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We examine the constraints on the two-Higgs-doublet model (2HDM) due to the stability of the scalar
potential and absence of Landau poles at energy scales below the Planck scale. We employ the most general
2HDM that incorporates an approximately Standard Model (SM) Higgs boson with a flavor aligned
Yukawa sector to eliminate potential tree-level Higgs-mediated flavor changing neutral currents. Using
basis independent techniques, we exhibit regimes of the 2HDM parameter space with a 125 GeV SM-like
Higgs boson that is stable and perturbative up to the Planck scale. Implications for the heavy scalar
spectrum are exhibited.
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I. INTRODUCTION

With the recent discovery of a Higgs-like particle with a
mass of about 125 GeV by both the ATLAS [1] and CMS
[2] collaborations, the focus has now turned to deciphering
the properties of this particle and determining whether it is
the Standard Model (SM) Higgs particle, or part of an
extended Higgs sector. Analyses performed by ATLAS and
CMS collaborations have shown that the couplings of the
newly discovered particle are consistent with a SM-like
Higgs boson, within the accuracy of their measurements. In
light of the present precision of the Higgs data, the LHC
can claim to have discovered a SM-like Higgs boson.
However, there is still plenty of room for deviations from SM
behavior of Oð10%Þ. A SM-like Higgs boson is easily
achieved in an extended Higgs sector in the decoupling limit,
where the lightest scalar is identified as the observed SM-like
Higgs boson, and the heavier scalars are somewhat separated
in mass (e.g. with a mass scale above 350 GeV [3,4]).
Before the mass of the Higgs boson was known, upper

bounds on the SM Higgs mass were obtained by requiring
that the running quartic coupling parameter avoid Landau
poles (LPs); i.e., the coupling was required to remain finite
up to a given energy scale Λ [5–7]. Lower bounds were
obtained by requiring that the scalar potential remain stable
during renormalization group (RG) evolution [8–13]. That
is, the scalar potential is bounded from below at all scales
between the electroweak scale and Λ. These bounds were
contingent on the assumption that no new physics beyond
the SM (BSM) enters between the electroweak scale and Λ.
Turning around the argument, the existence of a LP or an

instability of the scalar potential at some energy scale Λ
suggests that new BSM physics must be present at or
below Λ.
After the discovery of the Higgs boson, previously

obtained bounds were updated using two-loop renormal-
ization group equations (RGEs) in Ref. [14] and three-loop
RGEs by Ref. [15]. The most recent analysis of Ref. [16]
has shown that the SM scalar potential becomes unstable at
a value of Λwell below the Planck scale, if the Higgs boson
mass is smaller than 129.6� 1.5 GeV.1 Taken at face
value, these results would further imply that we live in a
metastable vacuum that will eventually (and catastrophi-
cally) decay via tunneling into the true vacuum. However,
the lifetime of the metastable vacuum is many orders of
magnitude larger than the age of the universe [16,17]. On
the other hand, if the electroweak vacuum is absolutely
stable, then the recent LHC discovery of a 125 GeV SM-like
Higgs boson requires the existence of new BSM physics at
an energy scale below a scale ofΛ≃ 109.5 GeV, where there
is an uncertainty of about 1 in the exponent due to parametric
uncertainties of mt, αs and the Higgs mass [16], in order to
avoid the metastability of the SM vacuum.
Although the prospect of existence of new BSM physics

is exciting, there is no guarantee that the scale of the new
physics is close to the electroweak scale. Nevertheless,
arguments motivated by naturalness of the electroweak
symmetry breaking (EWSB) mechanism suggest that BSM
physics should be present at or near the TeV scale (see e.g.,
Refs. [18,19] for a review and a guide to the literature).
Many models of new physics have been proposed to
address the origin of ESWB, and many of these approaches
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1The quoted uncertainty takes into account the parametric
uncertainty of mt and αs and the effects of unknown higher order
corrections [16].
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possess extended Higgs sectors. However, in such models
one must specify the BSM physics in order to study the
behavior of running couplings between the electroweak scale
and some very high energy scale Λ. At present, there is no
direct experimental evidence that the origin of the EWSB
scale is a consequence of naturalness. Adding additional
Higgs multiplets at or near the TeV scale by themselves does
not address the origin of EWSB. Indeed, one could argue
that it makes matters worse by adding additional fine-tuning
constraints. Nevertheless, in this paper we shall accept the
fine-tunings required to sustain an extended Higgs sector
near the TeV scale. After all, we know that multiple
generations exists in the fermionic sector of the Standard
Model. Thus, we should be prepared for the possibility that
the scalar sector of the theory is also nonminimal.
Here, we shall focus on the two-Higgs-doublet model

(2HDM), which was initially proposed by Lee in 1973 [20]
(for a review, see e.g. Ref. [21]). It provides a richer Higgs
particle spectrum, namely three neutral scalars and a
charged pair. The 2HDM admits the possibility of
CP-violation in the scalar potential, both explicit or
spontaneous. In the limit of CP-conservation, two of the
neutral scalars are CP-even, typically denoted by h and H,
(where mh < mH) while the other neutral scalar is CP-odd,
denoted by A. We shall consider a very general version of
the 2HDM that is not inconsistent with present data. Such a
model must possess a SM-like Higgs boson (within the
accuracy of the present Higgs data). In addition, Higgs-
mediated tree-level flavor changing neutral currents
(FCNCs) must be either absent or highly suppressed.
These conditions are achieved if the nonminimal Higgs
states of the model have masses above about 350 GeV and
if the Yukawa couplings are aligned in such a way that the
neutral Higgs couplings are diagonal in the mass-basis for
the neutral Higgs bosons. The most general 2HDM param-
eter space allowed by the present data is somewhat larger
than the one specified here. Nevertheless, the restricted
parameter space outlined above is still quite general and
incorporates the more constrained 2HDMs considered in the
literature.
The existence of additional scalar degrees of freedom in

an extended Higgs sector provides an opportunity to cure
the vacuum metastability problem of the SM Higgs boson.
However, by demanding no Landau poles and requiring a
stable scalar potential at all energy scales up to the Planck
scale, one imposes strong constraints on the parameter
space of the extended Higgs sector. Investigations of this
type have been performed in extended Higgs sectors prior
to the discovery of the Higgs boson in Refs. [22–28]. With
the discovery and identification of a SM-like Higgs boson,
the question of the validity of extended Higgs sectors up to
the Planck scale has become more focused. A number of
authors have considered the stability properties of extended
Higgs sectors with additional singlet scalar fields [29–32]
and 2HDMs with constrained scalar potentials [33–35].

In this paper, we examine the theoretical consistency of
the most general 2HDM between the electroweak scale and
the Planck scale, using the one-loop RGEs of the model to
investigate the possible occurrence of Landau poles and
instability of the scalar potential. We focus on the decou-
pling regime of the 2HDM where the 125 GeV Higgs
boson is SM-like [36,37], and assume Yukawa alignment in
the flavor sector [38] to avoid Higgs-mediated tree-level
FCNCs. Our aim is to exhibit the allowed regions of the
2HDM parameter space that are free from both Landau
poles and vacuum instability below the Planck scale. In
particular, a 2HDM that satisfies these constraints does not
require further BSM physics to stabilize the theory.
One of the distinguishing features of the most general

2HDM is the fact that the two scalar doublet, hypercharge-
one fields are indistinguishable. One is always free to
define new linear combinations of the scalar doublets that
preserve the kinetic energy terms of the Lagrangian. A
specific choice for the scalar fields is called a basis, and any
physical prediction of the theory must be basis indepen-
dent. In our analysis, we employ a basis-independent
formalism introduced in Ref. [39]. We consider the most
general 2HDM scalar potential (which is potentially
CP-violating) and the most general Yukawa sector, which
introduces three additional independent 3 × 3 matrix
Yukawa couplings. Without additional assumptions, the
latter yields Higgs-mediated tree-level FCNCs, in conflict
with observed data. In order to circumvent this, we impose
a “flavor alignment ansatz”, introduced in Ref. [38], which
postulates that the independent matrix Yukawa couplings
are proportional to the corresponding quark and charged
lepton mass matrices. In this case one finds that, in the mass
basis for the quarks and leptons, the matrix Yukawa
couplings are flavor diagonal, and the Higgs-mediated
tree-level FCNCs are absent. One way to achieve alignment
in the Yukawa sector is to introduce a set of discrete
symmetries which constrain the Higgs scalar potential and
Yukawa couplings. The so-called type-I and II 2HDMs
[40], and the related type X and type Y 2HDMs [41,42]
provide examples of this type. Indeed, Ref. [43] showed
that the flavor alignment is preserved under RGE running if
and only if such discrete symmetries are present. The flavor
alignment ansatz is more general, but requires fine-tuning
in the absence of an underlying symmetry.
This paper is organized as follows: In Sec. II, we review

the basis-independent formalism as applied to the 2HDM.
In Sec. III, we describe the Yukawa sector and present the
flavor alignment model used in this analysis. In Sec. IV, we
present our numerical analysis of the mass bounds gov-
erning the lightest scalar, which are derived by requiring the
stability of the 2HDM potential and the absence of Landau
poles in the scalar quartic couplings below the Planck scale.
Our analysis employs both the one-loop RG running of
the quartic couplings, along with an estimate of the effects
of the two-loop corrections. In Sec. VI, we present our
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conclusions. The one-loop basis independent RGEs are
presented in Appendix A, and stability conditions on
the basis-independent 2HDM potential are derived in
Appendix B.

II. BASIS-INDEPENDENT TREATMENT
OF THE 2HDM

A. The Higgs basis

In a generic basis, the most general renormalizable
SUð3ÞC × SUð2ÞL × Uð1ÞY gauge-invariant 2HDM scalar
potential is given by

V ¼ m2
11ðΦ†

1Φ1Þ þm2
22ðΦ†

2Φ2Þ − ½m2
12Φ

†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2

þ ½λ6ðΦ†
1Φ1Þ þ λ7ðΦ†

2Φ2Þ�ðΦ†
1Φ2Þ þ H:c:

�
; ð1Þ

where Φ1;Φ2 are two hypercharge-one complex scalar
doublets. The two doublets separately acquire vacuum
expectation values (VEVs) hΦ0

1i¼ v1=
ffiffiffi
2

p
and hΦ0

2i ¼
v2=

ffiffiffi
2

p
with the constraint v2¼jv1j2þjv2j2≃ð246GeVÞ2.

The parameters λ1;2;3;4 and m2
11; m

2
22 are real whereas

λ5;6;7 and m2
12 are potentially complex. The 2HDM is

CP-conserving if there exists a basis in which all of the
parameters and the vacuum expectation values are simulta-
neously real.
We shall adopt a basis-independent formalism as devel-

oped in Ref. [39], which provides basis-independent
2HDM potential parameters that are invariant under a
global U(2) transformation of the two scalar doublet fields,
Φa → Uab̄Φb (a, b̄ ¼ 1; 2).

It is convenient to define the so-called Higgs basis of
scalar doublet fields,

H1 ¼
�
Hþ

1

H0
1

�
≡ v�1Φ1 þ v�2Φ2

v
;

H2 ¼
�
Hþ

2

H0
2

�
≡ −v2Φ1 þ v1Φ2

v
; ð2Þ

so that hH0
1i ¼ v=

ffiffiffi
2

p
and hH0

2i ¼ 0. The Higgs basis is
uniquely defined up to a rephasing of the H2 field,
H2 → eiχH2. In the Higgs basis, the scalar potential takes
the familiar form,2

V ¼ Y1ðH†
1H1Þ þ Y2ðH†

2H2Þ þ ½Y3H
†
1H2 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ

þ Z4ðH†
1H2ÞðH†

2H1Þ þ
�
1

2
Z5ðH†

1H2Þ2

þ ½Z6ðH†
1H1Þ þ Z7ðH†

2H2Þ�ðH†
1H2Þ þ H:c:

�
; ð3Þ

where Y1; Y2, and Z1;2;3;4 are real parameters and uniquely
defined, whereas Y3 and Z5;6;7 transform under a rephasing
of H2, viz., ½Y3;Z6;Z7�→e−iχ ½Y3;z6;Z7� and Z5 → e−2iχZ5.
Minimizing the scalar potential then yields

Y1 ¼ −
1

2
Z1v2; Y3 ¼ −

1

2
Z6v2: ð4Þ

The scalar potential is CP-violating if no choice of χ can be
found in which all Higgs basis scalar potential parameters
are simultaneously real.
The tree-level mass eigenstates of the neutral scalars can

be obtained by diagonalizing the neutral scalar squared-
mass matrix in the Higgs basis [44,45],

M ¼ v2

0
B@

Z1 ReðZ6Þ −ImðZ6Þ
ReðZ6Þ 1

2
½Z3 þ Z4 þ ReðZ5Þ� þ Y2=v2 − 1

2
ImðZ5Þ

−ImðZ6Þ − 1
2
ImðZ5Þ 1

2
½Z3 þ Z4 − ReðZ5Þ� þ Y2=v2

1
CA: ð5Þ

The diagonalizing matrix is a real orthogonal 3 × 3
matrix that is parameterized by three mixing angles
θ12; θ13, and θ23 (details can be found in Ref. [45]). In
terms of U(2)-invariant combinations of the mixing angles

and scalar potential parameters, the squared-masses of
the three neutral Higgs bosons, denoted by h1, h2 and
h3, respectively, are given by [45]

m2
k ¼ jqk2j2Y2 þ v2

�
q2k1Z1 þ

1

2
jqk2j2½Z3 þ Z4

− ReðZ5e−2iθ23Þ� þ Reðqk2ÞReðqk2Z5e−2iθ23Þ

þ 2qk1Reðqk2Z6e−iθ23Þ
�
; for k ¼ 1; 2; 3; ð6Þ

2As discussed in Appendix A, the squared-mass and coupling
coefficients, Y1; Y2, and Z1;2;3;4 can be expressed as U(2)-
invariant combinations of the scalar potential coefficients and
the VEVs, whereas Y3 and Z5;6;7 are U(2)-pseudoinvariant
combinations of the scalar potential coefficients and the VEVs
that are rephased under a U(2) transformation [39].
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where the qki are invariant combinations of the mixing
angles shown in Table I. It is convenient to choose a
convention where m1 < m2 < m3 (which can always be
arranged by an appropriate choice of neutral Higgs mixing
angles). The squared-mass of the charged scalars is given by

m2
H� ¼ Y2 þ

1

2
Z3v2: ð7Þ

B. Decoupling limit

The decoupling limit corresponds to taking the squared-
mass parameter of the Higgs basis field H2 large while
holding the Higgs quartic coupling parameters fixed. In the
perturbative regime, we take jZij≲Oð1Þ and Y2 ≫ v2.
In this case [37,45],

sin θ12 ∼ sin θ13 ∼O
�
v2

Y2

�
: ð8Þ

In addition, the decoupling limit requires that

ImðZ5e−2iθ23Þ ∼O
�
v2

Y2

�
; ð9Þ

which implies that

ReðZ5e−2iθ23Þ ¼ −jZ5j: ð10Þ
The overall sign in Eq. (10) [which is not determined by
Eq. (9)] is fixed in the convention where m2 < m3. Using
the above results in Eq. (6) yields

m2
1 ¼ Z1v2

�
1þO

�
v2

Y2

��
; ð11Þ

m2
2 ¼ Y2 þ

1

2
v2
�
Z3 þ Z4 − jZ5j þO

�
v2

Y2

��
; ð12Þ

m2
3 ¼ Y2 þ

1

2
v2
�
Z3 þ Z4 þ jZ5j þO

�
v2

Y2

��
: ð13Þ

At energy scales below Y2, the effective low-energy theory
corresponds to the Standard Model with one Higgs doublet.
Consequently, in the decoupling limit the properties of h1
approach those of the SM Higgs boson. The nonminimal
Higgs states are roughly degenerate in mass, m2

2 ∼m2
3∼

m2
H� ∼ Y2, with squared-mass splittings of Oðv2Þ,

m2
3 −m2

2 ≃ jZ5jv2; ð14Þ

m2
3 −m2

H� ≃ 1

2
ðZ4 þ jZ5jÞv2: ð15Þ

In the decoupling limit of a general 2HDM, the tree-level
CP-violating and flavor-changing neutral Higgs couplings
of the SM-like Higgs state h1 are suppressed by factors of
Oðv2=Y2

2Þ. The corresponding interactions of the heavy
neutral Higgs bosons (h2 and h3) and the charged Higgs
bosons (H�) can exhibit both CP-violating and flavor
nondiagonal couplings. If Y2 is sufficiently large, then
FCNCs mediated by the lightest neutral scalar can be small
enough to be consistent with experimental data. However,
for values of Y2 of order 1 TeVand below, tree-level Higgs-
mediated FCNCs are problematical in the case of a generic
Yukawa sector.

III. YUKAWA SECTOR

The most general 2HDM Yukawa sector, describing
Higgs-fermion interactions, includes six Yukawa matrices
(as compared to three in the SM). In a generic basis,
the Yukawa Lagrangian for the Higgs-quark interactions
is given by Eq. (A1). Following the discussion of
Appendix A, we can reexpress the Yukawa Lagrangian
in terms of the quark mass-eigenstate fields [46],

−LY ¼ ŪLðηU1 Φ0�
1 þ ηU2 Φ

0�
2 Þ − D̄LK†ðηU1 Φ−

1 þ ηU2 Φ
−
2 ÞUR

þ ŪLKðηD†
1 Φþ

1 þ ηD†
2 Φþ

2 ÞDR

þ D̄LðηD†
1 Φ0

1 þ ηD†
2 Φ0

2ÞDR þ H:c:; ð16Þ

where ηU;D
1;2 are 3 × 3 Yukawa coupling matrices and K is

the CKM matrix.
Using Eq. (2), one can rewrite Eq. (16) in terms of the

Higgs basis scalar doublet fields,

−LY¼ŪLðκUH0†
1 þρUH0†

2 ÞUR−D̄LK†ðκUH−
1 þρUH−

2 ÞUR

þŪLKðκD†Hþ
1 þρD†Hþ

2 ÞDR

þD̄LðκD†H0
1þρD†H0

2ÞDRþH:c:; ð17Þ

where3

κQ ≡ v�1η
Q
1 þ v�2η

Q
2

v
; ρQ ≡ −v2η

Q
1 þ v1η

Q
2

v
: ð18Þ

Note that ρQ → e−iχρQ with respect to the rephasing
H2 → eiχH2. Since hH0

1i ¼ v=
ffiffiffi
2

p
and hH0

2i ¼ 0, it follows
that the κU;D are proportional to the diagonal quark mass
matrices, MU and MD, whose matrix elements are real and
non-negative,

TABLE I. qki as a function of the neutral Higgs mixing angles
in the Higgs basis.

k qk1 qk2

1 cos θ12 cos θ13 − sin θ12 − i cos θ12 sin θ13
2 sin θ12 cos θ13 cos θ12 − i sin θ12 sin θ13
3 sin θ13 i cos θ13

3As noted in Eq. (A6), the ρQ are U(2)-pseudoinvariant
combinations of the Yukawa coupling matrices and the VEVs,
whereas the κQ are U(2) invariants.
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MU ¼ vκUffiffiffi
2

p ¼ diagðmu;mc;mtÞ;

MD ¼ vκDffiffiffi
2

p ¼ diagðmd;ms;mbÞ: ð19Þ

The Yukawa couplings of the Higgs doublets to the leptons
can be similarly treated by replacing U → N, D → E,
MU → 0, MD → ME and K → 1, where N ¼ ðμe; νμ; ντÞ,
E ¼ ðe; μ; τÞ and ME is the diagonal charged lepton mass
matrix.
Since the Yukawa matrices ρU;D;E are independent

complex 3 × 3 matrices, it follows that the Yukawa
Lagrangian exhibited in Eq. (17) generically exhibits
tree-level Higgs mediated FCNCs. The off-diagonal ele-
ments of the ρU;D matrices are highly constrained by
experimental data to be very small. As first shown by
Glashow, Weinberg and Paschos (GWP) [47,48], it is
possible to naturally eliminate tree-level Higgs mediated
FCNCs if, for some choice of basis of the scalar fields, at
most one Higgs multiplet is responsible for providing mass
for quarks or leptons of a given electric charge. In the
2HDM, the GWP condition is usually imposed in four
different ways by employing the appropriate Z2 discrete
symmetry [40–42,49,50]:
(1) Type-I Yukawa couplings: ηU1 ¼ ηD1 ¼ ηL1 ¼ 0,
(2) Type-II Yukawa couplings: ηU1 ¼ ηD2 ¼ ηL2 ¼ 0.
(3) Type-X Yukawa couplings: ηU1 ¼ ηD1 ¼ ηL2 ¼ 0,
(4) Type-Y Yukawa couplings: ηU1 ¼ ηD2 ¼ ηL1 ¼ 0.

For example, it follows from Eq. (18) that in the type-I
2HDM,

ρU;D;L ¼ v1
v�2

κU;D;L; ð20Þ

and in the type-II 2HDM,

ρU ¼ v1
v�2

κU;

ρD;L ¼ −
v2
v�1

κD;L: ð21Þ

In light of Eq. (19), the ρF (F ¼ U;D;L) are, in these
cases, diagonal matrices in which case the neutral
Higgs–fermion Yukawa interactions are flavor-diagonal
at tree-level.
If only phenomenological considerations are invoked in

choosing the Higgs–fermion Yukawa couplings, then it is
possible to consider the more general case of the flavor-
aligned 2HDM introduced in Ref. [38]. In this model applied
to the Higgs basis, one imposes the following conditions

ρU ¼ αUκU; ρD ¼ αDκD; and ρL ¼ αLκL; ð22Þ

which generalize the type-I and II results exhibited in
Eqs. (20) and (21). In Eq. (22), the alignment parameters,

αU;D;L, are arbitrary complex constants.4 The flavor align-
ment condition shown in Eq. (22) is not imposed by any
symmetry, and is strictly unnatural (i.e., it can be achieved
only by a fine-tuning of the model parameters). Equivalently,
as observed in Ref. [43], the flavor alignment is preserved
under RGE running only in the case of type I, II, X and Y
Yukawa couplings. Nevertheless, one can imagine the
possibility of new dynamics above the electroweak scale
that could be responsible for an approximately flavor-aligned
2HDM. Thus, in our analysis we shall employ the more
general Eq. (22), which is sufficient for satisfying the
phenomenological FCNC constraints.5

IV. RG STABILITY AND PERTURBATIVITY
OF THE 2HDM

Let us assume that the observed SM-like Higgs boson
(with mh ≃ 125 GeV) is part of a 2HDM in the decoupling
limit with a flavor-aligned Yukawa sector, with no other
new physics present beyond the 2HDM below the Planck
scale.6 We shall examine whether there are regions of the
2HDM parameter space that yield a consistent model under
RG running from the electroweak to the Planck scale.
In general, two potential problems can arise in the RG
evolution. First, Landau poles could arise from the diver-
gence of the 2HDM quartic scalar couplings and/or
Yukawa couplings. Second, the 2HDM scalar potential
could become unstable at a higher energy scale. The case of
Landau poles is fairly straightforward, although the precise
energy scale at which they arise cannot be strictly deter-
mined, since it lies outside the perturbative regime of the
RGEs. In practice, we shall consider that a Landau pole
occurs when the relevant coupling exceeds 100 for some
energy scale Λ ≤ MPl. Indeed, once such a large coupling
is reached, it will very quickly diverge at an energy scale
very close to Λ. In our analysis, we employ the one-loop
RGEs for the quartic scalar couplings of the 2HDM in the
Higgs basis given in Appendix A. These equations are
strongly coupled, and thus a divergence in one quartic
scalar coupling will cause a divergence in the rest. The
leading effects of two-loop running will be assessed at the
end of this section.

4In practice, if the magnitude of the alignment constants are
too large, then some of the Higgs-fermion Yukawa couplings will
develop Landau poles below the Planck scale. In our analysis, we
will determine the allowed regions of the flavor-aligned 2HDM
parameter space where such Landau poles are absent.

5By choosing to work in the decoupling limit where
Y2 ≳ ð500 GeVÞ2, we ensure that FCNCs generated by one-loop
radiative effects are not too large to be in conflict with
experimental data (see e.g. Ref. [51]).

6Incorporating light neutrino masses via the seesaw mecha-
nism [52] with the mass scale of the right-handed neutrino sector
assumed to be of order a typical grand unified scale has a very
minor impact on the considerations in this paper.
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In the SM, the requirement that the scalar potential is
stable at all energy scales below the scale Λ is easily
implemented. It is sufficient to require that the SM quartic
scalar coupling is positive, i.e. λSMðΛÞ > 0 for Λ > v.
Requiring that the 2HDM scalar potential is stable at all
energy scales below the scale Λ leads to a more compli-
cated set of conditions. In the 2HDM with an unbroken, or
softly broken, Z2 discrete symmetry that sets λ6 ¼ λ7 ¼ 0
in Eq. (1), the stability conditions were first obtained in
Ref. [53],

λ1 > 0; ð23Þ

λ2 > 0; ð24Þ

λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð25Þ

λ3 þ λ4 − jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð26Þ

However, in the case of a completely general scalar
potential, the corresponding stability conditions are far
more complicated (with no simple analytic form).
Reference [54] provides an algorithm for deriving the
stability conditions for a general 2HDM, with no symmetry
or CP assumptions imposed on the 2HDM scalar potential.
In terms of the Higgs basis parameters, this algorithm is
summarized in Appendix B. Except for special cases for the
quartic scalar couplings, the corresponding stability con-
ditions must be determined numerically.
We now describe in detail the procedure used in our

analysis. We assume that we are in the decoupling regime
of the 2HDM, where the mass scale of the heavy Higgs
sector is of OðΛHÞ. In light of Eqs. (7), (12) and (13), we
henceforth set Λ2

H ≡ Y2.
(1) Start with the SM Higgs potential defined at the

scale of the 125 GeV Higgs boson.
(2) Use SM RG evolution to run the Higgs-self coupling

parameter λ and the fermion mass matrices up to the
scale ΛH.

7

(3) Match the one-doublet Higgs potential with the
2HDM potential by taking Z1 ¼ λðΛHÞ and κF ¼ffiffiffi
2

p
MFðΛHÞ=v (for F ¼ U;D). This establishes the

low energy boundary conditions. The effects of the
lepton masses are negligible and have been ignored.

(4) Scan over all other 2HDM quartic scalar coupling
parameters Zi and Yukawa alignment parameters αF

(F ¼ U;D). The latter fix the values of the ρFðΛHÞ.

(5) Run the 2HDM RGEs for the Zi, κF and ρF up to
higher energiesΛ. Check for stability of the potential
at the scale Λ using the procedure summarized in
Appendix B.

(6) Stop the running if a Landau pole is encountered or
if the stability conditions cannot be satisfied.

For the scalar sector, we scanned over the parameter space
using 100,000 points, with jZij≲Oð1Þ, for i ¼ 2;…; 7, to
enforce the decoupling limit. These points were also subject
to the constraint that they obey the stability conditions
presented in Appendix B. Note that when jZij ≪ 1 for
i ¼ 2;…; 7, we recover the SM Higgs sector. The choice of
ΛH is subject to the conditionΛ2

H ≫ v2, so that we are safely
in the decoupling regime. Moreover, in order for the 2HDM
to be distinguishable from the SM Higgs sector, ΛH should
not be significantly larger than Oð1 TeVÞ. We considered
two different values, ΛH ¼ 500 GeV and 1 TeV, although
the allowed parameter regime in which the 2HDM remains
consistent up to the Planck scale is not especially sensitive to
the precise value of ΛH in the desired mass range. In the case
ofΛH ¼ 500 GeV, it is plausible that the heavy Higgs boson
states could be detected in high luminosity LHC running.
Indeed,asweshalldemonstrate later in thissection,differences
in the squared-masses of the heavy Higgs states can provide
an important consistency check of this framework.
The Yukawa couplings play a fundamental role in this

analysis. As discussed in Sec. III, we have employed the
flavor aligned 2HDM to describe the Yukawa sector, with
random complex alignment parameters whose moduli were
varied by several orders of magnitude. The evolution of the
Yukawa couplings in the flavor-aligned 2HDM was first
performed in Ref. [57]. Notice that the running of the
Yukawa couplings can also generate Landau poles. Due to
the large size of the top quark mass, at least one of the
Yukawa couplings will be of order one at the electroweak
scale, so that a Landau pole in the top-quark Yukawa
coupling below the Planck scale can be generated by the
RG running. The alignment parameters, unique for both the
up and down quark sectors, were log random generated in
such a way as to prevent such Landau poles in the running
of the Yukawa couplings up to Planck scale. In the RG
running, the initial value of the top Yukawa coupling was
taken to be ytðmtÞ ¼ 0.94, corresponding to an MS top
quark mass of mtðmtÞ ¼ 163.71� 0.9 GeV [56]. The non-
occurrence of Landau poles then leads to the constraints8

jαUj≲ 0.95 and jαDj ≲ 81.5; ð27Þ
as seen in Fig. 1. These results are quite consistent with those
obtained in Ref. [57].
The effect of the alignment parameters in the one-loop

quartic scalar coupling RGEs is to bolster the negative

7Starting the RG evolution at mZ, we use a five flavor scheme
to run up to mt and a six flavor scheme above mt. Running quark
mass masses at mZ and mt are obtained from the RUNDEC

MATHEMATICA software package [55], based on quark masses
provided in Ref. [56]. For simplicity, the effects of the lepton
masses are ignored, as these contribute very little to the running of
the Zi.

8For ΛH ¼ 1 TeV, we find jαUj ≲ 0.97 and jαDj≲ 84. The
figure corresponding to Fig. 1 looks nearly identical, so we do not
display it here.
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Yukawa terms, thereby further driving the quartic scalar
couplings to be negative during RGE evolution. The
influence of the Yukawa couplings in the scalar couplings
RG evolution is dominated by y4t terms (where yt is the top
quark Yukawa coupling) in the one-loop β functions, where
they provide a negative contribution. In this manner, the
large size of the top quark Yukawa coupling tends to drive
Z1 negative at large energy scales, thus provoking an
instability in the potential. This will occur unless the
starting point value (at the electroweak scale) of Z1 is
large enough. Since Z1 is directly related to the lightest CP-
even mass in the decoupling regime, requiring the stability
of the scalar potential between the electroweak scale and
the Planck one therefore yields a lower bound on mh.
Similarly, if the initial value of Z1 at the electroweak scale
is too large, then a Landau pole will appear in the running
of Z1 below the Planck scale due to the fact that the leading
Zi contributions to the β functions of the quartic scalar
couplings are positive, thereby driving the quartic scalar
couplings to larger values as the energy scale increases.
Preventing the occurrence of Landau poles thus establishes
an upper bound on Z1, and thus on mh.
Within the SM, these demands can only be satisfied up to

the Planck scale by a rather narrow window of Higgs boson
masses, which excludes the observed value of 125 GeV. As
we shall now see, the complexity of the 2HDM scalar
potential “opens up” that narrow window to include the
known value of the Higgs mass.

V. NUMERICAL ANALYSIS

A. Results from one-loop RG running

Let us now compare the effect of the one-loop running of
the SM scalar coupling, with its effect on the 2HDM quartic
scalar couplings. The results of our calculations are shown

in Fig. 2, which we now analyze in detail. The full 2HDM
running begins at ΛH ¼ 1 TeV, where the Zi for i ¼
2;…; 7 are chosen.9 The red points in Fig. 2 correspond
to choices of parameters Zi for which an instability of the
potential occurred for a given higher scale Λ > ΛH. The
blue points correspond to parameter choices for which a
Landau pole occurred during the RG running at some scale
Λ > ΛH. These results are to be compared with the
corresponding results of the SM Higgs sector also shown
in Fig. 2: the upper solid line indicates the maximally
allowed value of mh to avoid a Landau pole and the lower
solid line indicates the minimal value ofmh needed to avoid
a negative SM quartic scalar coupling, at all energy scales
below Λ. We recover the well-known one-loop SM result
that 140≲mh ≲ 175 GeV in order to preserve vacuum
stability and avoid Landau poles in the running of the
quartic scalar coupling at all energy scales up toMPL [5–12].
The distribution of red and blue points in Fig. 2 has some

interesting features. First, there are no blue points above the
SM-Landau pole line. In fact, although the 2HDM scalar
potential has several scalar couplings, their contributions to
the 2HDM β functions are mostly positive. As such, when
one of these couplings starts to become very large in its RG
evolution, the others will not be able to counteract that
growth, and a Landau pole is reached. Consequently, the
upper limit for the quartic scalar coupling Z1 that controls
the value of mh hardly differs from the corresponding SM
result. Second, note the appearance of many blue points

FIG. 1 (color online). Distribution of absolute values of the
flavor alignment parameters, for regions of 2HDM parameter
space which remain valid up to the Planck scale, assuming ΛH ¼
500 GeV.

FIG. 2 (color online). RG running of 2HDM quartic scalar
couplings, with ΛH ¼ 1 TeV. Red points correspond to param-
eter choices for which an instability occurs in the scalar potential;
blue points indicate the presence of a Landau pole. The upper
solid black line indicates the occurrence of a Landau pole in the
SM. The lower solid black line indicates the limit for which the
SM potential becomes unstable.

9The corresponding plot for ΛH ¼ 500 GeV looks nearly
identical, so we do not exhibit it here.
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below the SM-instability line. These correspond to Landau
poles that occur for relatively low values of mh, which is
equivalent to low values of Z1. However, even though the
initial value of Z1 atΛH may be small, the values of other Zi
can be large, and thus Landau poles in these couplings can
be generated, yielding those blue points below the SM
instability line.
The most interesting aspect of our results concerns the

distribution of the red points, which correspond to the
violation of one or more of the 2HDM stability conditions
at the energy scale Λ. We see a great “density” of points
around the SM-instability line. These points may be
interpreted as regions of 2HDM parameter space that
constitute small deviations from SM behavior. But the
remarkable difference with the SM result is the appearance
of many points below and to the right of the SM-instability
line. For these points, the instability of the scalar potential
occurs at a larger value of Λ for a given value of mh as
compared to the SM. Indeed, the full impact of the 2HDM
on the RG evolution may be best appreciated by examining
the rightmost boundary of Fig. 2 corresponding to
Λ ¼ MPL. On this boundary, we find both blue and red
points, for a range of Higgs masses from about 118 GeVup
to 175 GeV. Thus we see that a range of 2HDM parameters
exists for which it is possible to have a SM-like Higgs
boson with a mass of 125 GeV, without that mass value
implying an instability of the potential (or a Landau pole)
between the electroweak and Planck scales.
Let us now analyze more closely the region of parameter

space for which the 2HDM is consistent up to the Planck
scale. According to Fig. 2, only a narrow range of mh
(which corresponds to a narrow interval of values of Z1) is
consistent with a 2HDM with a stable vacuum and no
Landau poles from the electroweak to the Planck scale.

Since the 2HDM quartic couplings are all coupled
together in their RG running, it follows that the allowed
ranges for all Zi, not only Z1, will likewise be quite
narrow. This has interesting implications on the scalar
mass spectrum. In fact, in light of Eq. (14), the squared-
mass splitting of the two heavy neutral Higgs states
depends primarily on jZ5j. Likewise, Eq. (15) shows that
the squared-mass splitting of the heavier neutral Higgs
boson and the charged Higgs boson primarily depends
on Z4 and jZ5j. Since the possible values of Z4 and jZ5j are
restricted to a narrow range of values, it follows that the
squared-mass splittings of the heavy Higgs states should
also be strongly constrained.
For a 125 GeV SM-like Higgs boson, we have evaluated

the squared-mass splittings of the heavier Higgs bosons for
2HDM parameters that are consistent with a stable scalar
potential and an absence of Landau poles up to the Planck
scale. The histograms shown in Fig. 3 exhibit the distri-
butions in arbitrary units of the squared-mass difference
between the two heavy neutral states (which is positive by
definition) and the difference between the lighter of the two
heavy neutral states and the charged Higgs pair, for
ΛH ¼ 500 GeV. Given the formulas in Sec. IIB, all the
heavy scalars have masses of order ΛH in the decoupling
limit. The statistics of these histograms are summarized in
Table II. If the 2HDM is valid up to the Planck scale, then
the mass differences among the heavy Higgs states must be
quite small. This presents a challenge for heavy Higgs
searches at future colliders. It may be that such a spectrum
could only be reliably determined at a multi-TeV lepton
collider. Indeed, if the heavy Higgs spectrum could be
determined at some future collider, it would provide a
nontrivial check of the present framework in which the
2HDM is valid up to the Planck scale.

FIG. 3 (color online). Histograms of squared-mass differences of the heavy scalar states for ΛH ¼ 500 GeV. The left panel shows
values of squared-mass difference between the two heavier neutral states. The right panel shows the values of the squared-mass
difference between the lighter of the two heavy neutral states and the charged Higgs boson. The histograms correspond to 2HDM
parameters for which there are no Landau poles and vacuum stability is satisfied at all energies below the Planck scale.
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The results shown in Table II are not particularly sensitive
to the value of ΛH. For example, if ΛH ¼ 1 TeV, then the
distribution of possible squared-mass differences yields
the results shown in Table III. Of course, in this case the
corresponding mass differences are even smaller, and the
separate discovery of each of these new scalar states at a
future collider is even more challenging.

B. The effects of two-loops RG running

In the SM, the inclusion of the two-loop terms in the
RGEs shifts the scalar potential instability boundary to a

higher energy scale, which lowers the minimum Higgs
boson mass that is consistent with a stable scalar potential
all the way up to the Planck scale. In particular, the results
in Ref. [14] yield a minimal value of mh ≃ 129 GeV for
vacuum stability. Moreover, given the currently observed
value of 125 GeV for the Higgs boson, the SM vacuum is
metastable under the assumption of no new physics beyond
the Standard Model below about 1010 GeV. This means
that the effect of including two-loop effects in the RG
running lowers by about 10 GeV the minimal value of the
Higgs mass that is consistent with vacuum stability.
We expect that employing the full two-loop RG analysis

for the 2HDM would provide a similar downward shift in
the lower bound of Higgs masses that survive up to the
Planck scale, as well as increase the fraction of points that
survive. In practice, implementing this full two-loop
procedure is computationally expensive. Instead, we
present a procedure to estimate the two-loop RG results.
Note that the stability curve for the SM scalar potential at
two-loops is both shifted to a higher energy scale, and is
less steep as a function of the Higgs mass, relative to the
one-loop SM scalar potential stability curve. In essence,
going from one-loop to two-loops shifts the stability curve
energy scale to a higher scale for a particular Higgs mass.
From our one-loop SM calculations and the two-loop SM
calculations of Ref. [14], we determine the energy scale
shift of the SM scalar potential stability curves due to the
inclusion of two-loop RG running. Taking ΛH ¼ 1 TeV,
the resulting scale shift function is shown in the left panel of
Fig. 4, which then yields our “two-loop” result shown in the
right panel, which is obtained by applying the scale shift to
our one-loop calculation. This shift is applied only to those
points in which the scalar potential became unstable, not
for points that hit a Landau pole before the Planck scale.

TABLE II. Squared mass splittings of the heavier Higgs bosons
of the 2HDM with ΛH ¼ 500 GeV, for 124≲mh ≲ 126 GeV,
for points that survive up to the Planck scale, using one-loop
calculations.

Min Max Mean Std. dev.

ðm2
3 −m2

2Þ=v2 0.01 0.26 0.09 0.05

ðm2
2 −m2

H�Þ=v2 −0.20 0.11 0 0.05

ðm2
3 −m2

H�Þ=v2 −0.07 0.19 0.09 0.04

TABLE III. Squared mass splittings of the heavier Higgs
bosons of the 2HDM with ΛH ¼ 1 TeV, for 124≲mh ≲
126 GeV, for points that survive up to the Planck scale, using
one-loop calculations.

Min Max Mean Std. dev.

ðm2
3 −m2

2Þ=v2 0 0.29 0.09 0.05

ðm2
2 −m2

H�Þ=v2 −0.23 0.12 0 0.06

ðm2
3 −m2

H�Þ=v2 −0.08 0.19 0.09 0.04

FIG. 4 (color online). Left panel: Scale shift for converting the one-loop scalar potential instability boundary to the two-loop scalar
potential instability boundary for a SM-like Higgs boson. Right panel: Higgs boson mass bounds in the flavor-aligned 2HDM,
incorporating the scale shift shown in the left panel, assuming that ΛH ¼ 1 TeV. Red points indicate an instability in the running; blue
points indicate the presence of a Landau pole.
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The upper bound on the SM Higgs mass due to the absence
of Landau poles does not exhibit a similar shift from
one-loop to two-loop calculations. As in the case of Fig. 2,
the case of ΛH ¼ 500 GeV yields nearly identical results.
In our one-loop calculations, only 707 (or 0.707%) of the

100,000 points analyzed survive to the Planck scale in the
123 GeV to 128 GeV region. With the conversion shift and
a double check that they satisfy the stability requirement for
2HDM quartic scalar coupling parameters, 1,371 more
points reach the Planck scale for a total of 2,078 (or
2.078%) at the Planck scale, an increase of 94% relative to
the one-loop results. With an increase in the number of
points, the “two-loop” squared mass splittings of the
heavier Higgs bosons for points that survive up to the
Planck scale are given in Table IV. Comparing Tables III
and IV, we see that there exists only slight differences in the
squared-mass splittings of the heavier Higgs bosons when
the approximate two-loop effects are included. Nonetheless,
the increase in the number of points for which the model
remains consistent all the way up to the Planck scale is
according to what one should expect, in light of the
observation that the two-loop contributions increase the
stability of the SM potential. Thus, this quick estimate
suggests that the 2HDM parameter space corresponding to a
stable scalar potential and no Landau poles in the RG
running to the Planck scale is somewhat larger than the
parameter regime identified in the one-loop analysis. In
particular, given the observed Higgs mass of the 125 GeV,
there exists a robust region of the parameter space for which
the validity of the 2HDM and the stability of the Higgs
vacuum is preserved up to the Planck scale.

VI. CONCLUSIONS

The discovery of a SM-like Higgs boson with a mass
mh ¼ 125 GeV has focused attention on the validity of the
Standard Model at higher energies. Putting aside the
question of the origin of the electroweak symmetry break-
ing (e.g., accepting the fine-tuning of parameters inherent
in fixing the electroweak scale), one can ask whether the
Standard Model is consistent all the way up to the Planck
scale. Refined calculations of the radiatively-corrected
scalar potential suggest that the Standard Model vacuum
is at best metastable (and long-lived), with a deeper vacuum

located at field values near 1010 GeV, well below the
Planck scale.
Adding new degrees of freedom has the potential of

ameliorating the problem of an unstable vacuum. In this
paper we considered the two-Higgs-doublet extension of
the Standard Model (2HDM) and examined the range of
parameters for which the 2HDM is stable and perturbative
at all energy scales below the Planck scale. Our aim was to
make the minimal number of assumptions regarding the
structure of the 2HDM required by the experimental data.
Since the observed Higgs boson is SM-like (within the
accuracy of the limited Higgs data set), we considered
the 2HDM with the most general scalar potential in the
decoupling regime. The Yukawa sector was treated using
the flavor alignment ansatz, in which the second set of
Yukawa matrices is proportional to the SM-like set at the
electroweak scale to protect against tree-level Higgs-medi-
ated FCNCs. Although the flavor alignment condition is
not protected by a low-energy symmetry (except in special
cases, which lead to 2HDMs of types I, II, X or Y), it
provides a more general framework which at present is
consistent with experimental data.
We scanned over the scalar potential parameters and the

flavor alignment parameters to fix the boundary conditions
at the scale of the heavy Higgs states. We then employed
one-loop RGEs to run the 2HDM parameters up to the
Planck scale, and required that no Landau poles are
encountered, without generating an instability in the scalar
potential. In contrast to the Standard Model, it is possible to
have a SM-like Higgs boson with a mass of 125 GeV while
maintaining the validity of the 2HDM up to the Planck
scale. We also presented a scheme to estimate the effects of
the RG-running at two-loops, by applying a scale shift seen
in going from the one-loop SM scalar potential stability
curve to the two-loop SM scalar potential stability curve.
Such effects increase the number of points in the 2HDM
parameter scan that survive Landau pole and stability
requirements up to the Planck scale.
The larger range of allowed values of mh in the 2HDM

(as compared with the SM) is a direct consequence of the
fact that the 2HDM scalar potential contains more quartic
scalar couplings than the SM, which increases the stability
of the potential at all scales between the electroweak and
the Planck scale. In contrast, we observed that the theo-
retical upper bound on mh in the 2HDM based on the
nonexistence of Landau poles up to Planck scale hardly
differs from the corresponding SM behavior. This can be
understood as follows. In the SM, the negative top Yukawa
contribution in the quartic scalar coupling β function drives
that coupling to negative values during RG running, unless
its starting point is sufficiently large. In the 2HDM, even if
the initial values of some of the quartic scalar couplings are
small, and even though the top quark contributions to the β
functions are still negative, other couplings are allowed to
have large values, which (in some cases) counterbalance

TABLE IV. Squared-mass splittings of the heavy Higgs bosons
of the 2HDM with ΛH ¼ 1 TeV, for mh ≃ 125 GeV, for points
that survive to the Planck scale, using the two-loop extended
procedure.

Min Max Mean Std. dev.

ðm2
3 −m2

2Þ=v2 0 0.31 0.11 0.05

ðm2
2 −m2

H�Þ=v2 −0.23 0.12 0 0.05

ðm2
3 −m2

H�Þ=v2 −0.09 0.23 0.11 0.04
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any putative instabilities arising due to RG running. The
2HDM scalar potential is thus comparatively more stable
than that of the SM.
Finally, we have obtained bounds on the square-mass

differences of the heavier Higgs bosons in the parameter
regime where the 2HDM remains valid up to the Planck
scale. If the 2HDM is realized in nature, this could provide
an important check of the consistency of the model.
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APPENDIX A: ONE-LOOP RENORMALIZATION
GROUP EQUATIONS

The one-loop RGEs for the SM used in this analysis are
provided by Ref. [58]. The 2HDM one-loop RGEs in
various bases are given in Refs. [43,54,59–61]. The one-
loop RGEs found in the literature typically assume a
2HDM scalar potential with a Z2 symmetry, Φ1 → Φ1,
Φ2 → −Φ2, to avoid FCNCs and/or are explicitly CP-
conserving. Here, we present one-loop RGEs for the full
2HDM, using a basis-independent approach and making no
CP assumptions.
In a general 2HDM, the Higgs fermion interactions are

governed by the following interaction Lagrangian:

−LY ¼ Q0
L
~Φāη

U;0
a U0

R þ Q̄0
LΦaðηD;0

ā Þ†D0
R

þ Ē0
LΦaðηE;0ā Þ†E0

R þ H:c:; ðA1Þ

summed over a; ā ¼ 1; 2, where Φ1;2 are the Higgs dou-
blets, ~Φā ≡ iσ2Φ�̄

a, Q
0
L and E0

L are the weak isospin quark
and lepton doublets, and U0

R, D
0
R, E

0
R are weak isospin

quark and lepton singlets. [The right and left-handed
fermion fields are defined as usual: ψR;L ≡ PR;Lψ , where
PR;L ≡ 1

2
ð1� γ5Þ.] Here, Q0

L, E
0
L, U

0
R, D

0
R, E

0
R denote the

interaction basis states, which are vectors in the quark and
lepton flavor spaces, and ηU;0

1 ; ηU;0
2 ; ηD;0

1 ; ηD;0
2 ; ηE;01 ; ηE;02 are

3 × 3 matrices in quark and lepton flavor spaces.
The neutral Higgs states acquire vacuum expectation

values,

hΦ0
ai ¼

vv̂affiffiffi
2

p ; ðA2Þ

where v̂av̂�̄a ¼ 1 and v ¼ 246 GeV. It is also convenient to
define

ŵb ≡ v̂�̄aϵab; ðA3Þ

where ϵ12 ¼ −ϵ21 ¼ 1 and ϵ11 ¼ ϵ22 ¼ 0.
It is convenient to define invariant and pseudoinvariant

matrix Yukawa couplings [39,45],

κF;0 ≡ v̂�̄aη
F;0
a ; ρF;0 ≡ ŵ�̄

aη
F;0
a ; ðA4Þ

where F ¼ U, D or E. Inverting these equations yields

ηF;0a ¼ κF;0v̂a þ ρF;0ŵa: ðA5Þ

Note that under the U(2) transformation, Φa → Uab̄Φb
[cf. Eq. (A35)],

κF;0 is invariant and ρF;0 → ðdetUÞρF;0: ðA6Þ

The Higgs fields in the Higgs basis are defined by [45]

H1 ≡ v̂�̄aΦa; H2 ≡ ŵ�̄
aΦa; ðA7Þ

which can be inverted to yield Φa ¼ H1v̂a þH2ŵa.
One can rewrite Eq. (A1) in terms of the Higgs basis fields,

−LY ¼ Q0
Lð ~H1κ

U;0 þ ~H2ρ
U;0ÞU0

R

þ Q̄0
LðH1κ

D;0† þH1ρ
D;0†ÞD0

R

þ Ē0
LðH1κ

E;0† þH1ρ
E;0†ÞE0

R þ H:c:; ðA8Þ

The next step is to identify the quark and lepton mass-
eigenstates. This is accomplished by replacing H1 →
ð0; v= ffiffiffi

2
p Þ and performing unitary transformations of the

left and right-handed up and down quark and lepton
multiplets such that the resulting quark and charged lepton
mass matrices are diagonal with non-negative entries. In
more detail, we define:

PLU ¼ VU
LPLU0; PRU ¼ VU

RPRU0;

PLD ¼ VD
LPLD0; PRD ¼ VD

RPRD0;

PLE ¼ VE
LPLE0; PRE ¼ VD

RPRE0;

PLN ¼ VE
LPLN0; ðA9Þ

and the Cabibbo-Kobayashi-Maskawa (CKM) matrix is
defined as K ≡ VU

LV
D†
L . Note that for the neutrino fields,

we are free to choose VN
L ¼ VE

L since neutrinos are exactly
massless in this analysis. (Here we are ignoring the right-
handed neutrino sector, which gives mass to neutrinos via
the seesaw mechanism).
In particular, the unitary matrices VF

L and VF
R (for F ¼ U,

D and E) are chosen such that
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MU ¼ vffiffiffi
2

p VU
L κ

U;0VU†
R ¼ diagðmu;mc;mtÞ; ðA10Þ

MD ¼ vffiffiffi
2

p VD
L κ

D;0†VD†
R ¼ diagðmd;ms;mbÞ; ðA11Þ

ME ¼ vffiffiffi
2

p VE
Lκ

E;0†VE†
R ¼ diagðme;mμ; mτÞ: ðA12Þ

It is convenient to define

κU ¼ VU
L κ

U;0VU†
R ; κD ¼ VD

Rκ
D;0VD†

L ;

κE ¼ VD
Rκ

E;0VE†
L ; ðA13Þ

ρU ¼ VU
Lρ

U;0VU†
R ; ρD ¼ VD

Rρ
D;0VD†

L ;

ρE ¼ VD
Rρ

E;0VE†
L : ðA14Þ

Equation (A6) implies that under the U(2) transformation,
Φa → Uab̄Φb,

κF is invariant and ρF → ðdetUÞρF; ðA15Þ

for F ¼ U, D and E. Indeed, κF is invariant since
Eqs. (A10)–(A12) imply that

MF ¼ vffiffiffi
2

p κF; ðA16Þ

which is a physical observable. The matrices ρU, ρD

and ρE are independent pseudoinvariant complex 3 × 3
matrices. The Higgs-fermion interactions given in Eq. (A8)
can be rewritten in terms of the quark and lepton mass
eigenstates,

−LY ¼ ŪLðκUH0†
1 þ ρUH0†

2 ÞUR − D̄LK†ðκUH−
1 þ ρUH−

2 ÞUR þ ŪLKðκD†Hþ
1 þ ρD†Hþ

2 ÞDR þ D̄LðκD†H0
1 þ ρD†H0

2ÞDR

þ N̄LðκE†Hþ
1 þ ρE†Hþ

2 ÞER þ ĒLðκE†H0
1 þ ρE†H0

2ÞER þ H:c: ðA17Þ

We now write down the renormalization group equations
(RGEs) for the Yukawa matrices ηU;0

a , ηD;0
a and ηE;0a .

Defining D≡ 16π2μðd=dμÞ, the RGEs are given by [43]

DηU;0
a ¼ −

�
8g2s þ

9

4
g2 þ 17

12
g02

�
ηU;0
a þ f3Tr½ηU;0

a ðηU;0
b̄

Þ†

þ ηD;0
a ðηD;0

b̄
Þ†� þ Tr½ηE;0a ðηE;0

b̄
Þ†�gηU;0

b

− 2ðηD;0
b̄

Þ†ηD;0
a ηU;0

b þ ηU;0
a ðηU;0

b̄
Þ†ηU;0

b

þ 1

2
ðηD;0

b̄
Þ†ηD;0

b ηU;0
a þ 1

2
ηU;0
b ðηU;0

b̄
Þ†ηU;0

a ; ðA18Þ

DηD;0
a ¼ −

�
8g2s þ

9

4
g2 þ 5

12
g02

�
ηD;0
a þ f3Tr½ðηD;0

b̄
Þ†ηD;0

a

þ ðηU;0
b̄

Þ†ηU;0
a � þ Tr½ðηE;0

b̄
Þ†ηE;0a �gηD;0

b

− 2ηD;0
b ηU;0

a ðηU;0
b̄

Þ† þ ηD;0
b ðηD;0

b̄
Þ†ηD;0

a

þ 1

2
ηD;0
a ηU;0

b ðηU;0
b̄

Þ† þ 1

2
ηD;0
a ðηD;0

b̄
Þ†ηD;0

b ; ðA19Þ

DηE;0a ¼ −
�
9

4
g2 þ 15

4
g02

�
ηE;0a þ f3Tr½ðηD;0

b̄
Þ†ηD;0

a

þ ðηU;0
b̄

Þ†ηU;0
a � þ Tr½ðηE;0

b̄
Þ†ηE;0a �gηE;0b

þ ηE;0b ðηE;0
b̄

Þ†ηE;0a þ 1

2
ηE;0a ðηE;0

b̄
Þ†ηE;0b : ðA20Þ

The RGEs above are true for any basis choice. Thus, they
must also be true in the Higgs basis in which v̂ ¼ ð1; 0Þ and
ŵ ¼ ð0; 1Þ. In this case, we can simply choose ηF;01 ¼ κF;0

and ηF;02 ¼ ρF;0 to obtain the RGEs for the κF;0 and ρF;0.
Alternatively, we can multiply Eqs. (A18)–(A20) first by v̂�a
and then by ŵ�

a. Expanding η†ā, which appears on the right-
hand sides of Eqs. (A18)–(A20), in terms of κ† and ρ† using
Eq. (A5), we again obtain the RGEs for the κF;0 and ρF;0.
Of course, both methods must yield the same results,
since the diagonalization matrices employed in
Eqs. (A10)–(A12) are defined as those that bring the mass
matrices to their diagonal form at the electroweak scale. No
scale dependence is assumed in the diagonalization matri-
ces, and as such they are not affected by the operators D.

DκU;0 ¼ −
�
8g2s þ

9

4
g2 þ 17

12
g02

�
κU;0 þ f3Tr½κU;0κU;0† þ κD;0κD;0†� þ Tr½κE;0κE;0†�gκU;0

þ f3Tr½κU;0ρU;0† þ κD;0ρD;0†� þ Tr½κE;0ρE;0†�gρU;0 − 2ðκD;0†κD;0κU;0 þ ρD;0†κD;0ρU;0Þ

þ κU;0ðκU;0†κU;0 þ ρU;0†ρU;0Þ þ 1

2
ðκD;0†κD;0 þ ρD;0†ρD;0ÞκU;0 þ 1

2
ðκU;0κU;0† þ ρU;0ρU;0†ÞκU;0;
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DρU;0 ¼ −
�
8g2s þ

9

4
g2 þ 17

12
g02

�
ρU;0 þ f3Tr½ρU;0κU;0† þ ρD;0κD;0†� þ Tr½ρE;0κE;0†�gκU;0

þ f3Tr½ρU;0ρU;0† þ ρD;0ρD;0†� þ Tr½ρE;0ρE;0†�gρU;0 − 2ðκD;0†ρD;0κU;0 þ ρD;0†ρD;0ρU;0Þ
þ ρU;0ðκU;0†κU;0 þ ρU;0†ρU;0Þ þ 1

2
ðκD;0†κD;0 þ ρD;0†ρD;0ÞρU;0 þ 1

2
ðκU;0κU;0† þ ρU;0ρU;0†ÞρU;0;

DκD;0 ¼ −
�
8g2s þ

9

4
g2 þ 5

12
g02

�
κD;0 þ f3Tr½κD;0†κD;0 þ κU;0†κU;0� þ Tr½κE;0†κE;0�gκD;0

þ f3Tr½ρD;0†κD;0 þ ρU;0†κU;0� þ Tr½ρE;0†κE;0�gρD;0 − 2ðκD;0κU;0κU;0† þ ρD;0κU;0ρU;0†Þ
þ ðκD;0κD;0† þ ρD;0ρD;0†ÞκD;0 þ 1

2
κD;0ðκU;0κU;0† þ ρU;0ρU;0†Þ þ 1

2
κD;0ðκD;0†κD;0 þ ρD;0†ρD;0Þ;

DρD;0 ¼ −
�
8g2s þ

9

4
g2 þ 5

12
g02

�
ρD;0 þ f3Tr½κD;0†ρD;0 þ κU;0†ρU;0� þ Tr½κE;0†ρE;0�gκD;0

þ f3Tr½ρD;0†ρD;0 þ ρU;0†ρU;0� þ Tr½ρE;0†ρE;0�gρD;0 − 2ðκD;0ρU;0κU;0† þ ρD;0ρU;0ρU;0†Þ
þ ðκD;0κD;0† þ ρD;0ρD;0†ÞρD;0 þ 1

2
ρD;0ðκU;0κU;0† þ ρU;0ρU;0†Þ þ 1

2
ρD;0ðκD;0†κD;0 þ ρD;0†ρD;0Þ;

DκE;0 ¼ −
�
9

4
g2 þ 15

4
g02

�
κE;0 þ f3Tr½κD;0†κD;0 þ κU;0†κU;0� þ Tr½κE;0†κE;0�gκE;0 þ f3Tr½ρD;0†κD;0 þ ρU;0†κU;0�

þ Tr½ρE;0†κE;0�gρE;0 þ ðκE;0κE;0† þ ρE;0ρE;0†ÞκE;0 þ 1

2
κE;0ðκE;0†κE;0 þ ρE;0†ρE;0Þ;

DρE;0 ¼ −
�
9

4
g2 þ 15

4
g02

�
ρE;0 þ f3Tr½κD;0†ρD;0 þ κU;0†ρU;0� þ Tr½κE;0†ρE;0�gκE;0 þ f3Tr½ρD;0†ρD;0 þ ρU;0†ρU;0�

þ Tr½ρE;0†ρE;0�gρE;0 þ ðκEκE;0† þ ρE;0ρE;0†ÞρE;0 þ 1

2
ρE;0ðκE;0†κE;0 þ ρE;0†ρE;0Þ:

Using Eqs. (A13) and (A14), we immediately obtain the RGEs for the κF and ρF,

DκU ¼ −
�
8g2s þ

9

4
g2 þ 17

12
g02

�
κU þ f3Tr½κUκU† þ κDκD†� þ Tr½κEκE†�gκU

þ f3Tr½κUρU† þ κDρD†� þ Tr½κEρE†�gρU − 2KðκD†κDK†κU þ ρD†κDK†ρUÞ

þ κUðκU†κU þ ρU†ρUÞ þ 1

2
KðκD†κD þ ρD†ρDÞK†κU þ 1

2
ðκUκU† þ ρUρU†ÞκU; ðA21Þ

DρU ¼ −
�
8g2s þ

9

4
g2 þ 17

12
g02

�
ρU þ f3Tr½ρUκU† þ ρDκD†� þ Tr½ρEκE†�gκU

þ f3Tr½ρUρU† þ ρDρD†� þ Tr½ρEρE†�gρU − 2KðκD†ρDK†κU þ ρD†ρDK†ρUÞ

þ ρUðκU†κU þ ρU†ρUÞ þ 1

2
KðκD†κD þ ρD†ρDÞK†ρU þ 1

2
ðκUκU† þ ρUρU†ÞρU; ðA22Þ

DκD ¼ −
�
8g2s þ

9

4
g2 þ 5

12
g02

�
κD þ f3Tr½κD†κD þ κU†κU� þ Tr½κE†κE�gκD

þ f3Tr½ρD†κD þ ρU†κU� þ Tr½ρE†κE�gρD − 2ðκDK†κUκU† þ ρDK†κUρU†ÞK

þ ðκDκD† þ ρDρD†ÞκD þ 1

2
κDK†ðκUκU† þ ρUρU†ÞK þ 1

2
κDðκD†κD þ ρD†ρDÞ; ðA23Þ

DρD ¼ −
	
8g2s þ

9

4
g2 þ 5

12
g02



ρD þ f3Tr½κD†ρD þ κU†ρU� þ Tr½κE†ρE�gκD

þ f3Tr½ρD†ρD þ ρU†ρU� þ Tr½ρE†ρE�gρD − 2ðκDK†ρUκU† þ ρDK†ρUρU†ÞK

þ ðκDκD† þ ρDρD†ÞρD þ 1

2
ρDK†ðκUκU† þ ρUρU†ÞK þ 1

2
ρDðκD†κD þ ρD†ρDÞ; ðA24Þ
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DκE ¼ −
�
9

4
g2 þ 15

4
g02

�
κE þ f3Tr½κD†κD þ κU†κU� þ Tr½κE†

κE�gκE þ f3Tr½ρD†κD þ ρU†κU� þ Tr½ρE†
κE�gρE

þ ðκEκE† þ ρEρE†ÞκE þ 1

2
κEðκE†κE þ ρE†ρEÞ; ðA25Þ

DρE ¼ −
�
9

4
g2 þ 15

4
g02

�
ρE þ f3Tr½κD†ρD þ κU†ρU� þ Tr½κE†

ρE�gκE þ f3Tr½ρD†ρD þ ρU†ρU� þ Tr½ρE†
ρE�gρE

þ ðκEκE† þ ρEρE†ÞρE þ 1

2
ρEðκE†κE þ ρE†ρEÞ: ðA26Þ

The 2HDM scalar potential in a generic basis shown in Eq. (1) can be written in a more compact form following the
notation of Ref. [39],

V ¼ Yab̄ðΦ†
āΦbÞ þ

1

2
Zab̄cd̄ðΦ†

āΦbÞðΦ†
c̄ΦdÞ: ðA27Þ

Hermiticity requires that Yab̄ ¼ Y�
bā and Zab̄cd̄ ¼ Z�

dc̄bā. In addition, the form of the scalar potential given in Eq. (A27)
implies that Zab̄cd̄ ¼ Zcd̄ab̄. The full one-loop β function for Zab̄cd̄ is given by

DZab̄cd̄ ¼ 4Zab̄ef̄Zcd̄fē þ 2Zaf̄ed̄Zcd̄fē þ 2Zaf̄cēZfb̄ed̄ þ 2Zab̄ef̄Zcēfd̄ þ 2Zaēfb̄Zcd̄ef̄ − ð3g02 þ 9g2ÞZab̄cd̄

þ 3

4
ð3g4 − 2g02g2 þ g04Þδab̄δcd̄ þ ð3g02g2Þδad̄δcb̄ − 4NcTr½ηQa ηQ†

b̄
ηQc η

Q†
d̄
�

þ 4ðTr½ηQ†
ē ηQa �Zeb̄cd̄ þ Tr½ηQ†

b̄
ηQe �Zaēcd̄ þ Tr½ηQ†

ē ηQc �Zab̄ed̄ þ Tr½ηQ†
d̄
ηQe �Zab̄cēÞ: ðA28Þ

The squared-mass and coupling coefficients of the 2HDM scalar potential in the Higgs basis [cf. Eq. (3)] can be written in
the form of invariants or pseudoinvariants with respect to the U(2) transformations, Φa → Uab̄Φb, as shown in Ref. [39].
The three squared-mass parameters are given by

Y1 ≡ Yab̄v̂
�̄
av̂b; Y2 ≡ Yab̄ŵ

�̄
aŵb; Y3 ≡ Yab̄v̂

�̄
aŵb; ðA29Þ

and seven coupling parameters are given by

Z1 ≡ Zab̄cd̄v̂
�̄
av̂bv̂

�̄
cv̂d; Z2 ≡ Zab̄cd̄ŵ

�̄
aŵbŵ�̄

cŵd; ðA30Þ

Z3 ≡ Zab̄cd̄v̂
�̄
av̂bŵ

�̄
cŵd; Z4 ≡ Zab̄cd̄ŵ

�̄
av̂bv̂

�̄
cŵd; ðA31Þ

Z5 ≡ Zab̄cd̄v̂
�̄
aŵbv̂�̄cŵd; ðA32Þ

Z6 ≡ Zab̄cd̄v̂
�̄
av̂bv̂

�̄
cŵd; ðA33Þ

Z7 ≡ Zab̄cd̄v̂
�̄
aŵbŵ�̄

cŵd: ðA34Þ

Note that under a U(2) transformation, v̂a → Uab̄v̂b, whereas

ŵa → ðdetUÞ−1Uab̄ŵb: ðA35Þ

Consequently, Y1, Y2, Z1;2;3;4 are real U(2) invariants, whereas Y3, Z5;6;7 are potentially complex U(2) pseudoinvariants,
which are rephased under a U(2) transformation,

½Y3; Z6; Z7� → ðdetUÞ−1½Y3; Z6; Z7� and Z5 → ðdetUÞ−2Z5: ðA36Þ
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Using the above results in Eq. (A28), the one-loop RGEs for the quartic scalar couplings in the Higgs basis are as follows:

DZ1 ¼ 12Z2
1 þ 4Z2

3 þ 4Z3Z4 þ 2Z2
4 þ 2jZ5j2 þ 24jZ6j2 − ð3g02 þ 9g2ÞZ1 þ

3

4
ðg04 þ 2g02g2 þ 3g4Þ

− 4NcTr½κQ†κQκQ†κQ� þ 16ð2Tr½κQ†κQ�Z1 þ Tr½κQ†ρQ�Z6 þ Tr½ρQ†κQ�Z�
6Þ; ðA37Þ

DZ2 ¼ 12Z2
2 þ 4Z2

3 þ 4Z3Z4 þ 2Z2
4 þ 2jZ5j2 þ 24jZ7j2 − ð3g02 þ 9g2ÞZ2 þ

3

4
ðg04 þ 2g02g2 þ 3g4Þ

− 4NcTr½ρQ†ρQρQ†ρQ� þ 8ð2Tr½ρQ†ρQ�Z2 þ Tr½κQ†ρQ�Z7 þ Tr½ρQ†κQ�Z�
7Þ; ðA38Þ

DZ3 ¼ 2ðZ1 þ Z2Þð3Z3 þ Z4Þ þ 4Z2
3 þ 2Z2

4 þ 2jZ5j2 þ 4jZ6j2 þ 4jZ7j2 þ 8Z6Z�
7 þ 8Z�

6Z7

− ð3g02 þ 9g2ÞZ3 þ
3

4
ðg04 − 2g02g2 þ 3g4Þ − 4NcTr½κQ†κQρQ†ρQ� þ 4ð2Tr½κQ†κQ�Z3

þ 2Tr½ρQ†ρQ�Z3 þ Tr½κQ†ρQ�Z6 þ Tr½ρQ†κQ�Z�
6 þ Tr½κQ†ρQ�Z7 þ Tr½ρQ†κQ�Z�

7Þ; ðA39Þ

DZ4 ¼ 2ðZ1 þ Z2ÞZ4 þ 8Z3Z4 þ 4Z2
4 þ 8jZ5j2 þ 10jZ6j2 þ 10jZ7j2 þ 2Z6Z�

7 þ 2Z�
6Z7

− ð3g02 þ 9g2ÞZ4 þ
3

2
g02g2 − 4NcTr½κQ†ρQρQ†κQ� þ 4ð2Tr½κQ†κQ�Z4 þ 2Tr½ρQ†ρQ�Z4

þ Tr½κQ†ρQ�Z6 þ Tr½ρQ†κQ�Z�
6 þ Tr½κQ†ρQ�Z7 þ Tr½ρQ†κQ�Z�

7Þ; ðA40Þ

DZ5 ¼ 2Z5ðZ1 þ Z2 þ 4Z3 þ 6Z4Þ þ 10Z2
6 þ 10Z2

7 þ 4Z6Z7 − ð3g02 þ 9g2ÞZ5 − 4NcTr½κQ†ρQκQ†ρQ�
þ 8ðTr½κQ†κQ�Z5 þ Tr½ρQ†ρQ�Z5 þ Tr½ρQ†κQ�Z6 þ Tr½ρQ†κQ�Z7Þ; ðA41Þ

DZ6 ¼ 12Z1Z6 þ 6Z3ðZ6 þ Z7Þ þ 4Z4ð2Z6 þ Z7Þ þ 2Z5ð5Z�
6 þ Z�

7Þ − ð3g02 þ 9g2ÞZ6

− 4NcTr½κQ†κQκQ†ρQ� þ 4ð3Tr½κQ†κQ�Z6 þ Tr½ρQ†ρQ�Z6 þ Tr½ρQ†κQ�Z1

þ Tr½ρQ†κQ�Z3 þ Tr½ρQ†κQ�Z4 þ Tr½κQ†ρQ�Z5Þ; ðA42Þ

DZ7 ¼ 12Z2Z7 þ 6Z3ðZ6 þ Z7Þ þ 4Z4ðZ6 þ 2Z7Þ þ 2Z5ðZ�
6 þ 5Z�

7Þ − ð3g02 þ 9g2ÞZ7

− 4NcTr½κQ†ρQρQ†ρQ� þ 4ð3Tr½ρQ†ρQ�Z7 þ Tr½κQ†κQ�Z7 þ Tr½ρQ†κQ�Z2 þ Tr½ρQ†κQ�Z3

þ Tr½ρQ†κQ�Z4 þ Tr½κQ†ρQ�Z5Þ: ðA43Þ

Finally, we note that the anomalous dimensions, which
contribute to the quartic scalar coupling β functions, are
given by

γab̄ ¼ −
1

32π2
ð3g02 þ 9g2Þδab̄ þ

1

4π2
Tr½ηQa ηQ†

b̄
�: ðA44Þ

APPENDIX B: BOUNDED FROM BELOW
CONDITIONS FOR A GENERAL 2HDM

POTENTIAL

To ensure the existence of a stable vacuum, the 2HDM
scalar potential must be bounded from below; i.e., it must
assume positive values for any direction for which the
fields are tending to infinity. This places some restrictions
on the allowed values of the quartic scalar couplings. For
the case of the scalar potential given in Eq. (1) with

λ6 ¼ λ7 ¼ 0, those necessary and sufficient conditions are
given in Eqs. (23)–(26).
We now review the analogous conditions for the most

general renormalizable 2HDM potential, found in
Refs. [54,62]. It is particularly convenient to introduce a
new notation for the scalar potential, based on gauge
invariant field bilinears. Indeed, in many 2HDM studies,
such as the comparison of the value of the potential in
different vacua, the classification of scalar symmetries and
stability conditions, the bilinear formalism provides a
significant simplification in the calculations. This formal-
ism also reveals a hidden Minkowski structure in the
potential, which was established in Refs. [54,62]. A similar
Minkowskian notation has been employed in Refs. [63,64].
There are four independent gauge-invariant field bilin-

ears, which are defined by

PRESERVING THE VALIDITY OF THE TWO-HIGGS- … PHYSICAL REVIEW D 92, 033003 (2015)

033003-15



r0 ¼ Φ†
1Φ1 þ Φ†

2Φ2;

r1 ¼ −ðΦ†
1Φ2 þ Φ†

2Φ1Þ ¼ −2ReðΦ†
1Φ2Þ;

r2 ¼ iðΦ†
1Φ2 − Φ†

2Φ1Þ ¼ −2ImðΦ†
1Φ2Þ;

r3 ¼ −ðΦ†
1Φ1 − Φ†

2Φ2Þ: ðB1Þ

These four quantities form the components of a covariant
four-vector, rμ ¼ ðr0; ~rÞ with respect to SO(3,1) trans-
formations. We also define rμ ¼ gμνrμ ¼ ðr0;−~rÞ where
gμν is the usual Minkowski metric. It is straightforward to
verify that r0 ≥ 0 and rμrμ ≥ 0, the latter being a conse-
quence of the Schwarz inequality. That is, the four-vector
rμ lives on or inside the forward lightcone LCþ. The
vacuum that preserves SUð2Þ × Uð1Þ electroweak sym-
metry [i.e., hΦ1i ¼ hΦ2i ¼ 0] corresponds to the apex of
LCþ; all neutral vacua correspond to the surface of LCþ,
and any charge breaking vacua would lie on the interior of

LCþ. Transformations of the scalar fields that preserve the
scalar field kinetic energy terms leave r0 invariant and
correspond to SO(3) rotations of the three-vectors, ~r.
In terms of the bilinears defined in Eq. (B1), the scalar

potential of Eq. (3) can be written as

V ¼ −Mμrμ þ
1

2
rμΛμ

νrν; ðB2Þ

with the 4-vector Mμ and the mixed tensor Λμ
ν given by

Mμ ¼
�
−
1

2
ðY1þY2Þ; ReY3; −ImY3; −

1

2
ðY1−Y2Þ

�

ðB3Þ

and

Λμ
ν ¼ 1

2

0
BBB@

1
2
ðZ1 þ Z2Þ þ Z3 −ReðZ6 þ Z7Þ ImðZ6 þ Z7Þ − 1

2
ðZ1 − Z2Þ

ReðZ6 þ Z7Þ −Z4 − ReZ5 ImZ5 −ReðZ6 − Z7Þ
−ImðZ6 þ Z7Þ ImZ5 −Z4 þ ReZ5 ImðZ6 − Z7Þ
1
2
ðZ1 − Z2Þ −ReðZ6 − Z7Þ ImðZ6 − Z7Þ − 1

2
ðZ1 þ Z2Þ þ Z3

1
CCCA: ðB4Þ

To ensure that the scalar potential is bounded from below
one needs to evaluate the eigenvalues and eigenvectors of
the matrix Λμ

ν. Then one can determine conditions on those
eigenvalues and eigenvectors such that rμΛμ

νrν ≥ 0. The
eigenvalues Λa (a ¼ 0, 1, 2, 3) of the matrix Λμ

ν will be
determined by the usual characteristic equation,

detðΛμ
ν − ΛagμνÞ ¼ 0: ðB5Þ

since gμν ¼ δνμ is just the 4 × 4 identity matrix. The
corresponding eigenvectors corresponding to eigenvalue
Λa will be denoted by VðaÞ. For the most general 2HDM
potential, the eigenvalues are the solutions of a quartic
equation, which can in principle be determined analytically
(although the corresponding expressions are not particu-
larly transparent). However, it is straightforward to numeri-
cally evaluate the eigenvalues and corresponding
eigenvectors. Note that, in general, some of the eigenvalues
may be complex (since the real matrix Λμ

ν is not symmetric
unless Z6 ¼ Z7 ¼ 0 and Z1 ¼ Z2).
Having evaluated the eigenvalues and eigenvectors of

Λμ
ν, we make use of Proposition 10 of Ref. [54] to

conclude that the 2HDM potential is bounded from below
if and only if the following conditions are met:
(1) All the eigenvalues Λa are real.
(2) Λ0 > 0.

(3) Λ0 > fΛ1;Λ2;Λ3g. There may or may not be
degeneracies among the three eigenvalues Λi
(i ¼ 1, 2, 3).

(4) There exist four linearly independent eigenvectors
VðaÞ corresponding to the four eigenvalues Λa, for
a ¼ 0, 1, 2, 3.

(5) The eigenvector Vð0Þ ¼ ðv00; v10; v20; v30Þ, corre-
sponding to the eigenvalue Λ0, is real and timelike.
That is, it can be normalized so that

jVð0Þj2 ¼ v200 − v210 − v220 − v230 ¼ 1:

(6) The remaining three eigenvectors VðiÞ ¼
ðv0i; v1i; v2i; v3iÞ are real and spacelike, i.e. normal-
ized so that

jVðiÞj2 ¼ v20i − v21i − v22i − v23i ¼ −1:

To illustrate this technique, we shall reproduce the
bounded from below conditions for a potential with a
Z2 symmetry in the Higgs basis so that Z6 ¼ Z7 ¼ 0.
Without loss of generality, we can choose Z5 real by
rephasing the Higgs basis field H2. The matrix Λ ¼ Λμ

ν is
then given by
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Λ ¼ 1

2

0
BBB@

1
2
ðZ1 þ Z2Þ þ Z3 0 0 − 1

2
ðZ1 − Z2Þ

0 −Z4 − Z5 0 0

0 0 −Z4 þ Z5 0

1
2
ðZ1 − Z2Þ 0 0 − 1

2
ðZ1 þ Z2Þ þ Z3

1
CCCA; ðB6Þ

so that two of its eigenvalues can be immediately read off as
Λ1 ¼ −Z4 − Z5 and Λ2 ¼ −Z4 þ Z5. The remaining two
eigenvalues are

Λ� ¼ Z3 �
ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
: ðB7Þ

Since the eigenvalues must be real, if follows that

Z1Z2 > 0: ðB8Þ
Λþ is the largest eigenvalue and thus must corresponds to
the timelike eigenvector. Hence, we identify Λ0 ¼ Z3 þffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
and Λ3 ¼ Z3 −

ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
. Imposing the requirement

that the scalar potential is bounded from below, it follows
that the eigenvalues obtained above must all be real and
obey the following inequalities:

Λ0 > 0 ⇒ Z3 > −
ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
ðB9Þ

Λ0 > fΛ1;Λ2;Λ3g ⇒ Z3 þ Z4 − jZ5j > −
ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
;

ðB10Þ

which are the Higgs basis equivalents of Eqs. (25) and (26).
The timelike eigenvector is Vð0Þ ¼ ðx; 0; 0; yÞ, where the
components x and y are related via the eigenvector
equation by

y ¼ Z1 þ Z2 −
ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
Z1 − Z2

x: ðB11Þ

Since the timelike normalization condition implies that
x2 − y2 ¼ 1, we obtain

x2 ¼ ðZ1 − Z2Þ2
4

ffiffiffiffiffiffiffiffiffiffi
Z1Z2

p ðZ1 þ Z2Þ
: ðB12Þ

Thus we see that we must have Z1 þ Z2 > 0, which when
combined with Eq. (B8) yields

Z1 > 0; Z2 > 0: ðB13Þ

Thus we recover the Higgs basis equivalents of Eqs. (23)
and (24).
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