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We consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios
in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular,
b-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level
couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC
observations, both future running at the LHC and a future eþe− linear collider could determine the sign of
the Higgs coupling to b-quark pairs. Discrimination is possible for two reasons. First, the interference
between the b-quark and the t-quark loop contributions to the ggh coupling changes sign. Second, the
charged-Higgs loop contribution to the γγh coupling is large and fairly constant up to the largest charged-
Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the opposite
sign from that of the SM (the change in sign of the interference terms between the b-quark loop and the
W and t loops having negligible impact).
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I. INTRODUCTION

Now that the existence of a Higgs boson is firmly
established [1,2], the ATLAS and CMS Collaborations at
the Large Hadron Collider (LHC) have started probing the
Higgs couplings to the fermions and to the gauge bosons
[3–5]. With almost all data from the 8 TeV run analyzed, it
becomes increasingly clear that the Standard Model (SM)
predictions regarding the Higgs experimental rates are
completely consistent with the current experimental data
at the 95% C.L., in some cases at the 68% C.L. In the
future, the LHC and an International Linear Collider (ILC)
could further reinforce this consistency with ever higher
precision or could eventually reveal some discrepancies. At
this moment in time, it is important to delineate the portions
of parameter space of models where qualitative and
quantitative differences of the couplings with respect to
the SM are consistent with current data but would be
revealed by the upcoming LHC runs or at a future collider
such as the ILC.

In this work, we will discuss the interesting possibility of
a sign change in one of the Higgs Yukawa couplings, hD for
down-type fermions or hU for up-type fermions, relative to
the Higgs coupling to VV (V ¼ W� or Z). It is well known
that the current LHC results cannot differentiate between
scenarios where a sign change occurs in the hD Yukawa
couplings (see e.g. Refs. [6–8]) simply using the measured
properties of the observed Higgs-like boson and assuming
no particles beyond those of the SM. For example, in the
most recent fit of Ref. [8], it is found that while the coupling
of the Higgs to top quarks must have the conventional
positive sign relative to the Higgs coupling to VV, the
couplings of down-type quarks and leptons are only con-
strained to jhD=hSMD j ¼ 1.0� 0.2, where the sign ambigu-
ity arises from the weak dependence of the gg and γγ loops
on the Higgs couplings to bottom-quark pairs. The sign
degeneracy in the determination of hD at the LHC has also
been stressed recently in Ref. [9].
In this paper, we will show that the sign of the bottom

Yukawa can be determined with sufficient LHC data or
at an ILC. The results of this paper will be established
in the framework of the softly broken Z2-symmetric
(CP-conserving) two-Higgs-doublet model (2HDM). The
2HDM possesses two limiting cases (called the decoupling
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and alignment limits introduced in Sec. III), in which the
Higgs couplings to VV, fermion pairs, and the cubic and
quartic Higgs self-couplings approach their SM values.
But, the 2HDM is also sufficiently flexible as to allow for a
SM-like limit for the Higgs couplings to VV, up-type quark
pairs and Higgs self-couplings, but with a coupling to
down-type fermions that is opposite in sign to that of the
SM. We can thus explore what happens in the context of
this specific model when the only tree-level difference
relative to the SM is the sign of hD. The sign of hD impacts
both the ggh and γγh couplings. The ggh coupling will
change significantly when the sign of hD is changed due to
the fact that the sign of the interference between the
bottom-quark and top-quark loops is reversed. The h →
γγ amplitude is altered primarily because the decoupling of
the charged-Higgs loop contribution can be temporarily
avoided until a rather large charged-Higgs mass, the
boundary being set by the point at which the theory
violates tree-level unitarity. Indeed, the nondecoupling of
the charged-Higgs loop dominates over the change in the
sign of interference terms involving the b-quark loop
(whose interference is unobservably small on its own),
and leads to a potentially observable decrease in the
magnitude of the γγh effective coupling. While the change
in the sign of interference terms involving the bottom loop
is a universal feature that can be used to resolve the relative
sign of hD versus hU, the charged-Higgs temporary non-
decoupling need not be. The latter proves essential in the γγ
final state of Higgs decay to determine the sign of hD
relative to hU, even allowing said discrimination at the next
run of the LHC. Using the gg coupling is more generically
useful and allows the sign determination both at the LHC
(albeit somewhat indirectly) and at a future linear collider.
As already implicit in the statements above, it is

important to explore the hD sign issue in the context of
a model in which both signs of hD are allowed and
physically distinguishable. The CP-conserving 2HDM
provides one such context. Sensitivity to the sign of hD
requires that the measurable collider event rates depend
significantly on it. The collider event rates are conveniently
encoded in the cross section ratios μhf defined by

μhf ¼ σBRðh → fÞ
σSMBRðhSM → fÞ (1.1)

where σ is the Higgs production cross section and
BRðh → fÞ is the branching ratio of the decay to some
given final state f; σSM and BRðhSM → fÞ are the expected
values for the same quantities in the SM. The experimen-
tally measured values of μhf for a variety of final states f at
the LHC already provide interesting constraints on the
2HDM parameter space [10].
In this paper, we do not separate different LHC initial

state production mechanisms (gg → h, VV → h, bb̄ → h,
Vh associated production and tt̄h associated production);

that is, we sum over all production mechanisms in
computing the cross section. In our analysis of Higgs
phenomena at the ILC, we consider only the eþe− → Zh
production process. We employ the notation μhfðLHC; ILCÞ
when discussing these ratios for the LHC and ILC,
respectively. In deciding whether or not a given 2HDM
parameter choice is excluded by LHC data for given values
of μhfðLHCÞ, all the currently well-measured final states
f ¼ WW�; ZZ�; bb̄; τþτ−; γγ must be employed. In par-
ticular, we will find that hD < 0 is only consistent with
current LHC Higgs data for a 2HDM of type-II if the
deviations in the γγh and/or ggh couplings will be detect-
able in the future with the LHC operating at

ffiffiffi
s

p
∼ 14 TeV,

assuming an accumulation of luminosity L ≥ 300 fb−1, and
at a future ILC.
This paper is organized as follows. In Sec. 2, we describe

the 2HDM and the constraints imposed by theoretical and
phenomenological considerations. In Sec. 3 we introduce
the decoupling and alignment limits, and then define the
wrong-sign Yukawa couplings scenario and discuss its
properties. In Sec. 4 we analyze the detailed phenomenol-
ogy of the wrong-sign Yukawa coupling scenario, and in
Sec. 5, we exhibit the results of our analysis. Our con-
clusions are presented in Sec. 6. Appendix A provides
details regarding the Higgs basis scalar potential parame-
ters of the 2HDM relevant for Sec. 3. The Higgs sector of
the minimal supersymmetric extension of the Standard
Model (MSSM) [11] is a special case of the type-II 2HDM
introduced in Sec. 2. The possibility of an MSSM Higgs
sector with an opposite-sign hbb̄ coupling relative to the
SM is addressed in Appendix B. Finally, Appendix C
explains the nondecoupling behavior of the charged-Higgs
loop contribution to the h → γγ amplitude in a type-II
2HDM that is particularly relevant when hD has a sign
opposite that of the SM.

II. MODELS AND CONSTRAINTS

The 2HDM is an extension of the scalar sector of the SM
with an extra hypercharge-one scalar doublet field, first
introduced in Ref. [12] as a means to explain matter-
antimatter asymmetry (see Refs. [13,14] for a detailed
description of the model). The most general Yukawa
Lagrangian, in terms of the quark mass-eigenstate fields, is

−LY ¼ ŪL
~Φ0
aη

U
a UR þ D̄LK† ~Φ−

aη
U
a UR þ ŪLKΦþ

a η
D†
a DR

þ D̄LΦ0
aη

D†
a DR þ H:c:; (2.1)

where ~Φa ≡ ð ~Φ0; ~Φ−ÞT ¼ iσ2Φ�
a and K is the CKM

mixing matrix. In Eq. (2.1) there is an implicit sum over
the index a ¼ 1; 2, and the ηU;D are 3 × 3 Yukawa
coupling matrices. In general, such models give rise to
couplings corresponding to tree-level Higgs-mediated
flavor-changing neutral currents (FCNCs), in clear dis-
agreement with experimental data.
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A natural way to avoid FCNC interactions is to impose a
Z2 symmetry on the dimension-four terms of the Higgs
Lagrangian in order to set two of the ηQa equal to zero in
Eq. (2.1) [15]. This in turn implies that one of the two
Higgs fields is odd under the Z2 symmetry. The Higgs
potential can thus be written as

V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ðm2

12Φ
†
1Φ2 þ H:c:Þ

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3Φ
†
1Φ1Φ

†
2Φ2

þ λ4Φ
†
1Φ2Φ

†
2Φ1 þ

�
1

2
λ5ðΦ†

1Φ2Þ2 þ H:c:

�
; (2.2)

where m2
12 softly breaks the Z2 symmetry. In particular, we

do not allow a hard breaking of the Z2 symmetry, which
implies that the term of the form ðΦ†

1Φ2Þðλ6Φ†
1Φ1þ

λ7Φ
†
2Φ2Þ þ H:c:. is absent. For simplicity we will work

with a CP-conserving scalar potential by choosingm2
12 and

λ5 to be real.
The 2HDM parameters are chosen such that electric

charge is conserved while neutral Higgs fields acquire real
vacuum expectation values,1 hΦ0

ai ¼ va=
ffiffiffi
2

p
(for a ¼ 1; 2),

where

v2 ≡ v21 þ v22 ¼
4m2

W

g2
¼ ð246 GeVÞ2; and tan β≡ v2

v1
:

(2.3)

By convention, we take 0 ≤ β ≤ 1
2
π (after a suitable

rephasing of the Higgs doublet fields). From the 8 degrees
of freedom we end up with three Goldstone bosons, a
charged-Higgs pair, two CP-even neutral Higgs states, h
and H (defined such that mh ≤ mH), and one CP-odd
neutral Higgs boson A. The CP-even Higgs squared-mass
matrix is diagonalized by an angle α, which is defined
modulo π. The coupling of h to VV is specified by

ghWW ¼ gmW sinðβ − αÞ: (2.4)

As noted above, Higgs-mediated tree-level FCNCs can
be avoided by imposing a Z2 symmetry that is preserved by
all dimension-four interactions of the Higgs Lagrangian.
Different choices for the transformation of the fermion
fields under this Z2 lead to different Higgs-fermion
interactions. In this paper, we shall focus on two different
choices, which lead to models that are called the type-I
[18,19] and type-II [19,20] 2HDM. In the type-I 2HDM,
ηU1 ¼ ηD1 ¼ 0 in Eq. (2.1), whereas in the type-II 2HDM,
ηU1 ¼ ηD2 ¼ 0. In the former all fermions couple exclusively
to Φ2 while in the latter the up-type quarks couple
exclusively to Φ2 and the down-type quarks and charged
leptons couple exclusively to Φ1. In both the type-I and
type-II 2HDM, the Higgs-fermion couplings are flavor
diagonal and depend on the two angles α and β as shown in
Table I. The tree-level MSSM Higgs sector is a special case
of the type-II 2HDM [11].
The most relevant constraints on the 2HDM are

briefly discussed in Ref. [21]. Here, we will just enumerate
the constraints imposed on the parameters of the
CP-conserving 2HDM.

(i) The Higgs potential is bounded from below [22].
(ii) Tree-level unitarity is imposed on the quartic Higgs

couplings [23].
(iii) It complies with S and T parameters [24,25] as

derived from electroweak precision observables
[26–28].

(iv) The global minimum of the Higgs potential is unique
[29] and no spontaneous charge or CP-breaking
occurs [17].

(v) Indirect constraints on the (mH� ,tan β) plane stem
from loop processes involving charged-Higgs bo-
sons. They originate mainly from B physics observ-
ables [27,30,31] and from the Rb ≡ ΓðZ → bb̄Þ=
ΓðZ → hadronsÞ [27,32–36] measurement. In par-
ticular, for the type-II 2HDM, mH� ≳ 340 GeV is
required.

(vi) LEP searches based on eþe− → HþH− [37] and re-
cent LHC results [38,39] based on pp→ t̄tð→Hþb̄Þ
constrain the mass of the charged Higgs to be above
Oð100Þ GeV, depending on the model type.

Finally we should note that there is an unexplained
discrepancy between the value of B̄ → Dð�Þτ−ν̄τ measured
by the BABAR Collaboration [40] and the corresponding
SM prediction. The observed deviation is of the order 3.4 σ.

TABLE I. Couplings of the fermions to the lighter and heavier CP-even scalars (h and H), and the CP-odd scalar (A), relative to the
corresponding SM value of mf=v.

Type-I Type-II
h A H h A H

Up-type quarks cos α= sin β cot β sin α= sin β cos α= sin β cot β sin α= sin β
Down-type quarks and charged leptons cos α= sin β − cot β sin α= sin β − sin α= cos β tan β cos α= cos β

1A sufficient condition for guaranteeing that the vacuum is CP
invariant is λ5jv1jjv2j ≤ jm2

12j (see e.g. Appendix B of Ref. [16]).
Moreover, the existence of a tree-level scalar potential minimum
that breaks the electroweak symmetry but preserves both the
electric charge and CP symmetries, ensures that no additional
tree-level potential minima that spontaneously break the electric
charge and/or CP symmetry can exist [17]. As such, in our
simulations we can be certain that v1 and v2 can be chosen real.
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If confirmed, this observation would exclude both
the SM and the version of the 2HDM considered in
this work.

III. DECOUPLING, ALIGNMENT, DELAYED
DECOUPLING AND THE WRONG-SIGN

YUKAWA COUPLINGS

In light of the fact that the LHC Higgs data is
consistent with the predictions of the Standard Model
with one complex hypercharge-one Higgs doublet, it is
of interest to consider the limit of the 2HDM in which
the properties of the lightest CP-even Higgs boson h
approach those of the SM Higgs boson. It is convenient
in this section to adopt a sign convention in which
sinðβ − αÞ is non-negative,2 i.e. 0 ≤ β − α ≤ π. Since

ghVV
ghSMVV

¼ sinðβ − αÞ; where V ¼ W� or Z; (3.1)

it follows that h is SM-like in the limit of
cosðβ − αÞ → 0.
It is convenient to rewrite the Higgs potential of Eq. (2.2)

in terms of new scalar doublet fields defined in the Higgs
basis [41–47]. The coefficients of the quartic terms of the
scalar potential in the Higgs basis are denoted by Zi (where
i ¼ 1; 2;…; 7). Expressions for the Zi in terms of the λi
defined by Eqs. (A6)–(A10) are given in Appendix A. In
particular, using Eqs. (A6) and (A9), it follows that

cos2ðβ − αÞ ¼ Z1v2 −m2
h

m2
H −m2

h

; (3.2)

sinðβ − αÞ cosðβ − αÞ ¼ −
Z6v2

m2
H −m2

h

: (3.3)

By assumption, the sizes of the scalar potential parameters
(in any basis) are limited by tree-level unitarity constraints.
This means that Z1=ð4πÞ≲Oð1Þ and Z6=ð4πÞ≲Oð1Þ. It
follows that ifmH ≫ v then j cosðβ − αÞj ≪ 1 in which case
h has SM-like couplings to VV. This is the decoupling limit
[16,48], where m2

H� −m2
A ∼Oðv2Þ and m2

H −m2
A ∼Oðv2Þ

[i.e. mH ∼mA ∼mH� ≫ mh], and the hVV couplings
approach those of the Standard Model. That is, below the
common scale of the heavy Higgs states, the effective field
theory that describes Higgs physics is the Standard Model
with a single hypercharge-one Higgs doublet. However,
note that if h is SM-like, it does not necessarily follow that
the masses of H, A and H� are large. Indeed, Eq. (3.3)
implies that it is possible to achieve j cosðβ − αÞj ≪ 1 by
taking jZ6j ≪ 1 [16,49]. The limit where Z6 → 0 is called
the alignment limit [50–53], since in this limit the mixing

of the two-Higgs-doublet fields in the Higgs basis is
suppressed.3

In both the decoupling and alignment limits, the cou-
plings of h to the fermions should also approach their
SM values. To see how this happens, consider the hf̄f
couplings in the case of the type-II 2HDM. Using the
results displayed in Table I, the hf̄f couplings relative to
those of the SM (for f ¼ U;D) are given by

hD̄D∶ −
sin α
cos β

¼ sinðβ − αÞ − cosðβ − αÞ tan β; (3.4)

hŪU∶
cos α
sin β

¼ sinðβ − αÞ þ cosðβ − αÞ cot β: (3.5)

In the case of cosðβ − αÞ ¼ 0, the hf̄f couplings reduce
precisely to the corresponding SM values. However, for
values of cosðβ − αÞ that are small but nonzero, the
decoupling limit can be “delayed” if either tan β or cot β
is large. On the other hand, it is desirable to have
ðmt=vÞ cot β ≲ 1 and ðmb=vÞ tan β ≲ 1, in order to avoid
nonperturbative behavior in the couplings of H, A and H�
to the third generation at scales far below the Planck scale.
In addition, phenomenological constraints arising from B
physics observables and Rb mentioned above rule out
regions of tan β ≲ 1 for large regions of the 2HDM
parameter space [31]. Consequently, we shall focus on
the parameter region where

1≲ tan β ≲ 50: (3.6)

In this case, decoupling is not delayed for the coupling of h
to up-type fermions. On the other hand, for tan β in the
range of interest, it is certainly possible to have sinðβ − αÞ
close to 1 and yet have significant departures from
decoupling in the coupling of h to down-type fermions.
That is, it is possible to have sinðβ − αÞ close to 1 and yet
have cosðβ − αÞ tan β ∼Oð1Þ. Since cosðβ − αÞ behaves as
v2=m2

H in the decoupling limit [cf. Eq. (3.3)], we see that
the hD̄D coupling approaches its SM value if

m2
H ≫ v2 tan β: (3.7)

Thus, if tan β ≫ 1 we say that we have delayed decoupling
[54], since a much larger value of the heavy Higgs mass
scale is required to achieve decoupling of the heavy Higgs
states (i.e. mH ≫ v is not sufficient).4

The wrong-sign Yukawa coupling regime is defined as
the region of 2HDM parameter space in which at least one

2The implications of an alternative convention jαj ≤ 1
2
π,

employed in the 2HDM parameter scans of Secs. IV and V, will
be addressed later in this section.

3In the alignment limit where Z6 → 0, it is possible to have
sinðβ − αÞ → 0, in which case we would identify the heavier CP-
even state H as the SM-like Higgs boson. We will not consider
this possibility further in this paper.

4Likewise, the alignment limit is also delayed, since the
condition jZ6j ≪ 1 is now replaced by jZ6j tan β ≪ 1.
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of the couplings of h to down-type and up-type fermion
pairs is opposite in sign to the corresponding coupling of h
to VV. This is to be contrasted with the Standard Model,
where the couplings of h to f̄f and VV are of the same sign.
Note that in the convention where sinðβ − αÞ ≥ 0, the hVV
couplings in the 2HDM are always non-negative. To
analyze the wrong-sign coupling regime, it is more con-
venient to rewrite the type-II Higgs-fermion Yukawa
couplings, given by Eqs. (3.4) and (3.5), in the following
form:

hD̄D∶ −
sin α
cos β

¼ − sinðβ þ αÞ þ cosðβ þ αÞ tan β; (3.8)

hŪU∶
cos α
sin β

¼ sinðβ þ αÞ þ cosðβ þ αÞ cot β: (3.9)

In the case of sinðβ þ αÞ ¼ 1, the hD̄D coupling
normalized to its SM value is equal to −1 (whereas the
normalized hŪU coupling is þ1). Note that in this limiting
case, sinðβ − αÞ ¼ − cos 2β, which implies that the wrong-
sign hD̄D Yukawa coupling can only be achieved for
values of tanβ>1. Likewise, in the case of sinðβþαÞ¼−1,
the hŪU coupling normalized to its SM value is equal to
−1 (whereas the normalized hD̄D coupling is þ1). In this
limiting case, sinðβ − αÞ ¼ cos 2β, which implies that the
wrong-sign hŪU couplings can only be achieved for
tan β < 1. In the type-I 2HDM, both the hD̄D and hŪU
couplings are given by Eq. (3.5) [or equivalently by
Eq. (3.9)]. Thus, for sinðβ − αÞ ¼ −1, both the normalized
hD̄D and hŪU couplings are equal to −1, which is only
possible if tan β < 1. In light of Eq. (3.6), only the wrong-
sign hD̄D coupling regime of the type-II 2HDM can be
realistically achieved.
It should be emphasized that the above conclusions do

not depend on the convention adopted for the range of the
angle α. In the convention used in Secs. IV and V of this
paper, we scan over jαj ≤ π=2, which allows for the
possibility of negative sinðβ − αÞ. However, the definition
of the wrong-sign Yukawa coupling is not changed as it
refers to the relative sign of the hf̄f and hVV couplings. To

translate between both conventions, one simply must shift
α → α� π (the sign chosen so that α is in its desired range).
In practice, the scans of Secs. IVand V focus on the wrong-
sign hD̄D coupling regime where tan β > 1, in which
case sinðβ − αÞ > 0 and the distinction between the two
conventions becomes moot.
In the above discussion of the wrong-sign Yukawa

coupling regime, we have not yet imposed the requirement
that h is SM-like. In particular, for a fixed value of tan β, the
limit of sinðβ þ αÞ → 1 is not the decoupling limit (indeed
the hVV couplings do not approach their SM values except
in the limit of α → 0 and β → 1

2
π). This implies that for

j cosðβ − αÞj ≪ 1 we must have tan β ≫ 1, Likewise, the
limit of sinðβ þ αÞ ¼ −1 is not the decoupling limit unless
β → 0 and α → − 1

2
π, i.e. cot β ≫ 1. Again, we see that for

values of tan β > 1, among all possible wrong-sign Yukawa
coupling scenarios only the wrong-sign hD̄D coupling in
the type-II 2HDM is phenomenologically viable.
Therefore, in this paper, we shall explore the

possibility that the hD̄D coupling normalized to its SM
value is close to −1 in the type-II 2HDM.5 This scenario
was first examined in Ref. [55] and then later clarified in
Ref. [16]. Current LHC Higgs observations are not suffi-
ciently precise as to allow one to distinguish this case from
that of the SM Higgs boson. To study this case, we first
define a parameter ϵ by defining the normalized hD̄D
coupling to be given by

−
sin α
cos β

¼ −1þ ϵ: (3.10)

Multiplying Eq. (3.10) by −2 cos2 β, and employing the
trigonometric identity, 2cosβsinα¼sinðβþαÞ−sinðβ−αÞ,
it follows that6

sinðβ þ αÞ − sinðβ − αÞ ¼ 2ð1 − ϵÞcos2β: (3.11)

By employing the trigonometric identity sinðβ−αÞ¼
sin2βcosðβþαÞ−cos2βsinðβþαÞ and taking 0 ≤ β ≤ 1

2
π,

one can also derive

sinðβ þ αÞ ¼ ð1 − ϵÞcos2β þ sin β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − ϵÞ2cos2β

q
; (3.12)

cosðβ þ αÞ ¼ −ð1 − ϵÞ sin β cos β þ cos β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − ϵÞ2cos2β

q
: (3.13)

Using Eqs. (3.4) and (3.10), it follows that

6Although we are interested in the 2HDM parameter regime where ϵ is small, Eq. (3.11) is valid for all values of ϵ.
In particular, for ϵ ¼ 2 we have sinðβ − αÞ ¼ 1 and sinðβ þ αÞ ¼ − cos 2β, which is consistent with the result of Eq. (3.11).

5The possibility that a parameter regime of the MSSM Higgs sector exists with a wrong-sign hD̄D coupling is addressed in
Appendix B.
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tan β ¼ 1þ sinðβ − αÞ − ϵ

cosðβ − αÞ : (3.14)

Since the hVV couplings are assumed to be close to
the SM, we still must impose the constraint that
j cosðβ − αÞj ≪ 1. Thus, in the case of the wrong-
sign hD̄D Yukawa coupling, we must have tan β ≫ 1,
which is the region of delayed decoupling defined
below Eq. (3.7).
For completeness, we also also examine the case

of a wrong-sign hŪU coupling in the type-II 2HDM
(or the case of the wrong-sign hŪU and hD̄D couplings
in the type-I 2HDM) by taking sinðβ þ αÞ close to −1

[cf. Eq. (3.9)]. To study this case, we first define a parameter
ϵ0 via

cos α
sin β

¼ −1þ ϵ0; (3.15)

which yields an hŪU coupling normalized to its SM value
given by −1þ ϵ0. An analysis similar to the one used in the
case of the wrong-sign hD̄D Yukawa coupling yields

sinðβ þ αÞ þ sinðβ − αÞ ¼ −2ð1 − ϵ0Þsin2β; (3.16)

and

sinðβ þ αÞ ¼ −ð1 − ϵ0Þsin2β − cos β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − ϵ0Þ2sin2β

q
; (3.17)

cosðβ þ αÞ ¼ −ð1 − ϵ0Þ sin β cos β þ sin β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − ϵ0Þ2sin2β

q
: (3.18)

Using Eqs. (3.5) and (3.14), it follows that

cot β ¼ − sinðβ − αÞ − 1þ ϵ0

cosðβ − αÞ : (3.19)

For values of j cosðβ − αÞj ≪ 1, Eq. (3.19) can only be
satisfied if cot β ≫ 1, which lies outside the range of tan β
under consideration [cf. Eq. (3.6)], as previously noted.
To complete the analysis of the tree-level Higgs cou-

plings, we briefly look at the h self-coupling. In the 2HDM,
the hhh coupling7 is given by [16]

Ghhh ¼ −3v½Z1sin3ðβ − αÞ þ 3Z6 cosðβ − αÞsin2ðβ − αÞ
þ ðZ3 þ Z4 þ Z5Þ sinðβ − αÞcos2ðβ − αÞ
þ Z7cos3ðβ − αÞ�; (3.20)

where in the softly broken Z2-symmetric 2HDM, the Zi are
given in Eqs. (A6) and (A10). Rewriting the Zi in terms of
the λi yields

Ghhh ¼ 3v½− cos βsin2αλ1 þ sin βcos3αλ2

− sin α cos α cosðβ þ αÞðλ3 þ λ4 þ λ5Þ�; (3.21)

which reproduces the result given in Ref. [56]. Using the
results of Appendix D of Ref. [16], we can rewrite the hhh
coupling in a more convenient form,

Ghhh ¼
−3

vsin2βcos2β
½sinβ cosβðcosβcos3α− sinβsin3αÞm2

h

− cos2ðβ−αÞcosðβþαÞm2
12�; (3.22)

which reproduces the result given in Ref. [57] (after
correcting a missing factor of 2).
In the decoupling/alignment limit where sinðβ − αÞ ¼ 1,

we have cos α ¼ sin β and sin α ¼ − cos β. Then, the hhh
coupling reduces to the SM value,

Ghhh → GSM
hhh ¼ −

3m2
h

v
: (3.23)

In the wrong-sign Yukawa coupling limit for type-II Higgs
couplings to down-type [up-type] fermions, respectively,
where sinðβ þ αÞ ¼ þ1 [−1], we have cos α ¼ þ½−� sin β
and sin α ¼ þ½−� cos β, so that

Ghhh → −½þ�GSM
hhh cos 2β; (3.24)

which reduces to the SM value only when β → 1
2
π [β → 0]

for type-II Higgs couplings to down-type [up-type] fer-
mions, respectively. It is quite remarkable that this matches
the behavior of the hVV coupling in the same limit. In par-
ticular, for sinðβþαÞ¼�1, we have sinðβ−αÞ¼∓cos2β,
as previously noted. Hence in the wrong-sign Yukawa
coupling limit, Eq. (3.1) yields

GhVV → −½þ�GSM
hVV cos 2β: (3.25)

Of course, the corresponding first order corrections to the
hhh and hVV couplings will differ as one moves away
from the strict limiting case treated above.
In the decoupling and alignment limits discussed at the

beginning of this subsection, the tree-level couplings of h

7A similar analysis can be given for the hhhh coupling using
the results given in Ref. [16]. However, this coupling cannot be
realistically probed by the LHC and ILC, so we will not provide
the explicit expressions here.
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approach the corresponding values of the SM Higgs boson.
The behavior of the decoupling and alignment limits differ
when one-loop effects are taken into account. In the
decoupling limit, the properties of h continue to mimic
those of the SM-like Higgs boson since the effects of theH,
A and H� loops decouple in the limit of heavy scalar
masses. In contrast, the alignment limit only requires that
jZ6j ≪ 1, so that in principle the masses of H, A and H�
could be relatively close to the electroweak scale. In this
case, the loop effects mediated by H, A and H� can
compete with other electroweak radiative effects and thus
distinguish between h and the SM Higgs boson.
In processes in which the one-loop effects are small

corrections to tree-level results, very precise measurements
will be required to distinguish between h and the SM Higgs
boson in the alignment limit. Indeed, a much more fruitful
experimental approach in this case is to search directly for
the H, A and H� scalars. However, in Higgs processes
that are absent at tree level but arise at one-loop, the loop
effects mediated by H, A or H� can compete directly with
deviations that arise due to small departures from the
alignment limit. The most prominent example is the decay
rate for h → γγ. Departures from the SM decay rate for h →
γγ can arise either from deviations in the hWþW−, ht̄t and/or
hb̄b couplings from their SM values, or from the contribu-
tions of the charged-Higgs boson loop (which is not present
in the SM). To compute the latter, we need to compute the
hHþH− coupling. Using the results of Ref. [16],

GhHþH− ¼ −v½Z3 sinðβ − αÞ þ Z7 cosðβ − αÞ�; (3.26)

where Z3 and Z7 are defined in terms of the λi in Eqs. (A8)
and (A10). It is convenient to reexpress the hHþH− coupling
in terms of the Higgs masses and λ5. Using the expressions
given in Appendix D of Ref. [16], we obtain

GhHþH− ¼ 1

v
½ð2m2

A − 2m2
H� −m2

h þ 2λ5v2Þ sinðβ − αÞ
þ ðm2

A −m2
h þ λ5v2Þðcot β − tan βÞ cosðβ − αÞ�;

(3.27)

where

m2
A −m2

H� ¼ 1

2
v2ðλ4 − λ5Þ: (3.28)

In the alignment limit where the masses ofH, A andH� are
of order the electroweak scale, GhHþH− ∼OðvÞ and the
charged-Higgs loops can compete with the SM loops
that contribute to the h → γγ one-loop amplitude. In the
normal decoupling limit where m2

H� ∼m2
A ≫ Oðv2Þ and

j cosðβ − αÞj ∼ v2=m2
A, GhHþH− ∼OðvÞ as expected, in

which case the charged-Higgs loop contribution to the
h → γγ amplitude is suppressed by a factor of v2=m2

H� .
Note that this factor is of the same order as cosðβ − αÞ. The

contribution of the fermion loops also deviates from the SM
by a factor of Oðcosðβ − αÞÞ due to the modified tree-level
hf̄f couplings [cf. Eqs. (3.4) and (3.5)].8 However, in the
decoupling limit the contribution of the bottom-quark loop is
suppressed by a factor ofm2

b=v
2 and can thus be ignored.We

conclude that the deviation from the SM in the decoupling
limit is due primarily to the top-quark loop and the charged-
Higgs loop, whose contributions to the h → γγ decay
amplitude are of the same order of magnitude.
The form of the hHþH− coupling given in Eq. (3.27)

suggests the existence of 2HDM parameter regimes in
which GhHþH− ≫ OðvÞ, even under the assumption that
cosðβ − αÞ ∼Oðv2=m2

HÞ ≪ 1. For example, if we allow
λ4 − λ5 to be large and if mH� , mA, mH ≫ v, then it
possible to have m2

A −m2
H� ∼Oðm2

H�Þ. It would then
follow that the contribution of the charged-Higgs loop
contribution to the h → γγ amplitude, which scales as
GhHþH−=m2

H� , approaches a constant in the region of
mH� ≫ mh. This nondecoupling behavior was first empha-
sized in Ref. [58] and subsequently reexamined in
Ref. [59]. Indeed, the behavior of the charged-Higgs loop
in the nondecoupling regime is similar to the contribution
of a heavy fermion loop to the h → γγ amplitude, which
scales asGhf̄f=mf and approaches a constant formf ≫ mh.
In particular, ifmf is too large, thenGhf̄f ¼ mf=v ≫ 1 and
tree-level unitarity is violated. However, there is an
intermediate range of heavy fermion masses above mh
but below the mass scale at which tree-level unitarity is
violated, in which the fermion loop contribution to the
h → γγ amplitude is approximately constant. Likewise, if
GhHþH−=v ≫ 1 is too large then one would need to take Z3

above its unitarity bound [in light of Eq. (3.26)]. Again,
there is an intermediate region of heavy Higgs masses
(where tree-level unitarity is still maintained) in which the
charged-Higgs loop contribution to the h → γγ amplitude is
approximately constant. Thus, we expect regions of 2HDM
parameter space in which a SM-like Higgs can exhibit a non-
negligible deviation in Γðh → γγÞ from SM expectations.
Alternatively, the second term on the right-hand side of

Eq. (3.27) can be enhanced in the delayed decoupling
regime where tan β ≫ 1 and j cosðβ − αÞj tan β ∼Oð1Þ. In
this case, GhHþH− ∼Oðm2

A=vÞ ∼Oðm2
H�=vÞ [under the

assumption that λ4, λ5 ≲Oð1Þ]. However, this behavior
is also associated with growing quartic couplings that can
potentially violate tree-level unitarity. Indeed, by compar-
ing with Eq. (3.26), we see that Z7 is being enhanced. More
directly, it is straightforward to obtain

ðm2
A −m2

h þ λ5v2Þðcot β − tan βÞ cosðβ − αÞ
¼ −v2 cos 2β½ðλ1 − λ3 − λ4 − λ5Þ cos β sin α

þ ðλ2 − λ3 − λ4 − λ5Þ sin β cos α�; (3.29)

8The contribution of the W� loop deviates from the SM by a
factor of Oðcos2ðβ − αÞÞ in light of Eq. (3.1).
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which again implies that some of the Higgs potential
parameters must be enhanced by a factor of Oðm2

A=v
2Þ

if m2
A ≫ v2 and j cosðβ − αÞj tan β ∼Oð1Þ. Thus, if mA

becomes too large, the unitarity constraints on the Higgs
potential quartic coupling parameters will be violated.
Nevertheless, there exists an intermediate range of charged-
Higgs masses in which tree-level unitarity is maintained
while the charged-Higgs loop contribution to the h → γγ
amplitude is approximately constant. That is, there exists a
region of 2HDM parameter space, in which j cosðβ − αÞj is
small and the hD̄D coupling is opposite in sign to that of
the SM Higgs boson, where a deviation in the h → γγ
decay rate from the predicted SM rate due to the contri-
bution of the charged-Higgs loop can be detected.
Details on the nondecoupling of the H� loop contribu-

tion to the h → γγ amplitude can be found in Appendix C,
where it is shown that such nondecoupling is inevitable for
the wrong-sign hD̄D coupling scenario. The resulting
magnitude of the effect yields deviations from the SM that
will ultimately be observable at the LHC and a future linear
collider, as discussed in the following sections.

IV. PHENOMENOLOGY OF THE WRONG-SIGN
YUKAWA COUPLINGS

It is convenient to define the ratio of the h → f coupling
to the corresponding SM value as

κf ¼ ghf
ghSMf

; (4.1)

where we will be considering f ¼ bb̄, cc̄, τþτ−, WW�,
ZZ�. As for the coupling to photons, κγ is defined as

κ2γ ¼
Γ2HDMðh → γγÞ
ΓðhSM → γγÞ ; (4.2)

with an analogous definition for κg. Note that κγ and κg are
strictly positive, whereas the remaining κf could be either
positive or negative. These definitions for the couplings κ
coincide with the definitions used by the experimental
groups at the LHC [60], at leading order. We shall also
make the simplifying assumption (which holds in the SM
and in the 2HDM under consideration) that all down-type
[up-type] fermion final states are governed by the same κD
[κU]. It is convenient to begin with a simplified discussion
of the impact of changing the sign of κD in order to set the
stage. In this section, we employ the convention of jαj ≤
π=2 for which κU > 0 in both type-I and type-II models.
For this choice, the hVV coupling of Eq. (2.4) can, in
principle, be either positive or negative. However, for
κU > 0, the phenomenology of the γγ final state requires
that the hVV coupling be positive, which means that ac-
ceptable regions of parameter space must have β − α > 0.
Consider first the amplitude of the process h → gg. In an

appropriate normalization, the top- and bottom-quark loops
contribute 4.1289 and −0.2513þ 0.3601i, respectively,

when κU ¼ 1 and κD ¼ 1. This implies a large fractional
change in the ggh coupling with a change of sign of κD. One
finds a shift in κg ofþ13% in going frompositive κD ¼ þ1 to
κD ¼ −1. Naively, one would suppose that this large shift
would be easily observed. However, this is a difficult task at
the LHC due to the challenge in identifying gluons (even if
indirectly) in the final state. In addition, the primary gg fusion
production cross section has some systematic errors asso-
ciated with higher order corrections. Nonetheless, Table 1-20
of Ref. [61] gives expected errors for κg of 6–8% for L ¼
300 fb−1 and 3%–5% forL ¼ 3000 fb−1, based on fitting all
the rates rather than directly observing the gg final state. At
the ILC, the primary production mechanism of eþe− →
Z� → Zh is very well determined in terms of the ZZh
coupling and isolation of the gg final state is easier. The
error on κg estimated in Ref. [61] is 2% for a combination
of L ¼ 250 fb−1 at

ffiffiffi
s

p ¼ 250 GeV and L ¼ 500 fb−1 atffiffiffi
s

p ¼ 500 GeV. Other error estimates are to be found in
Ref. [51,62] where it is concluded that κg can be measured at
the ILC with an accuracy of 8.5% at a center-of-mass (CM)
energyof 250GeVand7.3%at aCMenergy of 350GeVwith
an integrated luminosity of 250 fb−1 and beam polarization
of −80% (electron) and 30% (positron) [62]. The error
estimate for 500 GeV with L ¼ 500 fb−1 decreases to
∼2.3% (see Tables 6.1 and 6.2 of Ref. [51]), consistent with
the estimate from Ref. [61]. Thus, in the end, we can
anticipate that both the LHC and ILC will be able to
determine whether or not hD is positive using the indirect
fit and direct measurement of κg, respectively.
In h → γγ, the presence of the large W-boson loop

contribution means that considerable precision is required
to identify the interference effects. In more detail, the
contributions to the amplitude of this process assuming SM
couplings are as follows [these are the Ih’s defined in
Eq. (C5)];W boson,−8.3233; top-quark loop (with κU>0),
1.8351; bottom loop for κD > 0, −0.0279þ 0.0400i. As a
result, switching the sign of κD would change κγ from 1 to
0.991, i.e. a ≲1% shift. The accuracy with which κγ can
be measured at the 14 TeV LHC is given in Table 1-20
of Ref. [61] as 5%–7% for integrated luminosity of L¼
300 fb−1 and 2%–5% for L ¼ 3000 fb−1. The ranges
correspond to optimistic/pessimistic estimates regarding
systematic and theoretical errors. Thus, if the change in κγ
was only of order 1% this could not be detected at the
LHC. Nonetheless, we claim that with high enough
integrated luminosity one can distinguish κD < 0 from
κD > 0 in the context of the type-II 2HDM using the high
precision γγ final state due to the fact that the γγh
coupling is inevitably suppressed in the κD ¼ −1 case as
a result of a large nondecoupling charged-Higgs loop
contribution, i.e. one that approaches a constant at large
charged-Higgs mass (up to the limit at which the λi
couplings violate the tree-level unitarity bounds). There is
also a κD > 0 region of parameter space for which the
charged-Higgs loop does not decouple, and this regionwould
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be ruled out in very similar fashion to the κD < 0 region
we focus on. In fact, themodification to the γγ coupling is the
only way of revealing this κD > 0 nondecoupling region.
However, for κD > 0 there is also the standard decoupling
region for which the charged-Higgs loop does decouple and
that would allow arbitrarily precise agreement with the SM
predictions. A detailed discussion of nondecoupling and
perturbativity/unitarity bounds is given in Appendix C.
Typically, κγ is inevitably suppressed relative to the SM
prediction by about 5% for κD < 0, which should be
measurable at the

ffiffiffi
s

p ¼ 14 TeV LHC run for
L ¼ 3000 fb−1. At the ILC, for a combination of L ¼
250 fb−1 at

ffiffiffi
s

p ¼ 250 GeV and L ¼ 500 fb−1 at
ffiffiffi
s

p ¼
500 GeV the expected error on κγ is ∼8.3% (including a
0.5% theory uncertainty) based on measuring eþe− → Zh
with h → γγ, implying that the sign of κD cannot be directly
determined at the ILC using the γγ final state.
To explore in more detail, we scan over the 2HDM

parameter space subject to all the constraints described in
Sec. II. We begin by fixing mh ¼ 125 GeV. The charged-
Higgs mass is varied between 100 and 900 GeV in type-I
and 340 and 900 GeV in type-II. The heavier CP-even
scalar mass was kept between 125 and 900 GeV while
the pseudoscalar mass range is between 90 and 900 GeV.
The soft-breaking parameter was varied in the range
−ð900GeVÞ2<m2

12< ð900GeVÞ2 while 1 < tan β < 30.
After passing all constraints, the points were used to
calculate the various μhfðLHCÞ, which is the ratio of the
number of events predicted by the model for the process
pp → h → f to the SM prediction for the same final
state,

μhfðLHCÞ ¼
σ2HDMðpp → hÞBR2HDMðh → fÞ
σSMðpp → hSMÞBRðhSM → fÞ : (4.3)

In computing the pp → h cross section, we have summed
over all light Higgs production mechanisms (gg fusion,
VV fusion, Vh associated production, bb̄ fusion,
and tt̄h associated production),9 employing a mass of
mh ¼ 125 GeV. The processes that involve only Higgs
couplings to gauge bosons can be obtained by simply
rescaling the SM cross sections. Hence, for Higgs
Strahlung and vector boson fusion we have used the results
of Ref. [63] (the same applies to the final state htt̄). We have
included QCD corrections but not the SM electroweak
corrections because they can be quite different for the
2HDMs. Cross sections for bb̄ → h are included at next-
to-next-to-leading order (NNLO) [64] and the gluon fusion
process gg → h was calculated using HIGLU [65]. (When
the Higgs boson is SM-like, the bb̄ → h cross section is
much smaller than the gg → h cross section.) Our baseline
will be to require that the μhfðLHCÞ for final states
f ¼ WW, ZZ, bb̄, γγ and τþτ− are each consistent with
unity within 20%, which is a rough approximation to the
precision of current data. We then examine the conse-
quences of requiring that all the μhfðLHCÞ bewithin 10% or
5% of the SM prediction. This enables us to understand
how an increase in precision affects the scenario we will
now describe in detail.
As discussed in Secs. II and III, the relative hVV

coupling is given by κV ¼ g2HDMhVV =gSMhVV ¼ sinðβ − αÞ. The
relative Higgs-fermion couplings are κU ¼ κD ¼
cos α= sin β in the type-I 2HDM, whereas in the type-II
2HDM,

FIG. 1 (color online). Ratio of the lightest Higgs couplings to down quarks in the 2HDM relative to the SM as a function of tan β. Left:
Type-I and right: type-II. All μhfðLHCÞ are within 20% of the SM value.

9Further discrimination among models and parameter choices
within a model can be obtained by separately considering each
individual initial state × final state combination, as is now done
by the LHC experimental collaborations and considered in
Ref. [8].
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κU ¼ cos α
sin β

; κD ¼ −
sin α
cos β

: (4.4)

In Fig. 1 we show κD in type-I and type-II models as a
function of tan β for those parameter space points that
pass all theoretical and experimental constraints and
have all μhfðLHCÞ within 20% of the SM prediction of 1.
In all cases, κV > 0, which implies that a wrong-sign
Yukawa coupling would correspond to a negative value
of κD or κU. Noting that κU ≥ 0 in the convention of
jαj ≤ π=2, it follows that only regions with κD < 0
correspond to a wrong-sign Yukawa coupling scenario.
As expected, the left panel of Fig. 1 shows that all

points are very close to κD ¼ 1 for a type-I 2HDM, while
the right panel shows that in the case of the type-II
2HDM all points fall within two main regions: one where
κD ≈ 1 and the other one where κD ≈ −1. In short,
although the LHC results have clearly shown that the
Higgs rates to fermions and gauge bosons are very
consistent with the SM predictions, it is clear that the
roughly 20% precision with which LHC rates are
currently measured allows for a second non-SM-like
region with the opposite sign of hD that can fit within
the context of the type-II 2HDM.
In Sec. III, we showed that in the type-II 2HDM, the

κD ∼þ1 region corresponds to the limit sinðβ − αÞ ≈ 1
whereas the κD ∼ −1 region is attained in the limit
sinðβ þ αÞ ≈ 1,

κIID → 1 ðsinðβ − αÞ → 1Þ;
κIID → −1 ðsinðβ þ αÞ → 1Þ; (4.5)

corresponding to negative and positive values of sin α,
respectively (in a convention where 0 ≤ β ≤ 1

2
π). On

the other hand, the relative hVV and hhh couplings
satisfy

κV;
G2HDM

hhh

GSM
hhh

→ 1 ðsinðβ − αÞ → 1Þ;

κV;
G2HDM

hhh

GSM
hhh

→
tan2β − 1

tan2β þ 1
ðsinðβ þ αÞ → 1Þ: (4.6)

In Fig. 2, the left panel shows tan β as a function of sinα
with all μhfðLHCÞ within 20% (blue/black), 10% (green/
light grey) and 5% (red/dark grey) of their SM values. We
clearly see two branches—one with sin α < 0 correspond-
ing to the SM limit and one with sin α > 0 corresponding to
the wrong-sign Yukawa coupling scenario. In the left
branch, the points are all such that sinðβ − αÞ ∼ 1; the
points in the right branch all have sinðβ þ αÞ ∼ 1. The right
panel shows that as tan β increases the κD < 0 branch
corresponds to parameters with small cosðβ − αÞ, i.e.
sinðβ − αÞ ∼ 1. Note that the second branch is excluded
if we demand that all the μhfðLHCÞ fall within 5% of unity.
It is instructive to consider why sinðβ þ αÞ ≈ 1 with

κD ∼ −1 is still allowed by current data. Note that
Eq. (3.11) implies that at very large tan β where β → 1

2
π,

sinðβ þ αÞ − sinðβ − αÞ ¼ 2ð1 − ϵÞ
1þ tan2β

≪ 1

ðfor tan β ≫ 1Þ: (4.7)

In particular, when ϵ < 1 we see that sinðβ − αÞ is always
below sinðβ þ αÞ. Figure 2 reflects the behavior shown in
Eq. (4.7) in that the larger tan β is, the closer the negative
and positive sinα regions are. Furthermore, as ϵ decreases
the region where the low values of tan β are allowed
decreases. Therefore, when tan β is very large we see that
j cosðβ − αÞj ≪ 1, and we recover the SM VV and hhh
couplings. Furthermore, as discussed earlier there is limited
sensitivity to the sign of the Yukawa couplings for

FIG. 2 (color online). Allowed regions for 2HDM type-II with all μhfðLHCÞ within 20% (blue/black), 10% (green/light grey) and 5%
(red/dark grey) of the SM value of unity. Left: In the tan β vs sin α plane. Right: In tan β vs cosðβ − αÞ space.
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theone-loop induced γγ and gg couplings. Thus, due to the
limited accuracy with which the γγ and gg couplings are
(indirectly) measured, the region of wrong-sign Yukawa
couplings [where sinðβ þ αÞ ≈ 1 and sin α > 0] in the type-
II 2HDM is still allowed by the current LHC data.

V. RESULTS AND DISCUSSION

In order to study in more detail the wrong-sign region of
the type-II 2HDM, we have generated a new set of points
where we have further imposed that sinα > 0. In the left
panel of Fig. 3 we present κD as a function of sinðβ − αÞ,
with all μhfðLHCÞ within 20% of the SM values in blue
(black) and 10% of the SM values in green (light grey).

As expected, the values are very close to the region where
κD ¼ −1 while simultaneously sinðβ − αÞ approaches 1. As
the μhfðLHCÞ values are required to agree more precisely
with the SM value of 1, the points move closer to the above
limit. In the right panel we show the same ratio as a function
of tan β. As tan β grows, sinðβ þ αÞ is forced to be closer to
sinðβ − αÞ as indicated in Eq. (4.7) and is forced to be closer
to 1 due to the LHC constraints. As indicated by Fig. 2,
increasing the precision of the Higgs measurements would
allow exclusion of the low tan β region if all μhfðLHCÞ are
within 10% of unity. Moreover, the entire κD < 0 region is
eliminated if all μhfðLHCÞ are within 5% of unity.
In fact, we will see that it is μhγγðLHCÞ that makes overall

consistency with SM rates at the 5% level impossible in the
sin α > 0 branch. This is due to the fact that for all the κD < 0
points we are in the nondecoupling regime for which the
charged-Higgs boson loop contribution to the h → γγ ampli-
tude is approximately constant as a function ofmH� (up until
the tree-level unitarity upper limit of mH� ∼ 650 GeV,
beyond which κD < 0 is not a perturbatively consistent
possibility). The charged-Higgs loop gives about a 10%
reduction in Γðh → γγÞ that is inconsistent with μhγγðLHCÞ
being within 5% of unity. The details of the nondecoupling
regime are discussed at length in Appendix C.
Another perspective is obtained by examining Fig. 4.

There, we have shown regions in κD vs tan β space where
either μhγγðLHCÞ (cyan/grey) or μhbbðLHCÞ (black) are within
5% of unity for points in the sin α > 0 branch.10 We observe
that the two branches represented do not intersect, and as
such it is impossible to achieve 5% agreement with the SM in

FIG. 3 (color online). Left panel: The Yukawa coupling ratio κD ¼ h2HDMD =hSMD as a function of sinðβ − αÞ in the type-II 2HDM, with
all μhfðLHCÞ within 20% (blue/black) and 10% (green/light grey) of their SM values. Right panel: Same ratio as a function of tan β. If
one demands consistency at the 5% level, no points survive.

FIG. 4 (color online). For the 2HDM type-II, we show regions
in κD vs tan β space having sin α > 0 that are allowed when
μhγγðLHCÞ (cyan/grey) and μhbbðLHCÞ (black) are within 5% of the
SM prediction of unity.

10Note that μhτþτ−ðLHCÞ ¼ μhbbðLHCÞ in the 2HDM, implying
that measurements in the τþτ− channel are equally useful.
Further, at the LHC, the τþτ− final state will be more precisely
measured than for the bb̄ final state.
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both of these channels. This explains why there are no red
points in the right branch of the plots in Fig. 2.
Further insight is gained from Fig. 5, which considers

points for which the μhWW;ZZðLHCÞ are within 5% of the SM
value of 1. On the left, we exhibit the values of μhγγðLHCÞ and
μhbbðLHCÞ vs tan β. This shows that while μhbbðLHCÞ can be
within 5%of unity,μhγγðLHCÞ cannot—it is alwaysmore than
7%–8% below unity, implying that 5% accuracy on this
channel would exclude the κD < 0 branch. On the right,
we plot μhγγðLHCÞ vs μhbbðLHCÞ. The largest value of
μhγγðLHCÞ that can be achieved is ∼0.925, and this only if
μhbbðLHCÞ≲ 0.96. Thus, it is the suppression of the γγ final
state at theLHC that is key to rulingout theκD < 0possibility
for

ffiffiffi
s

p ¼ 14 TeV operation at high luminosity. This same
conclusion is found in the work of Ref. [66]. There, different

initial states are separated fromone another andone finds that
theVV → h → γγ rate is themost suppressed relative toother
processes—because of the 6% enhancement of σðgg → hÞ
when κD < 0 the gg → h → γγ rate is not as suppressed
relative to the remaining processes but still contributes to the
overall inconsistency for κD < 0 between these γγ final state
channels with other final states such asZZ,WW and ττwhen
all are measured with 5% accuracy.
In Fig. 6, we show in κγ or κg vs κD space the points that

are allowed if the μhfðLHCÞ’s are each within 20% (blue),
10% (green), or 5% (red) of unity (the SM limit). We
observe from the left-hand plot that κγ is always at least 5%
below unity in the κD < 0 region and that 5% accuracy on
the μhfðLHCÞ’s will eliminate this region entirely. In fact, as
we saw in Fig. 5 it is μhγγðLHCÞ that necessarily has a
greater than 5% deviation from unity. The right-hand plot

FIG. 5 (color online). Assuming that the WW;ZZ rates are measured to be within 5% of the SM prediction, we plot μhγγðLHCÞ and
μhbbðLHCÞ vs tan β (left) and μhγγðLHCÞ vs μhbbðLHCÞ (right).

FIG. 6 (color online). Allowed regions for 2HDM type-II with all μhfðLHCÞ within 20% (blue/black), 10% (green/light grey) and 5%
(red/dark grey) of their SM values in κγ vs κD space (left); κg vs κD space (right).

FERREIRA et al. PHYSICAL REVIEW D 89, 115003 (2014)

115003-12



shows that in the κD < 0 region, κg is always bigger than
1.13. However, since currently the LHC is unable to
determine κg with the necessary accuracy this does not
help to exclude the κD < 0 region. But, as summarized
earlier, with L ¼ 300 fb−1 at

ffiffiffi
s

p ¼ 14 TeV, κg can be
determined to about 8% accuracy and such a deviation will
certainly be observable.
As noted earlier, at the ILC the gg final state becomes a

powerful tool for determining the sign of κD. Thus, we shall
explore the gg final state issues in more detail. In Fig. 7 we
exhibit κ2g ¼ Γðh → ggÞ2HDM=ΓðhSM → ggÞ as a function
of κD for sin α < 0 (left) and sin α > 0 (right) with all
μhfðLHCÞ within 20% of the SM values in blue (dark grey)
and 10% of the SM values in green (light grey). Contrary to
the SM-like scenario, when sinα > 0 (wrong-sign Yukawa
coupling) the value of the ratio of the widths is always
above 1.25. Figure 7 shows that the minimum value of κ2g
becomes larger when smaller deviations of the μhfðLHCÞs
from unity are required. In particular, when the hD coupling
changes sign but all tree-level couplings have SM magni-
tude, the ratio between the two widths is exactly

Γðh → ggÞ2HDM
ΓðhSM → ggÞ ¼ 1.27 ðsinðβ þ αÞ ¼ 1Þ; (5.1)

which is in agreement with HDECAY [67,68] and 2HDMC

[68,69]. Note that this interference effect, which is almost
30% relative to the SM, does not manifest itself in the
production process gg → h that is important for the LHC
and might therefore have been quite easily detectable. In
contrast to the leading order (LO) result,

σðgg → hÞ2HDMLO

σðgg → hSMÞLO
≈
Γðh → ggÞ2HDMLO

ΓðhSM → ggÞLO
≈ 1.27

ðsinðβ þ αÞ ¼ 1Þ; (5.2)

at NNLO in the limit of sinðβ þ αÞ ¼ 1, σðgg → hÞ2HDMNNLO=
σðgg → hSMÞNNLO ≈ 1.06 [65] while the ratio of the partial
widths of h → gg does not suffer any significant change in
going from LO to NNLO. Therefore, the present LHC data
cannot discriminate between the two scenarios based on
interference effects at the production level; it is only
through a luminosity L ≥ 300 fb−1 of data accumulated
at

ffiffiffi
s

p ¼ 14 TeV and a combined fit of the rates for all final
states that one can manage to determine the underlying κg
with adequate precision.
Of course the ILC can probe BRðh → ggÞmore easily and

directly using the process eþe− → Zh → Zgg. We define

μhggðILCÞ ¼
σBRðh → ggÞ

σSMBRðhSM → ggÞ (5.3)

where σ is the measured eþe− → Z� → Zh Higgs produc-
tion cross section at the ILC and σSM and BRðhSM → ggÞ are
the SM values of the production cross section at the ILC and
branching ratio of a Higgs decaying to a pair of gluons. The
ratio of the cross sections in the process eþe− → Zh is just
sin2ðβ − αÞ. Likewise we can define similar ratios for the
processes eþe− → Zh → Zbb̄ and eþe− → Zh → Zcc̄
which we will call μhbbðILCÞ and μhccðILCÞ, respectively.
In the left panel of Fig. 8 we show the quantity μhggðILCÞ

as a function of tan β. When all μhfðLHCÞ’s measured at the
LHC are forced to be within 20% of the SM values (blue/
black) all points are above 1.12. If the precision is increased
to 10%, the bound is increased to 1.25. Recently, it was
shown that μhggðILCÞ can be measured at the ILC with an
accuracy of 8.5% at a CM energy of 250 GeVand 7.3% at a
CM energy of 350 GeV with an integrated luminosity of
250 fb−1 and beam polarization of −80% (electron) and
30% (positron) [51,62]. The 95% C.L. predicted mea-
surement for

ffiffiffi
s

p ¼ 350 GeV and 250 fb−1 luminosity is

FIG. 7 (color online). κ2g ¼ Γðh → ggÞ2HDM=ΓðhSM → ggÞ as a function of κD ¼ h2HDMD =hSMD in type-II, with all μhfðLHCÞ within 20%
(blue/black), 10% (green/light grey) and 5% (red/dark grey) of their SM values. Left panel: sin α < 0. Right panel: sin α > 0.
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1.02� 0.07 [62], assuming SM expectations. Therefore,
this measurement could exclude all points in the left panel
of Fig. 8. In the right panel we present μhbbðILCÞ as a
function of tan β. The corresponding SM predicted meas-
urement for the ILC is 1.00� 0.01. Clearly, a better than
about 5% measurement of μhbbðILCÞ can also help probe the
wrong-sign coupling provided enough precision is attained
at the LHC in the measurements of the Higgs couplings to
fermions and gauge bosons. The values of μhbbðILCÞ are
slightly below 1 because, as can be seen from Eq. (4.7),
when sinðβ þ αÞ → 1, sinðβ − αÞ is slightly below 1 as
the right-hand side of the equation is positive. Note that
the ratio of the branching ratios in μhbbðILCÞ is very close
to 1 in the limit we are considering and as such
μhbbðILCÞ ≈ sin2ðβ − αÞ. Similar results would be obtained
for μhccðILCÞ, where the final state is cc̄, but the precision in
the μhccðILCÞ measurement is not as good as for μhbbðILCÞ.

VI. CONCLUSIONS

The couplings of the Higgs boson recently discovered
at the LHC to the fermions and gauge bosons are starting
to be measured with some precision. It is important to
understand the implications of these results in the context
of specific Higgs sector models. In this paper, we
considered type-I and type-II Z2-symmetric and CP-
conserving 2HDMs. Our focus was on the fact that
the sign of the Yukawa coupling to the down-type
fermions could be opposite to that of the SM. Using
scans over type-I and type-II parameter spaces, subject to
basic theoretical and experimental constraints as
described in the main text, we found that a sign change
in the down-quark Yukawa couplings can be accommo-
dated in the context of the current LHC data set at
95% C.L., but only in the case of the type-II 2HDM

when sinðβ þ αÞ ∼ 1. The situation is different in the
type-I 2HDM—because only one doublet couples to all
fermions the sign change would result in deviations from
the SM predictions that are incompatible with the current
Higgs data set. In this paper, we address the possibility of
probing the wrong-sign Yukawa coupling of the Higgs to
down-type quarks with future measurements of Higgs
properties at the

ffiffiffi
s

p ¼ 14 TeV LHC and at the
International Linear Collider.
In particular, we performed a scan dedicated to the part

of type-II 2HDM parameter space where the wrong-sign
down-type quark coupling is currently acceptable. We
filtered parameter space points requiring that the values
of μhfðLHCÞ, the production rate of a given final state f
relative to the SM, are within either 20%, 10% or 5% of
the SM predictions for the LHC. Of greatest immediate
interest is the fact that projected precisions for the
determination of the magnitude of the γγh coupling
relative to its SM value, κγ (using pp → h → γγ in
particular) imply that the LHC with

ffiffiffi
s

p ¼ 14 TeV and
L ≥ 300 fb−1 will either rule out or confirm the wrong-
sign scenario. Of particular importance for this conclu-
sion is the fact that the charged-Higgs loop contribution
to the γγh couplings does not decouple for the sinðβ þ
αÞ → 1 scenario, leading to a ∼10% decrease in
Γðh → γγÞ. This statement applies for any charged-
Higgs mass below the bound of about 650 GeV for
which the Higgs coupling parameters satisfy tree-level
unitarity bounds. In the context of the model, a finding
that the hD Yukawa has a negative sign and also
detecting a charged-Higgs with mass above 650 GeV
would imply that the theory is in a realm where
perturbative calculations become suspect.
In addition, we have shown that the predictions for the

measurements of μhggðILCÞ and μhbbðILCÞ at the ILC would

FIG. 8 (color online). Left panel: μhggðILCÞ as a function tan β. Right panel: μhbbðILCÞ as a function of tan β. The model is type-II,
requiring sin α > 0, with all μhfðLHCÞ within 20% of the SM values in blue (black) and 10% of the SM values in green (light grey).
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allow us to probe the wrong-sign Yukawa coupling of a
type-II 2HDM. Therefore, at both collider facilities, either a
measurement or a definite 95% exclusion limit could be set
on the wrong-sign Yukawa coupling scenario.
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APPENDIX A: THE HIGGS BASIS OF THE
SOFTLY BROKEN Z2-SYMMETRIC

CP-CONSERVING 2HDM

It is convenient to reexpress the Higgs potential given by
Eq. (2.2) in the Higgs basis [41–47]. By assumption, we
have assumed that all the scalar potential parameters and
the two vacuum expectation values v1 and v2 are real,
which implies that the scalar potential and the vacuum are
CP invariant. By a suitable transformation on the two-
Higgs-doublet fields Φa (a ¼ 1; 2), one can define two new
linearly independent Higgs doublet fields H1 and H2 such
that hH0

1i ¼ v=
ffiffiffi
2

p
and hH0

2i ¼ 0. This is accomplished by
defining

H1 ¼
�
Hþ

1

H0
1

�
≡ v1Φ1 þ v2Φ2

v
;

H2 ¼
�

Hþ
2

H0
2

�
≡ −v2Φ1 þ v1Φ2

v
: (A1)

The Higgs basis is uniquely defined up to an overall sign of
the H2 scalar doublet field. In the Higgs basis, the scalar
potential is given by

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ½Y3H

†
1H2 þ H:c:� þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ

þ Z4ðH†
1H2ÞðH†

2H1Þ þ
�
1

2
Z5ðH†

1H2Þ2 þ ½Z6ðH†
1H1Þ þ Z7ðH†

2H2Þ�H†
1H2 þ H:c:

�
; (A2)

where the squared-mass terms are given by

Y1 ¼ m2
11cos

2β þm2
22sin

2β − 2m2
12 sin β cos β; (A3)

Y2 ¼ m2
11sin

2β þm2
22cos

2β þ 2m2
12 sin β cos β; (A4)

Y3 ¼ ðm2
22 −m2

11Þ sin β cos β −m2
12 cos 2β; (A5)

and the Higgs basis quartic couplings are given by

Z1 ≡ λ1cos4β þ λ2sin4β þ 2ðλ3 þ λ4 þ λ5Þsin2βcos2β;
(A6)

Z2 ≡ λ1sin4β þ λ2cos4β þ 2ðλ3 þ λ4 þ λ5Þsin2βcos2β;
(A7)

Zi ≡ ðλ1 þ λ2 − 2λ3 − 2λ4 − 2λ5Þsin2βcos2β þ λi;

for i ¼ 3; 4; 5; (A8)

Z6≡−sinβcosβ½λ1cos2β−λ2sin2β− ðλ3þλ4þλ5Þcos2β�;
(A9)

Z7≡−sinβcosβ½λ1sin2β−λ2cos2βþðλ3þλ4þλ5Þcos2β�:
(A10)

Note that one is free to redefine Y3, Z6 and Z7 by an overall
sign in light of the sign ambiguity in defining the Higgs
basis. The potential minimum conditions are especially
simple in the Higgs basis,

Y1 ¼ −
1

2
Z1v2; Y3 ¼ −

1

2
Z6v2; (A11)

leaving Y2 as the only free squared-mass parameter of the
model.
Finally, we note some useful relations that relate the

Higgs basis parameters to the Higgs masses [16,70]:

Z1v2 ¼ m2
hsin

2ðβ − αÞ þm2
Hcos

2ðβ − αÞ; (A12)

Z3v2 ¼ 2ðm2
H� − Y2Þ; (A13)

Z4v2 ¼ m2
hcos

2ðβ − αÞ þm2
Hsin

2ðβ − αÞ þm2
A − 2m2

H� ;

(A14)
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Z5v2 ¼ m2
hcos

2ðβ − αÞ þm2
Hsin

2ðβ − αÞ −m2
A; (A15)

Z6v2 ¼ −ðm2
H −m2

hÞ sinðβ − αÞ cosðβ − αÞ: (A16)

The Higgs masses and cosðβ − αÞ do not depend on the
parameters Z2 and Z7.

APPENDIX B: THE WRONG-SIGN hD̄D
COUPLING AND THE MSSM HIGGS SECTOR

The tree-level scalar potential of the MSSMHiggs sector
is given by Eq. (2.2), with [11]

λ1 ¼ λ2 ¼
1

4
ðg2 þ g02Þ; λ3 ¼

1

4
ðg2 − g02Þ;

λ4 ¼ −
1

2
g2; λ5 ¼ 0: (B1)

In particular λ6 ¼ λ7 ¼ 0 [defined below Eq. (2.2)].
Inserting Eq. (B1) into Eqs. (A6)–(A10) yields [70]

Z1 ¼ Z2 ¼
1

4
ðg2 þ g02Þcos22β; Z3 ¼ Z5 þ

1

4
ðg2 − g02Þ;

Z4 ¼ Z5 −
1

2
g2; Z5 ¼

1

4
ðg2 þ g02Þsin22β;

Z7 ¼ −Z6 ¼
1

4
ðg2 þ g02Þ sin2β cos2β: (B2)

Using the result for Z6 given above in Eqs. (3.2) and (3.3)
yields the tree-level expressions,

cos2ðβ − αÞ ¼ m2
Zcos

22β −m2
h

m2
H −m2

h

; (B3)

sinðβ − αÞ cosðβ − αÞ ¼ m2
Z sin 2β cos 2β
m2

H −m2
h

; (B4)

where m2
h;H are the MSSM tree-level CP-even Higgs

squared masses,

m2
H;h ¼

1

2

�
m2

A þm2
Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A þm2
ZÞ2 − 4m2

Zm
2
Acos

22β
q 	

:

(B5)

In addition, the MSSM tree-level Higgs-fermion Yukawa
couplings possess a type-II structure due to supersymmetry.
In the decoupling limit where mH ∼mA ≫ mZ, Eq. (B3)

implies that sinðβ − αÞ≃ 1 (in the convention where
0 ≤ β − α ≤ π). Using Eq. (B4),

cosðβ − αÞ tan β≃ 2m2
Zsin

2β cos 2β
m2

A
≪ 1; (B6)

for all values of tan β. In particular, for tan β ≫ 1, one can
never have cosðβ − αÞ tan β ∼Oð1Þ in the decoupling

regime. Thus, in the tree-level Higgs sector of the
MSSM, the phenomenon of delayed decoupling discussed
below Eq. (3.7) does not occur. In light of Eq. (3.4), one
cannot achieve the wrong-sign hD̄D Yukawa coupling in
the region of the tree-level MSSM Higgs sector parameter
space where the hVV coupling is SM-like.
It is well known that radiative corrections can significantly

alter the properties of the MSSM Higgs sector (reviewed in,
e.g., Refs. [71] and [72]). In particular, theMSSMprediction
for m2

h is significantly shifted from its tree-level value given
in Eq. (B5) by radiative corrections [73]. In addition, the
radiative corrections can also generate significant shifts to
the tree-level values of the Higgs couplings. For example,
consider the scenario inwhich theMSSMμ parameter and all
supersymmetry-breaking mass parameters (excluding the B
parameter, which fixes the value of the mass mA) are all of
order of a common supersymmetry-breaking mass scale
MSUSY. If mA ≪ MSUSY, then one can integrate out all the
supersymmetric states to obtain a low-energy effective theory
below the scaleMSUSY, which can be identified as a 2HDM
extension of the StandardModel. In this effective 2HDM, the
tree-level values of the λi given inEq. (B1) receive significant
radiative corrections.Moreover, nonzerovalues for λ5, λ6 and
λ7 are generated [74], which can be complex if there areCP-
violating phases associated with μ, At and the gluino mass
parameter. Likewise, nonzero values for the so-calledwrong-
Higgs Yukawa couplings [75] that are absent in a type-II
model are also generated. That is, the resulting effective
2HDM is no longer described by a softly broken Z2

symmetric 2HDM with type-II Higgs-fermion Yukawa
couplings. Thus, the results of this paper are not directly
applicable to the radiatively corrected MSSM Higgs sector
with mA ≪ MSUSY. Nevertheless, using the approximations
given in Ref. [49], one can check whether it is possible to
achieve a wrong-sign hD̄D coupling in a suitable region of
the MSSM Higgs parameter space in which the radiative
corrections to theHiggs couplings are potentially significant.
There are two separate effects that must be taken into

account. First, the wrong-Higgs Yukawa couplings that are
radiatively generated contribute an additional term to the
hD̄D coupling, which is enhanced in the limit of large
tan β. Keeping only these tan β-enhanced corrections, and
neglecting any CP-violating phases of the MSSM param-
eters for simplicity, the following approximate expression
(for MSUSY ≫ mZ and tan β ≫ 1) is given in Ref. [49] for
the hbb̄ coupling11:

ghbb̄ ¼ −
mb

v
sin α
cos β

�
1 −

Δb

1þ Δb
ð1þ cot α cot βÞ

�
; (B7)

where [77]

11The factor ð1þ ΔbÞ−1 in Eq. (B7) provides a resummation of
the leading Δb corrections to all orders [76].
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Δb ≃
�
2αs
3π

μM ~gIðM ~b1
;M ~b2

;M ~gÞ

þ h2t
16π2

μAtIðM~t1 ;M~t2 ; μÞ
�
tan β: (B8)

In Eq. (B8), M ~g is the gluino mass, M ~b1;2
are the bottom

squark masses, ht is the top-quark Yukawa coupling and the
loop integral Iða; b; cÞ is given by

Iða; b; cÞ

¼ a2b2 lnða2=b2Þ þ b2c2 lnðb2=c2Þ þ c2a2 lnðc2=a2Þ
ða2 − b2Þðb2 − c2Þða2 − c2Þ :

(B9)

Note that Iða; a; aÞ ¼ 1=ð2a2Þ. Thus, if all supersymmetric
parameters appearing in Eq. (B8) are of OðMSUSYÞ, then
Δb approaches a constant (nondecoupling) value in the
limit of MSUSY ≫ mZ. It is convenient to rewrite

1þ cot α cot β ¼ cosðβ − αÞ
sin β sin α

: (B10)

Inserting this result into Eq. (B7) and making use of
Eq. (3.4), we end up with

ghbb̄ ¼
mb

v

�
sinðβ − αÞ − cosðβ − αÞ tan β

�
1 − Δbcot2β

1þ Δb

��
:

(B11)

Second, after integrating out the supersymmetric par-
ticles to obtain the low-energy effective 2HDM, one must
take into consideration the renormalization of the CP-even
mixing angle α. To include these effects, we diagonalize the
radiatively corrected 2 × 2 CP-even Higgs squared-mass
matrix. Denoting these loop corrections by δM2

ij, an
approximate expression for cosðβ − αÞ in the limit of
mZ ≪ mA ≪ MSUSY is given by [49]

cosðβ − αÞ

≃
�
1þ δM2

11 − δM2
22

2m2
Z cos 2β

−
δM2

12

m2
Z sin 2β

�
m2

Z sin 2β cos 2β
m2

A
:

(B12)

In the limit of tan β ≫ 1, the term proportional to δM2
12 in

Eq. (B12) can dominate over the tree-level contribution.
Using the approximate one-loop expression given in
Ref. [49],

cosðβ − αÞ ∼ δM2
12

m2
A

≃ −
g2m4

t

32π2m2
Wm

2
Asin

2β

μXt

M2
SUSY

�
6 −

XtAt

M2
SUSY

�
;

(B13)

where Xt ≡ At − μ cot β (note that Xt ≃ At for tan β ≫ 1).
A quick back-of-the-envelope numerical analysis can

reveal whether it is possible to achieve a value of vghbb̄=mb
close to −1. We shall assume that sinðβ − αÞ ∼ 1, corre-
sponding to a SM-like hVV coupling. To maximize the
effect of the radiative corrections, we shall also assume that
tan β ≫ 1. If we further assume that all supersymmetric
particle masses are of OðMSUSYÞ, then Eq. (B8) yields
Δb ∼�0.01 tan β, where the sign is determined by the
overall sign of μM ~g [since the first term in Eq. (B8)
typically dominates]. In light of Eq. (3.6), we conclude
that jΔbj ≲ 0.5, so at best the inclusion of Δb enhances the
second term on the right-hand side of Eq. (B11) by a factor
of 2. Thus, we examine whether it is plausible that
cosðβ − αÞ tan β ∼Oð1Þ.
In evaluating Eq. (B13), we must also ensure that the

observed Higgs mass is correctly reproduced by the choice
of supersymmetric parameters which govern the radiative
corrections. In the so-calledmaximalmixing scenariowhere
A2
t ¼ 6M2

SUSY, the approximate expression for δM2
12 van-

ishes. For large values of tan β, the measured Higgs mass,
mh ∼ 125 GeV is not compatible with the maximal mixing
scenario as defined in Ref. [78], so it is reasonable to take
6 − XtAt=M2

SUSY ∼Oð1Þ. As an example, for tan β ≫ 1,
At ∼ 2MSUSY and μ ∼ −2MSUSY, one finds numerically that

cosðβ − αÞ ∼
�
28 GeV

mA

�
2

: (B14)

Choosing extreme parameters, tan β ¼ 50 and Δb ¼ −0.5,
we see that it is just possible to achieve a value of
vghbb̄=mb close to −1 if mA ¼ 200 GeV. However, this
value of mA is uncomfortably close to mZ and mh, in
which case one must check that terms of Oðm2

Z=m
2
AÞ,

which have been neglected in the above analysis, do not
spoil the estimate. Increasing the magnitude of μ or
taking At slightly above its maximal mixing value would
allow for a wrong-sign hbb̄ coupling together with a
somewhat higher value of mA.
Similar considerations also apply to the hτþτ− coupling.

However, the expression for Δτ [analogous to Eq. (B8) for
Δb] involves only terms proportional to electroweak gauge
couplings. Hence, the effects of Δτ only have a small
impact on ghτþτ− . Thus, it is even harder to find a sensible
parameter regime in which vghτþτ−=mτ is close to −1.
We conclude that in the MSSM, the wrong-sign hbb̄ and
hτþτ− couplings are not possible for generic choices of the
MSSM parameters. Nevertheless, based on an approximate
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treatment of the leading radiative corrections, it seems that
some extreme regions of the parameter space do exist in
which a value of vghbb̄=mb close to −1 can be achieved
due to large radiative correction effects in the large tan β
regime. A more detailed study of the MSSM Higgs
parameter space based on a more complete analysis of
the radiative corrections lies beyond the scope of this paper.

APPENDIX C: NONDECOUPLING OF THE
H� LOOP CONTRIBUTION TO THE h → γγ
AMPLITUDE AND THE κD < 0 SCENARIO

In this appendix, we give a detailed treatment of
the nondecoupling of the H� loop contribution to the
h → γγ amplitude discussed at the end of Sec. III, focus-
ing on its impact on the wrong-sign Yukawa coupling
scenario, i.e. κD < 0. In particular, we demonstrate that the

charged-Higgs contribution to the hγγ coupling in the
κD < 0 case is approximately constant and always suffi-
ciently significant as to eventually be observable at the
LHC. In addition, we display explicitly the constraints
coming from tree-level unitarity, which imply that the
κD < 0 scenario is only perturbatively reliable for
mH� ≲ 650 GeV. We also remark on nondecoupling of
the charged-Higgs loop for some κD > 0 scenarios.12

To begin, let us first recall the basic formulae from
Ref. [16] in the case of λ6 ¼ λ7 ¼ 0 considered in this
paper, as summarized in Sec. III. The crucial ingredients are
the mass-squared relation of Eq. (3.28) and the expression
Eq. (3.27) for the hHþH− coupling, GhHþH− [cf. Eq. (C7)].
For the purposes of this appendix, it is useful to rearrange
some of the angular factors and to define the dimensionless
coupling

ghHþH− ≡GhHþH−

v
¼ ð2m2

A − 2m2
H� −m2

hÞ sinðβ − αÞ sin β cos β þ ðm2
A −m2

hÞ cos 2β cosðβ − αÞ þ λ5v2 cosðβ þ αÞ
v2 sin β cos β

: (C1)

In the decoupling limit described in Sec. III, we have
sinðβ−αÞ→1, cosðβ−αÞ→0, and m2

A ∼m2
H ∼m2

H� ≫ v2.
The first term inside the brackets of Eq. (C1) is of
order v2 because of the mass relations (keeping the λi
perturbative) and the second term is of order v2 because
cosðβ − αÞ ∝ v2=m2

A. To discuss the third term we need
to note that for sinðβ − αÞ → 1 we have α → β − π=2.
Then, the third term approaches 2v2λ5 since
cosðβ þ αÞ → sin 2β ¼ 2 sin β cos β. The net result is that
ghHþH− is not growing with the Higgs mass squared and
so the charged-Higgs loop contribution to the h → γγ
amplitude is suppressed by a factor of m2

W=m
2
H� relative

to the W and t and b loops. This is in correspondence
with the idea that any heavy particle that does not acquire
mass from the Higgs vacuum expectation value should
decouple.
However, the situation is necessarily quite different in the

case of κD < 0, where sinðβ þ αÞ → 1, implying α →
π=2 − β. In this limit, cosðβ − αÞ → sin 2β so that the second
term in the numerator of Eq. (C1) is approximated by2ðm2

A −
m2

hÞ cos 2β which approaches ∼2m2
H� cos 2β asm2

A ∼m2
H ∼

m2
H� → ∞ (at fixed mh ∼ 125 GeV). Of course, if tan β is

large then cos 2β → −1. Thus, we see from Eq. (C1) that for
κD < 0 we have

v2ghHþH−

m2
H�

∼ −2; (C2)

implying that the H� loop contribution to the h → γγ
amplitude will never decouple. In practice, Eq. (C2) implies
that the modification cannot be detected if the μhfðLHCÞ
values are only measured to be within 20% or 10% of unity,
whereas no κD < 0 points survive if the μhfðLHCÞ values are
found to be within 5% of unity, as illustrated in Fig. 9. In
contrast, the range of allowed values ofv2ghHþH−=m2

H� in the
case of κD > 0 is much larger, from nondecoupling values of
Oð1Þ (both positive and negative) to decoupling values
significantly less than 1. Note that the results of Fig. 9
indicate that, as in the κD < 0 scenario, the points in the case
of κD > 0 with v2ghHþH−=m2

H� ≲ −2 will not survive if all
the μhfðLHCÞ are measured to be within 5% of the SM value
of unity.

FIG. 9 (color online). We show points in the v2ghHþH−=m2
H� vs

κD plane with the standard color scheme of Fig. 2.

12The phenomenological effects of the nondecoupling
charged-Higgs loop contribution to the h → γγ amplitude and
other 2HDM observables have also been considered in Refs. [58]
and [59].
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We have already noted that in the κD < 0 scenario there
will be a limitation on m2

H� coming from perturbativity and
unitarity. The relevant constraints are incorporated in all of
our plots. OncemH� becomes too large, the theory becomes
perturbatively unreliable and insisting on tree-level unitar-
ity will then imply that only the κD > 0 possibility is
allowed. So, in this sense, nondecoupling is only possible
temporarily for an intermediate range of heavy H� masses
if we insist that mH� not be so large that the tree-level
unitarity bound is violated. In order to illustrate the nature
of the unitarity limits, we present some plots.
In Fig. 10, we show points in the mH� vs κD plane

allowed when all the μhfðLHCÞs are within 20%, 10% or 5%

of unity. We see clearly that mH� is limited to lie below
about 650 GeV in the κD < 0 case while it can be arbitrarily
large (we only scan up to 900 GeV) for the standard κD > 0
scenario that allows for true decoupling. We have found
that the maximum mH� value is limited by the tree-level
unitarity limits of the λi, in particular λ3. In Fig. 11, we
display in the left panel λ3 as a function of κD for both the
κD > 0 and κD < 0 scenarios; and in the right panel we
show jλ3j as a function of mH� for the κD < 0 and κD > 0
scenarios requiring only that all μhfðLHCÞ’s be within 20%
of unity. Given that the tree-level unitarity bounds on the λi
are of order jλij≲ 15, we see that it is λ3 that encounters this
upper limit at large mH� in the κD < 0 case, whereas it is
clear that in the κD > 0 case arbitrarily largemH� is possible
without violating tree-level unitarity bounds, consistent with
the decoupling limit. However, one should also note the
significant number of κD > 0 points that hit the tree-level
unitarity bound for which nondecoupling is again possible.
The actual limits based on tree-level unitarity bounds are

imposed in terms of various λi amplitude combinations, of
which it is

aþ ¼ 1

16π

�
3

2
ðλ1 þ λ3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
ðλ1 − λ2Þ2 þ ð2λ3 þ λ4Þ2

r �

(C3)

that is most constraining. In Fig. 12 we plot jaþj as a
function of κD and of mH� using the same format as in
Fig. 11. Note that jaþj is hitting the tree-level unitarity
bound of 0.5 for both the κD < 0 and κD > 0 scenarios.
However, there is no limit on the associated mH� value in
the latter case, whereas there is the already quoted limit of
∼650 GeV in the former case.
We now show that for the type-II 2HDM with κD < 0,

where v2ghHþH−=mH� ∼ −2, and with κD > 0, where

FIG. 11 (color online). In the left panel we plot λ3 vs κD using the color scheme of Fig. 2; in the right panel we plot jλ3j vs mH� for
κD < 0 (blue/black) and κD > 0 (green/light gray) points with all μhfðLHCÞ within 20% of unity.

FIG. 10 (color online). We show points in the mH� vs κD plane
with the standard color scheme of Fig. 2. Note:
900 GeV is the largest mH� considered in the scans—the κD ∼
þ1 region would extend to arbitrarily largemH� corresponding to
the decoupling limit.
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v2ghHþH−=mH� ≲ −2 (cf. Fig. 9), the loop functions are
such that the charged-Higgs loop contributes with the same
sign as the top-quark loop and thus will reduce the h → γγ
width, both canceling part of theW-loop contribution of the
opposite sign. As we have seen earlier, and will show
numerically below, we find that this reduction is sufficient
to prevent the γγ channel from ever approaching the SM
prediction and by an amount that will be seen at the LHC
with high luminosity.

Let us now give more details. We will employ a
simplified version of the notation of CPSUPERH [79].
One finds

Γðh → γγÞ ¼ α2g2

256π3
m3

h

v2
jSj2; (C4)

where13

S ¼ 2
X
f¼b;t

h
Ncq2fgfghff̄

v
mf

F1=2ðτfÞ − ghWWF1ðτWÞ − ghHþH−
v2

2m2
H�

F0ðτH�Þ
i

≡ 2
X
f

½ShfF1=2ðτfÞ þ ShWF1ðτWÞ þ ShH�F0ðτH�Þ�

≡X
f

ðIhf þ IhW þ IhH�Þ; (C5)

where τi ¼ m2
h=ð4m2

i Þ, Nc ¼ 3, and the various F’s are

F1=2ðτÞ ¼ τ−1½1þ ð1 − τ−1ÞfðτÞ�;
F1ðτÞ ¼ 2þ 3τ−1 þ 3τ−1ð2 − τ−1ÞfðτÞ;
F0ðτÞ ¼ τ−1½−1þ τ−1fðτÞ�: (C6)

The function fðτÞ is that defined in Eq. (40) of Ref. [79]. In
the τ → 0 limit, F1=2 → 2=3, F1 → 7 and F0 → 1=3. In
Eq. (C5), gf ¼ gmf=ð2mWÞ and the other g’s are defined by
the interaction Lagrangians,

LhWW ¼ ðgmWÞghWWWþ
μW−μh;

Lhff̄ ¼ −
gmf

2mW
ghff̄hf̄f;

LhHþH− ¼ vghHþH−hHþH−; (C7)

where ghHþH− ≡GhHþH−=v as defined in Eq. (C1).
In the κD > 0 case with sinðβ − αÞ → 1 we have

α → β − π=2, for which cosðβ − αÞ ∝ v2=m2
A, sin α →

− cos β and cos α → sin β with the result

Shu;c;t → 1; Shd;s;b;e;μ;τ → þ1;

ShW ¼ − sinðβ − αÞ → −1; ShH� ∝
v2

m2
W
: (C8)

FIG. 12 (color online). In the left panel we plot jaþj vs κD using the color scheme of Fig. 2; in the right panel we plot jaþj vs mH� for
κD < 0 (blue/black) and κD > 0 (green/light gray) points with all μhfðLHCÞ within 20% of unity.

13Relative to Ref. [13], the F1=2 defined here is one-half as
large and F0 has the opposite sign.
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In the κD < 0 case we have α → π=2 − β, for which
sin α → cos β, cos α → sin β, cosðβ − αÞ → sinð2βÞ, and
sinðβ − αÞ → − cosð2βÞ ¼ ðtan2β − 1Þ=ðtan2β þ 1Þ. For
simplicity, consider tan β → ∞ and the limit of large
m2

A ∼m2
H� . We then have

Shu;c;t → 1; Shd;s;b;e;μ;τ → −1;

ShW ¼ − sinðβ − αÞ → −1; ShH� → 1: (C9)

The important thing to note here is that the H� loop
contributes with the same sign as the top loop, i.e. it too
will cancel against the negative W loop and decrease the
h → γγ width.
In more detail, we have the following. For both κD > 0

and κD < 0, the relative contributions of the top-quark loop
and the W loop to S are IhW ≃ −8.3233 and Iht ¼ þ1.8351.
As regards the charged-Higgs loop, for κD < 0 and large
mH� one gets IhH� ¼þ0.33333. As regards the b-quark
loop, for the case of κD > 0 we have Ihb¼−0.0279þ0.04i.
Of course, this changes sign for κD < 0. We will neglect
other quarks and leptons for simplicity since their
contributions are quite small.
Then, in the SM κD > 0 case, neglecting the decoupled

charged-Higgs loops, we find
P

i¼W;t;bI
h
i ¼ −6.5161þ

0.04i. If we consider the κD < 0 case without including

the charged-Higgs loop one finds
P

i¼W;t;bI
h
i ¼ −6.4603−

0.04i. The ratio of the absolute values is 0.99, a less than
1% decrease in κγ and certainly not measurable at the
LHC. However, after including the charged-Higgs loop we
obtain

P
i¼W;t;b;H�Ihi ¼ −6.127 − 0.04i with the charged-

Higgs loop evaluated at large mH� , which translates to
κγ ∼ 0.94 corresponding to a 12% decrease in Γðh → γγÞ.
In fact, this level of decrease is very characteristic of the
full scan as shown in Fig. 9 and is measurable at the
LHC with

ffiffiffi
s

p ¼ 14 TeV and L ≥ 300 fb−1. As already
noted, this same level of decrease also occurs for those
κD > 0 scenarios for which the charged-Higgs loop
does not decouple, i.e. roughly if v2ghHþH−=mH� ≲ −2
(see Fig. 9).
Of course, in the computations presented in the main

text, the full set of quarks and leptons is included, the
charged-Higgs mass is varied as part of the scan (with the
lower bound of 340 GeV) and current LHC Higgs con-
straints are imposed as well as constraints from perturba-
tivity, unitarity and precision electroweak measurements.
As we have said above, all this leads to only small
numerical changes relative to the κγ decrease for κD < 0
quoted above; thus, the nondecoupling of the H� loop for
κD < 0 leads to a decrease in κγ that is at least as large
as 5%.
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