforming Z5 ! �Z5. In
this case, the sign of Z5 in the real Higgs basis is basis-
dependent, and the two conditions Z4 ¼ �Z5 are equiva-
lent. Nevertheless, there are still two solutions for Z4 since
a custodial-symmetric scalar potential is possible with
either sign for Z4. If 


Q � 0, then the transformationH2 !
iH2 has the effect of transforming 
Q to i
Q. If the neutral
Higgs-fermion interactions are CP-conserving, then a real
Higgs basis exists in which Z5 and 
Q are simultaneously
real. In this case, the sign of Z5 in the real Higgs basis is
meaningful. In contrast to Eq. (4.41), the condition for a
custodial-symmetric scalar potential, which can be
obtained directly from Eqs. (3.31) and (4.43), is given by

Z4 ¼ �"5QjZ5j: (4.44)

The existence of these two possible solutions when Z6 ¼
Z7 ¼ 0 has a critical impact on the nature of the Higgs
mass degeneracy in the custodial limit, as shown in the next
subsection. If the neutral Higgs-fermion interactions are
CP-violating, then "5Q has no meaning and Eq. (4.44) must

be discarded. Nevertheless, the conclusion that Z4 ¼
�jZ5j for a custodial-symmetric scalar potential with Z6 ¼
Z7 ¼ 0 still applies.

In summary, the basis-independent condition for a
custodial-symmetric scalar potential is given by

Z4 ¼

8>>><
>>>:
"56jZ5j; for Z6 � 0;

"57jZ5j; for Z7 � 0;

�jZ5j; for Z6 ¼ Z7 ¼ 0:

(4.45)

The above conditions do not depend on the form of the
neutral Higgs-fermion interactions. However, if the neutral
Higgs-fermion interactions are CP-conserving, then there
exists an invariant quantity "5Q, defined in Eq. (3.29),

which is equal to the sign of Z5 in the real Higgs basis
(where all scalar potential parameters and 
Q are real). In
this case, we also have

Z4¼
8<
:"5QjZ5j; forZ6�0 and=or Z7�0;

�"5QjZ5j; forZ6¼Z7¼0:
(4.46)

In a real Higgs basis, the general condition for a custodial-
symmetric scalar potential is Z4 ¼ Z5. In the special case
of Z6 ¼ Z7 ¼ 0, the condition Z4 ¼ �Z5 also yields a
custodial-symmetric scalar potential. These two conditions
are physically inequivalent when 
Q � 0.

3. Higgs mass degeneracy in the custodial limit

The squared-mass of the charged Higgs boson is given
by Eq. (2.22). If Z6 � 0 and/or Z7 � 0 and if CP is
conserved in the neutral Higgs sector, then the squared-
mass of the CP-odd Higgs boson is given by Eqs. (3.17)
and (3.26), which we can rewrite as

m2
A0 ¼

8<
:m2

H� þ 1
2v

2ðZ4 � "56jZ5jÞ; if Z6 � 0;

m2
H� þ 1

2v
2ðZ4 � "57jZ5jÞ; if Z7 � 0:

(4.47)

In the custodial limit, Eq. (4.45) applies, and it follows that

m2
H� ¼ m2

A0 ¼ Y2 þ 1

2
Z3v

2; (4.48)

in agreement with the results of [7]. That is, the charged
Higgs boson and the CP-odd Higgs boson are mass-
degenerate in the custodial limit.
The case of Z6 ¼ Z7 ¼ 0 is special, as discussed in

Sec. III C. In this case, there is one neutral CP-even
Higgs boson, denoted by h01, with squared-mass m2

h0
1

¼
Z1v

2 and two neutral Higgs states of indeterminate CP
quantum number, denoted by h02 and h03, with squared-

masses given by Eq. (3.28), which yields

m2
h0
2
;h0

3

¼ m2
H� þ 1

2
v2ðZ4 � jZ5jÞ: (4.49)

According to Eq. (4.45), Z4 ¼ �jZ5j in the custodial limit.
We conclude that either one of the states h02 or h03 can be

degenerate in mass with the charged Higgs boson.
However, the CP-quantum number of h02 and h03 are in-

determinate (if the Higgs-fermion interactions are ne-
glected), since there are two inequivalent definitions of
CP when Z6 ¼ Z7 ¼ 0. This ambiguity can be resolved
if the neutral Higgs-fermion interactions are
CP-conserving.22 In this case, the two neutral states can
be identified as a CP-even state h0 or H0 and a CP-odd
state A0. Using Eqs. (4.46) and (3.28), it follows that

22If the neutral Higgs-fermion interactions are CP-violating,
then the neutral Higgs state that is degenerate in mass with the
charged Higgs boson does not possess a well-defined CP quan-
tum number.
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m2
H� ¼

8>>><
>>>:
m2

A0 if Z4 ¼ "5QjZ5j and Z6 ¼ Z7 ¼ 0;

m2
h0

if Z4 ¼ �"5QjZ5j; m2
H� < Z1v

2 and Z6 ¼ Z7 ¼ 0;

m2
H0 if Z4 ¼ �"5QjZ5j; m2

H� > Z1v
2 and Z6 ¼ Z7 ¼ 0;

(4.50)

wheremH0 >mh0 by convention. In particular,m
2
H� ¼ m2

A0

if Z4 ¼ Z5 in the real Higgs basis, whereas m2
H� ¼ m2

H0 if
Z4 ¼ �Z5 in the real Higgs basis. This result is easy to
understand. If Z4 ¼ �Z5, we can perform a basis trans-
formation H2 ! iH2, which yields Z4 ¼ Z5 and 
Q !
i
Q. The effect of the latter is to transform the pseudosca-
lar Yukawa coupling of the neutral Higgs boson into a
scalar Yukawa coupling. The case in which the charged
Higgs boson is mass-degenerate with the CP-even neutral
Higgs boson corresponds to the case of ‘‘twisted custodial
symmetry’’ introduced in [16].

Although this final conclusion is the same, we disagree
with the interpretation of ‘‘twisted custodial-symmetry’’
given in Ref. [16]. As employed in Ref. [16], the term
twisted is associated with a particular choice of the angle �
in the SUð2ÞL � SUð2ÞR transformation law ofM2 given in
Eq. (4.29). However, we have shown above that this angle
is basis-dependent and thus has no physical significance. It
is also argued in Ref. [16] that custodial symmetry plays a
critical role in formulating the twisted scenario. We have
shown above that the twisted scenario is a consequence of
the twofold ambiguity in the definition of CP in the special
case of Z6 ¼ Z7 ¼ 0 (in the absence of the Higgs-fermion
Yukawa couplings). This ambiguity exists whether or not
the custodial symmetry is present, as shown in Sec. III C.
The custodial symmetry is relevant in the following sense.
The possibility that m2

H� ¼ m2
h0
or m2

H� ¼ m2
H0 arises pre-

cisely because the custodial symmetry condition Z4 ¼
�"5QjZ5j allows for a negative sign in this relation if and

only if Z6 ¼ Z7 ¼ 0.

B. Custodial symmetry in the Higgs-fermion
sector for the general 2HDM

We now examine the Higgs-fermion Yukawa interac-
tions in more detail, and discuss the implications of
custodial symmetry for this sector.

Custodial symmetry in the Yukawa Lagrangian was
analyzed for the Type-I and II 2HDM in [22]. Here, we
will shall examine the general 2HDM without assuming
additional conditions to restrict the terms of the Higgs-
fermion Yukawa Lagrangian. In a generic basis, the Higgs-
fermion Lagrangian is given by Eq. (2.24). It is convenient
to rewrite this Lagrangian in the following compact form:

�LY ¼ �QL
~��a�

U
aUR þ �QL�a�

Dy
�a DR þ H:c:; (4.51)

where U � KyU, �QL � ð �U �DÞL, and

�a �
�þ

a

�0
a

 !
:

In the Higgs basis, the corresponding Lagrangian given in
Eq. (2.26) can likewise be expressed compactly as

�LY ¼ �QLð ~H1	
U þ ~H2


UÞUR

þ �QLðH1	
Dy þH2


DyÞDR þ H:c:; (4.52)

where the basis-invariant coupling matrices 	Q and 
Q are
defined in Eq. (2.25).

1. Basis-dependent formulation of custodial
symmetry in the Higgs-fermion sector

We first examine the conditions for custodial symmetry
of the Higgs-fermion Yukawa interactions in the two basis
choices of Pomarol and Vega following the results of
Sec. IVA1. In Case 1, one writes the Yukawa interactions
in terms of the 2� 2 matrix fields M1 and M2 defined in
Eq. (4.6). The form of the Yukawa interactions invariant
under SUð2ÞL � SUð2ÞR is then given by

�LY ¼ �1
�QLM1

UR

DR

� �
þ �2

�QLM2
UR

DR

� �
þ H:c:

(4.53)

One can easily check that Eq. (4.53) is manifestly invariant
under the SUð2ÞL � SUð2ÞR transformations

Mi ! LMiR
y; �QL ! �QLL

y;

UR

DR

 !
! R

UR

DR

 !
: (4.54)

A comparison of Eqs. (4.51) and (4.53) then yields the
custodial symmetry conditions,

�1 ¼ �U
1 ¼ �Dy

1 ; �2 ¼ �U
2 ¼ �Dy

2 : (4.55)

In Case 2, one writes the Yukawa interactions in terms of
the 2� 2 matrix fields

M12 � ð ~�1;�2Þ; M21 � ð ~�2;�1Þ; (4.56)

which transforms under SUð2ÞL � SUð2ÞR as

M12 ! LM12R
y; M21 ! LM21R

y: (4.57)

In terms of M12 and M21, the form of the Yukawa inter-
actions invariant under SUð2ÞL � SUð2ÞR is given by

�LY ¼ �12
�QLM12

UR

DR

� �
þ �21

�QLM21
UR

DR

� �
þ H:c:

(4.58)

A comparison of Eqs. (4.51) and (4.58) then yields the
custodial symmetry conditions,
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�12 ¼ �U
1 ¼ �Dy

2 ; �21 ¼ �U
2 ¼ �Dy

1 : (4.59)

As in Sec. IVA1, we can demonstrate that Cases 1 and 2
are equivalent and simply represent different choices of the
scalar field basis. To prove this assertion, we start from
the basis of Case 2 and perform the basis transformation to
the Higgs basis as specified by the unitary matrix given by
Eq. (4.15). Then, 	Q, 
Q are related to the Yukawa cou-

pling matrices �Q
1 , �

Q
2 via

	Q


Q

� �
¼ 1ffiffiffi

2
p e�i� ei�

�ie�i� iei�

� �
�Q
1

�Q
2

 !
: (4.60)

Using the Case 2 custodial symmetry conditions given in
Eq. (4.59), it follows that23:

	U ¼ 1ffiffiffi
2

p ðei��U
2 þ e�i��U

1 Þ ¼ 	Dy; (4.61)


U ¼ iffiffiffi
2

p ðei��U
2 � e�i��U

1 Þ ¼ 
Dy: (4.62)

That is, in the Higgs basis, the Case 1 custodial symmetry
conditions given by Eq. (4.55) are satisfied. Moreover,
these conditions are preserved under any additional O(2)
basis transformation. Thus, we have verified that Cases 1
and 2 of Pomarol and Vega, including the SUð2ÞL �
SUð2ÞR Higgs-fermion Yukawa interactions specified
above, are equivalent and simply represent different
choices of the scalar field basis.

Using Eq. (2.28), the condition 	U ¼ 	Dy is equivalent
to the equality of the up and down-type fermion mass
matrices,

MU ¼ MD; (4.63)

which is clearly a basis-independent condition. However,
the condition 
U ¼ 
Dy is not quite basis-independent, as

Q is a pseudoinvariant quantity. At this stage, Eq. (4.62)
has been obtained in a real Higgs basis. In the next sub-
section, we obtain the basis-independent conditions for
custodial symmetry of the Higgs-fermion Yukawa
interactions.

2. Basis-independent formulation of custodial
symmetry in the Higgs-fermion sector

Following Sec. IVA2, we introduce the 2� 2 matrix
fields in the Higgs basis, denoted by M1 and M2

[cf. Eq. (4.26)], whose transformation properties under
SUð2ÞL � SUð2ÞR are given by Eqs. (4.29) and (4.30).
Note that the transformation law for M2 includes a phase
angle degree of freedom � that reflects the freedom to

rephase the Higgs basis field H2. The form of the
Yukawa interactions invariant under SUð2ÞL � SUð2ÞR
is then given by

�LY ¼ 	 �QLM1
UR

DR

� �
þ 
 �QLM2P

UR

DR

� �
þ H:c:;

(4.64)

where P � diagðe�i�; ei�Þ. Comparing with Eq. (4.52)
yields

	 ¼ 	U ¼ 	Dy; 
 ¼ ei�
U ¼ e�i�
Dy: (4.65)

The first condition above implies MU ¼ MD, which re-
produces the result of Eq. (4.63). The second condition is
basis-independent in light of Eqs. (2.27) and (4.35).
For a generic custodial-symmetric Higgs-fermion

Yukawa interaction, the matrices 
U and 
D are correlated
according to Eq. (4.65), but they can be nondiagonal and
complex. Thus, the custodial symmetry does not imply
CP-conserving neutral Higgs-fermion couplings.
However, we can impose CP-conservation of the neutral
Higgs-fermion interactions if the conditions listed in
Eq. (3.2) are respected. An equivalent set of conditions
(which are more useful as they do not rely on Z5, Z6 and
Z7) is given by Eq. (3.5). In this case, it is convenient to use
Eq. (4.36) to rewrite the second condition of Eq. (4.65) as
follows:24

ei�23
U ¼ �2½ei�23
D�y; (4.66)

which is manifestly basis-independent. The sign factor �2

is given in Tables II and VI. If Z6 ¼ Z7 ¼ 0, then Table VI
applies with Z7e

�i�23 replaced by 
Qei�23 (Q ¼ U, D). In
particular, note that for a CP-conserving Higgs-fermion
interaction, Imð
Uei�23Þ ¼ Imð
Dei�23Þ ¼ 0 if � ¼ þ1
and Reð
Uei�23Þ ¼ Reð
Dei�23Þ ¼ 0 if � ¼ �1.

V. THE OBLIQUE PARAMETERS S, T AND U

The S, T, and U parameters, introduced by Peskin and
Takeuchi [8], are independent ultraviolet-finite combina-
tions of radiative corrections to gauge boson two-point
functions (the so-called ‘‘oblique’’ corrections). The pa-
rameter T is related to the well-known 
-parameter of
electroweak physics [23] by 
� 1 ¼ �T. The oblique
parameters can be expressed in terms of the transverse
part of the gauge boson two-point functions [19,24]25:

��T � �new
WWð0Þ
m2

W

��new
ZZ ð0Þ
m2

Z

; (5.1)

23Using Eq. (2.25) with v̂1 ¼ v̂�
2 ¼ 1ffiffi

2
p ei�, one immediately

reproduces Eq. (4.61). The corresponding result for 
Q differs
by an overall factor of i. But, we are free to redefine the Higgs
basis fieldH2 ! iH2, which yields 


Q ! i
Q in agreement with
Eq. (4.62).

24As usual, in Case III’ of Table VI, one must replace �23 and
�2 with ��23 and ��2, respectively [cf. Eq. (3.18)].
25In the definition of U, we differ slightly from that of Ref. [19]
by evaluating�new

Z� and�new
�� at m2

W (instead of m2
Z). This choice

was advocated in Ref. [24].
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��

4�s2Z �c
2
Z

S � �new
ZZ ðm2

ZÞ ��new
ZZ ð0Þ

m2
Z

�
�
�c2W � �s2W
�cW �sW

��new
Z� ðm2

ZÞ
m2

Z

��new
�� ðm2

ZÞ
m2

Z

; (5.2)

��

4�s2Z �c
2
Z

ðSþUÞ � �new
WWðm2

WÞ ��new
WWð0Þ

m2
W

� �cW
�sW

�new
Z� ðm2

WÞ
m2

W

��new
�� ðm2

WÞ
m2

W

; (5.3)

where �sW � sin�WðmZÞ, �cW � cos�WðmZÞ, and �� �
�g2 �s2Z=ð4�Þ are defined in the MS scheme evaluated at
mZ. The �new

VaVb
are the new physics contributions to the

one-loop Va � Vb vacuum polarization functions. New
physics contributions are defined as those that enter rela-
tive to the standard model with a particular choice of the
standard model Higgs mass (denoted in what follows by
m�). In Ref. [19], the value of m� ¼ 117 GeV is chosen.

In the linear approximation [8], which is a good approxi-
mation if the energy scale new physics that contributes to
the oblique parameters is significantly larger than mZ, we
may approximate

�new
ij ðq2Þ ’ Aijð0Þ þ q2Fijðq2Þ: (5.4)

Electromagnetic gauge invariance implies that26

A��ð0Þ ¼ AZ�ð0Þ ¼ 0: (5.5)

In the linear approximation, the oblique parameters take
the following form [25]:

�T � AWWð0Þ
m2

W

� AZZð0Þ
m2

Z

(5.6)

g2

16�c2W
S � FZZðm2

ZÞ � F��ðm2
ZÞ �

�
c2W � s2W
sWcW

�
FZ�ðm2

ZÞ
(5.7)

g2

16�
ðSþUÞ � FWWðm2

WÞ � F��ðm2
WÞ �

cW
sW

FZ�ðm2
WÞ;
(5.8)

where we have dropped the bars for ease of notation.
The S, T, and U parameters are defined relative to the

standard model, so that S ¼ T ¼ U ¼ 0 corresponds to
the standard model with a particular ‘‘reference’’ choice of
the Higgs mass m�. The 2HDM yields new contributions

to S, T, and U that in general shift their values away from
zero. To compute the 2HDM contributions to S, T, and U,

we evaluate the relevant one-loop gauge boson polarization
functions in which the Higgs bosons appear as intermediate
states, and then subtract out the corresponding contribu-
tions due to the standard model Higgs boson of mass m�.

In our computations, we initially leave m� as a free

parameter.

A. 2HDM contributions to S, T and U

The derivations of S, T, and U are provided in
Appendix D. The 2HDM contributions to S are given by

S ¼ 1

�m2
Z

�X3
k¼1

q2k1½B22ðm2
Z;m

2
Z; m

2
kÞ �m2

ZB0ðm2
Z;m

2
Z; m

2
kÞ�

þ q211B22ðm2
Z;m

2
2; m

2
3Þ þ q221B22ðm2

Z;m
2
1; m

2
3Þ

þ q231B22ðm2
Z;m

2
1; m

2
2Þ �B22ðm2

Z;m
2
H� ; m2

H�Þ
�B22ðm2

Z;m
2
Z; m

2
�Þ þm2

ZB0ðm2
Z;m

2
Z; m

2
�Þ
�
; (5.9)

where

B 22ðq2;m2
1; m

2
2Þ � B22ðq2;m2

1; m
2
2Þ � B22ð0;m2

1; m
2
2Þ;

(5.10)

B 0ðq2;m2
1; m

2
2Þ � B0ðq2;m2

1; m
2
2Þ � B0ð0;m2

1; m
2
2Þ;
(5.11)

and the mk are the masses of the neutral Higgs hk (k ¼ 1,
2, 3). The functions B22 and B0 appearing in Eqs. (5.10)
and (5.11), defined in Ref. [26], arise in the evaluation of
the two-point loop integrals. They can be evaluated in
dimensional regularization using the following formulae
of Ref. [25]:

B22ðq2;m2
1; m

2
2Þ ¼

1

4
ð�þ 1Þ

�
m2

1 þm2
2 �

1

3
q2
�

� 1

2

Z 1

0
dxX lnðX � i�Þ; (5.12)

B0ðq2;m2
1; m

2
2Þ ¼ ��

Z 1

0
dx lnðX � i�Þ; (5.13)

where

X � m2
1xþm2

2ð1� xÞ � q2xð1� xÞ;
� � 2

4� d
þ ln4�� �; (5.14)

in d space-time dimensions. Note that

B22ðq2;m2
1; m

2
2Þ ¼ B22ðq2;m2

2; m
2
1Þ;

B0ðq2;m2
1; m

2
2Þ ¼ B0ðq2;m2

2; m
2
1Þ: (5.15)

The 2HDM contributions to T and Uþ S are given by

26Although �Z�ð0Þ � 0 (when all standard model contribu-
tions are included), the new physics contributions to �Z�ð0Þ
considered in this paper can be shown to vanish as a consequence
of electromagnetic gauge invariance.
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T ¼ 1

16�m2
Ws

2
W

�X3
k¼1

jqk2j2F ðm2
H� ; m2

kÞ � q211F ðm2
2; m

2
3Þ � q221F ðm2

1; m
2
3Þ � q231F ðm2

1; m
2
2Þ

þ X3
k¼1

q2k1½F ðm2
W;m

2
kÞ �F ðm2

Z; m
2
kÞ � 4m2

WB0ð0;m2
W;m

2
kÞ þ 4m2

ZB0ð0;m2
Z; m

2
kÞ�

þF ðm2
Z; m

2
�Þ �F ðm2

W;m
2
�Þ þ 4m2

WB0ð0;m2
W;m

2
�Þ � 4m2

ZB0ð0;m2
Z; m

2
�Þ
�
; (5.16)

SþU ¼ 1

�m2
W

�
�X3

k¼1

q2k1m
2
WB0ðm2

W ;m
2
W;m

2
kÞ þm2

WB0ðm2
W ;m

2
W;m

2
�Þ �B22ðm2

W ;m
2
W;m

2
�Þ

þ X3
k¼1

½q2k1B22ðm2
W ;m

2
W;m

2
kÞ þ jqk2j2B22ðm2

W ;m
2
H� ; m2

kÞ� � 2B22ðm2
W ;m

2
H� ; m2

H�Þ
�
; (5.17)

where the function F is defined by

F ðm2
1; m

2
2Þ �

1

2
ðm2

1 þm2
2Þ �

m2
1m

2
2

m2
1 �m2

2

ln

�
m2

1

m2
2

�
: (5.18)

Note that

F ðm2
1; m

2
2Þ ¼ F ðm2

2; m
2
1Þ; F ðm2; m2Þ ¼ 0: (5.19)

One can simplify the expression for T by making use of the
identity

m2
1B0ð0;m2

1; m
2
3Þ �m2

2B0ð0;m2
2; m

2
3Þ

¼ F ðm2
1; m

2
3Þ �F ðm2

2; m
2
3Þ þ A0ðm2

1Þ � A0ðm2
2Þ

� 1

2
ðm2

1 �m2
2Þ; (5.20)

where

A0ðm2Þ � m2ð�þ 1� lnm2Þ: (5.21)

Applying the identity of Eq. (5.20) in the expression for T
then yields

T ¼ 1

16�m2
Ws

2
W

�X3
k¼1

jqk2j2F ðm2
H� ; m2

kÞ � q211F ðm2
2; m

2
3Þ

� q221F ðm2
1; m

2
3Þ � q231F ðm2

1; m
2
2Þ

þ 3
X3
k¼1

q2k1½F ðm2
Z; m

2
kÞ �F ðm2

W;m
2
kÞ�

� 3½F ðm2
Z; m

2
�Þ �F ðm2

W;m
2
�Þ�

�
; (5.22)

which reproduces the result first obtained in Ref. [7]. In
particular, note that terms in Eq. (5.20) of the form
A0ðm2

1Þ � A0ðm2
2Þ � 1

2 ðm2
1 �m2

2Þ are independent of m2
3

and hence cancel out exactly in Eq. (5.22).
Using Eqs. (5.9) and (5.17), we can isolate the

U-parameter,

U¼Gðm2
WÞ�Gðm2

ZÞþ
1

�m2
W

�X3
k¼1

½jqk2j2B22ðm2
W ;m

2
H� ;m2

kÞ

�2B22ðm2
W ;m

2
H� ;m2

H�Þ
�

� 1

�mZ

�
q211B22ðm2

Z;m
2
2;m

2
3Þþq221B22ðm2

Z;m
2
1;m

2
3Þ

þq231B22ðm2
Z;m

2
1;m

2
2Þ�B22ðm2

Z;m
2
H� ;m2

H�Þ
�
; (5.23)

where

Gðm2
VÞ �

1

�m2
V

�X3
k¼1

q2k1½B22ðm2
V ;m

2
V;m

2
kÞ

�m2
VB0ðm2

V ;m
2
V;m

2
kÞ� �B22ðm2

V ;m
2
V;m

2
�Þ

þm2
VB0ðm2

V ;m
2
V;m

2
�Þ
�
: (5.24)

B. S, T, and U in the CP-conserving limit

To obtain S, T, and U in the CP-conserving limit, we
must identify the values of qk1 and qk2 and the corre-
sponding neutral Higgs masses mk in the CP-conserving
limit. For example, in Ref. [2], the values of the qk‘ and
mk were obtained for Cases I, IIa and IIb defined in
Sec. III A. For the reader’s convenience, we reproduce
those results here in Tables X, XI, and XII. These three
cases correspond to three different mass orderings of the
neutral Higgs bosons (by assumption, we assume here
that mh1 <mh2 <mh3).

In theCP-conserving limit, it is traditional to employ the
factors cosð�� �Þ and sinð�� �Þ, where � is the mixing
angle obtained from diagonalizing the 2� 2 CP-even
Higgs squared-mass matrix in a generic real basis [12].
These angle factors are related to the qk‘ as indicated in the
captions to Tables X, XI, and XII. The results for S, T, and
U do not depend on which case is employed to compute the
qk‘, since the different cases simply correspond to different
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mass orderings of the neutral Higgs bosons. Plugging in
the values of the qk‘ parameters from any of the
Cases exhibited in Tables X, XI, and XII into Eqs. (5.9),
(5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), and

(5.17), and choosing the reference Higgs mass m� ¼ mh0

(where h0 is the lightest CP-even neutral Higgs boson), we
obtain

S ¼ 1

�m2
Z

�
�B22ðm2

Z;m
2
H� ; m2

H�Þ þ sin2ð�� �ÞB22ðm2
Z;m

2
H0 ; m

2
A0Þ þ cos2ð�� �Þ½B22ðm2

Z;m
2
h0
; m2

A0Þ

þB22ðm2
Z;m

2
Z; m

2
H0Þ �B22ðm2

Z;m
2
Z; m

2
h0
Þ �m2

ZB0ðm2
Z;m

2
Z; m

2
H0Þ þm2

ZB0ðm2
Z;m

2
Z;m

2
h0
Þ�
�
; (5.25)

T ¼ 1

16�s2Wm
2
W

�
F ðm2

H� ; m2
A0Þ þ sin2ð�� �Þ½F ðm2

H� ; m2
H0Þ �F ðm2

A0 ; m
2
H0Þ

þ cos2ð�� �Þ½F ðm2
H� ; m2

h0
Þ �F ðm2

A0 ; m
2
h0
Þ þF ðm2

W;m
2
H0Þ �F ðm2

W;m
2
h0
Þ �F ðm2

Z; m
2
H0Þ þF ðm2

Z; m
2
h0
Þ

þ 4m2
ZB0ð0;m2

Z; m
2
H0Þ � 4m2

ZB0ð0;m2
Z; m

2
h0
Þ � 4m2

WB0ð0;m2
W;m

2
H0Þ þ 4m2

WB0ð0;m2
W;m

2
h0
Þ�
�
; (5.26)

SþU ¼ 1

�m2
W

�
B22ðm2

W ;m
2
H� ; m2

A0Þ � 2B22ðm2
W ;m

2
H� ; m2

H�Þ þ sin2ð�� �ÞB22ðm2
W ;m

2
H� ; m2

H0Þ

þ cos2ð�� �Þ½B22ðm2
W ;m

2
h0
; m2

H�Þ þB22ðm2
W ;m

2
W;m

2
H0Þ �B22ðm2

W ;m
2
W;m

2
h0
Þ

þm2
WB0ðm2

W ;m
2
W;m

2
H0Þ �m2

WB0ðm2
W ;m

2
W;m

2
h0
Þ�
�
: (5.27)

The above results agree with results previously obtained in
Refs. [25,27].27

C. T and U and the custodial limit

In the custodial-symmetric limit, both the T and
U-parameters must vanish [8]. Using Eq. (5.22), we can
verify this behavior. In the 2HDM, custodial-symmetry-
breaking arises from two sources. The first source is the
gauged U(1)-hypercharge interactions that are always
present. The second source is the custodial symmetry-
breaking terms of the scalar potential. Let us look at both
sources in turn.

We can formally restore custodial symmetry in the
gauge sector by taking the limit of g0 ! 0 (in which
case, mZ ¼ mW). If we set mW ¼ mZ in Eq. (5.22), we
see that the second line of this equation vanishes. That is,
the second line of Eq. (5.22) is a consequence of the gauged
U(1)-hypercharge interactions. Formally, this term must be
proportional to g0. Noting that

�

s2Wm
2
W

¼ g2

4�2m2
W

¼ g02

4�ðm2
Z �m2

WÞ
; (5.28)

it follows that

TABLE XII. Case IIb: c12 ¼ 0. In a real basis, e�i�23 ¼
isgnZ6 � i"6. The neutral Higgs fields are h1 ¼ "6A

0, h2 ¼
�h0 and h3 ¼ "6H

0. The angular factors are c13 ¼ sinð�� �Þ
and s13 ¼ "6 cosð�� �Þ.
k qk1 qk2

1 0 1

2 �c13 is13
3 s13 ic13

TABLE XI. Case IIa: s12 ¼ 0. In a real basis, e�i�23 ¼
isgnZ6 � i"6. The neutral Higgs fields are h1 ¼ h0, h2 ¼ "6A

0

and h3 ¼ "6H
0. The angular factors are c13 ¼ sinð�� �Þ and

s13 ¼ "6 cosð�� �Þ.
k qk1 qk2

1 c13 �is13
2 0 1

3 s13 ic13

TABLE X. Case I: s13 ¼ 0. In a real basis, e�i�23 ¼ sgnZ6 �
"6. The neutral Higgs fields are h1 ¼ h0, h2 ¼ �"6H

0 and
h3 ¼ "6A

0. The angular factors are c12 ¼ sinð�� �Þ and s12 ¼
�"6 cosð�� �Þ.
k qk1 qk2

1 c12 �s12
2 s12 c12
3 0 i

27In Eq. (3.47) of Ref. [25], there is a typographical error in the
expression for T. The right bracket at the end of the third line of
Eq. (3.47) is misplaced and should appear at the end of the fifth
line.
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�T ¼ 3g02

64�2ðm2
Z �m2

WÞ
�X3
k¼1

q2k1½F ðm2
Z; m

2
kÞ �F ðm2

W;m
2
kÞ�

�F ðm2
Z; m

2
�Þ þF ðm2

W;m
2
�Þ
�

þ g2

64�m2
W

�X3
k¼1

jqk2j2F ðm2
H� ; m2

kÞ � q211F ðm2
2; m

2
3Þ

� q221F ðm2
1; m

2
3Þ � q231F ðm2

1; m
2
2Þ
�
: (5.29)

In this form, one can explicitly identify the term in T
proportional to g0 as the piece that arises from the gauged
U(1)-hypercharge interactions.28

The term proportional to g in Eq. (5.29) arises as a
consequence of custodial symmetry breaking in the scalar
potential. Thus, we should verify that this term vanishes in
the limit of a custodial-symmetric scalar potential. In this
limit, CP is conserved, so we may use the results of
Table X, XI, and XII to evaluate Eq. (5.29) [any one of
the three cases can be used as noted in the previous sub-
section]. For convenience, we again choose m� ¼ mh0 , in

which case,

�T¼ 3g02cos2ð���Þ
64�2ðm2

Z�m2
WÞ
�
F ðm2

Z;m
2
H0Þ�F ðm2

W;m
2
H0Þ

�F ðm2
Z;m

2
h0
ÞþF ðm2

W;mm0
h
Þ
�
þ g2

64�m2
W

�
F ðm2

H� ;m2
A0Þ

þsin2ð���Þ½F ðm2
H� ;m2

H0Þ�F ðm2
A0 ;m

2
H0Þ�

þcos2ð���Þ½F ðm2
H� ;m2

h0
Þ�F ðm2

A0 ;m
2
h0
Þ�
�
: (5.30)

For a custodial-symmetric scalar potential, the term
proportional to g2 in Eq. (5.30) must vanish, i.e.

F ðm2
H� ;m2

A0Þþsin2ð���Þ½F ðm2
H� ;m2

H0Þ�F ðm2
A0 ;m

2
H0Þ�

þcos2ð���Þ½F ðm2
H� ;m2

h0
Þ�F ðm2

A0 ;m
2
h0
Þ�¼0:

(5.31)

In Sec. IVA3, we demonstrated that for a custodial-
symmetric scalar potential, m2

H� ¼ m2
A0 [cf. Eq. (4.48)], in

nearly all cases. Indeed, for sinð�� �Þ cosð�� �Þ � 0,
the only solution to Eq. (5.31) ism2

H� ¼ m2
A0 . However, we

identified the special case of Z6 ¼ Z7 ¼ 0 in which the
custodial-symmetric scalar potential could also yield
m2

H� ¼ m2
h0

or m2
H� ¼ m2

H0 [cf. Eq. (4.50)]. For example,

by comparing Table X with Tables VII and VIII, we see
that the special case of Z6 ¼ Z7 ¼ 0 corresponds to
cosð�� �Þ ¼ 0 and sinð�� �Þ ¼ 0, respectively. In
these two cases, Eq. (5.31) reduces to the following two
equations:

F ðm2
H� ; m2

A0Þ þF ðm2
H� ; m2

H0Þ �F ðm2
A0 ; m

2
H0Þ ¼ 0;

if cosð�� �Þ ¼ 0; (5.32)

F ðm2
H� ; m2

A0Þ þF ðm2
H� ; m2

h0
Þ �F ðm2

A0 ; m
2
h0
Þ ¼ 0

if sinð�� �Þ ¼ 0: (5.33)

Of course, m2
H� ¼ m2

A0 remains as a possible solution to

both of the above equations. But, for each equation above,
a second solution exists, namelym2

H� ¼ m2
H0 for Eq. (5.32)

andm2
H� ¼ m2

h0
for Eq. (5.33). Thus, we confirm that in the

case of Z6 ¼ Z7 ¼ 0, the custodial-symmetric mass rela-
tions identified in Eq. (4.50) are consistent with the vanish-
ing of the T parameter (in the limit of g0 ¼ 0 and
mW ¼ mZ).
So far, we have focused on the contributions of the

bosonic sector of the 2HDM to the T parameter. In
addition, there are also fermion loop contributions since
the Higgs-fermion Yukawa interactions can also violate
the custodial symmetry. However, at one-loop, the only
custodial-violating contribution to the T-parameter
arises due to the nondegeneracy of the up and down
fermion mass matrices. But, this effect also is present in
the standard model with one Higgs doublet, as first
noted in Ref. [23]. New custodial symmetry breaking
effects in the Higgs-fermion Yukawa interactions that
are present due to the second Higgs doublet must
involve 
Q. Since the dependence of the gauge boson
polarization functions on 
Q only enters at two loops in
the perturbative expansion, we shall not include them in
the present analysis. It would be an interesting exercise
to verify that the corresponding two-loop contributions
to the T parameter vanish exactly in the custodial-
symmetric limit specified in Eq. (4.66).
The analysis of the U-parameter is similar. Using

Eqs. (5.23) and (5.24), we see that when mW ¼ mZ, the
general expression for U reduces to

U¼ 1

�m2
W

�X3
k¼1

½jqk2j2B22ðm2
W ;m

2
H� ;m2

kÞ

�q211B22ðm2
W ;m

2
2;m

2
3Þ�q221B22ðm2

W ;m
2
1;m

2
3Þ

�q231B22ðm2
W ;m

2
1;m

2
2Þ�B22ðm2

W ;m
2
H� ;m2

H�Þ
�
:

(5.34)

In the CP-conserving limit (with mW ¼ mZ),

U¼ 1

�m2
W

�
B22ðm2

W ;m
2
H� ;m2

AÞ�B22ðm2
W ;m

2
H� ;m2

H�Þ

þsin2ð���Þ½B22ðm2
W ;m

2
H� ;m2

H0Þ
�B22ðm2

W ;m
2
H0 ;m

2
A0Þ�þcos2ð���Þ½B22ðm2

W ;m
2
H� ;m2

h0
Þ

�B22ðm2
W ;m

2
h0
;m2

A0Þ�
�
: (5.35)

28Note that the expression in Eq. (5.29) that multiplies g02
approaches a finite limit as mZ ! mW . Hence, the entire term
does indeed vanish in the custodial symmetry limit as expected.
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If sinð�� �Þ cosð�� �Þ � 0, then U ¼ 0 if and only if
m2

H� ¼ m2
A0 . In the special case of Z6 ¼ Z7 ¼ 0, it follows

that either sinð�� �Þ ¼ 0 or cosð�� �Þ ¼ 0, in which
case U ¼ 0 when

B22ðm2
W ;m

2
H� ; m2

AÞ �B22ðm2
W ;m

2
H� ; m2

H�Þ
þB22ðm2

W ;m
2
H� ; m2

H0Þ �B22ðm2
W ;m

2
H0 ; m

2
A0Þ ¼ 0;

if cosð�� �Þ ¼ 0; (5.36)

B22ðm2
W ;m

2
H� ; m2

AÞ �B22ðm2
W ;m

2
H� ; m2

H�Þ
þB22ðm2

W ;m
2
H� ; m2

h0
Þ �B22ðm2

W ;m
2
h0
; m2

A0Þ ¼ 0;

if sinð�� �Þ ¼ 0: (5.37)

Of course, m2
H� ¼ m2

A0 remains as a possible solution to

both of the above equations. But, for each equation above,
a second solution exists, namelym2

H� ¼ m2
H0 for Eq. (5.37)

andm2
H� ¼ m2

h0
for Eq. (5.37). Thus, we confirm that in the

case of Z6 ¼ Z7 ¼ 0, the custodial-symmetric mass rela-
tions identified in Eq. (4.50) are consistent with the vanish-
ing of the U parameter.

D. S, T and U in the decoupling limit

In the decoupling limit of the 2HDM [28], one neutral
Higgs boson, conventionally denoted by h1, is kept light,

with mass m1 & OðmZÞ, and the other neutral Higgs bo-
sons h2 and h3 and the charged Higgs boson H� have
masses of order � � mZ. In Appendix E, the Higgs
masses and invariant mixing angles are evaluated in the
decoupling limit. The resulting masses are given in
Eqs. (E21)–(E24) and the invariant mixing angles are given
in Eq. (E28). The explicit forms for the qki given in Table I
are given by

q211 ’ jq22j2 ’ jq32j2 ’ 1�O
�
v4

�4

�
;

q221 ’ q231 ’ jq12j2 ’ O
�
v4

�4

�
: (5.38)

We now turn to the computation of the oblique parame-
ters in the decoupling limit. As a first step, we eliminate q11
in favor of q21 and q31 using the identity

X3
i¼1

q2k1 ¼ 1: (5.39)

It is also convenient to set the reference Higgs mass
m� ¼ m1. Then, one can write the general expression for

S as follows:

S ¼ 1

�m2
Z

�
B22ðm2

Z;m
2
2; m

2
3Þ �B22ðm2

Z;m
2
H� ; m2

H�Þ þ q221½B22ðm2
Z;m

2
Z; m

2
2Þ þB22ðm2

Z;m
2
1; m

2
3Þ �m2

ZB0ðm2
Z;m

2
Z; m

2
2Þ�

þ q231½B22ðm2
Z;m

2
Z; m

2
3Þ þB22ðm2

Z;m
2
1; m

2
2Þ �m2

ZB0ðm2
Z;m

2
Z; m

2
3Þ� � ðq221 þ q231Þ½B22ðm2

Z;m
2
2; m

2
3Þ

þB22ðm2
Z;m

2
Z; m

2
1Þ �m2

ZB0ðm2
Z;m

2
Z;m

2
1Þ�
�
: (5.40)

Employing the decoupling limit conditions of Eq. (5.38),

S ¼ 1

�m2
Z

�
B22ðm2

Z;m
2
2; m

2
3Þ

�B22ðm2
Z;m

2
H� ; m2

H�Þ þO
�
v4

�4

��
: (5.41)

Using Eqs. (E29)–(E31) and noting the expansion,

B22ðm2
Z; �

2 þ av2;�2 þ bv2Þ

¼ � 1

12
m2

Z

�
�� ln�2 � ðaþ bÞv2

2�2

þ m2
Z

10�2
þO

�
v4

�4

��
; (5.42)

it then follows that

S ’ m2
2 þm2

3 � 2m2
H�

24�m2
3

¼ Z4v
2

24�m2
3

; (5.43)

where terms of Oðv2=�4Þ have been neglected.

One can evaluate T in a similar manner. Setting
m� ¼ m1 in Eq. (5.16), and employing the decoupling

limit conditions of Eq. (5.38), we obtain

T ¼ 1

16�s2Wm
2
W

�
F ðm2

H� ; m2
2Þ þF ðm2

H� ; m2
3Þ

�F ðm2
2; m

2
3Þ þO

�
v4

�4

��
: (5.44)

Using Eqs. (E29)–(E31) and noting the expansion,

F ð�2 þ av2;�2 þ bv2Þ ’ 1

6
v2

�ða� bÞ2
�2

þO
�
v4

�4

��
;

(5.45)

it then follows that

T ’ ðm2
H� �m2

3Þðm2
H� �m2

2Þ
48�s2Wm

2
Wm

2
3

¼ ðZ2
4 � jZ5j2Þv2

48�e2m2
3

;

(5.46)
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after using e ¼ gsW ¼ 2sWmW=v. In the custodial limit,
H� is degenerate in mass with either h2 or h3,

29 in which
case T must vanish. Indeed, Eq. (5.46) satisfies this require-
ment. This result is not surprising since to leading order in
the decoupling limit, we may set cosð�� �Þ ¼ 0 in which
case Eq. (5.32) applies.

As a check of the above computations, one can use
Eqs. (5.43) and (5.46) to calculate the contributions of
the Higgs sector of the minimal supersymmetric standard
model (MSSM) to S and T in the decoupling limit. The
quartic couplings of the MSSM Higgs potential, defined in
a supersymmetric basis [29], satisfy

�1 ¼ �2 ¼ 1

4
ðg2 þ g02Þ; �3 ¼ 1

4
ðg2 � g02Þ;

�4 ¼ � 1

2
g2; �5 ¼ �6 ¼ �7 ¼ 0;

(5.47)

where the �i are defined in Eq. (4.2). In the supersymmetric
basis, the ratio of vacuum expectation values is tan� �
v2=v1. Since the MSSM Higgs sector is CP-conserving,
one can transform to the real Higgs basis, which yields

Z1 ¼ Z2 ¼ 1

4
ðg2 þ g02Þcos22�;

Z5 ¼ 1

4
ðg2 þ g02Þsin22�;

Z7 ¼ �Z6 ¼ 1

4
ðg2 þ g02Þ sin2� cos2�;

(5.48)

and

Z3 ¼ 1

4
½ðg2 þ g02Þsin22�þ g2 � g02�;

Z4 ¼ 1

4
½ðg2 þ g02Þsin22�� 2g2�:

(5.49)

Note that Z5 > 0 which means that "56 ¼ "57 ¼ þ1.
Using Eqs. (2.22) and (3.17) yields the exact (tree-level)
mass relation,

m2
H� ¼ m2

A0 þm2
W: (5.50)

Moreover, in the decoupling limit, Eq. (E30) yieldsm2
H0 ¼

m2
A0 þ Z5v

2 þOðv2=m2
A0Þ, which can be rewritten using

Eq. (5.48),

m2
H0 ¼ m2

A0 þm2
Zsin

22�þOðv2=m2
A0Þ: (5.51)

Substituting Eqs. (5.48) and (5.49) [or equivalently,
Eqs. (5.50) and (5.51)] into Eqs. (5.43) and (5.46) yields

SMSSM ’ m2
Zsin

22�� 2m2
W

24�m2
A0

;

TMSSM ’ m2
W �m2

Zsin
22�

48�s2Wm
2
A0

;

(5.52)

which reproduce the results previously obtained in
Ref. [25].
Finally, we examine U in the decoupling limit. Setting

m� ¼ m1 in Eq. (5.17) and employing the decoupling limit

conditions of Eq. (5.38), we obtain

SþU ¼ 1

�m2
W

�
B22ðm2

Z;m
2
H� ; m2

2Þ þB22ðm2
Z;m

2
H� ; m3

2Þ

� 2B22ðm2
Z;m

2
H� ; m2

H�Þ þO
�
v4

�4

��
: (5.53)

Using Eqs. (E22), (E23), and (5.42), we obtain

SþU ’ m2
2 þm2

3 � 2m2
H�

24�c2Wm
2
3

¼ Z4v
2

24�c2Wm
2
3

¼ S

c2W
: (5.54)

Finally, we use Eq. (5.43) to isolate U:

U ’ S tan2�W: (5.55)

In the custodial limit where g0 ¼ 0, it follows that
tan�W ¼ 0, in which case U ¼ 0. Remarkably, we find
that U ¼ 0 in this limit independently of the values of
the neutral Higgs masses. Thus, custodial symmetry break-
ing effects arising from the scalar potential do not generate
a nonzero value for U at Oðv2=�2Þ in the approach to the
decoupling limit. However, Eqs. (5.35), (5.36), and (5.37)
imply that a nonzero value for U would be generated at
order Oðv4=�4Þ. This observation suggests that U � T
over a significant range of the 2HDM parameter space, a
fact that can be verified numerically.

VI. NUMERICAL ANALYSIS

The parameters S, T, andU obtained from an analysis of
precision electroweak data are found to be [19]

S ¼ 0:01� 0:10; T ¼ 0:03� 0:11;

U ¼ 0:06� 0:10; (6.1)

relative to the standard model, with a reference Higgs mass
of m� ¼ 117 GeV. Similar results have been obtained by

the GFITTER collaboration [20]. Alternatively, if one
assumes that U ¼ 0 (typically, one expects U � S in
many models of new physics beyond the standard model),
then the corresponding analysis of S and T yields [19]

S ¼ 0:03� 0:09; T ¼ 0:07� 0:08: (6.2)

These limits indicate that new physics contributions to the
oblique parameters are tightly constrained. In particular, if
one assumes that the new physics contributions to S, T and
U arise solely from the 2HDM sector, then Eqs. (6.1) and

29In general, H� is degenerate in mass with A0 whose identity
(either h2 or h3) is determined from Eqs. (E32) and (E33). If
Z6 ¼ Z7 ¼ 0, H� may instead be degenerate in mass with H0 in
the custodial limit as noted in Eq. (4.50). Of course, in the
decoupling limit H� can never be degenerate in mass with h0

since mh0 � mH� .
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(6.2) would constrain the parameters of the 2HDM scalar
potential. Such studies have appeared in the literature in a
less general framework. For example, in Ref. [30], 
 � �T
was used to constrain a modified version of the 2HDM in
which certain scalar couplings were set equal to zero, and
tan� was assumed to be a physical observable. In our
approach, only basis-independent quantities are employed.
A full numerical study of the constraints of precision
electroweak data on the general 2HDM contributions to
the oblique parameters will be presented elsewhere (for a
preliminary study, see Ref. [31]). In this section, we shall
outline our analysis methods and describe some of the key
results and features of our study.

The parameters of the 2HDM that are constrained by S,
T, and U can be taken to be Z1, Z3, Z3 þ Z4, Z5e

�2i�23 ,
Z6e

�i�23 and Y2, since these 6 quantities determine the
physical Higgs masses [cf. Eqs (2.17) and (2.22)] and the
invariant quantities qk‘ [specified in Table I]. We impose
one theoretical constraint by demanding that the jZij do not
exceed upper bounds corresponding to the requirement that
all bosonic scattering amplitudes satisfy tree-level unitarity
(the relevant upper bounds are derived in Appendix F). In
order to compare with the determination of S, T, and U in
Ref. [19], we fix the reference Higgs mass at m� ¼
117 GeV. The procedure used here to study the effect of
the 2HDM on the oblique parameters was to choose ran-
dom values of the six parameters in the space allowed by
the tree-level unitarity bounds. Then the Higgs masses and
qk‘ are calculated numerically and inserted into Eqs. (5.9),
(5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), and
(5.17) to obtain S, T, and U for each point in the parameter
space.

In our first study, we imposed an additional requirement
that the mass of the lightest neutral Higgs boson, m1, fall
within 10 GeV of the reference Higgs mass. It was found

that the 2HDM consistently produces values of U within
0.02 of zero. Thus, in order to derive constraints on the
2HDM parameters, one can reliably set U ¼ 0 and com-
pare the computed S and T values of the 2HDM with the
results given in Eq. (6.2). Scanning the 2HDM parameter
space and comparing with the allowed 2 contour ellipse
in S-T plane produces the results shown in Fig. 1.
From the scatter plots shown in Fig. 1, it is evident that

the values of S produced are all consistent with the experi-
mental constraints of Eq. (6.2). In contrast, there are many
points that lie outside the allowed range for T. These points
correspond to 2HDM parameters that significantly violate
the custodial symmetry of the scalar potential. In particu-
lar, one must have a significant splitting between the
masses of the H� and one of the heavy neutral Higgs
bosons (identified in the generic CP-conserving 2HDM
as A0). This region of parameter space is very far away
from the decoupling region in which the 2HDM contribu-
tions to T are quite small. When T is large, the large values
of the corresponding heavy Higgs masses are driven pri-
marily by large values of the Ziv

2 that compete with (and
in some regions dominate) the contribution of Y2. Even
though the maximal values of the Zi are constrained by
tree-level unitarity, there is still a robust region of the
2HDM parameter space in which jTj lies significantly
outside of the interval allowed by Eq. (6.2). It is also
interesting to note that both positive and negative signs
for T are allowed, with roughly equal probability over the
2HDM parameter space.
In the analysis above, we have fixed the value of the

lightest neutral Higgs mass, m1, to be close to 117 GeV.
One can now investigate the consequence of relaxing this
assumption. First, consider the decoupling limit of the
2HDM where m1 � m2, m3. As m1 increases (in a
mass regime in which h1 is still significantly lighter

1.0 0.5 0.5 1.0
S

1.0

0.5

0.5

1.0
T

0.2 0.1 0.1 0.2 0.3
S

0.1

0.1

0.2

0.3
T

(a) (b)

FIG. 1. Scatter plots for T as a function of S, with m1 ¼ 117� 10 GeV. The ellipses, representing the 1 and 2 contours allowed
by precision electroweak data, are based on Ref. [19], with the parameter U fixed to zero. Plot (a) shows the expanded view in the S-T
plane, and plot (b) shows a close-up view of the allowed region.
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than h2 and h3), we should simply reproduce the known
constraints of precision electroweak observables on the
mass of m1. As a concrete example, consider the follow-
ing input parameters:

m�¼117GeV; Z1¼0:227; Y2¼ð1TeVÞ2; (6.3)

with all other invariant Z parameters equal to 0.01. The
mass spectrum corresponding to these values is m1 ¼
117 GeV, m2 ¼ m3 ¼ mH� ¼ 1 TeV. As expected, in
this limit one finds that S ’ T ’ 0. As Z1 is increased
from 0.227 to 0.505, m1 increases from 117 GeV to
175 GeV, at which point T and S exceed the boundary
of the 2 ellipse. In Fig. 2, the resulting S and T are
shown as m1 is varied from 117 GeV to 500 GeV.

If we depart significantly from the decoupling limit, then
the custodial-symmetry-breaking mass splitting between
the H� and one of the heavy neutral Higgs states can
contribute positively to T and offset the negative T values
shown in Fig. 2. In this way, values of the lightest Higgs
boson mass above 150 GeV may still be consistent with
precision electroweak data. This possibility is illustrated by
the following example. With m� fixed at 117 GeV, let us

choose Y2 ¼ ð50 GeVÞ2 and Z3 ¼ 5:2. This produces
mH� ¼ 400 GeV. With Z1 ¼ 4, Z4 is adjusted such that
m1 ¼ 350 GeV, with all other Z parameters set equal to
0.01. One can then dial up Z3 (keepingm1 fixed at 350 GeV
by simultaneously adjusting Z4) until S and T lie within the
2 contour ellipse. For the above choice of Z1, the allowed
range for the charged Higgs mass is 443 GeV<mH� <
489 GeV, as shown in column (a) of Fig. 3. We can repeat
this exercise by fixing Z1 at its tree-level unitarity limit. In
this case the allowed range is 470 GeV<mH� <
505 GeV, as shown in column (b) of Fig. 3. With the
charged Higgs boson mass in its prescribed range, a
‘‘light’’ neutral Higgs mass of 350 GeV is consistent with
precision electroweak data!

One can increase the value form1 arbitrarily high and still
find values of mH� that are consistent with S and T in the
allowed range. However, one eventually violates the unitar-
ity of Z3 þ Z4 (if m1 is too high) or Z3 alone (if mH� is too
high.) As an example, by choosing Y2 ¼ ð50 GeVÞ2, Z1 ¼
4�, ReðZ5e

�2i�23Þ ¼ ImðZ5e
�2i�23Þv2 ¼ ReðZ6e

�i�23Þ ¼
ImðZ6e

�i�23Þ ¼ 0:01, one can adjust Z3 þ Z4 to get m1 as
high as 873 GeV before violating unitarity, which gives a
mass spectrum of

m1¼873GeV; m2¼874GeV; m3¼875GeV: (6.4)

With this value of m1, choosing Z3 so that 716 GeV<
mH� < 750 GeV will put S and T in the upper right-hand
corner of the allowed 2 contour ellipse.30

We conclude that the regions of S and T allowed by
precision electroweak data place significant constraints on
the possible regions of the 2HDM parameter space. In the
decoupling limit of the 2HDM, the only surviving con-
straint is on the mass of the lightest Higgs boson, which
coincides with the corresponding standard model Higgs
mass upper bound deduced from precision electroweak
data. In regions of the 2HDM parameter space far from
the decoupling regime, a large chunk of the 2HDM pa-
rameter space is ruled out on the basis of the T parameter.
Nevertheless, there are regions of parameter space in the
nondecoupling regime, consistent with precision electro-
weak data, in which the lightest Higgs mass is significantly
larger than the standard model Higgs mass upper bound.31

This possibility is realized when large negative corrections

0.2 0.1 0.1 0.2 0.3
S

0.1

0.1

0.2

0.3
T

FIG. 2 (color online). The effect on S and T when m1 is
increased from 117 GeV to 500 GeV. Both S and T are zero at
m1 ¼ m� ¼ 117 GeV. When m1 reaches 175 GeV, S and T

exceed the boundary of the 2 contour ellipse.

a
b

0.2 0.1 0.1 0.2 0.3
S

0.1

0.1

0.2

0.3
T

FIG. 3 (color online). The effect on S and T when mH� is
varied by increasing Z3, for m1 ¼ 350 GeV and m� ¼
117 GeV. In column (a), Z1 ¼ 4; in column (b), Z1 ¼ 4�.
When mH� is in the range 443–489 GeV [470–505 GeV], the
points in column (a) [column (b)] fall within the 2 contour
ellipse.

30Note that for this choice of parameters, mH� <m1. In fact,
there are higher values of mH� which are within the allowed
ellipse, but they correspond to values of Z3 that exceed its
unitarity bound.
31This possibility has been considered previously in ref. [32].
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to T from h1 are compensated by large positive corrections
to T from the other Higgs bosons of the 2HDM.

VII. CONCLUSIONS

In this paper, we have employed basis-independentmeth-
ods in examining the properties of the most general
(CP-violating) 2HDM. Our primary aim to provide a
basis-invariant characterization of a custodial-symmetric
2HDM scalar potential. Since custodial symmetry in the
scalar sector of the 2HDM implies CP-conservation, we
first examined in detail the basis-independent description of
the most general CP-conserving 2HDM. All possible ge-
neric and special caseswere examined,which depend on the
values of the potentially complex quartic Higgs self-
couplings in the Higgs basis. One special case where Z6 ¼
Z7 ¼ 0 is noteworthy, due to the fact that the CP quantum
numbers of two of the three neutral Higgs states cannot be
determined by the bosonic couplings of the model. This
behavior can be traced to the existence of two inequivalent
definitions of CP which give opposite signs for the
CP-quantum numbers of each of the two neutral states.
However, the ambiguity is resolved by the Higgs-fermion
Yukawa interactions that uniquely selects one of the two
definitions for CP and thus determines the CP quantum
numbers of the two neutral states (assuming that the
Yukawa interactions are CP-conserving). In fact, the
Yukawa interactions could be CP-violating, even if
the scalar potential and the Yukawa interactions respect
the custodial symmetry, in which case it does not make
sense to assign definiteCP quantum numbers to the neutral
Higgs states.

After providing a catalog of possible cases that define
the CP-conserving 2HDM, we imposed custodial symme-
try and determined the basis-independent condition that
guarantees the presence of this symmetry. We have clari-
fied the results of a previous analysis given in Ref. [7],
where it was asserted that there were two distinct cases for
the custodial-symmetric scalar potential. We have dem-
onstrated in this paper that the two cases of Ref. [7] are in
fact equivalent and simply correspond to two different
basis choices for the scalar potential. We also showed
that generically the charged Higgs boson and the
CP-odd Higgs boson are mass-degenerate in the limit of
a custodial-symmetric scalar potential. However, in the
special case of Z6 ¼ Z7 ¼ 0, it is possible that the
charged Higgs boson and one of the CP-even Higgs
bosons are mass-degenerate in the limit of a custodial-
symmetric scalar potential, depending on the structure of
the Higgs-fermion interactions.

We have also provided a basis-independent computa-
tion of the 2HDM contributions to the oblique parameters
S, T, and U. Since T ¼ U ¼ 0 in the custodial-symmetry
limit, our computation provides an important check on the
implications of the various mass degeneracies noted
above. The oblique parameters of the CP-violating

2HDM were analyzed numerically and found to be incon-
sistent with the experimental electroweak constraints over
a nontrivial region of the 2HDM parameter space. Of
course, there is still a significant region of the parameter
space in which the oblique parameters lie within the
allowed 2 error ellipse in the S-T plane. (U is quite
small over nearly the entire 2HDM parameter space, and
one can set it to zero to good approximation.) In the
decoupling limit, the only constraints on the 2HDM pa-
rameters are associated with the requirement that the
lightest neutral-Higgs boson, which is standard model-
like in its properties, must have a mass below about
150 GeV (equivalent to the constraints of the standard
model global fits). In the region of the 2HDM parameter
space far from the decoupling regime, it is possible that
the lightest neutral Higgs boson mass is significantly
heavier than 150 GeV. In this case, the large negative
value of T generated by the lightest neutral Higgs boson is
compensated by positive corrections to T from the other
physical Higgs bosons of the 2HDM.
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custodial symmetry in the 2HDM. They obtain conditions
for a custodial-symmetric 2HDM scalar potential that are
consistent with the results obtained in this paper.

APPENDIX A: CUBIC AND QUARTIC BOSONIC
COUPLINGS IN THE 2HDM

The Higgs boson interactions of the 2HDM can be ex-
pressed in terms of the basis-independent qk‘ defined in
Table I. The cubic and quartic vector-scalar couplings were
obtained in Ref. [2] and are reproduced below:

LVVH ¼
�
gmWW

þ
�W

�� þ g

2cW
mZZ�Z

�

�
qk1hk

þ emWA
�ðWþ

�G
� þW�

�G
þÞ

� gmZs
2
WZ

�ðWþ
�G

� þW�
�G

þÞ; (A1)

BASIS-INDEPENDENT . . . . III. THE CP- . . . PHYSICAL REVIEW D 83, 055017 (2011)

055017-25



LVVHH ¼
�
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�W
�� þ g2

8c2W
Z�Z

�

�
hkhk
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�
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�W
�� þ e2A�A
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c2W

�
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2
� s2W

�
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Z�Z

� þ 2ge

cW

�
1

2
� s2W

�
A�Z

�

�
ðGþG� þHþH�Þ

þ
��
1

2
egA�Wþ

� � g2s2W
2cW

Z�Wþ
�

�
ðqk1G� þ qk2e

�i�23H�Þhk þ H:c:

�
; (A2)

LVHH ¼ g

4cW
�jk‘q‘1Z

�hj@
$
�hk � 1

2
g

�
iWþ

� ½qk1G�@$�hk þ qk2e
�i�23H�@$�hk� þ H:c:

�

þ
�
ieA� þ ig

cW

�
1

2
� s2W

�
Z�

�
ðGþ@$�G

� þHþ@$�H
�Þ; (A3)

LVG ¼
�
g2

4
Wþ

�W
�� þ g2

8c2W
Z�Z

�

�
G0G0 þ 1

2
gðWþ

�G
�@$�G

0 þW�
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þ@$�G
0Þ

þ
�
ieg
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A�Wþ
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�G0 � ig2s2W

2cW
Z�Wþ

�G
�G0 þ H:c:

�
þ g

2cW
qk1Z

�G0@
$
�hk; (A4)

where repeated indices j, k ¼ 1, 2, 3 are summed over. In
obtaining the above interactions from Ref. [2], we have
made two simplifications. In the WþW�hjhk and ZZhjhk
interactions, we have employed

qj1qk1 þ Reðq�j2qk2Þ ¼ �jk; for j; k ¼ 1; 2; 3: (A5)

In the Zhjhk interactions (j, k ¼ 1, 2, 3), we have made use
of the identity

Im ðq�j2qk2Þ ¼
X3
‘¼1

�jk‘q‘1: (A6)

Likewise, a basis-independent form for the cubic and
quartic scalar self-interactions has been obtained in
Ref. [2] and are reproduced below. In listing the scalar
self-interactions, it is convenient to include terms involving
the Goldstone field by denoting h4 � G0.

V 3 ¼ 1

2
vhjhkh‘½qj1q�k1 Reðq‘1ÞZ1 þ qj2q

�
k2 Reðq‘1ÞðZ3 þ Z4Þ þ Reðq�j1qk2q‘2Z5e

�2i�23Þ
þ Reð½2qj1 þ q�j1�q�k1q‘2Z6e

�i�23Þ þ Reðq�j2qk2q‘2Z7e
�i�23Þ�

þ vhkG
þG�½Reðqk1ÞZ1 þ Reðqk2e�i�23Z6Þ� þ vhkH

þH�½Reðqk1ÞZ3 þ Reðqk2e�i�23Z7Þ�
þ 1

2
vhk

�
G�Hþei�23½q�k2Z4 þ qk2e

�2i�23Z5 þ 2Reðqk1ÞZ6e
�i�23� þ H:c:

�
; (A7)

V 4 ¼ 1

8
hjhkhlhm½qj1qk1q�‘1q�m1Z1 þ qj2qk2q

�
‘2q

�
m2Z2 þ 2qj1q

�
k1q‘2q

�
m2ðZ3 þ Z4Þ þ 2Reðq�j1q�k1q‘2qm2Z5e

�2i�23Þ
þ 4Reðqj1q�k1q�‘1qm2Z6e

�i�23Þ þ 4Reðq�j1qk2q‘2q�m2Z7e
�i�23Þ�

þ 1

2
hjhkG

þG�½qj1q�k1Z1 þ qj2q
�
k2Z3 þ 2Reðqj1qk2Z6e

�i�23Þ�

þ 1

2
hjhkH

þH�½qj2q�k2Z2 þ qj1q
�
k1Z3 þ 2Reðqj1qk2Z7e

�i�23Þ�

þ 1

2
hjhk

�
G�Hþei�23½qj1q�k2Z4 þ q�j1qk2Z5e

�2i�23 þ qj1q
�
k1Z6e

�i�23 þ qj2q
�
k2Z7e

�i�23� þ H:c:

�

þ 1

2
Z1G

þG�GþG� þ 1

2
Z2H

þH�HþH� þ ðZ3 þ Z4ÞGþG�HþH� þ 1

2
Z5H

þHþG�G�

þ 1

2
Z�
5H

�H�GþGþ þGþG�ðZ6H
þG� þ Z�

6H
�GþÞ þHþH�ðZ7H

þG� þ Z�
7H

�GþÞ; (A8)
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summing over j, k, ‘, m ¼ 1, 2, 3, 4. Note that Reðqk1Þ ¼
qk1 for k ¼ 1, 2, 3, whereas Reðq41Þ ¼ 0.

One can easily verify that if qk1 ¼ �1 and qk2 ¼ 0 for a
fixed value of k ¼ 1, 2 or 3. then it follows that the
couplings of the neutral Higgs field, �hk, are precisely
those of the standard model Higgs boson.

APPENDIX B: NEUTRAL HIGGS MASSES AND
INVARIANT MIXING ANGLES

The neutral Higgs mass eigenstates are denoted by hk
(k ¼ 1, 2, 3). The corresponding squared-masses are

obtained by solving the characteristic equation of the neu-
tral Higgs squared-mass matrix, M2 [see Eq. (2.17)],

detðM� x13�3Þ ¼ �x3 þ TrðMÞx2

� 1

2
½ðTrMÞ2 � TrðM2Þ�xþ detðMÞ ¼ 0; (B1)

where 13�3 is the 3� 3 identity matrix and

TrðMÞ ¼ 2Y2 þ ðZ1 þZ3 þZ4Þv2;

TrðM2Þ ¼ Z2
1v

4 þ 1

2
v4½ðZ3 þZ4Þ2 þ jZ5j2 þ 4jZ6j2� þ 2Y2½Y2 þ ðZ3 þZ4Þv2�;

detðMÞ ¼ 1

4

�
Z1v

6½ðZ3 þZ4Þ2 � jZ5j2� � 2v4½2Y2 þ ðZ3 þZ4Þv2�jZ6j2 þ 4Y2Z1v
2½Y2 þ ðZ3 þZ4Þv2� þ 2v6 ReðZ�

5Z
2
6Þ
�
:

(B2)

In the general (CP-violating) case, the analytic expressions
for the squared-masses are quite cumbersome, when ex-
pressed solely in terms of the scalar potential parameters.
In Ref. [2], a more convenient expression for the neutral
Higgs squared-masses was derived in terms of the Zi and
invariant mixing angles,

m2
k ¼ jqk2j2A2 þ v2½q2k1Z1 þ Reðqk2ÞReðqk2Z5e

�2i�23Þ
þ 2qk1 Reðqk2Z6e

�i�23Þ�; (B3)

where m2
k � m2

hk
(for k ¼ 1, 2, 3) and the basis-invariant

qki are given in Table I.
In Ref. [2], we also obtained a set of equations that

determine the neutral Higgs mixing angles32:

s13 ReðZ6e
�i�23Þ ¼ 1

2
c13 ImðZ5e

�2i�23Þ; (B4)

ðZ1 � A2=v2Þs13c13 ¼ ðc213 � s213Þ ImðZ6e
�i�23Þ; (B5)

ðc212 � s212Þ
�
c13 ReðZ6e

�i�23Þ þ 1

2
s13 ImðZ5e

�2i�23Þ
�

¼ s12c12½ReðZ5e
�2i�23Þ � ðZ1 � A2=v2Þc213

� 2s13c13 ImðZ6e
�i�23Þ�; (B6)

where

A2 � Y2 þ 1

2
½Z3 þ Z4 � ReðZ5e

�2i�23Þ�v2: (B7)

Equations (B3)–(B6) can be used to derive the following
results:

Re ðZ6e
�i�23Þv2 ¼ c13s12c12ðm2

2 �m2
1Þ; (B8)

Im ðZ6e
�i�23Þv2 ¼ s13c13ðc212m2

1 þ s212m
2
2 �m2

3Þ; (B9)

ReðZ5e
�2i�23Þv2 ¼ ðs212 � s213c

2
12Þm2

1

þ ðc212 � s212s
2
13Þm2

2 � c213m
2
3; (B10)

Im ðZ5e
�2i�23Þv2 ¼ 2s13s12c12ðm2

2 �m2
1Þ: (B11)

The following identity will also prove useful:

ImðZ�
5Z

2
6Þ ¼ 2ReðZ5e

�2i�23ÞReðZ6e
�i�23Þ ImðZ6e

�i�23Þ
� ImðZ5e

�2i�23Þf½ReðZ6e
�i�23Þ�2

� ½ImðZ6e
�i�23Þ�2g: (B12)

Using the results of Eqs. (B8)–(B12) it then follows that

v6ImðZ�
5Z

2
6Þ ¼ s13c

2
13 sin2�12ðm2

2 �m2
1Þ

� ðm2
3 �m2

1Þðm2
3 �m2

2Þ: (B13)

APPENDIX C: BASIS-INDEPENDENT
TREATMENT OF THE CP-CONSERVING 2HDM

In the CP-conserving Higgs sector, two of the neutral
Higgs bosons, h0 and H0 (with mh0 <mH0) are CP-even
and one neutral Higgs boson, A0, is CP-odd. Basis-
independent conditions for a CP-conserving bosonic sec-
tor have been given in Refs. [1,10,11,34]. In Ref. [1], these
conditions were recast into the form given by Eq. (3.1).
Since the Higgs masses and mixing angles do not depend

32Denoting the quadratic terms in the scalar potential by
m2

H�HþH� þ 1
2v

2
P

j;kCjkhjhk, it follows that Cjk ¼ 0 for j �
k. This provides three conditions, which yield Eqs. (B4)–(B6).
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on Z7, we focus on the implications of the condition
Im½Z�

5Z
2
6� ¼ 0 for the structure of the neutral Higgs

squared-mass matrix and the invariant mixing angles.

1. The CP-conserving limit: Z6 � 0

If Z6 � 0, then Eqs. (B8) and (B9) imply that c13 � 0.
Suppose that the three neutral Higgs masses are nondegen-
erate. Under the latter assumption, if the CP-conserving
condition ImðZ�

5Z
2
6Þ ¼ 0 holds, then Eq. (B13) implies that

s13s12c12 ¼ 0. We examine the two resulting cases in
turn.33

Case I: s13 ¼ 0. Then, Eqs. (B4), (B5), (B5), and (B7)–
(B9) imply that:

Im ðZ5e
�2i�23Þ ¼ ImðZ6e

�i�23Þ ¼ 0: (C1)

Case II: s12c12 ¼ 0. Then, Eqs. (B8) and (B13) imply
that:

Im ðZ5e
�2i�23Þ ¼ ReðZ6e

�i�23Þ ¼ 0: (C2)

In Sec. III A, Case II is further broken down into two
subcases (a) and (b) corresponding to s12 ¼ 0 and c12 ¼
0, respectively. The three Cases I, IIa and IIb simply
correspond to three possible mass orderings of the neutral
Higgs bosons—the CP-even h0 and H0 (where mh0 <mH0

by definition) and the CP-odd A0.
It is convenient to define the invariant angle � � �6 �

�23, where �6 � argZ6. That is,

ReðZ6e
�i�23Þ � jZ6j cos�;

ImðZ6e
�i�23Þ � jZ6j sin�: (C3)

Then, Cases I and II correspond to sin� ¼ 0 and cos� ¼
0, respectively. That is, if CP is conserved then sin2� ¼ 0.
Note that the converse is not necessarily valid. In particu-
lar,

ImðZ5e
�2i�23Þ ¼ 1

jZ6j2
½ReðZ�

5Z
2
6Þ sin2�

� ImðZ�
5Z

2
6Þ cos2��: (C4)

Thus, if sin2� ¼ 0 and ImðZ5e
�2i�23Þ � 0, then the Higgs

sector violates CP.
The quantum numbers of the neutral-Higgs bosons can

be determined from the form of the Higgs self-couplings.
For example, noting that a charged Goldstone boson pair is
necessarily CP-even, the couplings of GþG� to the
neutral-Higgs bosons can be used to identify the
CP-even scalars. In Appendix A, the following couplings
are given:

GþG�h1:c12c13Z1�s12ReðZ6e
�i�23Þþc12s13 ImðZ6e

�i�23Þ;
(C5)

GþG�h2:s12c13Z1þc12ReðZ6e
�i�23Þþs12s13 ImðZ6e

�i�23Þ;
(C6)

GþG�h3: s13Z1 � c13 ImðZ6e
�i�23Þ; (C7)

where the mixing angles are defined such that mh1 �
mh2 � mh3 . Since one of the three neutral states is

CP-odd, its coupling to GþG� must vanish. Taking Z1

and Z6 as independent and nonvanishing,34

if h1 is CP odd; c12 ¼ ReðZ6e
�i�23Þ ¼ cos� ¼ 0;

(C8)

if h2 is CP odd; s12 ¼ ReðZ6e
�i�23Þ ¼ cos� ¼ 0;

(C9)

if h3 is CP odd; s13 ¼ ImðZ6e
�i�23Þ ¼ sin� ¼ 0;

(C10)

which reproduces Cases I and II [Eqs. (C1) and (C2)] for
nondegenerate neutral Higgs masses.
The masses of the three neutral Higgs bosons can be

evaluated explicitly using Eqs. (B1) and (B2). In evaluating
detðMÞ, we employ the condition ImðZ�

5Z
2
6Þ ¼ 0, which

implies that ½ReðZ�
5Z

2
6Þ�2 ¼ jZ5j2jZ6j4, and leads to two

possible cases:

Re ðZ�
5Z

2
6Þ ¼ "56jZ5jjZ6j2; "56 � �1: (C11)

In both cases, Eq. (B1) factors into a product of a linear and
a quadratic polynomial. Solving for the roots, the resulting
neutral Higgs squared-masses are given by Eqs. (3.16) and
(3.17), where the CP-odd state is identified according to
the results of Eq. (B3) and (C8)–(C10).

2. Degenerate masses in the
CP-conserving limit with Z6 � 0

So far, we have working under the assumption that the
three Higgs masses are unequal. However, it is also pos-
sible that two of the Higgs bosons are mass-degenerate.35

In this case, it follows from Eq. (B13) that ImðZ�
5Z

2
6Þ ¼ 0,

independently of the mixing angles (some of which may
not be well-defined in the mass-degenerate limit). If
Z5 ¼ 0 and Z6 � 0, then Eqs. (3.16) and (3.17) imply
that the three neutral Higgs masses are distinct. Hence, in

33Note that setting Eq. (B12) to zero determines ReðZ5e
�2i�23 Þ

in terms of ImðZ5e
�2i�23 Þ, ReðZ6e

�i�23 Þ and ImðZ6e
�i�23 Þ.

However, this is not sufficient to impose the conditions given
in Cases I and II. This is because the diagonalization of the
neutral Higgs squared-mass matrix yields an extra (basis-
dependent) condition that fixes the value of �23.

34Similar conclusions can be obtained by considering the ZZhi,
the Zhihj, and the ZG0hi couplings.
35Under the assumption Z6 � 0, it is not possible to have three
mass-degenerate neutral Higgs bosons.
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what follows we assume that Z5 � 0, in which case A0 and
one of the CP-even scalars are degenerate in mass if36

Z1 ¼ Y2=v
2 þ 1

2
ðZ3 þ Z4 � "56jZ5jÞ þ jZ6j2

"56jZ5j and

ImðZ�
5Z

2
6Þ ¼ 0: (C12)

Inserting this result for Z1 back into Eqs. (3.16) and (3.17)
then yields

m2
h0

¼ m2
A0 ¼ Y2 þ 1

2
ðZ3 þ Z4 � jZ5jÞv2; (C13)

m2
H0 ¼ Y2 þ 1

2
ðZ3 þ Z4 þ jZ5jÞv2 þ jZ6j2v2

jZ5j ;

for "56 ¼ þ1; (C14)

and

m2
h0

¼ Y2 þ 1

2
ðZ3 þ Z4 � jZ5jÞv2 � jZ6j2v2

jZ5j ; (C15)

m2
H0 ¼ m2

A0 ¼ Y2 þ 1

2
ðZ3 þ Z4 þ jZ5jÞv2;

for "56 ¼ �1: (C16)

In the mass-degenerate case, the mixing angle �23 and
the corresponding invariant angle � are no longer well-
defined, as one can redefine the mixing angles by rotating
within the degenerate subspace. Hence, the choice of
sin2� is arbitrary. However, because CP is conserved in
the neutral Higgs sector, the structure of the Higgs inter-
actions guarantees that there exists one linear combination
of the mass-degenerate neutral Higgs states that is
CP-even and an orthogonal linear combination that is
CP-odd. The latter defines the relevant mixing angle, �12
in Case I and �13 in Case II, respectively. In particular, the
identification of eigenstates of definite CP quantum num-
bers imposes the constraint s13 ¼ s12c12 ¼ sin2� ¼ 0,
and the conditions of Cases I and II continue to hold. A
summary of the basis-independent conditions for
CP-invariance, under the assumption that Z6 � 0, along
with the identification of the CP quantum numbers of the
three neutral Higgs states can be found in Table II.

In Sec. IVA2, we determined the basis-independent
conditions for a custodial-symmetric scalar potential. In
the case of Z6 � 0, the relevant condition is Z4 ¼ �56jZ5j
[cf. Eq. (4.45)]. Using Eqs. (4.48), (C13), and (C16), we
conclude that when Eq. (C12) holds, the custodial-

symmetric scalar potential yields two neutral Higgs bo-
sons, one CP-even and one CP-odd, that are both degen-
erate in mass with the charged Higgs boson.

3. The CP-conserving limit: Z6 ¼ 0

The case where Z6 ¼ 0 (with Z5 � 0) merits special
attention. In this case, Eqs. (B4)–(B6) simplify to

c13 ImðZ5e
�2i�23Þ ¼ 0; (C17)

ðZ1v
2 � A2Þs13c13 ¼ 0; (C18)

1

2
s13ðc212 � s212Þ ImðZ5e

�2i�23Þ
¼ s12c12½ReðZ5e

�2i�23Þ � ðZ1 � A2=v2Þc213�: (C19)

First, we consider cases in which the three neutral Higgs
masses are nondegenerate. Then in the CP-conserving
limit, Eq. (B13) implies that s13s12c12 ¼ 0. If c13s13 � 0,
then Eqs. (C17) and (C18) yield ImðZ5e

�2i�23Þ ¼ 0 and
Z1v

2 ¼ A2. In this case ReðZ5e
�2i�23Þ ¼ �jZ5j and A2 ¼

Y2 þ 1
2v

2ðZ3 þ Z4 � jZ5jÞ, where both sign choices are

possible. For either sign choice, Eqs. (3.24), (3.25), and
(3.26) imply that two of the neutral Higgs bosons are
degenerate in mass, which contradicts our initial
assumption. Thus, if the Higgs bosons are nondegenerate,
then Eq. (C18) implies that either s13 ¼ 0 or c13 ¼ 0. If
s13 ¼ 0 then Eqs. (C17) and (C18) yield either s12c12 ¼ 0
or ReðZ5e

�2i�23Þ ¼ Z1 � A2=v2. However, in the latter
case one again finds that two of the neutral Higgs bosons
are degenerate in mass, which again contradicts our initial
assumption. Thus, in the case of nondegenerate neutral
Higgs masses, there are three cases to consider:
Case I’ s13 ¼ s12 ¼ ImðZ5e

�2i�23Þ ¼ 0. This is a com-
bination of the previous Cases I and IIa.
Case II’ s13 ¼ c12 ¼ ImðZ5e

�2i�23Þ ¼ 0. This is a com-
bination of the previous Cases I and IIb.
When Z6 ¼ 0 and CP is conserved, a new third possi-

bility arises in which c13 ¼ 0. In this case, Eq. (C19) yields
1
2 s13ðc212 � s212Þ ImðZ5e

�2i�23Þ ¼ s12c12 ReðZ5e
�2i�23Þ,

where s13 ¼ �1. Following the convention specified in
Table I, we choose s13 ¼ �1. In this convention, �12 þ
�23 is indeterminate, and the quantity

�� 23 � �23 � �12; (C20)

plays the role of �23. We designate this new case

Case III’: c13 ¼ ImðZ5e
�2i ��23Þ ¼ 0.

To determine the CP-quantum numbers of the hk, we
first examine the GþG�hk couplings when Z6 ¼ 0
[cf. Eqs (C5)–(C7)]:

GþG�h1: c12c13Z1; (C21)

GþG�h2: s12c13Z1; (C22)

GþG�h3: s13Z1; (C23)

36One can also verify the condition for degenerate roots directly
from Eq. (B1). The cubic equation z3 þ a2z

2 þ a1zþ a0 has (at
least) two degenerate roots if and only if [35]�

1

3
a1 � 1

9
a22

�
3 þ

�
1

6
ða1a2 � 3a0Þ � 1

27
a32

�
2 ¼ 0:

With a little help from Mathematica, one can show that by
imposing the above equation, Eq. (C12) is satisfied.
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One of these three couplings is nonvanishing in Cases I’,
II’ and III’, which implies that the corresponding neutral
Higgs state (hk for k ¼ 1, 2 or 3) is CP-even. Moreover, in
this case, qk1 ¼ �1 and qk2 ¼ 0, which implies that the
couplings of the neutral Higgs field�hk are precisely those
of the standard model Higgs boson. Henceforth, we iden-
tify the standard model-like CP-even neutral Higgs field
by h01. We then use Eq. (B3) to obtain m2

h0
1

¼ Z1v
2

[cf. Eq. (3.24)]. If we order the states hi such that mh1 <

mh2 <mh3 , then the three Cases I’, II’ and III’ above

correspond to the three possible mass orderings of h01.
By examining the nonvanishing Zhihj couplings, one

immediately concludes that the relative CP quantum num-
ber of the other two neutral Higgs bosons is negative.
However, there is no unique assignment for the individual
CP quantum numbers if Z7 ¼ 
Q ¼ 0. For simplicity, we
assume that Z7 � 0.37 The following identity, analogous to
Eq. (B13), will also prove useful:

ImðZ�
5Z

2
7Þ ¼ 2ReðZ5e

�2i�23ÞReðZ7e
�i�23Þ ImðZ7e

�i�23Þ
� ImðZ5e

�2i�23Þf½ReðZ7e
�i�23Þ�2

� ½ImðZ7e
�i�23Þ�2g: (C24)

Under the assumption of a CP-conserving Higgs sector,
we impose the condition ImðZ�

5Z
2
7Þ ¼ 0, which implies that

½ReðZ�
5Z

2
7Þ�2 ¼ jZ5j2jZ7j4, and leads to two possible

cases:

Re ðZ�
5Z

2
7Þ ¼ "57jZ5jjZ7j2; "57 ¼ �1: (C25)

In Cases I’ and II’, ImðZ5e
�2i�23Þ ¼ 0, whereas

ImðZ5e
�2i ��23Þ ¼ 0 in Case III’. Then, Eq. (C24) yields

Case I0; II0: ReðZ7e
�i�23Þ ImðZ7e

�i�23Þ ¼ 0: (C26)

Case III0: ReðZ7e
�i ��23Þ ImðZ7e

�i ��23Þ ¼ 0: (C27)

We can use the HþH�hk couplings to determine the
CP-quantum numbers of the other two neutral Higgs
bosons. In Cases I’ and II’,

HþH�h1:c12c13Z3�s12ReðZ7e
�i�23Þþc12s13 ImðZ7e

�i�23Þ;
(C28)

HþH�h2:s12c13Z3þc12ReðZ7e
�i�23Þþs12s13 ImðZ7e

�i�23Þ;
(C29)

HþH�h3: s13Z3 � c13 ImðZ7e
�i�23Þ: (C30)

In Case III’, these couplings simplify to

HþH�h1: � ImðZ7e
�i ��23Þ; (C31)

HþH�h2: ReðZ7e
�i ��23Þ; (C32)

HþH�h3: � Z3: (C33)

Since one of the three neutral states is CP-odd, its
coupling to HþH� must vanish. Taking Z3 and Z7 as
independent and nonvanishing, we can identify the
CP-odd Higgs boson. Hence, using Eqs. (C28)–(C33),
(i) if h1 is CP-odd, then either

s13 ¼ c12 ¼ ReðZ7e
�i�23Þ ¼ 0 ½Case II0b�

or

c13 ¼ ImðZ7e
�i ��23Þ ¼ 0 ½Case III0a�; (C34)

(ii) if h2 is CP-odd, then either

s13 ¼ s12 ¼ ReðZ7e
�i�23Þ ¼ 0 ½Case I0b�

or

c13 ¼ ReðZ7e
�i ��23Þ ¼ 0 ½Case III0b�; (C35)

(iii) if h3 is CP-odd, then either

s13¼ s12¼ ImðZ7e
�i�23Þ¼0 ½CaseI0a�

or

s13¼c12¼ ImðZ7e
�i ��23Þ¼0 ½CaseII0a�; (C36)

These correspond to six possible mass orderings of h1, h2
and h3 in Cases I’, II’ and III’.

We previously identified the CP-even state h01, whose
couplings coincide with those of the standard model Higgs
boson. Using Eq. (B3), the squared-masses of the remain-
ing two neutral Higgs bosons (a CP-even state h02 and a

CP-odd state A0) are given by Eqs. (3.25) and (3.26), after
making use of Eq. (3.22) for Cases I’ and II’ (and replacing
�23 with ��23 for Case III’). We identify the states h01 and h

0
2

with h0 and H0 or vice versa, depending on the mass
ordering. If Z7 ¼ 0, then "57 is not well-defined (since in
the real basis, the sign of Z5 can be flipped by transforming
H2 ! iH2). In this case, the individual CP-quantum num-
bers of h02 and A0 are not fixed by the interactions of the
Higgs boson/gauge boson sector. The corresponding
masses are given in Eq. (3.28), which can be derived by
directly solving the characteristic equation of the neutral
Higgs squared-mass matrix [cf. Eq. (B1)].
A summary of the basis-independent conditions for

CP-invariance, under the assumption that Z6 ¼ 0 and the
Higgs masses are nondegenerate, along with the identifi-
cation of the CP quantum numbers of the three neutral
Higgs states can be found in Table VI.

37If Z7 ¼ 0 but 
Q � 0, then our analysis still goes through
with Z7 replaced by 
Q� (Q ¼ U, D or E).
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4. Degenerate masses in the
CP-conserving limit with Z6 ¼ 0

It is possible to have two mass-degenerate neutral Higgs
bosons in the 2HDM with Z6 ¼ 0, for special choices of
Z1. If Z1 satisfies

Z1 ¼ Y2=v
2 þ 1

2
ðZ3 þ Z4 � "57jZ5jÞv2; (C37)

then Eqs. (3.24) and (3.26) yield mh0
1
¼ mA0 [this is the

analogue of Eq. (C12)]. Likewise, if Z1 satisfies

Z1 ¼ Y2=v
2 þ 1

2
ðZ3 þ Z4 þ "57jZ5jÞv2; (C38)

then Eqs. (3.24) and (3.25) yield mh0
1
¼ mh0

2
(this has no

analogue with any of the Z6 � 0 cases). In the presence of
mass degeneracies, one must reconsider the definition of
the mixing angles �12 and �13. As in the discussion below
Eq. (C16), if two neutral scalar states of opposite CP
quantum number are mass-degenerate, then the structure
of the Higgs interactions guarantees that there exists one
linear combination of the mass-degenerate neutral Higgs
states that is CP-even and an orthogonal linear combina-
tion that is CP-odd. If the two neutral mass-degenerate
scalar states are CP-even, then there exists one linear
combination whose properties coincide precisely with
those of the standard model Higgs boson. We designate
this scalar field by h01 and the orthogonal linear combina-

tion by h02. In light of these remarks, the results of Table VI
continue to hold even in the mass-degenerate case.

However, there are three new cases that arise if two of
the neutral Higgs fields are mass-degenerate, which are not
accounted for by Cases I’, II’ and III’. These exceptional
cases correspond to the omitted cases described below
Eq. (C19). In particular, mass degeneracies arise for a
special choice of Z1 in the following cases:

Case IV’: s13 ¼ ImðZ5e
�2i�23Þ ¼ 0 and s12c12 � 0. In

this case, Eq. (C19) yields

Z1 ¼ A2=v2 þ ReðZ5e
�2i�23Þ

¼ Y2=v
2 þ 1

2
½Z3 þ Z4 þ ReðZ5e

�2i�23Þ�; (C39)

where we have used the definition of A2 given in Eq. (B7).
The quantity ReðZ5e

�2i�23Þ is fixed by Eq. (3.22).
Case V’: c12 ¼ ImðZ5e

�2i�23Þ ¼ 0 and s13c13 � 0. In
this case, Eq. (C18) yields

Z1¼A2=v2¼Y2=v
2þ1

2
½Z3þZ4�ReðZ5e

�2i�23Þ�: (C40)

Case VI’: s12 ¼ ImðZ5e
�2i�23Þ ¼ 0 and s13c13 � 0. In

this case, Eq. (C18) yields

Z1¼A2=v2¼Y2=v
2þ1

2
½Z3þZ4�ReðZ5e

�2i�23Þ�: (C41)

Once again, we find thatmh0
1
¼ mA0 if Eq. (C37) is satisfied

and mh0
1
¼ mh0

2
if Eq. (C38) is satisfied.

To identify the CP quantum numbers of the neutral
Higgs mass-eigenstates, we first examine the GþG�hk
couplings given in Eqs. (C21)–(C23) in order to identify
the mass-degenerate state h01, which is defined below

Eq. (C38) to be the linear combination of mass-degenerate
neutral Higgs fields whose interactions coincide with that
of the standard model Higgs boson. The CP quantum
numbers of the orthogonal linear combination of mass-
degenerate neutral Higgs fields and the third nondegener-
ate state can be obtained by examining the HþH�hk
couplings given in Eqs. (C28)–(C30).
For example, in Case IV’, s13 ¼ 0 which yields

HþH�h1: c12Z3�s12ReðZ7e
�i�23Þ; m2

h1
¼Z1v

2; (C42)

HþH�h2: s12Z3þc12ReðZ7e
�i�23Þ; m2

h2
¼Z1v

2; (C43)

HþH�h3:�ImðZ7e
�i�23Þ; m2

h3
¼½Z1�ReðZ5e

�2i�23Þ�v2:

(C44)

Since h1 and h2 are degenerate, we can redefine new linear
combinations to obtain:

HþH�ðc12h1 þ s12h2Þ: c12Z3; (C45)

HþH�ðc12h2 � s12h1Þ: ReðZ7e
�i�23Þ; (C46)

HþH�h3: � ImðZ7e
�i�23Þ: (C47)

Likewise, the corresponding GþG�hk interactions are

GþG�ðc12h1 þ s12h2Þ: Z1; (C48)

GþG�ðc12h2 � s12h1Þ: 0; (C49)

GþG�h3: 0: (C50)

Thus, one can immediately identify h01 ¼ c12h1 þ s12h2,
since this linear combination possesses the Higgs cou-
plings of the standard model Higgs boson. The second
CP-even Higgs state is identified by its nonzero coupling
toHþH� and depends on whether Z7e

�i�23 is purely real or
purely imaginary. For example, if ImðZ7e

�i�23Þ ¼ 0, then
c12h2 � s12h1 is CP-even and h3 is CP-odd, and vice versa
if ReðZ7e

�i�23Þ ¼ 0.
Cases V’ and VI’ can be similarly treated. In particular,

Case V0: m2
h1

¼ ½Z1 þ ReðZ5e
�2i�23Þ�v2;

m2
h2

¼ m2
h3

¼ Z1v
2;

(C51)

Case VI0: m2
h2

¼ ½Z1 þ ReðZ5e
�2i�23Þ�v2;

m2
h1

¼ m2
h3

¼ Z1v
2:

(C52)
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If we impose the mass-orderingmh1 � mh2 � mh3 in order

not to duplicate regions of the 2HDM parameter space,
then we can omit Case VI’. We summarize the exceptional
mass-degenerate cases in Tables XIII, XIV, XV, and XVI.

In the analysis presented above, we assumed that Z5 � 0.
If Z5 ¼ Z6 ¼ 0, then Eqs. (3.25) and (3.26) imply that h02
and A0 are mass-degenerate, independently of any special
choice for Z1. All three neutral scalars are degenerate in
mass in the special case of Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4Þ.

Moreover, the invariant form of the Higgs squared-mass
matrix given in Eq. (2.17) is diagonal. Thus, in this case it
is simplest to take �12 ¼ �13 ¼ �23 ¼ 0 (instead of impos-
ing a mass-ordering of the hk fields). Equation (C21)
implies that h1 is the CP-even neutral Higgs field whose
couplings coincide with that of the standard model Higgs
boson. Equations (C29) and (C30) imply that h3 is CP-odd
and h2 is CP-even if ImðZ7e

�i�23Þ ¼ 0 and vice versa if
ReðZ7e

�i�23Þ ¼ 0. In this case, �23 simply keeps track of
the overall phase of Z7. Finally, in the special case of
Z5 ¼ Z6 ¼ Z7 ¼ 0 (cf. Sec. III D), the individual CP
quantum numbers of h2 and h3 cannot be determined
from the bosonic sector alone.

In Sec. IVA2, we determined the basis-independent
conditions for a custodial-symmetric scalar potential. In
the case of Z6 ¼ 0 and Z5, Z7 � 0, the relevant condition is
Z4 ¼ �57jZ5j [cf. Eq. (4.45)], which yields mA0 ¼ mH�

[cf. Eq. (4.48)]. If we apply this limit to Table XIII, we
discover that there are two possibilities: either A0 is degen-
erate in mass withH� (Cases IV’a, V’b and VI’b), or there
are two neutral fields, one CP-even and one CP-odd, that
are degenerate in mass with H� (Cases IV’b, V’a, and
VI’a). If Z5 � 0, Z6 ¼ Z7 ¼ 0 and the Higgs-fermion
interactions are CP-conserving, then as shown in
Sec. IVA3, there are two possible conditions,
Z4 ¼ ��5QjZ5j, that yield a custodial-symmetric scalar

potential. Table XIII can again be used if one replaces
"57 replaced by "5Q. As shown in Eq. (4.50), the relation

Z4 ¼ �5QjZ5j yields mA0 ¼ mH� , and one recovers the

results given above for the possible Higgs mass degener-
acies. In contrast, the relation Z4 ¼ ��5QjZ5j yields

mH0 ¼ mH� . In this case, there are again two possibilities:
either H0 is degenerate in mass with H� (Cases IV’b, V’a
and VI’a), or there are two neutral CP-even fields, h01 and

TABLE XIII. Basis-independent conditions for a CP-conserving 2HDM scalar potential and vacuum when Z6 ¼ 0 and Z5, Z7 � 0,
assuming at least two degenerate neutral Higgs boson masses. The cases below are exceptional, as they do not arise as limits of
Cases I’, II’ and III’ [cf. Table VI]. If we impose the mass-ordering mh1 � mh2 � mh3 , then Cases VI’a and b can be eliminated. The

neutral-Higgs mixing angles �12 in Case IV’ and �13 in Cases V’ and VI’ are defined such that the couplings of h
0
1 (defined as the linear

combination of mass-degenerate neutral-Higgs fields specified below) coincides precisely with those of the standard model Higgs
boson. The phase factor �2 that governs the CP transformation law [cf. Eq. (3.7)] is equal toþ1 in Cases IV’a, V’a, and VI’a, and�1
in Cases IV’b, V’b, and VI’b. Additional conditions in which Z7 is replaced by 


Q� (Q ¼ U,D and E), respectively, must also hold due
to the phase correlations implicit in Eqs. (3.19) and (3.20). The squared-mass of the two mass-degenerate neutral Higgs states is equal
to Z1v

2, while the third nondegenerate neutral state has a squared-mass equal to ðZ1 � �57jZ5jÞv2, where the plus sign is taken in
Cases IV’b, V’a, and VI’a, and the minus sign is taken in Cases IV’a, V’b, and VI’b.

Cases conditions [in all cases below, ImðZ5e
�2i�23 Þ ¼ 0] A0 h01 h02

IV’a s13 ¼ ImðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 þ �57jZ5jÞ h3 c12h1 þ s12h2 c12h2 � s12h1

IV’b s13 ¼ ReðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 � �57jZ5jÞ c12h2 � s12h1 c12h1 þ s12h2 h3

V’a c12 ¼ ImðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 � �57jZ5jÞ c13h3 þ s13h2 c13h2 � s13h3 h1

V’b c12 ¼ ReðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 þ �57jZ5jÞ h1 c13h2 � s13h3 c13h3 þ s13h2

VI’a s12 ¼ ImðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 � �57jZ5jÞ c13h3 � s13h1 c13h1 þ s13h3 h2

VI’b s12 ¼ ReðZ7e
�i�23 Þ ¼ 0, Z1 ¼ Y2=v

2 þ 1
2 ðZ3 þ Z4 þ �57jZ5jÞ h2 c13h1 þ s13h3 c13h3 � s13h1

TABLE XIV. The U(2)-invariant quantities qk‘ for Cases IV’a
and IV’b.

k qk1 qk2

1 c12 �s12
2 s12 c12
3 0 i

TABLE XV. The U(2)-invariant quantities qk‘ for Cases V’a
and V’b.

k qk1 qk2

1 c13 �is13
2 0 1

3 s13 ic13

TABLE XVI. The U(2)-invariant quantities qk‘ for Cases VI’a
and VI’b.

k qk1 qk2

1 0 1

2 �c13 is13
3 s13 ic13
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h02, that are degenerate in mass with H� (Cases IV’a, V’b,
and VI’b). If one now imposes one additional condition,
Z4 ¼ Z5 ¼ 0, then all three neutral Higgs bosons are de-
generate with the charged Higgs boson. Hence, any per-
mutation of possible neutral Higgs mass degeneracies with
the charged Higgs boson is a possible consequence of
custodial symmetry, if one allows for sufficiently restric-
tive conditions on the scalar potential.

APPENDIX D: CALCULATION OF THE 2HDM
CONTRIBUTIONS TO S, T, AND U

The one-loop corrections to the gauge boson two-point
functions contain three- and four-point interactions
between gauge bosons and the Higgs bosons, the form of
which can be read off from Eqs. (A1) and (A2). The
resulting Feynman rules in the ’t Hooft-Feynman gauge
are exhibited in Table XVII. The 2HDM contributions to S

TABLE XVII. Feynman rules used in the calculation of the oblique parameters. The four-momentum p1 points into the vertex, and
the four-momentum p2 points out of the vertex.
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are displayed in Tables XVIII and XIX. The 2HDM con-
tributions to T are displayed in Tables XX and XXI. The
2HDM contributions toU are displayed in Table XXII. The
reference standard model contributions, which are sub-

tracted out from the 2HDM contributions, are shown in
Table XXIII.
The loop integrals are defined and evaluated following

Ref. [36].

TABLE XVIII. Diagrams representing the 2HDM contributions to S, part 1.

Contributions to �2H
ZZ (m2

Z)

TABLE XIX. Diagrams representing the 2HDM contributions to S, part 2.

Contributions to �2H
�� (m2

Z) and �2H
Z� (m2

Z)
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Z d4k

ð2�Þ4
1

ðk2 �m2Þ ¼
i

16�2
A0ðm2Þ; (D1)

Z d4k

ð2�Þ4
1

ðk2�m2
1Þ½ðkþqÞ2�m2

2�
¼ i

16�2
B0ðq2;m2

1;m
2
2Þ;

(D2)

Z d4k

ð2�Þ4
k�k�

ðk2 �m2
1Þ½ðkþ qÞ2 �m2

2�
¼ i

16�2
g��B22ðq2;m2

1; m
2
2Þ: (D3)

The following two relations are noteworthy:

B0ð0;m2
1; m

2
2Þ ¼

A0ðm2
1Þ � A0ðm2

2Þ
m2

1 �m2
2

; (D4)

4B22ð0;m2
1;m

2
2Þ¼F ðm2

1;m
2
2ÞþA0ðm2

1ÞþA0ðm2
2Þ; (D5)

where

F ðm2
1; m

2
2Þ �

1

2
ðm2

1 þm2
2Þ �

m2
1m

2
2

m2
1 �m2

2

ln

�
m2

1

m2
2

�
: (D6)

The contributions to S from the diagrams in
Table XVIII, XIX, and XXIII are evaluated by employing
Eq. (5.4) and (5.7), with the following result38:

TABLE XX. Diagrams representing the 2HDM contributions to T, part 1.

Contributions to A2H
WWð0Þ

38The 2H superscript indicates the 2HDM contributions and the
SM superscript indicates the contributions from the standard
model with a reference Higgs mass m� that is subtracted off
from the 2HDM result. This subtraction procedure is necessary
in order to get a finite result.
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S � 16�c2W
g2

�
F2H
ZZ ðm2

ZÞ � FSM
ZZ ðm2

ZÞ � F2H
��ðm2

ZÞ þ FSM
�� ðm2

ZÞ �
c2W
sWcW

½F2H
Z�ðm2

ZÞ � FSM
Z� ðm2

ZÞ�
�

¼ 1

�m2
Z

�X3
k¼1

q2k1½B22ðm2
Z;m

2
Z; m

2
kÞ �m2

ZB0ðm2
Z;m

2
Z;m

2
kÞ� þ q211B22ðm2

Z;m
2
2; m

2
3Þ þ q221B22ðm2

Z;m
2
1; m

2
3Þ

þ q231B22ðm2
Z;m

2
1; m

2
2Þ �B22ðm2

Z;m
2
H� ; m2

H�Þ �B22ðm2
Z;m

2
Z; m

2
�Þ þm2

ZB0ðm2
Z;m

2
Z; m

2
�Þ
�
; (D7)

where the Fijðm2
VÞ are defined in Eq. (5.4).

TABLE XXI. Diagrams representing the 2HDM contributions to T, part 2.

Contributions to A2H
ZZð0Þ
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The parameter T can be calculated in a similar manner, where Eqs. (D4)–(D6) are especially useful. Adding the
contributions to T from all the diagrams shown in Tables XX, XXI, and XXIII yields

�T � A2H
WWð0Þ
m2

W

� A2H
ZZð0Þ
m2

Z

�
�
ASM
WWð0Þ
m2

W

� ASM
ZZ ð0Þ
m2

Z

�

¼ g2

16�2m2
W

�X3
k¼1

jqk2j2B22ð0;m2
H� ; m2

kÞ � q211B22ð0;m2
2; m

2
3Þ � q221B22ð0;m2

1; m
2
3Þ � q231B22ð0;m2

1; m
2
2Þ

þ X3
k¼1

q2k1½B22ð0;m2
W;m

2
kÞ � B22ð0;m2

Z; m
2
kÞ �m2

WB0ð0;m2
W;m

2
kÞ þm2

ZB0ð0;m2
Z; m

2
kÞ�

� 1

2
A0ðm2

H�Þ � B22ð0;m2
W;m

2
�Þ þ B22ð0;m2

Z; m
2
�Þ þm2

WB0ð0;m2
W;m

2
�Þ �m2

ZB0ð0;m2
Z; m

2
�Þ
�
; (D8)

where the Aijð0Þ are defined in Eq. (5.4). Using � ¼ g2s2W=ð4�Þ to isolate T and simplifying the result by employing
Eq. (D5), we end up with

T ¼ 1

16�m2
Ws

2
W

�X3
k¼1

jqk2j2F ðm2
H� ; m2

kÞ � q211F ðm2
2; m

2
3Þ � q221F ðm2

1; m
2
3Þ � q231F ðm2

1; m
2
2Þ

þ X3
k¼1

q2k1½F ðm2
W;m

2
kÞ �F ðm2

Z; m
2
kÞ � 4m2

WB0ð0;m2
W;m

2
kÞ þ 4m2

ZB0ð0;m2
Z; m

2
kÞ��

þF ðm2
Z;m

2
�Þ �F ðm2

W;m
2
�Þ þ 4m2

WB0ð0;m2
W;m

2
�Þ � 4m2

ZB0ð0;m2
Z; m

2
�Þ
�
: (D9)

TABLE XXII. Diagrams representing the 2HDM contributions to Sþ U.

Contributions to �2H
WW (m2

W)

Contributions to �2H
�� (m2

W) and �2H
Z� (m2

W)
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Lastly, adding all of the contributions to SþU in Tables XXII and XXIII gives the following:

SþU ¼ 16�

g2

�
FWWðm2

WÞ � F��ðm2
WÞ �

cW
sW

FZ�ðm2
WÞ
�

¼ 1

�m2
W

�
�X3

k¼1

q2k1m
2
WB0ðm2

W ;m
2
W;m

2
kÞ þm2

WB0ðm2
W ;m

2
W;m

2
�Þ �B22ðm2

W ;m
2
W;m

2
�Þ�

þ X3
k¼1

½q2k1B22ðm2
W ;m

2
W;m

2
kÞ þ jqk2j2B22ðm2

W ;m
2
H� ; m2

kÞ� � 2B22ðm2
W ;m

2
H� ; m2

H�Þ
�
: (D10)

TABLE XXIII. standard model contributions to the oblique parameters.

Contributions to �SM
WW (m2

W) and �SM
ZZ (m

2
Z)

Contributions to ASM
WWð0Þ and ASM

ZZ ð0Þ
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The formulae for the oblique parameters in a general
extended-Higgs sector model with an arbitrary number of
scalar singlets and doublets has been presented in ref. [37].
In contrast to our above results, the treatment of Ref. [37]
employs a basis-dependent scalar-mixing matrix. In par-
ticular, our expressions for the oblique parameters depend
only on the masses of the physical Higgs fields and the
basis-invariant functions qk‘.

APPENDIX E: HIGGS MASSES AND MIXING
ANGLES IN THE DECOUPLING LIMIT

In the decoupling limit of the 2HDM [28], one neutral
Higgs boson is kept light, with mass & OðmZÞ, and the
other Higgs boson masses are taken large compared to mZ.
In this case, one can formally integrate out the heavy Higgs
states, and the effective low-energy theory consists of a
one-Higgs-doublet model. In the decoupling limit, the
properties of the light neutral Higgs boson must approach
those of the standard model Higgs boson. It is simplest to
characterize the decoupling limit in the Higgs basis as
follows:

ðiÞ jZij & Oð1Þ; (E1)

ðiiÞY2 � v2: (E2)

We shall define � to be the mass scale that characterizes
the heavy Higgs states, i.e. Y2 Oð�Þ. In light of
Eq. (2.22), these two requirements imply that mH� � v.

It is convenient to work in the basis of neutral-Higgs
mass-eigenstate h1, h2 and h3, in which the corresponding
squared-masses are given by Eq. (B3). Assuming Eqs. (E1)
and (E2), the squared-masses are given by

m2
1 ¼ ðs212 þ c212s

2
13ÞY2 þOðv2Þ; (E3)

m2
2 ¼ ðc212 þ s212s

2
13ÞY2 þOðv2Þ; (E4)

m2
3 ¼ c213Y2 þOðv2Þ; (E5)

after employing the qk2 given in Table I. In the decou-
pling limit, precisely two of the three neutral Higgs
masses are of OðY2Þ whereas the third neutral Higgs
boson mass is of order Oðv2Þ. Moreover, to preserve
consistency of Eqs. (B5) and (B6), we required that terms
of OðY2=v

2Þ cancel in these two equations, which yield
the conditions

Y2s13c13 & Oðv2Þ; Y2c
2
13s12c12 & Oðv2Þ: (E6)

The above requirements lead to three possible cases:

Case I0: js12j  js13j & Oðv2=Y2Þ ) m2; m3 � m1;

Case II0: jc12j  js13j & Oðv2=Y2Þ ) m1; m3 � m2;

Case III0: jc13j & Oðv2=Y2Þ ) m1; m2 � m3:

The nomenclature for these three cases follows that of
Appendix C, although we do not assume that Z6 ¼ 0 in the
present discussion. In all three cases, we can now obtain
expressions for the corresponding neutral-Higgs squared-
masses.
In Case I’,

m2
1 ’ Z1v

2; (E7)

m2
2 ’ Y2 þ 1

2
½Z3 þ Z4 þ ReðZ5e

�2i�23Þ�v2; (E8)

m2
3 ’ Y2 þ 1

2
½Z3 þ Z4 � ReðZ5e

�2i�23Þ�v2: (E9)

In Case II’,

m2
1 ’ Y2 þ 1

2
½Z3 þ Z4 þ ReðZ5e

�2i�23Þ�v2; (E10)

m2
2 ’ Z1v

2; (E11)

m2
3 ’ Y2 þ 1

2
½Z3 þ Z4 � ReðZ5e

�2i�23Þ�v2: (E12)

In Case III’,

m2
1 ’ Y2 þ 1

2
½Z3 þ Z4 � ReðZ5e

�2i ��23Þ�v2; (E13)

m2
2 ’ Y2 þ 1

2
½Z3 þ Z4 þ ReðZ5e

�2i ��23Þ�v2; (E14)

m2
3 ’ Z1v

2; (E15)

where ��23 is defined in Eq. (C20) [cf. the comments that
precede this equation]. In all cases above, we omit terms of
Oðv4=Y2Þ.
Despite appearances, the above mass formulae are

consistent. In Cases I’ and II’, Eq. (B4) implies that
ImðZ5e

�2i�23Þ & Oðv2=Y2Þ. It follows that ReðZ5e
�2i�23Þ¼

"jZ5jþOðv2=Y2Þ, where
" � sgn½ReðZ5e

�2i�23Þ�: (E16)

Hence, in Cases I’ and II’, the squared-masses of the two
heavy states are given by

Y2 þ 1

2
ðZ3 þ Z4 � jZ5jÞ þO

�
v2

Y2

�
: (E17)

In Case III’, Eq. (B6) implies that ImðZ5e
�2i ��23Þ &

Oðv2=Y2Þ. In this case, in then follows thatReðZ5e
�2i ��23Þ ¼

�"jZ5j þOðv2=Y2Þ, where �" ¼ sgn½ReðZ5e
�2i ��23Þ�. Once

again, the squared-masses of the two heavy states again
reduce to Eq. (E17).
In the analysis above, no assumption was made for the

value of Z6. If Z6 ¼ 0 then Eqs. (C17)–(C19) imply that

ImðZ5e
2i�23Þ ¼ 0 in Cases I’ and II’ and ImðZ5e

2i ��23Þ ¼ 0
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in Case III’. In this case, one can diagonalize the neutral
Higgs squared-mass matrix exactly [cf. Equation (2.17)].
In particular, in the case of Z6 ¼ 0, the squared-mass
formulae given in Eqs. (E7)–(E15) [and in Eq. (E17)] are
exact, with no Oðv2=Y2Þ corrections.

In the case of a CP-conserving scalar potential and
Z6 � 0, we note that Case I of Table II is consistent with
Case I’ above, and the decoupling limit is specified by
js12j Oðv2=Y2Þ. Case IIb of Table II is consistent with
Case II’ above, and the decoupling limit is specified by
js13j Oðv2=Y2Þ. Finally, Case IIa of Table II is consis-
tent with either Cases I’ or III’. The corresponding de-
coupling limit is js13j Oðv2=Y2Þ in Case I’ and
jc13j Oðv2=Y2Þ in Case III’.

It is convenient to adopt a convention where m1 <m2,
m3. In this convention, only Case I’ is relevant in the
decoupling limit. Henceforth, we shall assume that h1 is
the lightest neutral Higgs boson in the decoupling limit. No
mass-ordering of h2 and h3, which depends on the sign ",
will be assumed.

For completeness (and as a check of the above results),
we provide an alternate derivation of the neutral Higgs
squared-masses and mixing in the decoupling limit. We
may compute the eigenvalues of Eq. (2.17) directly by
setting Z6 ¼ 0 and treating Z6 as a small perturbation. In
first approximation,

m2
1 ’ Z1v

2; (E18)

m2
2;3 ’ m2

H� þ 1

2
ðZ4 � jZ5jÞv2; (E19)

where we have used Eq. (2.22). To determine which
squared masses in Eq. (E19) correspond to h2 and h3,
one can also treat the off-diagonal 23 and 32 elements of
Eq. (2.17) perturbatively, in which case one finds

m2
2 �m2

3 ’
8<
: jZ5jv2; for ReðZ5e

�2i�23Þ � 0;

�jZ5jv2; for ReðZ5e
�2i�23Þ � 0:

(E20)

That is, all the heavy scalar squared-masses can be written
in terms of a single large squared-mass parameter �2 as
follows:

m2
3 � �2; (E21)

m2
2 ¼ �2 þ "jZ5jv2; (E22)

m2
H� ¼ �2 � 1

2
½Z4 � "jZ5j�v2; (E23)

where " is defined in Eq. (E16).
Corrections proportional to Z6 enter at second-order in

perturbation theory and contribute terms that are paramet-
rically smaller than the results displayed in Eqs. (E18) and
(E19). In particular,

m2
1 ’ Z1v

2 � jZ6j2v4

�2
: (E24)

The invariant neutral Higgs mixing angles in the decou-
pling limit can be determined directly from eqs. (C21) and
(C25) of Ref. [2], which we reproduce below:

s213 ¼
ðZ1v

2 �m2
1ÞðZ1v

2 �m2
2Þ þ jZ6j2v4

ðm2
3 �m2

1Þðm2
3 �m2

2Þ
; (E25)

c213s
2
12 ¼

ðZ1v
2 �m2

1Þðm2
3 � Z1v

2Þ � jZ6j2v4

ðm2
2 �m2

1Þðm2
3 �m2

2Þ
: (E26)

These expressions are exact. Assuming that Z5 � 0, it then
immediately follows from Eqs. (E21)–(E24) that39:

s213  s212 O
�
v4

�4

�
; (E27)

since the numerators of Eqs. (E25) and (E26) are of order
v6=�2, whereas the denominators are of order�2v2. Some
care is required to treat the case of Z5 ¼ 0 [since in this
case m2

2 �m2
3 & Oðv4=�2Þ]. Nevertheless, our original

analysis above confirms that Eq. (E27) still holds. Hence,
in the decoupling limit,40

js12j  js13j ’ O
�
v2

�2

�
; c12  c13 ’ 1; (E28)

in a convention where h1 is defined to be the lightest
neutral Higgs boson.
In the CP-conserving limit, the neutral Higgs masses in

the decoupling limit can be obtained directly from
Eqs. (3.16) and (3.17) by assuming that

m2
h0

’ Z1v
2; (E29)

m2
H0 ’ m2

A þ "56jZ5jv2; (E30)

m2
A0 ’ m2

H� þ 1

2
ðZ4 � �56jZ5jÞv2; (E31)

as one approaches the decoupling limit, in agreement with
Eqs. (E18) and (E21)–(E23). In particular, referring to
Table II, we identify h1 ¼ h0 and

39If Z6 ¼ 0 then m2
1 ¼ Z1v

2 is exact, in which case s12 ¼
s13 ¼ 0 with no additional corrections.
40By convention, we take� 1

2� � �12, �13 <
1
2�, in which case

c12, c13 � 0.
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h2 ¼ H0; h3 ¼ A0; and ReðZ5e
�2i�23Þ ¼ "56jZ5j;

ðCase IÞ (E32)

h2 ¼ A0; h3 ¼ H0; and ReðZ5e
�2i�23Þ ¼ �"56jZ5j;

ðCase IIaÞ (E33)

from which it follows that

" ¼ �2�56: (E34)

In the case of Z6 ¼ 0, Eq. (E29) is an exact result. In
addition, Eqs. (E30)–(E34) apply with "56 replaced by "57
and/or "5Q as appropriate, with the new versions of

Eqs. (E32) and (E33) applying in Cases I0a and I0b of
Table VI, respectively.

Finally, we note that in the limit of custodial symmetry,
the 2HDM potential and vacuum are CP-conserving and
Eq. (4.38) is satisfied. That is,

Z4 ¼ �2"jZ5j; (E35)

in the case of a generic scalar potential. Consider first the
case of Z6 � 0. Then, using Eqs. (E29)–(E31),

m2
A0 �m2

H� ¼ 1

2
jZ5jð�2"� �56Þv2; (E36)

m2
H0 �m2

H� ¼ 1

2
jZ5jð�2"þ �56Þv2: (E37)

Using Eq. (E34), it follows that m2
H� ¼ m2

A0 , as expected.

For Z6 ¼ 0 and Z7 � 0, simply replace "56 with "57 and
the same conclusions follow. In the special case of Z6 ¼
Z7 ¼ 0 (and assuming CP-conserving Higgs-fermion
Yukawa interactions), it is also possible to have a
custodial-symmetric scalar potential with Z4 ¼
��2"jZ5j [cf. Eq. (4.43) and Sec. IVA3]. Replacing
"56 above with "5Q, it then follows that m2

H� ¼ m2
H0 . Of

course, both these Higgs mass degeneracies are enforced
by the custodial symmetry independently of the decou-
pling limit.

APPENDIX F: DERIVATION OF TREE-LEVEL
UNITARITY LIMITS

The assumption of tree-level unitarity in scattering pro-
cesses implies an upper bound on the magnitudes of the Zi

parameters. This places an upper limit on the masses of the
heavy Higgs states in parameter regimes in which the
decoupling limit does not apply. The implications of uni-
tarity for the 2HDM has been studied in the context of the
scattering of gauge bosons and the physical scalars in
Refs. [38,39]. By placing an upper limit on the amplitude
for a process ’A’B ! ’C’D, one can quantify the con-
straints from tree-level unitarity as follows:

jgABCDj< 8�: (F1)

For tree-level scattering processes, only the quartic
bosonic couplings are relevant, namely WþW�WþW�,
WþW�HþH�, ðHþei�23ÞðHþei�23ÞW�W� þ H:c:,
Z0Z0Z0hm, G0hmG

�ðHþei�23Þ þ H:c:, Z0Z0HþH�, and
Z0Z0W�ðHþei�23Þ.
The equivalence theorem [40] allows one equate a high

energy scattering amplitude involving gauge bosons to the
analogous amplitude involving Goldstone bosons, up to an
unimportant overall sign, by making the replacements
W� ! G� and Z0 ! G0. Thus, one can translate limits
on the gauge boson/Higgs couplings into limits on the
Goldstone/Higgs couplings. The resulting constraints on
Z1, Z3, Z3 þ Z4, ReðZ5e

�2i�23Þ, and ReðZ6e
�i�23Þ can be

read off directly from Eqs. (A8), as shown in Table XXIV.
The CP-violating parameters ImðZ5e

�2i�23Þ and
ImðZ6e

�i�23Þ appear in a more complicated form in the
quartic scalar potential. From the interaction
1
2 Imðqm2Z6e

�i�23ÞG0G0G0hm and Table I, one can write

Feynman rules for m ¼ 1, 2:

gG0G0G0h1
¼3f�s12 Im½Z6e

�i�23��c12s13Re½Z6e
�i�23�Þg;

gG0G0G0h2
¼3fc12 Im½Z6e

�i�23��s12s13Re½Z6e
�i�23�g; (F2)

after including an overall symmetry factor 3! correspond-
ing to three identical particles at the vertex. Unitarity
requires jgG0G0G0hm

j< 8�. It is convenient to combine

the two limits in quadrature to isolate ImðZ6e
�i�23Þ. That

is, jgG0G0G0h1
j2 þ jgG0G0G0h2

j2 < 64�2, which yields

TABLE XXIV. Calculation of tree-level unitarity limits on the CP-conserving quartic couplings. Combinatorial factors are included
to take into account identical particles.

Relevant term in the scalar potential Amplitude Resulting unitarity bound

1
2Z1G

þG�GþG� 1
16� ð12Z1Þ � 4 jZ1j< 4�

1
2Z3G

0G0HþH� 1
16� ð12Z3Þ � 2 jZ3j< 8�

ðZ3 þ Z4ÞGþG�HþH� 1
16� ðZ3 þ Z4Þ jZ3 þ Z4j< 8�

1
2Z5e

�2i�23 ðHþei�23 ÞðHþei�23 ÞG�G� þ H:c: 1
16� ReðZ5e

�2i�23 Þ � 4 jReðZ5e
�2i�23 Þj< 2�

Z6e
�i�23G0G0G�ðHþei�23 Þ þ H:c: 1

16� ReðZ6e
�i�23 Þ � 4 jReðZ6e

�i�23 Þj< 2�
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½ImðZ6e
�i�23Þ�2 þ s213½ReðZ6e

�i�23Þ�2 < 64�2

9
: (F3)

Since s213½ReðZ6e
�i�23Þ�2 is real and non-negative, it must

be true that jImðZ6e
�i�23Þj< 8�=3.

Similarly, one can use the term 1
2 iG

0hmfG�Hþei�23�
½q�m2Z4 � qm2Z5e

�2i�23� þ H:c:g with m ¼ 1, 2 to derive

gG0G�ðHþei�23 Þh1 ¼ �c12s13Z4 � s12 ImðZ5e
�2i�23Þ

� c12s13 ReðZ5e
�2i�23Þ;

gG0G�ðHþei�23 Þh2 ¼ �s12s13Z4 þ c12 ImðZ5e
�2i�23Þ

� s12s13 ReðZ5e
�2i�23Þ: (F4)

Adding the contributions of the two couplings above in
quadrature and applying the unitarity bound yields after
some simplification:

s213½Z4þReðZ5e
�2i�23Þ�2þ½ImðZ5e

�2i�23Þ�2<64�2: (F5)

In particular, one must satisfy jImðZ5e
�2i�23Þj< 8�.
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