
Complementarity between nonstandard Higgs boson searches and precision
Higgs boson measurements in the MSSM

Marcela Carena,1,2,3 Howard E. Haber,4,5 Ian Low,6,7 Nausheen R. Shah,8 and Carlos E. M. Wagner2,3,6
1Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

2Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
3Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA

4Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064, USA
5Ernest Orlando Lawrence Berkeley National Laboratory, University of California,

Berkeley, California 94720, USA
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

7Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
8Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 31 October 2014; published 3 February 2015)

Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on
possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric
Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs
bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not
hold when the theory approaches the conditions for “alignment independent of decoupling,” where the
lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons,
independently of the nonstandard Higgs boson masses. The combination of current bounds from direct
Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the
allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the
correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches
are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses
below the top quark pair mass threshold of 350 GeV and low to moderate values of tan β.
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I. INTRODUCTION

The recent discovery of a scalar resonance at the LHC,
with a mass of about 125 GeVand properties resembling that
of the Higgs boson of the Standard Model (SM) [1,2], has
revived interest in particle physics models in which a SM-
like Higgs boson arises in a natural way. The minimal
supersymmetric extension of the SM (MSSM) is an example
of such a model [3–6]. The Higgs sector of the MSSM
consists of two Higgs doublets with tree-level quartic
couplings which are related to the squares of the weak
gauge couplings. The tree-level Higgs boson mass spectrum
consists of two neutral CP-even Higgs scalars h andH (with
mh ≤ mH), aCP-odd scalar A, and a charged Higgs pairH�.
The quartic scalar couplings receive quantum corrections
whose leading contributions are proportional to the fourth
power of the top-quark Yukawa coupling [7]. For top squark
masses below a few TeV, an upper bound on the lightest CP-
even Higgs boson mass of about 135 GeV is obtained [8].1

The observed Higgs boson mass is comfortably below this
predicted upper bound.
For large values of the supersymmetric particle masses,

the properties of h are determined by mA and the third-
generation supersymmetric spectrum that governs the size
of the quantum corrections to the quartic couplings. When
mA ≫ mh, one finds that mH ∼mA ∼mH� , with corre-
sponding squared-mass differences of Oðm2

ZÞ. Hence, all
nonstandard Higgs bosons are heavy and decouple from the
low-energy effective theory at the weak scale, which then
naturally consists of the light CP-even Higgs boson h, with
SM-like couplings, as suggested by current measurements.
This is the well-known decoupling limit of the MSSM
Higgs sector.
In contrast, for values of mA ∼OðmhÞ, the coupling of h

to bottom-quark pairs tends to be enhanced with respect to
the SM value. Since the coupling to bottom quarks controls
the width of the Higgs boson, such an enhancement leads to
an increase of the Higgs width and therefore a reduction of
the branching ratios of the Higgs decay into neutral and
charged gauge bosons. Such a reduction can become
significant for values of mA below 300 GeV. Hence,
precision studies of the lightest CP-even Higgs boson
properties can lead to significant constraints on the allowed
parameter space of the theory. The large increase of the

1The same upper bound is obtained in the presence of explicit
CP-violating phases in the supersymmetry-breaking mass param-
eters, which affect the Higgs sector via radiative corrections. In
this paper, we will simplify our analysis by neglecting these CP-
violating phases, in which case the neutral Higgs bosons of the
MSSM are CP eigenstates [9].
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Higgs boson width may be avoided if the properties of h are
SM-like, which can occur either via the decoupling limit
[10–12] or the so-called alignment limit [11–14].
The alignment limit arises when one of the CP-even

Higgs bosons, when expressed as a linear combination of the
real parts of the two neutral Higgs fields, lies in the same
direction in the two Higgs doublet field space as the two
neutral Higgs vacuum expectation values. This alignment
does not in general depend on the masses of the nonstandard
Higgs bosons. In theMSSM the alignment limit arises due to
an accidental cancellation, i.e. not due to any of the usual
symmetries of the MSSM, between tree-level and loop-
corrected effects resulting from new structures in the
potential that are absent at tree level [14]. However, this
cancellation occurs quite generically for some value of the
ratio of neutral Higgs vacuum expectation values, tan β,
which depends critically on μ, the supersymmetric Higgs
mass in the potential, and At, the top squark mixing
parameter. In particular, alignment at lower values of
tan β typically requires μ and At to be larger than MS, the
characteristic mass scale for the top squarks [14,15], leading
to important phenomenological constraints in the MSSM.
Nevertheless, one does not require nearly exact alignment,
which would require a large degree of fine-tuning, in order
to reproduce the approximate SM-like Higgs properties
observed in the current Higgs data. In this paper, we choose
different values for the supersymmetric parameters MS, At
and μ and study their impact on Higgs phenomenology
for general values of mA and tan β. Indeed, we find that
consistency with the observed 125 GeV Higgs production
cross sections and rates can be obtained for values of tan β
that deviate from the one where exact alignment is achieved,
in some cases even for values of mA as low as 250 GeV.
One can also search directly for the heavier Higgs bosons

of the MSSM at the LHC. The most sensitive search
channel is associated with the neutral Higgs boson decays
into τþτ−, produced in gluon fusion processes or in
association with b quarks. This channel becomes particu-
larly sensitive for low values of the heavier Higgs boson
masses and large values of tan β and allows one to set a
bound on mA that extends from 200 GeV at values of
tan β ∼ 10, up to 900 GeV for tan β ∼ 50. Lower values of
tan β in the range 3≲ tan β ≲ 10, still consistent with the
observed mass of the lightest CP-even Higgs mass for top
squark masses below a few TeV, remain mostly uncon-
strained by these searches, due to a suppression of the
production cross section times the Higgs decay branching
ratio into τþτ−. This branching ratio depends on possible
decays into both nonsupersymmetric and supersymmetric
final states (e.g., neutralino and chargino pairs). The latter
are suppressed for large values of μ, for which alignment is
obtained. Therefore there is an interesting correlation
between the properties of the lightest CP-even Higgs
boson and the rate of nonstandard Higgs boson decays
into the τþτ− channel.

In this paper we shall discuss the complementarity of
precision studies of the lightest CP-even Higgs boson and
the search for heavier neutral Higgs bosons in the τþτ−
channel. In particular, since we assume the lightest CP-
even Higgs is the one discovered at around 125 GeV, we
will design our benchmarks in such a way that the correct
mass is obtained for h over the entire mA-tan β plane, in
contrast to previously established benchmarks. This is an
especially important point when considering properties of h
where its mass plays an essential role. The lightest CP-even
Higgs mass is also relevant in the determination of the
decay branching fractions of H and A, since the decay
modes H → hh and A → hZ become important at low
values of tan β and their rates depend crucially on mh.
Nonminimal supersymmetric theories also possess

extended Higgs sectors at low energies. A particularly
interesting example is the next-to-minimal supersymmetric
extension of the SM (NMSSM) (e.g., see Ref. [16] and
references therein), which shares many of the properties of
the MSSM, but the Higgs sector of the MSSM is extended
to include an additional singlet superfield, leading to
additional CP-even and CP-odd singlet states in the
Higgs sector. Furthermore, the Higgs quartic couplings
are no longer controlled solely by the gauge couplings,
resulting in a Higgs phenomenology that is quite different
from that of the MSSM. For instance, for large values of the
singlet masses, in which the low-energy Higgs sector is a
two Higgs doublet model, alignment may be obtained for
smaller values of tan β and for smaller values of the mass
parameters in the top squark sector than in the MSSM [14].
Because of these distinctive NMSSM properties, in this
paper we shall concentrate on the MSSM Higgs sector and
reserve the study of the NMSSM Higgs sector for a future
publication.
This paper is organized as follows. In Sec. II we present

an overview of the two Higgs doublet model (2HDM)2 and
its application to the Higgs sector of the MSSM, with
emphasis on the behavior of the down-type quark couplings
to the lightest CP-even Higgs boson and the associated
condition of alignment at large values of μ and At. In
Sec. III we discuss the constraints onmA that come from the
precision study of the lightest CP-even Higgs boson
properties for different values of μ. In Sec. IV we analyze
the sensitivity of the nonstandard Higgs searches on the
value of the μ parameter and compare it with the results
obtained in Sec. III. We reserve Sec. V for our conclusions.
A detailed description of our interpretation of the exper-
imental limits presented by CMS for the direct searches of
H and A is presented in Appendix A. Finally, the
comparison of the hVV (VV ¼ WþW− or ZZ) and hγγ
couplings is provided in Appendix B.

2For a review of the two Higgs doublet model see, e.g.,
Refs. [17,18].
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II. OVERVIEW OF THE MSSM HIGGS SECTOR

A. The 2HDM: Theoretical background

The scalar potential of the most general two Higgs doublet extension of the SM may be written in terms of two Higgs
doublet fields, Φi (i ¼ 1; 2), each carrying the same hypercharge quantum number YH ¼ 1

2
[19]:

V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þ H:c:Þ þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ ½λ6ðΦ†
1Φ1Þ þ λ7ðΦ†

2Φ2Þ�Φ†
1Φ2 þ H:c:

�
; ð1Þ

where m2
11, m

2
22 and λ1;…; λ4 are real parameters and m2

12,
λ5, λ6 and λ7 are potentially complex. For simplicity, we
shall assume that the scalar potential is explicitly CP
conserving, in which case we can assume, without loss
of generality, that all scalar potential parameters are real.
We parameterize the scalar doublets in terms of a

complex charged field and two neutral real fields:

Φi ¼
� ϕþ

i
1ffiffi
2

p ðvi þ ϕ0
i þ ia0i Þ

�
; ð2Þ

where the minimum of the scalar potential is at

hΦii ¼
1ffiffiffi
2

p
�

0

vi

�
ð3Þ

and

v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv1j2 þ jv2j2

q
≃ 246 GeV: ð4Þ

Since the scalar potential and the vacuum preserve CP,
there exists a basis of scalar fields where all scalar potential
parameters, as well as v1 and v2, are real and non-negative.
Therefore, one can define

tβ ≡ tan β ¼ v2
v1

; ð5Þ

where 0 ≤ β ≤ 1
2
π.

The squared-mass matrix for the CP-even scalars can be
expressed as [10]

M2 ¼
�
M2

11 M2
12

M2
12 M2

22

�
≡m2

A

� s2β −sβcβ
−sβcβ c2β

�

þ v2
�
L11 L12

L12 L22

�
; ð6Þ

where sβ ≡ sin β ¼ v2=v, cβ ≡ cos β ¼ v1=v,

m2
A ¼ m2

12 −
1

2
v2ð2λ5 þ λ6t−1β þ λ7tβÞ; ð7Þ

is the squared-mass of the CP-odd Higgs boson and

L11 ¼ λ1c2β þ 2λ6sβcβ þ λ5s2β; ð8Þ

L12 ¼ ðλ3 þ λ4Þsβcβ þ λ6c2β þ λ7s2β; ð9Þ

L22 ¼ λ2s2β þ 2λ7sβcβ þ λ5c2β: ð10Þ

Diagonalizing the squared-mass matrix M2 given in
Eq. (6) yields two CP-even Higgs mass eigenstates h and
H, with squared masses

m2
H;h ¼

1

2
½M2

11 þM2
22 � Δ�; ð11Þ

where mh ≤ mH and the non-negative quantity Δ is
defined by

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q

: ð12Þ

In particular, m2
h ≤ M2

ii ≤ m2
H, i ¼ 1; 2. We also note that

the two equations

TrM2 ¼ m2
H þm2

h; detM2 ¼ m2
Hm

2
h ð13Þ

yield the following result:

jM2
12j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −M2
11ÞðM2

11 −m2
hÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

22 −m2
hÞðM2

11 −m2
hÞ

q
: ð14Þ

The CP-even Higgs mass-eigenstate fields can be
expressed in terms of the neutral scalar fields ϕ0

1 and ϕ0
2,

defined in Eq. (2):

�
H

h

�
¼

�
cα sα
−sα cα

��
ϕ0
1

ϕ0
2

�
; ð15Þ

where the mixing angle α is defined modulo π, cα ≡ cos α
and sα ≡ sin α. It is often convenient to restrict the range
of the mixing angle to jαj ≤ 1

2
π. In this case, cα is non-

negative and is given by

COMPLEMENTARITY BETWEEN NONSTANDARD HIGGS … PHYSICAL REVIEW D 91, 035003 (2015)

035003-3



cα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔþM2

11 −M2
22

2Δ

r
; ð16Þ

and the sign of sα is given by the sign of M2
12. Explicitly,

we have

sα ¼
ffiffiffi
2

p
M2

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðΔþM2

11 −M2
22Þ

p : ð17Þ

Using Eqs. (11) and (14), one can derive alternative forms
for Eqs. (16) and (17):

cα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

11 −m2
h

m2
H −m2

h

s
; sα ¼ sgnðM2

12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H −M2
11

m2
H −m2

h

s
:

ð18Þ
For completeness, we also record the squared mass of the
charged Higgs boson H�:

m2
H� ¼ m2

A þ 1

2
v2ðλ5 − λ4Þ; ð19Þ

where m2
A is given by Eq. (7).

The recently discovered Higgs boson exhibits couplings
to gauge bosons and fermions that are consistent (within
experimental errors) with SM expectations. If the 2HDM is
realized in nature, it is tempting to identify the observed
Higgs boson with the lightest CP-even scalar h, which is a
linear combination of ϕ0

1 and ϕ
0
2 as indicated in Eq. (15). If

h is SM-like, then it follows that in the ϕ0
1–ϕ0

2 field space, h
points roughly in a direction parallel to the direction of the
scalar field vacuum expectation values. The implications of
this observation will now be examined in more detail.
Since the Higgs couplings to gauge bosons are more

accurately measured, we first focus on these. The tree-level
coupling of h to VV (where VV ¼ WþW− or ZZ),
normalized to the corresponding SM coupling, is given by

ghVV ¼ gSMhVVsβ−α: ð20Þ

Thus, if the hVV coupling is SM-like, it follows that

jcβ−αj ≪ 1; ð21Þ

where cβ−α ≡ cosðβ − αÞ and sβ−α ≡ sinðβ − αÞ. It is there-
fore instructive to consider under what conditions Eq. (21)
can be achieved.
At this stage, there is nothing that distinguishes the

Higgs doublets, since one is free to construct new doublet
fields that are linear combinations of Φ1 and Φ2 [20].
Consequently, the parameters α and β are not physical,
although the quantity ðβ − αÞ is physical (modulo π) since
it is related to an observable coupling. To derive an explicit
formula for cβ−α, it is convenient to define the so-called
Higgs basis of scalar doublet fields [21,22]:

H1 ¼
�
Hþ

1

H0
1

�
≡ v1Φ1 þ v2Φ2

v
;

H2 ¼
�
Hþ

2

H0
2

�
≡ −v2Φ1 þ v1Φ2

v
; ð22Þ

so that hH0
1i ¼ v=

ffiffiffi
2

p
and hH0

2i ¼ 0. From this one can
immediately identify that the scalar doublet H1 is the one
that will have SM tree-level couplings to all the SM
particles. It follows that if one of the CP-even neutral
Higgs mass eigenstates is SM-like, then it must be
approximately aligned with the real part of the neutral
field H0

1.
The scalar potential, when expressed in terms of the

doublet fields H1 and H2, has the same form as Eq. (1), but
now with coefficients λi → Zi. Indeed, one can translate all
the formulas obtained previously in the original basis of the
scalar fields fΦ1;Φ2g into the Higgs basis by taking β → 0
and α → ðα − βÞ. Hence, in the limit of cβ−α → 0 we have
h≃ ½ ffiffiffi

2
p

ReðH0
1Þ − v�, which means that h is aligned with

the real part of the neutral component of the Higgs basis
field that possesses the nonzero vacuum expectation value.
The existence of a neutral scalar mass eigenstate with the
properties of the SM Higgs boson is equivalent to demand-
ing that cβ−α ¼ 0.
The scalar potential in the Higgs basis is given by

V ⊃ � � � þ 1

2
Z1ðH†

1H1Þ2 þ � � � þ ½Z5ðH†
1H2Þ2 þ Z6ðH†

1H1ÞH†
1H2 þ H:c:� þ � � � ; ð23Þ

where [10,20]

Z1 ≡ λ1c4β þ λ2s4β þ
1

2
ðλ3 þ λ4 þ λ5Þs22β þ 2s2β½c2βλ6 þ s2βλ7�; ð24Þ

Z5 ≡ 1

4
s22β½λ1 þ λ2 − 2ðλ3 þ λ4 þ λ5Þ� þ λ5 − s2βc2βðλ6 − λ7Þ; ð25Þ

Z6 ≡ −
1

2
s2β½λ1c2β − λ2s2β − ðλ3 þ λ4 þ λ5Þc2β� þ cβc3βλ6 þ sβs3βλ7; ð26Þ
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and the shorthand notation s2β ≡ sin 2β, c2β ≡ cos 2β, etc.,
has been employed.
It is straightforward to compute the CP-even Higgs

squared-mass matrix in the Higgs basis:

M2
H ¼

�
Z1v2 Z6v2

Z6v2 m2
A þ Z5v2

�
: ð27Þ

The significance of Z1 and Z6 can now be immediately
discerned. The upper diagonal element of the squared-mass
matrix in the Higgs basis, M2

H11 ¼ Z1v2, implies that
m2

h ≤ Z1v2, whereas the off-diagonal element M2
H12 ¼

Z6v2 governs the mixing between the Higgs basis fields
H0

1 and H0
2. The presence of this mixing yields a non-

alignment of the mass eigenstates h and H from the neutral
Higgs basis states H0

1 and H0
2. Moreover, if jZ6j ≪ 1, then

the mass eigenstate approximately aligned with ReðH0
1Þ

behaves like the SM Higgs boson. Alternatively, if m2
A ≫

Ziv2 (i ¼ 1; 5; 6), then Z1 and Z6 can be treated as small
perturbations in the diagonalization of the CP-even Higgs
squared-mass matrix, and h is again SM-like, since it is
approximately aligned with ReðH0

1Þ.
The mixing angle in the Higgs basis can be obtained

simply by using the relations written down for the original
basis of the scalar fields. Translating our previous results
into the Higgs basis by taking α → α − β, M2

11 → Z1v2

and M2
12 → Z6v2, Eq. (14) implies that

jZ6jv2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ1v2 −m2

hÞðm2
H − Z1v2Þ

q
; ð28Þ

and Eq. (18) yields

cβ−α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1v2 −m2

h

m2
H −m2

h

s
; sβ−α ¼ −sgnðZ6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H − Z1v2

m2
H −m2

h

s
;

ð29Þ

in a convention where jβ − αj ≤ 1
2
π. Actually, it is some-

what more convenient to adopt a different sign convention
in which sβ−α is non-negative and the sign of cβ−α is fixed
by Z6, since in this convention the sign of the hVV coupling
is the same as in the SM [cf. Eq. (20)]. In particular, if we
assume that 0 ≤ β − α ≤ π, then we can use Eqs. (28) and
(29) rewrite cβ−α in the more useful form

cβ−α ¼
−Z6v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2

H −m2
hÞðm2

H − Z1v2Þ
p : ð30Þ

Tree-level unitarity (or perturbativity) constraints yield
upper limits on the quartic scalar coupling parameters that
are roughly of the form λi=ð4πÞ≲ 1, with similar limits
applying to Z1 and Z6. In light of these constraints, there
are two ways to achieve jcβ−αj ≪ 1, corresponding to
alignment and hence to a SM-like h.

First, if m2
H ≫ m2

h, Z1v2, Z6v2, then it follows that

cβ−α ∼O
�
Z6v2

m2
H

�
; Z1v2 −m2

h ∼O
�
Z2
6v

4

m2
H

�
: ð31Þ

This is the well-known decoupling limit [10], in which
alignment is achieved when mH, mA, mH� ≫ mh.
Integrating out the heavy scalars yields an effective theory
with one CP-even scalar, h, with SM couplings.
In contrast, suppose that jZ6j ≪ 1. This is the only case

that can result in exact alignment (corresponding to
Z6 ¼ 0), and we will henceforth refer to this case as the
alignment limit, which exists independently of the decou-
pling limit. Indeed, Eqs. (28) and (30) imply that if jZ6j≪1
and m2

h ≃ Z1v2, then

cβ−α ∼OðZ6Þ; Z1v2 −m2
h ∼OðZ2

6v
2Þ; ð32Þ

in which case h is SM-like.3 Note that the alignment limit
can be achieved even in a case where mH ∼OðvÞ.
To make contact with the results of Ref. [14], one can

compute cβ−α ¼ ðcβcα þ sβsαÞ using Eqs. (14) and (18).
Additional simplification can be implemented by noting
that M2

11 þM2
22 ¼ Δþ 2m2

h, which allows us to remove
Δ in favor of m2

h. The end result is

cβ−α ¼
ðM2

11 −m2
hÞcβ þM2

12sβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2
H −m2

hÞðM2
11 −m2

hÞ
p : ð33Þ

The exact alignment condition corresponds to the vanishing
of the numerator in Eq. (33), which yields

tβM2
12 ¼ m2

h −M2
11: ð34Þ

Dividing Eq. (34) by M4
12 and using Eq. (14) then gives

t−1β M2
12 ¼ m2

h −M2
22: ð35Þ

Eliminating m2
h from Eqs. (34) and (35),

c2βM2
12 ¼ sβcβðM2

11 −M2
22Þ: ð36Þ

Using Eqs. (6)–(10), one can check that Eq. (36) is
equivalent to the condition Z6 ¼ 0, where Z6 is given by
Eq. (26). In addition, one can use either Eq. (34) or (35) to
obtain m2

h ¼ Z1v2, where Z1 is given by Eq. (24), as
expected in light of Eq. (32).
In the 2HDM, the exact alignment limit of Z6 ¼ 0 can be

achieved in four possible ways: (i) as a consequence of an
exact symmetry of the theory; (ii) as a consequence of an

3If jZ6j ≪ 1 and mH ≃ Z1v2, then sβ−α ≪ 1, and we would
identify the SM-like Higgs boson with H. This possibility cannot
be completely ruled out for a general 2HDM but is very unlikely
in the MSSM Higgs sector.
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exact symmetry of the scalar potential, which is broken by
the Higgs-Yukawa interactions; (iii) as a consequence of an
accidental global symmetry of the scalar potential, which
is broken by the gauge interactions and Higgs-fermion
Yukawa interactions; or (iv) accidentally due to a choice of
scalar potential parameters that is not governed by any
symmetry. We exhibit these four possibilities in turn.
An example of case (i) is the inert 2HDM [23]. In this

model, the theory possesses an exact Z2 symmetry in the
Higgs basis, under which the Higgs basis field H2 is odd
and all other fields (H1, fermions and gauge bosons) are
even. In this case Z6 ¼ 0 as a consequence of the Z2

symmetry [11], which remains unbroken in the vacuum
since hH0

2i ¼ 0.
An example of case (ii) is the 2HDM with the scalar

potential parameters of Eq. (1) given by [24,25]

m2
11 ¼ m2

22; λ1 ¼ λ2 ¼ λ3 þ λ4 þ λ5;

m2
12 ¼ λ6 ¼ λ7 ¼ 0: ð37Þ

These conditions on the λi yield Z6 ¼ 0 [cf. Eq. (26)].
Equation (37) is satisfied by 2HDM scalar potentials with a
generalized CP3 symmetry or with an SO(3) Higgs flavor
symmetry (the latter if λ5 ¼ 0 also holds), as shown in
Ref. [24]. In general these two symmetries will not be
respected by the Higgs-fermion Yukawa interactions [26].
Custodial symmetric scalar potentials provide examples

of case (iii). Indeed, custodial symmetries [27] are broken
by the hypercharge gauge interactions as well as by the
Higgs-fermion Yukawa interactions. The maximally sym-
metric 2HDM of Ref. [25] with an SO(5) global symmetry,
which yields Eq. (37) with λ4 ¼ λ5 ¼ 0, provides an
example of this case. In particular, Ref. [25] has stressed
the role of the symmetries that lead to Eq. (37), which
yields exact alignment at tree level. Deviations from
alignment are generated due to loop effects, since these
are not exact symmetries of the full theory.
Finally, as we shall see in the next subsection, Eq. (37)

does not hold for the MSSM Higgs sector. Thus, alignment
can only arise for a special choice of parameters and is not a
consequence of any symmetry.
For completeness, we record the Yukawa couplings of

the two Higgs doublets to a single generation of up- and
down-type quarks. Employing the notation of the third
generation,

−LYuk ¼ Y1
bb̄RΦ

i�
1 Q

i
L þ Y2

bb̄RΦ
i�
2 Q

i
L

þ ϵij½Y1
t t̄RQi

LΦ
j
1 þ Y2

t t̄RQi
LΦ

j
2� þ H:c:; ð38Þ

where ϵ12 ¼ −ϵ21 ¼ 1, ϵ11 ¼ ϵ22 ¼ 0, QL ¼ ðtL; bLÞ are
the doublet left-handed quark fields and tR, bR are the
singlet right-handed quark fields. Inserting hΦ0

i i ¼ vi=
ffiffiffi
2

p
yields the quark masses

mb ¼ ðv1Y1
b þ v2Y2

bÞ=
ffiffiffi
2

p
; mt ¼ ðv1Y1

t þ v2Y2
t Þ=

ffiffiffi
2

p
:

ð39Þ

B. The MSSM Higgs sector

The Higgs sector of the MSSM is a 2HDM whose
dimension-four couplings are constrained by supersym-
metry. In particular, at tree level,

λ1 ¼ λ2 ¼ −ðλ3 þ λ4Þ ¼
1

4
ðg2 þ g02Þ ¼ m2

Z=v
2; ð40Þ

λ4 ¼ −
1

2
g2 ¼ −2m2

W=v
2; ð41Þ

λ5 ¼ λ6 ¼ λ7 ¼ 0: ð42Þ

These results yield the well-known formulas for the tree-
level MSSM CP-even Higgs masses. At tree level,
ðm2

hÞmax ¼ m2
Zc

2
2β, which is not consistent with experimen-

tal data. However, radiative corrections can have large
contributions to the tree-level Higgs mass, and regions
of MSSM parameter space can be found where
mh ≃ 125 GeV, as required by the data.
The mixing angle, which governs the Higgs couplings, is

easily written down using the Higgs basis. Using Eqs. (24)
and (26),4

Z1v2 ¼ m2
Zc

2
2β; Z6v2 ¼ −m2

Zs2βc2β: ð43Þ

Inserting the above results into Eq. (30) yields the tree-level
result

cβ−α ¼
m2

Zs2βc2βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞðm2

H −m2
Zc

2
2βÞ

q : ð44Þ

In the decoupling limit, one recovers Eq. (31) as expected.
In addition, radiative corrections that are required to yield a
phenomenologically acceptable value of mh do not sig-
nificantly modify the decoupling behavior exhibited above.
In contrast, alignment cannot be achieved without decou-
pling at tree level (except at the end points where either
sβ ¼ 0 or cβ ¼ 0, for which no tree-level mass is obtained
for the up-type and down-type quarks, respectively, and at
the midpoint tβ ¼ 1, which leads to a vanishing lightest
CP-even Higgs mass at tree level. None of these scenarios
are experimentally viable.). We shall see in the next
subsection that including radiative corrections, alignment
independent of decoupling can be achieved in the MSSM at

4Note that β has been promoted to a physical parameter, since
the tree-level coupling relations given in Eqs. (40)–(42) are a
consequence of supersymmetry, which establishes a preferred
basis choice for the scalar Higgs fields.

CARENA et al. PHYSICAL REVIEW D 91, 035003 (2015)

035003-6



values of β away from the end points, resulting in important
phenomenological consequences.
Supersymmetry also imposes constraints on the Higgs-

fermion interactions. In the supersymmetric literature, it is
common to define

Hi
D ≡ ϵijΦ

j�
1 ; Hi

U ¼ Φi
2: ð45Þ

In terms of HU and HD, the Yukawa couplings given in
Eq. (38) must be holomorphic, which implies that
Y1

t ¼ Y2
b ¼ 0. This yields the so-called type-II Higgs-

quark couplings,5

−LYuk ¼ ϵij½hbb̄RHi
DQ

j
L þ htt̄RQi

LH
j
U� þ H:c:; ð46Þ

where we have resorted to the more common notation hb ¼
Y1

b and ht ¼ Y2
t . Equation (39) then yields

mb ¼ hbvcβ=
ffiffiffi
2

p
; mt ¼ htvsβ=

ffiffiffi
2

p
: ð47Þ

The corresponding tree-level Yukawa couplings of the
lightest CP-even Higgs boson to down-type and up-type
quark pairs are given by

ghbb̄ ¼ −
mb

v
sα
cβ

¼ mb

v
ðsβ−α − cβ−αtβÞ; ð48Þ

ghtt̄ ¼
mt

v
cα
sβ

¼ mt

v
ðsβ−α þ cβ−αt−1β Þ: ð49Þ

Equations (48) and (49) exhibit the expected behavior in
the decoupling and alignment limits. That is, when

cβ−α ¼ 0, we recover the SM result ghff̄ ¼ mf=v.
However, note that in the absence of exact alignment,
the deviation from SM couplings of the down-type Yukawa
coupling is tβ enhanced. Therefore, it is not enough to
demand jcβ−αj ≪ 1. Rather, proper SM-like behavior of the
coupling of h to down-type quarks is recovered if
jcβ−αj ≪ 1=tβ. This phenomenon has been called delayed
decoupling in Refs. [10,15,28,29].
In the MSSM, the coupling of the Higgs bosons to

squarks and sleptons are governed by both supersymmetry-
conserving and supersymmetry-breaking parameters. The
relevant couplings can be found in Ref. [4]. For later use,
we shall focus here on the couplings of HU and HD to the
third-generation squarks that are proportional to the Higgs-
top quark Yukawa coupling ht. The corresponding terms in
the interaction Lagrangian are

Lint ⊃ ht½μ�ðH†
D
~QÞ ~U þ AtϵijHi

U
~Qj ~U þ H:c:�

− h2t ½H†
UHUð ~Q† ~Qþ ~U� ~UÞ − j ~Q†HUj2�; ð50Þ

with an implicit sum over the weak SUð2Þ indices
i; j ¼ 1; 2, where in the notation of Ref. [4],

~Q ¼
�

~tL
~bL

�
; ~U≡ ~t�R; ð51Þ

and in general the supersymmetric Higgsino mass param-
eter μ and the supersymmetry-breaking parameter At are
complex.
It is convenient to rewrite Eq. (50) in terms of the Higgs

basis fields. Using Eqs. (22) and (45), it follows that

Lint ⊃ htϵij½ðsβXtHi
1 þ cβYtHi

2Þ ~Qj ~U þ H:c:� − h2t f½s2βjH1j2 þ c2βjH2j2 þ sβcβðH†
1H2 þ H:c:Þ�ð ~Q† ~Qþ ~U� ~UÞ

− s2βj ~Q†H1j2 − c2βj ~Q†H2j2 − sβcβ½ð ~Q†H1ÞðH†
2
~QÞ þ H:c:�g; ð52Þ

where

Xt ≡ At − μ�=tβ; Yt ≡ At þ μ�tβ: ð53Þ

Note that the terms proportional to Xt in Eq. (52) are
responsible for the mixing of ~tL and ~tR in the top-squark
squared-mass matrix; the corresponding off-diagonal
element is ðM2

~t ÞLR ¼ mtXt, after setting hH0
1i ¼ v=

ffiffiffi
2

p
and using Eq. (47). For simplicity, we shall henceforth
assume that μ and At are real, thereby neglecting possible
CP-violating effects that can be introduced into the MSSM
Higgs sector via radiative corrections.

Radiative corrections play a critical role in the MSSM
Higgs sector. Three important mass scales are relevant—the
scale of the squark masses, denoted byMS, the mass of h or
Z (which represents the electroweak scale) and the mass
scale of the nonstandard Higgs bosons, H, A and H�,
which we will usually take to be mA. We shall assume that
MS ≫ mA. In this case, we can formally integrate out the
squarks to obtain a low-energy effective theory below the
scale MS, which is a general 2HDM with quartic and
fermion couplings determined by their type-II tree-level
values plus radiative corrections induced by supersym-
metry-breaking effects. Since the lightest CP-even Higgs
boson couplings have been measured to be close to the SM
values, we infer that either we are in the decoupling limit,
mh ≪ mA ≪ MS, or the alignment limit independent of
decoupling, mh ≲mA ≪ MS. In practice, the alignment

5As in the previous subsection, we neglect the full generation
structure of the Yukawa couplings and focus on the couplings of
the Higgs bosons to the third-generation quarks.
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limit independent of decoupling is most relevant for
mA;mH <2mt. For heavier values of mA, the behavior of
the Higgs sector approaches that of the decoupling regime.
After integrating out the squarks, the supersymmetric

relations that govern the scalar potential parameters [given
in Eqs. (40)–(42)] are modified. At one loop, the leading
logarithmic corrections, which only appear for λ1;…; λ4,
can be found in Ref. [19]. In addition, threshold corrections
proportional to the MSSM parameters, At, Ab and μ, can
also contribute significant corrections to all the scalar
potential parameters, λ1;…; λ7. The relevant expressions
are rather lengthy. To get a sense of the corrections, we note
that the largest contributions are proportional to the fourth
power of the top-quark Yukawa coupling ht. Using the
results given in Ref. [19] (the corresponding leading two-
loop corrections to the quartic couplings can be found in
Ref. [30]), we obtain the following expressions for Z1, Z5

and Z6 [cf. Eqs. (24)–(26)] in the limit of mZ, mA ≪ MS,
which include all one-loop radiative corrections propor-
tional to h4t :

Z1v2 ¼ m2
Zc

2
2β þ

3v2s4βh
4
t

8π2

�
ln

�
M2

S

m2
t

�
þ X2

t

M2
S

�
1 −

X2
t

12M2
S

��
;

ð54Þ

Z5v2 ¼ s22β

�
m2

Z þ 3v2h4t
32π2

�
ln

�
m2

S

m2
t

�
þ XtYt

m2
S

�
1 −

XtYt

12m2
S

���
;

ð55Þ

Z6v2 ¼ −s2β
�
m2

Zc2β −
3v2s2βh

4
t

16π2

�
ln

�
M2

S

m2
t

�

þ XtðXt þ YtÞ
2M2

S
−

X3
t Yt

12M4
S

��
; ð56Þ

where Xt and Yt are given by Eq. (53). The upper bound for
the squared mass of the lightest CP-even Higgs boson is
given by ðm2

hÞmax ¼ Z1v2. Indeed, Eq. (54) exhibits the
well-known leading one-loop approximation for the upper
bound on m2

h in the MSSM.
The structure of the threshold corrections [proportional

to either Xt or Yt in Eqs. (54), (55) and (56)] is easy to
understand. For example, in Fig. 1, we exhibit the leading
one-loop corrections to Z6, which corresponds to the
coefficient of the operator ½ðH†

1H1ÞðH†
1H2Þ þ H:c:�

[cf. Eq. (23)] in the Higgs basis. Using the interaction
Lagrangian given by Eq. (52), one can immediately
ascertain the parametric dependence of the diagrams shown
in Fig. 1. Each diagram has a s3βcβh

4
t dependence, and there

is a factor of Xt [Yt] for each H1
~Q ~U [H2

~Q ~U] vertex,
respectively. In this way, we explain the parametric
dependence of the threshold corrections to Z6 exhibited
in Eq. (56). Likewise, by replacing the external H2 [H1]
line with an H1 [H2] line in Fig. 1 and deleting graphs (e)

and (f), which are now identical to graphs (c) and (d), we
can understand the parametric dependence of the threshold
corrections to Z1 [Z5].
It is instructive to obtain an approximate one-loop

formula for cβ−α, keeping only the leading Oðh4t Þ correc-
tions. We can also simplify the result by considering the
large tβ limit. Indeed, the resulting expressions will provide
good approximations for tβ ≳ 5 (a region of considerable
interest in our analysis). In the large tβ limit, we may
approximate sβ ≃ 1 and c2β ≃ −1. Moreover, in this
approximation the radiatively corrected value of the squared
mass of the light CP-even Higgs boson at one loop is

m2
h ≃ Z1v2 ≃m2

Z þ
3m4

t

2π2v2

�
ln

�
M2

S

m2
t

�
þ X2

t

M2
S

�
1−

X2
t

12M2
S

��
;

ð57Þ

where we have used Eq. (47) to write v2s4βh
4
t ¼ 4m4

t =v2.
Using Eqs. (56) and (57) in the evaluation of Eq. (30) yields

tβcβ−α ≃ −1
m2

H −m2
h

�
m2

h þm2
Z

þ 3m4
t XtðYt − XtÞ
4π2v2M2

S

�
1 −

X2
t

6M2
S

��
: ð58Þ

At large tβ we have XtðYt − XtÞ≃ μðAttβ − μÞ and
X3
t ðYt − XtÞ≃ μA2

t ðAttβ − 3μÞ, in which case, Eq. (58)
can be rewritten in the following approximate form:

(a) (b)

(c) (d)

(e) (f)

FIG. 1. One-loop diagrams contributing to the coefficient Z6 of
the Higgs basis operator ðH†

1H1ÞðH†
1H2Þ. Using the interaction

Lagrangian given in Eq. (52), one sees that the parametric
dependence for the six diagrams are h4t s3βcβX

3
t Yt for (a),(b);

h4t s3βcβX
2
t for (c),(d); and h4t s3βcβXtYt for (e),(f).
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tβcβ−α ≃ −1
m2

H −m2
h

�
m2

h þm2
Z þ 3m4

t

4π2v2M2
S

×

�
Atμtβ

�
1 −

A2
t

6M2
S

�
− μ2

�
1 −

A2
t

2M2
S

���
: ð59Þ

The significance of the product tβcβ−α has already been
noted below Eq. (49). Namely, the condition that guar-
antees that the coupling of h to down-type quarks and
leptons is close to its SM value is tβjcβ−αj ≪ 1. In contrast,
all other h couplings approach their SM values for
jcβ−αj ≪ 1, independently of the value of tβ.
The Higgs-fermion Yukawa couplings are also modified

below the scale MS. Having integrated out the squarks, the
low-energy effective Yukawa couplings are no longer of
type II (which had been previously enforced by supersym-
metry). The Yukawa couplings below the scaleMS have the
form given in Eq. (38):

−LYuk ¼ ϵij½ðhb þ δhbÞb̄RHi
DQ

j
L þ ðht þ δhtÞt̄RQi

LH
j
U�

þ Δhbb̄RQi
LH

i�
U þ Δhtt̄RQi

LH
i�
D þ H:c:; ð60Þ

where δht;b and Δht;b represent one-loop corrections from
squark or gaugino loops. Equation (60) yields a modifica-
tion of the tree-level relations between ht, hb and mt, mb as
follows [31]:

mb ¼
hbvffiffiffi
2

p cβ

�
1þ δhb

hb
þ Δhbtβ

hb

�
≡ hbvffiffiffi

2
p cβð1þ ΔbÞ; ð61Þ

mt¼
htvffiffiffi
2

p sβ

�
1þδht

ht
þΔhtcotβ

ht

�
≡htvffiffiffi

2
p sβð1þΔtÞ; ð62Þ

which define the quantities Δb and Δt.
6 Diagonalizing the

CP-even Higgs squared-mass matrix, Eqs. (60)–(62) then
yield the physical couplings of h to the up-type and down-
type quarks. After resummation of the dominant correc-
tions [5,32,33], the resulting expressions can be written in
the following forms:

ghbb̄¼
mb

v

�
sβ−α−cβ−αtβ−

1

1þΔb

�
δhb
hb

−Δb

��
cβ−αtβ
s2β

��
;

ð63Þ

ghtt̄ ¼
mt

v

�
sβ−α þ cβ−αt−1β −

1

1þ Δt

Δht
ht

�
cβ−α
s2β

��
: ð64Þ

Note that the radiative corrections to the couplings of h to
the up-type and down-type quarks vanish in the limit of
exact alignment where cβ−α ¼ 0. However, the phenome-
non of delayed decoupling at large tβ, discussed below
Eq. (49), persists. That is, at large values of tβ, the hbb̄
coupling approaches the corresponding SM value in the
limit of tβjcβ−αj ≪ 1.

C. Alignment independent of decoupling
in the MSSM Higgs sector

In the previous section, we noted that alignment inde-
pendent of decoupling is not possible for the tree-level
MSSM Higgs sector, since Z6v2 ¼ −m2

Zs2βc2β ≠ 0, except
at phenomenologically unacceptable values of β. Once
radiative corrections are included, alignment independent
of decoupling can occur quite generically, due to the
appearance of a branch of solutions that are absent at tree
level [14].
To exhibit explicitly the cancellation that yields align-

ment, we make use of the fact that exact alignment is
attained when Z6 ¼ 0. Assuming that s2β ≠ 0, it then
follows from Eq. (56) that exact alignment at one-loop
order is achieved when

m2
Zc2β ¼

3v2s2βh
4
t

16π2

�
ln

�
M2

S

m2
t

�
þ XtðXt þ YtÞ

2M2
S

−
X3
t Yt

12M4
S

�
;

ð65Þ

where Xt and Yt are defined in Eq. (53). Equation (65)
yields a nonlinear polynomial equation for tβ. If a solution
exists for positive tβ (recall that 0 ≤ β ≤ 1

2
π by convention)

for fixed values of the other MSSM parameters, then the
alignment limit can be realized. To exhibit that a solution is
possible, we shall assume that tβ ≫ 1 (in practice, moderate
to large values of tβ ≳ 5 are sufficient). We then perform a
Taylor expansion of Eq. (65) keeping only constant terms
and terms linear in t−1β . We can then easily solve for tβ:

tβ ¼
m2

Z þ 3v2h4t
16π2

½lnðM2
S

m2
t
Þ þ 2A2

t−μ2

2M2
S
− A2

t ðA2
t−3μ2Þ

12M4
S

�
3v2h4t μAt

32π2M2
S
ð A2

t
6M2

S
− 1Þ

: ð66Þ

Since we have assumed that tβ ≫ 1 in deriving Eq. (66),
we can rewrite this result in terms of m2

h [cf. Eq. (57)] and
m4

t (after taking sβ ≃ 1)7:

tβ ¼
m2

h þm2
Z þ 3m4

t μ
2

4π2v2M2
S
ð A2

t
2M2

S
− 1Þ

3m4
t μAt

4π2v2M2
S
ð A2

t

6M2
S
− 1Þ

: ð67Þ6The dominant contributions to Δb are tβ enhanced, with
Δb ≃ ðΔhb=hbÞtβ; for tβ ≫ 1, δhb=hb provides a small correction
to Δb. In the same limit, Δt ≃ δht=ht, with the additional
contribution of ðΔht=htÞ cot β providing a small correction. In
practical applications, it is often sufficient to keep only Δb, which
provides the dominant contributions to the radiatively corrected
Yukawa couplings.

7As a check of Eq. (67), one can verify that the same result is
obtained by setting the approximate expression of cβ−α obtained
in Eq. (59) to zero.
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For values of μ, At ∼OðMSÞ, the term of Oðm4
t Þ in

the numerator of Eq. (67) is subdominant. Since tβ is
positive, it follows that a viable solution exists if
μAtðAt −

ffiffiffi
6

p
MSÞ > 0. In the approximations employed

in obtaining Eq. (57), the so-called maximal mixing
condition, that yields the largest radiatively corrected
Higgs mass, corresponds to At ¼

ffiffiffi
6

p
MS. Moreover, one

obtains tβ ≫ 1 if μAt > 0 (μAt < 0) with values of At not
too far above (below) the maximal mixing condition, which
is consistent with the assumption used in the derivation
of Eq. (67).
To make contact again with the results of Ref. [14],

we observe that the exact alignment condition, Z6 ¼ 0, is
achieved when [cf. Eq. (26)]

ðλ1 − λ345Þc2β − ðλ2 − λ345Þs2β
¼ ðc2β − 3s2βÞt−1β λ6 þ ð3c2β − s2βÞtβλ7; ð68Þ

where λ345 ≡ ðλ3 þ λ4 þ λ5Þ. For tβ ≫ 1, we can approxi-
mate cβ ∼ t−1β ≃ 0 and sβ ≃ 1. We then obtain Eq. (103) of
Ref. [14]:

tβ ≃ λ2 − λ345
λ7

: ð69Þ

The value of tβ at which alignment takes place is inversely
proportional to λ7, which vanishes in the MSSM at tree
level and arises only radiatively.8 As can be seen from
Eq. (69), alignment at smaller tβ requires a larger λ7, unless
there is a tuning between λ2 and λ345 in the numerator. In
the end, it was found in Ref. [14] that for generic choices of
parameters in the MSSM, alignment independent of decou-
pling typically occurs at some value of tβ ≳ 10, with
smaller tβ requiring larger values of At=MS and μ=MS
[cf. Eq. (66)].
For top squark masses of the order of a few TeV, the

requirement of obtaining the proper value of mh constrains
the values of At ≲ 3MS. In Ref. [14] it was demonstrated
that alignment independent of decoupling may be obtained
for tβ of order 10 for large values of μ ≳ 2MS and for either
positive values of At of about 3MS or negative values of
At ≃ −1.5MS. Alignment values of tβ < 10 are not easily
realized in the MSSM.9

III. SEARCHES FOR HEAVY HIGGS BOSONS

Our purpose is to study the interplay of direct searches
and precision Higgs measurements in scenarios where
alignment occurs at very large versus moderate tβ. In order

to analyze the bounds on the nonstandard Higgs masses, we
choose benchmark scenarios close to the ones proposed in
Ref. [35], which are used by the LHC experimental
collaborations in their analyses of searches for nonstandard
Higgs bosons (see, for example, Refs. [36,37]).
Specifically, in Table I we define two classes of bench-
marks, mmodþ

h and malt
h , where the main difference with the

mmodþ
h and the tau-phobic scenarios defined in Ref. [35] is

that we take μ and mQ as floating parameters.
These two classes of scenarios differ in the choice of the

ratio At=mQ, which results in no alignment or alignment at
very large values of tβ for m

modþ
h and alignment at tβ ≲ 50

for malt
h [14]. Although these benchmarks are inspired by

those proposed in Ref. [35], the fact that we allow the μ
parameter and the overall soft scalemQ to vary allows us to
obtain the correct mass for the lightest CP-even Higgs
boson at small tβ ≲ 6 and to study the impact of alignment
at different values of tβ. Both have a crucial impact on the
properties of the lightest CP-even Higgs boson and on the
decays of the heavy CP-even and CP-odd Higgs bosons.
Observe also that we fix the value of At instead of Xt, as
was done in Ref. [35], which makes a difference only at
large values of μ and small values of tβ ≲ 10. In particular
our mmod

h þ scenario with μ ¼ 200 GeV has the same
properties as the mmod

h þ scenario in Ref. [35] and we have
therefore adapted the notation from that reference. All of
our numerical results are obtained from FEYNHIGGS [38],
which allows for a computation of all the relevant pro-
duction cross sections and branching ratios.10

Before discussing the details of the Higgs phenomenol-
ogy, recall the approximate analytical expressions given in
the previous section governing the behavior of the various
couplings, for example, cβ−α obtained in Eq. (59). In our
benchmark scenarios, mQ denotes the common squark or
slepton mass, and hence one can identify MS ¼ mQ. It
should be noted that Eq. (59) does not include two-loop
corrections, which can be significant. These two-loop
corrections approximately preserve the parametric depend-
ence of our analytic expressions on At=mQ in the MS and

TABLE I. Parameters in the on-shell scheme defining the
mmodþ

h and malt
h scenarios. We leave mQ and μ as floating

parameters.

malt
h mmodþ

h

At=mQ 2.45 1.5
M2 ¼ 2M1 200 GeV 200 GeV
M3 1.5 TeV 1.5 TeV
m ~l ¼ m ~q mQ mQ
Al ¼ Aq At At

8Using the radiatively corrected expressions for the couplings
in Eq. (69) given in Ref. [19], keeping only terms proportional to
h4t , we recover the expression given in Eq. (66).

9Alignment independent of decoupling for smaller values of tβ
may be obtained in the NMSSM [14] or in triplet extensions of
the MSSM [34].

10It should be noted that there are relevant difference between
the results obtained by FEYNHIGGS and other higher order
computations [39–41], but the analysis of the origin of these
differences is beyond the scope of this article.
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DR schemes. This is not true in the on-shell scheme, which
is employed in FEYNHIGGS. Therefore, in comparing our
analytic expressions with our numerical results, one should
use the values of At=mQ in the MS or DR schemes, that are
approximately 20% larger than the ones in the on-shell
scheme [8].

A. Getting the correct mh everywhere

In scenarios defined previously in Ref. [35], top squark
masses are fixed at the order of 1 TeV, which fails to
reproduce the proper lightest CP-even Higgs mass,
mh ≃ 125 GeV, at values of tβ ≤ 6 (the precise value of
tβ at which this occurs depends on the specific scenario). In
our benchmarks we vary the overall top squark mass scale
mQ so that the lightest CP-even Higgs mass is in the
experimentally observed range within theoretical uncer-
tainties, which we take to be of the order of 3 GeV,
mh ¼ 125� 3 GeV. More specifically, for a given value of
tβ, μ=mQ and At=mQ, we fix the value of mQ for small
values of mA ≃ 200 GeV in such a way that the lightest
CP-even Higgs mass is about 123 GeV. This is enough to
keep the value of mh in the acceptable range for all values
of mA.

11 The small variation of the lightest CP-even Higgs
mass for larger values ofmA has only a minor impact on the
heavy Higgs phenomenology and does not affect the signal

strength of the lightest CP-even Higgs in any significant
way. In contrast, fixing the value of mQ at around 1 TeV, as
currently done by the experimental collaborations, leads to
artificially low values of mh at low values of tβ that can
have a large impact on the Higgs boson phenomenology.
The corresponding values of the top squark soft breaking

mass parameters, mQ, are displayed in Fig. 2. Observe that
for the malt

h scenario (apart for the case of μ ¼ 3mQ), larger
values ofmQ are necessary for smaller values of μ, while in
the mmodþ

h scenario, larger values of mQ are obtained for
larger values of μ. The reason for this behavior is that
generally in the malt

h scenario, larger values of μ approach
the top squark mixing for which the light CP-even Higgs
mass is maximized, Xt ¼ At − μ=tβ ≃ 2mQ, in the on-shell
scheme. This implies the need for smaller logarithmic
corrections and therefore smaller values of mQ. The
exception is the case of μ ¼ 3mQ, where μ is so large that
at small values of tβ, Xt is already smaller than the maximal
value for the Higgs mass. As tβ increases, Xt increases,
approaching the maximal value from the other side. This
explains the different dependence on mQ for this case. In
the mmodþ

h scenario, larger values of μ imply values of Xt
further away from maximal mixing, which in turn require
larger values of mQ to obtain the correct mh.

B. Decay branching ratios of heavy Higgs bosons

In Fig. 3 we show the variation in the decay branching
ratios of the heavy neutral Higgs bosons, H and A, in the
malt

h scenario for small values of μ, and for moderate values
of tβ ¼ 10 and small values of tβ ¼ 4; the results in the
mmodþ

h scenario for the same values of μ are very similar

(a) (b)

Τ

FIG. 2 (color online). Values of mQ necessary to accommodate the proper value of the lightest CP-even Higgs mass, for different
values of μ in the malt

h and mmodþ
h scenarios.

11In the malt
h scenario for μ ¼ 3mQ, mA ∼ 200 GeV and

tβ ≳ 40, the Higgs mass is somewhat lower than 123 GeV due
to sbottom effects. However, this region of parameter space is
excluded regardless of the light Higgs mass; therefore, we do not
tune the value of mQ in this region.
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and will not be shown here. At larger values of μ, the
distinction between the two scenarios becomes more
prominent as shown in Figs. 4 and 5.
We first examine the case of small μ. For tβ ¼ 10, the

decays into bottom quarks represent the dominant decay
mode of the heavy Higgs bosons at small values of mA;H.
At the largest values of the nonstandard Higgs boson
masses shown in Fig. 3, the decays of the heavy Higgs

bosons into charginos and neutralinos become prominent,
suppressing the branching ratio of the decays of the
nonstandard Higgs bosons into bb̄ and τþτ−.
For tβ ¼ 4, one interesting feature is that the decay of H

into pairs of lightest CP-even Higgs becomes significant at
masses above the corresponding kinematic threshold, a
property that persists even when the value of μ is changed,
as shown in Fig. 5. Another important feature is that the

(a) (b)

(c) (d)

FIG. 3 (color online). Branching ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs bosons as a function of
their respective masses in the malt

h scenario, for tβ ¼ 10 (top panels) and tβ ¼ 4 (bottom panels), for small values of the Higgsino mass
parameter, μ ¼ 200 GeV.
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H=A decay into pairs of neutralinos and charginos becomes
prominent throughout the mass range we consider, thereby
suppressing the decay branching ratios into the canonical
search channels bb̄ and τþτ−. In particular, the branching
ratio of the heavy Higgs bosons into tau-lepton pairs, which
is the main focus of present searches, never exceeds 5% and
is quite suppressed for mA;H ≳ 300 GeV.

Next we compare the decay branching ratios in the
mmodþ

h and malt
h scenarios for large values of μ. Figure 4

shows the comparison at tβ ¼ 10 while Fig. 5 is for tβ ¼ 4.
One important consequence of raising μ is that the
Higgsinos become heavy, resulting in small couplings
of the light gauginolike charginos and neutralinos to
the neutral Higgs bosons. Therefore, the decays into

(a) (b)

(c) (d)

FIG. 4 (color online). Branching ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs bosons as a function of
their respective masses for tβ ¼ 10 in themalt

h scenario (top panels) andmmodþ
h scenario (bottom panels), for large values of the Higgsino

mass parameter, μ ¼ mQ.
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electroweakinos are always suppressed, never exceeding a
few percent. At tβ ¼ 10 the decays into bottom-quark and
tau-lepton pairs become prominent for all values of the
heavy Higgs boson masses.
For tβ ¼ 4, the branching ratio of the decay of the heavy

neutral Higgs bosons into bottom quarks and tau leptons
is suppressed due to the decrease of the couplings of

down-type fermions to these Higgs bosons. Hence, for
tβ ¼ 4, the H → hh decay becomes the dominant mode for
mH larger than the kinematic threshold of 2mh, until the top
channel opens up and becomes the main decay mode. Even
below the 2mh threshold, the decay width of the heavy CP-
even Higgs boson into weak gauge bosons is large enough
to suppress the BR(H → τþτ−) to values of order of 5% in

(a) (b)

(c) (d)

FIG. 5 (color online). Branching ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs bosons as a function of
their respective masses for tβ ¼ 4 in the malt

h scenario (top panels) and mmodþ
h scenario (bottom panels), for large values of the Higgsino

mass parameter, μ ¼ mQ.
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both scenarios. As for the CP-odd Higgs boson, as can be
seen in the right panels of Fig. 5, due to the absence of any
relevant contribution to the total decay width beyond the
bottom-quark and tau-lepton final states, the BRðA→ τþτ−Þ
remains of the order of 10% up to the top quark pair decay
threshold. It is worth noting that although the hZ channel
becomes significant when the kinematics allow, for the
same masses of the heavy Higgs bosons, BRðA → hZÞ is
always significantly lower than BRðH → hhÞ. These
differences between the CP-even and CP-odd Higgs
bosons have important phenomenological consequences
that will be discussed below.

C. Inclusive production rates of heavy Higgs bosons
in the τþτ− channel

At the LHC we only measure the total rate, i.e. the
production cross section times the branching fraction into
some specific final state. In particular, the strongest con-
straints in the MSSM on the mA-tβ plane are derived using
searches in the τþτ− final states, which we focus on in this
subsection. The main production modes for the heavy
neutral Higgs bosons, A and H, are the gluon fusion
channel and, at moderate or large values of tβ, associated
production with bottom quarks. At large tβ, the main
contribution to the gluon fusion cross section comes from
bottom quark loops, since the heavy Higgs couplings to b
quarks are enhanced by tβ. Then the total production cross
section is proportional to the square of the bottom Yukawa
coupling. However, as tβ decreases, the bottom coupling
decreases while the top coupling to the nonstandard Higgs
bosons increases with 1=tβ. Therefore, at values of tβ ≲ 6,

the dominant contribution to the gluon fusion production
cross section is proportional to the square of the top
coupling to the heavy neutral Higgs bosons and becomes
significant.
The left panel of Fig. 6 shows the dependence of the

inclusive production cross section times the branching ratio
of the decay of each neutral heavy Higgs boson into τþτ−,
for mA ¼ 300 GeV, in the malt

h and the mmodþ
h scenarios for

different values of μ. The solid lines display the behavior of
the heavy CP-even Higgs boson and the dashed lines
exhibit the corresponding CP-odd Higgs boson cross
sections. The behavior of the Higgs-induced τþτ− produc-
tion may be described using the properties of the produc-
tion cross section and branching ratios discussed above. At
large values of μ, the CP-odd Higgs boson decay branching
ratio into τþτ− remains large and approximately constant
for all values of tβ, and hence the total production rate into
τþτ− closely follows the CP-odd Higgs production cross
section. The increase of the production rate for the CP-odd
Higgs boson into τþτ− at low values of tβ and large μ is
clearly seen in Fig. 6. Also visible is the fact that as tβ
decreases, the CP-even Higgs contribution to the τþτ−
production rate is suppressed. This happens due to a
decrease of the corresponding branching ratio, compensat-
ing for the increase in the gluon fusion production cross
section. The same happens for the CP-odd Higgs boson at
low values of μ.
The reach of the LHC in this channel at low values of tβ

and mA ¼ 300 GeV becomes very different as one varies
the μ parameter. For high values of μ, the total production
rate into τþτ− reaches a minimum at tβ ≃ 6 and then
increases for lower values of tβ, as shown in the right panel

(a) (b)

FIG. 6 (color online). Inclusive production cross section times branching ratio in the τþτ− mode formA ¼ 300 GeV. The black dashed
line in the right panel denotes the extracted upper limit from CMS bounds presented in Ref. [36].
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of Fig. 6. This is due to the CP-odd Higgs contribution as
discussed above and shown in the left panel of Fig. 6.
However, at low values of μ, the inclusive production rate
into τþτ− keeps decreasing for decreasing values of tβ, as
also shown in the right panel of Fig. 6. The horizontal
dashed line in the right panel of Fig. 6 denotes an upper
bound on the inclusive τþτ− production rate extracted from
the CMS analysis in Ref. [36] (the derivation and validity of
this extracted limit is detailed in Appendix A). The value of
tβ where the horizontal dashed line meets the predicted
cross section denotes the largest value of tβ consistent with
experimental observation. Values of tβ above this should be
considered ruled out because the inclusive production rate
would be larger than the extracted upper bound. As more
data are collected in run II of the LHC, the bound on the
τþτ− channel will become stronger and therefore the
horizontal dashed line will be pushed towards smaller
values if no scalar resonances are seen. If for a particular
value of the mass of the heavy CP-even and CP-odd Higgs
bosons the limit were pushed below the minimum of the
inclusive τþτ− production rate in the large μ case, that
particular value of the Higgs boson mass would be
excluded by the data for all values tβ. This is not possible
for the low μ scenarios, for which no minimum of the
production cross section is present.
At lower values of mA ≃ 200 GeV the difference

between low and high values of μ becomes less dramatic.
Still, as can be seen from Figs. 4 and 5, at tβ ¼ 4,
BRðA → τþτ−Þ remains of order 10% for large values of
μ and becomes about half of that value for low values of μ.
In contrast, BRðH → τþτ−Þ is always somewhat sup-
pressed due to the presence of the decay of the heavy
CP-even Higgs into VV, suffering an additional suppres-
sion at low values of μ. In this particular example at tβ ¼ 4,
BRðH → τþτ−Þ is of order 6% for high values of μ and is
reduced to about 3% for low values of μ. Hence, in this case
the largest τþτ− production contribution comes from the
CP-odd Higgs boson.

D. Rescaling current LHC limits

We use the procedure discussed in Appendix A to
convert the mA–tβ limits presented by the experimental
collaborations for a specific scenario, into limits on the
inclusive production rate into τþτ− for a given value of mA.
We then demand that any other scenario we are considering
leads to an inclusive production rate which is smaller than
this extracted limit. In this way, we are able to obtain a
simple rescaling algorithm for the values of tβ excluded in
any given scenario. The outcome of such a procedure is
presented in Fig. 7, which shows the exclusion limits on the
mA-tβ plane in ourmalt

h scenario for two different choices of
the μ parameter. As stressed in the last section, an important
distinction in going from small to large values of μ is that
the Higgsinos become heavy and therefore the decays of
the heavy Higgs bosons into neutralino and/or chargino

pairs are suppressed, resulting in a larger branching fraction
into τþτ− channels. It is clear that, due to the increase in the
τþτ− production rate for larger values of μ (see Fig. 6), the
exclusion limit may be extended to smaller values of tβ.
As previously noted, the existence of a minimum in the

inclusive production rate for the τþτ− channel as a function
of tβ for large values of μ (cf. Fig. 6) means that if this
minimum falls below the experimental upper bound in the
future, one would exclude all tβ for a particular value ofmA
in the scenario under consideration. Indeed, in Ref. [42] it
was shown that for heavy supersymmetric particles, the
LHC has the capability of probing the wedge region by
means of the H;A → τþτ− channel in the 14 TeV run.
However, since this minimum does not exist for the low μ
scenarios, even at 14 TeV, it is unlikely that the LHC would
be able to completely probe the low mA–tβ region for
these cases.
In Fig. 8 we show the projected limits in the mmodþ

h
scenario, with μ ¼ 200 GeV, that are required to exclude
all values of tβ in scenarios with large μ formA < 350 GeV.
More explicitly, if in the future the exclusion limit in the
mmodþ

h scenario, with μ ¼ 200 GeV, reaches the dashed
(dotted) lines, the malt

h benchmark, with μ ¼ mQðmQ=2Þ,
would be completely ruled out, respectively. The situation
for all our benchmarks with other choices of μ is similar, as
long as μ ∼OðmQÞ or larger. For comparison, the solid line
in Fig. 8 represents the current bound from the LHC8
in Ref. [36].

FIG. 7 (color online). Direct search bounds from the inclusive
τþτ− mode in our benchmarks at LHC8. The solid line displays
the current CMS bounds in the mmodþ

h scenario with μ ¼
200 GeV [36].
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Note that in this paper we have assumed that all squark
masses areof the order of the top squarkmasses, andhence the
next-to-lightest neutralinos and the lightest charginos would
mostly decay into the lightest neutralino and Z, h and W�,
respectively. Under these conditions, the values of μ,M2 and
M1 associated with the low μ scenario here are at the edge of
the current region of parameters probed by the ATLAS and
CMS experiments [43,44]. Since the heavier Higgs bosons
decay prominently into these particles, it would be interesting
to perform a search for these Higgs bosons decaying into
charginos and neutralinos. These will lead to final states
already present in the decays of the heavier Higgs bosons into
SM particles, namely, hh, VV and Zh, that are being studied
at present (see, e.g., Refs. [45,46]), but will be characterized
by large amounts of missing energy. In contrast, the large μ
scenario leads not only to a suppression of the Higgs boson
decay into charginos andneutralinos, but also to a suppression
of the neutralino pair production cross sections and an
enhancement of the decay of the second neutralino into the
lightest neutralino and (depending on the mass difference) an
on-shell or off-shell lightest CP-even Higgs boson.

IV. PRECISION h MEASUREMENTS VERSUS H
And A DIRECT SEARCHES

After analyzing the direct search constraints in the two
classes of benchmarks with a varying μ parameter, we now
study the interplay between direct searches and measure-
ments of properties of the lightest CP-even Higgs boson at

125 GeV. The value of μ=mQ plays an important role in
determining the value of tβ at which alignment occurs, as
can be seen in Eq. (66). We shall show that the low tβ and
lowmA region, which is difficult to probe in direct searches
at low values of μ, results in deviations in the properties of
the 125 GeV Higgs boson that are quite significant.
Therefore, direct searches and precision Higgs measure-
ments are complementary to each other.
In studying properties of the lightest CP-even Higgs

boson, we will focus on its couplings to massive gauge
bosons h → VV, which are measured quite well exper-
imentally. Another possibility is to use loop-induced
couplings such as the diphoton coupling. Indeed, the
different values of At and μ chosen in the mmodþ

h and
malt

h scenarios lead to deviations in the loop-induced
couplings. However, as is demonstrated in Appendix B,
the constraining power between these two couplings does
not differ significantly.
It is worth emphasizing again that in order to study the

complementarity between precision measurements and
direct searches, it is important to obtain the correct mass
for the lightest CP-even Higgs boson, which has a major
impact on the properties of the 125 GeV Higgs boson and
on the decays of the heavy Higgs bosons. As we showed in
Sec. III A, in the region of interests where both tβ and mA
are small, the value of mQ should be raised to values larger
than 1 TeV in order to obtain the proper lightest CP-even
Higgs mass values.
Under the assumption of jcβ−αj ≪ 1, it follows from the

results of Sec. II that

ghVV ≃ gSMhVV; ghtt ≃ gSMhtt ; ð70Þ

whereas

ghbb ≃ gSMhbbð1 − cβ−αtβÞ; ð71Þ

where for simplicity we have neglected the Δb and δhb
effects in Eq. (63). This implies that, apart from small
corrections coming from the squark loops contributing to
the gluon-gluon fusion production, the lightest CP-even
Higgs production cross section is SM-like. Moreover, the
decay branching ratios of the lightest CP-even Higgs boson
are mostly affected by the modification of the bottom and τ
couplings. Inspection of Eq. (59) reveals that the down-type
quark (and lepton) Yukawa couplings can significantly
deviate from their corresponding SM values at low mA and
moderate values of tβ. Moreover, for small values of μ these
modifications are only weakly dependent on tβ, while for
large values of μ, a dependence on tβ appears that may lead
to alignment for the specific value of tβ at which cβ−α ¼ 0.
In Fig. 9, we summarize our results on the comparison of

direct searches for nonstandard Higgs bosons and the
precision studies of the lightest CP-even Higgs boson at
the 8 TeV LHC. The dashed contours correspond to various

FIG. 8 (color online). The dashed and dotted line exhibit the
projected bounds at

ffiffiffi
s

p ¼ 14 TeV in the mmodþ
h scenario with

μ ¼ 200 GeV, such that all values of tβ are excluded in the malt
h

scenario for large values of μ. The solid line displays the current
CMS bounds in the mmodþ

h scenario with μ ¼ 200 GeV [36].
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assumptions on the precision of the signal strength
σðgg → hÞ × BRðh → VVÞ. For example, the 0.8 contour
corresponds to a signal strength that is 80% of the predicted
SM value, etc. The four panels represent four different
values for the μ parameter, and in each panel we depict both
the mmodþ

h and the malt
h scenarios. At low values of μ, in

light of the weak dependence of the light CP-even Higgs
decay branching ratios on tβ, precision studies of the decay
branching ratios of the lightest CP-even Higgs lead to a
lower bound on the value of mA, which is roughly

independent of tβ. Indeed, the dashed contours in
Fig. 9(a) are nearly vertical, ruling out the parameter space
to the left of the corresponding contours. The ATLAS
experiment has performed such an analysis and found a
bound on mA of order 400 GeV. Let us remark in passing
that the signal strength of the h → VV modes observed at
ATLAS is 1.3� 0.2 and hence according to the results of
Fig. 9(a) the bound on mA would be larger than the
corresponding one using CMS data, for which the signal
strength is 1.0� 0.2.

(a) (b)

(c) (d)

FIG. 9 (color online). Dashed contours show deviations of the signal strength into massive gauge bosons for the lightest CP-even
Higgs boson with respect to the SM values in themmodþ

h (blue line) andmalt
h (red line) scenarios in themA-tβ plane for different values of

μ. Shaded regions denote parameters excluded by direct searches for heavy CP-even and CP-odd Higgs bosons decaying into pairs of τ
leptons.
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As the value of μ is increased we see two effects. On one
hand, the contours of constant h-induced VV production
cross section are drastically modified in the malt

h scenario,
due to a relevant dependence on tβ of the bottom quark and
tau lepton Yukawa couplings [cf. Eqs. (59) and (71)]. These
contours bend to the left in relation with the ones in the
mmodþ

h scenario, becoming almost independent of mA at
values of tβ close to the alignment limit. Therefore, for tβ
close to the value where the alignment condition is
satisfied, precision measurements alone are not able to
place any bound on mA. The smallest value of tβ where the
alignment condition is satisfied takes place for the largest
value of μ ¼ 3mQ considered, shown in Fig. 9(d).12 Indeed
it is difficult to obtain smaller values of tβ at alignment in
the MSSM without taking extreme values of the MSSM
parameters. Large values of At=mQ and μ=mQ can lead to
charge and color breaking vacua which would bring the
stability of the electroweak vacuum into question [47].
The complementarity of the precision hð125Þ data with

direct searches for nonstandard Higgs bosons is now clear.
At the large values of tβ where the alignment condition is
satisfied, searches for nonstandard Higgs bosons become
effective and, as discussed in the previous section, they
become more effective for larger values of μ. This is shown
by the shaded regions of Fig. 9, which denote the CMS
limits in the mmodþ

h and malt
h scenarios. The combination of

direct and indirect searches allow us to constrain values of
mA lower than 250 GeV in the malt

h scenario with μ≲ 3mQ,
independently of tβ. Moreover, due to the increase in
sensitivity of the search for nonstandard Higgs bosons at
large values of μ, the whole region of parameters for mA <
350 GeV is expected to be probed by the LHC in the near
future, showing again the strong complementarity between
precision studies of the lightest CP-even Higgs boson,
which become a weaker probe in this scenario, and direct
searches for nonstandard Higgs bosons.
In summary, at low values of μ, precision measurements

of the lightest CP-even Higgs bosons are able to probe low
values of mA, independently of tβ. In contrast, in the
presence of alignment which occurs for large values of μ,
precision measurement studies alone will not be able to put
a model-independent bound on mA. However, in this case
direct searches for nonstandard Higgs bosons will be able
to probe all values of tβ for values of mA below the top-
quark decay threshold in the near future.

V. CONCLUSIONS

In this paper, we have analyzed the complementarity
between precision measurements of the lightest CP-even
Higgs boson and direct searches for nonstandard Higgs
bosons in the MSSM. We have stressed that in the align-
ment limit, one can significantly relax the bounds on the
heavy Higgs bosons that arise from the measurements of
the VV decays of the lightest CP-even Higgs boson. Such
alignment conditions, however, are associated with large
values of the μ parameter and the top squark mixing
parameter, At, and tend to be restricted to values of tβ of
order 10 or larger within the MSSM.
Direct searches for nonstandard neutral Higgs bosons

provide strong constraints on the Higgs spectrum.
Currently, the most sensitive search channel is associated
with the τþτ− final state, with the main production mode
being either through the gluon fusion process or in associ-
ation with bottom quarks. The ATLAS and CMS experiments
have placed lower bounds on mA that range from values of
order 200 GeV for tβ ≃ 10 up to values of order of a TeV for
tβ ≃ 50. The lower values of mA and tβ may be consistent
with the observed lightest CP-even Higgs properties, pro-
vided one is not far from the alignment condition. The large
values of μ associated with the alignment limit reduce the
decay rate into charginos and neutralinos and therefore
increase the BRðH;A → τþτ−Þ, making direct searches more
efficient. This property provides an interesting complemen-
tarity between direct searches and precision measurements
which will allow one to probe the region of mA < 350 GeV
for all values of tβ in future running of the LHC.
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APPENDIX A: INTERPRETING CURRENT
BOUNDS FROM LHC8

In Ref. [36] where CMS presented bounds on the heavy
Higgs bosons in the MSSM, the limits were derived in
particular benchmarks that differ from the two classes of
scenarios we are considering in this work. As such, these
limits cannot be applied in a straightforward manner.
However, Ref. [36] also providedmodel-independent limits
that could be translated into limits in benchmarks consid-
ered in this study. The model-independent limits are
provided as two-dimensional contours in the plane of the
production cross sections via gluon fusion and associated
production with bottom quarks. These limits are derived
from searching for a heavy scalar resonance in the τþτ−

final state, independently of any specific model, and show
very little contamination from a 125 GeVHiggs boson once
the postulated heavy resonance is heavier than 200 GeV.
Unlike the model-independent bounds, the limits in the

MSSM benchmarks in Ref. [36] are given in terms of mA
and tβ, instead of direct upper bounds on the τþτ−
production rates. We will specifically use the exclusions
presented for the mmodþ

h scenario, compare them to the
limits presented in the model independent analysis and
formulate an algorithm to apply these to any other MSSM
model. To that end, we first derive the upper limit on the
production rates in themmodþ

h scenario, with μ ¼ 200 GeV,

by computing the corresponding branching ratios and
relevant cross sections along the exclusion curve in the
mA-tβ plane using the package FEYNHIGGS [38]. For each
value of mA there exists an upper limit on the allowed
inclusive production rate into τþτ−. We will refer to this
upper limit as the inclusive interpretation of the heavy
Higgs boson search bounds.
In Fig. 10 we show the production rates into τþτ−

resulting from the production of heavy Higgs bosons in
the two relevant production channels ggϕ and bbϕ as a
function of tβ. The production rates in the malt

h scenario, for
μ ¼ mQ, are displayed as a solid red curve, while the
corresponding values in the mmodþ

h scenario, for μ ¼
200 GeV, are displayed as a solid blue curve. We show
results for mA ¼ 200 GeV and mA ¼ 300 GeV in the left
and right panels of Fig. 10, respectively. The corresponding
values of tβ are displayed as solid dots on these curves. These
show that, while in the mmodþ

h scenario, with μ ¼ 200 GeV,
the rates due to both production cross sections decrease with
tβ, the rate originating from the production via gluon fusion
reaches a minimum in the malt

h scenario, increasing at low
values of tβ in agreement with our discussion in Sec. III C.
Our inclusive interpretation of the heavy Higgs boson

search is denoted by dashed black lines in Fig. 10. We also
show the model-independent 95% C.L. upper bounds,
provided explicitly in Ref. [36], as black solid lines.
Observe that the slopes of the solid and dashed lines are
very similar, implying that the model-independent bounds
correspond approximately to the same inclusive production
rate in both scenarios. Note the bound on tβ we obtain in the

(a) (b)

FIG. 10 (color online). Comparison of exclusion limits obtained via the model-independent analysis and our inclusive interpretation of
the limits for themmodþ

h scenario, with μ ¼ 200 GeV. The dots represent values of tβ in units of 1, where values are labeled in blue or red
corresponding to the mmodþ

h scenario, with μ ¼ 200 GeV, and malt
h scenario, with μ ¼ mQ, respectively.

CARENA et al. PHYSICAL REVIEW D 91, 035003 (2015)

035003-20



mmodþ
h scenario, with μ ¼ 200 GeV, from the model-inde-

pendent bounds is within one unit of the bound presented by
CMS by a more sophisticated likelihood method.
The tβ limit for a given mA in a different MSSM model

corresponds roughly to the value where the inclusive
production rate exceeds the upper limit in the mmodþ

h
scenario, with μ ¼ 200 GeV. Since the sensitivity of the
LHC in the gluon fusion and bbϕ channels is similar, we
expect this to be a good approximation. Explicitly, in Fig. 10
we show the comparison of the bound in the malt

h scenario,
with μ ¼ mQ, using the inclusive production rate at the
limiting value of tβ presented by CMS in the mmod

h scenario,
with μ ¼ 200 GeV, compared to the limit on the value of tβ
that could be interpreted from the model independent bound.
Again, the difference using the two methods results in a
difference for the tβ limit of approximately one unit.
Using our inclusive interpretation, we can scale the

limits from the mmodþ
h scenario, with μ ¼ 200 GeV, to

any other scenario in a simple way in the region where
mA ¼ 200–350 GeV. We then use the bounds from our
inclusive interpretation to map out the direct search con-
straints on the mA-tβ plane in each of our benchmarks,
which in turn are compared against the constraints from
precision measurements of the properties of the 125 GeV
Higgs boson. We also use the inclusive production rate to
analyze the future searches at the 14 TeV run of the LHC.

APPENDIX B: COMPARISON
OF hVV And hγγ COUPLINGS

At low values of μ the charginos become light and
therefore can lead to a modified diphoton coupling of the

lightest CP-even Higgs boson. The contribution of top
squarks and charginos to the amplitude in the diphoton
channel is proportional to [17,48–51]

Ahγγ ≃ASM
hγγ þ b~χþ

1
2
g2v2 sin 2β

M2μ − 1
4
g2v2 sin 2β

− b~tm
2
t

m2
~t1
þm2

~t2
− X2

t

m2
~t1
m2

~t2

; ðB1Þ

where in this normalization ASM
hγγ ¼ 6.5 represents the SM

contribution, b~χþ ¼ 4=3, b~t ¼ 4=9, and m~t1;2 are the top
squark mass eigenvalues. The parameters mt and Xt are
running mass parameters at the scale of the top squark
masses in the MS scheme. For the large values of Xt present
in themalt

h scenario, the top squark contribution is small and
positive. The chargino contribution is also small and
becomes relevant only for small values of μ and of tβ.
In the mmodþ

h scenario, for μ ¼ 200 GeV, the top squark
contribution is even smaller, since X2

t is close to the sum of
the squares of the top squark masses. In general, the
supersymmetric loop corrections lead to a contribution
of the order of a few percent of the SM one. Hence, the
main deviation of the BRðh → γγÞ and BRðh → VVÞ in
this region of parameters is mostly governed by the increase
of the width of the lightest CP-even Higgs decay into
bottom quarks and tau leptons at low values of mA.
Note that the contribution from top squarks to gluon

fusion is approximately a factor of 3 larger than their
contribution to the diphoton coupling [50–52]. However,
the leading SM contribution has the opposite sign in this

(a) (b)

FIG. 11 (color online). Deviation of the signal strengths with respect to the SM values for the lightest Higgs boson decaying into two
photons and two massive gauge bosons.
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case, and hence, the gluon fusion rate is reduced from the
SM expectation in the scenarios we consider, again at the
few percent level.
In order to quantify these effects, in Fig. 11(a) we show

contour plots of σ × BRðh → γγÞ and σ × BRðh → VVÞ
normalized the SM values in the mmodþ

h and malt
h scenarios

for low values of μ, for which no alignment condition is
present. This choice of μ maximizes the differences
between these channels. As can be seen, the overall
behavior of these channels is the same, although the precise
value of tβ for which a particular deviation with respect
to the SM value takes place is shifted by a few tens

of GeV for mA < 350 GeV for low values of μ. No
significant difference is present for larger values of μ, as
can be seen from Fig. 11(b). The peculiar behavior of the
contour lines at low values of tβ in the malt

h scenario is
induced by the variation of the gluon fusion cross section,
which becomes more suppressed as the top squarks become
heavier.
In this paper, in order to study the properties of the

lightest CP-even Higgs bosons we shall concentrate on the
BRðh → VVÞ, but as shown in Fig. 11, similar conclusions
would be obtained by the study of BRðh → γγÞ in this
region of parameters.
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