
Group-theoretic condition for spontaneous CP violation

Howard E. Haber1 and Ze’ev Surujon2

1Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064, USA
2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

(Received 18 January 2012; published 4 October 2012)

We formulate the necessary conditions for a scalar potential to exhibit spontaneous CP violation.

Associated with each complex scalar field is a U(1) symmetry that may be explicitly broken by terms in

the scalar potential (called spurions). In order for CP-odd phases in the vacuum to be physical, these

phases must be related to spontaneously broken U(1) generators that are also explicitly broken by a

sufficient number of inequivalent spurions. In the case where the vacuum is characterized by a single

complex phase, our result implies that the phase must be associated with a U(1) generator that is broken

explicitly by at least two inequivalent spurions. A suitable generalization of this result to the case of

multiple complex phases has also been obtained. These conditions may be used both to distinguish models

capable of spontaneous CP violation and as a model building technique for obtaining spontaneously

CP-violating deformations of CP-conserving models. As an example, we analyze the generic two Higgs

doublet model, where we also carry out a complete spurion analysis. We also comment on other models

with spontaneous CP violation, including the chiral Lagrangian, a minimal version of the Nelson-Barr

model, and little Higgs models with spontaneous CP violation.
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I. INTRODUCTION

In the Standard Model (SM), CP invariance is broken
explicitly by the Cabibbo-Kobayashi-Maskawa (CKM)
phase. Models beyond the SM often introduce additional
CP-odd phases. For example, these new sources of CP
violation are needed to explain the baryon asymmetry of
the Universe [1]. However, the observation ofCP-violating
phenomena does not necessarily imply that the fundamen-
tal source of CP noninvariance is due to the explicit break-
ing of CP. In particular,CP-violating phenomena may be a
consequence of spontaneous CP violation, where the
Lagrangian of the theory respects the CP symmetry but
the vacuum is not invariant under CP. Such a case arises
when the vacuum expectation value (VEV) of a scalar field
operator exhibits physical CP-odd phases (which cannot
be removed from the theory by field redefinitions). Models
in which all CP-odd phases, including the CKM phase,
are due to spontaneous CP violation have the potential of
solving the strong CP problem, as exhibited by the Nelson-
Barr models [2].

Explicit CP violation may be established by proving the
nonexistence of a real basis, i.e., a basis in field space
where all couplings are real. A basis-independent approach
is one that identifies basis-invariant quantities that are CP
odd. Perhaps the best-known example is the Jarlskog in-
variant [3] of the SM. In contrast, the case of spontaneous
CP violation is more complicated. In its simplest form,
spontaneous CP violation (SCPV) occurs if and only
if a class of real bases exists (which implies that the
Lagrangian respects the CP symmetry), but no real basis
exists in which all the VEVs are simultaneously real
valued. In this case, the CP-odd invariants depend on the

Lagrangian couplings both explicitly and implicitly via the
VEVs [4,5]. Therefore, they are generally complicated
functions of the model parameters. Moreover, it is difficult
to systematize the construction of these invariants in a
model-independent way.
It is the purpose of this paper to provide a model-

independent formulation of the necessary conditions for
spontaneous CP violation. These conditions derive from
the fact that any phase in the VEV must be related to a
spontaneously broken U(1) generator. In order for this phase
to be physical, it is clear that the associated U(1) symmetry
should be broken explicitly. The coefficients of the corre-
sponding U(1)-breaking terms that appear in the Lagrangian
will henceforth be called spurions, since the explicit U(1)
symmetry breaking can be formally restored by assigning
appropriate transformation laws to these coefficients [in
particular, spurions by definition carry a nonzero U(1)
charge]. However, in order to guarantee that the phase in
the VEV is physical, there must be a sufficient number of
inequivalent spurions relative to the number of broken U(1)
generators. For example, a single complex VEV can give
rise to SCPVonly if the associated U(1) is broken explicitly
by at least two spurions whose U(1) charges differ in
magnitude. In theories of multiple complex scalars, there
is a different U(1) associated with each complex field. Each
spurion is characterized by a charge vector, whose compo-
nents are the corresponding U(1) charges. SCPV can arise
only if the number of spurions Ns is larger than the maximal
number of linearly independent charge vectors, denoted
by r. Moreover, the number of potential CP-violating
phases is determined to be equal to r� r0, where r0 is the
number of charge vectors that are linearly independent of
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the remaining Ns � 1 charge vectors. A geometrical inter-
pretation of this result is provided in Appendix A.

The practical implication of this formulation is three-
fold. First, it provides a simple way to find out whether a
potential CP-odd phase in the VEV is physical generically
as a function of the model parameters. Second, it provides
a clearer way to understand why certain regions in the
parameter space never exhibit spontaneous CP violation
while others may do so. Finally, given a CP-conserving
model, our condition can be used to find a deformation of
that model which is spontaneously CP violating in a
generic region of its parameter space.

In this paper, we first compare and contrast explicit and
spontaneousCP violation in Sec. II. In Sec. III, we discuss in
detail the necessary conditions for spontaneousCP violation.
We illustrate these conditions in Sec. IV by applying our
results to the twoHiggs doubletmodel (2HDM) [4–9]. In this
analysis, the relevant explicitly broken U(1) symmetry is the
Peccei-Quinn symmetry [10,11]. In Sec. V, we exhibit our
conditions in other models of spontaneous CP breaking, by
considering the chiral Lagrangian [12], the minimal Nelson-
Barr model [13], and the spontaneouslyCP-violating littlest
Higgs [14]. Applying our formulation provides new insight
to the question of spontaneousCP violation in these models.
Our conclusions and future directions are given in Sec. VI. In
AppendixB,we exhibit the full power of the spurion analysis
for the 2HDM, inwhich we examine spurions with respect to
the full SU(2) Higgs flavor group. We reproduce results
previously obtained by Ivanov [15] and show how this
formalism can be used for constructing basis-independent
invariants.We also provide amore transparent understanding
of the basis-independent condition for the existence of the
U(1) Peccei-Quinn symmetry in the 2HDM.

II. EXPLICITAND SPONTANEOUS CP VIOLATION

The question of whether CP is violated explicitly or
spontaneously deserves some care due to the basis depen-
dence associated with the definition of CP. For simplicity,
we focus in this section on scalar field theories, with scalar
fields �ið ~x; tÞ, for i ¼ 1; 2; . . . n. Consider the following
generalized CP transformation (GCP) [16–21]:

�ið ~x; tÞ ! Xij�
�
j ð� ~x; tÞ: (1)

where X is an n� n unitary matrix. Such a transformation
is automatically a symmetry of the free scalar field theory
action. The form of this generalized CP transformation is
basis dependent. Namely, one can redefine the scalar fields
such that �0

iðxÞ ¼ Uij�jðxÞ, where U is an arbitrary n� n

unitary matrix. The GCP transformation in terms of the
primed fields is of the form given by Eq. (1), where X is
replaced by

X0 ¼ UXUT: (2)

The interacting scalar field theory is GCP invariant if
the action is invariant under Eq. (1) for some choice of X.

Three classes of GCP transformations exist: (i) XX� ¼ 1;
(ii) XX� ¼ �1; and (iii) XX� � �1 (denoted in
Refs. [20,21] as CP1, CP2, and CP3, respectively), where
1 is the n� n identity matrix. However, any CP2 or
CP3 scalar field theory also respects CP1 (henceforth de-
noted as CP). Hence, in what follows we focus on the case
whereXX� ¼ 1, which implies thatX is a symmetric unitary
matrix. We now employ the well-known result that any
symmetric unitary matrix X can be written as the product
of a unitary matrix and its transpose (see e.g., Appendix D.3
of Ref. [22] for a proof of this result). That is, one can always
find a unitarymatrixU such thatX ¼ UyU�. UsingEq. (2), it
then follows that

X0 � UXUT ¼ UUyðUUyÞ� ¼ 1: (3)

That is, for any CP-invariant scalar field theory, there is
always a basis choice for which X0 ¼ 1, in which case the
CP transformation reduces to complex conjugation and
inversion of the space coordinate.

A. Explicit CP violation

If a basis transformation U can be found such that the
scalar field theory action is invariant under Eq. (1) with
X ¼ 1, then there exists a real basis, i.e., a basis where all
the couplings are real and the model is explicitly CP
conserving. Conversely, if Eq. (1) is not a symmetry of
the scalar field theory action for any choice of the unitary
matrix X, then no real basis exists and the scalar field
theory explicitly violates CP.
If the scalar field theorymodel is explicitlyCP conserving,

then a real basis exists, with corresponding GCP transforma-
tionX ¼ 1. Consider the set of basis transformations denoted
by fUrg that maintain the real basis. This set necessarily
includes all real orthogonal n� n matrices. Applying
Eq. (2),we see thatX ¼ 1 is a real basis related to the original
one by a real orthogonal basis change.Depending on the form
of the interacting scalar Lagrangian, the set fUrg may also
include a subset of the unitary n� n matrices, denoted by
fUsg, that are not real (and hence are not orthogonal). In this
case, the corresponding X � 1. Consider the ground state of
the scalar field theory determined by a set of VEVs,
h�ii � vi. If the vacuum is GCP invariant, then vi ¼ Xijv

�
j .

B. Spontaneous CP violation

Given an explicitly CP-conserving scalar field theory,
the vacuum is CP invariant if and only if a real basis exists
in which all the scalar field VEVs are real (cf., Theorem 3
in Appendix F of Ref. [5]). Suppose that a real basis is
chosen such that X ¼ 1 and the scalar field VEVs are not
all real. It still may be possible to find a set of the basis
transformations fUsg that preserve the real basis such that
all the scalar field VEVs are real. In this case, the scalar
field theory and the vacuum are CP conserving. If the set
fUsg is empty, then the model is said to exhibit SCPV.
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Note that if the model is explicitlyCP violating (i.e., there
is no real basis: the set fUrg is empty), then the question of
spontaneous CP violation is no longer meaningful, since
there is no well-defined CP transformation law that one
can apply to the vacuum.

III. NECESSARY CONDITIONS FOR
SPONTANEOUS CP VIOLATION

Given a real basis, spontaneous CP Violation is trig-
gered by physical phases in the VEVs. We shall now
examine what this implies for global symmetries and their
breaking.

A. Single complex scalar

Consider a complex scalar field degree of freedom, �,
and the associated field redefinition � ! ei��. This set of
possible field redefinitions is a U(1) subgroup of the maxi-
mal global symmetry group O(2) of the kinetic energy
terms. Define the generator X of this field redefinition,
such that� is charged under Uð1ÞX while the other degrees
of freedom are neutral. For certain potentials, the field �
acquires a VEV, h�i ¼ vei�, breaking Uð1ÞX spontane-
ously. In this case, it is useful to parameterize the field in
angular variables,

�ðxÞ ¼ �ðxÞeiGðxÞ=v; (4)

where G is a periodic field, G�Gþ 2�v. As long as
Uð1ÞX is not broken explicitly, G is an exact Goldstone
boson. It shifts under Uð1ÞX according to G ! Gþ v�.
This induces a shift in the phase of the VEV, � ! �þ �,
which defines a circle of equivalent vacua. Any phase �0 is
then unphysical, since it is equivalent to � ¼ 0 by a Uð1ÞX
transformation which is an exact symmetry.

There are two possible ways to remove the Goldstone
modeG from the spectrum. First, one may gaugeUð1ÞX, so
that G becomes the longitudinal component of the associ-
ated gauge boson. Note that in this case, the phase is still
unphysical: it can be removed by a gauge transformation.
A second possibility is to introduce explicit breaking of
Uð1ÞX, such that G becomes a massive pseudo-Goldstone
boson.

An explicit breaking of Uð1ÞX introduces a potential for
the otherwise flat Goldstone direction in field space. Then
one may ask whether G acquires a VEV with a nonzero
physical phase. As a first attempt, suppose that Uð1ÞX is
broken by a single term in the potential,

VX ¼ 1

2
b�2 þ H:c:; (5)

where b is real valued. Apart from this term, the Lagrangian
depends only on @�G. The new term introduces the only

nonderivative dependence on G,

VX ¼ b�2 cos
2G

v
; (6)

and is minimized at � ¼ hGi=v ¼ �=2. However, the phase
can be removed by the field redefinition G ! G� v�=2,
which is equivalent to � ! �i�. This transformation
induces a sign flip, b ! �b, such that in the new basis,
the minimum is at � ¼ 0 and there is no CP violation.
Had we introduced a different (higher) power of the

field, e.g., g�4, there would still be a field redefinition

(in this case: � ! e�i�=4�) that removes the phase from
the VEV. Note that while this transformation is not a
symmetry, it leaves the Lagrangian parameters real, merely
changing the sign of g, while removing the phase from the
VEVs. This is true for any single monomial gk�

k. The
reason for this is that such a term always gives rise to a
pure cosine potential, Vkð�Þ ¼ 2gkv

k cosðk�Þ. Since this
potential has the property Vkð�þ �=kÞ ¼ �Vkð�Þ, one can
always choose a basis where the minimum is at the origin,
which implies that the vacuum conserves CP.
If we introduce two terms with different powers of �,

the resulting potential for � becomes a more general func-
tion, whose minimum cannot generically be shifted to the
origin without introducing a phase difference among the
couplings. Here the word ‘‘generically’’ should be inter-
preted as ‘‘in an Oð1Þ fraction of the parameter space.’’ As
an example, consider

VX ¼ b�2 þ g�4 þ H:c:; (7)

where b and g are real. The new terms induce a potential
for the otherwise flat �, which is given by

VX ¼ bv2 cosð2�Þ þ gv4 cosð4�Þ: (8)

For parameters in the range jbj< 4gv2, this potential is
minimized at

cosð2�minÞ ¼ �b=ð4gv2Þ; (9)

generically resulting in spontaneous CP violation.
AlthoughVX given in Eq. (7) provides an explicit violation

of the Uð1ÞX global symmetry, we can formally make VX

neutral underUð1ÞX by assigning two differentUð1ÞX charges
to the coefficients b and g. Indeed, if b ! e�2i�b and
g ! e�4i�g, then VX is formally invariant under the Uð1ÞX
transformation � ! ei��. One can interpret b and g as
vacuum expectation values of two new scalar fields �b and
�g, respectively, inwhich case the explicit breaking ofUð1ÞX
is reinterpreted as the spontaneous breaking of Uð1ÞX due to
the nonzero VEVs for the fields�b and�g. In the literature,

the VEVs b � h�bi and g � h�gi are commonly called

spurions. Thus, in the above example, the spontaneous break-
ing ofCP is attributed to the breaking of theUð1ÞX symmetry
by two spurions whose Uð1ÞX charges differ in magnitude.
Note that for any spurion with Uð1ÞX charge q, there is a

complex conjugated spurion with Uð1ÞX charge �q.
Hence, it is the magnitude of the charge that is relevant
for determining whether SCPV is possible. Thus, we arrive
at the following necessary condition for SCPV in the case
of a single complex scalar field:
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Spontaneous CP violation in a theory of a single com-
plex scalar field may occur only if the related U(1) is
broken by at least two spurions whose U(1) charges differ
in magnitude.

Note that the value of the CP-violating phase in Eq. (9)
does not vanish in theb,g ! 0 limit, as long asb=ðgv2Þ � 1.
This may seem strange at first sight, but it can be understood
as follows. Without the explicit breaking, the phase is not
physical and can take on any value. With explicit breaking
present, no matter how small, the phase becomes physical
and its value is stabilized by the effective potential. That is,
the explicit breaking terms break the degeneracy of the
unperturbed problem (in which the energy is independent
of the phase �). This is typical of all degenerate perturbation
theory problems in quantum mechanics. Indeed, one can
see that for b=v2, g � 1 with b=ðgv2Þ � 1, the depth of
the �-dependent part of the potential, Eq. (8), is of order
gv4 � bv2. Thus, the CP-violating phase becomes mean-
ingless in any physical process whose characteristic energy

(or mass) is larger than g1=4v.

B. Multiple complex scalars

In a model with multiple complex scalar fields, the vac-
uum may be characterized by more than one CP-violating
phase. Although the value of any specific phase is basis
dependent, the number of potential1 CP-violating phases is
well defined and basis independent.

The analysis of Sec. III A shows that in a model with a
single complex scalar field, the spurions are labeled by
their U(1) charge and SCPV requires at least two spurions
with U(1) charges of different magnitude. If this latter
condition is satisfied, then the vacuum is characterized by
at most one independent CP-odd phase. In the case of N
complex scalar fields, the maximal symmetry group of the
kinetic energy terms is Oð2NÞ, whereas the number of
independent physical phases cannot exceed N. These
phases can always be taken to be the ‘‘diagonal’’ phases
associated with the Cartan subgroup Uð1Þ1 � � � � �
Uð1ÞN, where each U(1) rotates the phase of one complex
degree of freedom.2 If the scalar potential contains Ns

inequivalent spurions, then each spurion may be labeled
by an N-dimensional charge vector whose jth component
is the charge under the Uð1Þj. Two spurions will be con-

sidered to be ‘‘equivalent’’ if their charge vectors are equal
up to a possible overall minus sign.3

We construct the Ns � N matrix whose rows are given
by the charge vectors of the spurions. The rank r of this
matrix is equal to the dimension of the vector space
spanned by the corresponding charge vectors. Since the
rank of a matrix cannot exceed the number of columns or
rows, it follows that r 	 minfNs;Ng. The physical inter-
pretation of the rank is easily discerned. Namely, only r
independent U(1)’s are broken by the spurions, which
leaves N � r unbroken U(1)’s. Hence, one can define
new U(1) generators that are linear combinations of the
original U(1) generators such that the first r U(1)
generators are explicitly broken and the last N � r U(1)
generators are unbroken. In particular, the last N � r com-
ponents of the charge vectors of the spurions with respect
to the new set of U(1) generators are zero.
Thus, without loss of generality, one can simply consider

truncated r-dimensional charge vectors (where the last
N � r zeros are removed). Indeed, there can be at most r
physical CP-violating phases associated with the N com-
plex scalar degrees of freedom, since N � r phases can be
removed by employing the unbroken U(1)’s. We shall
denote the truncated r-dimensional charge vectors by

q ðiÞ � ðqðiÞ1 ; qðiÞ2 ; . . . ; qðiÞr Þ; i ¼ 1; . . . ; Ns: (10)

As above, we can assemble the truncated charge vectors

into an Ns � rmatrix whose ith row is given by qðiÞ, which
we denote by Q. By construction, r ¼ rkQ and Ns 
 r.
Consider first the case where Ns ¼ r. This means that

the Ns vectors q
ðiÞ are linearly independent and therefore

Q is an invertible r� r matrix. It is convenient to redefine
the Uð1Þr generators fX1; . . . ; Xrg by X0

i �
P

jCijXj, where

C ¼ ðQTÞ�1. Relative to this new basis for the U(1)
generators, the charge vectors are given by

�i
j ¼

Xr
k¼1

Cjkq
ðiÞ
k ; i; j ¼ 1; . . . ; r: (11)

Consequently, we have reduced the problem to r indepen-
dent copies of one complex scalar field and associated
spurion (and its complex conjugate). In particular, if we
denote h�ni ¼ vne

i�n , then the multifield generalization of
Eq. (6) is given by

VX0
1
;X0

2
;...;X0

r
¼ Xr

i¼1

ViðvnÞ cos�0i; where �0i �
Xr
k¼1

qðiÞk �k;

(12)

where ViðvnÞ is the contribution to the potential of the ith
spurion (where the complex fields �n are replaced by the
vn, respectively). Using the results of Sec. III A, we con-
clude that no physical phases exist in the vacuum and thus
there is no SCPV.
In the case of Ns > r, we first label the truncated

r-dimensional charge vectors such that fqð1Þ; qð2Þ; . . . ; qðrÞg
are linearly independent. Then, the charge vectors of the

1To determine whether a potential phase is physical, one must
minimize the effective potential of the phases to check for
nontrivial solutions.

2Here we assume that none of the N generators are gauged. If
some of them are, the relevant group would be smaller.

3As previously noted, the charge vector of a complex con-
jugated spurion is equal to the negative of the charge vector of a
spurion. Thus, we consider a spurion and its charge conjugate to
be equivalent in the present analysis.
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remaining spurions, qðiÞ for i ¼ rþ 1; rþ 2; . . . ; Ns, are
linear combinations of the first r charge vectors. This
means that that if we only keep the (inequivalent) spurions
labeled by i ¼ 1; 2; . . . ; r, we would again conclude that no
physical phases exist in the vacuum. Hence, if we include
all Ns inequivalent spurions, we are left with at least one
potential physical phase. To determine whether SCPV
actually occurs, one must minimize the effective potential
as in the single complex field case to determine the vacuum
value of this phase. We conclude the following:

SCPV may occur only if the number of inequivalent
spurions is larger than the dimension of the vector space
spanned by the corresponding charge vectors.

In a model of multiple complex scalar fields with
Ns > r, the number of potential physical phases (hence-
forth denoted by d) is obtained as follows. In analogy with
Eq. (11), we define new charge vectors with respect to the
redefined U(1) generators fX1; . . . ; Xrg,
Xr
k¼1

Cjkq
ðiÞ
k ¼

8<
:
�i
j; for i ¼ 1; 2; . . . ; r;

q0ðiÞj ; for i ¼ rþ 1; rþ 2; . . . ; Ns;
(13)

where C ¼ ð ~QTÞ�1 and ~Q is the r� r matrix whose rows
are the first r (linearly independent) charge vectors

fqð1Þ; qð2Þ; . . . ; qðrÞg. With respect to the redefined U(1), we
can assemble the new charge vectors into anNs � rmatrix,

Q0 ¼
�i
j

����
q0ðkÞj

0
BB@

1
CCA; (14)

where i ¼ 1; 2; . . . ; r and k ¼ rþ 1; rþ 2; . . . ; Ns label
the Ns rows of the matrix and j ¼ 1; 2; . . . ; r.

One can now write out the spurion contributions to the
scalar potential. Using Eq. (13), the generalization of
Eq. (12) is immediate,

VX0
1;X

0
2;...;X

0
r
¼ Xr

i¼1

ViðvnÞ cos�0i

þ XNs

k¼rþ1

ViðvnÞ cos
�Xr
j¼1

q0ðkÞj �0j
�
; (15)

where �0j is defined in Eq. (13). The phases �0j that explicitly
appear in the second term of Eq. (15) are potential
CP-violating phases. Generically we would expect r
CP-violating phases when Ns > r. However, if there are
r0 columns of zeros below the dashed line in Eq. (14), i.e.,
for all k ¼ rþ 1; . . . ; Ns,

q0ðkÞj ¼ 0 for r0 values of the index j; (16)

then only r� r0 phases appear in the second term of
Eq. (15). The r0 phases that are absent do not acquire non-
trivial CP-violating expectation values, since for these

phases the analysis reduces to the first case ofNs ¼ r treated
above.
There is a simple basis-independent interpretation of r0.

Namely, r0 is equal to the number of charge vectors that are
linearly independent of the remaining Ns � 1 charge vec-
tors. Thus, we conclude the following:
For a scalar potential with Ns spurion terms that exhibits

SCPV, the number of potential CP-odd phases is given by
d ¼ r� r0. That is, d is equal to the difference of the
dimension of the vector space spanned by the Ns charge
vectors and the number of charge vectors that are linearly
independent of the remaining Ns � 1 charge vectors.
Note that the above result automatically incorporates the

case of Ns ¼ r treated above, where all the charge vectors
are linearly independent, in which case r0 ¼ r and d ¼ 0.
That is, there is no SCPV when Ns ¼ r as expected. A
geometrical interpretation of the result d ¼ r� r0 is given
in Appendix A.
As a simple example (which corresponds to the chiral

Lagrangian of Sec. VA), consider the charge vectors
fð1; 0Þ; ð0; 1Þ; ð�1;�1Þg. In this example, Ns ¼ 3 and N ¼
r ¼ 2. However, note that none of the charge vectors is
linearly independent of the other two charge vectors. In
each case, we can express a given charge vector as a linear
combination of the other two. Hence, in this example,
r0 ¼ 0 and we conclude that d ¼ r� r0 ¼ 2. Thus, in
this example there are two potential CP-violating phases
that characterize the vacuum.
If at least one of the r� r0 remaining nontrivial phases

differs from a multiple of � at the minimum of VX0
1;X

0
2;...;X

0
r

[cf. Eq. (15)], then the model exhibits SCPV. Generically,
such a solution will exist if the scalar potential parameters
satisfy certain conditions. In particular, there will be a
continuous range of scalar potential parameters that yields
a continuous range of values for the CP-violating phase(s).
Although we have implicitly assumed that the coefficients
of each spurion contribution to the scalar potential are
independent, our analysis also applies to cases in which
the coefficients of inequivalent spurions are related due to,
e.g., a discrete symmetry of the scalar potential. In some
scenarios of this kind, SCPV occurs independently of the
choice of the remaining free scalar potential parameters
(after the discrete symmetry is imposed), in which case the
corresponding CP-violating phases may take on only non-
trivial discrete values. An example of such a phenomenon
is the so-called geometrical CP violation of [23].

IV. EXAMPLE: SCPV IN THE TWO HIGGS
DOUBLET MODEL

The 2HDM provides a good theoretical laboratory for
applying the results of the previous section. Some of the
results in this section are known. Nevertheless, we repro-
duce them here in a very simple and clear fashion by using
our the group-theoretic approach established in Sec. III.
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The 2HDM consists of two hypercharge-one, SUð2ÞL
doublets ð�1;�2Þ. The SUð2ÞL � Uð1ÞY gauge-covariant
kinetic energy terms possess an SUð2ÞL � Uð1ÞY � SUð2ÞF
symmetry, where the SUð2ÞF corresponds to a ‘‘Higgs

flavor’’ symmetry transformation, �i ! Uj
i�j with U 2

SUð2ÞF. The generic 2HDM potential,

V ¼ m2
11�

y
1�1 þm2

22�
y
2�2 � ðm2

12�
y
1�2 þ H:c:Þ

þ 1

2
�1ð�y

1�1Þ2 þ 1

2
�2ð�y

2�2Þ2

þ �3�
y
1�1�

y
2�2 þ �4�

y
1�2�

y
2�1

þ
�
1

2
�5ð�y

1�2Þ2 þ �6�
y
1�1�

y
1�2

þ �7�
y
2�2�

y
1�2 þ H:c:

�
; (17)

breaks the SUð2ÞF Higgs flavor symmetry completely.
Since there are four complex degrees of freedom, there

are four potentially physical SCPV phases, related to the
four diagonal generators

1 ij1�	; 1ijT
3
�	; T3

ij1�	; T3
ijT

3
�	; (18)

acting on the �i�, where SUð2ÞFðLÞ indices are denoted by

Roman (Greek) indices. The first two are the diagonal
generators of the SUð2ÞL � Uð1ÞY gauge symmetry, and
thus cannot give rise to SCPV, as discussed in Sec. III. As
for T3

ij1�	, which generates the Peccei-Quinn (PQ) sym-

metry [10,11] (�1 ! ei��1 and �2 ! e�i��2), it is not
gauged and is generically broken by the scalar potential.
Therefore, it can potentially trigger SCPV. The last gen-
erator T3

ijT
3
�	 (‘‘chiral PQ’’) cannot give rise to SCPV in

those vacua that preserve electric charge. In particular, the
two VEVs are aligned in theUð1ÞEM preserving vacuum, in
which case chiral PQ becomes degenerate with PQ.

In order to find models with SCPV, we choose a basis in
which all the parameters in Eq. (17) are real. In this basis,
we must then explicitly break the Uð1ÞPQ. We now perform

a Uð1ÞPQ spurion analysis.4 The various parameters trans-

form formally under Uð1ÞPQ as follows. The parameters

m2
11, m

2
22, and �1;2;3;4 are neutral with respect to Uð1ÞPQ,

whereas the other parameters possess PQ charges:

m2
12½2�; �5½4�; �6½2�; �7½2�; (19)

where we have assigned the fields with �1½1�, �2½�1�.
In light of the above charge assignment, SCPV can arise

in a realistic setting only if
(1) �5 is turned on.
(2) at least one of the couplings m2

12, �6, or �7 is
turned on.

(3) the other 2HDM parameters are chosen such that
the SUð2ÞL � Uð1ÞY gauge symmetry is broken to
Uð1ÞEM.

Consider the following simple example (the general case is
treated in Appendix B of Ref. [24]):

m2
11; m2

22 < 0; m2
12 ¼ 0; �1;2 > 0;

�5;6 � 0; �3 ¼ �4 ¼ �7 ¼ 0;
(20)

where j�5;6j � �1;2. In this case,

h�ii ’
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ii=�i

q
0
@

1
A; (21)

with small corrections of order Oð�5;6=�1;2Þ. We see that

Uð1ÞPQ is broken only by the terms

VPQ ¼ 1

2
�5ð�y

1�2Þ2 þ �6�
y
1�1�

y
1�2 þ H:c: (22)

We parametrize the two expectation values as

�0
1 ¼ v1e

i�ei’; �0
2 ¼ v2e

i�e�i’: (23)

The new terms induce a potential for the otherwise flat ’,
which is given by

�V ¼ �5v
2
1v

2
2 cosð4’Þ þ 2�6v

3
1v2 cosð2’Þ: (24)

For parameters in the range j�6j tan	< 2�5, this potential
is minimized at

cosð2’minÞ ¼ �6

2�5

tan	; (25)

where tan	 � v1=v2, resulting in spontaneous CP
violation.

V. OTHER MODELS OF SPONTANEOUS
CP VIOLATION

In this section, we briefly examine other models that
exhibit SCPV, in light of the necessary conditions devel-
oped in Sec. III.

A. The chiral Lagrangian

Dashen’s model of spontaneous CP violation [12] is
based on the three-flavor chiral Lagrangian (see e.g.,
Ref. [25] for a modern review). Recall that this theory is
the low energy description of three-flavor QCD, and it
describes the spontaneous breaking of

SU ð3ÞL � SUð3ÞR ! SUð3ÞV; (26)

where the two SU(3) groups act on the left- and right-
handed quarks (u, d, s), respectively. The vacuum trans-
forms as (3, �3) under SUð3ÞL � SUð3ÞR:

�0 ! Lð"aLÞ�0R
yð"bRÞ: (27)

4A more general SUð2ÞF spurion analysis is also quite useful
for other 2HDM applications. See Appendix B for further
details.
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In order to ensure that only the diagonal SUð3ÞV trans-
formations (L ¼ R) leave the vacuum invariant as required
by Eq. (27), it follows that �0 ¼ 1.

Note that the condition �0 ¼ 1 is basis dependent.
Indeed, one can simply redefine all (3, �3) fields by applying
an arbitrary SUð3ÞL � SUð3ÞR transformation. As a result
of such a field redefinition,

�0 ¼ U; U 2 SUð3Þ: (28)

Relative to the new basis, the symmetry-breaking pattern is
SUð3ÞL � SUð3ÞR ! SUð3ÞU, where an SUð3ÞU transfor-
mation corresponds to R ¼ UyLU in Eq. (27).

As a consequence of the spontaneous breaking of
chiral symmetry, there are eight Goldstone modes Ga ¼
f�i; Ki; 
g, which are parameterized as

GðxÞ � GaðxÞTa

¼ 1ffiffiffi
2

p

1ffiffi
2

p �0 þ 1ffiffi
6

p 
 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p 
 K0

K� �K0 � 2ffiffi
6

p 


0
BBBB@

1
CCCCA;

(29)

where the Ta are the SU(3) generators in the fundamental
representation. The chiral Lagrangian is expressed in terms
of the (3, �3) field �ðxÞ, which depends on the Goldstone
fields via

�ðGÞ ¼ eiGðxÞ=f�0e
iGðxÞ=f; (30)

where �0 � h�i. In the case of �0 ¼ 1, the Goldstone
fields transform linearly under the vector SUð3ÞV and
transform nonlinearly and nonhomogeneously under the
spontaneously broken axial transformations, for which
L ¼ Ry. The nonhomogeneous term of the transformation
law is a signal that the Goldstone fields are massless and
derivatively coupled, as long as there are no explicit
SUð3ÞL � SUð3ÞR breaking terms in the Lagrangian. Of
course, these conclusions do not depend on the choice of
�0 ¼ 1, since all vacua related by the matrix U in Eq. (28)
are equivalent.

However, in order for the chiral Lagrangian to describe
nature, the chiral symmetry must be broken explicitly.
Such explicit breaking is introduced both by electromag-
netic gauge interactions and by the quark masses. The
chiral Lagrangian takes the form

L ¼ 1

4
f2TrðD��

yD��Þ þ 1

2
B0f

2TrðM�y þ�MyÞ;
(31)

where B0 is proportional to the quark-antiquark condensate
(see, e.g., Ref. [26]),

M ¼
mu 0 0
0 md 0
0 0 ms

0
@

1
A; (32)

and D� is the gauge-covariant derivative. Once explicit

chiral symmetry breaking is introduced, all vacua related
by the matrix U in Eq. (28) are no longer equivalent. In
particular, vacua corresponding to different eigenvalues of
U are now inequivalent (e.g., they have different energy
values). For example, if the quark masses are all positive,
then the potential energy due to the explicit chiral symme-
try breaking is minimized by assuming that �0 ¼ 1.
However, it is possible that some of the quark mass pa-
rameters are negative.5 Without loss of generality, one can
choose the vacuum value �0 ¼ U to be diagonal. Since
U 2 SU(3), the diagonal elements are pure phases whose
product is equal to one. That is

�0 ¼
ei�u 0 0

0 ei�d 0

0 0 e�ið�uþ�dÞ

0
BB@

1
CCA: (33)

Dashen’s observation was that a region exists in the
(mu, md, ms) parameter space where �u and �d are not
minimized at the origin, thus inducing SCPV. The potential
for the phases is

V ¼ B0f
2½mu cos�u þmd cos�d þms cosð�u þ �dÞ�:

(34)

Provided thatmumd < 0,6 the potential above is minimized
when [25]

mu sin�u ¼ md sin�d ¼ �ms sinð�u þ �dÞ: (35)

It is convenient to introduce dimensionless mass ratios,

x � mu=ms; y � md=ms: (36)

Assuming xy < 0, we can use Eq. (35) to obtain the
vacuum values of �u and �d,

cos�u ¼ 1

2

�
y

x2
� 1

y
� y

�
; cos�d ¼ 1

2

�
x

y2
� 1

x
� x

�
;

(37)

under the assumption that �1 	 cos�u;d 	 1. If this latter
assumption is false, then the minimum of the potential for
the phases lies on the boundary where j cos�u;dj ¼ 1, cor-
responding to a CP-conserving vacuum. Thus, SCPV can
arise if and only if xy < 0 and �1< cos�u;d < 1. Using
Eq. (37), these inequalities yield 7

5The physical quark masses are given by the absolute values of
the quark mass parameters. Nevertheless, the signs of the quark
masses can have physical relevance, as the present discussion
makes clear.

6For mumd > 0, the extremum condition given by Eq. (35) is a
local maximum.

7Note that if we interchange x and y in Eq. (38), the results are
identical to the original inequalities.
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jxj
1þ jxj < jyj< jxj

1� jxj ; xy < 0; (38)

in which case the vacuum is characterized by two inde-
pendent physical phases �u and �d given by Eq. (37). In
Fig. 1, we show regions of the x-y plane that admit SCPV.
Indeed, this range is ruled out phenomenologically (using
the light quark masses quoted in Ref. [27]).

Although Dashen’s model is no longer a viable model
for CP violation, we can use this model to illustrate the
results of Sec. III B in the case of more than one U(1)
factor. Prior to turning on the explicit breaking terms
(namely, the spurions mu, md, and ms), there are two
spontaneously broken U(1) generators that can be identi-
fied with the two diagonal SU(3) generators T3 and T8.
In fact, it is more convenient to define linear combinations
of these two generators,

Tu � T3 þ ffiffiffi
3

p
T8 ¼

1 0 0

0 0 0

0 0 �1

0
BB@

1
CCA;

Td � �T3 þ ffiffiffi
3

p
T8 ¼

0 0 0

0 1 0

0 0 �1

0
BB@

1
CCA;

(39)

which can be used to shift the values of �u and �d, respec-
tively. Applying Tu and Td to the vectors (1,0,0), (0,1,0),
and (0,0,1) yields the Uð1Þu and Uð1Þd charges of the three
spurions, respectively. The corresponding charge vectors
are given by

muð1; 0Þ; mdð0; 1Þ; msð�1;�1Þ: (40)

The three charge vectors are linearly dependent and span a
two-dimensional vector space. In the notation of III, we
have Ns ¼ 3> rkQ ¼ 2, in which case SCPV is possible.
Indeed the conditions for SCPV derived in Sec. III B, when
applied to the above set of spurions, yields potentially two
independent physical CP-violating phases �u, �d that char-
acterize the vacuum.
Had we considered a chiral Lagrangian based on

Uð3ÞL � Uð3ÞR instead of SUð3ÞL � SUð3ÞR, then �0 ¼
diagðei�u ; ei�d ; ei�sÞ, with no relation among the three
phases. Prior to turning on the explicit breaking terms,
there are now three spontaneously broken U(1) generators
that can be identified with Tu, Td, and T0, where T0 is the
3� 3 identity matrix which generates an axial Uð1ÞA
transformation. The corresponding charge vectors of the
spurions,

muð1; 0; 1Þ; mdð0; 1; 1Þ; msð�1;�1; 1Þ (41)

are linearly independent, spanning the full three-
dimensional vector space, so that Ns ¼ rkQ. Naively, it
seems that none of the three phases is physical, resulting in
the absence of SCPV. However, the axial Uð1ÞA symmetry
is anomalous and can be modeled by adding an explicit
Uð1ÞA breaking term to the chiral Lagrangian that is
proportional to ðlndet�Þ2 [28–30]. Consequently, there is
a fourth spurion so that Ns ¼ 4> rkQ ¼ 3, and we again
conclude that SCPV is possible. The corresponding
fourth charge vector is (0,0,1); hence the analysis of
Sec. III implies that there are three potential physical
CP-violating phases �u, �d, and �s that characterize the
vacuum. Hence, including the axial Uð1ÞA symmetry and
its anomaly induced explicit breaking does not spoil the
existence of a SCPV phase in the parameter space of the
chiral Lagrangian. A more detailed study is presented in
Ref. [30], where the effect of the strong CP angle � is also
taken into account.
Finally, it is noteworthy that in the case of two light

flavors, the effective potential of the SUð2ÞL � SUð2ÞR
theory depends only on cos�u ¼ cos�d, whereas the cor-
responding spurions are muð1Þ and mdð�1Þ. Using the
nomenclature of Sec. III, there is only one inequivalent
spurion, in which case the SUð2ÞL � SUð2ÞR chiral
Lagrangian cannot give rise to SCPV.

B. The minimal Nelson-Barr model

Here we will consider the model by Bento et al. [13].
The model solves the strong CP problem by imposing CP
as an exact symmetry, and breaking it spontaneously,

FIG. 1 (color online). Regions of the parameter space of
Dashen’s model parameter space of Dashen’s model, where
spontaneous CP violation occurs [cf., Eq. (38)]. A point in
this parameter space corresponds to ðx; yÞ � ðmu=ms;md=msÞ.
The size of the phase �u is shown, with maximum values
depicted in dark (blue) and minimum values in light (yellow).
In these regions, �d also acquires a nonzero value, as explained
in the text. The value of �d at the point (x, y) is equal to the value
of �u at the point (y, x).
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thereby producing unsuppressed CKM phase, along with a
suppressed strong CP phase.

The field content of the model is the SM plus one gauge
singlet complex scalar S, and one pair of vectorlike down
quarksDL,DR. The new interactions of the Lagrangian are
given by

�L ¼ �� �DLDR � ðfiSþ f0iS�Þ �DLd
i
R þ H:c: (42)

Moreover, due to the presence of terms such as S2, S4, etc.,
there is a range of parameter space for which hSi ¼ Vei�.
The phase � eventually feeds into the SM fermion mass
matrices and provides the sole source of CP violation.
Since the couplings fi and f0i are flavor dependent, this
phase can become the CKM phase once both scalars ac-
quire VEVs. The radiatively induced strong CP-violating
parameter �� is small and therefore the strong CP problem
is solved.

In terms of our group-theoretical condition, the scalar
sector has a single spontaneously broken U(1) that is
explicitly broken by more than one spurion (e.g., S2 and
S4), such that the vacuum has one physical nonzero phase.
This is similar to the toy model with one complex scalar
field presented in Sec. III.

C. Little Higgs models

The Little Higgs framework is a class of nonlinear sigma
models that produce the SM as their low energy limit. By
careful design, dubbed ‘‘collective symmetry breaking’’
[31], the Higgs mass parameter does not receive quadrati-
cally divergent corrections at one loop. These models can
potentially solve the little hierarchy problem, since it
allows for the Higgs mass to be of Oð100 GeVÞ even
when the UV cutoff is as high as Oð10 TeVÞ.

A popular little Higgs model is the Littlest Higgs model
of Arkani-Hamed et al. [32], in which SU(5) is broken to
SO(5) by a two-index symmetric SU(5) tensor. The
Lagrangian is given by

L ¼ f2

8
TrjD��j2 þ �1f �Qi�

itR þ �0f�t0Lt0R þ H:c:; (43)

where f is the Goldstone decay constant, Qi and t0L;R are

fermions, and �i is an SU(5) breaking function of �
elements that is chosen in accordance with the principle
of collective symmetry breaking.

In a variant of this model [33], there is an exact global
U(1) that is spontaneously broken [14]. This U(1) is gen-
erated by Y0 ¼ diagð1; 1;�4; 1; 1Þ. As a result, there is an
exactGoldstonemode
 associatedwithY0. In order tomake
the theory viable, the field 
 must acquire mass, requiring
explicit breaking of Uð1ÞY0 . A possible spurion that breaks
this U(1) would be s ¼ ð0; 0; 1; 0; 0ÞT , transforming
(formally) under the fundamental representation of SU(5).
Its symmetry-breaking pattern is SUð5Þ ! SUð4Þ, which
acts on the (3, 3) minor. The nine broken generators include
Y0 and generators that are also broken by the gauging.

In particular, any function of �33 ¼ sy�s would break Y0
while maintaining gauge invariance. The term

�L ¼ "f4�33 þ H:c: (44)

is sufficient to generate mass for the Goldstone boson 

[cf., Eq. (31)]. However, a physical CP-odd phase can arise
only in the presence of at least two different terms. As a
simple example, consider

�LSCPV ¼ "f4ða�33 þ b�2
33Þ þ H:c:; (45)

wherewe take ", a, b to be real, with a, b�Oð1Þ and " loop
suppressed. This results in the following tree-level potential
for 
:

V
 ¼ 2"f4
�
a cos

2
ffiffiffi
5

p
f
þ b cos

4
ffiffiffi
5

p
f

�
: (46)

This potential is minimized for

h
i ¼ 1

2

ffiffiffi
5

p
f arccos

��a

4b

�
if

�������� a

4b

��������<1; (47)

which is of order one if we assume no hierarchy between
a and b.
Further discussion of CP violation in this class of

models and related issues can be found in Ref. [14].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have formulated the necessary conditions for spon-
taneous CP violation from a group-theoretic perspective,
i.e., in terms of breaking patterns of global U(1) symmetry
generators. This new framework allows for a more system-
atic study of spontaneous CP violation model building. We
have used the fact that CP-violating phases in the vacuum
are related to operators that explicitly break the corre-
sponding U(1) groups and the corresponding spurions
that are the coefficients of these operators. Such phases
are nontrivial and signal spontaneous CP violation only in
cases where there are a sufficient number of inequivalent
spurions relative to the number of broken U(1) generators.
We assume that the scalar potential of the model is

explicitly CP conserving. In the case of a single
CP-violating phase that characterizes the vacuum, the
phase is physical only if the associated U(1) is broken
explicitly by at least two spurions whose U(1) charges
differ in magnitude. We have generalized this result to
the case of multiple phases and the associated U(1) factors.
To each spurion, one can assign a charge vector whose
components are the U(1) charges. Two spurions are called
equivalent if their charge vectors are equal (up to a possible
overall minus sign). If there are Ns inequivalent spurions
whose charge vectors span an r-dimensional vector sub-
space, then there is at least one potential physical
CP-violating phase that characterizes the vacuum only if
Ns > r. The number of potential CP-odd phases is then
determined to be equal to r� r0, where r0 is the number of
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charge vectors that are linearly independent of the remain-
ingNs � 1 charge vectors. The actual value of the potential
CP-violating phase is ultimately determined by minimiz-
ing an effective potential. If a minimum exists such that at
least one CP-violating phase is �CP � 0; �, then the CP
symmetry is spontaneously broken.

Using these results, we have analyzed the two Higgs
doublet model, Dashen’s model for spontaneous CP viola-
tion in the chiral Lagrangian, a minimal Nelson-Barr model,
and the littlest Higgs with spontaneousCP violation. For the
two Higgs doublet model, we have also performed a com-
prehensive spurion analysis, in which we employ the full
SU(2) Higgs flavor group. We reproduce results previously
obtained by Ivanov [15], and demonstrate how to use this
formalism to construct invariant relations that are indepen-
dent of the choice of scalar field basis.

The applications presented in this paper focus on tree-level
results. It is of interest to consider whether our framework
allows for spontaneous CP violation to be generated by
radiative effects. Consider the case of a single CP-violating
phase that characterizes the vacuum. For this to be a robust
result that holds over anOð1Þ fraction of themodel parameter
space, one requires the two inequivalent spurions to be of
comparable size. If one of the spurions arises from a tree-
level operator and the other arises radiatively, then it appears
that the latter requirement cannot be satisfied (without
violating perturbativity of the loop expansion).

Nevertheless, one can imagine a number of scenarios in
which spontaneous CP violation is radiatively generated.
For example, in a model with multiple complex scalars, it
may be possible to radiatively generate two inequivalent
spurions at the loop level, which could result in an Oð1Þ
CP-violating phase. Alternatively, the tree-level spurions
might arise from a different sector of the theory (such as
the fermion sector), in which case one could balance that
against a radiatively generated spurion in the scalar sector.
However, the Georgi-Pais theorem [34] limits the ways in
which CP violation can be induced radiatively, without
introducing unnaturally light scalars.

Finally, we note that some of the the global U(1) symme-
tries related to the CP-violating phases may be anomalous.
In this case, the anomaly is manifested by the presence of
explicitly breaking terms in the Lagrangian. If the terms
generated by the anomaly satisfy the necessary conditions
developed in this paper, then one could imagine the possi-
bility of spontaneous CP violation whose presence is due to
the anomaly. It would be instructive to find explicit models
that realize this possibility. We leave these interesting
possibilities for a future study.
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APPENDIX A: GEOMETRICAL INTERPRETATION
OF THE NUMBER OF CP-VIOLATING PHASES

We can employ the following geometrical construction
for establishing the number of potential CP-violating
phases in a SCPV scalar potential. Using the notation of
Sec. III B, we first select a linearly independent set of r
charge vectors and use this set as a basis for the linear space
of charge vectors. This basis can be used to construct
hyperplanes spanned by a subset of the basis vectors. For
example, each basis vector defines a one-dimensional line
that lies parallel to the corresponding basis vector, each
pair of basis vectors spans a two-dimensional plane, etc.
Consider the set of all such hyperplanes. From this set, we
can identify the unique hyperplane of minimal dimension d
that contains the span of the remaining Ns � r charge
vectors. (Note that d must lie in the range 1	d	r	N.)
Each basis vector that lies in the hyperplane of minimal
dimension is associated with a physical phase. For ex-
ample, if the remaining charge vectors are all parallel to
a single basis vector then d ¼ 1, in which case there is one
potential physical phase. We conclude the following:
The number of potential CP-violating phases is equal to

d, obtained by determining the unique hyperplane of mini-
mal dimension d, constructed from all possible subsets of
the r basis vectors, in which the span of the remaining
Ns � r charge vectors resides.
The procedure presented above is inherently geometri-

cal. In particular, the number d does not depend on the
initial choice of the r linearly independent basis vectors.
Hence, the number of potential CP-violating phases that
characterizes the vacuum is a basis-independent concept.
Indeed, it is straightforward to show that this procedure
yields the result obtained in Sec. III B. In particular, it is
convenient to employ the basis of U(1) generators that
yields the matrixQ0 given in Eq. (14). Let r0 be the number
of columns of zeros that lie below the dashed line in
Eq. (14). Focusing on the remaining r� r0 columns, con-
sider the row vectors whose 1 appears in one of these r� r0
columns. The span of these row vectors is a hyperplane of
dimension d ¼ r� r0, which we identify as the number of
potential CP-violating phases.
As a simple example, we again consider the charge

vectors fð1; 0Þ; ð0; 1Þ; ð�1;�1Þg, where Ns ¼ 3 and
N ¼ r ¼ 2. For any c � 0, the vector cð�1;�1Þ is neither
parallel to (1,0) nor to (0,1). Indeed cð�1;�1Þ lies in the
two-dimensional plane spanned by (1,0) and (0,1), so that
the hyperplane of minimal dimension that contains
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cð�1;�1Þ is a plane of dimension d ¼ 2. Thus, in this case
there are two potential CP-violating phases that character-
ize the vacuum.

Note that the above analysis applies trivially to the case of
a single complex scalar field, whereN ¼ r ¼ d ¼ 1. In this
case, there is one potential CP-violating phase if Ns > r,
which yields Ns > 1. This conclusion coincides with the
analysis given in Sec. IIIA for the case of one complex
scalar field.

APPENDIX B: THE 2HDM SPURION ANALYSIS
AND SOME APPLICATIONS

1. Full SUð2ÞF spurion analysis

We begin by expressing all the parameters in the 2HDM
scalar potential in terms of invariants and spurions of
SUð2ÞF. This is accomplished by constructing gauge-

invariant terms from the fields �i�,
��i� � ð�i�Þy and

the invariants �ij, ��	, �	
�, �j

i [15,35–38]. The only

gauge-invariant bilinear term is ðM2Þji ��i��
j�, where M2

transforms under SUð2ÞF as a two-index tensor,

M2 ¼ m2
11 �m2

12

� �m2
12 m2

22

 !
; (B1)

with ðM2Þ12 � �m2
12 and �m2

12 � ðm2
12Þ�. For the gauge-

invariant quadrilinear terms, we start with�i��j	
��k� ��‘�

and note that there are two ways to contract all the indices
in a gauge-invariant manner. The first invariant is

�i��j	
��k� ��‘���	���A

ij
k‘

¼ �i��j	
��k� ��‘�ð��

��
	
� � ��

��
	
�Þ�ij�k‘A; (B2)

where

Aij
k‘ ¼ �Aji

k‘ ¼ �Aij
‘k ¼ Aji

‘k (B3)

is antisymmetric with respect to the separate interchange
of upper and lower indices. The antisymmetry property of

Aij
k‘ implies that only one independent element exists,

Aij
k‘ ¼ �ij�k‘A, where

A ¼ 1

8
ð�3 � �4Þ; (B4)

which is a scalar with respect to SUð2ÞF transformations.
The second invariant is

�i��j	
��k� ��‘�ð��

��
	
� þ ��

��
	
� Þ�ij

k‘; (B5)

where

�ij
k‘ ¼ �ji

k‘ ¼ �ij
‘k ¼ �ji

‘k (B6)

is symmetric with respect to the separate interchange of
upper and lower indices. In addition, Hermiticity implies

that �ij
k‘ ¼ ��k‘

ij . In terms of the parameters in Eq. (17), we

have

�11
11 ¼

1

4
�1; �22

22 ¼
1

4
�2; �12

12 ¼
1

8
ð�3 þ �4Þ;

�22
11 ¼ ��11

22 ¼ 1

4
�5; �12

11 ¼ ��11
22 ¼ 1

4
�6;

�22
12 ¼ ��12

22 ¼ 1

4
�7:

(B7)

Since all the spurions transform as integer spin, they can
be expressed as SO(3) tensors [15], labeled by adjoint
SUð2ÞF indices a; b; . . . . The squared-mass term decom-
poses as 2 � 2 ¼ 1 
 3. Explicitly,

M2 ¼ 2m2
aTa þ�21; (B8)

where Ta � 1
2
a are the SU(2) generators, with normaliza-

tion TrðTaTbÞ ¼ 1
2�ab, and 1 is the 2� 2 identity matrix. In

particular, the antisymmetric part of the tensor product is
the singlet that is given by the trace

�2 � 1

2
TrðM2Þ ¼ 1

2
ðm2

11 þm2
22Þ: (B9)

The symmetric part of the tensor product, denoted by
ð2 � 2Þsym, is the triplet given by

m2
a ¼ TrðM2TaÞ ¼ ð�Rem2

12; Imm2
12;

1

2
ðm2

11 �m2
22ÞÞ:
(B10)

Thequadrilinear terms transformas ð2�2Þsym�ð2�2Þsym¼
1
3
5. Explicitly,

�ij
k‘ ¼

1

2
DabðTaÞkiðTbÞ‘j þ

1

8
Pa½ðTaÞki�j

‘ þ ðTaÞkj�i
‘

þ ðTaÞ‘j�i
k þ ðTaÞ‘i�j

k� þ
1

24
Sð�i

k�
j
‘ þ �i

‘�
j
kÞ;
(B11)

whereDab is a traceless symmetric second-rank tensor. Using
the Fierz identity,

ðTaÞkiðTbÞ‘j ¼
1

2
½ðTaÞkjðTbÞ‘i þ ðTbÞkjðTaÞ‘i

� �abðTcÞkjðTcÞ‘i þ
1

4
�ab�

j
k�

i
‘�

þ 1

4
i�abc½�i

‘ðTcÞkj � �j
kðTcÞ‘i�; (B12)

it follows thatDabðTaÞkiðTb
j ¼ DabðTaÞkjðTbÞ‘i. Hence,�ij

k‘

givenbyEq. (B11) is symmetric under the separate interchange
of its lower and its upper indices, as required.
Using Eq. (B11), the singlet is given by the trace

S ¼ 4�ij
ij ¼ �1 þ �2 þ �3 þ �4; (B13)

the triplet is given by
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Pa ¼ 4�ij
k‘ðTaÞj‘�k

i

¼
�
Reð�6 þ �7Þ;�Imð�6 þ �7Þ; 12 ð�1 � �2Þ

�
; (B14)

and the 5-plet is a traceless symmetric second-rank tensor
given by

Dab ¼ 2½4�ij
k‘ðTaÞj‘ðTbÞik �

1

3
�ij

ij�ab�

¼
� 1

3�þRe�5 �Im�5 Reð�6 ��7Þ
�Im�5 � 1

3��Re�5 �Imð�6 ��7Þ
Reð�6 ��7Þ �Imð�6 ��7Þ 2

3�

0
BB@

1
CCA;

(B15)

where � � 1
2 ð�1 þ �2Þ � �3 � �4.

The above results are equivalent to the group-theoretical
decomposition of the 2HDM scalar potential obtained in
Ref. [15].8

2. Invariant relations

Having obtained all the SUð2ÞF spurions, we can now
find invariant relations among parameters, i.e., relations
that hold in every basis, provided they hold in one basis. At
the linear level, invariant relations can be obtained either
by setting a singlet quantity to a constant (any constants
will do) or by setting the nonsinglet spurions to zero. This
procedure yields six invariant linear relations:

(1) m2
11 þm2

22 ¼ 2�2
0,

(2) �3 � �4 ¼ 8A0,
(3) �1 þ �2 þ �3 þ �4 ¼ S0,
(4) m2

11 �m2
22 ¼ m2

12 ¼ 0,
(5) �1 � �2 ¼ �6 þ �7 ¼ 0,
(6) 1

2 ð�1 þ �2Þ � �3 � �4 ¼ �5 ¼ �6 � �7 ¼ 0,

where �2
0, A0, and S0 are arbitrary constants. This general-

izes [5], in which relations 4 and 6 were noted and
discussed. If the scalar potential is SUð2ÞF invariant, then
the relations 4, 5, and 6 above must be simultaneously
satisfied, i.e.,

m2
11 ¼ m2

22; m2
12 ¼ 0;

�1 ¼ �2 ¼ �3 þ �4; �5 ¼ �6 ¼ �7 ¼ 0:

(B16)

This particular model was introduced previously in
Ref. [20] and exhibits the largest allowed Higgs family
symmetry of the 2HDM scalar potential.

Higher order invariant relations may be constructed by
forming scalar combinations of products of the nontrivial
spurions m2

a, Pa, and Dab. For example, we can obtain

invariant quadratic relations by constructing scalar quanti-
ties from the product of two spurions and setting the result
to a constant. For example,

m2
am

2
a ¼ jm2

12j2 þ
1

4
ðm2

11 �m2
22Þ2 ¼ const:; (B17)

PaPa ¼ j�6 þ �7j2 þ 1

4
ð�1 � �2Þ2 ¼ const:; (B18)

m2
aPa ¼ Re½m2

12ð�6 þ �7Þ� þ 1

4
ðm2

11 �m2
22Þð�1 � �2Þ

¼ const:; (B19)

TrðD2Þ ¼ 1

6
ð�1þ�2� 2�2� 2�4Þ2þ 2j�5j2þ 2j�6��7j2

¼ const: (B20)

An example of an invariant cubic relation ism2
aPbDab ¼ 0

and so on.

3. Condition for the existence of a Uð1ÞPQ symmetry

In order to exemplify the power of SUð2ÞF spurion
analysis, we derive the condition for existence of a U(1)
global symmetry, which in a particular basis for the scalar
fields coincides with the Peccei-Quinn symmetry and the
corresponding U(1) generator is T3

ij1�	 [cf., Eq. (18)]. In

an arbitrary basis, the generator ofUð1ÞPQ, denoted by TPQ,

must be a linear combination of the SUð2ÞF generators.
Hence,

TPQ ¼ qaTa ¼ 1

2
qa
a; (B21)

which defines the three-vector qa, transforming under the
adjoint representation of SUð2ÞF. It is convenient to
normalize qa such that its squared-length is qaqa ¼ 1. If
the scalar potential preserves the Uð1ÞPQ symmetry, then

all spurions must be fixed (up to an overall scale) by qa.
In particular,

m2
a ¼ c1qa; Pa ¼ c2qa;

Dab ¼ c3

�
qaqb � 1

3
�ab

�
;

(B22)

where the ci are arbitrary constants. Equation (B22) pro-
vides an elegant basis-independent set of conditions for the
existence of a PQ symmetry in the 2HDM. One can use the
explicit expressions for m2

a, Pa, and Dab [cf., Eqs. (B10),
(B14), and (B15), respectively] to rewrite Eq. (B22) in
terms of the 2HDM scalar potential parameters in an
arbitrary basis. The resulting equations are not particularly
illuminating, so we do not write them out here.
To verify the above assertion, consider the spurion

M2 ¼ m2
a
a þ�21 introduced in Eq. (B8). The triplet

spurion m2
a transforms under the adjoint representation of

SUð2ÞF, and therefore breaks the global SUð2ÞF symmetry
down to Uð1ÞPQ [39]. The condition that the Uð1ÞPQ is

preserved is equivalent to the requirement that

8To obtain Ivanov’s results [15], one simply replaces M2 and
�ij

k‘ with their complex conjugates in the above expressions for
m2

a, Pa, and Dab. Ivanov also introduces different overall nor-
malizations for these quantities, which are not critical to the
applications presented in this Appendix.
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½TPQ;M
2� ¼ 0: (B23)

Inserting Eqs. (B8) and (B21) into the above condition
yields

1

2
qam

2
b½
a; 
b� ¼ i�abcqam

2
b
c ¼ 0: (B24)

Equation (B24) implies that qa / m2
a, which identifies the

Uð1ÞPQ generator. Indeed, all triplet spurions must be pro-

portional to qa as indicated in Eq. (B22), since any two
nonparallel triplet spurions would completely break the
SUð2ÞF global symmetry [39]. Likewise, the condition

that Uð1ÞPQ is conserved by the spurion �ij
k‘ is equivalent

to the requirement that

�mj
k‘ ðTPQÞmi��ij

n‘ðTPQÞknþ�im
k‘ ðTPQÞmj��ij

knðTPQÞ‘n¼0:

(B25)

Using Eq. (B11), it follows that

qcDabfðTbÞki½Ta; Tc�j þ ðTbÞ‘j½Ta; Tc�kig
¼ iqcDab�ace½ðTbÞkiðTeÞ‘j þ ðTbÞ‘jðTeÞki� ¼ 0;

(B26)

which is satisfied by Dab / qaqb � 1
3�ab as indicated in

Eq. (B22).

One is always free to choose a convenient basis for the
scalar fields of the 2HDM by diagonalizingDab. The eigen-
values of Dab¼c3ðqaqb�1

3�abÞ are � 1
3 c3, � 1

3 c3, þ2
3c3

(note the doubly degenerate eigenvalue assuming that
c3 � 0). It is straightforward to check that Dab is diagonal
when qa ¼ ð0; 0; 1Þ. Then Eq. (B22) implies that m2

12 ¼
�5 ¼ �6 ¼ �7 ¼ 0 in the D-diagonal basis, which yields
the standard form for the 2HDM scalar potential with PQ
symmetry �1 ! ei��1 and �2 ! e�i��2. Moreover, in
the D-diagonal basis, we can identify c1 ¼ 1

2 ðm2
11 �m2

22Þ,
c2 ¼ 1

2 ð�1 � �2Þ, and c3 ¼ � ¼ 1
2 ð�1 þ �2Þ � �3 � �4.

Of course, Eq. (B22) is applicable in an arbitrary basis.

These conditions are equivalent to the invariant condi-

tions given in Ref. [4,20], although the formulation of

Eq. (B22) is much simpler and transparent than the con-

ditions originally given. Note that at the exceptional

point of parameter space identified in Ref. [4] where

m2
11 ¼ m2

22, m
2
12 ¼ 0, �1 ¼ �2, and �7 ¼ ��6, it follows

that m2
a ¼ Pa ¼ 0. In this case, the condition for PQ

symmetry is simply the existence of a doubly degenerate

eigenvalue of Dab as first noted in Ref. [20]. This latter

condition implies that Dab / qaqb � 1
3�ab for some unit

vector qa, which then determines the PQ generator given

in Eq. (B21).
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