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In the alignment limit of a multidoublet Higgs sector, one of the Higgs mass eigenstates aligns with the
direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard
Model (SM) Higgs boson. We consider CP-conserving two-Higgs-doublet models (2HDMs) of Type I and
Type II near the alignment limit in which the lighter of the two CP-even Higgs bosons, h, is the SM-like
state observed at 125 GeV. In particular, we focus on the 2HDM parameter regime where the coupling of h
to gauge bosons approaches that of the SM. We review the theoretical structure and analyze the
phenomenological implications of the regime of the alignment limit without decoupling, in which the other
Higgs scalar masses are not significantly larger than mh and thus do not decouple from the effective theory
at the electroweak scale. For the numerical analysis, we perform scans of the 2HDM parameter space
employing the software packages 2HDMC and Lilith, taking into account all relevant pre-LHC constraints,
the latest constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most
recent limits coming from searches for heavy Higgs-like states. We contrast these results with the alignment
limit achieved via the decoupling of heavier scalar states, where h is the only light Higgs scalar.
Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also
discussed.
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I. INTRODUCTION

The minimal version of the Standard Model (SM)
contains one complex Higgs doublet, resulting in one
physical neutral CP-even Higgs boson after electroweak
symmetry breaking. The discovery [1,2] of a new particle
with mass of about 125 GeV [3] and properties that match
very well those expected for a SM Higgs boson was a real
triumph of Run 1 of the LHC. Fits of the Higgs couplings
performed by ATLAS [4] and CMS [5] show no significant
deviations from SM expectations. (A combined global fit of
the Higgs couplings based on the Run 1 results was
performed by some of us in Ref. [6].) However, one has
to keep in mind that the present precisions on the Higgs
couplings are, roughly, of the order of tens of percent, so
substantial deviations are still possible. Indeed, the SM is
not necessarily the ultimate theoretical structure respon-
sible for electroweak symmetry breaking, and theories that
go beyond the SM, such as supersymmetry, typically
require an extended Higgs sector [7–10]. Hence, the
challenge for Run 2 of the LHC, and other future collider
programs, is to determine whether the observed state is the

SM Higgs boson or whether it is part of a nonminimal
Higgs sector of a more fundamental theory.
In this paper, we take two-Higgs-doublet models

(2HDMs) of Type I and Type II [11] as the prototypes
for studying the effects of an extended Higgs sector. Our
focus will be on a particularly interesting limit of these
models, namely the case in which one of the neutral Higgs
mass eigenstates is approximately aligned with the direc-
tion of the scalar field vacuum expectation values. In this
case, the coupling to gauge bosons of the Higgs boson
observed at the LHC tends toward the SM limit, CV → 1.1

This so-called alignment limit is most easily attained in the
decoupling limit [12], where all the other non-SM-like
Higgs scalars of the model are heavy. However, the
alignment limit of the 2HDM can also be achieved in a
parameter regime in which one or more of the non-SM-like
Higgs scalars are light (and in some cases very light). This
region of alignment without decoupling is a primary focus
of this paper.
An extensive review of the status of 2HDMs of Type I

and Type II was given in Refs. [13,14]. Interpretations of
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1We use the notation of coupling scale factors, or reduced
couplings, employed in Ref. [6]: CV (V ¼ W;Z) for the coupling
to gauge bosons, CU;D for the couplings to up-type and down-
type fermions, and Cγ;g for the loop-induced couplings to photons
and gluons.
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the recently discovered Higgs boson at 125 GeV in the
context of the 2HDMs were also studied in Refs. [15–21].
The possibility of alignment without decoupling was first
noted in Ref. [12] and further clarified in Refs. [22,23].
Previous studies of alignment without decoupling scenarios
in the light of the LHC Higgs results were conducted in
Refs. [24–26]. The specific case of additional light Higgs
states in 2HDMs with mass below ∼125=2 GeV was
studied in Ref. [27].
Considering experimental as well as theoretical uncer-

tainties, the expected precision for coupling measurements
at the LHC after collecting 300 fb−1 of data is about 4%–
6% for the coupling to gauge bosons and of the level of
6%–13% for the couplings to fermions [28]. The precision
improves by roughly a factor of 2 at the high-luminosity
run of the LHC with 3000 fb−1. At a future eþe−

international linear collider (ILC) with
ffiffiffi
s

p ¼ 250 GeV
to 1 TeV, one may measure the couplings to fermions at
the percent level and the coupling to gauge bosons at the
subpercent level. A detailed discussion of the prospects of
various future colliders can be found in Ref. [28].
We take this envisaged ∼1% accuracy on CV as the

starting point for the numerical analysis of the alignment
case. Concretely, we investigate the parameter spaces of the
2HDMs of Type I and Type II assuming that the observed
125 GeV state is the h, the lighter of the two CP-even
Higgs bosons in these models, and imposing that
Ch
V > 0.99 (note that jCV j ≤ 1 in any model of which

the Higgs sector consists of only doublets and/or singlets).
The case of the heavier CP-even H being the state at
125 GeV will be discussed in a separate paper [29].
Taking into account all relevant theoretical and phenom-

enological constraints, including the signal strengths of the
observed Higgs boson, as well as the most recent limits
from the nonobservation of any other Higgs-like states, we
then analyze the phenomenological consequences of this
scenario. In particular, we study the variations in the
couplings to fermions and in the triple-Higgs couplings
that are possible as a function of the amount of alignment
when the other Higgs states are light and contrast this to
what happens in the decoupling regime. Moreover, we
study the prospects to discover the additional Higgs states
when they are light.
The public tools used in this study include 2HDMC [30]

for computing couplings and decay widths and for testing
theoretical constraints within the 2HDM context, Lilith
1.1.2 [31] for evaluating the Higgs signal strength con-
straints, and SusHi-1.3.0 [32] and VBFNLO-2.6.3 [33] for
computing production cross sections at the LHC.
The paper is organised as follows. In Sec. II we first

review the theoretical structure of the 2HDM. A softly
broken discrete Z2-symmetric scalar potential is introduced
using a basis of scalar doublet fields (called theZ2-basis) in
which a the symmetry is manifest. The Higgs basis is then
introduced, which provides an elegant framework for

exhibiting the alignment limit. We then provide a
comprehensive discussion of the Higgs couplings in the
alignment regime. In Sec. III, we explain the setup of the
numerical analysis and the tools used. The results are
presented in Sec. IV. Section V contains our conclusions.
In Appendix A, detailed formulas relating the quartic
coefficients of the Higgs potential in the Z2-basis to those
of the Higgs basis are given. Some useful analytical
expressions regarding the trilinear Higgs self-couplings
in terms of physical Higgs masses are collected in
Appendix B.

II. CP-CONSERVING 2HDM OF TYPES I AND II

In this section, we review the theoretical structure of the
two-Higgs-doublet model. Comprehensive reviews of the
model can also be found in, e.g., Refs. [12,23,34,35]. To
avoid tree-level Higgs-mediated flavor changing neutral
currents (FCNCs), we shall impose a Type I or II structure
on the Higgs-fermion interactions. This structure can be
naturally implemented [36,37] by imposing a discrete Z2

symmetry on the dimension-4 terms of the Higgs
Lagrangian. This discrete symmetry is softly broken by
mass terms that appear in the Higgs scalar potential.
Nevertheless, the absence of tree-level Higgs-mediated
FCNCs is maintained, and FCNC effects generated at
one loop are all small enough to be consistent with
phenomenological constraints over a significant fraction
of the 2HDM parameter space [38–41].
Even with the imposition of the softly broken discreteZ2

symmetry mentioned above, new CP-violating phenomena
in the Higgs sector are still possible, either explicitly
due to a physical complex phase that cannot be removed
from the scalar potential parameters or spontaneously due
to a CP-violating vacuum state. To simplify the analysis in
this paper, we shall assume that these CP-violating
effects are absent, in which case one can choose a basis
of scalar doublet Higgs fields such that all scalar potential
parameters and the two neutral Higgs field vacuum
expectation values are simultaneously real. Moreover, we
assume that only the neutral Higgs fields acquire nonzero
vacuum expectation values; i.e., the scalar potential
does not admit the possibility of stable charge-breaking
minima [42,43].
We first exhibit the Higgs scalar potential, the corre-

sponding Higgs scalar spectrum, and the Higgs-fermion
interactions subject to the restrictions discussed above.
Motivated by the Higgs data, we then examine the
conditions that yield an approximately SM-like Higgs
boson.

A. Higgs scalar potential

Let Φ1 and Φ2 denote two complex Y ¼ 1, SUð2ÞL
doublet scalar fields. The most general gauge invariant
renormalizable scalar potential is given by
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V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ ½λ6ðΦ†
1Φ1Þ

þ λ7ðΦ†
2Φ2Þ�Φ†

1Φ2 þ H:c:

�
: ð1Þ

In general, m2
12, λ5, λ6, and λ7 can be complex. As noted

above, to avoid tree-level Higgs-mediated FCNCs, we
impose a softly broken discrete Z2 symmetry, Φ1→þΦ1,
and Φ2 → −Φ2 on the quartic terms of Eq. (1), which
implies that λ6 ¼ λ7 ¼ 0, whereas m2

12 ≠ 0 is allowed. In
this basis of scalar doublet fields (denoted as the Z2-basis),
the discrete Z2 symmetry of the quartic terms of
Eq. (1) is manifest. Furthermore, we assume that the scalar
fields can be rephased such that m2

12 and λ5 are both real.
The resulting scalar potential is then explicitly CP
conserving.
The scalar fields will develop nonzero vacuum expect-

ation values if the Higgs mass matrix m2
ij has at least one

negative eigenvalue. We assume that the parameters of the
scalar potential are chosen such that the minimum of the
scalar potential respects the Uð1ÞEM gauge symmetry.
Then, the scalar field vacuum expectations values are of
the form

hΦ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i ¼

1ffiffiffi
2

p
�

0

v2

�
: ð2Þ

As noted in Appendix B of Ref. [12], if jm2
12j ≥ λ5jv1jjv2j,

then the vacuum is CP conserving, and the vacuum
expectation values v1 and v2 can be chosen to be non-
negative without loss of generality. In this case, the
corresponding potential minimum conditions are2

m2
11 ¼ m2

12tβ −
1

2
v2ðλ1c2β þ λ345s2βÞ; ð3Þ

m2
22 ¼ m2

12t
−1
β −

1

2
v2ðλ2s2β þ λ345c2βÞ; ð4Þ

where we have defined

λ345 ≡ λ3 þ λ4 þ λ5; tβ ≡ tan β≡ v2
v1

; ð5Þ

where 0 ≤ β ≤ 1
2
π, and

v2 ≡ v21 þ v22 ¼
4m2

W

g2
¼ ð246 GeVÞ2: ð6Þ

Of the original eight scalar degrees of freedom, three
Goldstone bosons (G� and G) are absorbed (“eaten”) by
the W� and Z. The remaining five physical Higgs particles
are two CP-even scalars (h and H, with mh ≤ mH), one
CP-odd scalar (A), and a charged Higgs pair (H�). The
resulting squared masses for the CP-odd and charged
Higgs states are

m2
A ¼ m̄2 − λ5v2; ð7Þ

m2
H� ¼ m2

A þ 1

2
v2ðλ5 − λ4Þ; ð8Þ

where

m̄2 ≡ 2m2
12

s2β
: ð9Þ

The two neutral CP-even Higgs states mix according to
the following squared-mass matrix:

M2 ≡
� λ1v2c2β þ ðm2

A þ λ5v2Þs2β ½λ345v2 − ðm2
A þ λ5v2Þ�sβcβ

½λ345v2 − ðm2
A þ λ5v2Þ�sβcβ λ2v2s2β þ ðm2

A þ λ5v2Þc2β

�
: ð10Þ

Defining the physical mass eigenstates

H ¼ ð
ffiffiffi
2

p
ReΦ0

1 − v1Þcα þ ð
ffiffiffi
2

p
ReΦ0

2 − v2Þsα; ð11Þ

h ¼ −ð
ffiffiffi
2

p
ReΦ0

1 − v1Þsα þ ð
ffiffiffi
2

p
ReΦ0

2 − v2Þcα; ð12Þ

the masses and mixing angle α are found from the diagonalization process

2Here and in the following, we use the shorthand notation cβ ≡ cos β, sβ ≡ sin β, cα ≡ cos α, sα ≡ sin α, c2β ≡ cos 2β, s2β ≡ sin 2β,
cβ−α ≡ cosðβ − αÞ, sβ−α ≡ sinðβ − αÞ, etc.
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�
m2

H 0

0 m2
h

�
¼

�
cα sα
−sα cα

��
M2

11 M2
12

M2
12 M2

22

��
cα −sα
sα cα

�
¼

�
M2

11c
2
α þ 2M2

12cαsα þM2
22s

2
α M2

12ðc2α − s2αÞ þ ðM2
22 −M2

11Þsαcα
M2

12ðc2α − s2αÞ þ ðM2
22 −M2

11Þsαcα M2
11s

2
α − 2M2

12cαsα þM2
22c

2
α

�
: ð13Þ

Note that the two equations, TrM2 ¼ m2
H þm2

h and
detM2 ¼ m2

Hm
2
h, yield the following result:

jM2
12j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −M2
11ÞðM2

11 −m2
hÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

22 −m2
hÞðM2

11 −m2
hÞ

q
: ð14Þ

Explicitly, the squared masses of the neutral CP-even
Higgs bosons are given by

m2
H;h ¼

1

2
½M2

11 þM2
22 � Δ�; ð15Þ

where mh ≤ mH and the non-negative quantity Δ is
defined by

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q

: ð16Þ

The mixing angle α, which is defined modulo π, is
evaluated by setting the off-diagonal elements of the CP-
even scalar squared-mass matrix given in Eq. (13) to zero. It
is often convenient to restrict the range of the mixing angle
to jαj ≤ 1

2
π. In this case, cα is non-negative and is given by

cα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔþM2

11 −M2
22

2Δ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

11 −m2
h

m2
H −m2

h

s
; ð17Þ

and the sign of sα is given by the sign of M2
12. Explicitly,

we have

sα ¼
ffiffiffi
2

p
M2

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðΔþM2

11 −M2
22Þ

p
¼ sgnðM2

12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H −M2
11

m2
H −m2

h

s
: ð18Þ

In deriving Eqs. (17) and (18), we have assumed that
mh ≠ mH. The case of mh ¼ mH is singular; in this case,
the angle α is undefined since any two linearly independent
combinations of h andH can serve as the physical states. In
the rest of this paper, we shall not consider this mass-
degenerate case further.

B. SM limit in the Higgs basis

The scalar potential given in Eq. (1) is expressed in the
Z2-basis of scalar doublet fields in which the Z2 discrete
symmetry of the quartic terms is manifest. It will prove
convenient to reexpress the scalar doublet fields in the
Higgs basis [44,45], defined by

H1 ¼
�
Hþ

1

H0
1

�
≡ Φ1cβ þ Φ2sβ;

H2 ¼
�
Hþ

2

H0
2

�
≡ −Φ1sβ þ Φ2cβ; ð19Þ

so that hH0
1i ¼ v=

ffiffiffi
2

p
and hH0

2i ¼ 0. The scalar doubletH1

possesses SM tree-level couplings to all the SM particles.
Therefore, if one of the CP-even neutral Higgs mass
eigenstates is SM-like, then it must be approximately
aligned with the real part of the neutral field H0

1.
The scalar potential, when expressed in terms of the

doublet fields, H1 and H2, has the same form as Eq. (1),

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ Y3½H†

1H2 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ

þ Z4ðH†
1H2ÞðH†

2H1Þ þ
�
1

2
Z5ðH†

1H2Þ2

þ ½Z6ðH†
1H1Þ þ Z7ðH†

2H2Þ�H†
1H2 þ H:c:

�
; ð20Þ

where the Yi are real linear combinations of them2
ij and the

Zi are real linear combinations of the λi. In particular, since
λ6 ¼ λ7 ¼ 0, we have [45,46]3

Z1 ≡ λ1c4β þ λ2s4β þ
1

2
λ345s22β; ð21Þ

Z2 ≡ λ1s4β þ λ2c4β þ
1

2
λ345s22β; ð22Þ

Zi≡1

4
s22β½λ1þλ2−2λ345�þλi; ðfor i¼ 3;4or5Þ; ð23Þ

3To make contact with the notation of Ref. [12], λ≡ Z1,
λV ≡ Z2, λT ≡ Z3 þ Z4 − Z5, λF ≡ Z5 − Z4, λA ≡ Z1 − Z5,
λ̂≡ −Z6, and λU ≡ −Z7.
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Z6 ≡ −
1

2
s2β½λ1c2β − λ2s2β − λ345c2β�; ð24Þ

Z7 ≡ −
1

2
s2β½λ1s2β − λ2c2β þ λ345c2β�: ð25Þ

Since there are five nonzero λi and seven nonzero Zi, there
must be two relations. The following two identities are
satisfied if β ≠ 0, 1

4
π, 1

2
π [46]4:

Z2 ¼ Z1 þ 2ðZ6 þ Z7Þ cot 2β; ð26Þ

Z345 ¼ Z1 þ 2Z6 cot 2β − ðZ6 − Z7Þ tan 2β; ð27Þ

where Z345 ≡ Z3 þ Z4 þ Z5. One can invert the expres-
sions given in Eqs. (21)–(25), subject to the relations given
by Eqs. (26) and (27). The results are given in Appendix A.
The squared mass parameters Yi are given by

Y1 ¼ m2
11c

2
β þm2

22s
2
β −m2

12s2β; ð28Þ

Y2 ¼ m2
11s

2
β þm2

22c
2
β þm2

12s2β; ð29Þ

Y3 ¼
1

2
ðm2

22 −m2
11Þs2β −m2

12c2β: ð30Þ

Y1 and Y3 are fixed by the scalar potential minimum
conditions,

Y1 ¼ −
1

2
Z1v2; Y3 ¼ −

1

2
Z6v2: ð31Þ

Using Eqs. (9) and (31), we can express m̄2 in terms of Y2,
Z1, and Z6,

m̄2 ¼ Y2 þ
1

2
Z1v2 þ Z6v2 cot 2β: ð32Þ

The masses of H� and A are given by

m2
H� ¼ Y2 þ

1

2
Z3v2; ð33Þ

m2
A ¼ Y2 þ

1

2
ðZ3 þ Z4 − Z5Þv2: ð34Þ

It is straightforward to compute the CP-even Higgs
squared-mass matrix in the Higgs basis [44,47],

M2
H ¼

�
Z1v2 Z6v2

Z6v2 m2
A þ Z5v2

�
: ð35Þ

From Eq. (35), one can immediately derive the conditions
that yield a SM-like Higgs boson. Since hH0

1i ¼ v=
ffiffiffi
2

p
and

hH0
2i ¼ 0, the couplings of H1 are precisely those of the

Standard Model. Thus a SM-like Higgs boson exists ifffiffiffi
2

p
ReH0

1 − v is an approximate mass eigenstate. That is,
the mixing of H0

1 and H0
2 is subdominant, which implies

that either jZ6j ≪ 1 and/or m2
A þ Z5v2 ≫ Z1v2, Z6v2.

Moreover, if in addition Z1v2 < m2
A þ Z5v2, then h is

SM-like, whereas if Z1v2 > m2
A þ Z5v2, thenH is SM-like.

In both cases, the squared mass of the SM-like Higgs boson
is approximately equal to Z1v2.
The physical mass eigenstates are identified from

Eqs. (11), (12), and (19) as

H ¼ ð
ffiffiffi
2

p
ReH0

1 − vÞcβ−α −
ffiffiffi
2

p
ReH0

2sβ−α; ð36Þ

h ¼ ð
ffiffiffi
2

p
ReH0

1 − vÞsβ−α þ
ffiffiffi
2

p
ReH0

2cβ−α: ð37Þ

Then, Eqs. (15) and (16) yield

m2
H;h ¼

1

2
½m2

A þ ðZ1 þ Z5Þv2 � ΔH�; ð38Þ

where

ΔH ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A þ ðZ5 − Z1Þv2�2 þ 4Z2
6v

4

q
: ð39Þ

In addition, Eq. (14) yields

jZ6jv2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H − Z1v2ÞðZ1v2 −m2
hÞ

q
: ð40Þ

Comparing Eqs. (11) and (12) with Eqs. (36) and (37),
we identify the corresponding mixing angle by α − β,
which is defined modulo π. Diagonalizing the squared
mass matrix, Eq. (35), it is straightforward to derive the
following expressions:

Z1v2 ¼ m2
hs

2
β−α þm2

Hc
2
β−α; ð41Þ

Z6v2 ¼ ðm2
h −m2

HÞsβ−αcβ−α; ð42Þ

m2
A þ Z5v2 ¼ m2

Hs
2
β−α þm2

hc
2
β−α: ð43Þ

It follows that

m2
h ¼

�
Z1 þ Z6

cβ−α
sβ−α

�
v2; ð44Þ

m2
H ¼ m2

A þ
�
Z5 − Z6

cβ−α
sβ−α

�
v2: ð45Þ

4For β ¼ 0, 1
2
π, the Z2-basis and the Higgs basis coincide, in

which case Z6 ¼ Z7 ¼ 0 and Z1, Z2, Z345 are independent
quantities. For β ¼ 1

4
π, the two relations are Z1 ¼ Z2 and

Z6 ¼ Z7, and Z345 is an independent quantity.
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Note that Eq. (42) implies that5

Z6sβ−αcβ−α ≤ 0: ð46Þ

One can also derive expressions for cβ−α and sβ−α either
directly from Eqs. (41) and (42) or by using Eqs. (17) and
(18) with α replaced by α − β. Using Eq. (46), the sign of
the product sβ−αcβ−α is fixed by the sign of Z6. However,
since β − α is defined only modulo π, we are free to choose
a convention where either cβ−α or sβ−α is always non-
negative.6 In a convention where sβ−α is non-negative (this
is a convenient choice when the h is SM-like),

cβ−α ¼ −sgnðZ6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1v2 −m2

h

m2
H −m2

h

s

¼ −Z6v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞðm2

H − Z1v2Þ
p ; ð47Þ

where we have used Eq. (40) to obtain the second form for
cβ−α in Eq. (47).
Finally, we record the following useful formula that is

easily obtained from Eqs. (7) and (A10)7:

m̄2 ¼ m2
A þ Z5v2 þ

1

2
ðZ6 − Z7Þv2 tan 2β: ð48Þ

Combining Eq. (48) with Eqs. (42) and (43) yields

Z7v2 ¼ ðm2
h −m2

HÞsβ−αcβ−α
þ 2 cot 2β½m2

Hs
2
β−α þm2

hc
2
β−α − m̄2�: ð49Þ

Using Eqs. (26) and (27), one can likewise obtain expres-
sions for Z2v2 and Z345v2 in terms of m2

h, m
2
H, and m̄2.

However, these expressions are not particularly illuminat-
ing, so we do not write them out explicitly here.

C. Higgs couplings and the alignment limit

As noted in the previous subsection, the Higgs basis field
H1 behaves precisely as the Standard Model Higgs boson.
Thus, if one of the neutral CP-even Higgs mass eigenstates
is approximately aligned with

ffiffiffi
2

p
ReH0

1 − v, then its
properties will approximately coincide with those of the
SM Higgs boson. Thus, we shall define the alignment limit

as the limit in which the one of the two neutral CP-even
Higgs mass eigenstates aligns with the direction of the
scalar field vacuum expectation values. Defined in this way,
it is clear that the alignment limit is independent of the
choice of the basis for the two-Higgs-doublet fields.
Nevertheless, the alignment limit is most clearly exhibited
in the Higgs basis. In light of Eqs. (36) and (37), the
alignment limit corresponds either to the limit of cβ−α → 0

if h is identified as the SM-like Higgs boson or to the
limit of sβ−α → 0 if H is identified as the SM-like Higgs
boson.
Consider first the case of a SM-like h, with

mh≈125GeV. In this case, Z1v2<m2
AþZ5v2, jcβ−αj≪1,

and m2
h ≈ Z1v2. It follows from Eq. (47) that the alignment

limit can be achieved in two ways: (i) Z6 → 0 or
(ii) mH ≫ v. The case of mH ≫ v (or equivalently
Y2 ≫ v) is called the decoupling limit in the literature.8

In this case, one finds that mH ∼mA ∼mH� , so one can
integrate out the heavy scalar states below the scale of mH.
The effective Higgs theory below the scale mH is a theory
with one Higgs doublet and corresponds to the Higgs sector
of the Standard Model. Thus, not surprisingly, h is a SM-
like Higgs boson. However, it is possible to achieve the
alignment limit even if the masses of all scalar states are
similar in magnitude in the limit of Z6 → 0. This is the case
of alignment without decoupling and the main focus of this
study. Finally, if both jZ6j ≪ 1 and mH ≫ mh are satisfied,
the alignment is even more pronounced; when relevant we
shall denote this case as the double decoupling limit.
For completeness we note that in the case of a SM-likeH

we have Z1v2 > m2
A þ Z5v2, jsβ−αj ≪ 1 and m2

H ≈ Z1v2.
Here, it is more convenient to employ a convention where
cβ−α is non-negative. One can then use Eqs. (40), (46), and
(47) to obtain an expression for sβ−α. In a convention where
cβ−α is non-negative,

sβ−α ¼ −sgnðZ6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H − Z1v2

m2
H −m2

h

s

¼ −Z6v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞðZ1v2 −m2

hÞ
p : ð50Þ

Taking mH ≈ 125 GeV, there is no decoupling limit as in
the case of a SM-like h. However, the alignment limit
without decoupling can be achieved in the limit of Z6 → 0.
This case will be discussed in detail in Ref. [29].
We now turn to the tree-level Higgs couplings. Denoting

the SM Higgs boson by hSM, the coupling of the CP-even

5Having established a convention where 0 ≤ β ≤ 1
2
π, we are

no longer free to redefine the Higgs basis field H2 → −H2.
Consequently, the sign of Z6 is meaningful in this convention.

6Such a convention, if adopted, would replace the
convention employed in Eq. (17) in which cα is taken to be
non-negative.

7In Eq. (48), the term in the expression for m̄2 that is
proportional to ðZ6 − Z7Þv2 tan 2β is never greater than Oðv2Þ
for all values of β, since Eqs. (24) and (25) imply that
ðZ6 − Z7Þ tan 2β ¼ − 1

2
s22βðλ1 − λ2 − 2λ345Þ≲Oð1Þ.

8More precisely, we are assuming that m2
H ≫ jZ6jv2. Since Z6

is a dimensionless coefficient in the Higgs basis scalar potential,
we are implicitly assuming that Z6 cannot get too large without
spoiling perturbativity and/or unitarity. One might roughly expect
jZ6j ≲ 4π, in which case mH ≫ v provides a reasonable indica-
tion of the domain of the decoupling limit.
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Higgs bosons to VV (where V ¼ W� or Z) normalized to
the hSMVV coupling is given by

Ch
V ¼ sβ−α; CH

V ¼ cβ−α: ð51Þ

As expected, if h is a SM-like Higgs boson, then Ch
V ≈ 1 in

the alignment limit, whereas ifH is a SM-like Higgs boson,
then CH

V ≈ 1 in the alignment limit.
Next, we consider the Higgs boson couplings to fer-

mions. The most general renormalizable Yukawa couplings
of the two Higgs doublets to a single generation of up- and
down-type quarks and leptons (using third-generation
notation) is given by

−LYuk ¼ Y1
bb̄RΦ

i
1Q

i
L þ Y2

bb̄RΦ
i
2Q

i
L þ Y1

τ τ̄RΦi
1L

i
L

þ Y2
τ τ̄RΦi

2L
i
L þ ϵij½Y1

t t̄RQi
LΦ

j
1 þ Y2

t t̄RQi
LΦ

j
2�

þ H:c:; ð52Þ

where ϵ12 ¼ −ϵ21 ¼ 1, ϵ11 ¼ ϵ22 ¼ 0, QL ¼ ðtL; bLÞ, and
LL ¼ ðνL; eLÞ are the doublet left-handed quark and lepton
fields and tR, bR, and eR are the singlet right-handed quark
and lepton fields. However, if all terms in Eq. (52) are
present, then tree-level Higgs-mediated FCNCs would be
present, in conflict with experimental constraints. To avoid
tree-level Higgs-mediated FCNCs, we extend the discrete
Z2 symmetry to the Higgs-fermion Lagrangian. There are
four possible choices for the transformation properties of
the fermions with respect to Z2, which we exhibit in
Table I.
For simplicity, we shall assume in this paper that the

pattern of the Higgs couplings to down-type quarks and
leptons is the same. This leaves two possible choices for the
Higgs-fermion couplings [11]:

Type I∶ Y1
t ¼ Y1

b ¼ Y1
τ ¼ 0; ð53Þ

Type II∶ Y1
t ¼ Y2

b ¼ Y2
τ ¼ 0: ð54Þ

In particular, the pattern of fermion couplings to the neutral
Higgs bosons in the Type I and Type II models is exhibited
in Table II.
In the strict alignment limit, the fermion couplings to the

SM-like Higgs boson should approach their Standard
Model values. To see this explicitly, we note the identities,

cos α
sin β

¼ sβ−α þ cot βcβ−α; ð55Þ

−
sin α
cos β

¼ sβ−α − tan βcβ−α; ð56Þ

sin α
sin β

¼ cβ−α − cot βsβ−α; ð57Þ

cos α
cos β

¼ cβ−α þ tan βsβ−α: ð58Þ

If h is the SM-like Higgs boson, then in the limit of
cβ−α → 0, the fermion couplings of h approach their
Standard Model values. However, if tan β ≫ 1, then the
alignment limit is realized in the Type II Yukawa couplings
to down-type fermions only if jcβ−αj tan β ≪ 1. That is, if
jcβ−αj ≪ 1 but jcβ−αj tan β ∼Oð1Þ, then the hVV couplings
and the htt̄ couplings are SM-like, whereas the hbb̄ and
hτþτ− couplings deviate from their Standard Model values.
Thus, the approach to the alignment limit is delayed when
tan β ≫ 1. We denote this phenomenon as the delayed
alignment limit. Similar considerations apply if cot β ≫ 1;
however, this region of parameter space is disfavored as the
corresponding htt̄ coupling quickly becomes nonperturba-
tive if cot β is too large.
Finally, we examine the trilinear Higgs self-couplings.

Using the results of Ref. [12] (see also Ref. [47]), the three-
Higgs vertex Feynman rules (including the corresponding
symmetry factor for identical particles but excluding an
overall factor of i) are given by

ghAA ¼ −v½ðZ3 þ Z4 − Z5Þsβ−α þ Z7cβ−α�; ð59Þ

gHAA ¼ −v½ðZ3 þ Z4 − Z5Þcβ−α − Z7sβ−α�; ð60Þ

TABLE I. Four possibleZ2 charge assignments that forbid tree-
level Higgs-mediated FCNC effects in the 2HDM [48].

Φ1 Φ2 tR bR τR tL, bL, νL, eL

Type I þ − − − − þ
Type II þ − − þ þ þ
Type X (lepton specific) þ − − − þ þ
Type Y (flipped) þ − − þ − þ

TABLE II. Tree-level vector boson couplings CV (V ¼ W;Z) and fermionic couplings CF normalized to their SM values for the two
scalars h;H and the pseudoscalar A in Type I and Type II two-Higgs-doublet models.

Types I and II Type I Type II

Higgs VV Up quarks Down quarks and leptons Up quarks Down quarks and leptons

h sinðβ − αÞ cos α= sin β cos α= sin β cos α= sin β −sin α= cos β
H cosðβ − αÞ sin α= sin β sin α= sin β sin α= sin β cos α= cos β
A 0 cot β − cot β cot β tan β
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ghHH ¼ −3v
�
Z1sβ−αc2β−α þ Z345sβ−α

�
1

3
− c2β−α

�
þ Z6cβ−αð1 − 3s2β−αÞ þ Z7s2β−αcβ−α

�
; ð61Þ

gHhh ¼ −3v
�
Z1cβ−αs2β−α þ Z345cβ−α

�
1

3
− s2β−α

�
− Z6sβ−αð1 − 3c2β−αÞ − Z7c2β−αsβ−α

�
; ð62Þ

ghhh ¼ −3v½Z1s3β−α þ Z345sβ−αc2β−α þ 3Z6cβ−αs2β−α

þ Z7c3β−α�; ð63Þ

gHHH ¼ −3v½Z1c3β−α þ Z345cβ−αs2β−α − 3Z6sβ−αc2β−α

− Z7s3β−α�; ð64Þ

ghHþH− ¼ −v½Z3sβ−α þ Z7cβ−α�; ð65Þ

gHHþH− ¼ −v½Z3cβ−α − Z7sβ−α�: ð66Þ

The trilinear Higgs couplings expressed in terms of the
physical Higgs masses are given in Appendix B.
Consider the alignment limit, cβ−α → 0, where h is

SM-like. Then Eqs. (44) and (63) yield9

ghhh ¼ gSMhhh

�
1þ 2Z6

Z1

cβ−α þ
�
Z345

Z1

−
2Z2

6

Z2
1

−
3

2

�
c2β−α

þOðc3β−αÞ
�
; ð67Þ

where the self-coupling of the SM Higgs boson is given by

gSMhhh ¼ −
3m2

h

v
: ð68Þ

Note that in the alignment limit m2
h ≈ Z1v2 [cf. Eq. (41)],

which implies that Z1 ≈ 0.26.
It is convenient to make use of Eq. (47) [in a convention

where sβ−α ≥ 0] to write

cβ−α ¼ −ηZ6; ð69Þ

where

η≡ v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
hÞðm2

H − Z1v2Þ
p

¼
(
Oð1Þ; for m2

H ∼Oðv2Þ;
O
	

v2

m2
H



≪ 1; in the decoupling limit:

ð70Þ

Inserting Eq. (69) in Eq. (67) yields

ghhh ¼ gSMhhh

�
1þ

��
Z345 −

3

2
Z1

�
η2 − 2η

�
Z2
6

Z1

þOðη3Z3
6Þ þOðη2Z4

6Þ
�
: ð71Þ

In the decoupling limit (where η ≪ 1),

ghhh ¼ gSMhhh

�
1 −

2ηZ2
6

Z1

þOðη2Z2
6Þ
�
: ð72Þ

It follows that ghhh is always suppressed with respect to the
SM in the decoupling limit.10 This behavior is confirmed in
our numerical analysis. In contrast, in the alignment limit
without decoupling, jZ6j is significantly smaller than 1, and
η ∼Oð1Þ. It is now convenient to use Eq. (27) to eliminate
Z345,

ghhh ¼ gSMhhh

�
1þ

��
Z7 tan 2β −

1

2
Z1

�
η2 − 2η

�
Z2
6

Z1

þ ð2 cot 2β − tan 2βÞη2 Z
3
6

Z1

þOðZ3
6Þ
�
; ð73Þ

where the term above designated by OðZ3
6Þ contains no

potential enhancements in the limit of s2β → 0 or c2β → 0.
Given that η ∼Oð1Þ in the alignment limit without decou-
pling, the form of Eq. (73) suggests two ways in which ghhh
can be enhanced with respect to the SM. For example if
tanβ∼1, then one must satisfy ðZ7−Z6Þηtan2β≳2þ1

2
Z1η.

Alternatively, if tan β ≫ 1, then one must satisfy
Z6η cot 2β ≳ 1þ 1

4
Z1η (the latter inequality requires

Z6 < 0, since cot 2β < 0 when 1
4
π < β < 1

2
π). In both

cases, ghhh > gSMhhh is possible even when jZ6j and jZ7j
are significantly smaller than 1. Indeed, both of the above
alternatives correspond to Z345 ≫ Z1 and ηZ345 ≫ 1 in
Eq. (71).
As a second example, consider the hAA coupling given

in Eq. (59) [or Eq. (B6)]. Using Eq. (27), we find that in the
alignment limit

9Equation (67) is obtained in the convention where sβ−α is non-
negative; i.e., sβ−α is close to 1.

10In the double decoupling limit where η ≪ 1 and jZ6j ≪ 1,
Eq. (72) shows that the deviation of ghhh from the corresponding
SM value is highly suppressed.
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ghAA ¼−
1

v
fm2

h−2Z5v2− ðZ6−Z7Þv2 tan2β
þ2Z6v2 cot2βþOðcβ−αÞg

¼−
1

v
fm2

h−2λ5v2þ2Z6v2 cot2βþOðcβ−αÞg ð74Þ

A similar computation yields the Hhh coupling given in
Eq. (62) [or Eq. (B11)],

gHhh ¼
1

v
f3Z6v2 − ½m2

h − 4Z6v2 cot 2β

þ 2ðZ6 − Z7Þv2 tan 2β�cβ−α þOðc2β−αÞg: ð75Þ

In the alignment limit without decoupling, the Oð1Þ terms
in Eqs. (74) and (75) that are proportional to Z6 should be
regarded as terms of Oðcβ−αÞ [cf. Eqs. (69) and (70)]. That
is, the decoupling limit [with Z6 ∼Oð1Þ] and the alignment
limit without decoupling can be distinguished in the
trilinear Higgs couplings. Indeed, the Hhh coupling is
suppressed in the alignment limit without decoupling,
whereas it can be of OðvÞ in the decoupling limit. All
the other trilinear Higgs self-couplings can be analyzed in
the alignment limit following the procedure outlined above.
Last but not least, it is noteworthy that

ghHþH− ¼ −v½Z3 þOðcβ−αÞ� ð76Þ

approaches a finite nonzero value in the alignment limit,
with or without decoupling. This is relevant for the analysis
of the one-loop process h → γγ, which has a contribution
that is mediated by anH� loop. In the decoupling limit, the
charged Higgs loop amplitude is suppressed by a factor of
Oðv2=m2

H�Þ relative to the W� and the top quark loop
contributions. But, in the alignment limit without decou-
pling, the charged Higgs loop is parametrically of the same
order as the corresponding SM loop contributions, thereby
leading to a shift of the h → γγ decay rate from its SM
value. This is in stark contrast to the behavior of tree-level
Higgs couplings, which approach their SM values in the
alignment limit with or without decoupling. That is, the
loop-corrected Higgs couplings to SM particles approach
their SM values in the decoupling limit but can yield
deviations in the alignment limit without decoupling due to
internal loops involving light non-SM-like Higgs states.
Before concluding this section, we examine a second

theoretical distinction between the decoupling limit and
alignment limit without decoupling. The SM Higgs sector
is famously unnatural [49,50]. In particular, a fine tuning of
the Higgs sector squared-mass parameter is required in
order to explain the observed value of the vacuum expect-
ation value (vev), v ≈ 246 GeV. The 2HDM generically
requires two separate and independent fine-tunings. In
addition to identifying v ≈ 246 GeV, which fixes the
values of Y1 and Y3 in Eq. (31), one must also perform

a second fine-tuning to fix the squared-mass parameter Y2

to be of Oðv2Þ. Thus, the regime of the decoupling limit
(where Y2 ≫ v2) is less fine-tuned than the general 2HDM,
since the natural value for Y2 is the ultraviolet cutoff of the
theory beyond which new physics presumably enters. As
long as the heavier Higgs scalars (the squared masses of
which are of order Y2) are sufficiently massive, then h will
be SM-like.11

In contrast, in the case of alignment without decoupling
(or in the double decoupling limit), we have jZ6j ≪ 1,
which is a finely tuned region of the 2HDM parameter
space (beyond the two tunings discussed above) unless we
can demonstrate that Z6 ¼ 0 is a consequence of an
enhanced symmetry of the theory. The possibility of a
natural implementation of alignment has been previously
treated in Ref. [54]. In the absence of Higgs–fermion
Yukawa couplings, it is sufficient to consider the symmetry
properties of the scalar potential. Note that we have already
imposed a softly broken Z2 symmetry, which yields λ6 ¼
λ7 ¼ 0 in the original basis. In addition, we observe that
Z6 ¼ Z7 ¼ 0 [which also implies that Y3 ¼ 0 in light of
Eq. (31)] corresponds to an exact Z2 symmetry in the
Higgs basis.
The conditions Z6 ¼ Z7 ¼ 0 can be implemented in

three ways. If s2β ¼ 0, then only one of the two Higgs fields
acquires a nonzero vev. This means that our original basis
and the Higgs basis coincide (in a convention where H1

denotes the Higgs field with the nonzero vev), in which
case the original Z2 symmetry is unbroken. If λ6 ¼ λ7 ¼ 0
and s2βc2β ≠ 0, then setting Z6 ¼ Z7 ¼ 0 in Eqs. (24) and
(25) yields λ1 ¼ λ2 ¼ λ345. Such a scalar potential exhibits
a softly broken CP3 symmetry, one of the three possible
generalized CP symmetries that can be imposed on the
2HDM [55].12 Finally, if the scalar potential exhibits an
exact CP2 symmetry, or equivalently there is a basis in
which the Z2 discrete symmetry (Φ1 → þΦ1, Φ2 → −Φ2)
and a second Z2 interchange symmetry (Φ1↔Φ2) coexist
[45,55], then it follows that λ6 ¼ λ7 ¼ 0, λ1 ¼ λ2 (with λ5
real),m2

11 ¼ m2
22, andm

2
12 ¼ 0. In this case, Eqs. (3) and (4)

yield tan β ¼ 1.13 The latter can be maintained when the
CP2 symmetry is softly broken such that m2

12 ≠ 0. Using
Eqs. (24) and (25) then yields Z6 ¼ Z7 ¼ 0. Thus, in the

11In general, m2
H ≫ jZ6jv2 is sufficient to guarantee SM-like h

couplings. However, in the 2HDM with Type II Yukawa coupling
and tan β > 1, a SM-like h coupling to down-type quarks and
leptons requires m2

H ≫ jZ6jv2 tan β, leading to the phenomenon
of delayed decoupling [12,51–53] at large tan β. This is a special
case of delayed alignment introduced below Eq. (58).

12If m2
12 ¼ 0 in Eq. (1) in addition to λ6 ¼ λ7 ¼ 0, then the Z2

discrete symmetry (Φ1 → þΦ1, Φ2 → −Φ2) is exact. In this case,
Z6 ¼ Z7 ¼ 0 implies that λ1 ¼ λ2 ¼ λ345 and m2

11 ¼ m2
22 [the

latter via Eq. (30)] and corresponds to an exact CP3 symmetry of
the scalar potential. This restriction of scalar potential parameters
has also been obtained in Ref. [54].

13Here we assume that λ1 ≠ λ345; otherwise, the CP2 sym-
metry is promoted to the CP3 symmetry previously considered.
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absence of the Higgs-fermion Yukawa couplings, Z6 ¼ 0 is
a consequence of an enhanced symmetry of the scalar
potential, in which case the regime of alignment without
decoupling and the double decoupling regime are both
natural in the sense of ’t Hooft [56].
If we now include the Higgs-fermion Yukawa coupling,

we can still maintain the symmetry of the scalar potential in
special cases. If the Z2 symmetry transformation is defined
in the Higgs basis such thatH2 is odd (i.e.,H2 → −H2) and
H1 and all fermion and vector fields are even, then the
resulting model corresponds to a Type I 2HDM with
s2β ¼ 0, which we recognize as the inert 2HDM [57,58].
Indeed, if we perturb the inert 2HDM by taking Z6 and Z7

small, then either h or H will be approximately SM-like. In
the case of s2β ≠ 0, we would need to extend the (softly
broken)CP3 orCP2 symmetry of the scalar potential to the
Higgs-fermion Yukawa sector. As shown in Ref. [59], no
phenomenologically acceptable CP2-symmetric model
exists. A unique softly broken CP3-symmetric 2HDM
does exist with an acceptable fermion mass spectrum;
however, this model does not appear to be phenomeno-
logically viable due to insufficient CP violation and
potentially large FCNC effects [59]. Hence, for generic
choices of the 2HDM parameters, the regime of alignment
without decoupling and the double decoupling regime must
be regarded as more finely tuned than the generic 2HDM.

III. SETUP OF THE NUMERICAL ANALYSIS

In this section, we give details on the numerical
procedure. In particular, we describe the scan of the
2HDM parameter space and the different constraints
coming from theoretical requirements, signal strengths of
the observed 125 GeV Higgs state, flavor physics, and
direct searches for extra Higgs states.
Imposing a softly broken Z2 symmetry (Φ1 → þΦ1,

Φ2 → −Φ2) on the scalar potential given in Eq. (1) which
sets λ6 ¼ λ7 ¼ 0, the free parameters of the 2HDM scalar
potential can be chosen to be the four physical Higgs
masses mh;mH;mH� ; mA; the mass term m2

12; the ratio of
the two Higgs vacuum expectation values tan β; and the
mixing angle α of the CP-even Higgs squared-mass matrix.
In this study, we choose the following ranges for the scan:

α∈ ½−π=2;π=2�; tanβ∈ ½0.5;60�;
m2

12 ∈ ½−ð2000GeVÞ2;ð2000GeVÞ2�;
mH� ∈ ½m�;2000GeV�; mA ∈ ½5GeV;2000GeV�; ð77Þ

where m� is a lower bound on the charged Higgs mass
originating either from the LEP direct searches [60] or
constraints from B-physics, mainly from the Z → bb̄ (Rb),
ϵK;ΔmBs

, B → Xsγ, and B → τν constraints [38–41]. In
principle, both h and H can have the same properties as the
SM Higgs and thus serve as possible candidates for the

observed SM-like Higgs state. In this paper, we consider
mh ≡ 125.5 GeV,14 taking

mH ∈ ½129.5 GeV; 2000 GeV�: ð78Þ

As mentioned in Sec. II A, the degenerate case mh ≈mH
is not considered in this study. Instead, we require a 4 GeV
mass splitting between h and H in order to avoid H
contamination of the h signal. Since we are primarily
interested in the case that the electroweak gauge bosons
acquire most of their masses from only one of the Higgs
basis doublet fields, we impose sβ−α ≥ 0.99, which trans-
lates into jcβ−αj≲ 0.14. This implies that we are allowing at
most a 1% deviation from Ch

V ¼ 1. This should be
compared with the expected ultimate precision for CV of
about 2%–4% at the high-luminosity LHC and about
0.2%–0.5% at the ILC [23,28].
We perform a flat random scan over this parameter space

using the public code 2HDMC [30] for a precise state-of-the-
art computation of the couplings and decay widths of the
various Higgs states. Only points satisfying the stability of
the scalar potential [cf. Eq. (A17)], coupling perturbativity,
and tree-level S-matrix unitarity are retained. We also
require the S, T, and U Peskin–Takeuchi parameters
[61] to be compatible with their corresponding values
derived from electroweak precision observables [62].
These constraints are also checked by means of 2HDMC.
Next we impose constraints from the nonobservation of

Higgs states other than the one at 125 GeV. From the LEP
direct searches for light Higgs states, we consider the cross
section upper limits on eþe− → Zh=H and eþe− → Ah=H
from Refs. [63] and [64], respectively. For very light A
below 9.5 GeV, the limits from Upsilon decays [65] are
important, for which we follow the implementation in
NMSSMTools 4.6.0 [66]. Moreover, we consider the limits
from CMS on light pseudoscalars decaying into μþμ− [67]
in the mass ranges mA ¼ 5.5–9 and 11.5–14 GeV, which
are relevant in particular in Type II models. The limits from
LHC searches for additional heavy Higgs states are also
taken into account. These include the model-independent
limits from the searches forH → ZZð�Þ → 4l from ATLAS
[68] and CMS [69] and for H → ZZð�Þ → 2l2ν from CMS
[70]. However, these limits are easily evaded in our study
where it is the h that has Ch

V ¼ sβ−α > 0.99, while HVV
couplings behave as cβ−α and jcβ−αj ≤ 0.14. (This also
holds true in view of the Moriond 2015 update of the Higgs
data [71].) More important are the limits from H;A → ττ
searches in gluon-fusion or associated production with a
pair of b quarks from ATLAS [72] and CMS [73]. These
are particularly relevant in the large tan β region of the Type

14Having performed the parameter scans before the publication
of Ref. [3] which reports a central value of the Higgs mass of
125.09 GeV, we use 125.5 GeV as the observed Higgs mass in
this analysis.
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II models where a significant enhancement of the down-
type fermion coupling to the neutral Higgs states occurs.
Finally, the limits derived from the pseudoscalar search
A → Zh; h → bb̄ from ATLAS [74] and CMS [75] are
imposed. (Limits from other searches, like for A → Zγ [76]
or hh → bb̄bb̄ [77], have no effect on the results; the very
recent CMS limits on A → ZH and H → ZA [78] are not
taken into account but will be commented upon in Sec. IV
D.) To evaluate all these constraints, production of the H
and A via gluon-gluon fusion (ggF) and via associated
production with a pair of bottom quarks (bbH,bbA) are
computed at next-to-next-to-leading-order (NNLO) QCD15

accuracy using SusHi-1.3.0 [32], while the vector-boson
fusion (VBF) mode for the H is computed at next-to-
leading order (NLO) with VBFNLO-2.6.3 [33].
Signal strengths constraints coming from the precise

measurements of the properties of the 125 GeV state are
taken into account by means of Lilith 1.1.2 [31]. We require
each point of the analysis to be allowed at the 95% C.L. The
C.L. is derived from the log-likelihood ratio

Δð−2 lnLÞðPÞ ¼ −2 lnLðP= d2HDMÞ; ð79Þ

where L is the likelihood constructed by Lilith using
up-to-date signal strength measurements, P represents

the set of parameters of the tested point, and d2HDM the
best-fit point of the model. The Lilith database 15.04 is used
for this analysis. It contains all the latest Higgs signal
strengths measurements from ATLAS [4,79–87] and CMS
[5,69,88–94] as of April 2015 and a combined D0 and CDF
result [95].

IV. RESULTS

A. Parameters

Let us start by reviewing the relevant parameter space.
Figure 1 shows the crucial relation between jZ6j, jcβ−αj, and
mH, illustrating the different ways alignment can occur
with and without decoupling.16 As expected, jZ6j exhibits a
clear dependence on the H − h mass difference, see
Eq. (42), and steeply drops toward zero in the limit
jcβ−αj → 0, i.e. when the h becomes purely SM-like.
When mH is of the order of 1 TeV, one needs to be
extremely close to sβ−α ¼ 1 to have small jZ6j—for
instance jZ6j ≈ 10−3 requires jcβ−αj ≈ 6 × 10−5 for
mH ¼ 1 TeV. In constrast, for a lighter H, the departure
of sβ−α from 1 can be more important—for instance the
same jZ6j ≈ 10−3 value requires jcβ−αj ≈ 2 × 10−3 for
mH ¼ 200 GeV. It is in principle always possible to obtain
arbitrarily small values of jZ6j if one pushes sβ−α arbitrarily
close to 1. For the purpose of the numerical analysis, we
limit ourselves to jcβ−αj ≥ 10−5; we have checked that this
captures well all features relevant for the jcβ−αj → 0 limit.
Interestingly, as mH becomes larger, we observe that the
decoupling limit sets a stronger upper limit on jcβ−αj than
the one set in the numerical scan (jcβ−αj≲ 0.14). Observing

FIG. 1 (color online). jcβ−αj vs mH in Type I (left) and Type II (right) with log10 jZ6j color code. Points are ordered from high to low
log10 jZ6j values.

15The NNLO corrections for ggF are only computed for the top
quark loop, as those for the bottom quark loop are very small.

16In this and subsequent figures, we give 3D information on a
2D plot by means of a color code in the third dimension. To this
end, we must chose a definite plotting order. Ordering the points
from high to low values in the third dimension, as done for
log10 jZ6j in Fig. 1, means that the highest values are plotted first
and lower and lower values are plotted on top of them. As a
consequence, regions with low values may (partly) cover regions
with high values. The opposite is of course true for the ordering
from low to high values. To avoid a proliferation of plots, in each
figure, we show only one ordering, trying to choose the one that
gives most information. The figures with inverted plotting order
are available upon request.
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a heavymH ≳ 850 GeV at the LHC would provide a better-
than-1% indirect determination of the h-coupling to
electroweak gauge bosons in the framework of these
scenarios.
The range of mA is also interesting. In principle, mA can

be above or below mh;H, and even mA < mh=2 is possible
and consistent with the data [27]. However, once mH is
fixed, the allowed range ofmA is limited (and vice versa) as
illustrated in Fig. 2. We see that in both Type I and Type II,
if the scalar H is heavy and decoupled, the same is true for
the pseudoscalar A. Conversely, if mH is light, say below
600 GeV, also mA must be below about 800 GeV.
Furthermore, it appears that for jcβ−αj≲ 10−3 (or, equiv-
alently, small jZ6j) mH < mA is favored. This can be
understood from Eq. (43) [or Eq. (45)]: since the

m2
hc

2
β−α (or Z6cβ−α=sβ−α) term therein is always quite

small, the mass ordering between mH and mA is largely
determined by the sign of Z5. The value of Z5, in turn, is
driven by λ5 [cf. Eq. (A13)], which according to our
numerical analysis tends to be negative for small cβ−α.
A strong interrelation is also found betweenmA,mH, and

mH� as illustrated in Fig. 3. The two panels showmH vsmA
with color coding according to mH� , with the ordering
going from high (blue) to low (red) mH� values. While the
correlation of mH� with mH and mA is somewhat different
in Type I and Type II, in both models, a light charged Higgs
below 500–600 GeV requires that the H and A also be not
too heavy, with masses below about 800 GeV. When
inverting the plotting order of mH� (not shown), we find
that for any given mH� there is a lower limit on mH and

FIG. 2 (color online). mH vs mA in Type I (left) and Type II (right) with the color code indicating the value of log10 jcβ−αj. Points are
ordered from high to low log10 jcβ−αj. The dashed lines are isolines of Z5 ¼ 4 (upper line), 0 (middle line), and −4 (lower line) for
jcβ−αj ¼ 0.015 (varying jcβ−αj from 0 to 0.14 has no visible effect on them).

FIG. 3 (color online). mH vs mA in Type I (left) and Type II (right) with the color code indicating the value of mH� . Points are ordered
from high to low mH�.
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mA: for mH� ∼ 1 TeV, also mH;A are of that order. In turn,
when mH and mA are in the nondecoupling regime, mH�

cannot be much heavier. The absence of points in a
triangular region at low mA and mH in Type II (but not
for Type I) is due to the fact that in the Type II model
B-physics requires mH� ≳ 300 GeV and at low mA the
precision electroweak T parameter constraint would be
violated if mH differs very much from mH� .17

B. Couplings

The next question to address is what variations in the
couplings of the 125.5 GeV state are still possible in the
limit of approximate alignment where Ch

V ≈ 1. In particular,
recall that in the scan we impose sβ−α > 0.99 with
mh ¼ 125.5 GeV, without requiring, however, that the
other couplings of the h be very SM-like. To answer this
question, we first show in Fig. 4 the dependence of the
reduced couplings to (up-type) fermions, see Table II,
Ch
F ≡ Ch

U ¼ Ch
D in Type I (Ch

U in Type II) on jcβ−αj. The
mass of the heavier scalar H is shown as a color code. We
see that whenmH is light, for only 1% deviation from unity
in Ch

V , C
h
U can deviate as much as about 10% (20%) from

unity in Type I (Type II). Inverting the plotting order of mH
(not shown), it is interesting to note that these deviations are
largest for mH ≈ 700–800 GeV while slightly more con-
strained for lighter mH. On the other hand, in the decou-
pling limit, the deviations in Ch

U are more constrained, with
a maximum of 5% for mH ≳ 1.2 TeV in both Type I and
Type II. It is also interesting to observe how quickly

alignment leads to SM-like couplings: for jcβ−αj≲ 10−2,
the deviations in Ch

U are limited to just a few percent no
matter the value of mH.
The situation is quite different for the coupling to down-

type fermions, Ch
D, in Type II, see Fig. 5. First of all, the

possible deviations are larger than for Ch
U, with C

h
D ranging

from about 0.70 to 1.15 even for jcβ−αj ∼ 10−2. Indeed, this
is an example of the delayed alignment limit discussed
below Eq. (58); one needs jcβ−αj as low as about 3 × 10−4

to have Ch
D within 2% of unity. This drives the whole

phenomenology of the scenario: as we will see, sizable
deviations of Ch

D from 1 lead to possible large deviations in
the signal strengths even for quite small jcβ−αj. Inverting
the plotting order of mH (not shown), we note, however,
that for any given jcβ−αj of a few times 10−3 or smaller Ch

D
is limited to be closer to 1 when mH is small than in the
decoupling case with large mH.
Moreover, Ch

D ¼ 1 is not possible unless jcβ−αj is very
small (again a few times 10−3 or smaller). In particular,
large positive deviations of Ch

D ≳ 1.12 would indicate
mH ≲ 750 GeV. On the contrary, Ch

D values which are
substantially smaller than 1 can be achieved in both the
decoupling and nondecoupling regimes except for a small
island of points located around Ch

D ≈ 0.8 and jcβ−αj ≈ 0.1
that is achieved only for mH ≲ 400 GeV. Thus, a discovery
of a light H state in association with a measured value of
Ch
D ∼ 0.8 would give an indirect way to probe subpercent

deviation of Ch
V in this Type II scenario.

Finally, for light mH, the sign of Ch
D relative to Ch

V and
Ch
U can be opposite to the corresponding SM value. This is

realized for not so small values of jcβ−αj ≥ 0.035, i.e. not in
the deep alignment limit, for 230 GeV ≤ mH ≤ 665 GeV,
mA ≲ 650 GeV, and 0.08 ≤ jZ6j ≤ 0.92. For the points in

FIG. 4 (color online). jcβ−αj vs Ch
F in Type I (left) and jcβ−αj vs Ch

U in Type II (right) with mH color code. Points are ordered from low
to highmH . The points with Ch

U ≈ 1 and jcβ−αj > 0.03 are the points for which Ch
D ≈ −1, i.e., the opposite-sign Yukawa coupling points;

see Fig. 5.

17Very recently, the analysis of Misiak and collaborators [96]
has improved the charged Higgs mass bound in the Type II
2HDM to mH� ≳ 480 GeV at 95% C.L. We have not imple-
mented this stricter bound in our scans.
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this region, the up-type coupling is very close to 1,
corresponding to the few isolated points observed in the
right panel of Fig. 4. As discussed in Ref. [53], the eventual
LHC Run 2 precision will allow one to either confirm or
eliminate the opposite-sign coupling possibility using
precise signal rate measurements of the h in a few channels.
Should the opposite-sign coupling be confirmed, one
would expect to also see A signals (plus perhapsH signals)
in the above mass range, thereby providing a confirmation
of this scenario. (The cross sections for A andH signals will
be discussed in Sec. IV D.)
The tan β dependence of the fermion couplings of h is

shown in Fig. 6. We see that large tan β leads to Ch
F very

close to 1 in Type I and Ch
U very close to 1 in Type II.

However, in Type II, at large tan β, small cβ−α is not enough
to drive Ch

D → 1: the approach to SM-like coupling is
delayed, as discussed in Sec. II in the text below Table II.
Note also that the opposite-sign Ch

D solution in Type II
requires tan β ≳ 10 and Ch

V ∼ 0.9994 (which is experimen-
tally indistinguishable from exact alignment).
The loop-induced coupling to photons, Ch

γ , is presented
in Fig. 7. Even at very small cβ−α, Ch

γ can deviate
substantially from 1. This is due to the charged-Higgs
contribution to the hγγ coupling. This contribution can be
large with either sign, positive or negative, in Type I, while
in Type II, large contributions are always negative and
suppress Ch

γ [53]. Note in particular the Type II points with
Ch
γ ∼ 0.95 associated with the opposite-sign Ch

D cases for
which the charged Higgs loop contribution does not
decouple and always leads to a suppression. Regarding
the loop-induced coupling to gluons, in the Type I model,
Ch
g is equal to Ch

F (up to NLO), the dependence of which on
jcβ−αjwas presented in Fig. 4. In the case of Type II,Ch

g and
Ch
U are very similar despite the difference between up- and

down-type couplings, this being due to the fact that the

b-loop contribution to Ch
g is rather small. The one exception

in the case of Type II arises for the opposite-sign scenarios
for which the b-loop contribution changes sign and
interferes constructively with the t-loop contribution. For
these latter cases, Ch

g is always enhanced, Ch
g ∼ 1.06 [53].

While the exceedingly small deviations in Ch
V that we

consider here will most likely not be directly accessible at
the LHC, precision measurements of the other couplings
together with a measurement of, or a limit on, mH;A can be
used for consistency checks and for eventually pinning
down the model. Of special interest in this context is also
the triple Higgs coupling. The dependence of Chhh ≡
ghhh=gSMhhh on cβ−α and mH is shown in Fig. 8. It is quite
striking that large values of Chhh > 1 (up to Chhh ≈ 1.7 in
Type I and up to Chhh ≈ 1.5 in Type II) can be achieved in
the nondecoupling regime, roughly mH ≲ 600 GeV, for
jcβ−αj values of the order of 0.1, whereas for heavier mH,
Chhh is always suppressed as compared to its SM pre-
diction. These features were explained in the discussion
below Eq. (67).18 Note also that for mH ∼ 1 TeV Chhh
approaches the SM limit of 1 as jcβ−αj decreases more
slowly than is the case for lightermH; substantial deviations
Chhh < 1 are possible as long as jcβ−αj is roughly greater
than a few times 10−2. This comes from the ð2Z6=Z1Þcβ−α
term in Eq. (67): since, in the convention where sβ−α ≥ 0,
Z6cβ−α is always negative, cf. Eq. (46), and since Z6 can be
sizable when mH ∼ 1 TeV, see Fig. 1, this can lead to a
suppression as extreme as Chhh ≈ 0.1. (For mH ≫ 1 TeV,
the deviations are smaller in part because the possible range
of cβ−α is limited as seen in Fig. 1.) For very light mH, on
the other hand, Z6 is much smaller, and hence the
deviations with Chhh < 1 are more limited. For

FIG. 5 (color online). jcβ−αj vs Ch
D in Type II with the mH color code for the full Ch

D range (left) and zooming in on the Ch
D > 0 region

(right). Points are ordered from low to high mH .

18This cannot be seen directly in Fig. 8, but we verified that
points with mH > 630 GeV never have Chhh > 1.
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FIG. 7 (color online). jcβ−αj vs Ch
γ in Type I (left) and Type II (right) with the mH color code. Points are ordered from low to highmH.

FIG. 6 (color online). Fermionic couplings vs tan β in Type I (upper panel) and Type II (lower panels) with the jcβ−αj color code. Points
are ordered from high to low jcβ−αj.
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mH ≲ 250 GeV, we find Chhh ≈ 0.80–1.40 in Type I and
Chhh ≈ 0.90–1.35 in Type II. This is at the limit of what can
be measured, as the expected precision is about 50% at the
high-luminosity options of the LHC and the ILC with
500 GeV and about 10%–20% at a 1–3 TeV eþe− linear
collider with polarized beams [28].
The relation between the triple Higgs coupling gHhh,

jcβ−αj and mH is presented in Fig. 9. In Type I, large values
of gHhh can be achieved in the nondecoupling regime for
jcβ−αj of the order 10−1. This is also true in Type II, though
the range of gHhh is somewhat smaller. We observe more-
over that for given jcβ−αj≲ 10−1 the achievable Hhh
coupling grows with mH. Nonetheless, as will be shown
in Sec. IV D, the H → hh decay is mostly relevant below
the tt̄ threshold. Moreover, in the exact alignment limit, the
Hhh coupling vanishes.

C. Signal strengths

The variations in the couplings to fermions discussed
above have direct consequences for the signal strengths of
the SM-like Higgs boson. Since the results depend a lot on
the fermion coupling structure, we examine this separately
for Type I and Type II.
Let us start with Type I. Figure 10 shows the signal

strengths for gluon-gluon fusion and decay into γγ [μhggðγγÞ,
left panel] and decay into ZZ� [μhggðZZ�Þ, right panel].
Recalling that Ch

F varies between 0.87 and 1.11 in Type I
and comparing with Fig. 7, it is clear that the variation in
μhggðγγÞ comes to a large extent from the charged Higgs
contribution to the γγ loop. Even for jcβ−αj → 0, large
deviations from 1 can occur due to a sizable charged Higgs
contribution or the presence of a light pseudoscalar mA <
mh=2 that increases the SM-like Higgs total width. On the

FIG. 8 (color online). jcβ−αj vs the reduced triple Higgs coupling Chhh in Type I (left) and Type II (right) with the mH color code.
Points are ordered from high to low mH values.

FIG. 9 (color online). jcβ−αj vs the triple Higgs coupling gHhh in Type I (left) and Type II (right) with the mH color code. Points are
ordered from high to low mH values.
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other hand, in the decoupling limit, the charged Higgs loop
is small, and Ch

γ is largely determined by the relative size of
the top and bottom loops compared to the W loop (which
enters with opposite sign). On the contrary, Ch

g is solely
determined by the size of the t- and b-loop contributions.
One finds numerically that the hγγ coupling is more
suppressed than the hgg coupling is enhanced, so that
μhggðγγÞ≲ 1 in the decoupling regime.
In contrast, μhggðZZ�Þ shows less variation,

μhggðZZ�Þ ¼ ½0.92; 1.04�, if the h → AA decay channel is
closed, with small excursions around 1 allowed in the
decoupling limit. It also exhibits a less distinct dependence
on mH compared to μhggðγγÞ. The reason is that μhggðZZ�Þ is
driven by Ch

F and tan β, as illustrated in Fig. 11. The
dependence on Ch

F is clear as larger (smaller) Ch
F leads to a

larger (smaller) cross section for gg → h. The dependence
on tan β results from an interplay between the top (which
drives the gg → h cross section) and bottom (which drives
the total h width) Yukawa couplings both given by
Ch
F ¼ sβ−α þ cβ−α=tβ. The scattered points with suppressed

μhggðZZ�Þ are those where the h → AA decay mode is open
and increases the total width. An analogous picture
emerges for the VBF-induced hττ signal strengths, since
μhVBFðττÞ ¼ μhggðZZ�Þ in Type I.
In Type II, we find that the situation is quite different.

Here, the signal strengths are driven by both the top quark
coupling, which impacts Ch

g , and by the bottom Yukawa
coupling Ch

D, which also enters Ch
g and, often of greatest

importance, determines the h → bb̄ decay width. In
Fig. 12, we therefore show the signal strengths μhggðγγÞ,

FIG. 10 (color online). Signal strengths in Type I for the 125.5 GeV state, for gg → h → γγ (left) and gg → h → ZZ� (right) with the
mH color code. Points are ordered from low to high mH values. Points with μhggðZZ�Þ < 0.92 are ones for which h → AA decays are
present, so that the total h width is increased, which suppresses this particular channel’s rate.

FIG. 11 (color online). Signal strength for gg → h → ZZ� in Type I for the 125.5 GeV state with the Ch
F (left) and tan β (right) color

code. Points are ordered from low to high Ch
F and tan β values.
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μhggðZZ�Þ, and μhVBFðττÞ in Type II comparing the depend-
ence on mH (left panels) to the dependence on jCh

Dj (right
panels). Note that the mH dependence of the signal
strengths reflects the mH dependence of Ch

D in Fig. 5.

As a consequence, μhggðγγÞ and μhggðZZ�Þ can be enhanced
in the decoupling regime, with values going as high as 1.4–
1.5 (mainly due to the suppression of the total h width), to
be compared to the current model-independent 95% C.L.

FIG. 12 (color online). Signal strengths in Type II for the 125.5 GeV state with the mH (left) and jCh
Dj color code. Points are ordered

from low to high mH and jCh
Dj values.
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limits of μhggðγγÞ∈ ½0.76;1.69� and μhggðZZ�Þ ∈ ½0.71; 1.80�.
Suppression is also possible, reaching a level of 0.7 for low
mH if jcβ−αj > 0.01 but limited to 0.9 for large
mH ≳ 1250 GeV. For all mH, the amount of possible
suppression decreases systematically with decreasing
jcβ−αj. For μhVBFðττÞ, the behavior is exactly the opposite.
For completeness, we note that the horizontal bar at
jcβ−αj ∼ 10−1 is the Ch

D < 0 region, and the scattered points
are those where the h → AA decay is open. Finally, note
that as jcβ−αj decreases the signal strengths in Type II
converge to 1 much more slowly than in Type I. This is a
consequence of the delayed alignment of Ch

D to 1 in Type II
when tan β is large. An additional effect arises in μhggðγγÞ
due to the charged Higgs loop contribution to the h → γγ
amplitude. In particular, there exists an intermediate range
of charged Higgs masses19 for which ghHþH− ∼ −2m2

H�=v

[cf. Eq. (B8)], which yields a constant nondecoupling
contribution that suppresses the h → γγ amplitude [53]
(see also Refs. [97,98]). Indeed, even for values of jcβ−αj as
low as 10−4, this signal strength does not converge to 1 until
mH (and thus mH�) is above about 1 TeV.
Putting everything together, we find quite distinct corre-

lations of signal strengths in both Type I and Type II that
depend onwhether the additionalHiggs states are decoupled
or not. This is illustrated in Fig. 13 for Type I and in Fig. 14
for Type II. In both figures, the panels on the left show the
dependence on mH, while the panels on the right show the
dependence on jcβ−αj for the nondecoupling regime with
mH ≤ 600 GeV. We note that there are definite combina-
tions of signal strengths that cannot be reached in the
decoupling regime. A measurement of such values would
be a very strongmotivation to look for additional light Higgs
states. In turn, when the masses of additional light Higgs
states are measured, signal strength correlations as shown in
Figs. 13 and 14 can help pin down the model. Furthermore,
for mH ≤ 600 GeV, even in the apparent alignment limit

FIG. 13 (color online). Correlations of signal strengths in Type I, on the left illustrating the dependence on mH and on the right
illustrating the dependence in jcβ−αj. Points are ordered from low to high mH values (left) and high to low jcβ−αj values (right).

19In this intermediate mass region, the charged Higgs mass is
given by Eq. (33), where Y2 ∼Oðv2Þ and Z3 ≳ 1 such that the
upper bound of Z3 is constrained by its unitarity bound.
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jcβ−αj → 0, there can be deviations in the signal strengths

from unity that cannot be mimicked by decoupling.
Examples for Type I are the suppression of both μhggðγγÞ

and μhggðZZ�Þ, or the combination μhggðγγÞ > 1 with

μhggðZZ�Þ ≈ 1. The former case is also present in Type II
for lightmH, while the latter does not occur at all in Type II.
More concretely, in the decoupling regime of Type II,
μhggðγγÞ ≈ μhggðZZ�Þ, whereas for light mH, one can have

FIG. 14 (color online). Correlations of signal strengths in Type II, on the left illustrating the dependence onmH , on the right illustrating
the dependence in jcβ−αj. Points are ordered from low to high mH values (left) and high to low jcβ−αj values (right).
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μhggðγγÞ < μhggðZZ�Þ even if jcβ−αj is very small (comparing
Fig. 14, top row, left vs right). Another example is the
simultaneous suppression or enhancement of μhggðγγÞ and
μhVBFðγγÞ in Type I, that is not possible in the decoupling
regime (cf. Fig. 13, bottom left). In Type II, one can have a
simultaneous enhancement, up to 1.45 of μhggðγγÞ and
μhVBFðγγÞ in the decoupling regime, but simultaneous
suppression is limited to ∼0.9–0.95 (cf. Fig. 14, middle
left); simultaneous suppression to a level of ∼0.8 is,
however, possible in the alignment limit for
mH ≲ 300 GeV, i.e. well away from the decoupling
regime. Precise enough signal strength measurements could
therefore provide strong hints that we are in the alignment
without the decoupling regime of a 2HDM even if no
additional Higgs states are discovered at that time.

D. Cross sections for H and A production

Let us now turn to the prospects of discovering the
additional neutral states. The two largest production modes
at the LHC are gluon fusion, gg → X, and the associated
production with a pair of b-quarks, bb̄X, with X ¼ A;H.
The correlations of the gg → X and bb̄X cross sections at
the 13 TeV LHC in the nondecoupling regime mH ≤
600 GeV are shown in Fig. 15 for the Type I model and
in Fig. 16 for the Type II model. We show the points that
pass all present constraints (in beige) and highlight those
that have a very SM-like 125 GeV Higgs state by
constraining all the following signal strengths to be within
5% or 2% of their SM values, respectively, denoted as
SM� 5% (red) and SM� 2% (dark red):

μhggðγγÞ; μhggðZZ�Þ; μhggðττÞ; μhVBFðγγÞ;
μhVBFðZZ�Þ; μhVBFðττÞ; μhVHðbb̄Þ; μhtt̄ðbb̄Þ: ð80Þ

We start the discussion with the production of A in Type
I, shown in the left panel of Fig. 15. There is a strong
correlation between the two production modes, gluon
fusion and bb̄ associated production, which stems from
the fact that the relevant couplings are the same up to a sign:
CA
U ¼ −CA

D ¼ cot β. The larger spread in σðbb̄AÞ observed
for σðgg → AÞ > 10−2 pb comes from the fact that for
mA ≲ 400 GeV the bb̄A cross section grows faster with
decreasing mA than that of gg → A. Therefore, along a line
of fixed σðgg → AÞ in the plot, a point with higher σðbb̄AÞ
has a smaller mA. Note also that there is an interference of
the top- and bottom-loop diagrams in gg → A which
changes sign depending on mA. Overall, however, σðgg →
AÞ is always at least 2 orders of magnitude larger
than σðbb̄AÞ.
The points with the largest cross sections, σðbb̄AÞ ≈

10 pb and σðgg → AÞ ≈ 1000 pb, correspond to the case
mA < mh=2 which was studied in detail in Ref. [27]. One
feature of this region is that μhggðγγÞ and μhggðZZ�;WW�Þ
always differ from each other by about 10%. Constraining
all h signal strengths of Eq. (80) within 5% of unity
therefore eliminates these points. Other points with high
cross sections, but not in the very light pseudoscalar region,
would also be eliminated by the SM� 5% or SM� 2%
requirement. However, in this nondecoupling regime of
mH ≤ 600 GeV, points with sizeable cross sections up to
0.2 pb for σðbb̄AÞ and up to about 40 pb for σðgg → AÞ still
remain even at the SM� 2% level. At this same SM� 2%
level, the smallest σðgg → AÞ is about 0.1 fb.
Regarding production of the scalarH in Type I, shown in

the right panel of Fig. 15, the correlation is even stronger
between σðbb̄HÞ and σðgg → HÞ since both are driven by
the same fermionic coupling CH

F ¼ sin α= sin β. Note that,
as in the A case, the gluon-fusion cross section is always

FIG. 15 (color online). σðbb̄XÞ vs σðgg → XÞ for X ¼ A (left) and X ¼ H (right) in Type I at the 13 TeV LHC for points satisfying all
present constraints (in beige) as well as points for which the signals strengths from Eq. (80) are within 5% and 2% of the SM predictions
(in red and dark red, respectively). The dashed lines indicate σðbb̄XÞ ¼ σðgg → XÞ.
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larger than that for bb̄ associated production. Sizable cross
sections are still allowed under the SM� 2% constraint,
which implies that in the nondecoupling regime there is a
strong possibility of detecting a non-SM-like scalar state at
the LHC. The structure of CH

F is, however, such that the
coupling can equally well be very much suppressed,
leading to extremely small cross sections. We will come
back to this below.
The corresponding results for Type II are presented in

Fig. 16. In contrast to Type I, both bb̄ associated production
and gluon–gluon fusion modes for Type II are in principle
important since either can be dominant in different regions
of the parameter space. There is only modest correlation
between the two production modes due to the more
complex structure of the Type II fermionic couplings.
For A production, one clearly sees the mA < mh=2 region
as the detached scattered points with very large cross
sections. As for Type I, these points disappear under the
SM� 5% constraint. Still, even for SM� 2%, cross
sections as large as σðbb̄AÞ ≈ 8 pb and σðgg→AÞ≈20pb
can be achieved (although not simultaneously). For H
production, a similar picture emerges, with the cross
sections, however, being a factor of a few smaller than
for A production. The minimal cross sections in this mH <
600 GeV nondecoupling regime for the A and H are
correlated in a way that is very favorable for discovery
during Run 2 of the LHC. For example, if σðgg → AÞ takes
on its minimum SM� 2% value of 10 fb, then
σðbb̄AÞ≳ 80 fb, whereas if σðbb̄AÞ takes on its minimal
value of few × 10−1 fb, then σðgg → AÞ ≈ 103 fb. These
cross section levels imply that the A should be discoverable
in at least one of the two production modes even in the
extreme alignment limit.
Before considering specific decay channels of A and H,

we present in Fig. 17 the gluon-fusion cross sections in
Type I and Type II as functions ofmA andmH at the 13 TeV
LHC. Here, the color code shows the dependence on

tan β.20 In Type I, the gg → A cross section is proportional
to cot2 β; this explains why it is larger (smaller) at lower
(higher) tan β. A cross section of 1 (0.1) fb is guaranteed for
mA as large as ∼600ð850Þ GeV. On the other hand, the
gg → H cross section in Type I is proportional to ðCH

F Þ2 and
can take on extremely small values formH ≲ 850 GeV. The
reason is that, in this region, the reachable values of cβ−α
are high enough such that a cancellation between the two
terms of CH

F ¼ ðsβ−α − cβ−α=tβÞ occurs and leads to an
almost vanishing coupling. In contrast, formH ≳ 850 GeV,
this cancellation is not possible as the values of cβ−α are
forced to be smaller as can be seen in Fig. 1. In Type II, the
A production cross section can be very large in the very low
mA region as noted in Ref. [27], and any mass smaller than
1.1 (1.2) TeV gives a gg → A cross section larger than 1
(0.1) fb. For gg → H, a cross section > 1 (0.1) fb is
guaranteed up to mH ≈ 850 GeV (1.2 TeV). From these
considerations, the prospects for discovering the additional
neutral states look promising should alignment without
decoupling be realized.
Let us now turn to specific signatures. Figure 18 presents

the cross sections for gg → A → Y for Y ¼ γγ; ττ; tt̄ in
Types I and II. Note that the y-axis is cut off at 10−7 pb.
Although much lower values of the cross section are
possible, we do not show these lower values since they
will certainly not be observable at the LHC. As expected,
for the γγ and ττ final states, the cross sections fall sharply
above the tt̄ threshold, with the noticeable exception of the
A → ττ decay in Type II due to the strong constraints from
LHC direct searches that exclude points with a large
corresponding cross section. For the A → γγ decay, cross
sections of 0.1 fb are reachable for mA ≲ 470 GeV
(mA ≲ 530 GeV) in Type I (II) but not guaranteed. The

FIG. 16 (color online). As in Fig. 15 but for Type II.

20To avoid a proliferation of plots, we choose to show here
only the results for gluon fusion; all corresponding results for the
bb̄ cross section can be provided upon request.

BERNON et al. PHYSICAL REVIEW D 92, 075004 (2015)

075004-22



maximal cross section is ∼30 fb in Type I and ∼100 fb in
Type II (not considering the mA ≤ mh=2 region). In both
Types I and II, the gg → A → ττ cross section can be
substantially larger. In Type I, 0.1 fb is reachable for
mA ≲ 600 GeV, while in Type II mA ≲ 550 GeV guaran-
tees a cross section larger than 0.1 fb. In both cases, very
large cross sections are predicted at low mA. The gg →
A → tt̄ cross section peaks around 100 pb in both Types I
and II and is guaranteed to be larger than 0.1 fb in Type II
for 350≲mA ≲ 600 GeV. These sizable cross sections
therefore provide interesting probes of the extended
Higgs sector in the alignment limit.
The corresponding results for the H cross sections are

presented in Fig. 19. Sizable values of σ×BR are possible in
both Types I and II, but heavily suppressed values are still
possible for most of the cases. Only in Type II, for H → ττ
(as well as for H → tt̄), is the corresponding cross section
guaranteed to be larger than 0.1 fb for mH ≲ 460 GeV
(mA ≈ 400 GeV). Note that, for both Types I and II,
the cross sections for A=H decays into a muon pair are

related to the A=H → ττ ones through BðA=H → μμÞ≈
ðmμ=mτÞ2 × BðA=H → ττÞ ≈ BðA=H → ττÞ=280.
Nonstandard production modes of the SM-like state,

through A → Zh and H → hh, are presented in Fig. 20.
While these can be interesting discovery modes for the A
and/or H, their cross sections can also be extremely
suppressed. For gg → A → Zh, the tan β dependence,
which follows the dependence of the gg → A cross section
shown in Fig. 17, explains a part of this suppression.
Moreover, the AZh coupling is proportional to c2β−α which
is suppressed in the alignment region. Nevertheless, the
gg → A → Zh cross section can be of the order of 1 pb for
200≲mA ≲ 350 GeV in both Types I and II. The gg →
H → hh cross section, as expected, attains its maximum
below the tt̄ threshold in both Types I and II and can reach
about 10 pb at low tan β. For any mH, the cross section can,
however, also be extremely suppressed.
A comment is in order here on the possible “feed down”

(FD) [13,99] to the production of the 125 GeV state
through the decay of heavier Higgs states, which might

FIG. 17 (color online). Cross sections in Type I (left) and Type II (right) for gg → X at the 13 TeV LHC as functions of mX for X ¼ A
(upper row) and X ¼ H (lower row) with the tan β color code. In all four plots, points are ordered from low to high tan β.
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FIG. 18 (color online). Cross sections times branching ratio in Type I (left) and in Type II (right) for gg → A → Y at the 13 TeV LHC
as functions of mA for Y ¼ γγ (upper panels), Y ¼ ττ (middle panels), and Y ¼ tt̄ (lower panels) with the tan β color code. Points are
ordered from low to high tan β.
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FIG. 19 (color online). Cross section times branching ratio in Type I (left) and in Type II (right) for gg → H → Y at the 13 TeV LHC as
functions of mH for Y ¼ γγ (upper panels), Y ¼ ττ (middle panels), and Y ¼ tt̄ (lower panels) with tan β color code. Points are ordered
from low to high tan β.
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distort the Higgs signal strengths. This issue was approx-
imately addressed in Sec. III.C of Ref. [13] by imposing the
“FDOK” conditions μFDZh < 0.3 and μFDggFhþbbh < 0.1, which
limit the FD contamination of Zh associated production
and of ggFþ bbh production to 30% and to 10%,
respectively, at the cross section times the branching ratio
level. Imposing these conditions here would remove the
points with σ13ðgg → AÞ × BRðA → ZhÞ≳ 0.2 pb and
σ13ðgg → HÞ × BRðH → hhÞ≳ 2 pb in Fig. 20. This is,
however, a maximally conservative constraint for two
reasons. First, the amount of FD is computed without
accounting for any reduced acceptance of such events into
the 125 GeV signal as a result of the experimental cuts used
to define the gg → h, bbh, or Z� → Zh channel. Second, it
puts individual limits on specific production × decay
modes instead of including all signal strengths in a global
fit, which is the approach followed in this paper. Indeed,
when directly adding the contribution of gg → A → Zh to
the Zh signal strength in the global fit, it turns out that only

cross sections of σ13ðgg → AÞ × BRðA → ZhÞ≳ 1.6 pb
are definitely excluded. This still assumes that the signal
acceptance of the experimental analysis is the same for
gg → A → Zh as for gg → Z� → Zh, which should, how-
ever, be a reasonable approximation, as the main difference
would be the Zh invariant-mass distribution, which is not
used as a selection criterion in this case. The contribution of
H → hh to the h signal strengths is a more difficult
question, as here the acceptances (in each final state
considered in the experimental analyses) will certainly
be different from those of single h production. A detailed
study based on event simulation would be necessary to
better understand the impact of FD on the 125 GeV Higgs
signal, but this is beyond the scope of this paper.
Finally, if the mass splitting is large enough, A → ZH,

H → ZA, and H → AA decays offer intriguing possibilities
for discovering the extra non-SM-like neutral Higgs states
in the regime of approximate alignment without decou-
pling. In Fig. 21, the cross sections for gg → A → ZH,

FIG. 20 (color online). Cross sections times branching ratio in Type I (left) and in Type II (right) for gg → X → Y at the 13 TeV LHC
as functions ofmX for X; Y ¼ A; Zh (upper panel) and X; Y ¼ H; hh (lower panel) with tan β color code. Points are ordered from low to
high tan β.
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FIG. 21 (color online). Cross sections times branching ratio in Type I (left) and in Type II (right) for Higgs-to-Higgs signatures at the
13 TeV LHC, in the upper panel gg → A → ZH with the mH color code and in the middle and lower panels for gg → H → ZA and
gg → H → AA, respectively, with the mA color code. Points are ordered from high to low mA or mH.
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gg → H → ZA, and gg → H → AA are exhibited. Large
gg → A → ZH cross sections are obtained for large mA −
mH splitting.21 Looking back at Fig. 2, one sees that, in
both Type I and Type II, the splitting can only be large for
mA ≲ 650 GeV. This explains the preponderance of low
mH points with cross sections up to 20 pb for
mA ≲ 650 GeV. However, gg → A → ZH can also be
heavily suppressed; since the AHZ coupling is proportional
to sβ−α, this suppression is a purely kinematical effect.
Turning to the H → ZA and H → AA signatures, we

observe a depleted area for mH > 300 GeV and cross
sections of the order of 0.1 pb. In this region,
tan β ¼ 2–10, and Z5 is small or negative leading to mH,
mA masses for which the H → ZA, AA decays are kine-
matically forbidden [cf. Eq. (45)]. In the region below,
tan β > 10 and Z5 can be large enough to achieve mH >
mA þmZ and/or mH > 2mA, but nevertheless the cross
section is small because of the tan β dependence of
σðgg → HÞ; see Fig. 17. The distinct branch with gg →
H → ZA and gg → H → AA cross sections larger than
about 1 pb, on the other hand, has tan β ≲ 2 and λ5 ≈ 0.
Here, the term proportional to sin 2β in Eq. (23) gives a large
enoughZ5 > 0 so that theH → ZA and/orH → AA decay is
kinematically allowed. The small tan β leads to a large gg →
H production cross section; see again Fig. 17. The CMS
Collaboration has very recently published a search for A →
ZH and H → ZA [78]. For instance, for mA ðmHÞ of about
200–600 GeV and very light H (A) below 100 GeV, the
95%C.L. limit on the relevant cross section is of the order of
30–50 fb in the llττ final state and 20–100 fb in the llbb̄
final state. Considering the branching ratios forZ → ll and
H → ττ; bb̄ (A → ττ; bb̄), these limits just start to touch the
highest cross sections in Fig. 21. A detailed phenomeno-
logical analysis of the A → ZH and H → ZA decays at the
LHC was performed in Ref. [101].
Last but not least, note that, due to the kinematic

constraint mH ≥ 2mA and the nontrivial correlation
between mH and mA observed in Fig. 2, the H → AA
channel is only open for mH ≲ 700 GeV. In Type I, the
branch of points with cross sections ranging from about
10−1 to 10 pb is mainly populated by mA ≤ 100 GeV
points with relatively low tan β ≲ 10. In Type II, points with
low mA ≲ 250 GeV and tan β ≲ 3 are clearly separated
from points with mA ≳ 150 GeV and larger tan β ≳ 12.
This channel thus offers a complementary probe to the low
mA region discussed in Ref. [27].

V. CONCLUSIONS

While the Higgs measurements at Run 1 show no
deviations from the SM, conceptually there is no reason

why the Higgs sector should be minimal. Indeed a non-
minimal Higgs sector is theoretically very attractive and, if
confirmed, would shine a new light on the mechanism of
electroweak symmetry breaking dynamics.
In this paper, we focused on CP-conserving 2HDMs of

Type I and Type II, investigating the special situation that
arises when one of the Higgs mass eigenstates is approx-
imately aligned with the direction of the scalar field vacuum
expectation values. In this case, theW� and Z gauge bosons
dominantly acquire their masses from only one Higgs
doublet of the Higgs basis. Moreover, the coupling of that
CP-even Higgs boson to the gauge bosons tends toward the
SM value, CV → 1. While this is automatically the case in
the decoupling limit when the extra non-SMHiggs states are
very heavy, such an alignment can also occur when the extra
Higgs states are light, below about 600GeV.We specifically
investigated the phenomenological consequences of align-
ment without decoupling and contrasted them to the
decoupling case. Two aspects are interesting in this respect:
one being precision measurements of the couplings and
signal strengths of the SM-like Higgs boson at 125 GeVand
the other being the ways to discover the additional Higgs
states of the 2HDM when they are light.
In addition to an in-depth theoretical discussion, we

performed a detailed numerical analysis for the case that the
SM-like state observed at 125 GeV is the lighter of the two
CP-even Higgs bosons of the 2HDM, h. In this study, we
allowed for 1% deviation from unity in Ch

V , which
corresponds to the ultimate expected LHC precision at
high luminosity. The results can be summarized as follows:
(1) In the alignment limit without decoupling, despite

Ch
V being very close to 1, the fermionic couplings of

the 125 GeV Higgs can deviate substantially from
the SM values. Concretely, Ch

U can deviate as much
as about 10% (20%) from unity in Type I (Type II)
and Ch

D as much as 30% in Type II.
(2) While Ch

U rather quickly approaches 1 with increas-
ing mH and/or cβ−α → 0, the approach of the bottom
Yukawa coupling to its SM value in the alignment
limit is delayed in Type II, withCh

D ≈ 0.70–1.15 even
for jcβ−αj ∼ 10−2. Large values of Ch

D > 1 are asso-
ciated with light H;A. Moreover, for 230 GeV≲
mH ≲ 665 GeV and mA ≲ 650 GeV, there is an
allowed region with Ch

D ≈ −1� 0.2; this “oppo-
site-sign” solution can be tested decisively at Run 2.

(3) The trilinear hhh coupling can also exhibit large
deviations. Large values of Chhh > 1 (up to Chhh ≈
1.7 in Type I and up to Chhh ≈ 1.5 in Type II) can
be achieved in the nondecoupling regime
mH ≲ 600 GeV, for jcβ−αj of the order of 0.1,
whereas for heavier mH, Chhh is always suppressed
as compared to its SM prediction. The suppression
can be about 50% for mH of ∼1 TeV and much
larger for lighter mH.

21A large splitting mA −mH ≈ v can be motivated by the
possibility of a strong first-order phase transition in 2HDMs
[100].
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(4) For the ratios μhXðYÞ of the X → h → Y signal rates
relative to the SM prediction, we found distinct
correlations of these signal strengths in both Type I
and Type II that depend on whether the additional
Higgs states are decoupled or not. In fact, in the
regime of alignment without decoupling, there are
characteristic combinations of the μhXðYÞ signal
strengths that cannot be mimicked by the decoupling
limit. However, it is of course also possible that all
signal strengths converge to 1 even though the
additional Higgs states are very light.

(5) A decisive test of the alignment without decoup-
ling scenario would of course be the observation
of the additional Higgs states of the 2HDM in the
mass range below about 600 GeV. We delineated the
many possibilities for such observations. While
there are no guarantees in the case of the Type I
model, in the Type II model, there is always a
definite lower bound on the gg → A;H → ττ cross
sections at the LHC at any given mA. For low
tan β ∼ 1, this lower bound is still of order 0.1 fb for
mA ∼ 500 GeV, a level that we deem likely to be
observable at the LHC during Run 2. For high tan β,
the lower bound is roughly 2 orders of magnitude
higher and only falls below the 0.1 fb level for
mA;H ≳ 1.2 TeV, which is already in the decoupling
region. Moreover, while in Type I gluon-gluon
fusion is always dominant for H or A production,
in Type II, both bb̄ associated production and gluon-
gluon fusion modes are in principle important since
either can be dominant in different regions of the
parameter space.

(6) Higgs-to-Higgs decays of the non-SM-like states
(A → ZH, H → ZA, H → AA) also open intriguing
possibilities for testing the regime of alignment
without decoupling, with cross sections often in
the range of 1–10 pb (although they can also be
quite suppressed). Particularly promising are gg →
H → ZA and gg → H → AA in Type II for light
pseudoscalars below about 100 GeV; for such a light
A, mH can be at most ∼650 GeV, and σ × B values
for these channels typically range from 10 fb
to 10 pb.

In short, it is possible that the observed 125 GeV Higgs
boson appears SM-like due to the alignment limit of a
multidoublet Higgs sector. The alignment limit does not
necessarily imply that the additional Higgs states of the
model are heavy. Indeed, they can be light and non-
decoupled and thus lead to exciting new effects to be
probed at Run 2 of the LHC.
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APPENDIX A: SCALAR POTENTIAL QUARTIC
COEFFICIENTS IN THE Z2-BASIS IN TERMS

OF HIGGS BASIS COEFFICIENTS

In Eqs. (21)–(25), we have provided expressions for the
Higgs basis quantities Zi in terms of the quartic coefficients
of the scalar potential λi defined in Eq. (1). In this
Appendix, we provide the inverse of Eqs. (21)–(25) by
expressing the λi in terms of the Zi,

λ1¼Z1c4βþZ2s4βþ
1

2
Z345s22β−2s2βðc2βZ6þs2βZ7Þ; ðA1Þ

λ2¼Z1s4βþZ2c4βþ
1

2
Z345s22βþ2s2βðs2βZ6þc2βZ7Þ; ðA2Þ

λi ¼ Zi þ
1

4
s22βðZ1 þ Z2 − 2Z345Þ

þ s2βc2βðZ6 − Z7Þ; for i ¼ 3; 4; 5; ðA3Þ

where Z345 ≡ Z3 þ Z4 þ Z5. However, these results do not
take into account the fact that λ6 ¼ λ7 ¼ 0, which yields
two relations among the Zi. These relations were given in
Eqs. (26) and (27) and are repeated below for the
convenience of the reader. Recall that we employ a
convention where 0 ≤ β ≤ 1

2
π. Then, Z2 and Z345 are

dependent quantities for β ≠ 0, 1
4
π, 1

2
π,

Z2 ¼ Z1 þ 2ðZ6 þ Z7Þ cot 2β; ðA4Þ

Z345 ¼ Z1 þ 2Z6 cot 2β − ðZ6 − Z7Þ tan 2β: ðA5Þ

An alternative form of Eq. (A5) is obtained by combining
the results of Eqs. (A4) and (A5), which yields

Z345 ¼ Z2 − 2Z7 cot 2β − ðZ6 − Z7Þ tan 2β: ðA6Þ

Taking the average of Eqs. (A5) and (A6) provides one
more useful relation that can be used as the second
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condition for the softly broken Z2 symmetry along with
Eq. (A4),

Z345 ¼
1

2
ðZ1 þ Z2Þ þ 2ðZ6 − Z7Þ cot 4β: ðA7Þ

Using Eqs. (A4) and (A7), it follows that if β ¼ 0, 1
2
π then

Z6 ¼ Z7 ¼ 0; if β ¼ 1
8
π, 3

8
π then Z345 ¼ 1

2
ðZ1 þ Z2Þ; and if

β ¼ 1
4
π then Z1 ¼ Z2 and Z6 ¼ Z7.

Consequently, the expressions for the λi in terms of the
Zi can be written in numerous equivalent ways depending
on the choice of independent quantities. For example,
if β ≠ 1

4
π, then eliminating Z345 and either Z1 or Z2

yields

λ1 ¼
�
Z1−Z6 tan2βþ 1

2
tan2β tan2βðZ6þZ7Þ; if β ≠ 1

2
π;

Z2þZ7 tan2β− 1
2
cot2β tan2βðZ6þZ7Þ; if β ≠ 0;

ðA8Þ

λ2¼
�
Z1−Z6 tan2βþ 1

2
cot2β tan2βðZ6þZ7Þ; if β≠0;

Z2þZ7 tan2β− 1
2
tan2β tan2βðZ6þZ7Þ; if β≠ 1

2
π;

ðA9Þ

λi ¼ Zi þ
1

2
ðZ6 − Z7Þ tan 2β; for i ¼ 3; 4; 5: ðA10Þ

Note that theZ2-basis and the Higgs basis coincide if β ¼ 0

(in which case Φ1 ¼ H1 and Φ2 ¼ H2) and if β ¼ 1
2
π (in

which case Φ1 ¼ H2 and Φ2 ¼ H1). The two alternative
forms given in Eqs. (A8) and (A9) are a consequence of the
symmetry of Eqs. (A4)–(A7) under the interchanges,
Z1↔Z2, Z6↔Z7, β↔ 1

2
π − β.

The exclusion of β ¼ 1
4
π in Eqs. (A8)–(A10) is an

artifact of expressing these results in terms of both Z6

and Z7. Nevertheless, there is no discontinuity, since Z6 ¼
Z7 at β ¼ 1

4
π. One way to avoid this inconvenience is to

eliminate either Z6 or Z7 in favor of Z345. The end result is

λ1 ¼
(
Z1ð1 − 1

2
tan2βÞ þ 1

2
Z345tan2β − 1

2
Z6 tan βð5 − tan2βÞ; if β ≠ 1

2
π;

Z2ð1 − 1
2
cot2βÞ þ 1

2
Z345cot2β − 1

2
Z7 cot βð5 − cot2βÞ; if β ≠ 0;

; ðA11Þ

λ2 ¼
(
Z1ð1 − 1

2
cot2βÞ þ 1

2
Z345cot2β þ 1

2
Z6 cot βð5 − cot2βÞ; if β ≠ 0;

Z2ð1 − 1
2
tan2βÞ þ 1

2
Z345tan2β þ 1

2
Z7 tan βð5 − tan2βÞ; if β ≠ 1

2
π;
; ðA12Þ

λi ¼
(
Zi þ 1

2
ðZ1 − Z345Þ þ Z6 cot 2β; for i ¼ 3; 4; 5 and β ≠ 0; 1

2
π;

Zi þ 1
2
ðZ2 − Z345Þ − Z7 cot 2β; for i ¼ 3; 4; 5 and β ≠ 0; 1

2
π:

ðA13Þ

Finally, one may choose to eliminate both Z6 and Z7,
using Eqs. (A4) and (A7). The end result is valid for
β ≠ 1

8
π, 1

4
π, 3

8
π,22

λ1 ¼
1

2
ðZ1 þ Z2Þ þ

s22β
4c4β

ðZ1 þ Z2 − 2Z345Þ

þ 1

2c2β
ðZ1 − Z2Þ; ðA14Þ

λ2 ¼
1

2
ðZ1 þ Z2Þ þ

s22β
4c4β

ðZ1 þ Z2 − 2Z345Þ

−
1

2c2β
ðZ1 − Z2Þ; ðA15Þ

λi ¼ Zi −
s22β
2c4β

ðZ1 þ Z2 − 2Z345Þ; for i ¼ 3; 4; 5:

ðA16Þ

The conditions for the stability of the scalar potential
[Eq. (1)] for λ6 ¼ λ7 ¼ 0 were first given in Ref. [57],

λ1 > 0; λ2 > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ðA17Þ

Using the results of this Appendix, one can rewrite the
stability conditions in terms of the Zi. The resulting
expressions are not especially illuminating, so we will
not exhibit them explicitly.
In addition, we note that (under the assumption of

λ6 ¼ λ7 ¼ 0) the λi (i ¼ 1; 2;…; 5) can be reconstructed
in principle as follows. Assume that cβ−α has been deduced
from precision measurements of the SM-like Higgs boson
(assumed to be h) and β is determined via the properties of

22Eliminating both Z6 and Z7 is not particularly useful in the
cases of β ¼ 1

8
π, 3

8
π, where Z1 þ Z2 ¼ 2Z345 and in the case of

β ¼ 1
4
π, where Z1 ¼ Z2 [cf. Eqs. (A4) and (A7)].
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the heavier Higgs states. We also assume that all four Higgs
masses (mh, mH, mA, and mH�) have been measured.
Lastly, we assume that a small deviation in the signal
strength for h → γγ can be attributed to the presence of a
charged Higgs loop,23 in which case we can extract a value
for ghHþH−. With all this information in hand, we begin by
using Eq. (47) [or equivalently, Eq. (42)] to obtain Z6. Next,
we employ Eqs. (41) and (43) to obtain Z1 and Z5 and
Eqs. (33) and (34) for the squared-mass difference,
m2

H� −m2
A, to deduce Z4 − Z5, which together with the

previous determination yields a value for Z4. Close to the
alignment limit, we can use ghHþH− to extract Z3

[cf. Eqs. (65) and (76)]. We now have enough information
to evaluate Z345. Finally, we can use Eqs. (A9) and (A10) to
obtain Z2 and Z7. We now have all the Zi (for
i ¼ 1; 2;…7), which can then be employed with the
formulas provided in this Appendix to obtain the
λi (i ¼ 1; 2;…; 5).

APPENDIX B: TRILINEAR HIGGS
SELF-COUPLINGS IN TERMS OF

PHYSICAL HIGGS MASSES

It is convenient to reexpress the trilinear Higgs self-
couplings in terms of the physical Higgs masses. First,
Eqs. (32) and (34) yield

ðZ3 þ Z4 − Z5Þv2 ¼ 2ðm2
A − m̄2Þ þ Z1v2 þ 2Z6v2 cot 2β:

ðB1Þ

Using this result along with Eqs. (41)–(43) and (49), we
end up with

½ðZ3 þ Z4 − Z5Þsβ−α þ Z7cβ−α�v2
¼ ½m2

h þ 2ðm2
A − m̄2Þ�sβ−α þ 2 cot 2βðm2

h − m̄2Þcβ−α;
ðB2Þ

½ðZ3 þ Z4 − Z5Þcβ−α − Z7sβ−α�v2
¼ ½m2

H þ 2ðm2
A − m̄2Þ�cβ−α − 2 cot 2βðm2

H − m̄2Þsβ−α:
ðB3Þ

Noting that Eqs. (33) and (34) yield m2
A −m2

H� ¼
1
2
ðZ4 − Z5Þv2, the above results immediately yield

½Z3sβ−α þ Z7cβ−α�v2
¼ ½m2

h þ 2ðm2
H� − m̄2Þ�sβ−α þ 2 cot 2βðm2

h − m̄2Þcβ−α;
ðB4Þ

½Z3cβ−α − Z7sβ−α�v2
¼ ½m2

H þ 2ðm2
H� − m̄2Þ�cβ−α − 2 cot 2βðm2

H − m̄2Þsβ−α:
ðB5Þ

Thus, from Eqs. (59)–(66), we obtain

ghAA ¼ −
1

v
f½m2

h þ 2ðm2
A − m̄2Þ�sβ−α

þ 2 cot 2βðm2
h − m̄2Þcβ−αg; ðB6Þ

gHAA ¼ −
1

v
f½m2

H þ 2ðm2
A − m̄2Þ�cβ−α

− 2 cot 2βðm2
H − m̄2Þsβ−αg; ðB7Þ

ghHþH− ¼ −
1

v
f½m2

h þ 2ðm2
H� − m̄2Þ�sβ−α

þ 2 cot 2βðm2
h − m̄2Þcβ−αg; ðB8Þ

gHHþH− ¼ −
1

v
f½m2

H þ 2ðm2
H� − m̄2Þ�cβ−α

− 2 cot 2βðm2
H − m̄2Þsβ−αg: ðB9Þ

ghHH ¼ sβ−α
v

f2m̄2 − 2m2
H −m2

h þ 2ð3m̄2 − 2m2
H −m2

hÞðsβ−α cot 2β − cβ−αÞcβ−αg; ðB10Þ

gHhh ¼ −
cβ−α
v

f4m̄2 −m2
H − 2m2

h þ 2ð3m̄2 −m2
H − 2m2

hÞðsβ−α cot 2β − cβ−αÞcβ−αg; ðB11Þ

ghhh ¼ −
3

v
fm2

hsβ−α þ 2ðm2
h − m̄2Þðcβ−α cot 2β þ sβ−αÞc2β−αg; ðB12Þ

gHHH ¼ −
3

v
fm2

Hcβ−α − 2ðm2
H − m̄2Þðsβ−α cot 2β − cβ−αÞs2β−αg; ðB13Þ

23In the absence of a clear deviation from the SM in the γγ signal, one would be forced to seek out some measurable triple Higgs
coupling involving no more than a single SM-like Higgs boson to avoid a suppression of the term that is sensitive to Z3 or Z7

[cf. Eqs. (59)–(60)].
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