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We study some aspects of perturbation theory in N ¼ 1 supersymmetric Abelian gauge theories with
massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in one
particle irreducible (1PI) diagrams, associatedwith a 1=k4 term in the propagator for thevector superfield.We
examine this structure in supersymmetric QED. The IR divergences are gauge dependent and must cancel in
physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial
way, amounting to a reorganization of the perturbative series from powers of e2 to powers of e. We also show
how these complications are avoided in cases where a Wilsonian effective action can be defined.
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I. INTRODUCTION

In weakly coupled supersymmetric field theories, it is
convenient for certain applications to employ a manifestly
supersymmetric perturbation theory. For example, non-
renormalization theorems were first proven using super-
graph techniques [1]. These proofs rely on the existence of
a particular infrared-safe choice of gauge, analogous at one-
loop order to Feynman gauge in nonsupersymmetric QED.
However, in other supersymmetric gauges, perturbation

theory is plagued by unphysical infrared divergences.
Difficulties may be anticipated from the superspace
propagator for the vector superfield. In this paper, we
focus on the supersymmetric extension of QED [2] (hence-
forth denoted as SQED). In the supersymmetric Rξ gauge
[3,4], the Lagrangian of SQED is supplemented by a gauge
fixing term,1

L ¼
Z

d4θΦ†
þe2eVΦþ þ

Z
d4θΦ†

−e−2eVΦ−

þ
�Z

d2θmΦþΦ− þ H:c:

�

þ
�
1

4

Z
d2θWαWα þ H:c:

�

−
ξ

8

Z
d4θðD2VÞðD̄2VÞ; ð1:1Þ

leading to the vector superfield propagator2

iΔVðk; θ1; θ2Þ ¼
i
k4

�
1 −

1

ξ

�
eðθ1σμθ̄2−θ2σμθ̄1Þkμ

−
i

4k2

�
1þ 1

ξ

�
δ4ðθ1 − θ2Þeðθ1σμθ̄2−θ2σμθ̄1Þkμ :

ð1:2Þ

It is striking that away from ξ ¼ 1, the propagator behaves
as 1=k4 for small k. This behavior can lead to infrared (IR)
divergences in loop graphs that probe the small-k modes
of V.
We will exhibit such IR divergences in one-loop con-

tributions to the two-point functions of SQED with massive
charged matter. The appearance of infrared issues has been
noted in the past. Reference [7] described a resolution in
non-Abelian gauge theories involving the introduction of a
nonlocal gauge fixing term and adjusting the gauge fixing
parameter to eliminate the divergences order by order in
perturbation theory. In massive Abelian theories, this
procedure simplifies to the adjustment of the gauge fixing
parameter without modifying the gauge fixing term itself.
References [8,9] gave general proofs that the IR divergen-
ces can be regulated by a gauge-variant mass parameter
and that Green functions of gauge invariant operators are
independent of the regulator mass. Reference [10] com-
puted three loop contributions to anomalous dimensions
in non-Abelian gauge theories working in Feynman gauge
with a suitable infrared regulator and obtained sensible
results without infrared sensitivity.
On the other hand, it is also not difficult to regulate the

infrared in a gauge-invariant way. Since the divergences are
gauge dependent, they are unphysical and must eventually
drop out of observable quantities. We study this cancella-
tion in the pole mass of the electron chiral supermultiplet.

1Our conventions for supersymmetric notation follow that of
Ref. [5].

2Note that the normalization of this propagator differs by a
factor of 2 from the vector superfield propagator given in Ref. [6].
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By focusing on the explicit nature of the cancellation in a
particular observable, our analysis is complementary to
the general results of Refs. [8,9]. We find an interesting
structure: near the pole, the perturbative series for the
two-point functions reorganizes itself. Whereas the naïve
one-loop graphs contribute to the series at Oðe2Þ, near the
pole, some—but not all—of the graphs exhibit singularities
that enhance their contributions to OðeÞ. We find exact
cancellation between the OðeÞ one-loop graphs, including
their IR-divergent pieces. We argue that the cancellation of
IR-divergent terms at Oðe2Þ must occur between a combi-
nation of the remaining one-loop and enhanced two-loop
graphs.
If light neutral fields are added to the theory, the charged

massive fields may be integrated out to obtain a Wilsonian
effective action subject to the naïve nonrenormalization
theorems. The resulting wave function renormalization
should be gauge invariant, and in particular infrared diver-
gences should cancel order by order in the effective action.
We will verify this at low orders in the perturbation series.
This paper is organized as follows. In Sec. II, we review

and collect the SQED superspace and component propa-
gators relevant for our analysis. In Sec. III, after recalling
the gauge dependence of the mass renormalization in
ordinary QED, we describe the one-loop renormalization
of the electron mass in SQED. We show that there are
infrared divergences and nonlocal behavior in the one
particle irreducible (1PI) corrections to the helicity-flip and
helicity-preserving propagators. The nonlocal factors are
singular near the mass shell and lead to a mixing of loop
orders at fixed order in e. We show that the leading IR-
divergent gauge dependence cancels in the one-loop
electron pole mass, while subleading unphysical contribu-
tions must cancel against two-loop terms. We also recover
the well-known result [11] that the ultraviolet (UV)
divergent part of the mass renormalization is gauge
invariant. In Sec. V, we couple a massless, neutral field
to the charged fields and demonstrate cancellation of
infrared contributions to the self-energy at two loops.
We discuss the implications for the Wilsonian effective
action in this case. In Sec. VI, we demonstrate the presence
of infrared divergences at higher order in the gauge ξ ¼ 1,
but show that it is possible to choose a gauge, order by
order, in which infrared divergences are absent. In Sec. VII
we summarize and conclude.
Additional background material and further results are

collected in three appendixes. In Appendix A, we review
mass and wave function renormalization of nonsuper-
symmetric QED. In Appendix B, we discuss the compu-
tation of the tree-level propagators of supersymmetric
QED and examine the supersymmetric relations among
the two-point functions. Finally, in Appendix C, we
demonstrate that in addition to the divergences, the finite
corrections to the physical electron mass also vanish in
the on-shell limit.

II. PERTURBATION THEORY IN SQED

For convenience, in this section we collect the well-
known propagator expressions in SQED. In superspace, the
vector propagator was given in Eq. (1.2) and is repeated
here for the convenience of the reader,

iΔVðk;θ1;θ2Þ ¼
i
k4

�
1−

1

ξ

�
eðθ1σμθ̄2−θ2σμθ̄1Þkμ

−
i

4k2

�
1þ 1

ξ

�
δ4ðθ1 − θ2Þeðθ1σμθ̄2−θ2σμθ̄1Þkμ :

ð2:1Þ

The corresponding propagators of the component fields are
given in Appendix B.
We study the theory with massive electrons, with the

superpotential given by

W ¼ mΦþΦ−; ð2:2Þ

for which the superfield propagators are

iΔΦ�Φ∓ðk; θ1; θ2Þ

¼ −imδð2Þðθ1 − θ2Þ exp½ðθ1σμθ̄1 − θ2σ
μθ̄2Þkμ�

1

k2 −m2
;

ð2:3Þ

iΔΦ†
�Φ

†∓ðk; θ1; θ2Þ

¼ þimδð2Þðθ̄1 − θ̄2Þ exp½ðθ1σμθ̄1 − θ2σ
μθ̄2Þkμ�

1

k2 −m2
;

ð2:4Þ

iΔΦ�Φ
†
�
ðk; θ1; θ2Þ

¼ i exp½ðθ1σμθ̄1 − θ2σ
μθ̄2 þ 2θ1σ

μθ̄2Þkμ�
1

k2 −m2
:

ð2:5Þ

It is helpful (and in many computations simpler) to work
with a mixture of component and superspace formalisms.
We parametrize the vector superfield components as

Vðx; θ; θ̄Þ ¼ aðxÞ þ iθχðxÞ − iθ̄ χ̄ðxÞ þ θ2MðxÞ þ θ̄2M̄ðxÞ

þ iθσμθ̄AμðxÞ þ iθ2θ̄

�
λ̄ðxÞ − 1

2
iσ̄μ∂μχðxÞ

�

− iθ̄2θ

�
λðxÞ − 1

2
iσμ∂μχ̄ðxÞ

�

þ 1

2
θ2θ̄2

�
DðxÞ − 1

2
□aðxÞ

�
: ð2:6Þ

In Appendix B. 1, we show that the component Lagrangian
for the vector includes the terms
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LV ¼ 1

2
ð1 − ξÞD2 −

1

2
ξð□aÞ2 þ ξD□a: ð2:7Þ

Inverting the quadratic form gives for the momentum space
propagators3 of a and D

hDDi ¼ i; ð2:8Þ

haDi ¼ −
i
k2

; ð2:9Þ

haai ¼
�
1 −

1

ξ

�
i
k4

: ð2:10Þ

We see that in components, the 1=k4 infrared behavior
discussed in Sec. I can be traced to the kinetic term for the
lowest component of V, which contains four derivatives in
a general gauge. In the ξ ¼ 1 gauge, the 1=k4 terms
disappear, and severe infrared divergences are avoided in
low orders of perturbation theory. However, loop correc-
tions will reintroduce 1=k4 terms in the propagator. In
particular, at the level of component fields, there is an haDi
propagator, and at one-loop charged fields correct the hDDi
two-point function at zero momentum.

III. SELF-ENERGIES IN SQED

The naïve expectation from the nonrenormalization
theorems is that there should be no renormalization of
the superpotential mass m arising from the ΦþΦ− self-
energy. Any renormalization of the physical mass should
arise as a result of corrections to the Kähler potential.
In supersymmetric Feynman gauge, ξ ¼ 1, there are

indeed no one-loop 1PI contributions to hΦþΦ−i. This can
be seen directly in superspace, as in Ref. [1]. It can also be
seen by working in components with explicit auxiliary
fields. We take as the component expansion of the chiral
superfields

Φ�ðx; θ; θ̄Þ ¼ expð−iθσμθ̄∂μÞ½ϕ�ðxÞ þ
ffiffiffi
2

p
θψ�ðxÞ

þ θθF�ðxÞ�: ð3:1Þ

In particular, such a two-point function for the
superfields would yield, in components, a nonvanishing
hFþϕ− þ F−ϕþi. But it is easy to see there is no such
graph at one loop. There is a wave function renormalization
for Φþ and Φ− which is ultraviolet divergent and corrects
the physical mass.
In more general gauges, the situation is more compli-

cated. At one loop, there are UV-finite, IR-divergent,
nonlocal contributions to hΦþΦ−i. The apparent violation

of nonrenormalization is of the form discussed in
Refs. [12–14] and attributable to the nonlocal nature of
1PI effective actions [15]. There are also corrections to
hΦ�Φ�†i that are both UV and IR divergent. Only suitable
physical questions are expected to yield finite and gauge-
invariant answers. The new feature for ξ ≠ 1, namely the
infrared divergences, arise from the 1=k4 term in the vector
superfield propagator noted above.
To see these divergences explicitly, it is convenient to

focus on two types of self-energies involving the scalar
components of the electron supermultiplets: hFþϕ−i cor-
responding to a helicity-flip process, and hF�þFþi corre-
sponding to a helicity-preserving process.
Corrections to the hFþϕ−i propagator come from the

diagram shown in Fig. 1. In terms of the component fields,
only a couples to F†F and propagates along the vector line.
We obtain

IFþϕ−
¼ −e2m

�
1 −

1

ξ

�
p2

Z
d4k
ð2πÞ4

1

k4½ðp − kÞ2 −m2� ;

ð3:2Þ

which is IR divergent and UV finite. Focusing on the small
k region yields

ðIFþϕ−
ÞIR ∼ −e2m

�
1 −

1

ξ

�
p2

p2 −m2

×
Z

d4k
ð2πÞ4

1

k4
for k2 ≪ p2: ð3:3Þ

At one loop we can cut off the infrared divergence at a small
momentum “by hand,” or by introducing a small mass for
the vector superfield. Dimensional regularization [16,17]
with d ¼ 4 − 2δ and δ < 0 provides a gauge-invariant IR
regulator [18].4 The IR-divergent part is

FIG. 1. One-loop contribution to the helicity-flip process.

3Here hDDi is defined such that h0jTDðxÞDðyÞj0iF:T:≡
ð2πÞ−4 R d4khDDi exp½−ik · ðx − yÞ�. Similar expressions apply
to haDi and haai.

4In practice, we should employ dimensional reduction [19–21]
in order to preserve the supersymmetric properties of the self-
energy functions. However, dimensional reduction differs from
dimensional regularization only in the treatment of the internal
vector boson lines. In the computations presented in this paper,
the vector boson components of internal vector superfield lines
do not appear. For example, the FþΦ

†
þV vertex, which appears in

Figs. 1 and 2, does not involve a coupling of the vector boson
field component of V. Consequently, we do not need to
distinguish between dimensional regularization and dimensional
reduction in this work.
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ðIFþϕ−
ÞIR ¼ −im

e2

16π2

�
1 −

1

ξ

�
p2

p2 −m2

1

δ
: ð3:4Þ

The hF�þFþi propagator receives corrections from the
“sunset” and “seagull” diagrams shown in Fig. 2. Both the
a andM components of V propagate in the sunset diagram.
The former gives rise to an IR singularity, while the latter
provides a ultraviolet divergence. The Feynman integrals
contributing to the sunset diagram are

IsunF�
þFþ ¼ −

e2

2

�
−2
�
1 −

1

ξ

�Z
d4k
ð2πÞ4

p2 − p · k
k4½ðp − kÞ2 −m2�

þ 1

ξ

Z
d4k
ð2πÞ4

1

k2½ðp − kÞ2 −m2�
�
: ð3:5Þ

We isolate the IR divergence in the first integral with
dimensional regularization by integrating over d ¼ 4 − 2δ
dimensions, where δ < 0,

ðIsunF�
þFþÞIR ¼ −i

e2

16π2

�
1 −

1

ξ

�
p2

p2 −m2

1

δ
: ð3:6Þ

The ultraviolet divergent part, the second integral in (3.5),
may also be isolated with dimensional regularization
[19–21], by taking d ¼ 4 − 2ϵ with ϵ > 0,

ðIsunF�
þFþÞUV ¼ −

i
2

e2

16π2
1

ξ

1

ϵ
: ð3:7Þ

The a component of V propagates in the seagull loop,
giving

IseaF�
þFþ ¼ −e2

2

�
1 −

1

ξ

�Z
d4k
ð2πÞ4

1

k4
: ð3:8Þ

This Feynman integral is both UV and IR divergent.
Scaleless integrals may be consistently set to zero in
dimensional regularization [17], so it is sometimes said
that the UV and IR divergences cancel. Ultimately this
property will be unimportant for our analysis. Moreover,
we would like to keep these divergences separate at one
loop, so we retain the ϵ, δ notation of Eqs. (3.9) and (3.10)
to keep the origin of the divergences distinct.

The UV and IR divergent pieces are

ðIseaF�
þFþÞUV ¼ −

i
2

e2

16π2

�
1 −

1

ξ

�
1

ϵ
; ð3:9Þ

ðIseaF�
þFþÞIR ¼ þ i

2

e2

16π2

�
1 −

1

ξ

�
1

δ
: ð3:10Þ

We have seen that the ΦþΦ− propagator is UV finite
in any Rξ gauge. Therefore, if the physical mass is to be
gauge invariant, the ultraviolet divergent pieces of the
wave function renormalization must be gauge invariant
[11]. This property is manifest in the sum of Eqs. (3.7) and
(3.9), where terms proportional to ð1=ϵÞ · ð1=ξÞ cancel.

IV. THE ELECTRON POLE MASS

In Appendix A, we review the one-loop correction to
the mass of the electron in ordinary QED in the Rξ gauges.
In brief, the quadratic terms in the bare 1PI effective action
have the form

L ∋ ð1þ aðpÞÞψ̄0pψ0 −m0ð1þ bðpÞÞψ̄0ψ0 þ � � � :
ð4:1Þ

In canonical normalization, one can define a one-loop
“mass shift” for general p,

δmðpÞ ¼ m0½bðpÞ − aðpÞ�: ð4:2Þ

The ultraviolet divergence in the mass shift (giving rise to the
β function for the renormalized mass parameter) is gauge
invariant, with gauge-dependent terms canceling between
the helicity-flip and helicity-preserving contributions to the
self-energy. However, in a given renormalization scheme the
finite pieces of the mass shift are only gauge invariant on
shell. In the case of SQED, we might expect something
similar, with gauge invariance—and now the cancellation of
infrared divergences—holding only on shell.
There is an extra subtlety in SQED due to the nonlocal,

ðp2 −m2Þ−1 behavior we have seen in general Rξ gauges. If
the one-loop pole mass is shifted from the tree-level mass
by a power of e2, as in most renormalization schemes,
factors of ðp2 −m2Þ−1 can spoil the naïve ordering of loop
corrections in powers of e2. (This is analogous to issues
with ordering in e in finite temperature perturbation theory
in ordinary gauge theories.) In the next two subsections,
we examine this subtlety and the gauge invariance of the
supersymmetric electron mass in greater detail.

A. Nonlocality and the SQED loop expansion

The quadratic terms in the renormalized effective action
involving the scalar component fields ϕ� and F� may be
written as

FIG. 2. One-loop contributions to the helicity-preserving
process.
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Leff
ϕF ¼

�
F�þ ϕ−

�
Δ−1

Fϕ

�
Fþ
ϕ�
−

�
þ ðþ ↔ −Þ; ð4:3Þ

where Δ−1
Fϕ is the inverse propagator matrix [cf. Eq. (B48)].

In momentum space, we can write

Δ−1
Fϕ ≡

 
1þ AðpÞ m½1þ BðpÞ�

m½1þ BðpÞ� p2½1þ AðpÞ�

!
; ð4:4Þ

where A and B are proportional to DR-renormalized self-
energies [19,20,22], the IR-divergent pieces of which were
computed above. The pole mass for the multiplet is
determined by solving detðΔ−1

FϕÞ ¼ 0,

p2 −m2 ¼ 2FðpÞm2;

FðpÞ≡ 1

2

��
1þ BðpÞ
1þ AðpÞ

�
2

− 1

�
: ð4:5Þ

F admits an expansion in powers of e2. At Oðe2Þ,
F ¼ ðB − AÞ, and A and B correspond to the UV-subtracted
one-loop diagrams of Sec. III. Thus, if FðpÞ is well
behaved near p2 ¼ m2, the physical mass receives a
one-loop correction of Oðe2Þ, mphys −m ¼ mFðmÞ.
However, if A or B have singularities associated with

nonlocal terms, the link between loops and powers of e2

can break down. For a simple toy example at one-loop
order, take the following form for FðpÞ:

FðpÞ ¼ e2
�
fs1

p2

p2 −m2
þ fn1

�
: ð4:6Þ

Here we have included a singular piece with constant
coefficient fs1 and a nonsingular piece with coefficient fn1 .
Then the leading correction to the mass is

mphys −m ¼ �em
ffiffiffiffiffiffiffiffiffiffi
fs1=2

p þOðe2Þ: ð4:7Þ

We see that the singular term contributes to the mass with
one less power of e than the nonsingular term. Likewise, it
is easy to see that two-loop contributions to FðpÞ propor-
tional to the same nonlocal singularity can contribute at
Oðe2Þ, the same as one-loop nonsingular terms.
The ambiguity in the sign in Eq. (4.7) can be resolved

only if cancellations between AðpÞ and BðpÞ are such that
fs1 ¼ 0, in which case the mass is not actually corrected at
OðeÞ. Indeed, singularities like those in this toy example
appeared in the computation above of the supersymmetric
electron self-energies, and in SQED we expect the OðeÞ
terms in the electron pole mass to cancel for other reasons:
the singularities are associated with unphysical, gauge-
dependent, IR-divergent terms, and OðeÞ corrections are
not present in Feynman gauge. The lessons we learn are the
following:

(1) The leading-order cancellation will take place
only between one-loop graphs with nonlocal
singularities.

(2) At higher orders in e, singularities must cancel
between different loop orders.

B. Cancellation of OðeÞ terms in mphys

In the previous subsection, we saw that the appearance
of nonlocal singularities in the supersymmetric electron
self-energies, combined with the requirement of gauge
invariance, implies the existence of cancellations between
contributions at different loop orders. In Appendix C, we
verify the exact cancellation for the terms at OðeÞ, arising
from the helicity-flip diagram and the helicity-preserving
sunset diagram, both of which have singularities as p2 goes
on shell. Here, for brevity, we show only the cancellation
of the IR-divergent pieces at OðeÞ arising from those
diagrams.
From the results of Sec. III, we have

AðpÞ ¼ −i
e2

16π2

�
1 −

1

ξ

�
p2

p2 −m2

1

δ
þ finite; ð4:8Þ

BðpÞ ¼ − i
e2

16π2

�
1 −

1

ξ

�
p2

p2 −m2

1

δ
þ finite; ð4:9Þ

where A and B are defined in Eq. (4.4). Consistent with our
discussion in the previous subsection, we have neglected
the seagull diagram in B. The seagull contributions are
nonsingular and contribute to the pole mass only at Oðe2Þ.
We see that the gauge-dependent IR divergences cancel in
the combination B − A appearing in the pole mass.
Although it enters at Oðe2Þ, there is an unphysical IR

divergence in the seagull diagram, which must be cancelled
by a two-loop contribution to Fðp2Þ proportional to
g4ðp2 −m2Þ−1. At two-loop order there are also double
IR divergences associated with graphs with two vector
superfield propagators. We expect the complete structure of
cancellations to be quite intricate.

V. INTEGRATING OUT MASSIVE
CHARGED FIELDS

The real power of the nonrenormalization theorems
arises in situations where a Wilsonian effective action is
useful. It is interesting to see how the gauge artifacts
discussed above, and in particular the infrared divergences
for ξ ≠ 1, cancel when massive fields are integrated out to
obtain a low energy effective action for a set of light
fields.
A simple example is generated by adding a light neutral

field to the massive SQED theory, with superpotential

W ¼ mΦþΦ− þ λΦ0ΦþΦ− þ λ0Φ3
0: ð5:1Þ
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Integrating out the massive Φ�, we obtain an effective
action for Φ0. The standard nonrenormalization theorem
analysis here would indicate that the only corrections to λ
arise from wave function renormalization. In this theory, it
is easy to check that there are no low order corrections to
the 1PI Φ3

0 three-point function (this can be done with
supergraphs, or in components, looking for an F0A0A0 1PI
Green’s function). This is a consequence of a holomorphy-
type argument [15], treating λ as a spurion and assigning it
an R charge.
There should be a renormalization of λ proportional to

the wave function renormalization ofΦ0. It should be gauge
invariant, and free of infrared divergences and other
pathologies. Gauge fields enter the wave function renorm-
alization at two loops. While the full two-loop computation
is complicated, the leading infrared divergent pieces of
individual Feynman diagrams are easily isolated. There
are many diagrams, but only a small set which are both
infrared and ultraviolet divergent, and we examine these for
illustration. In particular, diagrams which include helicity-
flip (i.e. hΦþΦ−i) propagators are ultraviolet finite, as they
comewith a positive power ofm. This leaves five diagrams,
shown in Fig. 3.
To see the cancellation of the gauge-dependent pieces,

we work at zero external momentum and isolate the leading
infrared and ultraviolet divergent piece. Consider the first
of these diagrams. It is particularly simple to compute the
F0F

†
0 component propagator. The diagram is given by (we

can now safely Wick rotate to Euclidean space)

Z
d4p
ð2π4Þ

d4k
ð2π4Þ

p2

ðp2 þm2Þ3
p2

ððpþ kÞ2 þm2Þ
1

k4
: ð5:2Þ

The most singular part of this diagram in the infrared arises
from the propagation of the lowest scalar component of the
internal vector superfield and behaves as

Z
d4p
ð2π4Þ

d4k
ð2π4Þ

1

k4
p4

ðp2 þm2Þ4 : ð5:3Þ

This expression diverges for small k and the k integral
should be thought of as cut off at jpj. The remaining
integral over p is UV divergent. For large p, the integral
takes the form

Z jΛj

m

d4p
p4

Z jpj d4k
k4

: ð5:4Þ

In the limit of small k and large Λ, all of the integrals take
this form, up to constants.
To see the cancellation, then, we need only to determine

the relative weights of these diagrams. The first three
diagrams have the same overall weight, but the third has a
sign opposite to the first two due to the opposite charges
of Φþ and Φ−. The fourth and fifth diagrams contain an
extra factor of 1=2, arising from the expansion of the
exponential in e2eV to second order, and an extra minus
sign because there is one less propagator and one less
vertex. As a result, the sum is of the form
1þ 1 − 1 − 1=2 − 1=2 ¼ 0, and the leading IR divergen-
ces cancel in the effective action.

VI. INFRARED FINITE PERTURBATION THEORY

IR divergences arise from the lowest component of the
vector superfield. We could avoid the whole issue of IR
divergences at one loop by choosing ξ ¼ 1 for our
computations, as in Ref. [1]. However, as noted in
Ref. [7], even working in Feynman gauge, infrared
divergences are still encountered at higher order. In terms
of component fields, the problem is that with ξ ¼ 1 there
is still an haDi propagator, proportional to 1=k2. The 1PI
hDDi two-point function is nonvanishing (and UV diver-
gent) at zero momentum, and together with haDi, gives
rise to a one-loop 1=k4 propagator for a through diagrams
like Fig. 4. This reintroduction of 1=k4 can be dealt with
by adjusting the gauge condition order by order to cancel
it off. For example, at one loop, the haai propagator
becomes

FIG. 4. Correction to the haai two-point function.
FIG. 3. Diagrams contributing to the Φ0 effective Lagrangian at
two loops.
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δhaai ¼ e2
1

2

�
−

2

k2
1

ξ

�
2
Z

d4q
ð2πÞ4

i
q2 −m2

i
ðk − qÞ2 −m2

¼ 8

k4
1

ξ2
e2

16π2
1

ϵ
þ � � � : ð6:1Þ

After renormalization the 1=ϵ is replaced by logðμ=mÞ at
small k.
Letting ξ ¼ 1þ δξ, we can solve for δξ such that the

1=k4 term in the corrected haai propagator vanishes,

δξ ¼ 8e2
1

ð4πÞ2 logðμ=mÞ þOðg4Þ: ð6:2Þ

This procedure may be iterated order by order in e.
Reference [7] considered non-Abelian theories, in which

some one-loop corrections to the vacuum polarization
are always proportional to logðk2Þ=k4 for small external
momentum k. This new k behavior caused further com-
plications in the removal of IR divergences, in particular
necessitating the introduction of new nonlocal gauge fixing
terms. In the massive Abelian theory, all logarithms are cut
in the infrared by m, corresponding to the decoupling of
all charged matter and the IR freedom of the gauge
coupling. Therefore we have only to cancel the 1=k4

behavior, as above.

VII. CONCLUSIONS

It is not surprising that there are infrared issues in
perturbation theory in supersymmetric gauge theories in
general gauges. From dimensional analysis alone, it follows
that

haai ¼ C
k4

; ð7:1Þ

so to avoid infrared divergences, it is necessary that the
haai two-point function vanish. This degree of freedom is a
gauge artifact; from the simple existence of Wess-Zumino
gauge [2], one expects that there can be no physical effect.
Still, we rely on covariant gauges, and particularly on the

manifest supersymmetry, locality (and infrared finiteness)
of the effective action, to make important statements,
including proofs of nonrenormalization theorems. We have
seen here that in situations in which one can integrate
out massive fields, so as to obtain a Wilsonian action for
light fields, infrared divergences and nonlocality cancel. In
discussions of 1PI actions, it is important to consider
physical questions, like the pole masses of stable particles.
We have also explained how one may choose a gauge, order
by order, so that infrared divergences cancel.
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APPENDIX A: GAUGE DEPENDENCE, WAVE
FUNCTION, AND MASS RENORMALIZATION

IN NONSUPERSYMMETRIC QED

In this appendix we review how gauge dependence
appears in the electron mass renormalization in nonsuper-
symmetric QED.
In covariant gauges, where the photon propagator is

given by5

Dμν ¼ −
1

k2

�
gμν −

kμkν
k2

ð1 − âÞ
�
; ðA1Þ

we compute the 1PI electron two-point function in momen-
tum space,

iΓð2ÞðpÞ ¼ iðp −mÞ − iΣðpÞ; ðA2Þ

where p is the four-momentum of the electron. Here we
denote the sum of the loop contributions to iΓð2ÞðpÞ by
−iΣðpÞ. At one loop, the two contributing Feynman graphs
are

The cross indicates the contribution of the terms
iδZ2ψ̄∂ψ − ðδZm þ δZ2Þmψ̄ψ of the counterterm
Lagrangian, where δZm and δZ2 are defined such that

ψ ¼ ð1þ δZ2Þ−1=2ψB;

m ¼ ð1þ δZmÞ−1mB ðA3Þ

(with subscript B denoting bare quantities and absence
thereof denoting renormalized quantities). At one loop,

5To make contact with the notation of Eq. (1.1), we note that
â≡ ξ−1. In this appendix, we prefer to employ the gauge
parameter â in order to follow the standard textbook notation
employed in the treatment of QED field theory [23].
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−iΣðpÞ ¼ ðiμϵeÞ2
Z

dnq
ð2πÞn

γνðqþ pþmÞγμ
q2½ðqþ pÞ2 −m2�

×

�
gμν − ð1 − âÞ qμqν

q2

�
þ iδZ2p

− imðδZm þ δZ2Þ: ðA4Þ

Performing the integrals, we obtain

ΣðpÞ ¼ −pAðpÞ þmBðpÞ; ðA5Þ

where

Aðp2Þ ¼ δZ2 þ
αâ
4π

ð4πÞϵΓðϵÞ þ αâ
4π

��
1þm2

p2

��
1 −

�
1 −

m2

p2

�
ln

�
1 −

p2

m2

��
− ln

�
m2

μ2

��
þOðϵÞ; ðA6Þ

Bðp2Þ ¼ δZm þ δZ2 þ
α

4π
ð3þ âÞð4πÞϵΓðϵÞ þ α

2π

�
2þ â −

1

2
ð3þ âÞ

��
1 −

m2

p2

�
ln

�
1 −

p2

m2

�
þ ln

�
m2

μ2

���
þOðϵÞ;

ðA7Þ

and α≡ e2=ð4πÞ.

1. MS Renormalization

In the modified minimal subtraction scheme [16,24], the counterterms are

δZMS
2 ¼ −

αâ
4π

ð4πÞϵΓðϵÞ;

δZMS
m ¼ −

3α

4π
ð4πÞϵΓðϵÞ: ðA8Þ

Note that δZ2 is gauge dependent, whereas δZm is gauge independent. Plugging the counterterms into (A6) and (A7),

Aðp2ÞMS ¼ αâ
4π

��
1þm2

p2

��
1 −

�
1 −

m2

p2

�
ln

�
1 −

p2

m2

��
− ln

�
m2

μ2

��
;

Bðp2ÞMS ¼ α

2π

�
2þ â −

1

2
ð3þ âÞ

��
1 −

m2

p2

�
ln
�
1 −

p2

m2

�
þ ln

�
m2

μ2

���
: ðA9Þ

The physical pole mass, denoted by me, corresponds to a zero of the inverse propagator,

Γð2Þðp2Þjp¼me
¼ 0: ðA10Þ

At one-loop order, Γð2Þðp2Þ is proportional to p −mð1þ Bðp2ÞMS − Aðp2ÞMSÞ. Off shell, the quantity Bðp2Þ − Aðp2Þ
depends on the gauge parameter,

Bðp2ÞMS − Aðp2ÞMS ¼ α

4π

�
4þ â

�
1 −

m2

p2

�
− 3 ln

�
m2 − p2

μ2

�
þm2

p2

�
3þ â

�
1 −

m2

p2

��
ln
�
1 −

p2

m2

��
: ðA11Þ

The electron pole mass, however, depends on B − A on
shell,

me ¼ m½1þ Bðm2
eÞMS − Aðm2

eÞMS�: ðA12Þ

One can easily check that Bðm2Þ − Aðm2Þ is independent of
â, demonstrating the gauge invariance of the pole mass
through one-loop order. Indeed, the pole mass must be IR
finite and independent of the gauge parameter â to all
orders in perturbation theory [25].

2. On-shell renormalization

It is also instructive to use the on-shell (OS) subtraction
scheme, where the parameter m is identified as the pole
mass. Here a well-known IR divergence appears in the
electron wave function counterterm. This divergence is
unrelated to the IR divergences in supersymmetric QED
analyzed earlier in this paper, appearing only as an artifact
of the OS renormalization scheme, but it is interesting
to see how it—and gauge dependence—appear in the
self-energy. Writing
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ΣðpÞ ¼ ΣðmÞ þ ðp −mÞΣ0ðmÞ þOððp −mÞ2Þ; ðA13Þ

the OS renormalization conditions are

ΣðmÞOS ¼ 0; Σ0ðmÞOS ¼ 0: ðA14Þ
It then follows that the inverse propagator can be written as

Γð2ÞðpÞOS ¼ p −m − ΣðpÞOS
¼ ½1þ Σ0ðmÞOS�ðp −mÞ
− ΣðmÞOS þOððp −mÞ2Þ

¼ p −mþOððp −mÞ2Þ:

Employing Eq. (A5), we can rewrite the boundary con-
ditions specified in Eq. (A14) as

Aðm2ÞOS ¼ Bðm2ÞOS;

Aðm2ÞOS ¼ 2m2

��∂BOS

∂p2

�
−
�∂AOS

∂p2

��
p2¼m2

: ðA15Þ

Using the first boundary condition and Eqs. (A6) and (A7),
we conclude that

δZOS
m ¼ −

α

4π
ð4πÞϵΓðϵÞ

�
m2

μ2

�−ϵ�3 − 2ϵ

1 − 2ϵ

�

¼ −
3α

4π

�
ð4πÞϵΓðϵÞ þ 4

3
− ln

�
m2

μ2

��
;

after dropping terms of OðϵÞ. Similarly, δZOS
2 may be

obtained from the second boundary condition,

δZOS
2 ¼ −

αâ
4π

�
m2

μ2

�−ϵ ð4πÞϵΓðϵÞ
1 − 2ϵ

þ α

4π

�
m2

μ2

�−ϵ ð4πÞϵΓð1þ ϵÞ
ϵð1 − 2ϵÞ ½â − 3þ 2ϵ�: ðA16Þ

The term on the right hand side of Eq. (A16) proportional to
ΓðϵÞ reflects the ultraviolet divergence in the unregulated
self-energy integral [cf. Eq. (A8)]. The last term on the right
hand side of Eq. (A16) which contains a pole at ϵ ¼ 0

reflects a new infrared divergence, an artifact of the OS
scheme choice. (Note that this one-loop infrared divergence
is absent in the Yennie gauge [26–31], â ¼ 3.)
We can determine Aðp2Þ and Bðp2Þ in the on-shell

scheme by writing

Aðp2ÞOS ¼ Aðp2ÞMS þ δZOS
2 − δZMS

2 ; ðA17Þ

Bðp2ÞOS ¼ Bðp2ÞMS þ δZOS
m þ δZOS

2 − δZMS
m − δZMS

2 :

ðA18Þ

Equations (A8), (A16), and (A16) yield

δZOS
2 − δZMS

2 ¼ −
αâ
2π

�
1 −

1

2
ln

�
m2

μ2

��

þ α

4π

�
m2

μ2

�−ϵ ð4πÞϵΓð1þ ϵÞ
ϵð1 − 2ϵÞ ½â − 3þ 2ϵ�;

ðA19Þ

δZOS
m − δZMS

m ¼ −
α

π

�
1 −

3

4
ln

�
m2

μ2

��
: ðA20Þ

The infrared divergence is explicitly exhibited in Eq. (A19).
Expanding about ϵ ¼ 0 yields

δZOS
2 − δZMS

2 ¼ αðâ − 3Þ
4π

ð4πÞϵΓðϵÞ − α

π

�
1 −

3

4
ln

�
m2

μ2

��
:

ðA21Þ

Thus, both Aðp2ÞOS and Bðp2ÞOS are infrared divergent
if â ≠ 3. Note that the difference Bðp2ÞOS − Aðp2ÞOS is
infrared finite. As in the MS scheme, Bðp2ÞOS − Aðp2ÞOS
depends on the gauge parameter â for general p2, but
becomes gauge invariant on shell (vanishing by
construction).

APPENDIX B: THE TWO-POINT
FUNCTIONS OF SQED

1. Tree-level propagators of SQED
in a covariant gauge

In this subsection, we focus on the terms of the SUSY-
QED Lagrangian that are independent of the chiral super-
fields Φ�. These terms are given by the last two terms of
Eq. (1.1), which can also be written in the following form:

LSQED ¼ 1

4
½WαWα�θθ þ

1

4
½W̄ _αW̄ _α�θ̄ θ̄

−
1

8
ξ½ðD2VÞðD̄2VÞ�θθθ̄ θ̄; ðB1Þ

where the subscript θθ instructs one to take the coefficient
of θθ of the corresponding superfield, etc., and the spinor
chiral superfield Wα is defined by

Wαðx; θ; θ̄Þ ¼ −
1

4
D̄2DαVðx; θ; θ̄Þ

¼ expð−iθσμθ̄∂μÞ
�
−iλαðxÞ þ θαDðxÞ

−
1

2
iðσμσ̄νθÞαFμνðxÞ − θθ½σμ∂μλ̄ðxÞ�α

�
;

ðB2Þ

where Fμν ≡ ∂μVν − ∂νVμ.
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The two-component spinor notation employed in this
paper follows that of Refs. [5,32]. Following Ref. [5], the
spinor covariant derivatives are given by

Dα ¼
∂
∂θα − iσμ

α _β
θ̄ _β∂μ; ðB3Þ

D̄ _α ¼ −
∂
∂θ̄ _α

þ iθβσμβ _α∂μ: ðB4Þ

Using these definitions,

D2≡DαDα¼ ϵαβDβDα¼−∂α∂αþ2iθ̄ _ασ̄
μ _αβ∂β∂μþ θ̄ θ̄□;

ðB5Þ

D̄2 ≡ D̄ _αD̄ _α ¼ ϵ _α _βD̄ _αD̄_β ¼ −∂ _α∂ _α þ 2iθασμ
α _β
∂̄ _β∂μ þ θθ□;

ðB6Þ

where □≡ ∂μ∂μ.
Hence, the super-QED Lagrangian including the gauge

fixing term (after dropping a total derivative) is6

LSQED ¼ −
1

4
FμνFμν −

1

2
ξð∂μVμÞ2 þ 1

2
ð1 − ξÞD2

−
1

2
ξ½ð□aÞ2 − 2D□aþ ð∂μMÞ2 þ ð∂μNÞ2�

þ ið1 − ξÞλ̄σ̄μ∂μλ − ξ½i∂μχ̄σ̄
μ□χ þ λ□χ þ λ̄□χ̄�:

ðB7Þ

To compute the tree-level propagators haai, haDi, and
hDDi, we write

LSQED ∋ 1

2
ð1 − ξÞD2 −

1

2
ξ½ð□aÞ2 − 2D□a�

¼ 1

2
ða DÞ

�
−ξ□2 ξ□

ξ□ 1 − ξ

��
a

D

�
: ðB8Þ

We compute the inverse,

�
−ξ□2 ξ□

ξ□ 1 − ξ

�−1
¼
� ð1 − ξ−1Þ□−2

□
−1

□
−1 1

�
: ðB9Þ

We can also work in momentum space by taking
∂μ → −ikμ. It then follows that the momentum space
propagator matrix is

iΔðkÞ ¼ i

� ð1 − ξ−1Þ=k4 −1=k2

−1=k2 1

�
: ðB10Þ

Hence,

haai ¼ ið1 − ξ−1Þ=k4; haDi ¼ −i=k2; hDDi ¼ i:

ðB11Þ

The tree-level fermionic propagators are obtained by
writing

LSQED ∋ 1

2
ð λ λ̄ χ χ̄ Þ

0
BBB@

0 ið1 − ξÞσμ∂μ −ξ□ 0

ið1 − ξÞσ̄μ∂μ 0 0 −ξ□
−ξ□ 0 0 iξσμ∂μ□

0 −ξ iξσ̄μ∂μ□ 0

1
CCCA
0
BBB@

λ

λ̄

χ

χ̄

1
CCCA; ðB12Þ

which differs from the fermionic part of Eq. (B7) by a total derivative which is subsequently dropped. The inverse of the
matrix that appears in Eq. (B12) is

−
1

□
2

0
BBBBB@

0 iσμ∂μ□ □ 0

iσ̄μ∂μ□ 0 0 □

□ 0 0 iðξ−1 − 1Þσμ∂μ

0 ξ−1□ iðξ−1 − 1Þσ̄μ∂μ 0

1
CCCCCA: ðB13Þ

We can now read off the propagator matrix in momentum space by taking ∂μ → −ikμ,

6The explicit form of the bosonic part of LSQED in the Rξ gauge can be found in Ref. [4].
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iΔðkÞ ¼ i
k2

0
BBB@

0 σ · k 1 0

σ̄ · k 0 0 1

1 0 0 ð1 − ξ−1Þσ · k=k2

0 1 ð1 − ξ−1Þσ̄ · k=k2 0

1
CCCA: ðB14Þ

It follows that

hλλ̄i ¼ iσ · k
k2

; hλ̄λi ¼ iσ̄ · k
k2

; ðB15Þ

hχχ̄i ¼ ið1 − ξ−1Þσ · k
k4

;

hχ̄χi ¼ ið1 − ξ−1Þσ̄ · k
k4

; ðB16Þ

hλχi ¼ hχλi ¼ hλ̄ χ̄ihχ̄ λ̄i ¼ i
k2

; ðB17Þ

hλλi¼hλ̄ λ̄i¼hχχi¼hχ̄ χ̄i¼hλχ̄i¼hχλ̄i¼hλ̄χi¼hχ̄λi¼0:

ðB18Þ
Note that the propagators for the gauginos (λ and λ̄)
are standard fermionic propagators for massless two-
component fermions [32].
Finally, the inverse of the terms quadratic in the vector

boson fields is the well-known QED expression,

1

□

�
gμν − ð1 − ξ−1Þ ∂μ∂ν

□

�
: ðB19Þ

That is, in momentum space, we obtain the standard tree-
level photon propagator in a covariant gauge,

hVμVνi ¼
i
k2

�
−gμν þ ð1 − ξ−1Þ kμkν

k2

�
: ðB20Þ

The tree-level propagators can be obtained directly from
a single master formula written in terms of the vector
superfield,7

hVðx; θ; θ̄ÞVðy; ζ; ζ̄Þi
¼ i

□
exp½iðθσμζ̄ − ζσμθ̄Þ∂μ�

×

�
1 − ξ−1

□
þ 1

4
ð1þ ξ−1Þδ4ðθ − ζÞ

�
δ4ðx − yÞ;

ðB21Þ

where

δ4ðθ − ζÞ≡ ðθ − ζÞαðθ − ζÞαðθ̄ − ζ̄Þ _βðθ̄ − ζ̄Þ _β: ðB22Þ

In momentum space, Eq. (B21) yields

hVðθ; θ̄ÞVðζ; ζ̄Þi

¼ i
k2

exp½θσ · kζ̄ − ζσ · kθ̄�

×

�
1 − ξ−1

k2
−
1

4
ð1þ ξ−1Þδ4ðθ − ζÞ

�
; ðB23Þ

which is the result quoted in Eq. (1.2). It is straightforward
to check that Eq. (B21) reproduces the tree-level propa-
gators of the component fields obtained above.
The renormalization of SQED coupled to matter is

highly nontrivial, in light of the fact that the supersym-
metric gauge-invariant Lagrangian is inherently nonlinear.
Supersymmetric procedures for the renormalization of
gauge theories (that do not impose the Wess-Zumino
gauge) have been proposed in Ref. [33].

2. Relations among the SQED two-point functions

Consider a chiral supermultiplet,

Φðx; θ; θ̄Þ ¼ expð−iθσμθ̄∂μÞ½ϕðxÞ þ
ffiffiffi
2

p
θψðxÞ þ θθFðxÞ�:

ðB24Þ

The component fields transform as

δηϕ ¼
ffiffiffi
2

p
ηψ ;

δηψα ¼ −i
ffiffiffi
2

p
ðσμη̄Þα∂μϕþ

ffiffiffi
2

p
ηαF;

δηF ¼ −i
ffiffiffi
2

p
η̄σ̄μ∂μψ ; ðB25Þ

where η and η̄ are anticommuting parameters. By Hermitian
conjugation,

δηϕ
� ¼

ffiffiffi
2

p
η̄ ψ̄ ;

δηψ̄ _α ¼ i
ffiffiffi
2

p
ðησμÞ _α∂μϕ

� þ
ffiffiffi
2

p
η̄ _αF�;

δηF� ¼ i
ffiffiffi
2

p
ð∂μψ̄Þσ̄μη: ðB26Þ

The transformed fields A ¼ ϕ, ψ or F (or their correspond-
ing complex conjugated fields) can be expressed in terms of
the commutators

7In this notation for the propagator, the time ordered product
symbol T is suppressed.
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δηAðxÞ ¼ i½ηQþ η̄ Q̄; AðxÞ�; ðB27Þ

where Q and Q̄ generate supersymmetric translations.
Consider first the identity

ih0j½ηQþ η̄ Q̄;ψαðxÞϕðyÞ�j0i ¼ 0; ðB28Þ

which follows under the assumption that the supersym-
metry generators annihilate the vacuum (i.e., supersym-
metry is an unbroken symmetry). In light of Eq. (B27), we
obtain

0 ¼ h0jδη½ψαðxÞϕðyÞ�j0i
¼ h0j½ψαðxÞ þ δηψαðxÞ�½ϕðyÞ þ δηϕðyÞ� − ψαðxÞϕðyÞj0i
¼ h0j½δηψαðxÞ�ϕðyÞ þ ψαðxÞ½δηϕðyÞ�j0i: ðB29Þ

Plugging in the transformation laws given above,

ηβfϵαβh0jFðxÞϕðyÞj0i − h0jψαðxÞψβðyÞj0ig
− iη̄_βσμ

α _β
∂x
μh0jϕðxÞϕðyÞj0i ¼ 0; ðB30Þ

where ∂x
μ ≡ ∂=∂xμ. The coefficients of η and η̄ must

separately vanish. Thus, we conclude that8

h0jψαðxÞψβðyÞj0i ¼ ϵαβh0jFðxÞϕðyÞj0i: ðB31Þ

Similarly, the identity,

ih0j½ηQþ η̄ Q̄;ϕ�ðxÞψ̄ _βðxÞ�j0i ¼ 0; ðB32Þ

yields

h0jψ̄ _αðxÞψ̄ _βðyÞj0i ¼ −ϵ _α _βh0jϕ�ðxÞF�ðyÞj0i: ðB33Þ

Next, we consider the identity,

ih0j½ηQþ η̄ Q̄;ψαðxÞϕ�ðyÞ�j0i ¼ 0: ðB34Þ

A similar computation yields

η̄_βf−iσμ
α _β
∂μh0jϕðxÞϕ�ðyÞj0i þ h0jψαðxÞψ̄ _βðyÞj0ig

þ ηαh0jFðxÞϕ�ðyÞj0i: ðB35Þ

It follows that9

h0jψαðxÞψ̄ _βðyÞj0i ¼ iσμ
α _β
∂μh0jϕðxÞϕ�ðyÞj0i: ðB36Þ

It is convenient to rewrite Eq. (B36) in momentum space,10

h0jψαðxÞψ̄ _βðyÞj0iFT ¼ p · σα _βh0jϕðxÞϕ�ðyÞj0i: ðB37Þ

Finally, we consider the identity,

ih0j½ηQþ η̄ Q̄; F�ðxÞψβðyÞ�j0i ¼ 0: ðB38Þ

Once again, a similar computation yields

fδαβh0jF�ðxÞFðyÞj0i þ iσ̄μ _ααh0jð∂μψ̄ _αðxÞψβðyÞj0igηα
− iη̄ _ασμβ _α∂y

μh0jF�ðxÞϕðyÞj0i ¼ 0: ðB39Þ

It follows that

δαβh0jF�ðxÞFðyÞj0i ¼ −iσ̄μ _αα∂μh0jψ̄ _αðxÞψβðyÞj0i: ðB40Þ

After raising the spinor indices, we can manipulate
Eq. (B40) into the following form:

h0jðψ̄ _αðxÞψβðyÞj0i ¼ iσ̄μ _αβ∂μ

□
h0jF�ðxÞFðyÞj0i: ðB41Þ

In momentum space, Eq. (B41) takes the following form:

h0jψ̄ _αðxÞψβðyÞj0iFT ¼ p · σ̄ _αβ

p2
h0jF�ðxÞFðyÞj0iFT: ðB42Þ

One further relation of interest can be found by compar-
ing Eqs. (B36) and (B42). In particular, if we lower the
spinor indices in Eq. (B42), anticommute the two fermion
fields, and interchange the position coordinates, then it
follows that

h0jψβðxÞψ̄ _αðyÞÞj0iFT ¼ p · σβ _α
p2

h0jF�ðxÞFðyÞj0iFT: ðB43Þ

Hence,

h0jF�ðxÞFðyÞj0iFT ¼ p2h0jϕðxÞϕ�ðyÞj0iFT: ðB44Þ

Note that the supersymmetric relations obtained above
also apply to the corresponding time-ordered two-point
functions; i.e., they apply to the corresponding propagators

8Note that Eq. (B30) also implies that h0jϕðxÞϕðyÞj0i is a
constant (independent of position) after noting that the two-point
function is translationally invariant.

9Note that Eq. (B35) also implies that h0jFðxÞϕ�ðyÞj0i ¼ 0.

10The Fourier transform of a translationally invariant function
fðx; yÞ≡ fðx − yÞ is given by

fðx; yÞ ¼
Z

d4p
ð2πÞ4 f̂ðpÞe

−ip·ðx−yÞ; where

f̂ðpÞ ¼
Z

d4xfðx; 0Þeip·x:

In the notation of the text above, fðx; yÞFT ≡ f̂ðpÞ. Moreover, we
note that fðy; xÞFT ¼ f̂ð−pÞ.
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to all orders in perturbation theory.11 More general supersymmetric Ward identities that relate two- and three-point 1PI
Green functions in SQED can be found in Ref. [34].
To make contact with the analysis of Appendix A, we convert from two-component to four-component fermion

notation.12 The four-component propagator function for fermions in momentum space is given by

h0jTΨðxÞΨ̄ðyÞj0iFT ¼
 h0jTψαðxÞψβðyÞj0iFT h0jTψαðxÞψ̄ _βðyÞj0iFT
h0jTψ̄ _αðxÞψβðyÞj0iFT h0jTψ̄ _αðxÞψ̄ _βðyÞj0iFT

!
;

ðB45Þ
where ΨðxÞ is a four-component spinor. Using the supersymmetric relations obtained above, it follows that

h0jTΨðxÞΨ̄ðyÞj0iFT ¼
 

−δαβh0jTFðxÞϕðyÞj0iFT
p·σα_β
p2 h0jTF�ðxÞFðyÞj0iFT

p · σ̄ _αβh0jTϕðxÞϕ�ðyÞj0iFT −δ _α _βh0jTϕ�ðxÞF�ðyÞj0iFT

!
: ðB46Þ

As a check, we apply the above results to SQED.
The matter fields correspond to two chiral multiplets,
Φþ ¼ ðϕþ;ψþ; FþÞ and Φ− ¼ ðϕ−;ψ−; F−Þ, with the cor-
responding superpotential, W ¼ mΦþΦ−. The scalar field
contributions to the Lagrangian are

L ¼ j∂μϕþj2 þ j∂μϕ−j2 þ jFþj2 þ jF−j2
þmðFþϕ− þ F−ϕþ þ H:c:Þ

¼
�
F�þ ϕ−

�
Δ−1

0Fϕ

�
Fþ
ϕ�
−

�
þ ðþ ↔ −Þ; ðB47Þ

where we have dropped terms that are a total derivative and
we have defined the inverse tree-level propagator matrix

Δ−1
0Fϕ ≡

�
1 m

m −□

�
: ðB48Þ

Inverting this matrix and passing to momentum space
yields

iΔ0FϕðpÞ ¼
i

p2 −m2

�
p2 −m
−m 1

�
: ðB49Þ

Defining the Dirac electron field by

Ψ ¼
�
ψþ
ψ̄−

�
; ðB50Þ

the four-component electron propagator is given by

h0jTΨðxÞΨ̄ðyÞj0iFT ¼
 

−δαβh0jTFþðxÞϕ−ðyÞj0iFT
p·σα_β
p2 h0jTF�þðxÞFþðyÞj0iFT

p · σ̄ _αβh0jTϕ−ðxÞϕ�
−ðyÞj0iFT −δ _α _βh0jTϕ�

−ðxÞF�þðyÞj0iFT

!
: ðB51Þ

In light of Eq. (B49), we end up with the usual tree-level
electron propagator,

h0jTΨðxÞΨ̄ðyÞj0itreeFT ¼ iðpþmÞ
p2 −m2 þ iε

: ðB52Þ

In principle, the radiatively corrected electron pole mass is
obtained by inverting the 4 × 4 propagator matrix given
by Eq. (B51), computing its determinant, and finding the
value of p2 at which the determinant vanishes (details can
be found in Ref. [22]). However, it is significantly simpler
to perform the computations by analyzing the radiative
corrections in the scalar (ϕ–F) sector, as discussed in
Sec. IVA.

APPENDIX C: CANCELLATION OF
FINITE CORRECTIONS

In the text, we focused on cancellation of the leading
IR-divergent pieces from the correction to the physical

11Strictly speaking, we should make use of the T� product
which has the property that one can freely move total derivatives
from inside of the vacuum expectation value of the product of
fields to outside. This is equivalent to defining the T product via
its functional integral representation.

12The relation between the two-component spinor and four-
component spinor notation is discussed in Ref. [32].
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electron mass in SQED with DR renormalization. Here we
demonstrate that the finite pieces also cancel.
Using dimensional regularization with d ¼ 4 − 2δ,

δ < 0, the correction to the mass term, given by
Eq. (3.2), may be expressed as

IFþϕ−
þ c:t: ¼ −2me2

�
1 −

1

ξ

�
p2

p2 −m2

1

ð4πÞ2 ð4πÞ
δ

×
ΓðδÞ
1 − δ

F

�
1þ δ;−δ; 2 − δ;

p2

p2 −m2

�

×
1

ðm2 − p2Þδ ; ðC1Þ

where F≡ 2F1 is the Gauss hypergeometric function.
The correction to the kinetic term at leading order in e is

given by Eq. (3.5). The UV divergence gets canceled by
the counterterm in DR, leaving only the finite and IR-
divergent pieces,

IF�
þFþ þ c:t: ¼ −2e2

ð4πÞ2
�
1 −

1

ξ

� ð4πÞδ
ðm2 − p2Þδ

×
p2

p2 −m2

2ΓðδÞ
ð2 − δÞð1 − δÞ

× F

�
1þ δ;−δ; 3 − δ;

p2

p2 −m2

�
: ðC2Þ

The quantity relevant to the physical mass correction is
therefore given by

IFþϕ−

m
− IF�

þFþ ¼ −2e2ð1 − 1=ξÞ
ð4πÞ2

p2

p2 −m2

ð4πÞδ
ðm2 − p2Þδ

ΓðδÞ
1 − δ

×
�
F
�
1þ δ;−δ; 2 − δ;

p2

p2 −m2

�
−

2

2 − δ
F
�
1þ δ;−δ; 3 − δ;

p2

p2 −m2

��
: ðC3Þ

The goal of this exercise is to evaluate the expression,

F ðϵÞ ¼ ΓðϵÞ
1 − ϵ

�
F

�
1þ ϵ;−ϵ; 2 − ϵ;

p2

p2 −m2

�
−

2

2 − ϵ
F

�
1þ ϵ;−ϵ; 3 − ϵ;

p2

p2 −m2

��
; ðC4Þ

in the limit of ϵ → 0.
The relevant formulas taken from Ref. [35] are as

follows. First, we make use of formula (42) on p. 103 of
Ref. [35],

ðc − b − 1ÞFða; b; c; zÞ þ bFða; bþ 1; c; zÞ
− ðc − 1ÞFða; b; c − 1; zÞ ¼ 0: ðC5Þ

Choosing a ¼ 1þ ϵ, b ¼ −ϵ, c ¼ 3 − ϵ, it follows that

ð2 − ϵÞFð1þ ϵ;−ϵ; 2 − ϵ; zÞ − 2Fð1þ ϵ;−ϵ; 3 − ϵ; zÞ
¼ −ϵFð1þ ϵ; 1 − ϵ; 3 − ϵ; zÞ: ðC6Þ

Using this result in Eq. (C4) with z≡ p2=ðp2 −m2Þ yields

F ðϵÞ ¼ −
Γð1þ ϵÞ

ð1 − ϵÞð2 − ϵÞF
�
1þ ϵ; 1 − ϵ; 3 − ϵ;

p2

p2 −m2

�
;

ðC7Þ

after using ϵΓðϵÞ ¼ Γð1þ ϵÞ. Taking the ϵ → 0 limit, we
end up with

F ð0Þ ¼ −
1

2
F

�
1; 1; 3;

p2

p2 −m2

�
: ðC8Þ

Next, we make use of formula (15) on p. 102 of
Ref. [35], which implies that

Fð1; 1; 2; zÞ ¼ −
lnð1 − zÞ

z
: ðC9Þ

We then use formula (24) of p. 102 of Ref. [35], which
gives (for n ¼ 1)

ðc − aÞðc − bÞ
c

ð1 − zÞaþb−c−1Fða; b; cþ 1; zÞ

¼ d
dz

�
ð1 − zÞaþb−cFða; b; c; zÞ

�
; ðC10Þ

to derive

Fð1; 1; 3; zÞ ¼ 2

z

�
1þ ð1 − zÞ lnð1 − zÞ

z

�
: ðC11Þ

Making use of Eq. (C11), we arrive at our final result,
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F ð0Þ ¼
�
m2

p2
− 1

��
1þm2

p2
ln

�
1 −

p2

m2

��
: ðC12Þ

The limit of p2 → m2 then yields

lim
p2→m2

F ð0Þ ¼ 0: ðC13Þ

Thus, finite corrections to the physical mass vanish in the on-shell limit.
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