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connections to the spinor helicity method and techniques for the computation of helicity
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1. Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion quantum numbers and
interactions. According to the modern understanding of the electroweak interactions, the fundamental degrees of freedom
for quarks and leptons are two-component Weyl–van der Waerden fermions [1], i.e. two-component Lorentz spinors
that transform as irreducible representations under the gauge group SU(2)L × U(1)Y . Furthermore, within the context
of supersymmetric field theories, two-component spinors enter naturally, due to the spinorial nature of the symmetry
generators themselves, and the holomorphic structure of the superpotential. Despite this, most pedagogical treatments and
practical calculations in high energy physics continue to use the four-component Dirac spinor notation, which combines
distinct irreducible representations of the Lorentz symmetry algebra. Parity-conserving theories such as QED and QCD are
well suited to the four-component fermion methods. There is also a certain perceived advantage to familiarity. However,
as we progress to phenomena at and above the scale of electroweak symmetry breaking, it seems increasingly natural
to employ two-component fermion notation, in harmony with the irreducible transformation properties dictated by the
physics.
One occasionally encounters the misconception that two-component fermion notations are somehow inherently ill-

suited or unwieldy for practical use. Perhaps this is due in part to a lack of examples of calculations using two-component
language in the pedagogical literature. In this review, we seek to dispel this idea by presenting Feynman rules for
fermions using two-component spinor notation, intended for practical calculations of cross-sections, decays, and radiative
corrections. This formalism employs a unified framework that applies equally well to Dirac fermions [2] such as the
Standard Model quarks and charged leptons, and to Majorana fermions [3] such as the light neutrinos of the seesaw
extension of the Standard Model [4,5] or the neutralinos of the minimal supersymmetric extension of the Standard Model
(MSSM) [6–10].
Spinors were introduced by Cartan in 1913 as projective representations of the rotation group [11,12], and entered into

physics via the Dirac equation in 1928 [2]. In the same year, Weyl discussed the representations of the Lorentz group [13],
including the two-component spinor representations, in terms of stereographic projective coordinates [14]. The extension
of the tensor calculus (or tensor analysis) to spinor calculus (or spinor analysis) was given by van der Waerden [1], upon
the instigation of Ehrenfest. It is in this paper that van der Waerden (not Weyl as often claimed in the literature) first
introduced the notation of dotted and undotted indices for the irreducible ( 12 , 0) and (0,

1
2 ) representations of the Lorentz

group. Both Weyl [15] and van der Waerden independently considered the decomposition of the Dirac equation into two
coupled differential equations for two-component spinors. In the 1930s, more pedagogical presentations of two-component
spinors were given in Refs. [16–18]. In particular, Ref. [16] was the first paper in English to employ the dotted and undotted
index notation. Ref. [17] also presents the first two-component spinor analysis for general relativity. In the early 1950s,
comprehensive reviews of two-component spinor techniques were published in English by Bade and Jehle [19] and in
German by Cap [20]. Shortly thereafter, Bergmann reintroduced two-component spinors into the formalism of general
relativity [21], which was followed by significant developments by Penrose [22].1 Two-component spinor techniques in
curved space are reviewed in Refs. [23,24], with an extensive bibliography given in Ref. [25]. A recent mathematical
treatment of two-component spinors and their geometry can be found in Ref. [26]. Two-component spinors also play a
central role in the covariant formulation of relativistic wave equations [27].
The formalism of two-component spinors has also been discussed in many textbooks on relativistic quantum

mechanics, quantum field theory, elementary particle physics, group theoretical methods in physics, general relativity,
and supersymmetry. For a guide to the non-supersymmetric literature, see for example, Refs. [14,28–67]. Among the
early books, we would like to draw attention to Ref. [28], which has an extensive discussion of two-component spinor
methods. Scheck [41] includes a short discussion of the field theory of two-component spinors, including the propagator. A
more extensive field theoretic treatment, including Feynman rules and applications, is given by Ticciati [49]. A modern
textbook on quantum field theory by Srednicki [65] includes a comprehensive treatment of two-component fermions

1 For typographical reasons, Penrose replaced the dotted indices with primed indices, a notation still employed by most general relativists today.
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and their quantization. Most textbooks and introductory reviews of supersymmetry [6–9,68–89] include a discussion of
two-component spinors on some level, with a treatment of dotted and undotted indices and a collection of identities
involving two-component spinors and the sigma matrices. Particularly extensive and useful sets of identities can be found
in Refs. [68,72,74,77,83,85]. Finally, some mathematically sophisticated textbook treatments of spinors can be found in
Refs. [90–92].
The standard technique for computing scattering cross-sectionswith initial and final state fermions involves squaring the

quantum S-matrix amplitude, summing over the spin states and then computing the traces of products of gamma matrices
(in the four-component spinor formalism), or products of sigma matrices (in the two-component spinor formalism). We
employ this latter technique throughout this paper (with a translation to the four-component formalism provided in an
appendix). However, the computational effort rises rapidly as the number of interfering diagrams increases. The standard
techniques typically become impractical with four or more particles in the final state. One approach to make such extensive
calculations manageable is the helicity amplitude technique. Here the scattering process is decomposed into the scattering
of helicity eigenstates. Then the individual amplitudes are computed analytically in terms of Lorentz scalar invariants, i.e. a
complex number that can be readily computed. It is then a simple numerical task to sum all the contributing amplitudes
and compute the square of the complex magnitude of the resulting sum. Such methods were first explored in Refs. [93–96],
using four-component spinors (see also Refs. [97–101]). Spinor techniques in the helicity formalism were also developed
in Ref. [102]. In fact, the natural spinor formalism for the helicity amplitude techniques makes use of the two-component
Weyl–van derWaerden spinors, which we discuss in detail in this review. Theywere implemented in the helicity amplitude
technique in Refs. [103–109]. Recently, the two-component formalism has been implemented in a computer program for
the numerical computation of amplitudes and cross-sections for event generators multi-particle processes [110].
This review is outlined as follows. In Section 2,we present our conventions and notation (with some additional discussion

of our conventions in Appendix A). We also establish numerous identities involving sigma matrices, epsilon symbols and
two-component spinors. In Section 3, we derive the basic properties of the quantized two-component fermion fields. For a
generic collection of N two-component fermion fields with identical conserved quantum numbers, the corresponding mass
matrix is an N×N complex symmetric matrix. To identify the correspondingmass eigenstates, onemust perform a fermion
mass diagonalization that differs from the usual unitary similarity transformation of an hermitian matrix that is employed
for a collection of scalar fields. In Section 4, we derive the Feynman rules for two-component spinors and describe how to
write down amplitudes in our formalism.We demonstrate how to employ the two-component formalism for both tree-level
and loop-level processes. In Section 5, we establish a naming convention for fermion and antifermion particle states and the
corresponding fields. This is important as it provides an unambiguous procedure for obtaining the amplitudes for a given
physical process, and for comparing these computations in the two-component and four-component spinor formalisms. In
Section 6 we provide an extensive number of examples of computations using the two-component spinor formalism. This
is the central part of our review.
We have relegatedmany details to a set of twelve appendices. In Appendix A, we summarize ourmetric and sigmamatrix

conventions and indicate how to translate between conventions with opposite metric signature. With our definition of the
sigma matrices, one can switch easily between the two conventions by computing one overall sign factor. In Appendix B,
we provide a comprehensive list of sigma matrix identities, and indicate which of these identities can be generalized to
d 6= 4 dimensions required for loop computations that employ dimensional regularization. Explicit forms for the two-
component spinor wave functions are given in Appendix C (where we exhibit two of the most common phase conventions
employed in the literature). The mathematics of fermion mass diagonalization is discussed in Appendix D. In contrast to
the unitary similarity transformation of the scalar squared-mass matrix, fermion mass diagonalization involves the Takagi
diagonalization [111] of a complex symmetricmatrix (for neutral fermions) or the singular value decomposition of a complex
matrix (for charged fermions). In Appendix E, we review some of the basic facts of Lie groups and Lie algebras needed in
the treatment of gauge theories. The two-component fermion propagators (derived in Section 4 using canonical field theory
techniques) can also be obtained by path integral methods, as exhibited in Appendix F.
As most textbooks on quantum field theory and elementary particle physics employ the four-component spinor

formalism for fermions, we provide in Appendix G a dictionary that allows one to translate between the two-component
and four-component spinor techniques. We use the two-component spinor methods developed in this review to establish a
generalization of the standard four-component spinor Feynman rules that incorporate Majorana fermions in a natural way.
In Appendix H, we develop a method for computing helicity amplitudes in terms of Lorentz-invariant scalar quantities.
This method, which makes use of the Bouchiat–Michel formulae [112] (originally established in the four-component
spinor formalism) is developed in the language of two-component spinors. However, these methods are somewhat limited
in scope and must be generalized in the case of multi-particle final states. This was accomplished by Hagiwara and
Zeppenfeld (HZ) based on a two-component spinor treatment [105]. In Appendix I, we provide a translation between
the HZ formalism and the two-component spinor formalism of this review. We also demonstrate that the spinor helicity
method that is now commonly used in obtaining compact expressions for helicity amplitudes of multi-particle processed
has a very simple development within the two-component spinor formalism. Finally, the two-component spinor Feynman
rules for the Standard Model, the seesaw-extended Standard Model (which incorporates massive neutrinos), the minimal
supersymmetric extension of the Standard Model (MSSM), and the R-parity-violating extension of the MSSM are given in
Appendices J–L.
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2. Essential conventions, notations and two-component spinor identities

We begin with a discussion of necessary conventions. The metric tensor is taken to be2:

gµν = gµν = diag(+1,−1,−1,−1), (2.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors (e.g. positions and momenta) are defined
with raised indices, and covariant four-vectors (e.g. derivatives) with lowered indices:

xµ = (t; Ex), (2.2)

pµ = (E; Ep), (2.3)

∂µ ≡
∂

∂xµ
= (∂/∂t; E∇), (2.4)

in units with c = 1. The totally antisymmetric pseudo-tensor εµνρσ is defined such that

ε0123 = −ε0123 = +1. (2.5)

More details on our conventions can be found in Appendix A.
The irreducible building blocks for spin-1/2 fermions are fields that transform either under the left-handed ( 12 , 0) or the

right-handed (0, 12 ) representation of the Lorentz group. Hermitian conjugation interchanges these two representations.
A Majorana fermion field can be constructed from either representation; this is the spin-1/2 analogue of a real scalar
field. A Dirac fermion field combines two equal mass two-component fields into a reducible representation of the form
( 12 , 0) ⊕ (0,

1
2 ); this is the spin-1/2 analogue of a complex scalar field. It is also possible to use four-component notation

to describe a Majorana fermion by imposing a reality condition on the spinor in order to reduce the number of degrees of
freedom in half. Details of this construction are given in Appendix G.1. However, in this review, we shall focus primarily on
two-component spinor notation for all fermions. In the following, ( 12 , 0) spinors carry undotted indices α, β, . . . = 1, 2, and
(0, 12 ) spinors carry dotted indices α̇, β̇, . . . = 1, 2.
We first provide a brief introduction to the Lorentz group and its two-dimensional spinor representations. Under a

Lorentz transformation, a contravariant four-vector xµ transforms as

xµ → x′µ = Λµνxν, (2.6)

where Λ ∈ SO(3, 1) satisfies ΛµνgµρΛρλ = gνλ. It then follows that the transformation of the corresponding covariant
four-vector xµ ≡ gµνxν satisfies:

xν = x′µΛ
µ
ν . (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected to the identity),
corresponding to a rotation by an angle θ about an axis n̂ [Eθ ≡ θ n̂] and a boost vector Eζ ≡ v̂ tanh−1 β [where v̂ ≡ Ev/|Ev| and
β ≡ |Ev|], is a 4× 4 matrix given by:

Λ = exp
(
−
i
2
θρσSρσ

)
= exp

(
−iEθ · ES − iEζ · EK

)
, (2.8)

where θ i ≡ 1
2ε
ijkθjk, ζ i ≡ θ i0 = −θ0i, Si ≡ 1

2ε
ijkSjk,K i

≡ S0i = −Si0 and

(Sρσ )
µ
ν = i(gρµ gσν − gσ µ gρν). (2.9)

Here, the indices i, j, k = 1, 2, 3 and ε123 = +1.
It follows fromEqs. (2.8) and (2.9) that an infinitesimal orthochronous Lorentz transformation is given byΛµν ' δµν +θ

µ
ν

(after noting that θµν = −θνµ). Moreover, the infinitesimal boost parameter is Eζ ≡ v̂ tanh−1 β ' β v̂ ≡ Eβ, since β � 1 for
an infinitesimal boost. Hence, the actions of the infinitesimal boosts and rotations on the spacetime coordinates are

Rotations:
{
Ex→ Ex′ ' Ex+ (Eθ × Ex),
t → t ′ ' t,

(2.10)

Boosts:
{
Ex→ Ex′ ' Ex+ Eβ t,
t → t ′ ' t + Eβ·Ex,

(2.11)

with exactly analogous transformations for any contravariant four-vector.

2 The published version of this paper employs the (+,−,−,−)Minkowski space metric. An otherwise identical version, using the (−,+,+,+)metric
favored by one of the authors (SPM), may be found at http://zippy.physics.niu.edu/spinors.html. It can also be constructed by changing a single macro at
the beginning of the LATEX source file [113], in an obvious way. You can tell which version you are presently reading from Eq. (2.1). See Appendix A for
further details and rules for translating between metric conventions.

http://zippy.physics.niu.edu/spinors.html
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With respect to the Lorentz transformationΛ, a general n-component field Φ transforms according to a representation
R of the Lorentz group as Φ(xµ) → Φ ′(x′µ) = MR(Λ)Φ(xµ), where MR(Λ) is the corresponding (finite) dR-dimensional
matrix representation. Equivalently, the functional form of the transformed fieldΦ obeys

Φ ′(xµ) = MR(Λ)Φ([Λ−1]µνxν), (2.12)

after using Eq. (2.6). For proper orthochronous Lorentz transformations,

MR = exp
(
−
i
2
θµν Jµν

)
' 1dR×dR − iEθ · EJ − iEζ · EK , (2.13)

where 1dR×dR is the dR × dR identity matrix and θµν parameterizes the Lorentz transformation Λ [Eq. (2.8)]. The six
independent components of the matrix-valued antisymmetric tensor Jµν are the dR-dimensional generators of the Lorentz
group and satisfy the commutation relations:

[Jµν, Jλκ ] = i(gµκ Jνλ + gνλ Jµκ − gµλ Jνκ − gνκ Jµλ). (2.14)

We identify EJ and EK as the generators of rotations parameterized by Eθ and boosts parameterized by Eζ, respectively, where

J i ≡ 1
2ε
ijkJjk, K i ≡ J0i. (2.15)

Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra. These are the two-
dimensional (inequivalent) representations: ( 12 , 0) and (0,

1
2 ). In the (

1
2 , 0) representation, EJ = Eσ/2 and EK = −iEσ/2 in

Eq. (2.13), which yields

M
(
1
2 ,0)
≡ M ' 12×2 − iEθ · Eσ/2− Eζ · Eσ/2, (2.16)

where Eσ ≡ (σ 1, σ 2, σ 3) are the Paulimatrices [cf. Eq. (2.27)]. By definitionM carries undotted spinor indices, as indicated by
Mαβ . A two-component ( 12 , 0) spinor is denoted byψα and transforms asψα → Mαβψβ , omitting the coordinate arguments
of the fields, which are as in Eq. (2.12). In our conventions for the location of the spinor indices, we sum implicitly over a
repeated index pair in which one index is lowered and one index is raised.
In the (0, 12 ) representation, EJ = −Eσ

∗/2 and EK = −iEσ∗/2 in Eq. (2.13), so that its representation matrix is M∗, the
complex conjugate of Eq. (2.16). By definition, the indices carried byM∗ are dotted, as indicatedby (M∗)α̇ β̇ . A two-component
(0, 12 ) spinor is denoted by ψ

Ď
α̇ and transforms as ψ

Ď
α̇ → (M∗)α̇ β̇ψ

Ď

β̇
, again suppressing the coordinate arguments of the

fields, which are as in Eq. (2.12). We distinguish between the undotted and dotted spinor index types because they cannot
be directly contracted with each other to form a Lorentz invariant quantity.
It follows that the ( 12 , 0) and (0,

1
2 ) representations are related by hermitian conjugation. That is, ifψα is a (

1
2 , 0) fermion,

then (ψα)Ď transforms as a (0, 12 ) fermion. This means that we can, and will, describe all fermion degrees of freedom using
only fields defined as left-handed ( 12 , 0) fermions ψα , and their conjugates. In combining spinors to make Lorentz tensors
[as in Eq. (2.39)], it is useful to regard ψĎ

α̇ as a row vector, and ψα as a column vector, with
3:

ψ
Ď
α̇ ≡ (ψα)

Ď. (2.17)

The Lorentz transformation property of ψĎ
α̇ then follows from (ψα)

Ď
→ (ψβ)

Ď(MĎ)β̇ α̇ [with coordinate arguments of the
fields again suppressed], where (MĎ)β̇ α̇ = (M∗)α̇ β̇ reflects the definition of the hermitian adjoint matrix as the complex
conjugate transpose of thematrix. Again the coordinate arguments of the fields have been suppressed, and are as in Eq. (2.12).
In this review,we shall employ the dotted-index notation in associationwith the dagger to denote hermitian conjugation,

as specified in Eq. (2.17). This is the notation for hermitian conjugation of spinors found in most field theory textbooks
(e.g., see Refs. [65,88,114]). However, it should be noted that many references in the supersymmetry literature (e.g., see
Refs. [68–87]) employ the bar notation made popular by Wess and Bagger [68] where ψ α̇ ≡ ψ

Ď
α̇ ≡ (ψα)

Ď.
Spinors labeled with one undotted or one dotted index are sometimes called spinors of rank one [or more precisely,

spinors of rank (1, 0) or (0, 1), respectively]. One can also define spinors of higher rank, which possess more than
one spinor index, with Lorentz transformation properties that depend on the number of undotted and dotted spinor
indices [16,19,20,23,27–39,50,52,60,78,115]. In particular, for a spinor of rank (m, n) denoted by Sα1α2···αmβ̇1β̇2···β̇n , each low-
ered undotted α-index transforms separately according toMα′i

αi in Eq. (2.16) and each lowered dotted β̇-index transforms

according to (M∗)β̇ ′i
β̇i .

3 In the early literature that employed the van der Waerden spinor index notation (surveyed in Section 1), no dagger was used in conjunction with
the dotted index. The advantage to attaching the dagger to the dotted spinor field is that it permits the development of a spinor-index-free notation for
Lorentz-covariant spinor products [see Eqs. (2.36)–(2.40) and the accompanying text].
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There are two additional spin-1/2 irreducible representations of the Lorentz group, (M−1)T and (M−1)Ď, but these are
equivalent representations to the ( 12 , 0) and the (0,

1
2 ) representations, respectively. The spinors that transform under

these representations have raised spinor indices, ψα and ψĎα̇ , with transformation laws ψα
→ [(M−1)T]αβψβ and

ψĎα̇
→ [(M−1)Ď]α̇ β̇ψ

Ďβ̇ , respectively (with coordinate arguments of the fields again suppressed). It is convenient to rewrite
the transformation law for the undotted spinor as ψα

→ ψβ(M−1)βα . In combining spinors to make Lorentz tensors [as in
Eq. (2.40)], it is useful to regard ψα as a row vector, and ψĎ α̇ as a column vector, with:

ψĎ α̇
≡ (ψα)Ď. (2.18)

The Lorentz transformation property of ψĎ α̇ then follows from (ψα)Ď → [(M−1)Ď]α̇ β̇(ψ
β)Ď.

The spinor indices are raised and loweredwith the two-index antisymmetric epsilon symbolwith non-zero components,4

ε12 = −ε21 = ε21 = −ε12 = 1, (2.19)

and the same set of sign conventions for the corresponding dotted spinor indices. In particular, we formally define εα̇β̇ ≡
(εαβ)∗ and εα̇β̇ ≡ (εαβ)

∗. Viewed as a 2×2matrix, the epsilon symbol with lowered undotted [dotted] indices is the inverse
of the epsilon symbol with raised undotted [dotted] indices. Thus, consistent with Eqs. (2.17) and (2.18), one can write5,6:

ψα = εαβψ
β , ψα

= εαβψβ , ψ
Ď
α̇ = εα̇β̇ψ

Ďβ̇ , ψĎα̇
= εα̇β̇ψ

Ď

β̇
, (2.20)

which respects Lorentz covariance due to the properties of M given in Eqs. (2.102) and (2.103). The epsilon symbols εαβ

(εαβ ) and εα̇β̇ (εα̇β̇ ), first introduced in this context in Ref. [1], are also called the spinor metric tensors, as they raise (lower)
the undotted and dotted spinor indices, respectively. Note that in raising or lowering an index of a spinor quantity, adjacent
spinor indices are summed over when multiplied on the left by the appropriate epsilon symbol.
The epsilon symbols can also be used to raise or lower undotted or dotted indices of spinors of higher rank. For example,

for an object with two undotted indices it is natural to define

Aγ δ = εγαεδβAαβ , Aγ δ = εγαεδβAαβ . (2.21)

In the special case that Aαβ = ψαχβ is a product of rank-one spinors, Eq. (2.21) is not just natural but necessary, as it follows
directly from Eq. (2.20). However, in other cases there can be a different sign associated (by convention) with raising and
lowering spinor indices, because of the antisymmetry of the epsilon symbols (in contrast to the symmetry of the spacetime
metric used to raise and lower spacetime indices). This sign convention can be defined independently for distinct higher-
rank spinors (even in the case where the higher-rank spinors possess the same index structure). Indeed, as a consequence
of our epsilon symbol conventions of Eq. (2.19), the epsilon symbols themselves satisfy:

εγ δ = −εγαεδβεαβ , εγ δ = −εγαεδβε
αβ , (2.22)

in contrast to Eq. (2.21). The above results (and similar ones with dotted indices) show that some care is required [33],
since the extra overall minus signs of Eq. (2.22) in comparison to Eq. (2.21) might otherwise have been unexpected [e.g., see
Eqs. (2.41) and (2.42) below].7 This reflects an awkwardness imposed by the epsilon symbol conventions of Eq. (2.19), rather
than an inconsistency. Practitioners of spinor algebra in the conventions used in this review should bewary of this sign issue

4 For related earlier work on the epsilon symbol and its properties, see Refs. [16,17,19,116]. Various subsets of the subsequent identities in this section
involving commuting and anticommuting two-component spinors, as well as the ε symbol and the sigma matrices appear in many books and reviews
(e.g., see Refs. [18,68–83,85–88]) and in papers (e.g., see Refs. [103–109]).
5 In the general relativity literature (see e.g., Refs. [22,23,37,42,43,46,52,60,62,64]), the more common convention for the epsilon symbol (also adopted
in Refs. [19,28,30,36,45,47,92,109]) is εαβ = εαβ with ε12 = −ε21 = 1, and similarly for the epsilon symbol with dotted spinor indices. In this convention,
one writes ψα

= εαβψβ as above, but in contrast to Eq. (2.20), ψα = ψβεβα , and similarly for the corresponding equations with dotted spinor indices.
That is, in raising [lowering] an index of a spinor quantity, adjacent spinor indices are summed over when multiplied on the left [right] by the appropriate
epsilon symbol. The various identities involving the epsilon symbols given in this review must then be modified by a minus sign for every epsilon symbol
with lowered spinor indices. There are some benefits for this alternative convention; e.g., the minus signs appearing in Eq. (2.22) are absent. However, one
must keep track of other minus signs that arise because εαβ is the negative of the inverse of εαβ . In this review, we have adopted the convention of Eq.
(2.19), which is consistent with most of the supersymmetry literature.
6 In Refs. [50,69], one finds yet another convention in which the spinor indices are raised and lowered by a two-index antisymmetric quantity,

Cαβ = −Cαβ = Cα̇β̇ = −C
α̇β̇
=

(
0 −i
i 0

)
, which play the role of the epsilon symbols. As in footnote 5, Cαβ is the negative inverse of Cαβ in which

case ψα
= Cαβψβ whereas ψα = ψβCβα , and similarly for the corresponding equations with dotted spinor indices. However, in this convention where C

is pure imaginary, if ψĎ α̇
≡ (ψα)Ď as in Eq. (2.18), then ψĎ

α̇ = −(ψα)
Ď in contrast to Eq. (2.17). We choose not to pursue the alternative epsilon symbol

conventions of footnotes 5 or 6 in this review.
7 It would be perhaps more transparent to simply replace the symbol εαβ with ε−1αβ , in which case ε

αβ is used to raise spinor indices and ε−1αβ is used to
lower spinor indices (cf. Ref. [38]). Although this convention avoids an apparent conflict between Eqs. (2.21) and (2.22), it doubles the number of distinct
epsilon symbols. We shall not adopt such an approach in this review.
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when using the epsilon symbols to explicitly raise or lower two or more spinor indices of higher-rank spinors.8 Fortunately,
such manipulations are quite rare in practical calculations.
We also introduce the two-index symmetric Kronecker delta symbol,

δ11 = δ
2
2 = 1, δ12 = δ

1
2 = 0, (2.23)

and δβ̇α̇ ≡ (δ
β
α )
∗. Eq. (2.23) implies that the numerical values of the undotted and dotted Kronecker delta symbols coincide.

The epsilon symbols with undotted and with dotted indices respectively satisfy:

εαβε
γ δ
= −δγα δ

δ
β + δ

δ
αδ
γ

β , εα̇β̇ε
γ̇ δ̇
= −δ

γ̇

α̇ δ
δ̇

β̇
+ δδ̇α̇δ

γ̇

β̇
, (2.24)

from which it follows that:

εαβε
βγ
= εγ βεβα = δ

γ
α , εα̇β̇ε

β̇γ̇
= ε γ̇ β̇εβ̇α̇ = δ

γ̇

α̇ , (2.25)

εαβεγ δ + εαγ εδβ + εαδεβγ = 0, εα̇β̇εγ̇ δ̇ + εα̇γ̇ εδ̇β̇ + εα̇δ̇εβ̇γ̇ = 0. (2.26)

In the literature, Eq. (2.26) is often referred to as the Schouten identities.9
To construct Lorentz invariant Lagrangians and observables, one needs to first combine products of spinors to make

objects that transform as Lorentz tensors. In particular, Lorentz vectors are obtained by introducing the sigma matrices σµ
αβ̇

and σµ α̇β defined by [1,14,17,18]

σ 0 = σ 0 =

(
1 0
0 1

)
, σ 1 = −σ 1 =

(
0 1
1 0

)
, (2.27)

σ 2 = −σ 2 =

(
0 −i
i 0

)
, σ 3 = −σ 3 =

(
1 0
0 −1

)
. (2.28)

The sigma matrices are hermitian, and have been defined above with an upper (contravariant) index. We denote the 2× 2
identity matrix by 12×2 and the three-vector of Pauli matrices by Eσ ≡ (σ 1, σ 2, σ 3). Hence, Eq. (2.27) is equivalent to:

σµ = (12×2; Eσ), σµ = (12×2;−Eσ). (2.29)
We also define the corresponding quantities with lower (covariant) indices:

σµ = gµνσ ν = (12×2;−Eσ), σµ = gµνσ ν = (12×2; Eσ). (2.30)
The relations between σµ and σµ are

σ
µ

αα̇ = εαβεα̇β̇σ
µ β̇β , σµ α̇α = εαβεα̇β̇σ

µ

ββ̇
, (2.31)

εαβσ
µ

βα̇ = εα̇β̇σ
µβ̇α, εα̇β̇σ

µ

αβ̇
= εαβσ

µα̇β . (2.32)

Consider a spinor of rank (n, n) denoted by Sα1α2...αnβ̇1β̇2...β̇n . The object obtained by multiplying S by σ
µ1 β̇1α1 · · · σµn β̇nαn

has the transformation properties of an nth rank contravariant Lorentz tensor [29,32,115]. For example, there is a one-to-one
correspondence between each bi-spinor Vαβ̇ and the associated Lorentz four-vector V

µ [1,17,19,20,28,29],10

Vµ ≡ 1
2σ

µβ̇αVαβ̇ , Vαβ̇ = V
µσµαβ̇ . (2.33)

In particular, if Vµ is a real four-vector then Vαβ̇ is hermitian (and vice versa). To clarify this last remark, consider the bi-
spinor Vαβ̇ regarded as a 2× 2 matrix. Then,

11,12

(V T)αβ̇ ≡ Vβα̇, (V ∗)α̇β ≡ (Vαβ̇)
∗, (V Ď)αβ̇ ≡ (Vβα̇)

∗
= (V ∗)β̇α. (2.34)

An hermitian bi-spinor satisfies V = V Ď, or equivalently Vαβ̇ = (V
∗)β̇α .

8 In the alternative conventionmentioned in footnote 5, this particular awkwardness is absent; theminus signs in the analogue of Eq. (2.22) do not occur,
in which case the rules for raising and lowering the spinor indices in Eqs. (2.21) and (2.22) are identical. More generally, in the convention of footnote 5,
the indices of all higher-rank spinors can be raised [lowered] via multiplication on the left [right] by the appropriate epsilon symbol, including the epsilon
symbols themselves, with no extra signs.
9 The Schouten identities also follow from the observation that a rank-four spinor must vanish if it is antisymmetric with respect to more than two
undotted or dotted two-component spinor indices.
10 In the general relativity literature [42,46,60,92], themore common normalization is Vµ ≡ 1

√
2
σµβ̇αVαβ̇ , which yields Vαβ̇ =

1
√
2
Vµσµαβ̇ . In this context,

the 1
√
2
σ
µ

αβ̇
are often called the Infeld–van der Waerden symbols.

11 As stressed in Ref. [19], taking the transpose of Vαβ̇ interchanges its rows and columns without altering the fact that the first spinor index is undotted
and the second spinor index is dotted. Moreover, it is often useful to further simplify the notation by defining Vα̇β ≡ (Vαβ̇ )

∗ [i.e., omitting the asterisk in
(V ∗)α̇β ]. In this notation, an hermitian bi-spinor satisfies Vαβ̇ = Vα̇β .
12 The reader is cautioned that some authors do not attach a significance to the relative placement of undotted and dotted indices [16], and thus adopt
a notational style for higher-rank spinors in which all undotted spinor indices appear before the dotted indices (see, e.g., Refs. [50,69]). In this latter
convention, one would define (V ∗)βα̇ ≡ (Vαβ̇ )

∗ . However, we choose not to adopt this approach, as it is not particularly convenient for the matrix
interpretation of a bi-spinor where the row index traditionally precedes the column index.
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Rank-two spinors (with two undotted or with two dotted indices) can also be interpreted as 2× 2 matrices. In the case
of the rank-two spinorWα

β , it is convenient to define:

(W T)α
β
≡ Wβ

α, (W ∗)α̇ β̇ ≡ (Wα
β)∗, (W Ď)β̇ α̇ ≡ (Wα

β)∗ = (W ∗)α̇ β̇ . (2.35)

Note that the matrix transposition ofWα
β interchanges the rows and columns ofW without altering the relative heights of

the α and β indices. Similar results hold forWαβ andWαβ by either lowering or raising the relevant spinor indices with the
appropriate epsilon symbol.
When constructing Lorentz tensors from fermion fields, the heights of spinor indicesmust be consistent in the sense that

lowered indices must only be contracted with raised indices. As a convention, descending contracted undotted indices and
ascending contracted dotted indices,

α
α and α̇

α̇, (2.36)

can be suppressed. In all spinor products given in this paper, contracted indices always have heights that conform to
Eq. (2.36). For example, in an index-free notation, we define:

ξη ≡ ξαηα, (2.37)

ξ ĎηĎ ≡ ξ
Ď
α̇η

Ďα̇, (2.38)

ξ Ďσµη ≡ ξ
Ď
α̇σ

µα̇βηβ , (2.39)

ξσµηĎ ≡ ξασ
µ

αβ̇
ηĎβ̇ . (2.40)

All the spinor-index-contracted products above have natural interpretations as products of matrices and vectors by
regarding ηα and ηĎα̇ as column vectors and ξ

Ď
α̇ and ξ

α as row vectors of the two-dimensional spinor space. However, the
reader is cautioned that in the index-free notation (with undotted and dotted indices suppressed), the undaggered and
daggered spinors cannot be uniquely identified as column or row vectors until their locations within the spinor product are
specified. Nevertheless, the proper identifications are straightforward, as any spinor on the left end of a spinor product can
be identified as a row vector and any spinor on the right end of a spinor product can be identified as a column vector.
For an anticommuting two-component spinor ψ , the product ψαψβ is antisymmetric with respect to the interchange

of the spinor indices α and β . Hence, this product of spinors must be proportional to εαβ . Similar conclusions hold for the
corresponding spinor products with raised undotted indices and with lowered and raised dotted indices, respectively. Thus,

ψαψβ
= −

1
2ε
αβψψ, ψαψβ =

1
2εαβψψ, (2.41)

ψĎ α̇ψĎ β̇
=
1
2ε
α̇β̇ψĎψĎ, ψ

Ď
α̇ψ

Ď

β̇
= −

1
2εα̇β̇ψ

ĎψĎ, (2.42)

where ψψ ≡ ψαψα and ψĎψĎ
≡ ψ

Ď
α̇ψ

Ď α̇ as in Eqs. (2.37) and (2.38). Note that the minus signs above can be understood
to be a consequence of the extra minus sign that arises when the indices of the epsilon symbol are lowered or raised
[cf. Eqs. (2.21) and (2.22)].
The behavior of the spinor products under hermitian conjugation (for quantum field operators) or complex conjugation

(for classical fields) is as follows:

(ξη)Ď = ηĎξ Ď, (2.43)

(ξσµηĎ)Ď = ησµξ Ď, (2.44)

(ξ Ďσµη)Ď = ηĎσµξ, (2.45)

(ξσµσ νη)Ď = ηĎσ νσµξ Ď, (2.46)

where we have used the hermiticity properties, (σµ)Ď = σµ and (σµ)Ď = σµ. More generally,

(ξΣη)Ď = ηĎΣrξ
Ď, (ξΣηĎ)Ď = ηΣrξ

Ď, (2.47)

where in each case Σ stands for any sequence of alternating σ and σ matrices, and Σr is obtained from Σ by reversing
the order of all of the σ and σ matrices, since the sigma matrices are hermitian. Eqs. (2.43)–(2.47) are applicable both to
anticommuting and to commuting spinors.
The properties of the two-component spinor fields under the discrete C, P and T transformations are elucidated

in Refs. [39,117]. The corresponding behaviors of the spinor products under C, P and T are easily obtained (and are left
as an exercise for the reader).
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The following identities can be used to systematically simplify expressions involving products of σ and σ matrices13:

σ
µ

αα̇σ
β̇β
µ = 2δα

βδβ̇ α̇, (2.48)

σ
µ

αα̇σµββ̇ = 2εαβεα̇β̇ , (2.49)

σµα̇ασ β̇βµ = 2ε
αβεα̇β̇ , (2.50)

[σµσ ν + σ νσµ]βα = 2g
µνδα

β , (2.51)

[σµσ ν + σ νσµ]α̇ β̇ = 2g
µνδα̇ β̇ , (2.52)

σµσ νσ ρ = gµνσ ρ − gµρσ ν + gνρσµ + iεµνρκσκ , (2.53)

σµσ νσ ρ = gµνσ ρ − gµρσ ν + gνρσµ − iεµνρκσ κ . (2.54)

In the literature, one sometimes sees Eqs. (2.49) and (2.50) rewritten using the identity εabεcd = δacδbd−δadδbc . However, as
this latter result does not formally respect covariance with respect to the dotted and undotted indices, we shall not employ
it here.
Computations of cross-sections and decay rates generally require traces of alternating products of σ and σ matrices

(e.g., see Ref. [104]):

Tr[σµσ ν] = Tr[σµσ ν] = 2gµν, (2.55)

Tr[σµσ νσ ρσ κ ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) , (2.56)

Tr[σµσ νσ ρσ κ ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ) . (2.57)

Traces involving a larger evennumber ofσ andσ matrices canbe systematically obtained fromEqs. (2.55)–(2.57) by repeated
use of Eqs. (2.51) and (2.52) and the cyclic property of the trace. Traces involving an odd number of σ and σ matrices cannot
arise, since there is no way to connect the spinor indices consistently.
In addition to manipulating expressions containing anticommuting fermion quantum fields, we often must deal with

products of commuting spinor wave functions that arise when evaluating the Feynman rules. In the following expressions
we denote the generic spinor by zi. In the various identities listed below, an extra minus sign arises when interchanging the
order of two anticommuting fermion fields of a given spinor index height. It is convenient to introduce the notation:

(−1)A ≡
{
+1, commuting spinors,
−1, anticommuting spinors. (2.58)

The following identities hold for the zi:

z1z2 = −(−1)Az2z1, (2.59)

zĎ1z
Ď
2 = −(−1)

AzĎ2z
Ď
1 , (2.60)

z1σµz
Ď
2 = (−1)

AzĎ2σ
µz1, (2.61)

z1σµσ νz2 = −(−1)Az2σ νσµz1, (2.62)

zĎ1σ
µσ νzĎ2 = −(−1)

AzĎ2σ
νσµzĎ1 , (2.63)

zĎ1σ
µσ ρσ νz2 = (−1)Az2σ νσ ρσµz

Ď
1 , (2.64)

and so on.14 The hermiticity properties of the spinor products given in Eqs. (2.43)–(2.47) hold for both commuting and
anticommuting spinors, with no additional sign factor.
Two-component spinor products can often be simplified by using Fierz identities. Due to the antisymmetry of the

suppressed two-index epsilon symbol [or equivalently, using the Schouten identities given in Eq. (2.26)], the following
identities are obtained:

(z1z2)(z3z4) = −(z1z3)(z4z2)− (z1z4)(z2z3), (2.65)

(zĎ1z
Ď
2)(z

Ď
3z

Ď
4) = −(z

Ď
1z

Ď
3)(z

Ď
4z

Ď
2)− (z

Ď
1z

Ď
4)(z

Ď
2z

Ď
3), (2.66)

13 Since the Kronecker delta symbol is symmetric under the interchange of its two indices, naively there is nothing gained in writing δαβ and δβ̇ α̇ , with
the spinor indices staggered as shown, instead of δβα and δ

β̇

α̇ , respectively. Nevertheless, we often prefer to employ the former rather than the latter as it
provides some insight into the spinor index structure of the equation. For example, in Eq. (2.51), α labels the row and β labels the column of the product of
sigmamatrices. Neither σµσ ν nor σ νσµ is symmetric under the interchange of the (suppressed) spinor indices (although the sum of the two is symmetric).
By writing δαβ on the right-hand side of Eq. (2.51), one formally maintains the index structure of each of the separate terms of the equation.
14 In particular, if z is a commuting spinor, then zz = zĎzĎ = 0, as emphasized in Refs. [16,19].
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where we have used Eqs. (2.59) and (2.60) to eliminate any residual factors of (−1)A. Similarly, Eqs. (2.48)–(2.50) can be
used to derive additional Fierz identities,

(z1σµz
Ď
2)(z

Ď
3σµz4) = −2(z1z4)(z

Ď
2z

Ď
3), (2.67)

(zĎ1σ
µz2)(z

Ď
3σµz4) = 2(z

Ď
1z

Ď
3)(z4z2), (2.68)

(z1σµz
Ď
2)(z3σµz

Ď
4) = 2(z1z3)(z

Ď
4z

Ď
2). (2.69)

Having eliminated all factors of (−1)A, Eqs. (2.65)–(2.69) hold for both commuting and anticommuting spinors.
From the sigma matrices, one can construct the antisymmetrized products15:

(σµν)α
β
≡
i
4

(
σµαγ̇ σ

νγ̇ β
− σ ναγ̇ σ

µγ̇ β
)
, (2.70)

(σµν)α̇ β̇ ≡
i
4

(
σµα̇γ σ ν

γ β̇
− σ ν α̇γ σ

µ

γ β̇

)
. (2.71)

Equivalently, we can use Eqs. (2.51) and (2.52) to write:

(σµσ ν)α
β
= gµνδαβ − 2i(σµν)αβ , (2.72)

(σµσ ν)α̇ β̇ = g
µνδα̇ β̇ − 2i(σ

µν)α̇ β̇ . (2.73)

The components of σµν and σµν are easily evaluated:

σ ij = σ ij = 1
2ε
ijkσ k, σ i0 = −σ 0i = −σ i0 = σ 0i = 1

2 iσ
i. (2.74)

The matrices σµν and σµν satisfy self-duality relations,

σµν = − 12 iε
µνρκσρκ , σµν = 1

2 iε
µνρκσ ρκ . (2.75)

The self-duality relations can be used to obtain the following two identities:

gκρσµν − gνρσµκ + gµρσ νκ − iεµνκλσ λρ = 0, (2.76)

gκρσµν − gνρσµκ + gµρσ νκ + iεµνκλσ λρ = 0. (2.77)

A number of useful properties and identities involving σµν and σµν can be derived. For example, Eq. (2.24) implies that:

(σµν)α
β
= εατ ε

βγ (σµν)γ
τ , (σµν)α̇ β̇ = ε

α̇τ̇ εβ̇γ̇ (σ
µν)γ̇ τ̇ , (2.78)

ετα(σµν)α
β
= εβγ (σµν)γ

τ , ετ̇ α̇(σ
µν)α̇ β̇ = εβ̇γ̇ (σ

µν)γ̇ τ̇ , (2.79)

εγ β(σ
µν)α

β
= εατ (σ

µν)γ
τ , ε γ̇ β̇(σµν)α̇ β̇ = ε

α̇τ̇ (σµν)γ̇ τ̇ . (2.80)

Using Eqs. (2.48)–(2.54), the following identities can be obtained:

(σµν)α
β(σµν)γ

τ
= εαγ ε

βτ
+ δα

τ δγ
β
= 2δατ δγ β − δαβδγ τ , (2.81)

(σµν)α̇ β̇(σµν)
γ̇
τ̇ = ε

α̇γ̇ εβ̇τ̇ + δ
α̇
τ̇ δ

γ̇
β̇ = 2δ

α̇
τ̇ δ

γ̇
β̇ − δ

α̇
β̇ δ

γ̇
τ̇ , (2.82)

(σµν)α
β(σµν)

γ̇
τ̇ = 0, (2.83)

σµνσ ρ = 1
2 i (g

νρσµ − gµρσ ν + iεµνρκσκ) , (2.84)

σµνσ ρ = 1
2 i (g

νρσµ − gµρσ ν − iεµνρκσ κ) , (2.85)

σµσ νρ = 1
2 i (g

µνσ ρ − gµρσ ν − iεµνρκσ κ) , (2.86)

σµσ νρ = 1
2 i (g

µνσ ρ − gµρσ ν + iεµνρκσκ) , (2.87)

σµνσ ρκ = − 14 (g
νρgµκ − gµρgνκ + iεµνρκ)+ 1

2 i (g
νρσµκ + gµκσ νρ − gµρσ νκ − gνκσµρ) , (2.88)

σµνσ ρκ = − 14 (g
νρgµκ − gµρgνκ − iεµνρκ)+ 1

2 i (g
νρσµκ + gµκσ νρ − gµρσ νκ − gνκσµρ) . (2.89)

15 The reader is cautioned that σµν and σµν are sometimes defined in the literature without the factor of i in Eqs. (2.70) and (2.71) (as in Ref. [77]), or
with an overall factor of 12 i (as in Ref. [71]) instead of

1
4 i.
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Eqs. (2.88) and (2.89) and the antisymmetry of σµν and σµν yield the following trace formulae:

Tr σµν = Tr σµν = 0, (2.90)

Tr[σµνσ ρκ ] = 1
2 [g

µρgνκ − gµκgνρ − iεµνρκ ] , (2.91)

Tr[σµνσ ρκ ] = 1
2 [g

µρgνκ − gµκgνρ + iεµνρκ ] . (2.92)

The properties of spinor products involving σµν and σµν are easily derived. Under hermitian conjugation (for quantum
field operators) or complex conjugation (for classical fields),

(ξσµνη)Ď = ηĎσµνξ Ď, (2.93)

due to the hermiticity relation, (σµν)Ď = σµν . Next, we use Eqs. (2.62) and (2.63) to obtain:

z1σµνz2 = (−1)Az2σµνz1, (2.94)

zĎ1σ
µνzĎ2 = (−1)

AzĎ2σ
µνzĎ1 . (2.95)

One can also derive additional Fierz identities, which follow from Eqs. (2.81)–(2.83),

(z1σµνz2)(z3σµνz4) = −2(z1z4)(z2z3)− (z1z2)(z3z4), (2.96)

(zĎ1σ
µνzĎ2)(z

Ď
3σµνz

Ď
4) = −2(z

Ď
1z

Ď
4)(z

Ď
2z

Ď
3)− (z

Ď
1z

Ď
2)(z

Ď
3z

Ď
4), (2.97)

(z1σµνz2)(z
Ď
3σµνz

Ď
4) = 0, (2.98)

where we have again used Eqs. (2.59) and (2.60) to eliminate any residual factors of (−1)A. Thus, Eqs. (2.96)–(2.98) hold
for both commuting and anticommuting spinors. A more comprehensive list of sigma matrix identities and their associated
Fierz identities are given in Appendix B.1 (see also Appendix B of Ref. [77]).
Theσµν andσµν satisfy the commutation relations of the Jµν [cf. Eq. (2.14)], and thus can be identified as the generators of

the Lorentz group in the ( 12 , 0) and (0,
1
2 ) representations, respectively. That is, for the (

1
2 , 0) representation with a lowered

undotted index (e.g. ψα), Jµν = σµν , while for the (0, 12 ) representation with a raised dotted index (e.g. ψ
Ďα̇), Jµν = σµν .

In particular, the infinitesimal forms for the 4× 4 Lorentz transformation matrixΛ and the corresponding matricesM and
(M−1)Ď that transform the ( 12 , 0) and (0,

1
2 ) spinors, respectively, are given by:

Λµν ' δ
µ
ν +

1
2

(
θανgαµ − θνβgβµ

)
, (2.99)

M ' 12×2 − 1
2 iθµνσ

µν, (2.100)

(M−1)Ď ' 12×2 − 1
2 iθµνσ

µν . (2.101)

The inverses of these quantities are obtained (to first order in θ ) by replacing θ → −θ in the above formulae. Using
Eqs. (2.78), (2.100) and (2.101), it follows that:

(M−1)γ τ = εταMαβεβγ , (2.102)

(M−1 Ď)γ̇ τ̇ = ετ̇ α̇ (MĎ)α̇ β̇ ε
β̇γ̇ . (2.103)

These results can be used to demonstrate the covariance (with respect to Lorentz transformations) of the spinor index raising
and lowering properties of the epsilon symbols defined in Eq. (2.20). The infinitesimal forms given by Eqs. (2.99)–(2.101)
can also be used [with the assistance of Eqs. (2.84)–(2.86)] to establish the following two results:

MĎσµM = Λµν σ ν, (2.104)

M−1σµ(M−1)Ď = Λµν σ ν . (2.105)

Using the Lorentz transformation properties of the undotted and dotted two-component spinor fields, Eqs. (2.104) and
(2.105) can be used, respectively, to prove that the spinor products ξ Ďσµη and ξσµηĎ transform as Lorentz four-vectors.
As an example, consider a pure boost from the rest frame to a frame where pµ = (Ep, Ep), which corresponds to θij = 0

and ζ i = θ i0 = −θ0i. We assume that the mass–shell condition is satisfied, i.e. p0 = EEp ≡ (|Ep|2 +m2)1/2. The matricesMαβ

and [(M−1)Ď]α̇ β̇ that govern the Lorentz transformations of spinor fields with a lowered undotted index and spinor fields
with a raised dotted index, respectively, are given by:

exp
(
−
i
2
θµν Jµν

)
=


M = exp

(
−
1
2
Eζ · Eσ

)
=

√
p · σ
m

, for
( 1
2 , 0

)
,

(M−1)Ď = exp
( 1
2
Eζ · Eσ

)
=

√
p · σ
m

, for
(
0, 12

)
,

(2.106)
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where

√
p · σ ≡

(Ep +m)12×2 − Eσ · Ep√
2(Ep +m)

, (2.107)

√
p · σ ≡

(Ep +m) 12×2 + Eσ · Ep√
2(Ep +m)

. (2.108)

These matrix square roots are defined to be the unique non-negative definite hermitian matrices (i.e., with non-negative
eigenvalues) whose squares are equal to the non-negative definite hermitian matrices p · σ and p · σ , respectively.16
According to Eq. (2.106), the spinor index structure of

√
p · σ and

√
p · σ corresponds to that of Mαβ and [(M−1)Ď]α̇ β̇ ,

respectively. In this case, we can rewrite Eqs. (2.107) and (2.108) as:[√
p · σ

]
α

β
≡
[√
p · σ σ 0

]
α

β
=
(p · σαα̇)σ 0 α̇β +mδβα√

2(Ep +m)
, (2.109)

[√
p · σ

]α̇
β̇ ≡

[√
p · σ σ 0

]α̇
β̇ =

(p · σ α̇α)σ 0
αβ̇
+mδα̇

β̇√
2(Ep +m)

, (2.110)

since σ 0 = σ 0 = 12×2. Using Eqs. (2.53) and (2.54), one can easily verify that:[√
p · σ

]
α

γ
[√
p · σ

]
γ

β
= (p · σ σ 0)αβ , (2.111)[√

p · σ
]α̇
γ̇

[√
p · σ

]γ̇
β̇ = (p · σ σ

0)α̇ β̇ , (2.112)

where implicit factors of σ 0 and σ 0 inside the square roots of Eq. (2.111) have been suppressed.
Due to the fact that p · σ and p · σ are hermitian, we could have defined their hermitian matrix square roots by the

hermitian conjugate of Eq. (2.106). In this case, the spinor index structure of
√
p · σ and

√
p · σ would correspond to that

of [MĎ
]
α̇
β̇ and [M

−1
]α
β , respectively. That is, instead of Eqs. (2.109) and (2.110), we would now rewrite Eqs. (2.107) and

(2.108) in the following form:

[√
p · σ

]α̇
β̇ ≡

[√
σ 0 p · σ

]α̇
β̇ =

σ 0 α̇β(p · σββ̇)+mδ
α̇

β̇√
2(Ep +m)

, (2.113)

[√
p · σ

]
α

β
≡
[√
σ 0 p · σ

]
α

β
=

σ 0
αβ̇
(p · σ β̇β)+mδβα√
2(Ep +m)

. (2.114)

Using Eqs. (2.53) and (2.54), one can again confirm that:[√
p · σ

]α̇
γ̇

[√
p · σ

]γ̇
β̇ = (σ

0 p · σ)α̇ β̇ , (2.115)[√
p · σ

]
α

γ
[√
p · σ

]
γ

β
= (σ 0 p · σ)αβ , (2.116)

where implicit factors of σ 0 and σ 0 inside the square roots of Eq. (2.115) have been suppressed.
The proper choice of the spinor index structure for

√
p · σ and

√
p · σ can always be determined for any covariant

expression. That is, if we employ the spinor index-free notation (and suppress the factors of σ 0 and σ 0), it will always
be clear from the context which spinor index structure for

√
p · σ and

√
p · σ is implicit.

As an example that will prove valuable later on, consider an arbitrary four-vector Sµ, defined in a reference frame where
pµ = (E; Ep), whose rest frame value is SµR , i.e.

Sµ = ΛµνSνR , withΛ =

E/m pj/m

pi/m δij +
pipj

m(E +m)

 . (2.117)

Then, using Eqs. (2.7), (2.105) and (2.106), it follows that:
√
p · σ S · σ

√
p · σ = mSR · σ , (2.118)√

p · σ S · σ
√
p · σ = mSR · σ . (2.119)

16 Note that p · σ and p · σ are non-negative matrices due to the implicit mass–shell condition satisfied by pµ .
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The spinor index structure of Eqs. (2.118) and (2.119) is easily established:[√
p · σ

]β̇
γ̇ S · σ γ̇ α

[√
p · σ

]
α

β
= mSR · σ β̇β , (2.120)[√

p · σ
]
β

γ S · σγ α̇
[√
p · σ

]α̇
β̇ = mSR · σββ̇ . (2.121)

Using Eqs. (2.109)–(2.117) and (2.53)–(2.54), one can directly verify the above results.
The two-component spinor formalism established in this section will be applied to the quantum field theory of fermions

in Minkowski space of one time and three space dimensions in this review. We also direct the reader’s attention to
Appendices G.1 and G.2, which provide details of the correspondence between the two-component and four-component
spinor notation.
For certain applications, the spinor formalism in four-dimensional Minkowski space is not sufficient. For example, in

order to obtain instanton solutions [118–120], it is necessary to formulate quantum field theory in Euclidean space. One
also needs the Euclidean space formalism for a rigorous definition of the path integral [121,122]. The Green functions
derived from the Euclidean path integral can be related to the Green functions of the Minkowski space theory by a Wick
rotation [123]. In addition, to evaluate the loop-corrected Green functions of the theory, it is often most convenient to apply
a regularization scheme that involves dimensional continuation away from d = 4 spacetime dimensions [124]. Thus, we
also need to generalize the spinor results of this section to d 6= 4.
The treatment of fermions in Euclidean space is subtle [125–127]. Here, we focus briefly on the mathematics of fermions

in d = 4 Euclidean dimensions, where the relevant spacetime symmetry group is SO(4) rather than SO(3,1). The two-
dimensional representations of SO(3, 1) ∼= SL(2,C), denoted in this section by ( 12 , 0) and (0,

1
2 ), respectively, are complex

representations that are related by hermitian conjugation. In contrast, the two-dimensional representations of SO(4) ∼=
SU(2)×SU(2), also denoted by ( 12 , 0) and (0,

1
2 ), respectively,

17 are independent pseudo-real representations, i.e. not related
by hermitian conjugation. A two-component spinor notation can be formulated for fields that transform respectively under
the ( 12 , 0) and (0,

1
2 ) representations of SO(4). Details can be found in Refs. [119,128,129].

In Feynman diagram calculations, one can adopt the standard procedure for the Wick rotation in order to evaluate the
loop integrals in Euclidean space. We shall employ the standard Euclidean metric δµν in computing scalar products of four-
vectors. Moreover, one can define Euclidean sigma matrices, σµE = (−iEσ, σ

4
E ) and σ

µ

E = (iEσ, σ
4
E ), where σ

4
E = σ

4
E ≡ 12×2.

In this convention, theWick-rotated versions of Eqs. (2.51)–(2.57) are preserved [after making the replacements gµν → δµν

and iε ijk0 → ε ijk4, with ε1234 = ε1234 = +1].18 Further details of our Euclidean space conventions are provided at the end
of Appendix A.
The generalization of the spinor results of this section to d 6= 4, useful for dimensional continuation regularization

schemes, is discussed in Appendix B.2. In particular, the identities of Appendix B.1 used to derive Fierz identities [cf. Eqs.
(2.65)–(2.69) and (2.96)–(2.98)] and any identities involving the four-dimensional Levi-Civita ε-tensor are not valid unless
µ is a Lorentz vector index in exactly four dimensions. In d 6= 4 dimensions, as used for loop amplitudes in dimensional
regularization and dimensional.
In our treatment of two-component spinor identities in d 6= 4 dimensions given in Appendix B.2, we take the Lorentz

vector indices to formally run over d values,whereas the undotted and dotted spinor indices continue to take on twopossible
values. This is sufficient when used as a regularization procedure for divergent integrals that arise in loop computations.
However in generic d-dimensional field theories (where d is a positive integer), where d is an integer greater than 4, the
two-component spinor formalism of this review is no longer applicable. Suitable methods for treating spinors in diverse
spacetime dimensions and signatures [90,91,130–142] are briefly presented in Appendix G.3.

3. Properties of fermion fields

In this review, we refer to spin-1/2 particles as Majorana or Dirac fermions depending on the nature of the global
symmetry19 that governs the fermion Lagrangian and dictates the form of the fermion mass terms. AMajorana fermion is a
two-component massive field that is completely neutral (i.e. a singlet with respect to the symmetry group) or transforms as
a non-trivial real representation of the symmetry group (cf. footnote 31). ADirac fermion consists of a pair of two-component
massive fields that are oppositely charged with respect to a conserved O(2) symmetry. As shown in Section 3.2, Dirac
fermions arise when a multiplet of two-component fermions transforms as a complex or pseudo-real representation of
the symmetry group.20

17 These SO(4) representations transform as a doublet under one of the SU(2) groups and as a singlet under the other SU(2) group.
18 In practical computations of one-loop matrix elements, one can carry out all the sigma matrix algebra in Minkowski space before Wick-rotating to
Euclidean space in order to perform the loop integrals.
19 A subgroup of the global symmetry group may be gauged (and hence promoted to a local symmetry). Degrees of freedom not associated with the
gauged subgroup are typically referred to as flavor degrees of freedom.
20 Majorana and Dirac fermions can also be described in terms of four-component Majorana and Dirac spinor fields, as in Appendix G. However, keep in
mind that the termsMajorana spinor and Dirac spinor are defined strictly in the context of the four-component spinor formalism as in Appendix G.1, or in
the more general context of a d-dimensional spacetime as in Appendix G.3.
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The case of a massless fermion is special, as the absence of mass terms leads to an enhanced global symmetry group.
Each physical spin-1/2 zero mass eigenstate is fundamentally a two-component spinor. Thus, following the standard
nomenclature used for massless neutrinos, it is common to employ the termmassless Weyl fermion to describe anymassless
spin-1/2 particle.21

3.1. The two-component fermion field and spinor wave functions

We begin by describing the properties of a free neutral massive anticommuting spin-1/2 field, denoted ξα(x), which
transforms as ( 12 , 0) under the Lorentz group. The field ξα therefore describes a Majorana fermion [3]. The free-field
Lagrangian density is [16]:

L = iξ Ďσµ∂µξ − 1
2m(ξξ + ξ

Ďξ Ď). (3.1.1)

On-shell, ξ satisfies the free-field Dirac equation [1,2,14,143,144],

i σµα̇β∂µξβ = mξ Ďα̇. (3.1.2)

Consequently after quantization, ξα can be expanded in a Fourier series [143]:

ξα(x) =
∑
s

∫
d3Ep

(2π)3/2(2Ep)1/2
[
xα(Ep, s)a(Ep, s)e−ip·x + yα(Ep, s)aĎ(Ep, s)eip·x

]
, (3.1.3)

where Ep ≡ (|Ep|2 +m2)1/2, and the creation and annihilation operators aĎ and a satisfy anticommutation relations:

{a(Ep, s), aĎ(Ep′, s′)} = δ3(Ep− Ep ′)δss′ , (3.1.4)

and all other anticommutators vanish. It follows that

ξ
Ď
α̇(x) ≡ (ξα)

Ď
=

∑
s

∫
d3Ep

(2π)3/2(2Ep)1/2

[
xĎα̇(Ep, s)a

Ď(Ep, s)eip·x + yĎα̇(Ep, s)a(Ep, s)e
−ip·x

]
. (3.1.5)

We employ covariant normalization of the one-particle states, i.e., we act with one creation operator on the vacuum with
the following convention∣∣Ep, s〉 ≡ (2π)3/2(2Ep)1/2aĎ(Ep, s) |0〉 , (3.1.6)

so that
〈
Ep, s|Ep ′, s′

〉
= (2π)3(2Ep)δ3(Ep− Ep

′
)δss′ . Therefore,

〈0| ξα(x)
∣∣Ep, s〉 = xα(Ep, s)e−ip·x, 〈0| ξ Ďα̇(x)

∣∣Ep, s〉 = yĎα̇(Ep, s)e−ip·x, (3.1.7)〈
Ep, s
∣∣ ξα(x) |0〉 = yα(Ep, s)eip·x, 〈

Ep, s
∣∣ ξ Ďα̇(x) |0〉 = xĎα̇(Ep, s)eip·x. (3.1.8)

It should be emphasized that ξα(x) is an anticommuting spinor field, whereas xα and yα are commuting two-component
spinor wave functions. The anticommuting properties of the fields are carried by the creation and annihilation operators.
Applying Eq. (3.1.2) to Eq. (3.1.3), we find that the xα and yα satisfy momentum space Dirac equations. These conditions

can be written down in a number of equivalent ways:

(p · σ)α̇βxβ = myĎα̇, (p · σ)αβ̇y
Ďβ̇
= mxα, (3.1.9)

(p · σ)αβ̇x
Ďβ̇
= −myα, (p · σ)α̇βyβ = −mxĎα̇, (3.1.10)

xα(p · σ)αβ̇ = −my
Ď

β̇
, yĎα̇(p · σ)

α̇β
= −mxβ , (3.1.11)

xĎα̇(p · σ)
α̇β
= myβ , yα(p · σ)αβ̇ = mx

Ď

β̇
. (3.1.12)

Using the identities [(p · σ)(p · σ)]αβ = p2 δαβ and [(p · σ)(p · σ)]α̇ β̇ = p
2 δα̇ β̇ , one can check that both xα and yα must

satisfy the mass–shell condition, p2 = m2 (or equivalently, p0 = Ep). We will later see that Eqs. (3.1.9)–(3.1.12) are often
useful for simplifying matrix elements.
The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall examine two approaches for

constructing the spin-1/2 states. In the first approach, we consider the particle in its rest frame and quantize the spin
along a fixed axis specified by the unit vector ŝ ≡ (sin θ cosφ, sin θ sinφ, cos θ) with polar angle θ and azimuthal angle

21 Two-component fermions are often called Weyl fermions, due to their association with the two-dimensional spinor representations of the Lorentz
group introduced by Weyl in Refs. [14,15]. It is now common practice to define a Weyl spinor as the left- or right-handed projection of a four-component
spinor [as in Eq. (G.1.8)]. Of course, there is a one-to-one correspondence between these two definitions.
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φ with respect to a fixed z-axis.22 The corresponding spin states will be called fixed-axis spin states. The relevant basis of
two-component spinors χs are eigenstates of 12 Eσ · ŝ, i.e.,

1
2 Eσ · ŝχs = sχs, s = ± 12 . (3.1.13)

Explicit forms for the two-component spinors χs and their properties are given in Appendix C.
The fixed-axis spin states described above are not very convenient for particles in relativistic motion. Moreover, these

states cannot be employed for massless particles since no rest frame exists. Thus, a second approach is to consider helicity
states and the corresponding basis of two-component helicity spinors χλ that are eigenstates of 12 Eσ · p̂, i.e.,

1
2 Eσ · p̂χλ = λχλ, λ = ± 12 . (3.1.14)

Here p̂ is the unit vector in the direction of the three-momentum, with polar angle θ and azimuthal angle φ with respect to
a fixed z-axis. That is, the two-component helicity spinors can be obtained from the fixed-axis spinors by replacing ŝ by p̂
and identifying θ and φ as the polar and azimuthal angles of p̂.
For fermions of massm 6= 0, it is possible to define the spin four-vector Sµ, which is specified in the rest frame by (0; ŝ).

The unit three-vector ŝ corresponds to the axis of spin quantization in the case of fixed-axis spin states. In an arbitrary
reference frame, the spin four-vector satisfies S · p = 0 and S · S = −1. After boosting from the rest frame to a frame in
which pµ = (E, Ep) [cf. Eq. (2.117)], one finds:

Sµ =
(
Ep · ŝ
m
; ŝ+

(Ep · ŝ) Ep
m(E +m)

)
. (3.1.15)

If necessary, we shall write Sµ(ŝ) to emphasize the dependence of Sµ on ŝ.
The spin four-vector for helicity states is defined by taking ŝ = p̂. Eq. (3.1.15) then reduces to

Sµ =
1
m

(
|Ep|; Ep̂

)
. (3.1.16)

In the non-relativistic limit, the spin four-vector for helicity states is Sµ ' (0; p̂), as expected.23 In the high energy limit
(E � m), Sµ = pµ/m + O(m/E). For a massless fermion, the spin four-vector does not exist (as there is no rest frame).
Nevertheless, one can obtain consistent results by working with massive helicity states and taking the m→ 0 limit at the
end of the computation. In this case, one can simply use Sµ = pµ/m + O(m/E); in practical computations the final result
will be well defined in the zero mass limit. In contrast, for massive fermions at rest, the helicity state does not exist without
reference to some particular boost direction as noted in footnote 23.
Using Eqs. (2.118) and (2.119) with SµR = (0; ŝ), two important formulae are obtained:
√
p · σ S · σ

√
p · σ = m Eσ · ŝ, (3.1.17)√

p · σ S · σ
√
p · σ = −m Eσ · ŝ. (3.1.18)

These results can also be derived directly by employing the explicit form for the spin vector Sµ [Eq. (3.1.15)] and the results
of Eqs. (2.107) and (2.108).
The two-component spinor wave functions x and y can now be given explicitly in terms of the χs defined in Eq. (C.1.11).

First, we note that Eq. (3.1.9) when evaluated in the rest frame yields x1 = yĎ1 and x2 = yĎ2. That is, as column vectors,
xα(Ep = 0) = yĎα̇(Ep = 0) can be expressed in general as some linear combination of the χs (s = ± 12 ). Hence, we may choose
xα(Ep = 0, s) = yĎα̇(Ep = 0, s) =

√
mχs, where the factor of

√
m reflects the standard relativistic normalization of the rest

frame spin states. Thesewave functions can be boosted to an arbitrary frame using Eq. (2.106). The resulting undotted spinor
wave functions are given by:

xα(Ep, s) =
√
p · σ χs, xα(Ep, s) = −2sχĎ

−s

√
p · σ , (3.1.19)

yα(Ep, s) = 2s
√
p · σ χ−s, yα(Ep, s) = χĎ

s

√
p · σ , (3.1.20)

and the dotted spinor wave functions are given by

xĎα̇(Ep, s) = −2s
√
p · σ χ−s, xĎα̇(Ep, s) = χ

Ď
s
√
p · σ , (3.1.21)

yĎα̇(Ep, s) =
√
p · σ χs, yĎα̇(Ep, s) = 2sχ

Ď
−s
√
p · σ , (3.1.22)

22 In the literature, it is a common practice to choose ŝ = ẑ . However in order to be somewhat more general, we shall not assume this convention here.
23 Strictly speaking, p̂ is not defined in the rest frame. In practice, helicity states are defined in some moving frame with momentum Ep. The rest frame is
achieved by boosting in the direction of−Ep.
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where
√
p · σ and

√
p · σ are defined either by Eqs. (2.109) and (2.110) or by Eqs. (2.113) and (2.114), respectively (as

mandated by the spinor index structure).24 Note that Eqs. (3.1.19)–(3.1.22) imply that the x and y spinors are related:

y(Ep, s) = 2sx(Ep,−s), yĎ(Ep, s) = 2sxĎ(Ep,−s). (3.1.23)

The phase choices in Eqs. (3.1.19)–(3.1.22) are consistentwith those employed for four-component spinorwave functions
[see Appendix G]. We again emphasize that in Eqs. (3.1.19)–(3.1.22), one may either choose χs to be an eigenstate of Eσ · ŝ,
where the spin is measured in the rest frame along the quantization axis ŝ, or choose χs to be an eigenstate of Eσ · p̂ (in this
case we shall write s = λ), which yields the helicity spinor wave functions.
The following equations can now be derived:

(S · σ)α̇βxβ(Ep, s) = 2syĎα̇(Ep, s), (S · σ)αβ̇y
Ďβ̇(Ep, s) = −2sxα(Ep, s), (3.1.24)

(S · σ)αβ̇x
Ďβ̇(Ep, s) = −2syα(Ep, s), (S · σ)α̇βyβ(Ep, s) = 2sxĎα̇(Ep, s), (3.1.25)

xα(Ep, s)(S · σ)αβ̇ = −2sy
Ď

β̇
(Ep, s), yĎα̇(Ep, s)(S · σ)

α̇β
= 2sxβ(Ep, s), (3.1.26)

xĎα̇(Ep, s)(S · σ)
α̇β
= 2syβ(Ep, s), yα(Ep, s)(S · σ)αβ̇ = −2sx

Ď

β̇
(Ep, s). (3.1.27)

For example, using Eqs. (3.1.17) and (3.1.18) and the definitions above for xα(Ep, s) and yĎα̇(Ep, s), we find (suppressing spinor
indices),

√
p · σ S · σ x(Ep, s) =

√
p · σ S · σ

√
p · σ χs = mEσ · ŝχs = 2smχs. (3.1.28)

Multiplying both sides of Eq. (3.1.28) by
√
p · σ and noting that

√
p · σ
√
p · σ = m, we end up with

S · σ x(Ep, s) = 2s
√
p · σ χs = 2syĎ(Ep, s). (3.1.29)

All the results of Eqs. (3.1.24)–(3.1.27) can be derived in this manner.
The consistency of Eqs. (3.1.24)–(3.1.27) can also be checked as follows. First, each of these equations yields

(S · σ)αα̇(S · σ)α̇β = −δβα , (S · σ)α̇α(S · σ)αβ̇ = −δ
α̇

β̇
, (3.1.30)

after noting that 4s2 = 1 (for s = ± 12 ). From Eqs. (2.51) and (2.52) it follows that S · S = −1, as required. Second, if one
applies

(p · σ S · σ + S · σ p · σ)αβ = 2p · S δαβ , (3.1.31)

(p · σ S · σ + S · σ p · σ)α̇ β̇ = 2p · S δ
α̇
β̇ , (3.1.32)

to Eqs. (3.1.9)–(3.1.12) and Eqs. (3.1.24)–(3.1.27), it follows that p · S = 0.
It is useful to combine the results of Eqs. (3.1.9)–(3.1.12) and Eqs. (3.1.24)–(3.1.27) as follows:

(pµ − 2smSµ)σ α̇βµ xβ(Ep, s) = 0, (pµ − 2smSµ)σ
µ

αβ̇
xĎβ̇(Ep, s) = 0, (3.1.33)

(pµ + 2smSµ)σ α̇βµ yβ(Ep, s) = 0, (pµ + 2smSµ)σ
µ

αβ̇
yĎβ̇(Ep, s) = 0, (3.1.34)

xα(Ep, s)σµ
αβ̇
(pµ − 2smSµ) = 0, xĎα̇(Ep, s)σ

α̇β
µ (p

µ
− 2smSµ) = 0, (3.1.35)

yα(Ep, s)σµ
αβ̇
(pµ + 2smSµ) = 0, yĎα̇(Ep, s)σ

α̇β
µ (p

µ
+ 2smSµ) = 0. (3.1.36)

Eqs. (3.1.19)–(3.1.36) also apply to the helicity wave functions x(Ep, λ) and y(Ep, λ) simply by replacing s with λ and Sµ(ŝ)
[Eq. (3.1.15)] with Sµ(p̂) [Eq. (3.1.16)].
The above results are applicable only for massive fermions (where the spin four-vector Sµ exists). Wemay treat the case

of massless fermions directly by employing helicity spinors in Eqs. (3.1.19)–(3.1.22). Putting E = |Ep| and m = 0, we easily
obtain:

xα(Ep, λ) =
√
2E
( 1
2 − λ

)
χλ, xα(Ep, λ) =

√
2E
( 1
2 − λ

)
χ

Ď
−λ, (3.1.37)

yα(Ep, λ) =
√
2E
( 1
2 + λ

)
χ−λ, yα(Ep, λ) =

√
2E
( 1
2 + λ

)
χ

Ď
λ , (3.1.38)

24 Explicit forms for two-component spinor wave functions have been exhibited a number of times in the literature. For example, see Refs. [104,105] and
Appendix I.1.
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or equivalently,

xĎα̇(Ep, λ) =
√
2E
( 1
2 − λ

)
χ−λ, xĎα̇(Ep, λ) =

√
2E
( 1
2 − λ

)
χ

Ď
λ , (3.1.39)

yĎα̇(Ep, λ) =
√
2E
( 1
2 + λ

)
χλ, yĎα̇(Ep, λ) =

√
2E
( 1
2 + λ

)
χ

Ď
−λ. (3.1.40)

It follows that:( 1
2 + λ

)
x(Ep, λ) = 0,

( 1
2 + λ

)
xĎ(Ep, λ) = 0, (3.1.41)( 1

2 − λ
)
y(Ep, λ) = 0,

( 1
2 − λ

)
yĎ(Ep, λ) = 0. (3.1.42)

The significance of Eqs. (3.1.41) and (3.1.42) is clear; for massless fermions, only one helicity component of x and y is non-
zero. Applying this result to neutrinos, we find that massless neutrinos are left-handed (λ = −1/2), while antineutrinos are
right-handed (λ = +1/2).
Eqs. (3.1.41) and (3.1.42) can also be derived by carefully taking them→ 0 limit of Eqs. (3.1.33) and (3.1.34) applied to

the helicity wave functions x(Ep, λ) and y(Ep, λ) [i.e., replacing s with λ]. We then replace mSµ with pµ, which is the leading
term in the limit of E � m. Using the results of Eqs. (3.1.9) and (3.1.10) and dividing out by an overall factor of m (before
finally taking them→ 0 limit) reproduces Eqs. (3.1.41) and (3.1.42).
Having defined explicit forms for the two-component spinor wave functions, we can nowwrite down the spin projection

matrices. Noting that 12 (1+ 2s Eσ · ŝ)χs′ =
1
2 (1+ 4ss

′)χs′ = δss′χs′ (since s, s′ = ± 12 ), one can write:

χsχ
Ď
s =

1
2

(
1+ 2s Eσ · ŝ

)∑
s′
χs′χ

Ď
s′ =

1
2

(
1+ 2s Eσ · ŝ

)
, (3.1.43)

where at the second step, we have employed the completeness relation given in Eq. (C.1.21). Making use of Eq. (3.1.17) for
Eσ · ŝ, it follows that

χsχ
Ď
s =

1
2

(
1+

2s
m
√
p · σ S · σ

√
p · σ

)
. (3.1.44)

Hence, with both spinor indices in the lowered position,

x(Ep, s)xĎ(Ep, s) =
√
p · σ χsχĎ

s
√
p · σ

=
1
2

√
p · σ

[
1+

2s
m
√
p · σ S · σ

√
p · σ

]
√
p · σ

=
1
2

[
p · σ +

2s
m
p · σ S · σp · σ

]
=

1
2 [p · σ − 2smS · σ ] . (3.1.45)

In the final step above, we simplified the product of three dot products by noting that p · S = 0 implies that S · σ p · σ =
−p · σ S · σ . The other spin projection formulae for massive fermions can be similarly derived. The complete set of such
formulae is given below25:

xα(Ep, s)x
Ď

β̇
(Ep, s) = 1

2 (pµ − 2smSµ)σ
µ

αβ̇
, (3.1.46)

yĎα̇(Ep, s)yβ(Ep, s) = 1
2 (p

µ
+ 2smSµ)σ α̇βµ , (3.1.47)

xα(Ep, s)yβ(Ep, s) = 1
2

(
mδαβ − 2s[S · σ p · σ ]αβ

)
, (3.1.48)

yĎα̇(Ep, s)xĎ
β̇
(Ep, s) = 1

2

(
mδα̇ β̇ + 2s[S · σ p · σ ]

α̇
β̇

)
. (3.1.49)

By taking the hermitian conjugate of the above results, one obtains an equivalent set of formulae,

xĎα̇(Ep, s)xβ(Ep, s) = 1
2 (p

µ
− 2smSµ)σ α̇βµ , (3.1.50)

yα(Ep, s)y
Ď

β̇
(Ep, s) = 1

2 (pµ + 2smSµ)σ
µ

αβ̇
, (3.1.51)

yα(Ep, s)xβ(Ep, s) = − 12
(
mδαβ + 2s[S · σ p · σ ]αβ

)
, (3.1.52)

xĎα̇(Ep, s)yĎ
β̇
(Ep, s) = − 12

(
mδα̇ β̇ − 2s[S · σ p · σ ]

α̇
β̇

)
. (3.1.53)

25 Similar formulae for the products of two-component spinor wave functions are given in Ref. [104].
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For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The corresponding massless
projection operators can be obtained directly from the explicit forms for the two-component spinor wave functions given
in Eqs. (3.1.37)–(3.1.40):

xα(Ep, λ)x
Ď

β̇
(Ep, λ) =

( 1
2 − λ

)
p · σαβ̇ , xĎα̇(Ep, λ)xβ(Ep, λ) =

( 1
2 − λ

)
p · σ α̇β , (3.1.54)

yĎα̇(Ep, λ)yβ(Ep, λ) =
( 1
2 + λ

)
p · σ α̇β , yα(Ep, λ)y

Ď

β̇
(Ep, λ) =

( 1
2 + λ

)
p · σαβ̇ , (3.1.55)

xα(Ep, λ)yβ(Ep, λ) = 0, yα(Ep, λ)xβ(Ep, λ) = 0, (3.1.56)

yĎα̇(Ep, λ)xĎ
β̇
(Ep, λ) = 0, xĎα̇(Ep, λ)yĎ

β̇
(Ep, λ) = 0. (3.1.57)

As a check, one can verify that the above results follow from Eqs. (3.1.46)–(3.1.53), by replacing swith λ, settingmSµ = pµ,
and taking them→ 0 limit at the end of the computation.
Having listed the projection operators for definite spin projection or helicity, we may now sum over spins to derive the

spin-sum identities. These arise when computing squared matrix elements for unpolarized scattering and decay. There are
only four basic identities, but for conveniencewe list each of themwith the two-index height permutations that can occur in
squared amplitudes by following the rules given in this paper. The results can be derived by inspection of the spin projection
operators, since summing over s = ± 12 simply removes all terms linear in the spin four-vector S

µ.∑
s

xα(Ep, s)x
Ď

β̇
(Ep, s) = p · σαβ̇ ,

∑
s

xĎα̇(Ep, s)xβ(Ep, s) = p · σ α̇β , (3.1.58)∑
s

yĎα̇(Ep, s)yβ(Ep, s) = p · σ α̇β ,
∑
s

yα(Ep, s)y
Ď

β̇
(Ep, s) = p · σαβ̇ , (3.1.59)∑

s

xα(Ep, s)yβ(Ep, s) = mδαβ ,
∑
s

yα(Ep, s)xβ(Ep, s) = −mδαβ , (3.1.60)∑
s

yĎα̇(Ep, s)xĎ
β̇
(Ep, s) = mδα̇ β̇ ,

∑
s

xĎα̇(Ep, s)yĎ
β̇
(Ep, s) = −mδα̇ β̇ . (3.1.61)

These results are applicable both to spin sums and helicity sums, and hold for bothmassive andmassless spin-1/2 fermions.
One can generalize the above massive and massless projection operators by considering products of two-component

spinor wave functions, where the spin or helicity of each spinor can be different. These are the Bouchiat–Michel
formulae [112], which are derived in Appendix H.3.

3.2. Fermion mass diagonalization in a general theory

Consider a collection of free anticommuting two-component spin-1/2 fields, ξ̂αi(x), which transform as ( 12 , 0) fields
under the Lorentz group. Here,α is the spinor index, and i labels the distinct fields of the collection. The free-field Lagrangian
is given by (e.g., see Ref. [5]):

L = iξ̂ Ďiσµ∂µξ̂i − 1
2M

ijξ̂iξ̂j −
1
2Mijξ̂

Ďiξ̂ Ďj, (3.2.1)

where

Mij ≡ (M ij)∗. (3.2.2)

Note thatM is a complex symmetric matrix, since the product of anticommuting two-component fields satisfies ξ̂iξ̂j = ξ̂jξ̂i
[with the spinor contraction rule according to Eq. (2.36)].
In Eq. (3.2.1), we have employed the U(N)-covariant tensor calculus [44,145] for ‘‘flavor-tensors’’ labeled by the flavor

indices i and j. Each left-handed ( 12 , 0) fermion always has an index with the opposite height of the corresponding right-
handed (0, 12 ) fermion. Raised indices can only be contracted with lowered indices and vice versa. Flipping the heights of
all flavor indices of an object corresponds to complex conjugation, as in Eq. (3.2.2). In particular, we generalize Eq. (2.17) as
follows26:

ψ
Ď i
α̇ ≡ (ψαi)

Ď. (3.2.3)

26 In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor indices, which implies that all of the
right-handed fermions have raised flavor indices. However, in cases where a subset of left-handed fermions transform according to some representation R
of a (global) symmetry and a different subset of left-handed fermions transform according to the conjugate representation R∗ , it is often more convenient
to employ a raised flavor index for the latter subset of left-handed fields.
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If M = 0, then the free-field Lagrangian is invariant under a global U(N) symmetry. That is, for a unitary matrix U , with
matrix elements Uij, and its hermitian conjugate defined by:

(UĎ)i
j
= (Uji)∗ ≡ U ji, (3.2.4)

with Uik(UĎ)k
j
= δ

j
i , the massless free-field Lagrangian is invariant under the transformations:

ξ̂i −→ Uijξ̂j, ξ̂ Ďi −→ U ijξ̂ Ďj. (3.2.5)

For M 6= 0, Eq. (3.2.1) remains formally invariant under the global U(N)-symmetry if M acts as a spurion field [146] with
the appropriate tensorial transformation law,M ij −→ U ikU j`Mk`.
Expressions consisting of flavor-vectors and second-rank flavor-tensors have natural interpretations as products of

vectors and matrices. As a result, the flavor indices can be suppressed, and the resulting expressions can be written in an
index-free matrix notation. To accomplish this, one must first assign a particular flavor index structure to the matrices that
will appear in the index-free expression. For example, given the second-rank flavor-tensors introduced above, we define the
matrix elements ofM to beM ij and the matrix elements of U to be Uij. Note that (UĎ)i

j has the same flavor index structure
as U .27
As a simple example, in an index-free notation Eq. (3.2.5) reads: ξ̂ −→ U ξ̂ and ξ̂ Ď −→ ξ̂ ĎUĎ. A slightlymore complicated

example is exhibited below:

U ikMk` = (UĎ)k
iMk` = (U∗M)i`, (3.2.6)

where we have used (UĎ)T = U∗ in obtaining the final result. That is, in matrix notation with suppressed indices, U ikMk`
corresponds to the matrix U∗M . Thus, in an index-free notation, the tensorial transformation law for the spurion fieldM is
given byM −→ U∗MUĎ.
We candiagonalize themassmatrixM and rewrite the Lagrangian in termsofmass eigenstates ξαi and (real non-negative)

massesmi. To do this, we introduce a unitary matrixΩ ,

ξ̂i = Ωi
kξk, (3.2.7)

and demand that M ijΩikΩj` = mkδk` (no sum over k), where the mk are real and non-negative. Equivalently, in matrix
notation with suppressed indices, ξ̂ = Ωξ and28

ΩTMΩ = m = diag(m1,m2, . . .). (3.2.8)

This is the Takagi diagonalization [111,147] of an arbitrary complex symmetric matrix, which is discussed in more detail in
Appendix D.2. To compute the values of the diagonal elements ofm, note that

ΩĎMĎMΩ = m2. (3.2.9)

IndeedMĎM is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the elements of the diagonal matrixm
are the non-negative square roots of the corresponding eigenvalues ofMĎM . However, in cases whereMĎM has degenerate
eigenvalues, Eq. (3.2.9) cannot be employed to determine the unitary matrix Ω that satisfies Eq. (3.2.8). A more general
technique for determiningΩ that works in all cases is given in Appendix D.2.
In terms of the mass eigenstates,

L = iξ Ďiσµ∂µξi − 1
2mi(ξiξi + ξ

Ďiξ Ďi), (3.2.10)

where the sum over i is implicit. If the mi 6= 0 are non-degenerate, then the corresponding field ξi describes a neutral
Majorana fermion consisting of two on-shell real degrees of freedom. The case ofmass degeneracieswill be treated explicitly
below. Ifmi = 0, then we shall denote the corresponding field ξi as a massless Weyl fermion [15].
Each ξαi can now be expanded in a Fourier series, exactly as in Eq. (3.1.3):

ξαi(x) =
∑
s

∫
d3Ep

(2π)3/2(2Eip)1/2

[
xα(Ep, s)ai(Ep, s)e−ip·x + yα(Ep, s)a

Ď
i (Ep, s)e

ip·x
]
, (3.2.11)

where Eip ≡ (|Ep|2 +m2i )
1/2, and the creation and annihilation operators, aĎi and ai satisfy anticommutation relations:

{ai(Ep, s), a
Ď
j (Ep
′
, s′)} = δ3(Ep− Ep ′)δss′δij. (3.2.12)

27 The reader should not be tempted to substitute UĎ for U in Eq. (3.2.4), as the resulting flavor index structure for U and UĎ would then disagree with
the original flavor index assignments.
28 In general, the mi are not the eigenvalues of M . Rather, they are the singular values of the matrix M , which are defined to be the non-negative square
roots of the eigenvalues ofMĎM . See Appendix D for further details.
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We employ covariant normalization of the one-particle states, i.e., we act with one creation operator on the vacuum with
the following convention∣∣Ep, i, s〉 ≡ (2π)3/2(2Eip)1/2aĎi (Ep, s) |0〉 , (3.2.13)

so that
〈
Ep, i, s | Ep ′, j, s′

〉
= (2π)3(2Eip)δ3(Ep− Ep

′
)δijδss′ .

In the case of two mass-degenerate massive fermion fields, m1 = m2 6= 0, Eq. (3.2.10) possesses a global internal O(2)
flavor symmetry, ξi → Oi

jξj (i = 1, 2), where OTO = 12×2. Corresponding to this symmetry is a conserved hermitian
Noether current:

Jµ = i(ξ Ď1σµξ2 − ξ Ď2σµξ1), (3.2.14)

with a corresponding conserved charge, Q =
∫
J0d3x. In the ξ1–ξ2 basis, the Noether current is off-diagonal. However, it is

convenient to define a new basis of fields:

χ ≡
1
√
2
(ξ1 + iξ2), η ≡

1
√
2
(ξ1 − iξ2). (3.2.15)

With respect to the χ–η basis, the Noether current is diagonal:

Jµ = χĎσµχ − ηĎσµη. (3.2.16)

That is, the fermions χ and η are eigenstates of the charge operator Q with corresponding eigenvalues±1. In terms of the
fermion fields of definite charge, the free-field fermion Lagrangian [Eq. (3.2.10) with i = 1, 2 and m1 = m2 ≡ m] is given
by [16]29:

L = iχĎσµ∂µχ + iηĎσµ∂µη −m(χη + χĎηĎ). (3.2.17)

On-shell, χ and η satisfy the free-field Dirac equations:

i σµ∂µχ −mηĎ = 0, i σµ∂µη −mχĎ
= 0. (3.2.18)

In the χ–η basis, the global internal SO(2) symmetry (which is continuously connected to the identity) is realized as the
U(1) symmetry χ → eiθχ and η→ e−iθη, where θ is the rotation angle that defines the SO(2) rotation matrix.
Together, χ and ηĎ constitute a single Dirac fermion. We can then write:

χα(x) =
∑
s

∫
d3Ep

(2π)3/2(2Ep)1/2
[
xα(Ep, s)a(Ep, s)e−ip·x + yα(Ep, s)bĎ(Ep, s)eip·x

]
, (3.2.19)

ηα(x) =
∑
s

∫
d3Ep

(2π)3/2(2Ep)1/2
[
xα(Ep, s)b(Ep, s)e−ip·x + yα(Ep, s)aĎ(Ep, s)eip·x

]
, (3.2.20)

where Ep ≡ (|Ep|2 +m2)1/2, the creation and annihilation operators, aĎ, bĎ, a and b satisfy anticommutation relations:

{a(Ep, s), aĎ(Ep ′, s′)} = {b(Ep, s), bĎ(Ep ′, s′)} = δ3(Ep− Ep ′)δs,s′ , (3.2.21)

and all other anticommutators vanish. We now must distinguish between two types of one-particle states, which we can
call fermion (F) and antifermion (F):∣∣Ep, s; F 〉 ≡ (2π)3/2(2Ep)1/2aĎ(Ep, s) |0〉 , ∣∣Ep, s; F 〉 ≡ (2π)3/2(2Ep)1/2bĎ(Ep, s) |0〉 . (3.2.22)

Note that both η(x) andχĎ(x) can create
∣∣Ep, s; F 〉 from the vacuum,while ηĎ(x) andχ(x) can create ∣∣Ep, s; F 〉. The one-particle

wave functions are given by:

〈0|χα(x)
∣∣Ep, s; F 〉 = xα(Ep, s)e−ip·x, 〈0| ηĎα̇(x)

∣∣Ep, s; F 〉 = yĎα̇(Ep, s)e−ip·x, (3.2.23)〈
F; Ep, s

∣∣ ηα(x) |0〉 = yα(Ep, s)eip·x, 〈
F; Ep, s

∣∣χĎ
α̇(x) |0〉 = x

Ď
α̇(Ep, s)e

ip·x, (3.2.24)

〈0| ηα(x)
∣∣Ep, s; F 〉 = xα(Ep, s)e−ip·x, 〈0|χĎ

α̇(x)
∣∣Ep, s; F 〉 = yĎα̇(Ep, s)e−ip·x, (3.2.25)〈

F; Ep, s
∣∣χα(x) |0〉 = yα(Ep, s)eip·x, 〈

F; Ep, s
∣∣ ηĎα̇(x) |0〉 = xĎα̇(Ep, s)eip·x, (3.2.26)

and the eight other single-particle matrix elements vanish.

29 Although the fermion mass matrix is not diagonal in the χ–η basis, this is not an obstacle to the subsequent analysis, as one only needs a diagonal
squared-mass matrix, MĎM , to ensure that the denominators of propagators are diagonal. Eq. (3.2.15) provides the explicit Takagi diagonalization of the

Dirac fermion matrix
(
0 1
1 0

)
. See Appendix D.3 for the mathematical interpretation of this special case.



22 H.K. Dreiner et al. / Physics Reports 494 (2010) 1–196

More generally, consider a collection of free anticommuting charged Dirac fermions, which can be represented by pairs
of two-component fields χ̂αi(x), η̂iα(x). These fields transform in (possibly reducible) representations of the unbroken
symmetry group that are conjugates of each other. This accounts for the opposite flavor index heights of χ̂i and η̂i
[cf. footnote 26]. The free-field Lagrangian is given by

L = iχ̂Ďiσµ∂µχ̂i + iη̂
Ď
i σ

µ∂µη̂
i
−M ijχ̂iη̂j −Mijχ̂Ďiη̂

Ď
j , (3.2.27)

whereM is an arbitrary complex matrix with matrix elementsM ij, and

Mij ≡ (M ij)∗. (3.2.28)

If M = 0, then the free-field Lagrangian is invariant under a global U(N)×U(N) symmetry. That is, for a pair of unitary
matricesUL andUR, withmatrix elements given respectively by (UL)ij and (UR)ij, and the corresponding hermitian conjugates
defined by:

(UĎ
L )j
i
= [(UL)ij]∗ ≡ (UL)ij, (UĎ

R )
j
i = [(UR)ij]∗ ≡ (UR)ij, (3.2.29)

the massless free-field Lagrangian is invariant under the transformations:

χ̂i −→ (UL)ijχ̂j, χ̂Ďi
−→ (UL)ijχ̂Ďj, η̂i −→ (UR)ijη̂j, η̂

Ď
i −→ (UR)ijη̂

Ď
j . (3.2.30)

For M 6= 0, Eq. (3.2.27) remains formally invariant under the U(N)×U(N) symmetry if M acts as a spurion field [146] with
the appropriate tensorial transformation law,M ij → (UL)ik(UR)j`Mk` (or equivalently, in an index-freematrix notationwith
suppressed flavor indices,M −→ U∗LMU

Ď
R ).

In order to diagonalize the mass matrix, we introduce the mass eigenstates χi and ηi and unitary matrices L and R, with
matrix elements given respectively by Lik and Rik, such that

χ̂i = Likχk, η̂i = Rikηk, (3.2.31)

and demand thatM ijLikRj` = mkδk` (no sum over k), where themk are real and non-negative. Equivalently, inmatrix notation
with suppressed indices, χ̂ = Lχ, η̂ = Rη and

LTMR = m = diag(m1,m2, . . .), (3.2.32)

with themi real and non-negative (cf. footnote 28). The singular value decomposition of linear algebra, discussedmore fully
in Appendix D.1, states that for any complex matrix M , unitary matrices L and R exist such that Eq. (3.2.32) is satisfied. It
then follows that:

LT(MMĎ)L∗ = RĎ(MĎM)R = m2. (3.2.33)

That is, sinceMMĎ andMĎM are both hermitian, they can be diagonalized by unitary matrices. The diagonal elements ofm
are therefore the non-negative square roots of the corresponding eigenvalues of MMĎ (or equivalently, MĎM). In terms of
the mass eigenstates,

L = iχĎiσµ∂µχi + iη
Ď
i σ

µ∂µη
i
−mi(χiηi + χĎiη

Ď
i ). (3.2.34)

The mass matrix now consists of 2 × 2 blocks
( 0 mi
mi 0

)
along the diagonal. More importantly, the squared-mass matrix

is diagonal with doubly degenerate entries m2i that will appear in the denominators of the propagators of the theory. For
mi 6= 0, each χi–ηi pair describes a charged Dirac fermion consisting of four on-shell real degrees of freedom.30 In addition,
Eq. (3.2.34) yields an even number of massless Weyl fermions.
Given an arbitrary collection of two-component left-handed ( 12 , 0) fermions, the distinction betweenMajorana andDirac

fermions depends on whether the Lagrangian is invariant under a global (or local) continuous symmetry group G, and the
corresponding multiplet structure of the fermion fields [148]. If no such continuous symmetry exist, then the fermion mass
eigenstates will consist of Majorana fermions. If the Lagrangian is invariant under a symmetry group G, then the collection
of two-component fermions will break up into a sum of multiplets that transform irreducibly under G. As described in
Appendix E, a representation R can be either a real, pseudo-real, or complex representation of G. If a multiplet transforms
under a real representation of G, then the corresponding fermion mass eigenstates are Majorana fermions.31 If a multiplet
transforms under a complex representation of G, then the corresponding fermion mass eigenstates are Dirac fermions. In

30 Of course, one could always choose instead to treat the Dirac fermions in a non-charge-eigenstate basis with a fully diagonalized mass matrix, as in
Eq. (3.2.10). Inverting Eq. (3.2.15) for each Dirac fermion yields ξ2i−1 = (χi + ηi)/

√
2 and ξ2i = i(ηi − χ i)/

√
2. However, it is rarely, if ever, convenient

to do so; practical calculations only require that the squared-mass matrixMĎM is diagonal, and it is of course more convenient to employ fields that carry
well-defined charges.
31 This is a slight generalization of themore restrictive definition that requiresMajorana fermions to transform trivially under the group G. Gluinos, which
transform under the (real) adjoint representation of the color SU(3) group, are Majorana fermions according to our more general definition.
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particular [as noted above Eq. (3.2.27)], if the χi transform under the representation R, then the ηi transform under the
conjugate representation R∗.
The case where a multiplet of two-component left-handed fermions transform under a pseudo-real representation of G

has not been explicitly treated above. The simplest example of this kind is a model of 2n multiplets (or ‘‘flavors’’) of two-
component SU(2)-doublet32 fermions, ψ̂ia (where i = 1, 2, . . . , 2n labels the flavor index and a labels the SU(2) doublet
index). The free-field Lagrangian is given by:

L = iψ̂Ďiaσµ∂µψ̂ia −
1
2

(
M ijεabψ̂iaψ̂jb + h.c.

)
, (3.2.35)

where εab is the antisymmetric SU(2)-invariant tensor, defined such that ε12 = −ε21 = +1. As εabψ̂iaψ̂jb is antisymmetric
under the interchange of flavor indices i and j, it follows thatM is a complex antisymmetric matrix. To identify the fermion
mass eigenstates ψja, we introduce a unitary matrix U (with matrix elements Uij) such that ψ̂ia = Uijψja and demand that:

UTMU = N ≡ diag
{(

0 m1
−m1 0

)
,

(
0 m2
−m2 0

)
, . . . ,

(
0 mn
−mn 0

)}
, (3.2.36)

whereN is written in block diagonal form consisting of 2×2matrix blocks appearing along the diagonal, and themj are real
and non-negative. Eq. (3.2.36) corresponds to the reduction of a complex antisymmetricmatrix to its real normal form [149],
which is discussed in more detail in Appendix D.4. In order to compute themk, we first note that

UĎMĎMU = diag(m21,m
2
1,m

2
2,m

2
2, . . . ,m

2
n,m

2
n). (3.2.37)

Hence, themj are thenon-negative square roots of the corresponding eigenvalues ofMĎM . Since the dimension of the doublet
representation of SU(2) provides an additional degeneracy factor of 2, Eq. (3.2.37) implies that the mass spectrum consists
of 2n pairs of mass-degenerate two-component fermions, which are equivalent to 2n Dirac fermions. In particular,

L =

2n∑
i=1

iψĎiaσµ∂µψia −

n∑
i=1

(
miεabψ2i−1,aψ2i,b + h.c.

)
. (3.2.38)

In the general case of a pseudo-real representation R (of dimension dR), the SU(2)-invariant ε-tensor is replaced by amore
general dR × dR unitary antisymmetric matrix, C [defined in Eq. (E.1.9)]. Thus, the analysis above can be repeated virtually
unchanged. By defining

χia ≡ ψ2i−1,a, ηia ≡ Cabψ2i,b, i = 1, 2, . . . , n; a = 1, 2, . . . , dR, (3.2.39)

with an implicit sum over the repeated index b, the resulting Lagrangian given by

L =

n∑
i=1

iχĎiaσµ∂µχia + iη
Ď
iaσ

µ∂µη
ia
−mi

(
χiaη

ia
+ χĎiaη

Ď
ia

)
, (3.2.40)

describes a free-field theory of ndR Dirac fermions [cf. Eq. (3.2.34)]. Therefore, if a multiplet of two-component left-handed
fermions transforms under a pseudo-real representation of G, then the corresponding fermion mass eigenstates are Dirac
fermions [148]. If Eq. (3.2.35) contains an odd number of pseudo-real fermion multiplets, then the (antisymmetric) mass
matrix M is odd dimensional and thus has an odd number of zero eigenvalues [according to Eq. (D.4.1)]. But as dR must be
even, it follows that the pseudo-real fermion multiplet contains an even number of massless Weyl fermions.
In conclusion, the mass diagonalization procedure of an arbitrary field theory of fermions yields (in general) a set of

massless Weyl fermions, a set of massive neutral Majorana fermions [as in Eq. (3.2.10)], and a set of massive charged
Dirac fermions [as in Eq. (3.2.34)]. The Feynman rules for these mass-eigenstate two-component fermion fields are given in
Section 4.
For completeness, we review the squared-mass matrix diagonalization procedure for scalar fields. First, consider a

collection of free commuting real spin-0 fields, ϕ̂i(x), where the flavor index i labels the distinct scalar fields of the collection.
The free-field Lagrangian is given by 33

L = 1
2∂µϕ̂i∂

µϕ̂i −
1
2M

2
ij ϕ̂iϕ̂j, (3.2.41)

where M2 is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by introducing mass eigenstates ϕi
and the orthogonal matrix Q such that ϕ̂i = Qijϕj, withM2ijQikQj` = m

2
kδk` (no sum over k). In matrix form,

Q TM2Q = m2 = diag(m21,m
2
2, . . .), (3.2.42)

32 The doublet representation of SU(2) is pseudo-real.
33 Since the scalar fields are real, there is no need to distinguish between raised and lowered flavor indices.
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where the squared-mass eigenvaluesm2k are real.
34 This is the standard diagonalization problem for a real symmetricmatrix.

Next, consider a collection of free commuting complex spin-0 fields, Φ̂i(x). For complex fields, we follow the conventions
for flavor indices enunciated below Eq. (3.2.2) [e.g. Φ̂ i = (Φ̂i)Ď]. The free-field Lagrangian is given by

L = ∂µΦ̂
i∂µΦ̂i − (M2)ijΦ̂iΦ̂ j, (3.2.43)

whereM2 is an hermitian matrix [i.e., (M2)ij = (M2)ji in the notation of Eq. (3.2.29)].
We diagonalize the scalar squared-mass matrix by introducing mass eigenstates Φi and the unitary matrixW such that

Φ̂i = WikΦk (and Φ̂ i = W ikΦk), with (M2)ijWikW j` = m2kδ
k
` (no sum over k). In matrix form,

W ĎM2W = m2 = diag(m21,m
2
2, . . .). (3.2.44)

where the squared-mass eigenvalues m2k are real (cf. footnote 34). This is the standard diagonalization problem for an
hermitian matrix.

4. Feynman rules with two-component spinors

In order to systematically performperturbative calculations using two-component spinors,wepresent the basic Feynman
rules. The Feynman rules for the Standard Model (and its seesaw extension) and the MSSM (including possible R-parity-
violating interactions) are given in Appendix J, K and L. Feynman rules for two-component spinors have also been treated
in Refs. [49,106,109].

4.1. External fermion and boson rules

Consider a general theory, forwhichwemay assume that themassmatrix for fermions has beendiagonalized as discussed
in Section 3.2. The rules for assigning two-component external state spinors are then as follows:

• For an initial state (incoming) left-handed ( 12 , 0) fermion: x
• For an initial state (incoming) right-handed (0, 12 ) fermion: y

Ď

• For a final state (outgoing) left-handed ( 12 , 0) fermion: x
Ď

• For a final state (outgoing) right-handed (0, 12 ) fermion: y

where we have suppressed the momentum and spin arguments of the spinor wave functions. These rules are summarized
in the mnemonic diagram of Fig. 4.1.1.

Fig. 4.1.1. The external wave function spinors should be assigned as indicated here, for initial state and final state left-handed ( 12 , 0) and right-handed
(0, 12 ) fermions.

In general, the two-component external state fermion wave functions are distinguished by their Lorentz group
transformation properties, rather than by their particle or antiparticle status as in four-component Feynman rules. This
helps to explain why two-component notation is especially convenient for (i) theories with Majorana particles, in which
there is no fundamental distinction between particles and antiparticles, and (ii) theories like the StandardModel andMSSM
inwhich the left- and right-handed fermions transformunder different representations of the gauge group and (iii) problems
with polarized particle beams.

34 If the vacuum corresponds to a local minimum (or flat direction) of the scalar potential, then the squared-mass eigenvalues of M2 are real and non-
negative.
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In contrast to four-component Feynman rules (given in Appendix G.5), the direction of the arrows do not correspond to
the flow of charge or fermion number. The two-component Feynman rules for external fermion lines simply correspond to
the formulae for the one-particle wave functions exhibited in Eqs. (3.1.7) and (3.1.8) [with the convention that

∣∣Ep, s〉 is an
initial state fermion and

〈
Ep, s
∣∣ is a final state fermion]. In particular, the arrows indicate the spinor index structure, with

fields of undotted indices flowing into any vertex and fields of dotted indices flowing out of any vertex.
The rules above apply to anymass-eigenstate two-component fermion external wave functions. It is noteworthy that the

same rules apply for the two-component fermions governed by the Lagrangians of Eq. (3.2.10) [Majorana] and Eqs. (3.2.34)
or (3.2.40) [Dirac].
The corresponding rules for external boson lines are well known (see, e.g. Ref. [114]).

• For an initial state (incoming) or final state (outgoing) spin-0 boson: 1
• For an initial state (incoming) spin-1 boson of momentum Ek and helicity λ: εµ(Ek, λ)
• For a final state (outgoing) spin-1 boson of momentum Ek and helicity λ: εµ(Ek, λ)∗.

The explicit form of the helicity±1 (massless or massive) spin-1 polarization vector εµ is given in Eq. (I.2.41). The helicity
zero massive spin-1 polarization vector is given in Eq. (I.2.43).

4.2. Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of the two-component
fermion propagators using path integral techniques is given in Appendix F. Here, we will follow the more elementary
approach typically given in an initial textbook treatment of quantum field theory.
Fermion propagators are the Fourier transforms of the free-field vacuum expectation values of time-ordered products

of two fermion fields. They are obtained by inserting the free-field expansion of the two-component fermion field and
evaluating the spin sums using the formulae given in Eqs. (3.1.58) and (3.1.61). For the case of a single neutral two-
component fermion field ξ(x) of massm, Eqs. (3.2.11) and (3.2.12) yield [49,106,108,109,143,150]:

〈0| Tξα(x)ξ
Ď

β̇
(y) |0〉FT =

i
p2 −m2 + iε

∑
s

xα(Ep, s)x
Ď

β̇
(Ep, s) =

i
p2 −m2 + iε

p · σαβ̇ , (4.2.1)

〈0| Tξ Ďα̇(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑
s

yĎα̇(Ep, s)yβ(Ep, s) =
i

p2 −m2 + iε
p · σ α̇β , (4.2.2)

〈0| Tξ Ďα̇(x)ξ Ď
β̇
(y) |0〉FT =

i
p2 −m2 + iε

∑
s

yĎα̇(Ep, s)xĎ
β̇
(Ep, s) =

i
p2 −m2 + iε

mδα̇ β̇ , (4.2.3)

〈0| Tξα(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑
s

xα(Ep, s)yβ(Ep, s) =
i

p2 −m2 + iε
mδαβ , (4.2.4)

where FT indicates the Fourier transform from position to momentum space.35 These results have a clear diagrammatic
representation, as shown in Fig. 4.2.1. Note that the direction of the momentum flow pµ here is determined by the creation
operator that appears in the evaluation of the free-field propagator. Arrows on fermion lines always run away from dotted
indices at a vertex and toward undotted indices at a vertex.
There are clearly two types of fermion propagators. The first type preserves the direction of arrows, so it has one dotted

and one undotted index. For this type of propagator, it is convenient to establish a convention where pµ in the diagram is
defined to be the momentum flowing in the direction of the arrow on the fermion propagator. With this convention, the
two rules above for propagators of the first type can be summarized by one rule, as shown in Fig. 4.2.2. Here the choice of
the σ or the σ version of the rule is uniquely determined by the height of the indices on the vertex to which the propagator
is connected.36 These heights should always be chosen so that they are contracted as in Eq. (2.36). It should be noted that in

35 The Fourier transform of a translationally invariant function f (x, y) ≡ f (x− y) is given by

f (x, y) =
∫

d4p
(2π)4

f̂ (p) e−ip·(x−y), where f̂ (p) =
∫
d4x f (x)eip·x.

In the notation of the text above, f (x, y)FT ≡ f̂ (p).
36 The second form of the rule in Fig. 4.2.2 arises when one flips diagram (b) of Fig. 4.2.1 around by a 180◦ rotation (about an axis perpendicular to the
plane of the diagram), and then relabels p→−p, α̇→ β̇ and β → α.
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Fig. 4.2.1. Feynman rules for propagator lines of a neutral two-component fermion with mass m. (For simplicity, the+iε terms in the denominators are
omitted in all propagator rules.)

Fig. 4.2.2. This rule summarizes the results of both Fig. 4.2.1(a) and (b) for a neutral two-component fermion with massm.

Fig. 4.2.3. Fermion mass insertions (indicated by the crosses) can be treated as a type of interaction vertex, using the Feynman rules shown here.

diagrams (a) and (b) of Fig. 4.2.1 as drawn, the indices on the σ and σ read from right to left. In particular, the Feynman rules
for the propagator can be employedwith the spinor indices suppressed provided that the arrow-preserving propagator lines
are traversed in the direction parallel [antiparallel] to the arrowed line segment for theσ [σ ] version of the rule, respectively.
The second type of propagator shown in diagrams (c) and (d) of Fig. 4.2.1 does not preserve the direction of arrows, and

corresponds to an odd number of mass insertions. The indices on δα̇ β̇ and δα
β are staggered as shown to indicate that α̇

and α are to be contracted with expressions to the left, while β̇ and β are to be contracted with expressions to the right, in
accord with Eq. (2.36).37
Starting with massless fermion propagators, one can also derive the massive fermion propagators by employing mass

insertions as interaction vertices, as shown in Fig. 4.2.3. By summing up an infinite chain of such mass insertions between
massless fermion propagators, one can reproduce the massive fermion propagators of both types.
The above results for the propagator of aMajorana fermion can be generalized to amultiplet ofmass-eigenstateMajorana

fermions, ξαa(x) [such as a color octet of gluinos], which transforms as a real representation R of a (gauge or flavor) group G
(where a = 1, 2, . . . , dR for a representation of dimension dR). In this case, the Feynman graphs given in Figs. 4.2.1–4.2.3
are modified simply by specifying a group index a and b at either end of the propagator line. The corresponding Feynman
rules then includes an additional Kronecker delta factor in the group indices. In particular, if we associate the index a with
the spinor indices α, α̇ and the index b with the spinor indices β , β̇ , then the rules exhibited in Fig. 4.2.1(a) and (b) would
include the following Kronecker delta factors:

(a) δba, (b) δab, (4.2.5)

and the factors ofm in the rules exhibited in Fig. 4.2.1(c) and (d) would be replaced by

(c) δacm
cdδbd = maδ

ab, (d) δcamcdδ
d
b = maδab, (4.2.6)

(with no sum over the repeated index a), where mcd and mcd ≡ mcd are diagonal matrices with real non-negative diagonal
elementsmc . Here,we have introduced the separate symbolmcd in order tomaintain the convention that two repeated group
indices are summed when one index is raised and one index is lowered. Of course, if the Lagrangian is invariant under the
symmetry group G, then a multiplet of Majorana fermions corresponding to an irreducible representation R has a common
massm = ma.
It is convenient to treat separately the case of charged massive fermions. Consider a charged Dirac fermion of mass

m, which is described by a pair of two-component fields χ(x) and η(x) [cf. Eq. (3.2.17)]. Using the free-field expansions

37 As in Fig. 4.2.2, alternative and equivalent versions of the rules corresponding to diagrams (c) and (d) of Fig. 4.2.1 can be given for which the indices on
the Kronecker deltas are staggered as δβ̇ α̇ and δβα . These versions correspond to flipping the two respective diagrams by 180◦ and relabeling the indices
α̇→ β̇ and β → α.
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Fig. 4.2.4. Feynman rules for propagator lines of a pair of charged two-component fermions with a Dirac mass m. As in Fig. 4.2.2, the direction of the
momentum is taken to flow from the dotted to the undotted index in diagrams (a) and (b).

Fig. 4.2.5. Feynman rules for the (neutral or charged) scalar and gauge boson propagators, in the Rξ gauge, where pµ is the propagating four-momentum.
In the gauge boson propagator, ξ = 1 defines the ’t Hooft–Feynman gauge, ξ = 0 defines the Landau gauge, and ξ → ∞ defines the unitary gauge. For
the propagation of a non-abelian gauge boson, one must also specify the adjoint representation indices a, b.

[Eqs. (3.2.19) and (3.2.20)] and the spin sums [Eqs. (3.1.58)–(3.1.61)], the two-component free-field propagators are
obtained:

〈0| Tχα(x)χ
Ď

β̇
(y) |0〉FT = 〈0| Tηα(x)η

Ď

β̇
(y) |0〉FT =

i
p2 −m2

p · σαβ̇ , (4.2.7)

〈0| TχĎα̇(x)χβ(y) |0〉FT = 〈0| Tη
Ďα̇(x)ηβ(y) |0〉FT =

i
p2 −m2

p · σ α̇β , (4.2.8)

〈0| Tχα(x)ηβ(y) |0〉FT = 〈0| Tηα(x)χ
β(y) |0〉FT =

i
p2 −m2

m δαβ , (4.2.9)

〈0| TχĎα̇(x)ηĎ
β̇
(y) |0〉FT = 〈0| Tη

Ďα̇(x)χĎ

β̇
(y) |0〉FT =

i
p2 −m2

m δα̇ β̇ . (4.2.10)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish. These results again have a
simple diagrammatic representation, as shown in Fig. 4.2.4. Note that for Dirac fermions, the propagators with opposing
arrows (proportional to a mass) necessarily change the identity (χ or η) of the two-component fermion, while the single-
arrow propagators are diagonal in the fields. In processes involving such a charged fermion, one must of course distinguish
between the χ and η fields.
The above results for the propagator of a Dirac fermion can be generalized to a multiplet of mass-eigenstate Dirac

fermions, χαi, ηiα , which transform under a (gauge or flavor) group G. In this case, the Feynman graphs given in Fig. 4.2.4 are
modified simply by specifying a group index i and j at either end of the propagator line. The corresponding Feynman rules
then include an additional Kronecker delta factor in the group indices. In particular, if we associate the group index i with
the spinor indices α, α̇ and the index j with the spinor indices β , β̇ , then the rules exhibited in Fig. 4.2.4(a) and (b) would
include the following Kronecker delta factors:

(a) δ
j
i (b) δij, (4.2.11)

and the factors ofm in the rules exhibited in Fig. 4.2.4(c) and (d) would be replaced by

(c) δ`i m`
nδjn = miδ

j
i, (d) δi`m

`
nδ
n
j = miδ

i
j, (4.2.12)

wherem`n andm`n ≡ m`n are diagonal matrices with real non-negative diagonal elementsm`, and there is no sum over the
repeated index i. (Here, we have introduced the separate symbolm`n in order to maintain the convention that two repeated
group indices are summedwhen one index is raised and one index is lowered.) As before, if the Lagrangian is invariant under
the symmetry group G, then an irreducible multiplet of Dirac fermions has a common massm = mi.
For completeness, we exhibit in Fig. 4.2.5 the Feynman rules for the propagators of the (neutral or charged) scalar boson

and gauge boson in the Rξ gauge, with gauge parameter ξ [151].
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4.3. Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-invariant interactions
involving fermions must consist of bilinears in the fermion fields, which transform as a Lorentz scalar or vector, coupled
to the appropriate bosonic scalar or vector field to make an overall Lorentz scalar quantity.
Let us write all of the two-component left-handed ( 12 , 0) fermions of the theory as ψ̂i, where i runs over all of the gauge

group representation and flavor degrees of freedom. In general, the ( 12 , 0)-fermion fields ψ̂i consist of Majorana fermions
ξ̂i, and Dirac fermion pairs χ̂i and η̂i after mass terms (both explicit and coming from spontaneous symmetry breaking) are
taken into account. Likewise, consider a multiplet of scalar fields φ̂I , where I runs over all of the gauge group representation
and flavor degrees of freedom. In general, the scalar fields φ̂I consist of real scalar fields ϕ̂I and pairs of complex scalar fields
Φ̂I and Φ̂ I ≡ (Φ̂I)Ď. In matrix form,

ψ̂ ≡

 ξ̂χ̂
η̂

 , φ̂ ≡

 ϕ̂Φ̂
Φ̂Ď

 . (4.3.1)

By dividing up the fermions into Majorana and Dirac fermions and the spin-zero fields into real and complex scalars, we are
assuming implicitly that some of the indices I and i correspond to states of a definite (global) U(1)-charge (denoted in the
following by qI and qi, respectively).
The most general set of Yukawa interactions of the scalar fields with a pair of fermion fields is then given by:

Lint = −
1
2 Ŷ
Ijkφ̂Iψ̂jψ̂k −

1
2 ŶIjkφ̂

Iψ̂Ďjψ̂Ďk, (4.3.2)

where ŶIjk = (Ŷ Ijk)∗. We have suppressed the spinor indices here; the product of two-component spinors is always
performed according to the index convention indicated in Eq. (2.36). The Yukawa Lagrangian [Eq. (4.3.2)] must be invariant
under:

ξ̂i → ξ̂i, χ̂i → eiqiθ χ̂i, η̂i → e−iqiθ η̂i, ϕ̂i → ϕ̂i, Φ̂I → eiqI θ Φ̂I , Φ̂ I → e−iqI θ Φ̂ I , (4.3.3)

where the qi are the U(1)-charges of the corresponding Dirac fermions and the qI are the U(1)-charges of the corresponding
complex scalars. Consequently, the form of the Ŷ Ijk is constrained:

Ŷ Ijk = 0, unless qI + qj + qk = 0. (4.3.4)

Of course, any other conserved symmetries will impose additional selection rules on the Yukawa couplings Y Ijk.
The hatted fields are the interaction-eigenstate fields. However, in general the mass eigenstates can be different, as

discussed in Section 3.2. The computation of matrix elements for physical processes is more conveniently done in terms
of the propagating mass-eigenstate fields. The mass-eigenstate basis ψ is related to the interaction-eigenstate basis ψ̂ by a
unitary rotation Uij on the flavor indices. In matrix form:

ψ̂ ≡

 ξ̂iχ̂i
η̂i

 = Uψ ≡
Ωij 0 0
0 Lij 0
0 0 Rij

ξjχj
ηj

 , (4.3.5)

whereΩ , L, and R are constructed as described previously in Section 3.2 [see Eqs. (3.2.8) and (3.2.32)]. Likewise, the mass-
eigenstate basis φ is related to the interaction-eigenstate basis φ̂ by a unitary rotation VI J on the flavor indices. In matrix
form,

φ̂ ≡

 ϕ̂IΦ̂I
Φ̂ I

 = Vφ ≡
QI J 0 0
0 WI J 0
0 0 W I J

ϕJΦJ
Φ J

 , (4.3.6)

whereW I J = (WI J)∗, and Q andW are constructed according to Eqs. (3.2.42) and (3.2.44).
Thus, we may rewrite Eq. (4.3.2) in terms of mass-eigenstate fields:

Lint = −
1
2Y
IjkφIψjψk −

1
2YIjkφ

IψĎjψĎk, (4.3.7)

where

Y Ijk = VJ IUmjUnkŶ Jmn. (4.3.8)

Note that Eq. (4.3.4) implies that Y Ijk = 0 unless qI + qj + qk = 0. The corresponding Feynman rules that arise from the
Yukawa interaction Lagrangian are shown in Fig. 4.3.1. If the scalar φI is complex, then one can associate an arrow with the
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Fig. 4.3.1. Feynman rules for Yukawa couplings of scalars to two-component fermions in a general field theory. The choice of which rule to use depends
on how the vertex connects to the rest of the amplitude. When indices are suppressed, the spinor index part is always just proportional to the identity
matrix.

flow of analyticity, which would point into the vertex in (a) and would point out of the vertex in (b). That is, the arrow on
the scalar line keeps track of the height of the scalar flavor index entering or leaving the vertex.
In Fig. 4.3.1, two versions are given for each Feynman rule. The choice of which rule to use is dictated by the height of the

indices on the fermion lines that connect to the vertex. These heights should always be chosen so that they are contracted
as in Eq. (2.36). However, when all spinor indices are suppressed, the scalar-fermion–fermion rules will have an identical
appearance for both cases, since they are just proportional to the identity matrix of the 2× 2 spinor space.
To provide a more concrete example of the above results, consider a real neutral scalar field φ and a (possibly) complex

charged scalar fieldΦ (with U(1)-charge qΦ ) that interact with a multiplet of Majorana fermions ξi and Dirac fermion pairs
χj and ηj (with U(1)-charges qj and−qj, respectively). We assume that all fields are given in the mass-eigenstate basis. The
Yukawa interaction Lagrangian is given by:

Lint = −
1
2 (λ

ijξiξj + λijξ
Ďiξ Ďj)φ − κ ijχiη

jΦ + κi
jχĎiη

Ď
j Φ

Ď

− [(κ1)
i
jξiη

j
+ (κ2)ijξ

ĎiχĎj
]Φ − [(κ2)

ijξiχj + (κ1)i
jξ Ďiη

Ď
j ]Φ

Ď, (4.3.9)

where λ is a complex symmetric matrix, and κ , κ1 and κ2 are complex matrices such that κ ij = 0 unless qΦ = qj − qi and
(κ1)

i
j = (κ2)ij = 0 unless qΦ = qj [flavor index conventions are specified in Eqs. (3.2.2) and (3.2.28)]. The corresponding

Feynman rules of Fig. 4.3.1(a) are obtained by identifying Y Iij = λij, κ ij, (κ1)ij and (κ2)ij for the undotted fermion vertices
φξiξj, Φχiηj, Φξiηj and ΦĎξiχj, respectively.38 The corresponding Feynman rules of Fig. 4.3.1(b) for the dotted fermion
vertices are governed by the complex-conjugated Yukawa couplings, YIjk ≡ (Y Ijk)∗.
The renormalizable interactions of vector bosons with fermions and scalars arise from gauge interactions. These

interaction terms of the Lagrangian derive from the respective kinetic energy terms of the fermions and scalars when the
derivative is promoted to the covariant derivative:

(Dµ)ij ≡ δij∂µ + igaAaµ(T
a)i
j, (4.3.10)

where the index a labels the real (interaction-eigenstate) vector bosons Aµa and is summed over. The index a runs over the
adjoint representation of the gauge group,39 and the (T a)i

j are hermitian representation matrices of the generators of the
Lie algebra of the gauge group acting on the left-handed fermions (for further details, see Appendix E). For a U(1) gauge
group, the T a are replaced by real numbers corresponding to the U(1) charges of the left-handed ( 12 , 0) fermions. There is a
separate coupling ga for each simple group or U(1) factor of the gauge group G.40
In the gauge-interaction basis for the left-handed ( 12 , 0) two-component fermions the corresponding interaction

Lagrangian is given by

Lint = −gaAµa ψ̂
Ďi σµ(T a)ijψ̂j. (4.3.11)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson squared-mass matrix. The form
of Eq. (4.3.11) still applies where Aaµ are gauge boson fields of definite mass, although in this case for a fixed value of a, gaT

a

38 For the ΦĎξiχj vertex, we should reverse the direction of the arrow on the scalar line in Fig. 4.3.1(a) [and likewise for the corresponding hermitian-
conjugated vertex of Fig. 4.3.1(b)], in which case all arrows on the charged scalar and fermion lines would represent the direction of flow of the conserved
U(1)-charge.
39 Since the adjoint representation is a real representation, the height of the adjoint index a is not significant. The choice of a subscript or superscript
adjoint index is based solely on typographical considerations.
40 That is, the generators T a separate out into distinct classes, each of which is associated with a simple group or one of the U(1) factors contained in the
direct product that defines G. In particular, ga = gb if T a and T b are in the same class. If G is simple, then ga = g for all a.
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Fig. 4.3.2. The Feynman rules for two-component fermion interactions with gauge bosons. The choice of which rule to use depends on how the vertex
connects to the rest of the amplitude. The Ga are defined in Eq. (4.3.14). The index a runs over both neutral and charged (mass-eigenstate) gauge bosons,
consistent with charge conservation at the vertex.

[which multiplies Aaµ in Eq. (4.3.11)] is some linear combination of the original gaT
a of the unbroken theory. That is, the

hermitian matrix gauge field (Aµ)ij ≡ Aaµ(T
a)i
j appearing in Eq. (4.3.11) can always be re-expressed in terms of the physical

mass-eigenstate gauge boson fields.
If an unbroken U(1) (global or local) symmetry exists, then the physical gauge bosonswill be eigenstates of the conserved

U(1)-charge.41 If the U(1) symmetry group is orthogonal to the gauge group under which the Aµa transform, then all the
gauge bosons are neutral with respect to the U(1)-charge. For example, in the case of the interaction of a gluonwith a pair of
Majorana fermion gluinos, the gluon is a gauge boson that transforms under the SU(3) color group,which is orthogonal to the
conserved U(1)EM. That is, gluinos are color octet, electrically neutral fermions. In contrast, in the case of the interaction of
a Z0 with pair of Majorana neutralinos, U(1)EM is not orthogonal to the electroweak SU(2)×U(1) gauge group. Nevertheless,
the Z0-gauge boson interactions of the neutralinos are allowed as they conserve electric charge.
To obtain the desired Feynman rule, we rewrite Eq. (4.3.11) in terms of mass-eigenstate fermion fields. The resulting

interaction Lagrangian can be rewritten as

Lint = −Aµaψ
Ďi σµ(Ga)ijψj, (4.3.13)

where the Aµa are the mass-eigenstate gauge fields (of definite U(1)-charge, if relevant), and

(Ga)ij = gaUki(T a)k
mUmj, (4.3.14)

or in matrix form, Ga = gaUĎT aU (no sum over a). For values of a corresponding to the neutral gauge fields, the Ga are
hermitian matrices. The corresponding Feynman rule is shown in Fig. 4.3.2.
The above treatment of the gauge interactions of (two-component) fermions is general. Nevertheless, it is useful to

consider separately three cases where the gauge bosons couple to a pair of Majorana fermions, a pair of Dirac fermions,
and a fermion pair consisting of one Majorana and one Dirac fermion.
First, consider the gauge interactions of neutral Majorana fermions. The Majorana fermions consist of left-handed ( 12 , 0)

interaction-eigenstate fermions ξ̂i that transform under a real representation of the gauge group. After converting from the
interaction eigenstates ξ̂i to the mass eigenstates ξi using Eq. (3.2.7), the Lagrangian for the gauge interactions of Majorana
fermions is given by:

Lint = −Aaµξ
Ďi σµ(Ga)ijξj, (4.3.15)

where the Aaµ are neutral (real) mass-eigenstate gauge fields, and

(Ga)ij = gaΩki(T a)k
mΩm

j, (4.3.16)

or in matrix form, Ga = gaΩĎT aΩ (no sum over a). Note that the Ga are hermitian matrices. The corresponding Feynman
rule takes the same form as the generalized rule shown in Fig. 4.3.2, with a restricted to values corresponding to the neutral
mass-eigenstate gauge bosons.
Next, consider the gauge interactions of charged Dirac fermions. The Dirac fermions consist of pairs of left-handed

( 12 , 0) interaction-eigenstate fermions χ̂i and η̂
i that transform as conjugate representations of the gauge group (hence

the opposite flavor index heights). The fermion mass matrix couples χ and η type fields as in Eq. (3.2.27). In the coupling
to the interaction-eigenstate gauge fields, if the (T a)ij are matrix elements of the hermitian representation matrices of the
generators acting on the χ̂i, then the η̂i transform in the complex conjugate representationwith the corresponding generator

41 In terms of the physical gauge boson fields, AaµT
a consists of a sum over real neutral gauge fields multiplied by hermitian generators, and complex

charged gauge fields multiplied by non-hermitian generators. For example, in the electroweak Standard Model, G = SU(2)× U(1)with gauge bosons and
generatorsW aµ and T

a
=

1
2 τ
a for SU(2) and Bµ and Y for U(1), where the τ a are the usual Pauli matrices. After diagonalizing the gauge boson squared-mass

matrix[151]:

gW aµT
a
+ g ′BµY =

g
√
2
(W+µ T+ +W−µ T−)+

g
cos θW

(
T 3 − Q sin2 θW

)
Zµ + eQAµ, (4.3.12)

whereQ = T 3+Y is the generator of the unbrokenU(1)EM , T± ≡ T 1±iT 2 , and e = g sin θW = g ′ cos θW . Themassive gauge boson charge-eigenstate fields
of the broken theory consist of a charged massive gauge boson pair,W± ≡ (W 1 ∓ iW 2)/

√
2, a neutral massive gauge boson, Z ≡ W 3 cos θW − B sin θW ,

and the massless photon, A ≡ W 3 sin θW + B cos θW .
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Fig. 4.3.3. The Feynman rules for the interaction of a gauge boson and a pair of Dirac fermions (each formed byχ and η of the appropriate flavor index). The
fermion lines are labeled by the corresponding two-component left-handed ( 12 , 0) fermion fields. The matrices G

a
L and G

a
R depend on the group generators

for the representation carried by the χi according to Eqs. (4.3.19) and (4.3.20). The index a runs over both neutral and charged (mass-eigenstate) gauge
bosons, consistent with charge conservation at the vertex.

matrices −(T a)∗ = −(T a)T, i.e. with matrix elements −(T a)ji. Hence, the Lagrangian for the gauge interactions of Dirac
fermions can be written in the form:

Lint = −gaAµa χ̂
Ďi σµ(T a)ijχ̂j + gaAµa η̂

Ď
i σµ(T

a)j
iη̂j. (4.3.17)

We now rewrite Eq. (4.3.17) in terms of mass-eigenstate fermion fields using Eq. (3.2.31), and express the hermitian
matrix gauge field Aµ ≡ Aµa T a in terms of mass-eigenstate gauge fields (of definite U(1)-charge, if relevant). The resulting
interaction Lagrangian is then given by:

Lint = −Aµa
[
χĎi σµ(GaL)i

jχj − η
Ď
i σµ(G

a
R)j
iηj
]
, (4.3.18)

where Aµa GaL and A
µ
a GaR are hermitian matrix-valued gauge fields, with:

(GaL)i
j
= gaLki(T a)k

mLmj, (4.3.19)

(GaR)j
i
= gaRmj(T a)m

kRki. (4.3.20)

Inmatrix form, Eqs. (4.3.19) and (4.3.20) read:GaL = gaL
ĎT aL andGaR = gaR

ĎT aR (no sumover a). For values of a corresponding
to the neutral gauge fields, GaL and G

a
R are hermitianmatrices. The corresponding Feynman rules for the gauge interactions of

Dirac fermions are shown in Fig. 4.3.3. Note that χi with its arrow pointing out of the vertex and ηi with its arrow pointing
into the vertex represent the same Dirac fermion.
Finally, consider the interaction of a charged vector boson W (with U(1)-charge qW ) with a fermion pair consisting of

one Majorana and one Dirac fermion. As before, we denote the Majorana fermion by ξi and the Dirac fermion pair by χj and
ηj (with U(1)-charges qj and −qj, respectively). All fields are assumed to be in the mass-eigenstate basis. The interaction
Lagrangian is given by42:

Lint = −Wµ[(G1)jiχĎjσµξi − (G2)ijξ Ďiσµηj] −W Ď
µ[(G1)

j
i ξ

Ďiσµχj − (G2)ijη
Ď
j σ

µξi], (4.3.21)

where G1 and G2 are arbitrary complex matrices, with (G1)ij ≡ [(G1)ij]∗ and (G2)ij ≡ [(G2)ij]∗, such that (G1)ji = (G2)ij = 0
unless qW = qj. The interactions of Eq. (4.3.21) yield the Feynman rules exhibited in Fig. 4.3.4. Note that rules (c) and (d) are
the complex conjugates of rules (a) and (b), respectively, corresponding to a reversal of the flow of the U(1)-charge through
the interaction vertex.
In Figs. 4.3.2–4.3.4, two versions are given for each of the boson–fermion–fermion Feynman rules. The correct version

to use depends in a unique way on the heights of indices used to connect each fermion line to the rest of the diagram.
For example, the way of writing the vector-fermion–fermion interaction rule depends on whether we used ψĎiσµψj, or its
equivalent form−ψjσµψĎi, in Eq. (4.3.11). Note the different heights of the undotted and dotted spinor indices that adorn
σµ and σµ. The choice of which rule to use is thus dictated by the height of the indices on the lines that connect to the
vertex. These heights should always be chosen so that they are contracted as in Eq. (2.36).
The application of the rules of this subsection will be exhibited in Section 4.5. Many additional examples involving

Standard Model and MSSM processes can be found in Section 6.

42 The sign in front of G2 is conventionally chosen to match the sign of the term proportional to GaR in Eq. (4.3.18).
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Fig. 4.3.4. The Feynman rules for the interactions of a charged vector boson (with U(1)-charge qW ) with a fermion pair consisting of oneMajorana fermion
ξi and one Dirac fermion formed by χj and ηj (with corresponding U(1)-charges qj and −qj). The fermion lines are labeled by the corresponding two-
component left-handed ( 12 , 0) fermion fields. The matrix couplings G1 and G2 are defined in Eq. (4.3.21). Note that (G1)j

i
= (G2)ij = 0 unless qW = qj . The

arrows indicate the direction of flow of the U(1)-charges of the fermion and boson fields.

4.4. General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that conform with the rules
given in Sections 4.1–4.3 for external wave functions, propagators, and interactions, respectively. Starting from any external
wave function spinor (or from any vertex on a fermion loop), factors corresponding to each propagator and vertex should
be written down from left to right, following the line until it ends at another external state wave function (or at the original
point on the fermion loop). If one starts a fermion line at an x or y external state spinor, it should have a raised undotted
index in accordwith Eq. (2.36). Or, if one starts with an xĎ or yĎ, it should have a lowered dotted spinor index. Then, all spinor
indices should always be contracted as in Eq. (2.36). If one ends with an x or y external state spinor, it will have a lowered
undotted index, while if one ends with an xĎ or yĎ spinor, it will have a raised dotted index. For arrow-preserving fermion
propagators and gauge vertices, the preceding determines whether the σ or σ rule should be used.
With only a little practice, one can write down amplitudes immediately with all spinor indices suppressed. In particular,

the following must be satisfied:

• For any scattering matrix amplitude, factors of σ and σ must alternate. If one or
more factors of σ and/or σ are present, then x and ymust be followed [preceded]
by a σ [σ ], and xĎ and yĎ must be followed [preceded] by a σ [σ ]. (4.4.1)

These requirements automatically dictate whether the σ or σ version of the rule for arrow-preserving fermion
propagators and gauge vertices are employed in any tree-level Feynman diagram. In loop diagrams, wemust add one further
requirement that governs the order of the σ and σ factors as one traverses around the loop.

• Arrow-preserving propagator lines must be traversed in a direction parallel [anti-
parallel] to the arrowed line segment for the σ [σ ] version of the propagator rule.43 (4.4.2)

For fermion lines that are not closed loops, this last requirement is realized automatically provided that the requirements
of Eq. (4.4.1) are satisfied. However, for closed fermion loops, one must use the correct fermion propagator corresponding
to the direction around the loop one has chosen to follow in writing down the spinor trace with suppressed indices. For
example, having employed a σ [σ ] rule at one vertex attached to the loop, one must then traverse the loop from that vertex
point in a direction parallel [antiparallel] to the arrow-preserving propagator lines in the loop. Indeed, this rule is crucial for
obtaining the correct sign for the triangle anomaly calculation in Section 6.26.
Symmetry factors for identical particles are implemented in the usual way. Fermi–Dirac statistics are implemented by

the following rules:

• Each closed fermion loop gets a factor of−1.
• A relative minus sign is imposed between terms contributing to a given amplitude whenever the ordering of external
state spinors (written left-to-right in a formula) differs by an odd permutation.

Amplitudes generated according to these rules will contain objects of the form:

a = z1Σz2 (4.4.3)

43 This rule is simply a consequence of the order of the spinor indices in Fig. 4.2.2, as noted in Section 4.2.
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Fig. 4.5.1. The two tree-level Feynman diagrams contributing to the decay of a neutral scalar into a pair of Majorana fermions.

where z1 and z2 are each commuting external spinor wave functions x, xĎ, y, or yĎ, andΣ is a sequence of alternating σ and
σ matrices. The complex conjugate of this quantity is obtained by applying the results of Eqs. (2.43)–(2.47), and is given
by44

a∗ = zĎ2Σrz
Ď
1 (4.4.4)

where Σr is obtained from Σ by reversing the order of all the σ and σ matrices, and using the same rule for suppressed
spinor indices. [Notice that this rule for taking complex conjugates has the same form as for anticommuting spinors; cf. Eqs.
(2.43)–(2.47).]We emphasize that in principle, it does notmatter inwhat direction a diagram is traversedwhile applying the
rules. However, for each diagramonemust include a sign that depends on the ordering of the external fermions. This sign can
be fixedby first choosing some canonical ordering of the external fermions. Then for any graph that contributes to theprocess
of interest, the corresponding sign is positive (negative) if the ordering of external fermions is an even (odd) permutation
with respect to the canonical ordering. If one chooses a different canonical ordering, then the resulting amplitude changes
by an overall phase (is unchanged) if this ordering is an odd (even) permutation of the original canonical ordering.45 This is
consistent with the fact that the S-matrix element is only defined up to an overall sign, which is not physically observable.46
Note that different graphs contributing to the same processwill often have different external statewave function spinors,

with different arrow directions, for the same external fermion. Furthermore, there are no arbitrary choices to be made for
arrow directions, as there are in some four-component Feynman rules for Majorana fermions (as discussed in Appendix G).
Instead, one must add together all Feynman graphs that obey the rules.

4.5. Basic examples of writing down diagrams and amplitudes

Some simple examples will help clarify the rules of Section 4.4. In the tree-level Feynman graphs of this subsection, we
label all two-component fermion lines by their corresponding left-handed ( 12 , 0) fields. (We shall propose a slightly different
labeling convention in Section 5.) A larger number of examples, drawn from practical calculations, are given in Section 6.

4.5.1. Scalar boson decay to fermion pairs
Let us first consider a theorywith amultiplet of uncharged,massive ( 12 , 0) fermions ξi, and a real scalarφ, with interaction

Lint = −
1
2

(
λijξiξj + λijξ

Ďiξ Ďj
)
φ, (4.5.1)

where λij ≡ (λij)∗ and λij = λji. Consider the decay φ → ξi(Ep1, s1)ξj(Ep2, s2) [for a fixed choice of i and j], where by ξi(Ep, s)
we mean the one-particle state given by Eq. (3.2.13).
Two diagrams contribute to this process, as shown in Fig. 4.5.1. The matrix element is:

iM = y(Ep1, s1)
α(−iλijδαβ)y(Ep2, s2)β + x

Ď(Ep1, s1)α̇(−iλijδ
α̇
β̇)x

Ď(Ep2, s2)
β̇

= −iλijy(Ep1, s1)y(Ep2, s2)− iλijx
Ď(Ep1, s1)x

Ď(Ep2, s2). (4.5.2)

The second line could be written down directly by recalling that the sum over suppressed spinor indices is taken according
to Eq. (2.36). Note that if we reverse the ordering for the external fermions, the overall sign of the amplitude changes sign.
This is easily checked, since for the commuting spinor wave functions (x and y), the spinor products in Eq. (4.5.2) change

44 For Lorentz scalar quantities of the form given by Eq. (4.4.3), there is no distinction between complex conjugation and hermitian conjugation.
45 For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from the same fermion external state in all
diagrams. That way, all terms in the amplitude have the same canonical ordering of fermions and there are no additional minus signs between diagrams.
However, if there are four or more external fermions, it often happens that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen according to the relative sign of the
permutation of the corresponding external fermion spinors. This guarantees that the total amplitude is antisymmetric under the interchange of any pair
of external fermions.
46 The S-matrix element is related to the invariant matrix elementMfi by Sfi = δfi + (2π)4δ(4)(pf − pi) iMfi, where pf (pi) is the total four-momentum
of the final (initial) state. If f 6= i (i.e. the final and initial states are distinct), then δfi = 0 in which case the invariant matrix element is only defined up to
an overall (unphysical) sign. However, if f = i, the most convenient choice for the canonical ordering of external fermions is the one that yields 〈f |i〉 = δfi
(with no extra minus sign), which then fixes the absolute sign of the invariant matrix element.
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Fig. 4.5.2. The two tree-level Feynman diagrams contributing to the decay of a neutral scalar into a pair of Dirac fermions. The χi–ηi and χj–ηj pairs, each
with oppositely directed arrows, comprise Dirac fermion states with flavor indices i and j, respectively.

signwhen the order is reversed [see Eqs. (2.59) and (2.60)]. This overall sign is not significant and depends on the order used
in constructing the two-particle state. One could even make the choice of starting the first diagram from fermion 1, and the
second diagram from fermion 2:

iM = −iλijy(Ep1, s1)y(Ep2, s2)− (−1)iλijx
Ď(Ep2, s2)x

Ď(Ep1, s1). (4.5.3)

Here, the first term establishes the canonical ordering of fermions (12), and the contribution from the second diagram
therefore includes the relative minus sign in parentheses. Indeed, Eqs. (4.5.2) and (4.5.3) are equal. In the computation
of the total decay rate for the case of i = j, one must multiply the integral over the total phase space by 1/2 to account for
the identical particles.
Next, we consider a theory of a massive neutral scalar boson that couples to a multiplet of Dirac fermions. We denote

the corresponding two-component fields by χi and ηi. For simplicity, we take all the U(1)-charges of the χi to be equal (and
opposite to the charges of the ηi). The corresponding U(1)-invariant interaction is:

Lint = −(κ
i
jχiη

j
+ κi

jχĎiη
Ď
j )φ, (4.5.4)

where κij = (κ ij)∗. Consider the decay φ→ fi(Ep1, s1)f
j
(Ep2, s2) [for a fixed choice of i and j], where by f (Ep, s) and f (Ep, s)we

mean the one-particle states given by Eq. (3.2.22). Two diagrams contribute to this process, as shown in Fig. 4.5.2. Note that
the outgoing fermion lines are distinguished by their U(1)-charges. The matrix element is then given by

iM = −iκ jiy(Ep1, s1)y(Ep2, s2)− iκi
jxĎ(Ep1, s1)x

Ď(Ep2, s2). (4.5.5)

The matrix element for φ→ fi(Ep1, s1)f
j
(Ep2, s2) is identical to that of φ→ ξi(Ep1, s1)ξj(Ep2, s2) after replacing λij with κ ij.

However for fixed i = j, the rate for scalar boson decay to fif
i
is twice that of ξiξi due to the final state identical particles in

the latter case, as noted above. One also arrives at the same conclusion if one treats a single Dirac fermion as a pair of mass-
degenerate two-component fields ξ1 and ξ2 [cf. Eq. (3.2.15)]. Due to the U(1)-symmetry, the scalar Yukawa interactions are
diagonal in the ξ1–ξ2 basis, so the rate for scalar decay into the Dirac fermion pair is equal to the incoherent sum of the rate
for decay into ξ1ξ1 and ξ2ξ2.

4.5.2. Fermion pair annihilation into a scalar boson
It is also instructive to consider the corresponding 2 → 1 scattering (annihilation) processes ξ(Ep1, s1)ξ(Ep2, s2) → φ

and f (Ep1, s1)f (Ep2, s2) → φ, respectively. The corresponding amplitudes are given by Eqs. (4.5.2) and (4.5.5) with y → x
and xĎ → yĎ (for simplicity, we neglect flavor). In the computation of the cross-sections, there is no extra factor required to
account for the case of identical particles in the initial state. That is, the cross-section for f (Ep1, s1)f (Ep2, s2)→ φ is equal to
the cross-section for ξ(Ep1, s1)ξ(Ep2, s2)→ φ after replacing λwith κ .
This may at first seem puzzling given that a Dirac fermion can be represented by a pair of mass-degenerate two-

component fields χ1 and χ2. But, recall the standard procedure for the calculation of decay rates and cross-sections in field
theory—average over unobserved degrees of freedom of the initial state and sum over unobserved degrees of freedom of the final
state. This mantra is well known for dealing with spin and color degrees of freedom, but it is also applicable to degrees
of freedom associated with global internal symmetries. Thus, the cross-section for the annihilation of a Dirac fermion pair
into a neutral scalar boson can be obtained by computing the average of the cross-sections for ξ1(Ep1, s1)ξ1(Ep2, s2) → φ
and ξ2(Ep1, s1)ξ2(Ep2, s2)→ φ. Since the annihilation cross-sections for ξ1ξ1 and ξ2ξ2 are equal, we confirm the annihilation
cross-section for the Dirac fermion pair obtained above in theχ–η basis. Since the latter is conceptually simpler, subsequent
computations involving Dirac fermions will be performed in the χ–η basis.
The annihilation rate of fermions enters in the analysis of the event flux due to the annihilation of dark matter in the

halo of our galaxy. Let us compare the rates in the case that the dark matter is either a Majorana or a Dirac fermion. Suppose
the annihilation involves two fermions whose number densities are n1 and n2 respectively. Then the observer on Earth who
integrates along the line of sight to the annihilation events that are detected sees a flux of events proportional to [152]

dNevents
dA dt

∼

∫
n1n2 〈σannvrel〉 d`, (4.5.6)

where vrel is the relative velocity of the annihilating initial state particles, σann is the annihilation cross-section and 〈· · · 〉
refers to a thermal average [153] over the velocity distribution of dark matter particles in the halo. We now compare the
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Fig. 4.5.3. The two tree-level Feynman diagrams contributing to the decay of a massive neutral vector boson Aµ into a pair of Majorana fermions.

case of the annihilation of a single species of Majorana particles and the annihilation of a Dirac fermion–antifermion pair
(assumed to have the same mass and couplings). We assume that the number density of Dirac fermions and antifermions
and the corresponding number density of Majorana fermions are all the same (and denoted by n). Above, we showed that
σann is the same for the annihilation of a single species of Majorana and Dirac fermions. For the Dirac case, n1n2 = n2. For
the Majorana case, because the Majorana fermions are identical particles, given N initial state fermions in a volume V , there
are N(N − 1)/2 possible scatterings. In the thermodynamic limit where N , V → ∞ at fixed n ≡ N/V , we conclude that
n1n2 = 1

2n
2 for a single species of annihilating Majorana fermions.47 Hence the event flux rate for the annihilation of a

Dirac fermion–antifermion pair is double that of a single species of Majorana fermions.48 The extra factor of 1/2 can also
be understood by noting that in the case of annihilating dark matter particles (in the large N limit), all possible scattering
axes occur and are implicitly integrated over. But, integrating over 4π steradians double counts the annihilation of identical
particles (in the same way it does in the computation of the decay rate of a scalar into identical fermions discussed above).
Hence, one must include a factor of 12 in this case by replacing n1n2 = n

2 by 12n
2 in Eq. (4.5.6).

The relic abundance of primordial dark matter particles in the universe is inversely proportional to 〈σannvrel〉 [155]. By
similar arguments to the ones just presented, it follows that the relic abundance of a single species of Majorana fermions
would be twice that of a single species of Dirac fermions.

4.5.3. Vector boson decay into fermion pairs
Consider next the decay of a massive neutral vector boson Aµ into a pair of Majorana fermions, Aµ → ξi(Ep1, s1)ξj(Ep2, s2),

following from the interaction,

Lint = −GijAµξ Ďiσµξj, (4.5.7)
where G is an hermitian coupling matrix. The two diagrams shown in Fig. 4.5.3 contribute.
We start from the fermion with momentum p1 and spin vector s1 and end at the fermion with momentum p2 and spin

vector s2, using the rules of Fig. 4.3.2. The resulting amplitude for the decay is

iM = εµ
[
−iGijxĎ(Ep1, s1)σµy(Ep2, s2)+ iGj

iy(Ep1, s1)σµx
Ď(Ep2, s2)

]
, (4.5.8)

where εµ is the vector boson polarization vector. We have used the σ -version of the vector-fermion–fermion rule [see
Fig. 4.3.2] for the first diagram of Fig. 4.5.3 and the σ -version for the second diagram of Fig. 4.5.3, as dictated by the implicit
spinor indices, whichwe have suppressed. However, we could have chosen to evaluate the second diagram of Fig. 4.5.3 using
the σ -version of the vector-fermion–fermion rule by starting from the fermion with momentum p2 and spin vector s2. In
that case, the term iGjiy(Ep1, s1)σµxĎ(Ep2, s2) in Eq. (4.5.8) is replaced by

(−1)[−iGjixĎ(Ep2, s2)σµy(Ep1, s1)]. (4.5.9)

In Eq. (4.5.9), the factor of −iGji arises from the use of the σ -version of the vector-fermion–fermion rule, and the overall
factor of−1 appears because the order of the fermion wave functions has been reversed; i.e. (21) is an odd permutation of
(12). This is in accord with the ordering rule stated at the end of Section 4.4. Thus, the resulting amplitude for the decay of
the vector boson into the pair of Majorana fermions now takes the form:

iM = εµ
[
−iGijxĎ(Ep1, s1)σµy(Ep2, s2)+ iGj

ixĎ(Ep2, s2)σµy(Ep1, s1)
]
, (4.5.10)

which coincides with Eq. (4.5.8) after using yσµxĎ = xĎσµy [cf. Eq. (2.61) with commuting spinors]. Eq. (4.5.10) explicitly
exhibits the property that the amplitude is antisymmetric under the interchange of the two external identical fermions.
Again, the absolute sign of the total amplitude is not significant and depends on the choice of ordering of the outgoing
states.
Next, we consider the decay of a massive neutral vector boson into a pair of Dirac fermions. Each Dirac fermion

is described by the two-component fields χi and ηi, which possess equal and opposite U(1)-charges, respectively. The
corresponding interaction Lagrangian is given by:

Lint = −Aµ[(GL)ij χĎiσµχj − (GR)ji η
Ď
i σµη

j
], (4.5.11)

where GL and GR are hermitian. There are two contributing graphs, as shown in Fig. 4.5.4.

47 The factor of 1/2, which has been erroneously omitted in many papers in the literature, was correctly employed and explained in Ref. [154].
48 This is also consistent with the interpretation of a Dirac fermion as a pair of mass-degenerate Majorana fermions.
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Fig. 4.5.4. The two tree-level Feynman diagrams contributing to the decay of a massive neutral vector boson Aµ into a pair of Dirac fermions. The χi–ηi
and χj–ηj pairs, each with oppositely directed arrows, comprise Dirac fermion states with flavor indices i and j, respectively.

Fig. 4.5.5. Tree-level Feynman diagrams contributing to the elastic scattering of a neutral scalar and a Majorana fermion. There are four more diagrams,
obtained from these by crossing the initial and final scalar lines.

To evaluate the amplitude, we start with the fermion of momentum p1 and spin vector s1, and end at the fermion with
momentum p2 and spin vector s2. Note that the outgoing χi with the arrow pointing outward from the vertex and the
outgoingηiwith the arrowpointing inward to the vertex both correspond to the sameoutgoingDirac fermion. The amplitude
for the decay is given by:

iM = εµ
[
−i(GL)ijxĎ(Ep1, s1)σµy(Ep2, s2)− i(GR)i

jy(Ep1, s1)σµx
Ď(Ep2, s2)

]
= εµ

[
−i(GL)ijxĎ(Ep1, s1)σµy(Ep2, s2)− i(GR)i

jxĎ(Ep2, s2)σµy(Ep1, s1)
]
. (4.5.12)

As in the case of the decay to a pair of Majorana fermions, we have exhibited a second form for the amplitude in Eq. (4.5.12)
in which the σ -version of the vertex Feynman rule has been employed in both diagrams. Of course, the resulting amplitude
must be the same in each method (up to a possible overall sign of the total amplitude that is not determined).
The computation of the amplitude for the decay of a charged vector boson to a fermion pair consisting of one Majorana

fermion and oneDirac fermion, due to the interactions given in Eq. (4.3.21), is straightforward andwill not be given explicitly
here.

4.5.4. Two-body scattering of a boson and a neutral fermion
The next level of complexity consists of diagrams that involve fermion propagators. In the examples that follow in this

and in the next subsection, we shall ignore the flavor index and consider scattering processes that involve a single flavor of
Majorana or Dirac fermion. For our first example of this type, consider the tree-level matrix element for the scattering of a
neutral scalar and a two-component neutral massive fermion (φξ → φξ ), with the interaction Lagrangian given above in
Eq. (4.5.1). Using the corresponding Feynman rules, there are eight contributing diagrams. Four are depicted in Fig. 4.5.5;
there are another four diagrams (not shown) where the initial and final state scalars are crossed (i.e., the initial state scalar
is attached to the same vertex as the final state fermion).
We shall write down the amplitudes for the four diagrams shown in Fig. 4.5.5, starting with the final state fermion line

and moving toward the initial state fermion line. Then,

iM =
i

k2 −m2ξ

{
(−iλ)(−iλ∗)

[
xĎ(Ep2, s2) σ · k x(Ep1, s1)+ y(Ep2, s2) σ · k y

Ď(Ep1, s1)
]

+mξ
[
(−iλ)2y(Ep2, s2)x(Ep1, s1)+ (−iλ

∗)2xĎ(Ep2, s2)y
Ď(Ep1, s1)

]}
+ (crossed), (4.5.13)

where kµ is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) are the momentum and spin four-vectors of
the incoming fermion, and (p2, s2) are those of the outgoing fermion. The notation ‘‘(crossed)’’ refers to the contribution to
the amplitude from diagrams which have the initial and final scalars interchanged. Note that we could have evaluated the
diagrams above by starting with the initial vertex and moving toward the final vertex. It is easy to check that the resulting
amplitude is the negative of the one obtained in Eq. (4.5.13); the overall sign change simply corresponds to swapping the
order of the two fermions and has no physical consequence. The overall minus sign is a consequence of Eqs. (2.59)–(2.61)
and the minus sign difference between the two ways of evaluating the propagator that preserves the arrow direction.
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Fig. 4.5.6. Tree-level Feynman diagrams contributing to the elastic scattering of a neutral vector boson and a Majorana fermion. There are four more
diagrams, obtained from these by crossing the initial and final scalar lines.

Fig. 4.5.7. Tree-level Feynman diagrams contributing to the elastic scattering of a neutral scalar and a charged fermion. There are four more diagrams,
obtained from these by crossing the initial and final scalar lines.

Next, we compute the tree-level matrix element for the scattering of a neutral vector boson and a neutral massive two-
component fermion ξ with the interaction Lagrangian of Eq. (4.5.7). Again there are eight diagrams: the four diagrams
depicted in Fig. 4.5.6 plus another four (not shown) where the initial and final state vector bosons are crossed.
Starting with the final state fermion line and moving toward the initial state, we obtain

iM =
i

k2 −m2ξ

{
(−iG)2xĎ(Ep2, s2) σ · ε

∗

2 σ · k σ · ε1 x(Ep1, s1)+ (iG)
2y(Ep2, s2) σ · ε

∗

2 σ · k σ · ε1y
Ď(Ep1, s1)

+ (−iG)(iG)mξ
[
y(Ep2, s2) σ · ε

∗

2 σ · ε1 x(Ep1, s1)+ x
Ď(Ep2, s2) σ · ε

∗

2 σ · ε1 y
Ď(Ep1, s1)

]}
+ (crossed), (4.5.14)

where ε1 and ε2 are the initial and final vector boson polarization four-vectors, respectively. As before, kµ is the sum of the
two incoming (or outgoing) four-momenta, (p1, s1) and (p2, s2) are the momentum and spin four-vectors of the incoming
and outgoing fermions, respectively, and ‘‘(crossed)’’ indicates the terms from diagrams in which the initial and final vector
bosons are interchanged. Alternatively, if one starts with an initial state fermion and moves toward the final state, the
resulting amplitude is the negative of the one obtained in Eq. (4.5.14), as expected.
The computation of the amplitude for the scattering of a charged scalar or vector boson and a Majorana fermion is

straightforward and will not be given explicitly here.

4.5.5. Two-body scattering of a boson and a charged fermion
We first consider the scattering of a Dirac fermion with a neutral scalar. We denote the Dirac mass of the fermion bymD.

The left-handed fields χ and η have opposite charges (which we take to be Q = +1 and−1 respectively), and interact with
the scalar φ according to

Lint = −φ[κχη + κ
∗χĎηĎ], (4.5.15)

where κ is a coupling parameter. Then, for the elastic scattering of theQ = +1 fermion and a scalar, the diagrams of Fig. 4.5.7
contribute at tree level plus another four diagrams (not shown) where the initial and final state scalars are crossed. Now,
these diagrams match precisely those of Fig. 4.5.5. Thus, applying the Feynman rules yields the same matrix element, Eq.
(4.5.13), previously obtained for the scattering of a neutral scalar and neutral two-component fermion,with the replacement
of λwith κ andmξ withmD.
We next examine the scattering of a Dirac fermion and a charged scalar, where both the scalar and fermion have the same

absolute value of the charge. As above, we denote the charged Q = ±1 fermion by the pair of two-component fermions χ
and η and the (intermediate state) neutral two-component fermion by ξ . The charged Q = ±1 scalar is represented by the
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Fig. 4.5.8. Tree-level Feynman diagrams contributing to the scattering of an initial charged scalar and a charged fermion into its charge-conjugated final
state. The unlabeled intermediate state is a neutral fermion. There are four more diagrams, obtained from these by crossing the initial and final scalar lines.

Fig. 4.5.9. Tree-level Feynman diagrams contributing to the elastic scattering of a neutral vector boson and a Dirac fermion. There are four more diagrams,
obtained from these by crossing the initial and final vector lines.

complex scalar fieldΦ and its hermitian conjugate. The interaction Lagrangian takes the form:

Lint = −Φ[κ1ηξ + κ
∗

2χ
Ďξ Ď] − ΦĎ

[κ2χξ + κ
∗

1η
Ďξ Ď]. (4.5.16)

Consider the scattering of an initial boson–fermion state into its charge-conjugated final state via the exchange of a neutral
fermion. The relevant diagrams are shown in Fig. 4.5.8 plus the corresponding diagrams with the initial and final scalars
crossed. We define the four-momentum k to be the sum of the two initial state four-momenta as shown in Fig. 4.5.8. The
derivation of the amplitude is similar to the ones given previously, and we end up with

iM =
−i

k2 −m2ξ

{
κ∗1κ2[x

Ď(Ep2, s2) σ · k x(Ep1, s1)+ y(Ep2, s2) σ · k y
Ď(Ep1, s1)]

+mξ
[
κ22y(Ep2, s2)x(Ep1, s1)+ (κ

∗

1 )
2xĎ(Ep2, s2)y

Ď(Ep1, s1)
]}
+ (crossed). (4.5.17)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly treated. For example, consider the
amplitude for the elastic scattering of a charged fermion ofmassmD and a neutral vector boson. Again taking the interactions
as given in Eq. (4.5.11), the relevant diagrams are those shown in Fig. 4.5.9, plus four diagrams (not shown) obtained from
these by crossing the initial and final state vector bosons. Applying the Feynman rules of Fig. 4.3.3, one obtains the following
matrix element:

iM =
−i

k2 −m2D

{
G2Lx

Ď(Ep2, s2) σ · ε
∗

2 σ · k σ · ε1 x(Ep1, s1)+ G
2
Ry(Ep2, s2) σ · ε

∗

2 σ · k σ · ε1y
Ď(Ep1, s1)

+mDGLGR
[
y(Ep2, s2) σ · ε

∗

2 σ · ε1 x(Ep1, s1)+ x
Ď(Ep2, s2) σ · ε

∗

2 σ · ε1 y
Ď(Ep1, s1)

]}
+ (crossed), (4.5.18)

and the assignments of momenta and spins are as before.
The computation of the amplitude for the scattering of a charged fermion and a charged vector boson is straightforward

and will not be given explicitly here.

4.5.6. Two-body fermion–fermion scattering
Finally, let us work out an example with four external state fermions. Consider the case of elastic scattering of two

identical Majorana fermions due to scalar exchange, governed by the interaction of Eq. (4.5.1). The diagrams for scattering
initial fermions labeled 1, 2 into final state fermions labeled 3, 4 are shown in Fig. 4.5.10.
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Fig. 4.5.10. Tree-level Feynman diagrams contributing to the elastic scattering of identical Majorana fermions via scalar exchange in the s-channel (top
row), t-channel (middle row), and u-channel (bottom row).

The resulting invariant matrix element is:

iM = (−1)
−i

s−m2φ

{
λ2(x1x2)(y3y4)+ (λ∗)2(y

Ď
1y

Ď
2)(x

Ď
3x

Ď
4)+ |λ|

2
[
(x1x2)(x

Ď
3x

Ď
4)+ (y

Ď
1y

Ď
2)(y3y4)

]}
+
−i

t −m2φ

{
λ2(y3x1)(y4x2)+ (λ∗)2(x

Ď
3y

Ď
1)(x

Ď
4y

Ď
2)+ |λ|

2
[
(xĎ3y

Ď
1)(y4x2)+ (y3x1)(x

Ď
4y

Ď
2)
]}

+ (−1)
−i

u−m2φ

{
λ2(y4x1)(y3x2)+ (λ∗)2(x

Ď
4y

Ď
1)(x

Ď
3y

Ď
2)+ |λ|

2
[
(xĎ4y

Ď
1)(y3x2)+ (y4x1)(x

Ď
3y

Ď
2)
]}
, (4.5.19)

where xi ≡ x(Epi, si), yi ≡ y(Epi, si),mφ is the mass of the exchanged scalar, s = (p1+p2)2, t = (p1−p3)2 and u = (p1−p4)2.
We have chosen the canonical ordering of external fermions to be 3142 (corresponding to the t-channel contribution). For
elastic scattering, this choice of canonical ordering guarantees that if no scattering occurs then the S-matrix is just equal to
the unit operator with no extraneous minus sign (cf. footnote 46). The relative minus signs between the t-channel diagram
and the s and u-channel diagrams [shown in parentheses in Eq. (4.5.19)] are obtained by observing that both 1234 and 4132
are both odd permutations of 3142. Note that we would have obtained the same relative signs for the u-channel diagrams
had we crossed the initial state fermion lines instead of the final state fermion lines.
Eq. (4.5.19) can be factorized with respect to the scalar line:

iM =
i

s−m2φ
(λx1x2 + λ∗y

Ď
1y

Ď
2)(λy3y4 + λ

∗xĎ3x
Ď
4)+

−i
t −m2φ

(λy3x1 + λ∗x
Ď
3y

Ď
1)(λy4x2 + λ

∗xĎ4y
Ď
2)

+
i

u−m2φ
(λy4x1 + λ∗x

Ď
4y

Ď
1)(λy3x2 + λ

∗xĎ3y
Ď
2). (4.5.20)

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates that in contrast to the four-
component fermion formalism, the two-component fermion Feynman rules typically yield many more diagrams, but the
contribution of each of the diagrams is correspondingly simpler.

4.5.7. Non-relativistic potential due to scalar or pseudoscalar exchange
Consider two distinguishable fermions, and a scalar-fermion–fermion Yukawa interaction given by Eq. (4.3.9). We can

compute the force law that the fermions experience due to exchange of a spinless boson. That is, we shall derive the Yukawa
potential as a function of the separation distance of the two fermions in the static limit.
To carry out this computation,we compute the invariantmatrix element for two-body fermion–fermion elastic scattering

in the non-relativistic limit. The relevant diagrams are shown in Fig. 4.5.10. As our two fermions are distinguishable, only
the t-channel graphs (shown in the middle row of Fig. 4.5.10) are relevant. As a result, the matrix element for the elastic
scattering of two Majorana fermions is given by the t-channel contribution of Eq. (4.5.20),

iM =
i

m2φ − t
(λy3x1 + λ∗x

Ď
3y

Ď
1)(λy4x2 + λ

∗xĎ4y
Ď
2). (4.5.21)
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The choice of the overall sign is fixed by the canonical ordering of the external fermions.49 Although the two fermions are
distinguishable, we have assumed for simplicity that their (complex) Yukawa coupling strengths are the same and given by
λ. For the scattering of two distinguishable Dirac fermions, the resulting expression for the scattering amplitude is identical
to Eq. (4.5.21), with λ replaced by the appropriate complex Yukawa coupling κ .
We denote the masses of the distinguishable fermions by m1 and m2. In the non-relativistic limit, p1 ' (m1; Ep1) and

p3 ' (m1; Ep3), so that

m2φ − t ' |Ep1 − Ep3|
2
+m2φ ≡ |Eq|

2
+m2φ, (4.5.22)

where
Eq ≡ Ep3 − Ep1 = Ep2 − Ep4 (4.5.23)

is the momentum-transfer three-vector. Two separate cases will be considered.
In the first case, λ is a real coupling. This corresponds to the exchange of a JPC = 0++ scalar. Using the non-relativistic

forms of Eqs. (C.2.16) and (C.2.22) for the spinor bilinears, it is only necessary to keep the leading term. We then find:

iM =
4i|λ|2m1m2
|Eq|2 +m2φ

δs1s3δs2s4 , (4.5.24)

in agreement with Eq. (4.123) of Ref. [114].
In the second case, λ is purely imaginary, and we will write λ = i|λ| (the overall sign is not significant). This corresponds

to the exchange of a JPC = 0−+ pseudoscalar. Again, we use the non-relativistic forms of Eqs. (C.2.16) and (C.2.22) for the
spinor bilinears. However, in this case the leading term cancels and we must retain the O(|Ep|/m) terms appearing in the
non-relativistic limit of the spinor bilinears. In this case, we find

iM =
i|λ|2

|Eq|2 +m2φ
(Eq · ŝaτ as3s1) (Eq · ŝ

b
τ bs4s2). (4.5.25)

We choose the spin quantization axis to lie along the z-direction. That is, according to Eq. (C.1.27), we choose

(ŝ1, ŝ2, ŝ3) = (x̂, ŷ, ẑ), (4.5.26)
in which case one can rewrite Eq. (4.5.25) in the more traditional way,

iM =
i|λ|2

|Eq|2 +m2φ
(Eq · Eσs3s1) (Eq · Eσs4s2), (4.5.27)

where Eσ ≡ x̂τ 1 + ŷτ 2 + ẑτ 3 are the usual spin-1/2 Pauli matrices.50 Thus, pseudoscalar exchange yields a spin-dependent
force law.
The non-relativistic potential that arises from the t-channel scalar or pseudoscalar exchange is obtained by comparing

the relativistic scattering amplitudeM with the Born approximation for scattering off a potential V (Ex) in non-relativistic
quantum mechanics. Taking into account the difference between the conventions for the normalization of relativistic and
non-relativistic single-particle states, one finds that the static potential is given by [156]

V (Ex) = −
1

4m1m2

∫
d3q
(2π)3

M(Eq)eiEq·Ex, (4.5.28)

in a convention where the invariant amplitude is defined as in footnote 46. Inserting the scattering amplitude for scalar (S)
exchange, one obtains the well-known attractive spin-independent Yukawa potential

V (Ex)S = −
|λ|2

4πr
e−mφ r δs1s3δs2s4 , (4.5.29)

where r ≡ |Ex|. For the case of pseudoscalar (PS) exchange, one can easily evaluate the integral in Eq. (4.5.28) by writing
qjqkeiEq·Ex = −∇j∇keiEq·Ex. The end result is [157]:

V (Ex)PS =
|λ|2

16πm1m2
(Eσs3s1 ·

E∇)(Eσs4s2 ·
E∇)
e−mφ r

r

=
|λ|2m2φ
16πm1m2

{[
−
4π
3m2φ

δ(3)(Ex)+
e−mφ r

r

]
Eσs3s1 · Eσs4s2

+

[
1

(mφr)2
+

1
(mφr)

+
1
3

] [
3 (Eσs3s1 · Ex)(Eσs4s2 · Ex)

r2
− Eσs3s1 · Eσs4s2

]
e−mφ r

r

}
, (4.5.30)

49 As noted in Section 4.5.6, the canonical ordering of the external fermions in two-body elastic scattering is determined by the requirement that
〈f |i〉 = +1 for f = i (cf. footnote 46).
50 The subscripted spin labels on Eσ should be interpreted in the same way as outlined in footnote 95.
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where we have used [158]:

∇i∇j

(
1
r

)
= −

4π
3
δij δ

(3)(Ex)+
3xixj − r2δij

r5
. (4.5.31)

4.6. Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation, taking into account the
possibilities of loop-induced mixing and absorptive parts corresponding to decays to intermediate states. This formalism is
useful in the computation of loop-corrected physical pole masses.
Consider a theory with left-handed fermion degrees of freedom ψ̂i labeled by an index i = 1, 2, . . . ,N . Associated

with each ψ̂i is a right-handed fermion ψ̂Ďi, where the flavor labels are treated as described below Eq. (3.2.2). The theory
is assumed to contain arbitrary interactions, which we will not need to refer to explicitly. As discussed in Section 3.2, we
diagonalize the fermion mass matrix and identify the fermion mass eigenstatesψi as indicated in Eq. (4.3.5). In general, the
mass eigenstates consist of Majorana fermions ξk (k = 1, . . .N − 2n) and Dirac fermion pairs χ` and η` (` = 1, . . . , n).51
With respect to this basis, the symmetric N×N tree-level fermionmassmatrix,mij, is made up of diagonal elementsmk and
2×2 blocks

( 0 m`
m` 0

)
along the diagonal, where themk andm` are real and non-negative. Sincemij is real, the height of the

flavor indices is not significant. Nevertheless, it is useful to define mij ≡ mij in order to maintain the convention that two
repeated flavor indices are summedwhen one index is raised and the other is lowered.52 Note thatmikmkj = mikmkj = m2i δ

j
i

is a diagonal matrix.
The full, loop-corrected Feynman propagators with four-momentum pµ are defined by the Fourier transforms of

vacuum expectation values of time-ordered products of bilinears of the fully interacting two-component fermion fields
[cf. footnote 35]. Following Eqs. (4.2.1)–(4.2.4), we define:

〈0| Tψαi(x)ψ
Ďj
β̇
(y) |0〉FT = ip · σαβ̇ C i

j(s), (4.6.1)

〈0| TψĎα̇i(x)ψβ

j (y) |0〉FT = ip · σ
α̇β (CT) ij(s), (4.6.2)

〈0| TψĎα̇i(x)ψĎj
β̇
(y) |0〉FT = iδ

α̇
β̇ D

ij(s), (4.6.3)

〈0| Tψαi(x)ψ
β

j (y) |0〉FT = iδα
β Dij(s), (4.6.4)

where s ≡ p2 and

(CT)ij ≡ Cj i. (4.6.5)

One can derive Eq. (4.6.2) from Eq. (4.6.1) by first writing

ψĎα̇i(x)ψβ

j (y) = −ε
βα εα̇β̇ψαj(y)ψ

Ďi
β̇
(x), (4.6.6)

where the minus sign arises due to the anticommutativity of the fields, and then using Eq. (2.31); the interchange of x and
y (after FT) simply changes pµ to−pµ.
In general, D and D are complex symmetric matrices, and D = D?. The matrix C satisfies the hermiticity condition

[CT
]
?
= C . Here, we have introduced the star symbol to mean that a quantity Q ? is obtained from Q by taking the

complex conjugate of all Lagrangian parameters appearing in its calculation, but not taking the complex conjugates of
Euclideanized loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths to multi-
particle intermediate states. That is, the dispersive part of C is hermitian and the absorptive part of C is anti-hermitian.
The diagrammatic representations of the full propagators are displayed in Fig. 4.6.1, where C ij, Dij, and Dij defined above

are each N×N matrix functions. Note that the second diagram of Fig. 4.6.1, when flipped by 180◦ about the axis that bisects
the diagram, is equivalent to the first diagram of Fig. 4.6.1 (with p → −p, α → β , β̇ → α̇ and i ↔ j). In analogy with
Fig. 4.2.2, one could replace the first two diagrammatic rules of Fig. 4.6.1 with a single rule shown in Fig. 4.6.2, where we
have used Eq. (4.6.5) to rewrite the second version of the rule in terms of CT. Indeed, by using the σ -version of the rule
shown in Fig. 4.6.2 and flipping the corresponding diagram by 180◦ as described above, one reproduces the rule of the
second diagram of Fig. 4.6.1.
In what follows, we prefer to keep the first two rules of Fig. 4.6.1 as separate entities. This will permit us to conveniently

assemble the four diagrams of Fig. 4.6.1 into a 2×2 blockmatrix of two-component propagators [cf. Eq. (G.5.2)]. In addition,

51 In order to have a unified description, we shall take the flavor index of all left-handed fields (including ηk) in the lowered position in this subsection,
in contrast to the convention adopted in Sections 3.2 and 4.3.
52 We will soon be suppressing the indices, so it is convenient to employ the bar onmij to indicate its lowered index structure.
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Fig. 4.6.1. The full, loop-corrected propagators for two-component fermions are associated with functions C(p2)i j [and its matrix transpose], D(p2)ij , and
D(p2)ij , as shown. The shaded boxes represent the sum of all connected Feynman diagrams, with external legs included. The four-momentum p flows from
right to left.

Fig. 4.6.2. The first two diagrammatic rules of Fig. 4.6.1 can be summarized by a single diagram. Here, the choice of the σ or σ version of the rule is uniquely
determined by the height of the spinor indices on the vertex to which the full loop-corrected propagator is connected (cf. Fig. 4.2.2 and the accompanying
text).

Fig. 4.6.3. The self-energy functions for two-component fermions are associated with functions Ξ(s)i j [and its matrix transpose], Ω(s)ij , and Ω(s)ij , as
shown. The shaded circles represent the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated. The four-
momentum p flows from right to left.

by choosing the momentum flow in the two-component propagators from right to left, the left-to-right orderings of the
spinor labels of the diagrams coincide with the ordering of spinor indices that appear in the corresponding algebraic
representations. Thus, we can multiply diagrams together and interpret them as the product of the respective algebraic
quantities taken from left to right in the normal fashion.
Given the tree-level propagators of Fig. 4.2.1, the full propagator functions are given by:

C ij = δij/(s−m2i )+ · · · (4.6.7)

Dij = mij/(s−m2i )+ · · · (4.6.8)

Dij = mij/(s−m2i )+ · · · , (4.6.9)

with no sum on i in each case. They are functions of the external momentum invariant s and of the masses and couplings of
the theory. Inserting the leading terms [Eqs. (4.6.7)–(4.6.9)] into Fig. 4.6.1 and organizing the result in a 2× 2 block matrix
of two-component propagators reproduces the usual four-component fermion tree-level propagator given in Eq. (G.5.2).
The computation of the full propagators can be organized, as usual in quantum field theory, in terms of one-particle

irreducible (1PI) self-energy functions. These are formally defined to be the sum of Feynman diagrams to all orders in
perturbation theory (with the corresponding tree-level graph excluded) that contribute to the 1PI two-point Green function.
Diagrammatically, the 1PI self-energy functions are defined in Fig. 4.6.3. As in the case of the full loop-corrected propagators,
[ΞT
]
?
= Ξ andΩ = Ω?, where the star symbol was defined in the paragraph following Eq. (4.6.6), and (ΞT)ij ≡ Ξj

i.
We illustrate the computation of the full propagator by considering first the following diagrammatic identity (with

momentum p flowing from right to left):

(4.6.10)



H.K. Dreiner et al. / Physics Reports 494 (2010) 1–196 43

Similar diagrammatic identities can be constructed for the three other full loop-corrected propagators of Fig. 4.6.1. The
resulting four equations can be neatly summarized by:

F = T + TSF , (4.6.11)

where F is the matrix of full loop-corrected propagators, T is the matrix of tree-level propagators and S is the matrix of
self-energy functions. Expressing Eq. (4.6.11) in terms of diagrams,

(4.6.12)

which, when expanded out, yields Eq. (4.6.10) and the corresponding identities for the three other full loop-corrected
propagators of Fig. 4.6.1. Note that we have chosen the labeling and momentum flow in Figs. 4.6.1 and 4.6.3 such that
the spinor and flavor labels of the diagrams appear in the appropriate left-to-right order to permit the interpretation of
Eq. (4.6.12) as a matrix equation. To solve for F ,53 we multiply Eq. (4.6.11) on the left by T−1 and on the right by F−1 to
obtain T−1 = F−1 + S. Thus, F = [T−1 − S]−1. In pictures:

(4.6.13)

We evaluate the tree-level propagatormatrix and its inverse using Eqs. (4.6.7)–(4.6.9), keeping inmind that the direction
of momentum flow is from right to left:

=
1

s−m2i

(
imij δαβ ip · σαβ̇ δi

j

ip · σ α̇β δij imij δα̇ β̇

)
, (4.6.14)

=

(
imij δαβ −ip · σαβ̇ δ

i
j

−ip · σ α̇β δij imij δα̇ β̇

)
, (4.6.15)

where we follow the index structure defined in Figs. 4.6.1 and 4.6.3. Inserting Eq. (4.6.15) into Eq. (4.6.13), one obtains a
4N × 4N matrix equation for the full propagator functions:(

iD ip · σ C
ip · σ CT iD

)
=

(
i(m+Ω) −ip · σ (1− Ξ T)

−ip · σ (1− Ξ) i(m+Ω)

)−1
, (4.6.16)

where 1 is theN×N identitymatrix. The right-hand side of Eq. (4.6.16) can be evaluated by employing the following identity
for the inverse of a block-partitioned matrix [159]:(

P Q
R S

)−1
=

(
(P − QS−1R)−1 (R− SQ−1P)−1

(Q − PR−1S)−1 (S − RP−1Q )−1

)
, (4.6.17)

under the assumption that all inverses appearing in Eq. (4.6.17) exist. Applying this result to Eq. (4.6.16), we obtain

C−1 = s(1− Ξ)− (m+Ω)(1− ΞT)−1(m+Ω), (4.6.18)

D−1 = s(1− Ξ)(m+Ω)−1(1− ΞT)− (m+Ω), (4.6.19)

D
−1
= s(1− ΞT)(m+Ω)−1(1− Ξ)− (m+Ω). (4.6.20)

Note that Eq. (4.6.20) is consistent with Eq. (4.6.19) as Ξ? = ΞT.
The pole mass can be found most easily by considering the rest frame of the (off-shell) fermion, in which the space

components of pµ vanish. This reduces the spinor index dependence to a triviality. Setting pµ = (
√
s; 0), we search for

values of swhere the inverse of the full propagator has a zero eigenvalue. This is equivalent to setting the determinant of the
inverse of the full propagator to zero. Here we shall use the well-known formula for the determinant of a block-partitioned

53 Alternatively, one can solve Eq. (4.6.12) by iteration and summing the resulting geometric series. This yields:

F = T + TS(T + TS(T + TS(· · · ))) = T + TST + TSTST + · · · = T [1+ ST + (ST )2 + · · · ]

= T [1− ST ]−1 = (T−1)−1[1− ST ]−1 = [(1− ST )T−1]−1 = [T−1 − S]−1,

which is equivalent to Eq. (4.6.13).
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Fig. 4.6.4. The full, loop-corrected propagators for Dirac fermions, represented by pairs of two-component (oppositely charged) fermion fields χi and ηi ,
are associated with functions SR(s)i j , ST

L(s)
i
j , SD(s)ij , and S

T
D(s)ij , as shown. The shaded boxes represent the sum of all connected Feynman diagrams, with

external legs included. The four-momentum p and the charge of χ flow from right to left.

matrix [159]:

det
(
P Q
R S

)
= det P det (S − RP−1Q ). (4.6.21)

The end result is that the poles of the full propagator (which are in general complex),

spole,j ≡ M2j − iΓjMj, (4.6.22)

are formally the solutions to the non-linear equation54

det
[
s1− (1− ΞT)−1(m+Ω)(1− Ξ)−1(m+Ω)

]
= 0. (4.6.23)

Some care is required in using Eq. (4.6.23), since the pole squaredmass always has a non-positive imaginary part,while the
loop integrals used to find the self-energy functions are complex functions of a real variable s that is given an infinitesimal
positive imaginary part. Therefore, Eq. (4.6.23) should be solved iteratively by first expanding the self-energy function
matricesΞ,Ω andΩ in a series in s about eitherm2j + iε orM

2
j + iε. The complex quantities spole,j, which can be identified as

the complex pole squared masses, are renormalization group and gauge invariant physical observables. Examples are given
in Sections 6.24 and 6.25.
The results of this section can be applied to an arbitrary collection of fermions (both Majorana or Dirac). However, it is

convenient to treat separately the case where all fermions are Dirac fermions (consisting of pairs of two-component fields
χi and ηi). As discussed in Section 3.2, the Dirac fermion mass eigenstates are defined in Eq. (3.2.31) and are determined by
the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass basis, we denote the diagonal
Dirac fermionmass matrix byM ij. The elements of this matrix are real and non-negative. Nevertheless, it will be convenient
as before to defineM ij ≡ M ij to maintain covariance when manipulating tensors with flavor indices.
At tree level, there are four propagators for each pair of χ and η fields as shown in Fig. 4.2.4. The corresponding full,

loop-corrected propagators are shown in Fig. 4.6.4. The naming and sign conventions employed for the full, loop-corrected
Dirac fermion propagator functions in Fig. 4.6.4 derives from the corresponding functions used in the more traditional four-
component treatment presented in Appendix G [cf. Eq. (G.7.2)].
In general, the complex matrices SR and SL satisfy hermiticity conditions [ST

R]
?
= SR and [ST

L]
?
= SL , whereas the

complex matrices SD and SD are related by SD = S ?D , where the star symbol is defined in the paragraph below Eq. (4.6.6). In
contrast to the general case of an arbitrary collection of fermions treated earlier, SR and SL are unrelated and SD is a complex
matrix (not necessarily symmetric).
Instead of working in a χ–η basis for the two-component Dirac fermion fields, one can Takagi diagonalize the fermion

mass matrix. In the new ψ-basis, the loop-corrected propagators of Fig. 4.6.1 are applicable. It is easy to check that the
number of independent functions is the same in both methods for treating Dirac fermions. In particular, the loop-corrected
propagator functions in the ψ-basis are given in terms of the corresponding functions in the χ–η basis by55:

C =
(
SR 0
0 SL

)
, D =

(
0 ST

D
SD 0

)
, D =

(
0 S

T
D

SD 0

)
. (4.6.24)

We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the χ–η basis, where the
corresponding self-energy functions are defined in Fig. 4.6.5. As before, the naming and sign conventions employed for
the Dirac fermion self-energy functions above derives from the corresponding functions used in the more traditional four-
component treatment of Appendix G [cf. Eq. (G.7.3)].
Once again, the complex matrices ΣL and ΣR satisfy hermiticity conditions [ΣT

L]
?
= ΣL and [ΣT

R]
?
= ΣR , whereas the

complex matricesΣD andΣD are related byΣD = Σ
?
D, where the star symbol is defined in the paragraph below Eq. (4.6.6).

Likewise, ΣL and ΣR are unrelated and ΣD is a complex matrix (not necessarily symmetric). The self-energy functions in

54 The determinant of the inverse of the full propagator [the inverse of Eq. (4.6.16)] is equal to Eq. (4.6.23) multiplied by det [−(1 − Ξ)(1 − ΞT)]. We
assume that the latter does not vanish. This must be true perturbatively since the eigenvalues ofΞ are one-loop (or higher) quantities, which one assumes
cannot be as large as 1.
55 The simple forms of C in Eq. (4.6.24) andΞ in Eq. (4.6.25) motivate our definitions of SL andΣR with the transpose as indicated in Figs. 4.6.4 and 4.6.5,
respectively.
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Fig. 4.6.5. The self-energy functions for two-component Dirac fermions, represented by pairs of two-component (oppositely charged) fermion fields χi
and ηi , are associated with functions ΣL(s)i j , ΣT

R(s)
i
j , ΣD(s)ij , and Σ

T
D(s)ij , as shown. The shaded circles represent the sum of all one-particle irreducible,

connected Feynman diagrams, and the external legs are amputated. The four-momentum p flows from right to left.

the ψ-basis are given in terms of the corresponding functions in the χ–η basis by:55

Ξ =

(
ΣL 0
0 ΣR

)
, Ω =

(
0 ΣT

D
ΣD 0

)
, Ω =

(
0 Σ

T
D

ΣD 0

)
. (4.6.25)

In the case of Dirac fermions fields, Eq. (4.6.13) still holds in the χ–η basis, which yields:(
iS

T
D ip · σ SR

ip · σ ST
L iSD

)
=

(
i(M + ΣD) −ip · σ (1− ΣT

R)

−ip · σ (1− ΣL) i(M + ΣT
D)

)−1
. (4.6.26)

Using Eq. (4.6.17), it follows that:

S−1L = s(1− ΣR)− (M + ΣD)(1− ΣT
L)
−1(M + ΣT

D), (4.6.27)

SR
−1
= s(1− ΣL)− (M + Σ

T
D)(1− Σ

T
R)
−1(M + ΣD), (4.6.28)

S−1D = s(1− ΣL)(M + ΣD)
−1(1− ΣT

R)− (M + Σ
T
D), (4.6.29)

S
−1
D = s(1− Σ

T
L)(M + ΣD)

−1(1− ΣR)− (M + ΣT
D). (4.6.30)

Note that Eq. (4.6.30) is consistent with Eq. (4.6.29) asΣ?L,R = Σ
T
L,R .

The pole mass is now easily computed using the technique previously outlined. In particular, Eq. (4.6.23) becomes:

det
[
s1− (1− ΣT

R)
−1(M + ΣD)(1− ΣL)

−1(M + ΣT
D)
]
= 0, (4.6.31)

which determines the complex pole squared masses, spole, of the corresponding Dirac fermions. Again, the self-energy
functions should be expanded in a series in s about a point with an infinitesimal positive imaginary part.
Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED or

QCD). In this case, the following relations hold among the loop-corrected propagator functions and self-energy functions,
respectively56:

SR i
j
= (ST

L)
i
j, S ijD = (S

T
D)ij, (4.6.32)

ΣL i
j
= (ΣT

R)
i
j, Σ

ij
D = (Σ

T
D)ij. (4.6.33)

By imposing Eq. (4.6.33) on Eqs. (4.6.27)–(4.6.30) and recalling thatM ij = M ij, it is straightforward to verify that Eq. (4.6.32)
is satisfied.

5. Conventions for fermion and antifermion names and fields

In this section, we establish conventions for labeling Feynman diagrams that contain two-component fermion fields of
the Standard Model (SM) and its minimal supersymmetric extension (MSSM). In the case of Majorana fermions, there is
a one-to-one correspondence between the particle names and the undaggered ( 12 , 0) [left-handed] fields. In contrast, for
Dirac fermions there are always two distinct two-component fields that correspond to each particle name. For a quark or
lepton generically denoted by f , we employ the two-component undaggered ( 12 , 0) [left-handed] fields f and f̄ (where the
bar is part of the field name and does not refer to complex conjugation of any kind). This is illustrated in Table 5.1, which
lists the SM and MSSM fermion particle names together with the corresponding two-component fields. For each particle,
we list the two-component field with the same quantum numbers, i.e., the field that contains the annihilation operator for
that one-particle state (which creates the one-particle state when acting to the left on the vacuum 〈0|).
There is an option of labeling fermion lines in Feynman diagrams by particle names or by field names; each choice has

advantages and disadvantages.57 In all of the examples that follow, we have chosen to eliminate the possibility of ambiguity

56 These relations are derived using four-component spinor methods in Appendix G [cf. Eqs. (G.7.10) and (G.7.11)].
57 Unfortunately, the notation for fermion names can be ambiguous because some of the symbols used also appear as names for one of the two-component
fermion fields. In practice, it should be clear from the context which set of names are being employed.
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Table 5.1
Fermion and antifermion names and two-component fields in the Standard Model and the MSSM. In the listing of two-component fields, the first is an
undaggered ( 12 , 0) [left-handed] field and the second is a daggered (0,

1
2 ) [right-handed] field. The bars on the two-component (antifermion) fields are part

of their names, and do not denote some form of complex conjugation. (In this table, neutrinos are considered to be exactly massless and the left-handed
antineutrino ν̄ is absent from the spectrum.)

Fermion name Two-component fields

`− (lepton) `, ¯̀Ď

`+ (anti-lepton) ¯̀, `Ď

ν (neutrino) ν,−

ν̄ (antineutrino) −, νĎ

q (quark) q, q̄Ď

q̄ (anti-quark) q̄, qĎ

f (quark or lepton) f , f̄ Ď

f̄ (anti-quark or anti-lepton) f̄ , f Ď

Ñi (neutralino) χ0i , χ
0
i
Ď

C̃+i (chargino) χ+i , χ
−

i
Ď

C̃−i (anti-chargino) χ−i , χ
+

i
Ď

g̃ (gluino) g̃, g̃Ď

Fig. 5.1. The two-component field labeling conventions for external Dirac fermion lines in a Feynman diagram for a physical process. The top row
corresponds to an initial state electron, the second row to an initial state positron, the third row to a final state electron, and the fourth row to a final
state positron. The labels above each line are the two-component field names. The corresponding conventions for a massless neutrino are obtained by
deleting the diagrams with ē or ēĎ , and changing e and eĎ to ν and νĎ , respectively.

as follows. We always label fermion lines with two-component fields (rather than particle names), and adopt the following
conventions:
• In the Feynman rules for interaction vertices, the external lines are always labeled by the undaggered ( 12 , 0) [left-

handed] field, regardless of whether the corresponding arrow is pointed in or out of the vertex. Two-component fermion
lines with arrows pointing away from the vertex correspond to dotted indices, and two-component fermion lines with
arrows pointing toward the vertex always correspond to undotted indices. This also applies to Feynman diagrams where
the roles of the initial state and the final state are ambiguous (such as self-energy diagrams).
• Internal fermion lines in Feynman diagrams are also always labeled by the undaggered ( 12 , 0) [left-handed] field(s).

Internal fermion lines containing a propagator with opposing arrows can carry two labels (e.g., see Fig. 4.5.7).
• Initial state external fermion lines (which always have physical three-momenta pointing into the vertex) in Feynman

diagrams for complete processes are labeled by the corresponding undaggered ( 12 , 0) [left-handed] field if the arrow is into
the vertex, and by the daggered (0, 12 ) [right-handed] field if the arrow is away from the vertex.
• Final state external fermion lines (which always have physical three-momenta pointing out of the vertex) in Feynman

diagrams for complete processes are labeled by the corresponding daggered (0, 12 ) [right-handed] field if the arrow is into
the vertex, and by the undaggered ( 12 , 0) [left-handed] field if the arrow is away from the vertex.
The rules for labeling external Dirac fermions are summarized in Fig. 5.1. These labeling conventions differ slightly from

the ones employed in Section 4.5, where all internal and external initial state and final state fermion lines were labeled
by the corresponding undaggered ( 12 , 0) left-handed fields. In this latter convention, the conserved quantities (charges,
lepton numbers, baryon numbers, etc.) of the labeled fields follow the direction of the arrow that adorns the corresponding
fermion line in the diagram. In contrast, in the convention of Fig. 5.1, the field labels used for external fermion lines always
correspond to the physical particle, and the corresponding conserved quantities of the labeled fields follow the direction
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Fig. 5.2. The two-component field labeling conventions for external Majorana fermion lines in a Feynman diagram for a physical process. The top row
corresponds to an initial state neutralino, and the second row to a final state neutralino. The labels above each line are the two-component field names.
(The neutralino is its own antiparticle.)

Fig. 5.3. The two-component Feynman rules for the QED vertex. Following the conventions outlined in Section 5, we label these rules with the ( 12 , 0)
[left-handed] fields e and ē, which comprise the Dirac electron. Note that Qe = −1, and the electromagnetic coupling constant e (not to be confused with
the two-component electron field that is denoted by the same letter) is conventionally defined such that e > 0 [cf. Fig. J.1.2].

Fig. 5.4. Tree-level s-channel Feynman diagrams for e−e+ → e−e+ , with the external lines labeled according to the particle names. The initial state is
on the left, and the final state is on the right. Thus, the physical momentum flow of the external particles, as well as the flow of the labeled charges, are
indicated by the arrows adjacent to the corresponding fermion lines in the upper left diagram.

of the particle three-momentum. As an example, for either initial or final states, the two-component fields e and ēĎ both
represent a negatively charged electron, conventionally denoted by e−, whereas both ē and eĎ represent a positively charged
positron, conventionally denoted by e+ (cf. Table 5.1).
The application of our labeling conventions to processes involving Majorana fermions is completely straightforward. For

example, the conventions for employing the neutralino states as external particles are summarized in Fig. 5.2.
As a simple example, consider Bhabha scattering (e−e+ → e−e+) [160]. We require the two-component Feynman rules

for the QED coupling of electrons and positrons to the photon, which are exhibited in Fig. 5.3. Consider the s-channel tree-
level Feynman diagrams that contribute to the invariant amplitude for e−e+ → e−e+. If we were to label the external
fermion lines according to the corresponding particle names (which does not conform to the conventions introduced above),
the result is shown in Fig. 5.4. One can find the identity of the external two-component fermion fields by carefully observing
the direction of the arrow of each fermion line. For contrast, the same diagrams, relabeled with two-component fields
following the conventions established in this section (cf. Fig. 5.1), are shown in Fig. 5.5. An explicit computation of the
invariant amplitude is given in Section 6.3.
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Fig. 5.5. Tree-level s-channel Feynman diagrams for e+e− → e+e− . These diagrams are the same as in Fig. 5.4, but with the external lines relabeled by
the two-component fermion fields according to the conventions of Fig. 5.1.

6. Practical examples from the Standard Model and its supersymmetric extension

In this section we will present some examples to illustrate the use of the rules presented in this paper. These examples
are chosen from the Standard Model [161] and the MSSM [6–10], in order to provide an unambiguous point of reference. In
all cases, the fermion lines in Feynman diagrams are labeled by two-component field names, rather than the particle names,
as explained in Section 5.

6.1. Top quark decay: t → bW+

We begin by calculating the decay width of a top quark into a bottom quark and W+ vector boson. For simplicity, we
treat this as a one-generation problem and ignore Cabibbo–Kobayashi–Maskawa (CKM) [162]mixing among the three quark
generations [see Eq. (J.1.16) and the surrounding text]. Let the four-momenta and helicities of these particle be (pt , λt),
(kb, λb) and (kW , λW ), respectively. Then p2t = m

2
t , k

2
b = m

2
b and k

2
W = m

2
W and

2pt · kW = m2t −m
2
b +m

2
W , (6.1.1)

2pt · kb = m2t +m
2
b −m

2
W , (6.1.2)

2kW · kb = m2t −m
2
b −m

2
W . (6.1.3)

Because only left-handed top quarks couple to theW boson, the only Feynman diagram for t → bW+ is the one shown in
Fig. 6.1.1. The corresponding amplitude can be read off of the Feynman rule of Fig. J.1.2 in Appendix J. Here the initial state
top quark is a two-component field t going into the vertex and the final state bottom quark is created by a two-component
field bĎ. Therefore the amplitude is given by:

iM = −i
g
√
2
ε∗µx

Ď
bσ

µxt , (6.1.4)

where ε∗µ ≡ εµ(kW , λW )
∗ is the polarization vector of theW+, and xĎb ≡ x

Ď(Ekb, λb) and xt ≡ x(Ept , λt) are the external state
wave function factors for the bottom and top quark. Squaring this amplitude using Eq. (2.45) yields:

|M|2 =
g2

2
ε∗µεν(x

Ď
bσ

µxt) (x
Ď
t σ

νxb). (6.1.5)

Next, we can average over the top quark spin polarizations using Eq. (3.1.58):

1
2

∑
λt

|M|2 =
g2

4
ε∗µενx

Ď
bσ

µ pt · σ σ νxb. (6.1.6)

Summing over the bottom quark spin polarizations in the same way yields a trace over spinor indices:

1
2

∑
λt ,λb

|M|2 =
g2

4
ε∗µεν Tr[σ

µpt · σ σ νkb · σ ]

=
g2

2
ε∗µεν

(
pµt k

ν
b + k

µ

b p
ν
t − g

µνpt · kb − iεµρνκptρkbκ
)
, (6.1.7)

where we have used Eq. (2.57). Finally we can sum over theW+ polarizations according to:∑
λW

ε∗µεν = −gµν + (kW )µ(kW )ν/m
2
W . (6.1.8)
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Fig. 6.1.1. The Feynman diagram for t → bW+ at tree level.

The end result is:

1
2

∑
spins

|M|2 =
g2

2

[
pt · kb + 2(pt · kW )(kb · kW )/m2W

]
. (6.1.9)

After performing the phase space integration, one obtains:

Γ (t → bW+) =
1

16πm3t
λ1/2(m2t ,m

2
W ,m

2
b)

(
1
2

∑
spins

|M|2

)

=
g2

64πm2Wm
3
t
λ1/2(m2t ,m

2
W ,m

2
b)
[
(m2t + 2m

2
W )(m

2
t −m

2
W )+m

2
b(m

2
W − 2m

2
t )+m

4
b

]
, (6.1.10)

where the kinematical triangle function λ1/2 is defined by [163]:

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy− 2xz − 2yz. (6.1.11)

In the approximationmb � mW ,mt , one ends up with the well-known result [164]

Γ (t → bW+) =
g2mt
64π

(
2+

m2t
m2W

)(
1−

m2W
m2t

)2
, (6.1.12)

which exhibits the Nambu–Goldstone enhancement factor (m2t /m
2
W ) for the longitudinalW contribution compared to the

two transverseW contributions [164].

6.2. Z0 vector boson decay: Z0 → f f̄

Consider the partial decay width of the Z0 boson into a Standard Model fermion–antifermion pair. As in the generic
example of Fig. 4.5.4, there are two contributing Feynman diagrams, shown in Fig. 6.2.1. In diagram (a), the fermion particle
f in the final state is created by a two-component field f in the Feynman rule, and the antifermion particle f̄ by a two-
component field f Ď. In diagram (b), the fermion particle f in the final state is created by a two-component field f̄ , and the
antifermion particle f̄ by a two-component field f̄ Ď. Denote the initial Z0 four-momentum and helicity (p, λZ ) and the final
state fermion (f ) and antifermion (f̄ ) momentum and helicities (kf , λf ) and (kf̄ , λf̄ ), respectively. Then, k

2
f = k

2
f̄
= m2f and

p2 = m2Z , and

kf · kf̄ =
1
2
m2Z −m

2
f , (6.2.1)

p · kf = p · kf̄ =
1
2m

2
Z . (6.2.2)

According to the rules of Fig. J.1.2, the matrix elements for the two Feynman graphs are:

iMa = −i
g
cW
(T f3 − s

2
WQf ) εµx

Ď
f σ

µyf̄ , (6.2.3)

iMb = ig
s2W
cW
Qf εµyf σµx

Ď

f̄
, (6.2.4)

where xi ≡ x(Ek i, λi) and yi ≡ y(Eki, λi), for i = f , f̄ , and εµ ≡ εµ(p, λZ ).
Using the Bouchiat–Michel formulae developed in Appendix H.3, one can explicitly evaluateMa andMb as a function

of the final state fermion helicities. The result of this computation is given in Eqs. (H.3.40) and (H.3.41). If the final state
helicities are not measured, then it is simpler to square the amplitude and sum over the final state spins.
It is convenient to define:

af ≡ T
f
3 − Qf s

2
W , bf ≡ −Qf s2W . (6.2.5)
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Fig. 6.2.1. The Feynman diagrams for Z0 decay into a fermion–antifermion pair. Fermion lines are labeled according to the two-component fermion field
labeling convention established in Section 5.

Then the squared matrix element for the decay is, using Eqs. (2.44) and (2.45),

|M|2 =
g2

c2W
εµε
∗

ν

(
af x

Ď
f σ

µyf̄ + bf yf σ
µxĎ
f̄

) (
af y

Ď

f̄
σ νxf + bf xf̄ σ

νyĎf
)
. (6.2.6)

Summing over the antifermion helicity using Eqs. (3.1.58)–(3.1.61) gives:∑
λf̄

|M|2 =
g2

c2W
εµε
∗

ν

(
a2f x

Ď
f σ

µkf̄ · σσ
νxf + b2f yf σ

µkf̄ · σσ
νyĎf −mf af bf x

Ď
f σ

µσ νyĎf −mf af bf yf σ
µσ νxf

)
. (6.2.7)

Next, we sum over the fermion helicity:∑
λf ,λf̄

|M|2 =
g2

c2W
εµε
∗

ν

(
a2f Tr[σ

µkf̄ · σσ
νkf · σ ] + b2f Tr[σ

µkf̄ · σσ
νkf · σ ]

−m2f af bf Tr[σ
µσ ν] −m2f af bf Tr[σ

µσ ν]
)
. (6.2.8)

Averaging over the Z0 polarization using

1
3

∑
λZ

εµε
∗

ν =
1
3

(
−gµν +

pµpν
m2Z

)
, (6.2.9)

and applying Eqs. (2.55)–(2.57), one gets:
1
3

∑
spins

|M|2 =
g2

3c2W

[
(a2f + b

2
f )
(
2kf · kf̄ + 4 kf · p kf̄ · p/m

2
Z

)
+ 12af bfm2f

]
=
2g2

3c2W

[
(a2f + b

2
f )(m

2
Z −m

2
f )+ 6af bfm

2
f

]
, (6.2.10)

where we have used Eqs. (6.2.1) and (6.2.2). After the standard phase space integration, we obtain the well-known result
for the partial width of the Z0:

Γ (Z0 → f f̄ ) =
N fc

16πmZ

(
1−

4m2f
m2Z

)1/2 (
1
3

∑
spins

|M|2

)

=
N fc g2mZ
24πc2W

(
1−

4m2f
m2Z

)1/2 [
(a2f + b

2
f )

(
1−

m2f
m2Z

)
+ 6af bf

m2f
m2Z

]
. (6.2.11)

Here we have also included a factor of N fc (equal to 1 for leptons and 3 for quarks) for the sum over colors. Since the Z0 is a
color singlet, the color factor is simply equal to the dimension of the color representation of the outgoing fermions.

6.3. Bhabha scattering: e−e+ → e−e+

In our next example, we consider the computation of Bhabha scattering in QED (that is, we consider photon exchange but
neglect Z0-exchange) [160]. Bhabha scattering has also been computed using two-component spinors in [104]. We denote
the initial state electron and positronmomenta and helicities by (p1, λ1) and (p2, λ2) and the final state electron and positron
momenta and helicities by (p3, λ3) and (p4, λ4), respectively. Neglecting the electron mass, we have in terms of the usual
Mandelstam variables s, t, u:

p1 · p2 = p3 · p4 ≡ 1
2 s, (6.3.1)

p1 · p3 = p2 · p4 ≡ − 12 t, (6.3.2)

p1 · p4 = p2 · p3 ≡ − 12u, (6.3.3)
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Fig. 6.3.1. Tree-level t-channel Feynman diagrams for e−e+ → e−e+ , with the external lines labeled according to the two-component field names. The
momentum flow of the external particles is from left to right.

and p2i = 0 for i = 1, . . . , 4. There are eight distinct Feynman diagrams. First, there are four s-channel diagrams, as shown
in Fig. 5.5 with amplitudes that follow from the Feynman rules of Fig. 5.3 (more generally, see Fig. J.1.2 in Appendix J):

iMs =

(
−igµν

s

)[
(−ie x1σµy

Ď
2)(ie y3σνx

Ď
4)+ (−ie y

Ď
1σµx2)(ie y3σνx

Ď
4)

+ (−ie x1σµy
Ď
2)(ie x

Ď
3σ νy4)+ (−ie y

Ď
1σµx2)(ie x

Ď
3σ νy4)

]
, (6.3.4)

where xi ≡ x(Epi, λi) and yi ≡ y(Epi, λi), for i = 1, 4. The photonpropagator in Feynmangauge is−igµν/(p1+p2)2 = −igµν/s.
Here, we have chosen towrite the external fermion spinors in the order 1, 2, 3, 4. This dictates in each term the use of either
the σ or σ forms of the Feynman rules of Fig. 5.3. One can group the terms of Eq. (6.3.4) together more compactly:

iMs = e2
(
−igµν

s

)(
x1σµy

Ď
2 + y

Ď
1σµx2

) (
y3σνx

Ď
4 + x

Ď
3σ νy4

)
. (6.3.5)

There are also four t-channel diagrams, as shown in Fig. 6.3.1. The corresponding amplitudes for these four diagrams
can be written:

iMt = (−1)e2
(
−igµν

t

)(
x1σµx

Ď
3 + y

Ď
1σµy3

) (
x2σνx

Ď
4 + y

Ď
2σ νy4

)
. (6.3.6)

Here, the overall factor of (−1) comes from Fermi–Dirac statistics, since the external fermion wave functions are written in
an odd permutation (1, 3, 2, 4) of the original order (1, 2, 3, 4) established by the first term in Eq. (6.3.4).
Fierzing each term using Eqs. (2.67)–(2.69), and using Eqs. (2.59) and (2.60), the total amplitude can be written as:

M = Ms +Mt = 2e2
[
1
s
(x1y3)(y

Ď
2x

Ď
4)+

1
s
(yĎ1x

Ď
3)(x2y4)+

(
1
s
+
1
t

)
(yĎ1x

Ď
4)(x2y3)

+

(
1
s
+
1
t

)
(x1y4)(y

Ď
2x

Ď
3)−

1
t
(x1x2)(x

Ď
3x

Ď
4) −

1
t
(yĎ1y

Ď
2)(y3y4)

]
. (6.3.7)

Squaring this amplitude and summing over spins, all of the cross terms will vanish in the me → 0 limit. This is because
each cross term will have an x or an xĎ for some electron or positron combined with a y or a yĎ for the same particle, and
the corresponding spin sum is proportional tome [see Eqs. (3.1.60) and (3.1.61)]. Hence, summing over final state spins and
averaging over initial state spins, the end result contains only the sum of the squares of the six terms in Eq. (6.3.7):

1
4

∑
spins

|M|2 = e4
∑

λ1,λ2,λ3,λ4

{
1
s2

[
(x1y3)(y

Ď
3x

Ď
1)(y

Ď
2x

Ď
4)(x4y2)+ (y

Ď
1x

Ď
3)(x3y1)(x2y4)(y

Ď
4x

Ď
2)
]

+

(
1
s
+
1
t

)2 [
(yĎ1x

Ď
4)(x4y1)(x2y3)(y

Ď
3x

Ď
2)+ (x1y4)(y

Ď
4x

Ď
1)(y

Ď
2x

Ď
3)(x3y2)

]
+
1
t2

[
(x1x2)(x

Ď
2x

Ď
1)(x

Ď
3x

Ď
4)(x4x3)+ (y

Ď
1y

Ď
2)(y2y1)(y3y4)(y

Ď
4y

Ď
3)
]}
. (6.3.8)
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Here we have used Eq. (2.43) to get the complex square of the fermion bilinears. Performing these spin sums using
Eqs. (3.1.58) and (3.1.59) and using the trace identities Eq. (B.2.5):

1
4

∑
spins

|M|2 = 8e4
[
p2 · p4 p1 · p3

s2
+
p1 · p2 p3 · p4

t2
+

(
1
s
+
1
t

)2
p1 · p4 p2 · p3

]

= 2e4
[
t2

s2
+
s2

t2
+

(u
s
+
u
t

)2]
. (6.3.9)

Thus, the differential cross-section for Bhabha scattering is given by:

dσ
dt
=

1
16πs2

(
1
4

∑
spins

|M|2

)
=
2πα2

s2

[
t2

s2
+
s2

t2
+

(u
s
+
u
t

)2]
. (6.3.10)

This agrees with the result given in problem 5.2 of Ref. [114].

6.4. Polarized muon decay

So far we have only treated cases where the initial state fermion spins are averaged and the final state spins are summed.
In the case of the polarized decay of a particle or polarized scatteringwemust project out the appropriate polarization of the
particles in the spin sums. This is achieved by replacing the spin sums given in Eqs. (3.1.58)–(3.1.61) by the corresponding
polarized spin projections Eqs. (3.1.33)–(3.1.36). As an example, we consider the decay of a polarized muon. Polarized
muon decay has also been computed using two-component spinors in Ref. [104], however with an effective four-fermion
interaction.
In Fig. 6.4.1, we show the single leading order Feynman diagram formuon decay, including the definition of themomenta.

We denote the mass of the muon by mµ, and neglect the electron mass. We shall measure the spin of the muon in its rest
frame with respect to a fixed z-axis. Assume that the muon at rest is polarized such that its spin component along the
ẑ-direction is s = + 12 .
The decay amplitude is given by58

iM =
(
−ig
√
2

)2 (
xĎνµσ ρxµ

) (
xĎeσ τyν̄e

) (−igρτ
DW

)
, (6.4.1)

where DW = (p − kνµ)
2
− m2W is the denominator of the W -boson propagator. In Eq. (6.4.1), xµ ≡ x(Ep, s =

1
2 ) for the

spin-polarized initial state muon, and xĎνµ ≡ x(Ekνµ , λνµ), x
Ď
e ≡ xĎ(Eke, λe), and yν̄e ≡ y(Ek ν̄e , λν̄e). Squaring the amplitude

using Eq. (2.45), we obtain

|M|2 =
g4

4D2W

(
xĎνµσ

ρxµ
) (
xĎµσ

τ xνµ
) (
xĎeσ ρyν̄e

) (
yĎν̄eσ τ xe

)
. (6.4.2)

Summing over the neutrino and electron spins using Eqs. (3.1.58)–(3.1.59), and using Eq. (3.1.46) for the muon spin (with
s = 1

2 ) yields:∑
λνµλeλν̄e

|M|2 =
g4

8D2W
Tr[kνµ · σ σ

ρ(p · σ −mµS · σ) σ τ ] Tr[ke · σ σ ρkν̄e · σ σ τ ]

=
2g4

D2W
ke · kνµ kν̄e · (p−mµS), (6.4.3)

where Sµ in an arbitrary frame is given by Eq. (3.1.15) [with ŝ = ẑ]. To obtain the second linewe have used the trace identity
Eq. (2.56) twice; note that the resulting terms linear in the antisymmetric tensor do not contribute, but the term quadratic
in the antisymmetric tensor does.
The differential decay amplitude is now given by

dΓ =
1
2mµ
|M|2

d3Eke
(2π)32Ee

d3Ek ν̄e
(2π)32Eν̄e

d3Ekνµ
(2π)32Eνµ

(2π)4δ4(p− ke − kν̄e − kνµ), (6.4.4)

58 Throughout this subsection µ and ν are particle labels. Hence, we employ ρ and τ as Lorentz vector indices.
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Fig. 6.4.1. Feynman diagram for electroweak muon decay.

where Ei, i = e, ν̄e, νµ are the energies of the final state particles in the muon rest frame. In the following we shall neglect
both the electron mass and the momentum in theW -propagator compared to theW -boson mass, so D2W → m4W . We can
now use the following identity to integrate over the neutrino momenta [165]∫

d3Ek ν̄e
(2π)32Eν̄e

d3Ekνµ
(2π)32Eνµ

(2π)4δ4(q− kν̄e − kνµ)k
ρ

ν̄e
kτνµ =

1
96π

(q2gρτ + 2qρqτ ), (6.4.5)

where q = p− ke. It follows that

dΓ =
g4

1536π4mµm4W

[
q2 ke · (p−mµS) + 2q · ke q · (p−mµS)

] d3Eke
Ee

. (6.4.6)

In the muon rest frame, ke = Ee(1; cosφ sin θ, sinφ sin θ, cos θ) and S = (0; 0, 0, 1), so that q2 = m2µ − 2Eemµ and
ke · (p−mµS) = mµEe(1+ cos θ) and q · ke = mµEe and q · (p−mµS) = mµ(mµ− Ee− Ee cos θ). Noting that the maximum
energy of the electron ismµ/2 (when the neutrino and antineutrino both recoil in the opposite direction), we obtain

dΓ
d(cos θ)

=
g4m2µ

768π3m4W

∫ mµ/2

0
dEeE2e

[
3−

4Ee
mµ
+

(
1−

4Ee
mµ

)
cos θ

]

=
g4m5µ

3 · 212π3m4W

(
1− 1

3 cos θ
)
, (6.4.7)

in agreement with Ref. [165]. Introducing the Fermi constant, GF ≡
√
2g2/(8m2W ), we can rewrite Eq. (6.4.7) as:

dΓ
d(cos θ)

=
G2Fm

5
µ

384π3
(
1− 1

3 cos θ
)
. (6.4.8)

Integrating over cos θ reproduces the well-known total muon decay width,

Γ =
G2Fm

5
µ

192π3
. (6.4.9)

6.5. Neutral MSSM Higgs boson decays φ0 → f f̄ , for φ0 = h0,H0, A0

In this subsection, we consider the decays of the neutral Higgs scalar bosons φ0 = h0, H0, and A0 of the MSSM into
Standard Model fermion–antifermion pairs. The relevant tree-level Feynman diagrams are shown in Fig. 6.5.1. The final
state fermion is assigned four-momentum p1 and polarization λ1, and the antifermion is assigned four-momentum p2 and
polarization λ2. We will first work out the case that f is a charge−1/3 quark or a charged lepton, and later note the simple
change needed for charge+2/3 quarks. The Feynman rules of Fig. K.1.1 of Appendix K tell us that the amplitudes are:

iMa = −
i
√
2
Yf k∗dφ0 x

Ď
1x

Ď
2, (6.5.1)

iMb = −
i
√
2
Yf kdφ0 y1y2. (6.5.2)

Here Yf is the Yukawa coupling of the fermion, kdφ0 is the Higgs mixing parameter from Eq. (K.1.8), and the external wave
functions are denoted x1 ≡ x(Ep1, λ1), y1 ≡ y(Ep1, λ1) for the fermion and x2 ≡ x(Ep2, λ2), y2 ≡ y(Ep2, λ2) for the antifermion.
Squaring the total amplitude iM = iMa + iMb using Eq. (2.43) results in:

|M|2 =
1
2
|Yf |2

[
|kdφ0 |

2(y1y2 y
Ď
2y

Ď
1 + x

Ď
1x

Ď
2 x2x1)+ (k

∗

dφ0)
2xĎ1x

Ď
2 y

Ď
2y

Ď
1 + (kdφ0)

2y1y2 x2x1
]
. (6.5.3)
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Fig. 6.5.1. The Feynman diagrams for the decays φ0 → f f̄ , where φ0 = h0,H0, A0 are the neutral Higgs scalar bosons of the MSSM, and f is a Standard
Model quark or lepton, and f̄ is the corresponding antiparticle. We have labeled the external fermions according to the two-component field names.

Summing over the final state antifermion spin using Eqs. (3.1.58)–(3.1.61) gives:∑
λ2

|M|2 =
1
2
|Yf |2

[
|kdφ0 |

2(y1p2 · σy
Ď
1 + x

Ď
1p2 · σ x1)− (k

∗

dφ0)
2mf x

Ď
1y

Ď
1 − (kdφ0)

2mf y1x1
]
. (6.5.4)

Summing over the fermion spins in the same way yields:∑
λ1,λ2

|M|2 =
1
2
|Yf |2

{
|kdφ0 |

2(Tr[p2 · σp1 · σ ] + Tr[p2 · σp1 · σ ])− 2(k∗dφ0)
2m2f − 2(kdφ0)

2m2f
}

= |Yf |2
{
2|kdφ0 |

2p1 · p2 − 2Re[(kdφ0)
2
]m2f

}
= |Yf |2

{
|kdφ0 |

2(m2
φ0
− 2m2f )− 2Re[(kdφ0)

2
]m2f

}
, (6.5.5)

where we have used the trace identity Eq. (2.55) to obtain the second equality. The corresponding expression for charge
+2/3 quarks can be obtained by simply replacing kdφ0 with kuφ0 . The total decay rates now follow from integration over
phase space [166]

Γ (φ0 → f f̄ ) =
N fc

16πmφ0

(
1− 4m2f /m

2
φ0

)1/2 ∑
λ1,λ2

|M|2. (6.5.6)

The factor of N fc = 3 for quarks and 1 for leptons comes from the sum over colors.
Results for special cases are obtained by putting in the relevant values for the couplings and the mixing parameters from

Eqs. (K.1.7) and (K.1.8). In particular, for the CP-even Higgs bosons h0 and H0, kdφ0 and kuφ0 are real, so one obtains:

Γ (h0 → bb̄) =
3
16π

Y 2b sin
2 αmh0

(
1− 4m2b/m

2
h0
)3/2

, (6.5.7)

Γ (h0 → cc̄) =
3
16π

Y 2c cos
2 αmh0

(
1− 4m2c/m

2
h0
)3/2

, (6.5.8)

Γ (h0 → τ+τ−) =
1
16π

Y 2τ sin
2 αmh0

(
1− 4m2τ/m

2
h0
)3/2

, (6.5.9)

Γ (H0 → t t̄) =
3
16π

Y 2t sin
2 αmH0

(
1− 4m2t /m

2
H0
)3/2

, (6.5.10)

Γ (H0 → bb̄) =
3
16π

Y 2b cos
2 αmH0

(
1− 4m2b/m

2
H0
)3/2

, (6.5.11)

etc., which check with the expressions in Appendix C of Ref. [167]. For the CP-odd Higgs boson A0, the mixing parameters
kuA0 = i cosβ0 and kdA0 = i sinβ0 are purely imaginary, so

Γ (A0 → t t̄) =
3
16π

Y 2t cos
2 β0mA0

(
1− 4m2t /m

2
A0
)1/2

, (6.5.12)

Γ (A0 → bb̄) =
3
16π

Y 2b sin
2 β0mA0

(
1− 4m2b/m

2
A0
)1/2

, (6.5.13)

Γ (A0 → τ+τ−) =
1
16π

Y 2τ sin
2 β0mA0

(
1− 4m2τ/m

2
A0
)1/2

. (6.5.14)

Note that the differing kinematic factors for the CP-odd Higgs decays came about because of the different relative sign
between the two Feynman diagrams. For example, in the case of h0 → bb̄, the matrix element is

iM =
i
√
2
Yb sinα (y1y2 + x

Ď
1x

Ď
2), (6.5.15)
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Fig. 6.6.1. The Feynman diagram for ν̃e → C̃+i e
− in the MSSM.

while for A0 → bb̄, it is

iM =
1
√
2
Yb sinβ0 (y1y2 − x

Ď
1x

Ď
2). (6.5.16)

The differing relative sign between y1y2 and x
Ď
1x

Ď
2 follows from the imaginary pseudoscalar Lagrangian coupling, which is

complex conjugated in the second diagram.

6.6. Sneutrino decay ν̃e → C̃+i e
−

Next we consider the process of sneutrino decay ν̃e → C̃+i e
− in the MSSM. Because only the left-handed electron can

couple to the chargino and sneutrino (with the excellent approximation that the electron Yukawa coupling vanishes), there
is just one Feynman diagram, shown in Fig. 6.6.1. The external wave functions of the electron and chargino are denoted as
xe ≡ x(Eke, λe), and xC̃ ≡ x(Ek C̃ , λC̃ ), respectively. From the corresponding Feynman rule given in Fig. K.4.1 of Appendix K,
the amplitude is:

iM = −igVi1 x
Ď

C̃
xĎe , (6.6.1)

where Vij is one of the two matrices used to diagonalize the chargino masses [cf. Eq. (K.2.6)]. Squaring this using Eq. (2.43)
yields:

|M|2 = g2|Vi1|2 (x
Ď

C̃
xĎe)(xexC̃ ). (6.6.2)

Summing over the electron and chargino spin polarizations using Eq. (3.1.58) yields∑
λe,λC̃

|M|2 = g2|Vi1|2Tr[ke · σ kC̃ · σ ] = 2g
2
|Vi1|2 ke · kC̃ = g

2
|Vi1|2(m2ν̃e −m

2
C̃i
), (6.6.3)

where we have used 2ke · kC̃ = m
2
ν̃e
−m2

C̃i
, neglecting the electron mass. Therefore, after integrating over phase space in the

standard way, the decay width is:

Γ (̃νe → C̃+i e
−) =

1
16πmν̃e

(
1−

m2
C̃i

m2
ν̃e

)∑
λe,λC̃

|M|2

 = g2

16π
|Vi1|2mν̃e

(
1−

m2
C̃i

m2
ν̃e

)2
, (6.6.4)

which agrees with Ref. [168] and Eq. (3.8) in Ref. [7].

6.7. Chargino decay C̃+i → ν̃ee+

Here again, there is just one Feynman diagram (neglecting the electronmass in the Yukawa coupling) shown in Fig. 6.7.1.
The external wave functions for the chargino and the positron are denoted by xC̃ ≡ x(EpC̃ , λC̃ ) and ye ≡ y(Eke, λe),
respectively. The fermion momenta and helicities are denoted as in Fig. 6.7.1. As in the previous example, the amplitude
can be directly determined using the Feynman rule given in Fig. K.4.1 in Appendix K:

M = −igV ∗i1 xC̃ ye. (6.7.1)

Squaring this using Eq. (2.43) yields:

|M|2 = g2|Vi1|2 (xC̃ye) (y
Ď
ex

Ď

C̃
). (6.7.2)

Summing over the electron helicity and averaging over the chargino helicity using Eqs. (3.1.58) and (3.1.59) we obtain:

1
2

∑
λe,λC̃

|M|2 = 1
2g
2
|Vi1|2Tr[ke · σ pC̃ · σ ] = g

2
|Vi1|2ke · pC̃ =

g2

2
|Vi1|2(m2C̃i −m

2
ν̃e
). (6.7.3)
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Fig. 6.7.1. The Feynman diagram for C̃+i → ν̃ee+ in the MSSM.

So the decay width is, neglecting the electron mass:

Γ (̃C+i → ν̃e+) =
1

16πmC̃i

(
1−

m2
ν̃e

m2
C̃i

)1
2

∑
λe,λC̃

|M|2

 = g2

32π
|Vi1|2mC̃i

(
1−

m2
ν̃e

m2
C̃i

)2
, (6.7.4)

which agrees with Ref. [168].

6.8. Neutralino decays Ñi → φ0Ñj, for φ0 = h0,H0, A0

Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs boson φ0 = h0, H0, or A0. The two
tree-level Feynman graphs are shown in Fig. 6.8.1, where we have also labeled the momenta and helicities. We denote the
masses for the neutralinos and the Higgs boson as mÑi , mÑj , and mφ0 . Using the Feynman rules of Fig. K.3.1, the amplitudes
are respectively given by

iM1 = −iY xiyj, (6.8.1)

iM2 = −iY ∗ y
Ď
i x

Ď
j , (6.8.2)

where the coupling Y ≡ Yφ
0χ0i χ

0
j is defined in Eq. (K.3.1), and the external wave functions are xi ≡ x(Epi, λi), y

Ď
i ≡ y

Ď(Epi, λi),
yj ≡ y(Ek j, λj), and x

Ď
j ≡ x

Ď(Ek j, λj).
Taking the square of the total matrix element using Eq. (2.43) gives:

|M|2 = |Y |2(xiyjy
Ď
j x

Ď
i + y

Ď
i x

Ď
j xjyi)+ Y

2xiyjxjyi + Y ∗2y
Ď
i x

Ď
j y

Ď
j x

Ď
i . (6.8.3)

Summing over the final state neutralino spins using Eqs. (3.1.58)–(3.1.61) yields∑
λj

|M|2 = |Y |2(xikj · σ x
Ď
i + y

Ď
i kj · σyi)− Y

2mÑjxiyi − Y
∗2mÑjy

Ď
i x

Ď
i . (6.8.4)

Averaging over the initial state neutralino spins in the same way gives

1
2

∑
λi,λj

|M|2 =
1
2
|Y |2(Tr[kj · σpi · σ ] + Tr[kj · σpi · σ ])+ Re[Y 2]mÑimÑjTr[12×2]

= 2|Y |2pi · kj + 2Re[Y 2]mÑimÑj

= |Y |2(m2Ñi +m
2
Ñj
−m2

φ0
)+ 2Re[Y 2]mÑimÑj , (6.8.5)

where we have used Eq. (2.55) to obtain the second equality. The total decay rate is therefore

Γ (Ñi → φ0Ñj) =
1

16πm3
Ñi

λ1/2(m2Ñi ,m
2
φ0
,m2Ñj)

1
2

∑
λi,λj

|M|2


=
mÑi
16π

λ1/2(1, rφ, rj)
[
|Yφ

0χ0i χ
0
j |
2(1+ rj − rφ)+ 2Re

[(
Yφ

0χ0i χ
0
j
)2]√rj] , (6.8.6)

where the triangle function λ1/2 is defined in Eq. (6.1.11), rj ≡ m2Ñj/m
2
Ñi
and rφ ≡ m2φ0/m

2
Ñi
. The results for φ0 = h0,H0, A0

can now be obtained by using Eqs. (K.1.7) and (K.1.8) in Eq. (K.3.1). In comparing Eq. (6.8.6) with the original calculation in
Ref. [169], it is helpful to employ Eqs. (4.51) and (4.53) of [170]. The results agree.



H.K. Dreiner et al. / Physics Reports 494 (2010) 1–196 57

Fig. 6.8.1. The Feynman diagrams for Ñi → Ñjφ0 in the MSSM.

6.9. Ñi → Z0Nj

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. 6.9.1 with the definitions of the
helicities and the momenta. Using the Feynman rules of Fig. K.2.1, the two amplitudes are given by59

iM1 = −i
g
cW

O′′Lji xiσ
µxĎj ε

∗

µ, (6.9.1)

iM2 = i
g
cW

O′′Lij y
Ď
i σ

µyjε∗µ, (6.9.2)

where the external wave functions are xi = x(Epi, λi), y
Ď
i = y

Ď(Epi, λi), x
Ď
j = x

Ď(Ek j, λj), yj = y(Ek j, λj), and ε∗µ = εµ(EkZ , λZ )
∗.

Noting that O′′Lji = O′′L∗ij [see Eq. (K.2.5)], and applying Eqs. (2.44) and (2.45), we find that the squared matrix element is:

|M|2 =
g2

c2W
ε∗µεν

[
|O′′Lij |

2(xiσµx
Ď
j xjσ

νxĎi + y
Ď
i σ

µyjy
Ď
j σ

νyi)−
(
O′′Lij

)2
yĎi σ

µyjxjσ νx
Ď
i −

(
O′′L∗ij

)2
xiσµx

Ď
j y

Ď
j σ

νyi

]
. (6.9.3)

Summing over the final state neutralino spin using Eqs. (3.1.58)–(3.1.61) yields:∑
λj

|M|2 =
g2

c2W
ε∗µεν

[
|O′′Lij |

2(xiσµkj · σσ νx
Ď
i + y

Ď
i σ

µkj · σσ νyi)

+
(
O′′Lij

)2
mÑjy

Ď
i σ

µσ νxĎi +
(
O′′L∗ij

)2
mÑjxiσ

µσ νyi

]
. (6.9.4)

Averaging over the initial state neutralino spins in the same way gives

1
2

∑
λi,λj

|M|2 =
g2

2c2W
ε∗µεν

[
|O′′Lij |

2
(
Tr[σµkj · σσ νpi · σ ] + Tr[σµkj · σσ νpi · σ ]

)
−
(
O′′Lij

)2
mÑimÑjTr[σ

µσ ν] −
(
O′′L∗ij

)2
mÑimÑjTr[σ

µσ ν]

]
=
2g2

c2W
ε∗µεν

{
|O′′Lij |

2 (kµj pνi + pµi kνj − pi · kjgµν)− Re[(O′′Lij )2]mÑimÑjgµν}, (6.9.5)

where in the last equality we have applied Eqs. (2.55)–(2.57). Using∑
λZ

εµ∗εν = −gµν + kµZ k
ν
Z/m

2
Z , (6.9.6)

we obtain

1
2

∑
λi,λj,λZ

|M|2 =
2g2

c2W

{
|O′′Lij |

2 (pi · kj + 2pi · kZkj · kZ/m2Z)+ 3mÑimÑjRe[(O′′Lij )2]}. (6.9.7)

Using 2kj · kZ = m2Ñi −m
2
Ñj
−m2Z , 2pi · kj = m

2
Ñi
+m2

Ñj
−m2Z , and 2pi · kZ = m

2
Ñi
−m2

Ñj
+m2Z , we obtain the total decay width:

Γ (Ñi → Z0Ñj) =
1

16πm3
Ñi

λ1/2
(
m2Ñi ,m

2
Z ,m

2
Ñj

)1
2

∑
λi,λj,λZ

|M|2

 (6.9.8)

=
g2mÑi
16πc2W

λ1/2(1, rZ , rj)
[
|O′′Lij |

2 (1+ rj − 2rZ + (1− rj)2/rZ)+ 6Re[(O′′Lij )2]√rj], (6.9.9)

59 When comparing with the four-component Feynman rule in Ref. [7] note that O′′Lij = −O′′R∗ij [cf. Eq. (K.2.5)].
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Fig. 6.9.1. The Feynman diagrams for Ñi → ÑjZ0 in the MSSM.

where

rj ≡ m2Ñj/m
2
Ñi
, rZ ≡ m2Z/m

2
Ñi
, (6.9.10)

and the triangle function λ1/2 is defined in Eq. (6.1.11). The result obtained in Eq. (6.9.9) agrees with the original calculation
in Ref. [169].

6.10. Selectron pair production in electron–electron collisions

6.10.1. e−e− → ẽ−L ẽ
−

R
Here there are two Feynman graphs (neglecting the electronmass and Yukawa couplings), shown in Fig. 6.10.1. Note that

these two graphs are related by interchange of the identical initial state electrons. Let the electrons have momenta p1 and
p2 and the selectrons have momenta k̃eL and k̃eR , so that p

2
1 = p

2
2 = 0; k

2
1 = m

2
ẽL
; k22 = m

2
ẽR
; s = (p1 + p2)2 = (k1 + k2)2;

t = (k1 − p1)2 = (k2 − p2)2; u = (k1 − p2)2 = (k2 − p1)2.
Using the Feynman rules of Fig. K.4.2, the matrix element for the first graph, for each neutralino Ñi exchanged in the t

channel, is:

iMt =

[
i
g
√
2

(
N∗i2 +

sW
cW
N∗i1

)][
−i
√
2g
sW
cW
Ni1

]
x1

[
i(k1 − p1) · σ

(k1 − p1)2 −m2Ñi

]
yĎ2. (6.10.1)

We employ the notation for the external wave functions xi = (Epi, λi), i = 1, 2 and analogously for yi, x
Ď
i , y

Ď
i . The matrix

elements for the second (u-channel) graph are the same with the two incoming electrons exchanged, e1 ↔ e2:

iMu = (−1)
[
i
g
√
2

(
N∗i2 +

sW
cW
N∗i1

)][
−i
√
2g
sW
cW
Ni1

]
x2

[
i(k1 − p2) · σ

(k1 − p2)2 −m2Ñi

]
yĎ1. (6.10.2)

Note that since we have written the fermion wave function spinors in the opposite order inM2 compared toM1, there is
a factor (−1) for Fermi–Dirac statistics. Alternatively, starting at the electron with momentum p1 and using the Feynman
rules as above, we can directly write:

iMu =

[
i
g
√
2

(
N∗i2 +

sW
cW
N∗i1

)][
−i
√
2g
sW
cW
Ni1

]
yĎ1

[
−i(k1 − p2) · σ
(k1 − p2)2 −m2Ñi

]
x2. (6.10.3)

This has no Fermi–Dirac factor (−1) because the wave function spinors are written in the same order as inMt . However,
now the Feynman rule for the propagator has an extra minus sign, as can be seen in Fig. 4.2.2. We can also obtain Eq. (6.10.3)
from Eq. (6.10.2) by using Eq. (2.61). So we can write for the total amplitude:

M =Mt +Mu = x1a · σy
Ď
2 + y

Ď
1b · σ x2, (6.10.4)

where

aµ ≡
g2sW
cW

(kµ1 − p
µ

1 )

4∑
i=1

Ni1

(
N∗i2 +

sW
cW
N∗i1

)
1

t −m2
Ñi

, (6.10.5)

bµ ≡ −
g2sW
cW

(kµ1 − p
µ

2 )

4∑
i=1

Ni1

(
N∗i2 +

sW
cW
N∗i1

)
1

u−m2
Ñi

. (6.10.6)

Hence, using Eqs. (2.44) and (2.45):

|M|2 =
(
x1a · σy

Ď
2

) (
y2a∗ · σ x

Ď
1

)
+

(
yĎ1b · σ x2

) (
xĎ2b
∗
· σy1

)
+

(
x1a · σy

Ď
2

) (
xĎ2b
∗
· σy1

)
+

(
yĎ1b · σ x2

) (
y2a∗ · σ x

Ď
1

)
. (6.10.7)
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Fig. 6.10.1. Feynman diagrams for e−e− → ẽ−L ẽ
−

R .

Averaging over the initial state electron spins using Eqs. (3.1.58)–(3.1.61), the a, b∗ and a∗, b cross terms are proportional to
me and can thus be neglected in our approximation. We get:

1
4

∑
λ1,λ2

|M|2 =
1
4
Tr[a · σ p2 · σ a∗ · σ p1 · σ ] +

1
4
Tr[b · σ p2 · σ b∗ · σ p1 · σ ]. (6.10.8)

These terms can be simplified using the identities:

Tr[(k1 − p1) · σ p2 · σ (k1 − p1) · σ p1 · σ ] = Tr[(k1 − p2) · σ p2 · σ (k1 − p2) · σ p1 · σ ]

= tu−m2ẽLm
2
ẽR
, (6.10.9)

which follow from Eqs. (2.56) and (2.57), resulting in:

1
4

∑
λ1,λ2

|M|2 =
g4s2W
4c2W

(tu−m2ẽLm
2
ẽR
)

4∑
i,j=1

Nj1N∗i1

(
N∗j2 +

sW
cW
N∗j1

)(
Ni2 +

sW
cW
Ni1

)

×

 1
(t −m2

Ñi
)(t −m2

Ñj
)
+

1
(u−m2

Ñi
)(u−m2

Ñj
)

 . (6.10.10)

To get the differential cross-section dσ/dt , multiply this by 1/(16πs2):

dσ
dt
=

πα2

4s2W c
2
W

(
tu−m2ẽLm

2
ẽR

s2

)
4∑
i,j=1

Nj1N∗i1

(
N∗j2 +

sW
cW
N∗j1

)(
Ni2 +

sW
cW
Ni1

)

×

 1
(t −m2

Ñi
)(t −m2

Ñj
)
+

1
(u−m2

Ñi
)(u−m2

Ñj
)

 . (6.10.11)

To compare with the original calculation in Ref. [171] and with Eq. (E26), p. 244 in Ref. [7], note that for a pure photino
exchange, Ni1 → cW δi1 and Ni2 → sW δi1, so that

1
4s2W c

2
W
|Ni1|2|Ni2 +

sW
cW
Ni1|2 → 1. (6.10.12)

Also note that in Ref. [171] polarized electron beams are assumed. The result checks.

6.10.2. e−e− → ẽ−R ẽ
−

R
For this process, there are again two Feynman graphs, which are related by the exchange of identical electrons in the

initial state or equivalently by exchange of the identical selectrons in the final state, as shown in Fig. 6.10.2. (We again
neglect the electronmass and thus the higgsino coupling to the electron.) Let the electrons havemomenta p1 and p2 and the
selectrons have momenta k1 and k2, so that p21 = p

2
2 = 0; k

2
1 = k

2
2 = m

2
ẽR
; s = (p1 + p2)2; t = (k1 − p1)2; u = (k1 − p2)2.

Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

iMt =

(
−i
√
2g
sW
cW
Ni1

)2 [ i mÑi
(k1 − p1)2 −m2Ñi

]
yĎ1y

Ď
2, (6.10.13)

for each exchanged neutralino. The amplitudes for the second graph are the same, but with the electrons interchanged:

iMu =

(
−i
√
2g
sW
cW
Ni1

)2 [ i mÑi
(k1 − p2)2 −m2Ñi

]
yĎ1y

Ď
2. (6.10.14)
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Fig. 6.10.2. The two Feynman diagrams for e−e− → ẽ−R ẽ
−

R in the limit whereme → 0.

Fig. 6.10.3. The two Feynman diagrams for e−e− → ẽ−L ẽ
−

L in the limit of vanishing electron mass.

Since we have chosen to write the external state wave function spinors in the same order inMt andMu, there is no factor
of (−1) for Fermi–Dirac statistics. So, applying Eq. (2.43), the total amplitude squared is:

|M|2 =
4g4s4W
c4W

(yĎ1y
Ď
2)(y2y1)

∣∣∣∣∣ 4∑
i=1

(Ni1)2mÑi

(
1

t −m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣
2

. (6.10.15)

The sum over the electron spins is obtained from∑
λ1,λ2

(yĎ1y
Ď
2)(y2y1) = Tr[p2 · σp1 · σ ] = 2p2 · p1 = s. (6.10.16)

So, using Eq. (3.1.59), the spin-averaged differential cross-section is:

dσ
dt
=

(
1
2

)
1

16πs2

(
1
4

∑
λ1,λ2

|M|2

)

=
πα2

2c4W s

∣∣∣∣∣ 4∑
i=1

(Ni1)2mÑi

(
1

t −m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣
2

. (6.10.17)

The first factor of (1/2) in Eq. (6.10.17) comes from the fact that there are identical sleptons in the final state and thus the
phase space is degenerate.
To comparewith [171] and alsowith Eq. (E27) of Ref. [7], note that for a pure photino exchange,Ni1 → cW δi1, so it checks.

6.10.3. e−e− → ẽ−L ẽ
−

L
Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related by the exchange of

identical electrons in the initial state or equivalently by exchange of the identical selectrons in the final state. As shown in
Fig. 6.10.3, they are exactly like the previous example, but with all arrows reversed.
Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

Mt =

(
i
g
√
2

[
N∗i2 +

sW
cW
N∗i1

])2 [ i mÑi
(p1 − k1)2 −m2Ñi

]
x1x2, (6.10.18)

for each exchanged neutralino. The amplitudes for the second graph are the same, but with p1 ↔ p2:

Mu =

(
i
g
√
2

[
N∗i2 +

sW
cW
N∗i1

])2 [ i mÑi
(p2 − k1)2 −m2Ñi

]
x1x2. (6.10.19)

Since we have chosen to write the external state wave function spinors in the same order inM1 andM2, there is no factor
of (−1) for Fermi–Dirac statistics. The total amplitude squared is:

|M|2 =
g4

4
(x1x2)(x

Ď
2x

Ď
1)

∣∣∣∣∣ 4∑
i=1

(
N∗i2 +

sW
cW
N∗i1

)2
mÑi

(
1

t −m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣
2

. (6.10.20)
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The average over the electron spins follows from Eq. (3.1.58):∑
λ1,λ2

(x1x2)(x
Ď
2x

Ď
1) = Tr[p2 · σp1 · σ ] = 2p2 · p1 = s. (6.10.21)

So the spin-averaged differential cross-section is:

dσ
dt
=

(
1
2

)
1

16πs2

(
1
4

∑
λ1,λ2

|M|2

)

=
πα2

32s4W s

∣∣∣∣∣ 4∑
i=1

(
N∗i2 +

sW
cW
N∗i1

)2
mÑi

(
1

t −m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣
2

, (6.10.22)

where the first factor of (1/2) in Eq. (6.10.22) comes from the fact that there are identical sleptons in the final state. To
compare with [171] and also with Eq. (E27) of Ref. [7], note that for a pure photino exchange, Ni1 → cW δi1 and Ni2 → sW δi1,
so it checks.

6.11. e−e+ → ν̃ν̃∗

Consider now the pair production of sneutrinos in electron–positron collisions. There are two graphs featuring the
s-channel exchange of the Z0. We will neglect the electron mass and Yukawa coupling, so there is only one graph involving
the t-channel exchange of the charginos. These three Feynmandiagrams are shown in Fig. 6.11.1,wherewehave also defined
the helicities and momenta of the particles. The Mandelstam variables can be expressed in terms of the external momenta
and the sneutrino mass:

2p1 · p2 = s, 2k1 · k2 = s− 2m2ν̃, (6.11.1)

2p1 · k1 = 2p2 · k2 = m2ν̃ − t, 2p1 · k2 = 2p2 · k1 = m2ν̃ − u. (6.11.2)

Using the Feynman rules of Fig. J.1.2, the amplitudes for the two s-channel Z boson exchange diagrams are60:

iM1 =

[
−i
g
2cW

(k1 − k2)µ

] [
−igµν

DZ

] [
i
g
cW

(
s2W −

1
2

)]
x1σνy

Ď
2, (6.11.3)

iM2 =

[
−i
g
2cW

(k1 − k2)µ

] [
−igµν

DZ

] [
i
gs2W
cW

]
yĎ1σ νx2, (6.11.4)

where the first factor in each case is the Feynman rule from the Z boson coupling to the sneutrinos (see Fig. 72c, Ref. [7]),
and DZ ≡ s − m2Z + iΓZmZ is the denominator of the Z boson propagator.

61 The t-channel diagram due to each chargino
gives a contribution

iM3 =
(
−igV ∗i1

)
(−igVi1) x1

[
i(k1 − p1) · σ
(k1 − p1)2 −m2C̃i

]
yĎ2, (6.11.5)

using the rules of Fig. K.4.1. Therefore, the total amplitude can be rewritten as:

M = c1x1(k1 − k2) · σy
Ď
2 + c2y

Ď
1(k1 − k2) · σ x2 + c3x1(k1 − p1) · σy

Ď
2, (6.11.6)

where

c1 ≡
g2(1− 2s2W )
4c2WDZ

, c2 ≡ −
g2s2W
2c2WDZ

, c3 ≡ g2
2∑
i=1

|Vi1|2

m2
C̃j
− t

. (6.11.7)

60 Because we neglect the electron mass, we may drop the QµQ ν term of the Z propagator, where Q ≡ p1 + p2 is the propagating four-momentum in
the s-channel [cf. Fig. 4.2.5].
61 The explicit inclusion of the finite decay width in the propagator of an unstable particle involves subtle issues of gauge invariance and unitarity,
particularly in higher loop computations. The authors of Ref. [172] recommend the complex-mass scheme for perturbative calculations with unstable
particles, first introduced in Ref. [173].
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Fig. 6.11.1. The Feynman diagrams for e−e+ → ν̃ν̃∗ .

Squaring the amplitude and summing over the electron and positron spins, the interference terms involving c2will vanish
in the massless electron limit due to Eqs. (3.1.60) and (3.1.61). Therefore, we obtain∑

λ1,λ2

|M|2 =
∑
λ1,λ2

{
|c1|2 x1(k1 − k2) · σy

Ď
2 y2(k1 − k2) · σ x

Ď
1 + |c2|

2 yĎ1(k1 − k2) · σ x2 x
Ď
2(k1 − k2) · σy1

+ c23 x1(k1 − p1) · σy
Ď
2 y2(k1 − p1) · σ x

Ď
1 + 2Re[c1c3 x1(k1 − k2) · σy

Ď
2 y2(k1 − p1) · σ x

Ď
1]

}
= |c1|2 Tr[(k1 − k2) · σp2 · σ(k1 − k2) · σp1 · σ ] + |c2|2 Tr[(k1 − k2) · σp2 · σ(k1 − k2) · σp1 · σ ]

+ c23 Tr[(k1 − p1) · σp2 · σ(k1 − p1) · σp1 · σ ] + 2Re[c1]c3 Tr[(k1 − k2) · σp2 · σ(k1 − p1) · σp1 · σ ], (6.11.8)
where we have used Eqs. (3.1.58) and (3.1.59) to perform the spin sums. Applying the trace identities Eqs. (2.56) and (2.57)
and simplifying the results using Eqs. (6.11.1)–(6.11.2) and u = 2m2

ν̃
− s− t , we get∑

λ1,λ2

|M|2 = −[st + (t −m2ν̃)
2
]
(
4|c1|2 + 4|c2|2 + c23 + 4Re[c1]c3

)
. (6.11.9)

When mC̃1 = mC̃2 , this agrees with Eqs. (E46)–(E48) of Ref. [7]
62 and with Ref. [174]. The differential cross-section follows

in the standard way by averaging over the initial state spins:

dσ
dt
=

1
16πs2

(
1
4

∑
λ1,λ2

|M|2
)
. (6.11.10)

Note that

t = m2ν̃ −
1
2 (1− β cos θ)s, β ≡

(
1−

4m2
ν̃

s

)1/2
, (6.11.11)

where θ is the angle between the initial state electron and the final state sneutrino in the center-of-momentum frame. The
upper and lower limits t+ and t− are obtained by inserting cos θ = ±1 above, respectively.
Performing the integration over t to obtain the total cross-section, one obtains

σ =

∫ t+

t−

dσ
dt
dt =

g4

64πs

(
SZ +

2∑
i,j=1

Sij +
2∑
i=1

SZi

)
, (6.11.12)

where

SZ =
β3

24c4W
(8s4W − 4s

2
W + 1)

s2

|DZ |2
, (6.11.13)

Sii = |Vi1|4 [(1− 2γi)Li − 2β] , (6.11.14)

S12 = S21 = |V11V12|2
{
(m2
C̃2
+ sγ 22 )L2 − (m

2
C̃1
+ sγ 21 )L1

m2
C̃2
−m2

C̃1

− β

}
, (6.11.15)

SZi =
(2s2W − 1)
c2W

|Vi1|2
[
(m2
C̃i
+ sγ 2i )Li + sβ(γi − 1/2)

] (s−m2Z )
|DZ |2

, (6.11.16)

62 There is a typographical error in Eq. (E48) of [7]; the right-hand side should be multiplied by 1/cos2 θW .
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with

γi ≡
m2
ν̃
−m2

C̃i

s
, Li ≡ ln

(m2
C̃i
− t−

m2
C̃i
− t+

)
. (6.11.17)

This agrees with Eqs. (E49)–(E52) of Ref. [7] in the limit of degenerate charginos, or of a single wino chargino with |V11| = 1
and V12 = 0. It also agrees with [174].

6.12. e−e+ → ÑiÑj

Next we consider the pair production of neutralinos via e−e+ annihilation. There are four Feynman graphs for s-channel
Z0 exchange, shown in Fig. 6.12.1, and four for t/u-channel selectron exchange, shown in Fig. 6.12.2. The momenta and
polarizations are as labeled in the graphs. We denote the neutralino masses asmÑi ,mÑj and the selectron masses asmẽL and
mẽR . The electron mass will again be neglected. The kinematic variables are then given by

s = 2p1 · p2 = m2Ñi +m
2
Ñj
+ 2ki · kj, (6.12.1)

t = m2Ñi − 2p1 · ki = m
2
Ñj
− 2p2 · kj, (6.12.2)

u = m2Ñi − 2p2 · ki = m
2
Ñj
− 2p1 · kj. (6.12.3)

By applying the Feynman rules of Figs. J.1.2 and K.2.1, we obtain for the sum of the s-channel diagrams in Fig. 6.12.1
[cf. footnote 60],

iMZ =
−igµν

DZ

[
ig(s2W −

1
2 )

cW
x1σµy

Ď
2 +

igs2W
cW
yĎ1σµx2

][
ig
cW
O′′Lij x

Ď
i σ νyj −

ig
cW
O′′Lji yiσνx

Ď
j

]
, (6.12.4)

whereO′′ij is given in Eq. (K.2.5), andDZ ≡ s−m
2
Z+iΓZmZ . The fermion spinors are denoted by x1 ≡ x(Ep1, λ1), y

Ď
2 ≡ y

Ď(Ep2, λ2),
xĎi ≡ x

Ď(Ek i, λi), yj ≡ y(Ek j, λj), etc. Note that we have combined thematrix elements of the four diagrams by factorizing with
respect to the common boson propagator. For the four t/u-channel diagrams, we obtain, by applying the rules of Fig. K.4.2:

iM(t)
ẽL
= (−1)

[
i

t −m2ẽL

][ ig
√
2

(
N∗i2 +

sW
cW
N∗i1
)][ ig
√
2

(
Nj2 +

sW
cW
Nj1
)]
x1yiy

Ď
2x

Ď
j , (6.12.5)

iM(u)
ẽL
=

[
i

u−m2ẽL

][ ig
√
2

(
N∗j2 +

sW
cW
N∗j1
)][ ig
√
2

(
Ni2 +

sW
cW
Ni1
)]
x1yjy

Ď
2x

Ď
i , (6.12.6)

iM(t)
ẽR
= (−1)

[
i

t −m2ẽR

](
−i
√
2g
sW
cW
Ni1
)(
−i
√
2g
sW
cW
N∗j1
)
yĎ1x

Ď
i x2yj, (6.12.7)

iM(u)
ẽR
=

[
i

u−m2ẽR

](
−i
√
2g
sW
cW
Nj1
)(
−i
√
2g
sW
cW
N∗i1
)
yĎ1x

Ď
j x2yi. (6.12.8)

The first factors of (−1) in each of Eqs. (6.12.5) and (6.12.7) are present because the order of the spinors in each case is an
odd permutation of the ordering (1, 2, i, j) established by the s-channel contribution. The other contributions have spinors
in an even permutation of that ordering.
The s-channel diagram contribution of Eq. (6.12.4) can be profitably rearranged using the Fierz identities of Eqs. (2.67)

and (2.68). Then, combining the result with the t/u-channel and s-channel contributions, we have for the total:

M = c1x1yjy
Ď
2x

Ď
i + c2x1yiy

Ď
2x

Ď
j + c3y

Ď
1x

Ď
i x2yj + c4y

Ď
1x

Ď
j x2yi, (6.12.9)

where

c1 =
g2

c2W

[
(1− 2s2W )O

′′L
ij /DZ −

1
2 (cWNi2 + sWNi1)(cWN

∗

j2 + sWN
∗

j1)/(u−m
2
ẽL
)
]
, (6.12.10)

c2 =
g2

c2W

[
(2s2W − 1)O

′′L
ji /DZ +

1
2 (cWN

∗

i2 + sWN
∗

i1)(cWNj2 + sWNj1)/(t −m
2
ẽL
)
]
, (6.12.11)

c3 =
2g2s2W
c2W

[
−O′′Lij /DZ + Ni1N

∗

j1/(t −m
2
ẽR
)
]
, (6.12.12)

c4 =
2g2s2W
c2W

[
O′′Lji /DZ − N

∗

i1Nj1/(u−m
2
ẽR
)
]
. (6.12.13)
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Fig. 6.12.1. The four Feynman diagrams for e−e+ → ÑiÑj via s-channel Z0 exchange.

Fig. 6.12.2. The four Feynman diagrams for e−e+ → ÑiÑj via t/u-channel selectron exchange.

Squaring the amplitude and averaging over electron and positron spins, only terms involving x1x
Ď
1 or y1y

Ď
1, and x2x

Ď
2 or y2y

Ď
2

survive in the massless electron limit. Thus,

∑
λ1,λ2

|M|2 =
∑
λ1,λ2

(
|c1|2y

Ď
j x

Ď
1x1yjxiy2y

Ď
2x

Ď
i + |c2|

2yĎi x
Ď
1x1yixjy2y

Ď
2x

Ď
j

+ |c3|2xiy1y
Ď
1x

Ď
i y

Ď
j x

Ď
2x2yj + |c4|

2xjy1y
Ď
1x

Ď
j y

Ď
i x

Ď
2x2yi

+ 2Re
[
c1c∗2y

Ď
i x

Ď
1x1yjxjy2y

Ď
2x

Ď
i

]
+ 2Re

[
c3c∗4xjy1y

Ď
1x

Ď
i y

Ď
i x

Ď
2x2yj

])
= |c1|2y

Ď
j p1 · σyj xip2 · σ x

Ď
i + |c2|

2yĎi p1 · σyi xjp2 · σ x
Ď
j

+ |c3|2xip1 · σ x
Ď
i y

Ď
j p2 · σyj + |c4|

2xjp1 · σ x
Ď
j y

Ď
i p2 · σyi

+ 2Re
[
c1c∗2y

Ď
i p1 · σyj xjp2 · σ x

Ď
i

]
+ 2Re

[
c3c∗4xjp1 · σ x

Ď
i y

Ď
i p2 · σyj

]
, (6.12.14)

after employing the results of Eqs. (3.1.58)–(3.1.61).
We now perform the remaining spin sums using Eqs. (3.1.58)–(3.1.61) again, obtaining:∑

λ1,λ2,λi,λj

|M|2 = |c1|2Tr[p1 · σkj · σ ]Tr[p2 · σki · σ ] + |c2|2Tr[p1 · σki · σ ]Tr[p2 · σkj · σ ]

+ |c3|2Tr[p1 · σki · σ ]Tr[p2 · σkj · σ ] + |c4|2Tr[p1 · σkj · σ ]Tr[p2 · σki · σ ]

+ 2Re[c1c∗2 ]mÑimÑjTr[p2 · σp1 · σ ] + 2Re[c3c
∗

4 ]mÑimÑjTr[p1 · σp2 · σ ]. (6.12.15)
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Applying the trace identity of Eq. (2.55) to this yields∑
spins

|M|2 = (|c1|2 + |c4|2)4p1 · kjp2 · ki + (|c2|2 + |c3|2)4p1 · kip2 · kj + 4Re[c1c∗2 + c3c
∗

4 ]mÑimÑjp1 · p2

= (|c1|2 + |c4|2)(u−m2Ñi)(u−m
2
Ñj
)+ (|c2|2 + |c3|2)(t −m2Ñi)(t −m

2
Ñj
)

+ 2Re[c1c∗2 + c3c
∗

4 ]mÑimÑjs. (6.12.16)

The differential cross-section then follows:

dσ
dt
=

1
16πs2

(
1
4

∑
spins

|M|2

)
. (6.12.17)

This agrees with the first complete calculation presented in Ref. [175]. For the case of pure photino pair production, i.e.
Ni1 → cW δi1 and Ni2 → sW δi1 and for degenerate selectron masses this also agrees with Eq. (E9) of the erratum of [7]. Other
earlier calculations with some simplifications are given in Refs. [176,177].
Defining cos θ = p̂1 · k̂i (the cosine of the angle between the initial state electron and one of the neutralinos in the

center-of-momentum frame), the Mandelstam variables t, u are given by

t =
1
2

[
m2Ñi +m

2
Ñj
− s+ λ1/2(s,m2Ñi ,m

2
Ñj
) cos θ

]
, (6.12.18)

u =
1
2

[
m2Ñi +m

2
Ñj
− s− λ1/2(s,m2Ñi ,m

2
Ñj
) cos θ

]
, (6.12.19)

where the triangle function λ1/2 is defined in Eq. (6.1.11). Taking into account the identical fermions in the final state when
i = j, the total cross-section is

σ =
1

1+ δij

∫ t+

t−

dσ
dt
dt, (6.12.20)

where t− and t+ are obtained by inserting cos θ = ∓1 in Eq. (6.12.18), respectively.

6.13. Ñ1Ñ1 → f f̄

In this section, we compute the annihilation rate for Ñ1Ñ1 → f f̄ , where f is any kinematically allowed quark, charged
lepton or neutrino. The case of f = e− is the reversed reaction of the process examined in Section 6.12 (with i = j = 1). In
R-parity-conserving supersymmetric models in which Ñ1 is the lightest supersymmetric particle (and hence is stable), the
Ñ1Ñ1 annihilation process is relevant for the computation of the neutralino relic density [178]. In particular, Ñ1Ñ1 → f f̄ can
be an important contribution to cold dark matter annihilation [178–181]. Neutralino dark matter is typically heavier than
about 6 GeV [182]; for lighter neutralinos see Ref. [183].
In the computation of the relic density, one computes vrelσann, where σann is the Ñ1Ñ1 annihilation cross-section and vrel

is the relative velocity of the two neutralinos in the center-of-momentum frame. The square of the relative velocity is taken
to be its thermal average, v2rel ' 6kBT/mÑ1 [178], which is typically non-relativistic when the temperature is of order the
freeze-out temperature [180] (where the neutralino falls out of thermal equilibrium). Hence, it is sufficient to compute the
annihilation cross-section for Ñ1Ñ1 → f f̄ in the non-relativistic limit.
As in Section 6.12, there are four Feynman graphs for s-channel Z0 exchange, shown in Fig. 6.13.1. In addition, there

are s-channel neutral Higgs exchange graphs, shown in Fig. 6.13.2, that yield contributions to the annihilation amplitude
proportional to the fermion mass,mf .63 Likewise, as in Section 6.12, there are four Feynman graphs for t/u-channel f̃L and f̃R
exchange, shown in Fig. 6.13.3. However, because we do not set mf to zero, four additional t/u-channel graphs contribute,
shown in Fig. 6.13.4, that are sensitive to the higgsino components of the neutralino.
The neutralino and the final state fermion four-momenta and polarizations are as labeled in the Feynman graphs. In the

center-of-momentum (CM) frame, the four-momenta are

pµ1 = (E; Ep), pµ2 = (E;−Ep), kµ1 = E(1;βk̂), kµ2 = E(1;−βk̂), (6.13.1)

where

β ≡

√
1−

m2f
E2
. (6.13.2)

63 In regions of parameter space where mÑ1 '
1
2mZ or mÑ1 '

1
2mφ0 (where φ

0
= h0 , H0 or A0), the resonant 2 → 1 annihilation Ñ1Ñ1 → Z0 or

Ñ1Ñ1 → φ0 dominates the 2→ 2 annihilation processes considered here.
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Fig. 6.13.1. The four Feynman diagrams for Ñ1Ñ1 → f f̄ via s-channel Z0 exchange, where f is a quark or lepton.

Fig. 6.13.2. Feynman diagrams for Ñ1Ñ1 → f f̄ via s-channel Higgs exchange. There are four diagrams for each possible neutral Higgs state φ0 = h0 , H0
and A0 .

In the non-relativistic limit where |Ep| � mÑ1 ,

E ' mÑ1 +
|Ep|2

2mÑ1
, (6.13.3)

and the kinematic invariants are given by

s = (p1 + p2)2 = 4E2 = 4m2Ñ1 + 4|Ep|
2, (6.13.4)

t = (p1 − k1)2 = m2Ñ1 +m
2
f − 2p1 · k1 ' −m

2
Ñ1
+m2f + 2βmÑ1 |Ep| cos θ − 2|Ep|

2, (6.13.5)

u = (p1 − k2)2 = m2Ñ1 +m
2
f − 2p1 · k2 ' −m

2
Ñ1
+m2f − 2βmÑ1 |Ep| cos θ − 2|Ep|

2, (6.13.6)

where θ is the CM scattering angle. Subsequently, we shall neglect the subdominant O(|Ep|) terms in the t and u-channel
propagator denominators by setting t ' u ' −m2

Ñ1
+m2f .

By applying the Feynman rules of Figs. J.1.2 and K.2.1, and using the unitary gauge for the Z-boson propagator, we obtain
for the sum of the s-channel Z-exchange diagrams of Fig. 6.13.1,

iMZ =
i
(
−gµν + QµQ ν/m2Z

)
DZ

(
−ig
cW

)2
O′′L11

[
x1σµy

Ď
2 − y

Ď
1σµx2

][
(T f3 − s

2
WQf )x

Ď
f 1σ νyf 2 − s

2
WQf yf 1σνx

Ď
f 2

]
, (6.13.7)

where O′′ L11 is given in Eq. (K.2.5), DZ ≡ s−m
2
Z + iΓZmZ , and Q ≡ p1+ p2 = k1+ k2. The spinor wave functions are denoted

by x1 ≡ x(Ep1, λ1), y
Ď
2 ≡ y

Ď(Ep2, λ2), x
Ď
f 1 ≡ x

Ď(Ek1, λf 1), yf 2 ≡ y(Ek2, λf 2), etc. In obtaining Eq. (6.13.7), we have combined
the matrix elements of the four diagrams by factorizing with respect to the common Z-boson propagator. Note that all four
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Fig. 6.13.3. The four Feynman diagrams for ÑiÑj → f f̄ via t/u-channel f̃L and f̃R exchange, where f̃L and f̃R couple to the gaugino components of the
neutralino.

Fig. 6.13.4. The four Feynman diagrams for ÑiÑj → f f̄ via t/u-channel f̃L and f̃R exchange, where f̃L and f̃R couple to the higgsino components of the
neutralino.

terms in Eq. (6.13.7) have the same order of spinor wave functions (1, 2, f 1, f 2). Thus, no additional relative signs arise
(beyond the sign associated with the choice of the σ or σ version of the vertex Feynman rules). One can simplify the terms
that originate from the QµQ ν part of the Z-boson propagator by writing Qµ = (p1+ p2)µ and Q ν = (k1+ k2)ν . Contracting
the µ and ν indices with the help of Eqs. (3.1.9)–(3.1.12) yields:

(p1 + p2)µ
[
x1σµy

Ď
2 − y

Ď
1σµx2

]
= 2mÑ1

(
x1x2 − y

Ď
1y

Ď
2

)
, (6.13.8)

(k1 + k2)ν
[
(T f3 − s

2
WQf )x

Ď
f 1σ νyf 2 − s

2
WQf yf 1σνx

Ď
f 2

]
= T f3mf

(
yf 1yf 2 − x

Ď
f 1x

Ď
f 2

)
. (6.13.9)

Hence, we shall write

MZ ≡M
(1)
Z +M

(2)
Z , (6.13.10)

where

iM(1)
Z =

−igµν

DZ

(
−ig
cW

)2
O′′L11

[
x1σµy

Ď
2 − y

Ď
1σµx2

][
(T f3 − s

2
WQf )x

Ď
f 1σ νyf 2 − s

2
WQf yf 1σνx

Ď
f 2

]
, (6.13.11)

iM(2)
Z =

imfmÑ1
m2ZDZ

(
−ig
cW

)2
O′′L11(2T

f
3 )
(
x1x2 − y

Ď
1y

Ď
2

) (
yf 1yf 2 − x

Ď
f 1x

Ď
f 2

)
. (6.13.12)

Next, we apply the Feynman rules of Figs. K.1.1 and K.3.1 to obtain the sumof the four s-channel Higgs exchange diagrams
(for φ0 = h0, H0 and A0) of Fig. 6.13.2,

iMH =
∑

φ0=h0,H0,A0

i
Dφ0

(
−mf
√
2 vf

)[
(Yφ

0χ01χ
0
1 )x1x2 + (Yφ

0χ01χ
0
1 )∗yĎ1y

Ď
2

] [
kf φ0yf 1yf 2 + k

∗

f φ0x
Ď
f 1x

Ď
f 2

]
, (6.13.13)
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where Yφ
0χ01χ

0
1 is given by Eq. (K.3.1), and Dφ0 ≡ s−m

2
φ0
+ iΓφ0mφ0 . In addition, we have introduced the following notation

kf φ0 ≡

kdφ0 , for f = d, e−,
kuφ0 , for f = u,
0, for f = ν,

vf ≡

{
vd, for f = d, e−,
vu, for f = u, ν, (6.13.14)

where vu, vd are the neutral Higgs vacuum expectation values [cf. Eq. (K.1.9)] and kuφ0 and kdφ0 are defined in Eqs. (K.1.7)
and (K.1.8). As the order of the spinor wave functions is (1, 2, f 1, f 2) for all four terms ofMH , no extra minus signs appear.
A good check of the above calculations is to repeat the analysis in the ’t Hooft–Feynman gauge (where the gauge

parameter ξ = 1). In this gauge, MZ = M
(1)
Z , since the term proportional to Q

µQ ν is absent from the gauge boson
propagator. However, we must now include the diagrams of Fig. 6.13.2 with φ0 = G0. In the ’t Hooft–Feynman gauge,
mG0 = mZ and DG0 = DZ . Moreover, using Eqs. (K.1.7) and (K.1.8),

kfG0
vf
=
2iTf
v
. (6.13.15)

Hence, using Eq. (6.13.13) with φ0 = G0,

iMG =
mf
√
2 vDZ

(2Tf ) Y G
0χ01χ

0
1

(
x1x2 − y

Ď
1y

Ď
2

) (
yf 1yf 2 − x

Ď
f 1x

Ď
f 2

)
, (6.13.16)

where we have noted that iY G
0χ01χ

0
1 is real. In particular, using Eq. (K.3.14) and recalling that m2W = m

2
Zc
2
W =

1
2g
2v2, we

confirm thatMG =M
(2)
Z as expected from gauge invariance.

We next evaluate the t/u-channel exchange diagrams shown in Figs. 6.13.3 and 6.13.4. We neglect f̃L–̃fR mixing. Eight
Feynman graphs contribute, and we denote the total invariant amplitude by:

Mf̃ =

2∑
j=1

(M
(tj)
f̃L
+M

(uj)
f̃L
+M

(tj)
f̃R
+M

(uj)
f̃R
), (6.13.17)

where j = 1, 2 labels the contributions of Figs. 6.13.3 and 6.13.4, respectively, and the other superscripts (t or u) and
subscripts (̃fL or f̃R) indicate the exchange channel and the exchanged particle, respectively. These matrix elements are
evaluated by applying the rules of Fig. K.4.2.
The graphs of Fig. 6.13.3 are sensitive to the gaugino components of Ñ1, and yield

iM(t1)
f̃L
= (−1)

(
−ig
√
2
)2 ( i

t −m2
f̃L

) ∣∣∣∣T f3N12 + sWcW (Qf − T f3 )N11
∣∣∣∣2 (yĎ1xĎf 1)(x2yf 2), (6.13.18)

iM(u1)
f̃L
=

(
−ig
√
2
)2 ∣∣∣∣T f3N12 + sWcW (Qf − T f3 )N11

∣∣∣∣2
(

i
u−m2

f̃L

)
(x1yf 2)(y

Ď
2x

Ď
f 1), (6.13.19)

iM(t1)
f̃R
= (−1)

(
i
√
2g
sW
cW
Qf

)2 ( i
t −m2

f̃R

)
|N11|2 (x1yf 1)(y

Ď
2x

Ď
f 2), (6.13.20)

iM(u1)
f̃R
=

(
i
√
2g
sW
cW
Qf

)2 ( i
u−m2

f̃R

)
|N11|2 (y

Ď
1x

Ď
f 2)(x2yf 1). (6.13.21)

The explicit factors of (−1) in Eqs. (6.13.18) and (6.13.20) are present because the order of the spinor wave functions in
these cases is an odd permutation of the ordering (1, 2, f 1, f 2) established in the computation of the s-channel amplitudes.
The graphs of Fig. 6.13.4 are sensitive to the higgsino components of Ñ1, and yield

iM(t2)
f̃L
= (−1)

(
−imf
vf

)2 ( i
t −m2

f̃L

) ∣∣N1f ∣∣2 (x1yf 1)(yĎ2xĎf 2), (6.13.22)

iM(u2)
f̃L
=

(
−imf
vf

)2 ( i
u−m2

f̃L

) ∣∣N1f ∣∣2 (yĎ1xĎf 2)(x2yf 1), (6.13.23)

iM(t2)
f̃R
= (−1)

(
−imf
vf

)2 ( i
t −m2

f̃R

) ∣∣N1f ∣∣2 (yĎ1xĎf 1)(x2yf 2), (6.13.24)

iM(u2)
f̃R
=

(
−imf
vf

)2 ( i
u−m2

f̃R

) ∣∣N1f ∣∣2 (x1yf 2)(yĎ2xĎf 1), (6.13.25)
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where vf is defined in Eq. (6.13.14), and

N1f ≡

N13, for f = d, e−,
N14, for f = u,
0, for f = ν.

(6.13.26)

As before, the explicit factors of (−1) are due to the ordering of the spinor wave functions.
It is convenient to write the total matrix element for Ñ1Ñ1 → f f̄ as the sum of products of separate neutralino and

final state fermionic currents. The contributions of the s-channel diagrams are already in this form. The contributions of the
t- and u-channel diagrams given in Eqs. (6.13.18)–(6.13.25) can be rearranged using the Fierz identities of Eqs. (2.67)–(2.69),

yĎ1x
Ď
f 1x2yf 2 = −

1
2 (y

Ď
1σ

µx2)(x
Ď
f 1σµyf 2), (6.13.27)

x1yf 2y
Ď
2x

Ď
f 1 = −

1
2 (x1σ

µyĎ2)(x
Ď
f 1σµyf 2), (6.13.28)

x1yf 1y
Ď
2x

Ď
f 2 = −

1
2 (x1σ

µyĎ2)(yf 1σµx
Ď
f 2), (6.13.29)

yĎ1x
Ď
f 2x2yf 1 = −

1
2 (y

Ď
1σ

µx2)(yf 1σµx
Ď
f 2). (6.13.30)

Combining the result of the s, t , and u-channel contributions, we have for the total amplitude:

M =
mfmÑ1
m2Z

c0
(
x1x2 − y

Ď
1y

Ď
2

) (
yf 1yf 2 − x

Ď
f 1x

Ď
f 2

)
+ c1(y

Ď
1σ

µx2)(x
Ď
f 1σµyf 2)+ c2(x1σ

µyĎ2)(x
Ď
f 1σµyf 2)+ c3(x1σ

µyĎ2)(yf 1σµx
Ď
f 2)+ c4(y

Ď
1σ

µx2)(yf 1σµx
Ď
f 2)

+mf
[
c5(x1x2)(yf 1yf 2)+ c6(x1x2)(x

Ď
f 1x

Ď
f 2)+ c7(y

Ď
1y

Ď
2)(yf 1yf 2)+ c8(y

Ď
1y

Ď
2)(x

Ď
f 1x

Ď
f 2)
]
, (6.13.31)

where the coefficients c0, c1, . . . , c4 are given by

c0 = −g2
2T f3O

′′L
11

c2WDZ
, (6.13.32)

c1 = −g2
[
(T f3 − s

2
WQf )O

′′L
11

c2WDZ
+

|T f3N12 +
sW
cW
(Qf − T

f
3 )N11|

2

t −m2
f̃L

]
−
m2f
2v2f

(
|N1f |2

t −m2
f̃R

)
, (6.13.33)

c2 = g2
[
(T f3 − s

2
WQf )O

′′L
11

c2WDZ
+

|T f3N12 +
sW
cW
(Qf − T

f
3 )N11|

2

u−m2
f̃L

]
+
m2f
2v2f

(
|N1f |2

u−m2
f̃R

)
, (6.13.34)

c3 = −g2
s2W
c2W
Qf

[
O′′L11
DZ
+
Qf |N11|2

t −m2
f̃R

]
−
m2f
2v2f

(
|N1f |2

t −m2
f̃L

)
, (6.13.35)

c4 = g2
s2W
c2W
Qf

[
O′′L11
DZ
+
Qf |N11|2

u−m2
f̃R

]
+
m2f
2v2f

(
|N1f |2

u−m2
f̃L

)
. (6.13.36)

The coefficients c5, . . . , c8 are obtained from Eq. (6.13.13) and represent the s-channel Higgs exchange contributions to the
annihilation matrix element.
In the non-relativistic limit, |Ep| � mÑ1 . Then t ' u ' −m

2
Ñ1
+ m2f , and we can approximate

64 c1 = −c2 and c3 = −c4.
Hence, the total amplitude, Eq. (6.13.31), can be written as

M =
mfmÑ1
m2Z

c0
(
x1x2 − y

Ď
1y

Ď
2

) (
yf 1yf 2 − x

Ď
f 1x

Ď
f 2

)
+

[
yĎ1σ

µx2 − x1σµy
Ď
2

] [
c1(x

Ď
f 1σµyf 2)− c3(yf 1σµx

Ď
f 2)
]
+MH , (6.13.37)

64 In particular, we assume that f̃L and f̃R are significantly heavier than all other particles in the annihilation process. Consequently, we can ignore all
O(|Ep|/mf̃L,R ) terms in c1 + c2 and c3 + c4 .
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where the s-channel Higgs exchange contributions, MH , will be neglected for simplicity in the subsequent analysis. The
spin-averaged squared matrix element for Ñ1Ñ1 → f f̄ then takes the following form:

1
4

∑
s1,s2,sf 1,sf 2

|MZ +Mf̃ |
2
= Nµν

[
|c1|2F

µν

1 + |c3|
2Fµν2 − 2Re(c1c

∗

3 )F
µν

12

]
+

m2fm
2
Ñ1

m4Z
|c0|2NF

+
2mfmÑ1
m2Z

Re[c∗0 (c1 + c3)]NµF
µ, (6.13.38)

where Nµν , Nµ and N are spin-averaged tensor, vector and scalar quantities that depend on the initial state neutralino
kinematics and Fµν1,2,12, F

µ and F are spin-summed tensor, vector and scalar quantities that depend on the final state
fermion kinematics. These quantities are easily computed using the projection operators of Eqs. (3.1.58)–(3.1.61) and
the standard trace techniques to perform the spin averages and sums. Explicitly, the spin-averaged neutralino quantities
are

N ≡ 1
4

∑
s1,s2

(x1x2 − y
Ď
1y

Ď
2)(x

Ď
2x

Ď
1 − y2y1) = p1 · p2 +m

2
Ñ1
= 2E2, (6.13.39)

Nµ ≡ 1
4

∑
s1,s2

(yĎ1σ
µx2 − x1σµy

Ď
2)(x

Ď
2x

Ď
1 − y2y1) = −mÑ1(p1 + p2)

µ
=

{
−2mÑ1E, µ = 0,
0, µ = i, (6.13.40)

and a symmetric second-rank tensor,

Nµν ≡ 1
4

∑
s1,s2

(yĎ1σ
µx2 − x1σµy

Ď
2)(x

Ď
2σ

νy1 − y2σ νx
Ď
1) = p

µ

1 p
ν
2 + p

µ

2 p
ν
1 − g

µν(p1 · p2 −m2Ñ1)

=


2m2Ñ1 , µ = ν = 0,
0, µ = 0, ν = j or µ = i, ν = 0,
2
[
|Ep|2 δij − pipj

]
, µ = i, ν = j,

(6.13.41)

where the final results given in Eqs. (6.13.39)–(6.13.41) have been evaluated in the CM frame. Similarly, the spin-summed
final state fermion quantities are

F ≡
∑
sf 1,sf 2

(yf 1yf 2 − x
Ď
f 1x

Ď
f 2)(y

Ď
f 2y

Ď
f 1 − xf 2xf 1) = 4(k1 · k2 +m

2
f ) = 8E

2, (6.13.42)

Fµ ≡
∑
sf 1,sf 2

(xĎf 1σ
µyf 2)(y

Ď
f 2y

Ď
f 1 − xf 2xf 1) = −

∑
sf 1,sf 2

(yf 1σµx
Ď
f 2)(y

Ď
f 2y

Ď
f 1 − xf 2xf 1)

= 2mf (k1 + k2)µ =
{
4mf E, µ = 0,
0, µ = i, (6.13.43)

after evaluating the above quantities in the CM frame, and

Fµν1 ≡
∑
sf 1,sf 2

(xĎf 1σ
µyf 2)(y

Ď
f 2σ

νxf 1) = k1ρk2λTr(σ ρσµσ λσ ν), (6.13.44)

Fµν2 ≡
∑
sf 1,sf 2

(yf 1σµx
Ď
f 2)(xf 2σ

νyĎf 1) = k1ρk2λTr(σ
ρσµσ λσ ν), (6.13.45)

Fµν12 ≡
∑
sf 1,sf 2

(yf 1σµx
Ď
f 2)(y

Ď
f 2σ

νxf 1) =
∑
sf 1,sf 2

(xĎf 1σ
µyf 2)(xf 2σ νy

Ď
f 1) = −m

2
f Tr(σ

µσ ν). (6.13.46)

Since Nµν is symmetric, the antisymmetric parts of Fµν1 and Fµν2 do not contribute in Eq. (6.13.38). The symmetric parts of
Fµν1 and F

µν

2 are equal and given by:

[Fµν1 ]symm = [F
µν

2 ]symm = 2(k
µ

1 k
ν
2 + k

ν
1k
µ

2 − k1 · k2g
µν)

=


2m2f , µ = ν = 0,
0, µ = 0, ν = j or µ = i, ν = 0,
2m2f (2k̂

i
k̂
j
− δij)− 4E2(k̂

i
k̂
j
− δij), µ = i, ν = j,

(6.13.47)
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and Fµν12 = −2m
2
f g
µν . The spin-averaged squared matrix element for Ñ1Ñ1 → f f̄ given by Eq. (6.13.38) can now be fully

evaluated, resulting in
1
4

∑
s1,s2,sf 1,sf 2

|MZ +Mf̃ |
2
= 4(|c1|2 + |c3|2)

[
m2Ñ1m

2
f + 2|Ep|

2(E2(1+ cos2 θ)−m2f cos
2 θ)

]

+ 8m2f Re(c1c
∗

3 )
[
m2Ñ1 − 2|Ep|

2
]
+

16m2fm
2
Ñ1

m4Z
E2
[
E2|c0|2 −m2ZRe[c

∗

0 (c1 + c3)]
]
, (6.13.48)

where cos θ = Ep · k̂/|Ep|. In the non-relativistic limit, we use Eq. (6.13.3) and drop terms of O(|Ep|4).
To compute vrelσann, we make use of the following result for the differential annihilation cross-section in the CM frame:

vrel

(
dσ
dΩ

)
CM
=

1
32π2s

(
1−

4m2f
s

)1/2
|M|2ave, (6.13.49)

where |M|2ave is the squared matrix element for the annihilation process, averaged over initial spins and summed over final
spins, and the relative velocity of the initial state neutralinos in the CM frame is given by vrel = 4|Ep|/

√
s ' 2|Ep|/mÑ1 , after

noting that
√
s ' 2mÑ1 in the non-relativistic limit. Inserting the squared matrix element obtained above into Eq. (6.13.49)

and integrating over solid angles, we end up with:

vrelσann =
1
8πE2

(
1−

m2f
E2

)1/2 {
(|c1|2 + |c3|2)

[
m2Ñ1m

2
f +

2|Ep|2

3

(
4m2Ñ1 −m

2
f

)]

+

4m2fm
2
Ñ1

m4Z

[
m2Ñ1(m

2
Ñ1
+ 2|Ep|2)|c0|2 −m2Z (m

2
Ñ1
+ |Ep|2)Re[c∗0 (c1 + c3)]

]
+ 2m2f Re(c1c

∗

3 )
[
m2Ñ1 − 2|Ep|

2
]
+ O(|Ep|4)

}
, (6.13.50)

where the effects of the s-channel Higgs boson exchanges have been omitted.
The momentum dependence of Eq. (6.13.50) reflects the famous p-wave suppression of the annihilation cross-section

in the mf = 0 limit noted in Ref. [178].65 In general, the annihilation cross-section in the non-relativistic limit behaves as
vrel σann ∝ |Ep|2`. Applying this result to Eq. (6.13.50) in the mf = 0 limit implies that ` = 1. This is a consequence of the
Majorana nature of the neutralino. In particular, in the limit of mf = 0, the f f̄ pair is in a J = 1 angular momentum state.
However, Fermi statistics dictates that at threshold, a pair of identical Majorana fermions in a J = 1 state must have relative
orbital angular momentum ` = 1 (corresponding to p-wave annihilation). The s-wave annihilation (corresponding to the
Majorana fermion pair in a J = 0 state) is suppressed by a factor ofm2f , as is evident from Eq. (6.13.50).
We have checked that Eq. (6.13.50) corresponds to a result first obtained in Ref. [179] (although the latter reference omits

the terms in Eq. (6.13.50) proportional to c0). However, we emphasize that this formula neglects the effects of s-channel
Higgs boson exchanges. We invite the reader to complete the computation of the annihilation cross-section by including
these terms (along with the effects of interference between the neglected contributions and the ones computed above).
The annihilation of Ñ1Ñ1 into heavy quarks (c , b and t), followed by the decay of the heavy quarks, can yield observable

signatures suitable for indirect dark matter detection. For example, the annihilation of neutralinos in the galaxy provides
a possible source of indirect dark matter detection via the observation of positrons in cosmic rays [184]. Neutralino dark
matter can also be captured in the sun [185]. The neutrinos that arise (either directly or indirectly) from the neutralino
annihilation in the sun can be detected on Earth (see, e.g., Ref. [186]).

6.14. e−e+ → C̃−i C̃
+

j

Next we consider the pair production of charginos in electron–positron collisions. The s-channel Feynman diagrams
are shown in Fig. 6.14.1, where we have also introduced the notation for the fermion momenta and polarizations. The
Mandelstam variables are given by

s = 2p1 · p2 = m2C̃i +m
2
C̃j
+ 2ki · kj, (6.14.1)

t = m2C̃i − 2p1 · ki = m
2
C̃j
− 2p2 · kj, (6.14.2)

u = m2C̃i − 2p2 · ki = m
2
C̃j
− 2p1 · kj. (6.14.3)

65 In Ref. [178], the annihilation rate for photinos is computed, corresponding to N11 = cW , N12 = sW and N13 = N14 = 0. In this case, the Z boson
and Higgs boson s-channel exchange diagrams are absent. The result presented in Ref. [178] should be multiplied by a factor of two (H. Goldberg, private
communication)—the corrected expression then agrees with Eq. (6.13.50).
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Fig. 6.14.1. Feynman diagrams for e−e+ → C̃−i C̃
+

j via s-channel γ and Z
0 exchange.

Fig. 6.14.2. The Feynman diagram for e−e+ → C̃−i C̃
+

j via the t-channel exchange of a sneutrino.

Note that the negatively charged chargino carries momentum and polarization (ki, λi), while the positively charged one
carries (kj, λj).
Using the Feynman rules of Figs. J.1.2 and K.2.1, the sum of the photon-exchange diagrams is given by:

iMγ =
−igµν

s

(
−ie x1σµy

Ď
2 − ie y

Ď
1σµx2

) (
ie δijyiσνx

Ď
j + ie δijx

Ď
i σ νyj

)
. (6.14.4)

The Z-exchange diagrams yields [cf. footnote 60]:

iMZ =
−igµν

DZ

[ ig
cW

(
s2W −

1
2

)
x1σµy

Ď
2 +

igs2W
cW

yĎ1σµx2
][
−
ig
cW
O′Lji yiσνx

Ď
j −

ig
cW
O′Rji x

Ď
i σ νyj

]
, (6.14.5)

where DZ ≡ s−m2Z + iΓZmZ . The t-channel Feynman diagram via sneutrino exchange is shown in Fig. 6.14.2. Applying the
rules of Fig. K.4.1, we find:

iMν̃e = (−1)
i

t −m2
ν̃e

(
−igV ∗i1x1yi

) (
−igVj1y

Ď
2x

Ď
j

)
. (6.14.6)

The Fermi–Dirac factor (−1) in this equation arises because the spinors appear an order which is an odd permutation of the
order used in all of the s-channel diagram results.
One can now apply the Fierz transformation identities Eqs. (2.67)–(2.69) to Eqs. (6.14.4) and (6.14.5) to remove the σ and

σ matrices. The result can be combined with the t-channel contribution to obtain a total matrix elementMwith exactly the
same form as Eq. (6.12.9), but now with:

c1 = 2
e2δij
s
−

g2

c2WDZ
(1− 2s2W )O

′R
ji , (6.14.7)

c2 =
2e2δij
s
−

g2

c2WDZ
(1− 2s2W )O

′L
ji +

g2V ∗i1Vj1
t −m2

ν̃e

, (6.14.8)

c3 =
2e2δij
s
+
2g2s2W
c2WDZ

O′Rji , (6.14.9)

c4 =
2e2δij
s
+
2g2s2W
c2WDZ

O′Lji . (6.14.10)
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The rest of this calculation is identical in form to Eqs. (6.12.9)–(6.12.16), so that the result is:∑
spins

|M|2 = (|c1|2 + |c4|2)(u−m2C̃i)(u−m
2
C̃j
)+ (|c2|2 + |c3|2)(t −m2C̃i)(t −m

2
C̃j
)

+ 2Re[c1c∗2 + c3c
∗

4 ]mC̃imC̃js. (6.14.11)

The differential cross-section then follows:

dσ
dt
=

1
16πs2

(
1
4

∑
spins

|M|2

)
. (6.14.12)

As in the previous subsection, we define cos θ = p̂1 · k̂i (where θ is the angle between the initial state electron and C̃−i in
the center-of-momentum frame). The Mandelstam variables t, u are given by

t =
1
2

[
m2C̃i +m

2
C̃j
− s+ λ1/2(s,m2C̃i ,m

2
C̃j
) cos θ

]
, (6.14.13)

u =
1
2

[
m2C̃i +m

2
C̃j
− s− λ1/2(s,m2C̃i ,m

2
C̃j
) cos θ

]
. (6.14.14)

The total cross-section can now be computed as

σ =

∫ t+

t−

dσ
dt
dt, (6.14.15)

where t− and t+ are obtained with cos θ = −1 and+1 in Eq. (6.14.13), respectively. Our results agree with the original first
complete calculation in Ref. [187]. Earlier work with simplifying assumptions is given in Ref. [188]. An extended calculation
for the production of polarized charginos is given in [189].

6.15. ud̄→ C̃+i Ñj

Next we consider the associated production of a chargino and a neutralino in quark, anti-quark collisions. The leading
order Feynman diagrams are shown in Fig. 6.15.1, where we have also defined the momenta and the helicities. The
corresponding Mandelstam variables are

s = 2p1 · p2 = m2C̃i +m
2
Ñj
+ 2ki · kj, (6.15.1)

t = m2C̃i − 2p1 · ki = m
2
Ñj
− 2p2 · kj, (6.15.2)

u = m2C̃i − 2p2 · ki = m
2
Ñj
− 2p1 · kj. (6.15.3)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman rules of Figs. J.1.2 and K.2.2:

iMs =
−igµν

s−m2W

(
ig
√
2
x1σµy

Ď
2

)(
igOL∗ji x

Ď
i σ νyj + igO

R∗
ji yiσνx

Ď
j

)
. (6.15.4)

The external spinors are denoted by x1 ≡ x(Ep1, λ1), y
Ď
2 ≡ y

Ď(Ep2, λ2), x
Ď
i ≡ x

Ď(Ek i, λi), yj ≡ y(Ek j, λj), etc. The matrix elements
for the t and u channel graphs follow from the rules of Figs. K.4.1 and K.4.2:

iMt = (−1)
i

t −m2
d̃L

(
−igU∗i1

) ( ig
√
2

[
Nj2 −

sW
3cW

Nj1
])
x1yiy

Ď
2x

Ď
j , (6.15.5)

iMu =
i

u−m2ũL
(−igVi1)

( ig
√
2

[
−N∗j2 −

sW
3cW

N∗j1
])
x1yjy

Ď
2x

Ď
i . (6.15.6)

The first factor of (−1) in Eq. (6.15.5) is required because the order of the spinors (1, i, 2, j) is in an odd permutation of the
order (1, 2, i, j) used in the s-channel and u-channel results.
Now we can use the Fierz relations Eqs. (2.67) and (2.69) to rewrite the s-channel amplitude in a form without σ or σ

matrices. Combining the result with the t-channel and u-channel contributions yields a totalM with exactly the same form
as Eq. (6.12.9), but now with

c1 = −
√
2g2

[
OL∗ji

s−m2W
+

(
1
2
N∗j2 +

sW
6cW

N∗j1

)
Vi1

u−mũL

]
, (6.15.7)

c2 = −
√
2g2

[
OR∗ji
s−m2W

+

(
1
2
N∗j2 −

sW
6cW

N∗j1

)
U∗i1

t −md̃L

]
, (6.15.8)

c3 = c4 = 0. (6.15.9)
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Fig. 6.15.1. The four tree-level Feynman diagrams for ud̄→ C̃+i Ñj .

The rest of this calculation is identical in form to that of Eqs. (6.12.9)–(6.12.16), leading to:∑
spins

|M|2 = |c1|2(u−m2C̃i)(u−m
2
Ñj
)+ |c2|2(t −m2C̃i)(t −m

2
Ñj
)+ 2Re[c1c∗2 ]mC̃imÑjs. (6.15.10)

From this, one can obtain:

dσ
dt
=

1
16πs2

(
1
3 · 4

∑
spins

|M|2

)
, (6.15.11)

where we have included a factor of 1/3 from the color average for the incoming quarks. As in the previous two subsections,
Eq. (6.15.11) can be expressed in terms of the angle between the u quark and the chargino in the center-of-momentum
frame, using

t =
1
2

[
m2C̃i +m

2
Ñj
− s+ λ1/2(s,m2C̃i ,m

2
Ñj
) cos θ

]
, (6.15.12)

u =
1
2

[
m2C̃i +m

2
Ñj
− s− λ1/2(s,m2C̃i ,m

2
Ñj
) cos θ

]
. (6.15.13)

This process occurs in proton–antiproton and proton–proton collisions, where
√
s is not fixed, and the angle θ is different

than the lab frame angle. The observable cross-section depends crucially on experimental cuts. Our result in Eq. (6.15.11)
agrees with the complete computation in Ref. [190]. Earlier calculations in special supersymmetric scenarios, e.g. with
photino mass eigenstates, are given in Refs. [177,191].

6.16. Ñi → ÑjÑkÑ`

Next we consider the decay of a neutralino Ñi to three lighter neutralinos: Ñj, Ñk, Ñ`. To the best of our knowledge, this
process has not been computed in the literature. This decay is not likely to be phenomenologically relevant, because a variety
of two-body decay modes will always be available. Furthermore, the calculation itself is quite complicated because of the
large number of Feynman diagrams involved. Therefore, we consider this only as a matter-of-principle example of a process
with four external state Majorana fermions, and will restrict ourselves to writing down the contributing matrix element
amplitudes.
At tree level, the decay can proceed via a virtual Z0 boson; the Feynman graphs are shown in Fig. 6.16.1. In addition, it

can proceed via the exchange of any of the neutral scalar Higgs bosons of theMSSM, φ0 = h0,H0, A0, as shown in Fig. 6.16.2.
Since any of the final state neutralinos can directly couple to the initial state neutralino there are two more diagrams for
each one shown in Figs. 6.16.1 and 6.16.2, for a total of 48 tree-level diagrams (counting each intermediate Higgs boson state
as distinct). In all cases, the four-momenta of the neutralinos Ñi, Ñj, Ñk, Ñ` are denoted pi, kj, kk, k` respectively.
We obtain the sum of the four diagrams in Fig. 6.16.1 by implementing the rules of Fig. K.2.1, and using the

’t Hooft–Feynman gauge :

iM(1)
Z =

−ig2/c2W
(pi − kj)2 −m2Z

(
O′′Lji xiσµx

Ď
j − O

′′L
ij y

Ď
i σµyj

)(
O′′Lk`x

Ď
kσ

µy` − O′′L`kykσ
µxĎ`
)
. (6.16.1)

The external wave functions are xi ≡ x(Epi, λi), xj,k,` ≡ x(Ek j,k,`, λj,k,`), and analogously for x
Ď
i,j,k,`, and yi,j,k,` and y

Ď
i,j,k,`. Note

that we have factorized the sum of the four diagrams, taking advantage of the common virtual boson line propagator. By a
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Fig. 6.16.1. Four Feynman diagrams for Ñi → ÑjÑkÑ` in theMSSM via Z0 exchange. There are four more where Ñj ↔ Ñk and another four where Ñj ↔ Ñ` .

Fig. 6.16.2. Four Feynman diagrams for Ñi → ÑjÑkÑ` in the MSSM via φ0 = h0, H0, A0 exchange. There are four more where Ñj ↔ Ñk and another four
where Ñj ↔ Ñ` .

judicious use of the σ or σ version of the vertex rule, we have ensured that the order of the four spinor wave functions is
the same for each of the four diagrams. Hence, no additional relative minus signs are required.
The contributions from the diagrams related to these by permutations can now be obtained from the appropriate

substitutions (j↔ k) and (j↔ `):

iM(2)
Z = (−1)

−ig2/c2W
(pi − kk)2 −m2Z

(
O′′Lki xiσµx

Ď
k − O

′′L
ik y

Ď
i σµyk

)(
O′′Lj` x

Ď
j σ

µy` − O′′L`j yjσ
µxĎ`
)
, (6.16.2)

iM(3)
Z = (−1)

−ig2/c2W
(pi − k`)2 −m2Z

(
O′′L`i xiσµx

Ď
` − O

′′L
i` y

Ď
i σµy`

)(
O′′Lkj x

Ď
kσ

µyj − O′′Ljk ykσ
µxĎj
)
. (6.16.3)

The first factors of (−1) in iM(2)
Z and iM(3)

Z are present because the order of the spinors in each case appear in an odd
permutation of the canonical order set by iM(1)

Z . Note that if wewere to proceed to a computation of the decay rate, the very
first step would be to apply the Fierz relations of Eqs. (2.67)–(2.69) to eliminate all of the σ and σ matrices in the above
amplitudes.
The diagrams in Fig. 6.16.2 combine to give a contribution:

iM(1)
φ0
=

−i
(pi − kj)2 −m2φ0

(Y ijxiyj + Yijy
Ď
i x

Ď
j )(Y

k`yky` + Yk`x
Ď
kx

Ď
`), (6.16.4)
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where we have used the Feynman rules of Fig. K.3.1, and adopted the shorthand notation Y ij = (Yij)∗ = Y
φ0χ0i χ

0
j . Again

we have factored the amplitude using the common virtual boson propagator. As in the Z-exchange diagrams, the other
contributions can be obtained by the appropriate substitutions:

iM(2)
φ0
= (−1)

−i
(pi − kk)2 −m2φ0

(Y ikxiyk + Yiky
Ď
i x

Ď
k)(Y

j`yjy` + Yj`x
Ď
j x

Ď
`), (6.16.5)

iM(3)
φ0
= (−1)

−i
(pi − k`)2 −m2φ0

(Y i`xiy` + Yi`y
Ď
i x

Ď
`)(Y

kjykyj + Ykjx
Ď
kx

Ď
j ). (6.16.6)

The first factors of (−1) in iM(2)
φ0
and iM(3)

φ0
are needed because the spinors in each case are in an odd permutation of the

canonical order established earlier.
The total matrix element is obtained by adding all the contributing diagrams:

M =
3∑
n=1

M
(n)
Z +

∑
φ0

3∑
n=1

M
(n)
φ0
. (6.16.7)

Squaring the matrix element, dividing by 2MÑi , and integrating over phase space yields the total decay rate. Note that final
states differing by the interchange of identical particles must be considered as a single state, counted once [38]. Given an
N-body final state made up of νr particles of type r (where r ≤ N), we define a statistical factor S,

S =
∏
r

νr !, where
∑
r

νr = N. (6.16.8)

Then, in computing the total decay rate, the integration over the total phase space must be divided by S to avoid over-
counting. In the present example, N = 3 with S = 2 [or S = 6] in the case of two [or three] identical neutralinos in the final
state, respectively

6.17. Three-body slepton decays˜̀−R → `−τ± τ̃∓1 for ` = e, µ

We next consider the three-body decays of sleptons through a virtual neutralino. The usual assumption in
supersymmetric phenomenology is that these decays will have a very small branching fraction, because a two-body decay
to a lighter neutralino and lepton is always open. However, in Gauge Mediated Supersymmetry Breaking models with a
non-minimal messenger sector, the sleptons can be lighter than the lightest neutralino [192,193]. In that case, the mostly
R-type smuon and selectron, µ̃R and ẽR, will decay by˜̀−R → `−τ±τ̃∓1 . The lightest stau mass eigenstate, τ̃

±

1 , is a mixture of
the weak eigenstates τ̃±L and τ̃

±

R , as described in Appendix K.4:

τ̃−1 = R
∗

τ̃1
τ̃−R + L

∗

τ̃1
τ̃−L , (6.17.1)

and τ̃+1 = (̃τ
−

1 )
∗, while the µ̃R and ẽR are taken to be unmixed.

First consider the decay ˜̀−R → `−τ+τ̃−1 , which proceed by the diagrams in the top row of Fig. 6.17.1. The momenta
and polarizations of the particles are also indicated on the diagram. Using the Feynman rules of Fig. K.4.4, we find that the
amplitudes of these two diagrams, for each neutralino Ñj exchanged, are:

iM1 = (−ia
˜̀∗

j )(−ia
τ̃
j ) y1

[
−i(p− k1) · σ
(p− k1)2 −m2Ñj

]
xĎ2, (6.17.2)

iM2 = (−ia
˜̀∗

j )(−ib
τ̃
j ) y1

[ imÑj
(p− k1)2 −m2Ñj

]
y2 (6.17.3)

where

a ˜̀j =
√
2g ′Nj1, (6.17.4)

aτ̃j = YτNj3L
∗

τ̃1
+
√
2g ′Nj1R∗τ̃1 , (6.17.5)

bτ̃j = YτN
∗

j3R
∗

τ̃1
−
1
√
2
(gN∗j2 + g

′N∗j1)L
∗

τ̃1
. (6.17.6)

The spinor wave function factors are y1 = y(Ek1, λ1), y2 = y(Ek2, λ2), and x
Ď
2 = x

Ď(Ek2, λ2).
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Fig. 6.17.1. Feynman diagrams for the three-body slepton decays˜̀−R → `−τ+ τ̃−1 (top row) and˜̀−R → `−τ− τ̃+1 (bottom row) in the MSSM.

In the following, we will use the kinematic variables

z` ≡ 2p · k1/m2˜̀R = 2E`/m ˜̀R , zτ ≡ 2p · k2/m2˜̀R = 2Eτ/m ˜̀R , (6.17.7)

rÑj ≡ mÑj/m ˜̀R , rτ̃ ≡ mτ̃1/m ˜̀R , (6.17.8)

rτ ≡ mτ/m ˜̀R , r` ≡ m`/m ˜̀R . (6.17.9)

The total amplitude then can be written as

M =
4∑
j=1

[
cjy1(p− k1) · σ x

Ď
2 + djy1y2

]
, (6.17.10)

where

cj = −a
˜̀∗

j a
τ̃
j /[m

2
`R
(r2
Ñj
− 1+ z`)], (6.17.11)

dj = a
˜̀∗

j b
τ̃
j mÑj/[m

2
`R
(r2
Ñj
− 1+ z`)]. (6.17.12)

We consistently neglect the electron and muon masses and Yukawa couplings (so r` = 0) in the matrix elements, but not
below in the kinematic integration over phase space, where the muon mass can be important.
Using Eqs. (2.43) and (2.44), we find

|M|2 =
∑
j,k

[
cjc∗k y1(p− k1) · σ x

Ď
2 x2(p− k1) · σy

Ď
1 + djd

∗

ky1y2 y
Ď
2y

Ď
1

+ cjd∗ky1(p− k1) · σ x
Ď
2 y

Ď
2y

Ď
1 + c

∗

j dkx2(p− k1) · σy
Ď
1 y1y2

]
. (6.17.13)

Summing over the lepton spins using Eqs. (3.1.58)–(3.1.61) gives∑
λ1,λ2

|M|2 =
∑
j,k

[
cjc∗k Tr[(p− k1) · σk2 · σ(p− k1) · σk1 · σ ] + djd

∗

kTr[k2 · σk1 · σ ]

− cjd∗kmτTr[(p− k1) · σk1 · σ ] − c
∗

j dkmτTr[(p− k1) · σk1 · σ ]
]
. (6.17.14)

Taking the traces using Eqs. (2.55) and (2.56) yields∑
spins

|M|2 =
∑
j,k

{
cjc∗k [4k1 · (p− k1)k2 · (p− k1)− 2k1 · k2(p− k1)

2
] + 2djd∗kk1 · k2

− 4Re[cjd∗k ]mτ k1 · (p− k1)
}

=

∑
j,k

{
cjc∗km

4
˜̀R
[(1− z`)(1− zτ )− r2τ̃ + r

2
τ ]

+ djd∗km
2
˜̀R
(z` + zτ − 1+ r2τ̃ − r

2
τ )− 2Re[cjd

∗

k ]mτm
2
˜̀R
z`
}
. (6.17.15)
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The differential decay rate for˜̀−R → `−τ+τ̃−1 then follows:

d2Γ
dz`dzτ

=
m ˜̀R
256π3

(∑
spins

|M|2
)
. (6.17.16)

The total decay rate in that channel can be found by integrating over z`, zτ , with the limits (see for example Ref. [164]):

2r` < z` < 1+ r2` − (rτ + rτ̃ )
2, (6.17.17)

(zτ )min < zτ < (zτ )max, (6.17.18)

where

(zτ )min,max =
1

2(1− z` + r2` )

[
(2− z`)(1+ r2` + r

2
τ − r

2
τ̃ − z`)∓ (z

2
` − 4r

2
` )
1/2λ1/2(1+ r2` − z`, r

2
τ , r

2
τ̃ )
]
, (6.17.19)

and the triangle function λ1/2 is defined in Eq. (6.1.11).
Now we turn to the competing decay ˜̀−R → `−τ−τ̃+1 , with diagrams appearing in the bottom row of Fig. 6.17.1. By

appealing again to the Feynman rules of Fig. K.4.3,we find that the amplitude has exactly the same formas in Eqs. (6.17.2) and
(6.17.3), except nowwith aτ̃j ↔ b

τ̃∗
j . Therefore, the entire previous calculation goes throughprecisely as before, but nowwith

cj =
−a ˜̀∗j b

τ̃∗
j

m2`R(r
2
Ñj
− 1+ z`)

, (6.17.20)

dj =
a ˜̀∗j a

τ̃∗
j mÑj

m2`R(r
2
Ñj
− 1+ z`)

. (6.17.21)

The differential decay widths found above can be integrated to find the total decay widths. The results agree with Ref. [194],
except that the signs of the coefficient c(3)ij and c

(4)
ij in the published version of that paper are incorrect; the arXiv eprint

version has been corrected. (Also, the notations for the sfermionmixing angle are different in that paper.) Ifm ˜̀R −mτ̃1 −mτ
is not too large, the resulting decays can have a macroscopic length in a detector, and the ratio of the two decay modes can
provide an interesting probe of the supersymmetric Lagrangian.

6.18. Neutralino decay to photon and Goldstino: Ñi → γ G̃

The Goldstino G̃ is a massless Weyl fermion that couples to the neutralino and photon fields according to the non-
renormalizable Lagrangian term [195]:

L = −
ai
2
(χ0i σ

µσ ρσ ν∂µG̃Ď) (∂νAρ − ∂ρAν)+ h.c. (6.18.1)

Here χ0i is the left-handed two-component fermion field that corresponds to the neutralino Ñi particle, G̃ is the two-
component fermion field corresponding to the (nearly) massless Goldstino, and the effective coupling is

ai ≡
1
√
2〈F〉

(N∗i1 cos θW + N
∗

i2 sin θW ), (6.18.2)

where Nij the mixing matrix for the neutralinos [see Eq. (K.2.8)], and 〈F〉 is the F-term expectation value associated with
supersymmetry breaking. Therefore Ñi can decay to γ plus G̃ through the diagrams shown in Fig. 6.18.1, with amplitudes:

iM1 = i
ai
2
xÑkG̃ · σ

(
ε∗ · σ kγ · σ − kγ · σ ε∗ · σ

)
xĎ
G̃
, (6.18.3)

iM2 = −i
a∗i
2
yĎ
Ñ
kG̃ · σ

(
ε∗ · σ kγ · σ − kγ · σ ε∗ · σ

)
yG̃ . (6.18.4)

Here xÑ ≡ x(Ep, λÑ), y
Ď

Ñ
≡ yĎ(Ep, λÑ), and x

Ď

G̃
≡ xĎ(EkG̃, λG̃), yG̃ ≡ y(EkG̃, λG̃), and ε

∗
= ε∗(Ekγ , λγ ) are the external wave

function factors for the neutralino, Goldstino, and photon, respectively. Using the on-shell condition kγ · ε∗ = 0, we have
kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ and kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ fromEqs. (2.51) and (2.52). Sowe can rewrite the total amplitude as

M =M1 +M2 = xÑAx
Ď

G̃
+ yĎ

Ñ
ByG̃, (6.18.5)

where

A = ai kG̃ · σ ε
∗
· σ kγ · σ , (6.18.6)

B = −a∗i kG̃ · σ ε
∗
· σ kγ · σ . (6.18.7)
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Fig. 6.18.1. The two Feynman diagrams for Ñi → γ G̃ in supersymmetric models with a light Goldstino.

The complex square of the matrix element is therefore

|M|2 = xÑAx
Ď

G̃
xG̃Âx

Ď

Ñ
+ yĎ

Ñ
ByG̃y

Ď

G̃
B̂yÑ + xÑAx

Ď

G̃
yĎ
G̃
B̂yÑ + y

Ď

Ñ
ByG̃xG̃Âx

Ď

Ñ
, (6.18.8)

where Â and B̂ are obtained from A and B by reversing the order of the σ and σ matrices and taking the complex conjugates
of ai and ε [cf. Eq. (4.4.4) and the associated text].
Summing over the Goldstino spins using Eqs. (3.1.58)–(3.1.61) now yields:∑

λG̃

|M|2 = xÑAkG̃ · σ Âx
Ď

Ñ
+ yĎ

Ñ
BkG̃ · σ B̂yÑ . (6.18.9)

(The A, B̂ and Â, B cross terms vanish because ofmG̃ = 0.) Averaging over the neutralino spins using Eqs. (3.1.58) and (3.1.59),
we find

1
2

∑
λÑ ,λG̃

|M|2 =
1
2
Tr[AkG̃ · σ Âp · σ ] +

1
2
Tr[BkG̃ · σ B̂p · σ ]

=
1
2
|ai|2Tr[ε∗ · σ kγ · σ kG̃ · σ kγ · σ ε · σ kG̃ · σ p · σ kG̃ · σ ] + (σ ↔ σ). (6.18.10)

We now use
kγ · σ kG̃ · σ kγ · σ = 2kG̃ · kγ kγ · σ , (6.18.11)

kG̃ · σ p · σ kG̃ · σ = 2kG̃ · p kG̃ · σ , (6.18.12)
which follow from Eq. (2.53), and the corresponding identities with σ ↔ σ , to obtain:

1
2

∑
λÑ ,λG̃

|M|2 = 2|ai|2(kG̃ · kγ )(kG̃ · p)Tr[ε
∗
· σ kγ · σ ε · σ kG̃ · σ ] + (σ ↔ σ). (6.18.13)

Applying the photon spin-sum identity∑
λγ

εµεν∗ = −gµν, (6.18.14)

and the trace identities Eqs. (2.56) and (2.57), we get
1
2

∑
λγ ,λÑ ,λG̃

|M|2 = 16|ai|2(kG̃ · kγ )
2(kG̃ · p) = 2|ai|

2m6
Ñi
. (6.18.15)

So, the decay rate is [192,196]:

Γ (Ñi → γ G̃) =
1

16πmÑi

1
2

∑
λγ ,λÑ ,λG̃

|M|2

 = |Ni1 cos θW + Ni2 sin θW |2 m5
Ñi

16π |〈F〉|2
. (6.18.16)

6.19. Gluino pair production from gluon fusion: gg → g̃ g̃

In this subsection we will compute the cross-section for the process gg → g̃ g̃ . The relevant Feynman diagrams are
shown in Fig. 6.19.1. The initial state gluons have SU(3)c adjoint representation indices a and b, withmomenta p1 and p2 and
polarization vectors εµ1 = ε

µ(Ep1, λ1) and ε
µ

2 = ε
µ(Ep2, λ2), respectively. The final state gluinos carry adjoint representation

indices c and d, with momenta k1 and k2 and wave function spinors x
Ď
1 = x

Ď(Ek1, λ′1) or y1 = y(Ek1, λ
′

1) and x
Ď
2 = x

Ď(Ek2, λ′2)
or y2 = y(Ek2, λ′2), respectively.
The Feynman rules for the gluino couplings in the supersymmetric extension of QCD are given in Fig. K.5.1. For the two

s-channel amplitudes, we obtain:

iMs =
(
−gsf abe[gµν(p1 − p2)ρ + gνρ(p1 + 2p2)µ − gµρ(2p1 + p2)ν]

) (−igρκ
s

)
ε
µ

1 ε
ν
2

×

[
(−gsf cde) x

Ď
1σ κy2 + (gsf dce) y1σκx

Ď
2

]
. (6.19.1)
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Fig. 6.19.1. The ten Feynman diagrams for gg → g̃ g̃ . The momentum and spin polarization assignments are indicated on the first diagram.

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and the second factor is the gluon
propagator. The next four (t-channel) diagrams have a total amplitude:

iMt =
(
−gsf ceaε

µ

1

)(
−gsf edbεν2

)
xĎ1σµ

[
i(k1 − p1) · σ
(k1 − p1)2 −m2g̃

]
σ νy2 +

(
gsf ecaε

µ

1

)(
gsf debεν2

)
y1σµ

[
i(k1 − p1) · σ
(k1 − p1)2 −m2g̃

]
σνx

Ď
2

+
(
−gsf ceaε

µ

1

)(
gsf debεν2

)
xĎ1σµ

[
img̃

(k1 − p1)2 −m2g̃

]
σνx

Ď
2

+
(
gsf ecaε

µ

1

)(
−gsf edbεν2

)
y1σµ

[
img̃

(k1 − p1)2 −m2g̃

]
σ νy2. (6.19.2)
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Finally, the u-channel Feynman diagrams result in:

iMu =
(
−gsf edaε

µ

1

)(
−gsf cebεν2

)
xĎ1σ ν

[
i(k1 − p2) · σ
(k1 − p2)2 −m2g̃

]
σµy2

+
(
gsf deaε

µ

1

)(
gsf ecbεν2

)
y1σν

[
i(k1 − p2) · σ
(k1 − p2)2 −m2g̃

]
σµx

Ď
2

+
(
gsf deaε

µ

1

)(
−gsf cebεν2

)
xĎ1σ ν

[
img̃

(k1 − p2)2 −m2g̃

]
σµx

Ď
2

+
(
−gsf edaε

µ

1

)(
gsf ecbεν2

)
y1σν

[
img̃

(k1 − p2)2 −m2g̃

]
σµy2. (6.19.3)

We choose to work with real transverse polarization vectors ε1, ε2. These vectors must both be orthogonal to the initial
state collision axis in the center-of-momentum frame. Hence,

ε1 · ε1 = ε2 · ε2 = −1, (6.19.4)
ε1 · p1 = ε2 · p1 = ε1 · p2 = ε2 · p2 = 0, (6.19.5)
ε1 · k2 = −ε1 · k1, (6.19.6)
ε2 · k2 = −ε2 · k1, (6.19.7)

for each choice of λ1, λ2. The sums over gluon polarizations will be performed using [cf. Eq. (I.2.61)]:∑
λ1

ε
µ

1 ε
ν
1 =

∑
λ2

ε
µ

2 ε
ν
2 = −g

µν
+
2
(
pµ1 p

ν
2 + p

µ

2 p
ν
1

)
s

. (6.19.8)

Note that in QCD processes with two or more external gluons, the term 2
(
pµ1 p

ν
2 + p

µ

2 p
ν
1

)
/s in Eq. (6.19.8) cannot in general

be dropped [197]. This is to be contrasted to the photon polarization sum [cf. Eq. (6.18.14)], where this latter term can always
be neglected (due to a Ward identity of quantum electrodynamics).
Before taking the complex square of the amplitude, it is convenient to rewrite the last two terms in each of Eqs. (6.19.2)

and (6.19.3) by using the identities [see Eq. (3.1.12)]:

mg̃x
Ď
1 = y1(k1 · σ), mg̃y1 = x

Ď
1(k1 · σ). (6.19.9)

Using Eqs. (2.53) and (2.54), the resulting total matrix element is then reduced to a sum of terms that each contain exactly
one σ or σ matrix. We define convenient factors:

Gs ≡ g2s f
abef cde/s, (6.19.10)

Gt ≡ g2s f
acef bde/(t −m2g̃), (6.19.11)

Gu ≡ g2s f
adef bce/(u−m2g̃) (6.19.12)

where the usual Mandelstam variables are:

s = (p1 + p2)2 = (k1 + k2)2, (6.19.13)

t = (k1 − p1)2 = (k2 − p2)2, (6.19.14)

u = (k1 − p2)2 = (k2 − p1)2. (6.19.15)
Then the total amplitude is (noting that the gluon polarizations ε1, ε2 were chosen real):

M =Ms +Mt +Mu = x
Ď
1a · σy2 + y1a

∗
· σ xĎ2, (6.19.16)

where
aµ ≡ −(Gt + Gs)ε1 · ε2 p

µ

1 − (Gu − Gs)ε1 · ε2 p
µ

2 − 2Gtk1 · ε1 ε
µ

2 − 2Guk1 · ε2 ε
µ

1

− iεµνρκε1νε2ρ(Gtp1 − Gup2)κ . (6.19.17)
Squaring the amplitude using Eqs. (2.44) and (2.45), we get:

|M|2 = xĎ1a · σy2y
Ď
2a
∗
· σ x1 + y1a∗ · σ x

Ď
2x2a · σy

Ď
1 + x

Ď
1a · σy2x2a · σy

Ď
1 + y1a

∗
· σ xĎ2y

Ď
2a
∗
· σ x1. (6.19.18)

Summing over the gluino spins using Eqs. (3.1.58)–(3.1.61), we find:∑
λ′1,λ

′
2

|M|2 = Tr[a · σk2 · σa∗ · σk1 · σ ] + Tr[a∗ · σk2 · σa · σk1 · σ ]

−m2g̃Tr[a · σa · σ ] −m
2
g̃Tr[a

∗
· σa∗ · σ ]. (6.19.19)
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Performing the traces with Eqs. (2.55)–(2.57) then yields:∑
λ′1,λ

′
2

|M|2 = 8 Re[a · k1a∗ · k2] − 4a · a∗ k1 · k2 − 4iεµνρκk1µk2νaρa∗κ − 4m
2
g̃Re[a

2
]. (6.19.20)

Inserting the explicit form for aµ [Eq. (6.19.17)] into the above result, we obtain:∑
λ′1,λ

′
2

|M|2 = 2(t −m2g̃)(u−m
2
g̃)[(Gt + Gu)

2
+ 4(Gs + Gt)(Gs − Gu)(ε1 · ε2)2]

+ 16(Gt + Gu)[Gs(t − u)+ Gt(t −m2g̃)+ Gu(u−m
2
g̃)](ε1 · ε2)(k1 · ε1)(k1 · ε2)

− 32(Gt + Gu)2(k1 · ε1)2(k1 · ε2)2. (6.19.21)

The sums over gluon polarizations can be done using Eq. (6.19.8), which implies:∑
λ1,λ2

1 = 4,
∑
λ1,λ2

(ε1 · ε2)
2
= 2, (6.19.22)

∑
λ1,λ2

(ε1 · ε2)(k1 · ε1)(k1 · ε2) = m2g̃ − (t −m
2
g̃)(u−m

2
g̃)/s, (6.19.23)

∑
λ1,λ2

(k1 · ε1)2(k1 · ε2)2 =
(
m2g̃ − (t −m

2
g̃)(u−m

2
g̃)/s

)2
. (6.19.24)

Summing over colors using f abef cdef abe
′

f cde
′

= 2f abef cdef ace
′

f bde
′

= N2c (N
2
c − 1) = 72,∑

colors

G2s =
72g4s
s2

,
∑
colors

G2t =
72g4s

(t −m2g̃)
2
, (6.19.25)

∑
colors

G2u =
72g4s

(u−m2g̃)
2
,

∑
colors

GsGt =
36g4s

s(t −m2g̃)
, (6.19.26)

∑
colors

GsGu = −
36g4s

s(u−m2g̃)
,

∑
colors

GtGu =
36g4s

(t −m2g̃)(u−m
2
g̃)
. (6.19.27)

Putting all the factors together, and averaging over the initial state colors and spins, we have:

dσ
dt
=

1
16πs2

(
1
64

∑
colors

1
4

∑
spins

|M|2
)

=
9πα2s
4s4

[
2(t −m2g̃)(u−m

2
g̃)− 3s

2
− 4m2g̃ s+

s2(s+ 2m2g̃)
2

(t −m2g̃)(u−m
2
g̃)
−

4m4g̃ s
4

(t −m2g̃)
2(u−m2g̃)

2

]
, (6.19.28)

which agrees with the result of [177,198] (after some rearrangement). Note that in the center-of-momentum frame, the
Mandelstam variable t is related to the scattering angle θ between an initial state gluon and a final state gluino by:

t = m2g̃ +
s
2

(
cos θ

√
1− 4m2g̃/s− 1

)
. (6.19.29)

Since the final state has identical particles, the total cross-section can now be obtained by:

σ =
1
2

∫ t+

t−

dσ
dt
dt, (6.19.30)

where t± are obtained by inserting cos θ = ±1 into Eq. (6.19.29).

6.20. R-parity-violating stau decay: τ̃+R → e+ν̄µ

In an R-parity-violating extension of the MSSM (denoted henceforth by RPV-MSSM), new Yukawa couplings can arise
[see Eqs. (L.1)–(L.3)] that violate either a global U(1) lepton number L or baryon number B. The corresponding Feynman
rules are derived in Appendix L. Consider the decay of a right-handed scalar tau via an L-violating LLē coupling governed by
Eq. (L.1). This is particularly relevant when the scalar tau is the lightest supersymmetric particle (LSP) [199,200] and in the
case of resonant slepton production [201,202]. Note that in R-parity violation the LSP need not be the lightest neutralino
and in a minimal supergravity embedding often it is not [203,204]. The Feynman diagram is shown in Fig. 6.20.1, where we
have also defined the momenta and the helicities of the fermions.
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Fig. 6.20.1. Feynman diagram for the R-parity-violating decay τ̃+R → e+ν̄µ .

The amplitude for the R-parity-violating τ̃+R decay is given by:

iM = −iλyeyν̄µ . (6.20.1)

Here we have defined λ ≡ λ123, and the external wave functions are denoted by ye ≡ y(Eke, λe), and yν̄µ ≡ y(Ek ν̄µ , λν̄µ),
respectively. Using Eq. (2.43), the amplitude squared is

|M|2 = |λ|2yeyν̄µy
Ď
ν̄µ
yĎe . (6.20.2)

Summing over the fermion spins using Eq. (3.1.59) gives:∑
λe,λν̄µ

|M|2 = |λ|2Tr[ke · σ kν̄µ · σ ] = |λ|
2m2τ̃R , (6.20.3)

where in the last step we have used the trace formula Eq. (2.55), and neglected the mass of the electron and the neutrino.
The total decay rate is then given by

Γ =
1

16πmτ̃R

( ∑
λe,λν̄µ

|M|2
)
=
|λ|2

16π
mτ̃R , (6.20.4)

which agrees with the computation in Refs. [205–207]. Completely analogously we can obtain the total rate for the decays
ν̃µ → τ−e+ and ẽ−L → τ−ν̄µ, which proceed via the same operator, by replacingmτ̃R → (mẽL ,mν̃µ), respectively.
In general the two-body decay rate of a sfermion f̃ via the L-violating LQ d̄ coupling governed by Eq. (L.2) or the B-violating

ūd̄d̄ coupling governed by Eq. (L.3) is given by:

Γ (f̃ → f1f2) =
C |λ|2

16π
mf̃ , (6.20.5)

where we have neglected the masses m1,2 of the final state fermions. The factor C denotes the color factor. For the slepton
decays via the LQ d̄ coupling which are summed over the final state quark colors, C = δijδij = 3, where i, j = 1, 2, 3 and δij
is the symmetric invariant tensor of color SU(3). For the squark decays via the LQ d̄where the initial state color is averaged
over and the final state color is summed, C = 1. For the squark decays via the ūd̄d̄ coupling, C = 1

3ε
ijkεijk = 2, where the

Levi-Civita tensor, ε ijk = εijk, is the antisymmetric invariant tensor of color SU(3). In realistic cases, one must also include
the effects of mixing for the third-family sfermions, which we have omitted here for simplicity.

6.21. R-parity-violating neutralino decay: Ñi → µ−ud̄

Next we consider the R-parity-violating three-body decay of a neutralino Ñi → µ−ud̄, which arises due to the L-violating
LQ d̄ coupling governed by Eq. (L.2). This is of particular interest when the neutralino is the LSP, since it determines the final
state signatures [208–210]. The three Feynman diagrams are shown in Fig. 6.21.1, including the definitions of the momenta
and helicities. We have neglected sfermion mixing, i.e. we assume µ̃L, ũL, and d̃R are mass eigenstates. Using the Feynman
rules given in Figs. L.2 and K.4.2 (or K.4.4), we obtain the corresponding contributions to the decay amplitude,

iM1 =
(
iλ′∗

) [ i
√
2
(gNi2 + g ′Ni1)

][
i

(pi − kµ)2 −m2µ̃L

]
yĎi x

Ď
µx

Ď
ux

Ď
d, (6.21.1)

iM2 =
(
iλ′∗

) [
−
i
√
2
3
g ′Ni1

][
i

(pi − kd)2 −m2d̃R

]
yĎi x

Ď
dx

Ď
µx

Ď
u, (6.21.2)

iM3 =
(
iλ′∗

) [
−
i
√
2
(gNi2 + g ′Ni1/3)

][
i

(pi − ku)2 −m2ũL

]
yĎi x

Ď
ux

Ď
dx

Ď
µ. (6.21.3)
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Fig. 6.21.1. Feynman diagrams for the R-parity-violating decay Ñi → µ−ud̄.

Here we have defined λ′ ≡ λ′211, and the external wave functions are denoted by y
Ď
i ≡ yĎ(Epi, λi), xĎµ ≡ xĎ(Ekµ, λµ),

xĎu ≡ xĎ(Eku, λu), and x
Ď
d ≡ x

Ď(Ekd, λd), respectively. In the following, we will neglect all of the final state fermion masses. The
results will be expressed in terms of the kinematic variables

zµ ≡ 2pi · kµ/m2Ñi = 2Eµ/mÑi , (6.21.4)

zd ≡ 2pi · kd/m2Ñi = 2Ed/mÑi , (6.21.5)

zu ≡ 2pi · ku/m2Ñi = 2Eu/mÑi , (6.21.6)

which satisfy zµ + zd + zu = 2. Then we can rewrite the total matrix element as:

M = c1y
Ď
i x

Ď
µx

Ď
ux

Ď
d + c2y

Ď
i x

Ď
dx

Ď
µx

Ď
u + c3y

Ď
i x

Ď
ux

Ď
dx

Ď
µ, (6.21.7)

where

c1 ≡
1
√
2
λ′∗(gNi2 + g ′Ni1)/[m2µ̃L −m

2
Ñi
(1− zµ)], (6.21.8)

c2 ≡ −

√
2
3
λ′∗g ′Ni1/[m2d̃R −m

2
Ñi
(1− zd)], (6.21.9)

c3 ≡ −
1
√
2
λ′∗(gNi2 + g ′Ni1/3)/[m2ũL −m

2
Ñi
(1− zu)]. (6.21.10)

Before squaring the amplitude, it is convenient to use the Fierz identity [Eq. (2.66)] to reduce the number of terms:

M = (c1 − c3)y
Ď
i x

Ď
µx

Ď
ux

Ď
d + (c2 − c3)y

Ď
i x

Ď
dx

Ď
µx

Ď
u. (6.21.11)

Using Eq. (2.43), we obtain

|M|2 = |c1 − c3|2y
Ď
i x

Ď
µxµyix

Ď
ux

Ď
dxdxu + |c2 − c3|

2yĎi x
Ď
dxdyix

Ď
µx

Ď
uxuxµ

− 2Re[(c1 − c3)(c∗2 − c
∗

3 )y
Ď
i x

Ď
µxµxux

Ď
ux

Ď
dxdyi], (6.21.12)

where Eq. (2.59) was used on the last term. Summing over the fermion spins using Eqs. (3.1.58)–(3.1.61), we obtain:∑
spins

|M|2 = |c1 − c3|2Tr[kµ · σpi · σ ]Tr[kd · σku · σ ] + |c2 − c3|2Tr[kd · σpi · σ ]Tr[ku · σkµ · σ ]

− 2Re
[
(c1 − c3)(c∗2 − c

∗

3 )Tr[kµ · σku · σkd · σpi · σ ]
]
. (6.21.13)
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Applying the trace formulae, Eqs. (2.55) and (2.57), we obtain∑
spins

|M|2 = 4|c1 − c3|2pi · kµ kd · ku + 4|c2 − c3|2pi · kd kµ · ku

− 4Re
[
(c1 − c3)(c∗2 − c

∗

3 )](kµ · ku pi · kd + pi · kµ kd · ku − kµ · kd pi · ku)

= m4
Ñi

[
|c1|2zµ(1− zµ)+ |c2|2zd(1− zd)+ |c3|2zu(1− zu)

− 2Re[c1c∗2 ](1− zµ)(1− zd)− 2Re[c1c
∗

3 ](1− zµ)(1− zu)− 2Re[c2c
∗

3 ](1− zd)(1− zu)
]
, (6.21.14)

where in the last equality we have used Eqs. (6.21.4)–(6.21.6) and

2kµ · kd = (1− zu)m2Ñi , 2kµ · ku = (1− zd)m2Ñi , 2kd · ku = (1− zµ)m2Ñi . (6.21.15)

The differential decay rate follows:

d2Γ
dzµdzd

=
NcmÑi
28π3

(
1
2

∑
spins

|M|2
)
, (6.21.16)

where a factor of Nc = 3 has been included for the sum over colors, a factor of 1/2 to average over the neutralino spin, and
the kinematic limits are

0 < zµ < 1, (6.21.17)

1− zµ < zd < 1. (6.21.18)

In the limit of heavy sfermions, the integrations over zd and then zµ are simple, with the result for the total decay width:

Γ =
Ncm5Ñi
211 · 3π3

(
|c ′1|

2
+ |c ′2|

2
+ |c ′3|

2
− Re[c ′1c

′∗

2 + c
′

1c
′∗

3 + c
′

2c
′∗

3 ]
)
, (6.21.19)

where the c ′i are obtained from ci of Eqs. (6.21.8)–(6.21.10) by neglectingm
2
Ñi
in the denominators. Our results agreewith the

complete computation (which includes mixing) given in Refs. [206,207,211]. Earlier calculations with some simplifications
are given in Refs. [209,212].

6.22. Top quark condensation from a Nambu–Jona–Lasinio model gap equation

The previous examples have involved renormalizable field theories. However, there are cases in which it is preferable
to use effective four-fermion interactions. The obvious historical example is the four-fermion Fermi theory of weak decays.
This has been superseded by amore complete and accurate theory of theweak interactions but is still useful for leading order
calculations of low energy processes. Another case of some interest is the use of strong coupling four-fermion interactions
to drive symmetry breaking via a Nambu–Jona–Lasinio model [213], as in the top quark condensate approach [214–218] to
electroweak symmetry breaking.
Consider an effective four-fermion Lagrangian involving the top quark [216], written in two-component fermion form

as:

L = itĎσµ∂µt + it̄Ďσµ∂µ t̄ +
G
Λ2
(t t̄)(tĎ t̄Ď). (6.22.1)

Here the StandardModel gauge interactions have been suppressed; the quantitieswithin parentheses are color singlets. Note
also that there is no top quark Yukawa coupling to a Higgs scalar boson, nor a top quark mass term, which would normally
appear in the form −mt(t t̄ + tĎ t̄Ď). Instead, the effective top quark mass is supposed to be driven by a non-perturbatively
large and positive dimensionless coupling G, withΛ the cutoff scale at which G arises from somemore fundamental physics
such as topcolor [218].
The Feynman rule for the four-fermion interaction can be derived from the mode expansion results of Section 3, and

is given in Fig. 6.22.1. The resulting gap equation for the dynamically generated top quark mass is shown in Fig. 6.22.2.
Evaluating this using the Feynman rules of Figs. 4.2.3 and 4.2.4, one finds:

− imtδ
j
iδ
β
α = (−1)

∫ Λ d4k
(2π)4

(
i
G
Λ2
δ
j
iδ
k
nδ
β
α δ

β̇

α̇

)(
δnkδ

α̇

β̇

imt
k2 −m2t + iε

)
. (6.22.2)

Here i, j, k, n are color indices of the fundamental representation of SU(3), andα, β, α̇, β̇ are two-component spinor indices.
The factor of (−1) on the right-hand side is due to the presence of a fermion loop.



86 H.K. Dreiner et al. / Physics Reports 494 (2010) 1–196

Fig. 6.22.1. Feynman rule for the four-fermion interaction in the top quark condensatemodel. The indices i, j, k, n = 1, 2, 3 are for color in the fundamental
representation of SU(3), and the indices α, β, α̇, β̇ are two-component spinor indices.

Fig. 6.22.2. The Nambu–Jona–Lasinio gap equation for a possible dynamically generated top quark massmt .

Euclideanizing the loop integration over kµ by k2 → −k2E and
∫
d4k → i

∫
d4kE , and then rewriting the integration in

terms of x = k2E , this amounts to [216]:

mt =
2NcGmt
16π2Λ2

∫ Λ2

0
dx/(1+m2t /x)

=
3Gmt
8π2
[1− (m2t /Λ

2) ln(Λ2/m2t )+ . . .], (6.22.3)

where Nc = 3 is the number of colors, and a factor of two arises from the sum over dotted spinor indices of δ
β̇

α̇ δ
α̇

β̇
.

For small or negative G, only the trivial solution mt = 0 is possible. However, for G ≥ Gcritical = 8π2/3 ≈ 26, there is
a positive solution for m2t /Λ

2 [216]. It is now known that this minimal version of the model cannot explain the top quark
mass and the observed features of electroweak symmetry breaking, but extensions of it may be viable [219].

6.23. Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard Model electroweak
vector bosons coming from quark and lepton loops. (For a derivation of equivalent results in the four-component fermion
formalism, see for example Section 21.3 of [114].) The independent self-energies are given byΠWWµν ,Π

ZZ
µν ,Π

γ Z
µν = Π

Zγ
µν , and

Π
γ γ
µν , as shown in Figs. 6.23.1 and 6.23.2. In each case, iΠµν is equal to the sum of Feynman diagrams for two-point functions
with amputated external legs, and is implicitly a function of the external momentum pµ.
First consider the self-energy function for theW boson, shown in Fig. 6.23.1. TheW boson only couples to left-handed

fermions, so there is only one Feynman diagram for each Standard model weak isodoublet. Taking the external momentum
flowing from left to right to be p, and the loop momentum flowing counterclockwise in the upper fermion line (f ) to be k,
we have from the Feynman rules of Fig. J.1.2:

iΠWWµν = (−1) µ
2ε
∫

ddk
(2π)d

∑
(f ,f ′)

N fc Tr
[(
−i
g
√
2
σµ

)( ik · σ
k2 −m2f

)(
−i
g
√
2
σ ν

)( i(k+ p) · σ
(k+ p)2 −m2f ′

)]
. (6.23.1)

Hereµ is a regularization scale for dimensional regularization in d ≡ 4− 2ε dimensions. The sum in Eq. (6.23.1) is over the
six isodoublet pairs (f , f ′) = (e, νe), (µ, νµ), (τ , ντ ), (d, u), (s, c), and (b, t)with CKMmixing neglected, and

N fc =
{
3, f = quarks,
1, f = leptons. (6.23.2)

The first factor of (−1) in Eq. (6.23.1) is due to the presence of a closed fermion loop. The trace is taken over the two-
component dotted spinor indices. Using Eq. (B.2.27), it follows that

ΠWWµν =
g2

32π2
∑
f

N fc Iµν(m
2
f ,m

2
f ′), (6.23.3)

where we have defined

Iµν(x, y) = i(16π2) µ2ε
∫

ddk
(2π)d

4kµkν + 2kµpν + 2kνpµ − 2k · (k+ p) gµν
(k2 − x)[(k+ p)2 − y]

. (6.23.4)
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Fig. 6.23.1. Contributions to the self-energy function for theW boson in the Standard Model, from loops involving the left-handed quark and lepton pairs
(f , f ′) = (e, νe), (µ, νµ), (τ , ντ ), (d, u), (s, c), and (b, t). The momentum of the positively chargedW+ flows from left to right.

Fig. 6.23.2. Contributions to the diagonal and off-diagonal self-energy functions for the neutral vector bosons V , V ′ = γ , Z in the Standard Model, from
loops involving the three generations of leptons and quarks: f = e, νe, µ, νµ, τ , ντ , d, u, s, c, b, t .

This integral can be evaluated by the standard dimensional regularization methods [114,220]:

Iµν(x, y) = (p2gµν − pµpν)I1(p2; x, y)+ gµν I2(p2; x, y), (6.23.5)
where, after neglecting terms that vanish as ε → 0,

I1(s; x, y) = −
2
3ε
+
2
3s2

{
(2x− 2y− s)A(x)+ (2y− 2x− s)A(y)

+

[
2(x− y)2 − s(x+ y)− s2

]
B(s; x, y)− s(x+ y)+ s2/3

}
, (6.23.6)

I2(s; x, y) =
x+ y
ε
−
1
s

{
(x− y)

[
A(x)− A(y)

]
+

[
(x− y)2 − s(x+ y)

]
B(s; x, y)

}
. (6.23.7)

The functions

A(x) ≡ x ln(x/Q 2)− x, (6.23.8)

B(s; x, y) ≡ −
∫ 1

0
dt ln

(
tx+ (1− t)y− t(1− t)s− iε

Q 2

)
, (6.23.9)

are the finite parts of one-loop Passarino–Veltman functions [221], with the renormalization scale Q related to the
regularization scale µ by the modified minimal subtraction relation

µ2 = Q 2eγ /4π, (6.23.10)
where γ = 0.577216 . . . is Euler’s constant.
The photon and Z boson have mixed self-energy functions, defined in Fig. 6.23.2. Applying the pertinent Feynman rules

from Fig. J.1.2, we obtain:

iΠVV
′

µν = (−1)µ
2ε
∫

ddk
(2π)d

∑
f

N fc Tr
{(
−iGfVσµ

)( ik · σ
k2 −m2f

)(
−iGfV ′σ ν

)( i(k+ p) · σ
(k+ p)2 −m2f

)
+
(
−iGf̄Vσµ

)( ik · σ
k2 −m2f

)(
−iGf̄V ′σ ν

)( i(k+ p) · σ
(k+ p)2 −m2f

)
+
(
−iGfVσµ

)( imf
k2 −m2f

)(
iGf̄V ′σν

)( imf
(k+ p)2 −m2f

)

+
(
−iGf̄Vσµ

)( imf
k2 −m2f

)(
iGfV ′σν

)( imf
(k+ p)2 −m2f

)}
, (6.23.11)

where V and V ′ can each be either γ or Z , and
∑
f is taken over the 12 Standard Model fermions. The corresponding Vff and

V f̄ f̄ couplings are66:

Gfγ = −G
f̄
γ = eQf , (6.23.12)

GfZ =
g
cW
(T f3 − s

2
WQf ), Gf̄Z =

g
cW
s2WQf . (6.23.13)

66 Note that there is no contribution from the left-handed two-component antineutrino fields, ν̄e , ν̄µ , ν̄τ , which do not exist in the Standard Model.
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The four terms in Eq. (6.23.11) correspond to the four diagrams in Fig. 6.23.2, in the same order.
The first two terms in Eq. (6.23.11) are computed exactly as for ΠWWµν , while in the last two terms we use Eq. (B.2.5) to

compute the trace. It follows that the neutral electroweak vector boson self-energy function matrix, after dropping terms
that vanish as ε → 0, is given by

ΠVV
′

µν =
1
16π2

∑
f

N fc
[
(GfVG

f
V ′ + G

f̄
VG
f̄
V ′)Iµν(m

2
f ,m

2
f )+ gµν(G

f
VG
f̄
V ′ + G

f̄
VG
f
V ′)m

2
f I3(m

2
f ,m

2
f )
]
, (6.23.14)

where Iµν(x, y)was defined in Eqs. (6.23.5)–(6.23.7), and we have defined the function

I3(x, y) = −i(16π2)µ2ε
∫

ddk
(2π)d

2
(k2 − x)[(k+ p)2 − y]

=
2
ε
+ 2B(p2; x, y). (6.23.15)

The photon self-energy function is a simple special case of Eq. (6.23.14):

Πγ γ
µν =

1
16π2

∑
f

2N fc (eQf )
2[Iµν(m2f ,m2f )− gµνm2f I3(m2f ,m2f )]. (6.23.16)

Evaluating the integrals Iµν and I3 yields

Πγ γ
µν =

α

3π

∑
f

N fcQ
2
f

(
p2gµν − pµpν

) {
−
1
ε
+
1
3
−
2
p2
[
A(m2f )+m

2
f

]
−

(
1+

2m2f
p2

)
B(p2;m2f ,m

2
f )

}
, (6.23.17)

in agreement with the result given in, for example, Eq. (7.90) of [114]. This formula satisfies pµΠγ γ
µν = pνΠ

γ γ
µν = 0 as

required by the Ward identity of QED, and is regular in the limit p2 → 0.
In each of Eqs. (6.23.3), (6.23.14) and (6.23.17), there are 1/ε poles, contained in the loop integral functions. In the MS

renormalization scheme, these poles are simply removed by counterterms, which have no other effect.
In Eqs. (6.23.1) and (6.23.11), we chose to write a σµ for the left vertex in the Feynman diagram in each case. This is an

arbitrary choice; we could also have chosen to use instead −σµ for the left vertex in any given diagram, as mentioned in
the caption for Fig. J.1.2. This would have dictated the replacements σ ↔ −σ throughout the expression for the diagram,
including for the fermion propagators, as was indicated in Fig. 4.2.4. It is not hard to check that the result after computing
the spinor index traces is unaffected. Note that the contribution proportional to εµνρκ from Eq. (B.2.26) or Eq. (B.2.27)
vanishes; this is clear because the self-energy function is symmetric under interchange of vector indices, and there is only
one independent momentum in the problem.

6.24. Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark in the Standard Model,
including the effects of the gauge interactions and the top and bottom quark Yukawa couplings. As in Section 6.1, we treat
this as a one-generation problem, neglecting CKMmixing. Consequently, the corresponding Yukawa couplings Yt and Yb are
real and positive (by a suitable phase redefinition of the Higgs field67). Using the formalism of Section 4.6 for Dirac fermions,
the independent 1PI self-energy functions are given by68 ΣLt , ΣRt and ΣDt (defined in Fig. 4.6.5) as shown in Fig. 6.24.1.
Note that in these diagrams, the physical top quark moves from right to left, carrying momentum pµ. Then according to the
general formula obtained in Eq. (4.6.31), the complex pole squared mass of the top quark is given by:

M2t − iΓtMt =
(mt +ΣDt)2

(1−ΣLt)(1−ΣRt)
, (6.24.1)

wheremt is the tree-level mass. Working consistently to one-loop order, this yields

M2t − iΓtMt =
[
m2t (1+ΣLt +ΣRt)+ 2mtΣDt

]∣∣
s=m2t +iε

. (6.24.2)

(It would be just as valid to substitute in s = M2t + iε here, as two-loop order effects are being neglected.)
It remains to calculate the self-energy functions ΣLt , ΣRt and ΣDt . Two regularization procedures will be used

simultaneously—the MS scheme [222] based on dimensional regularization [124] and the DR scheme based on dimensional
reduction [223]. This is accomplished by integrating over the loop momentum in

d ≡ 4− 2ε (6.24.3)

67 As shown in Section 3.2, after the fermion mass matrix diagonalization procedure, the tree-level fermion masses are real and non-negative. If CKM
mixing is neglected, it follows from Eq. (J.1.9) that the corresponding diagonal Yukawa couplings are real and positive if the phase of the Higgs field is
chosen such that the neutral Higgs vacuum expectation value v > 0.
68 Since the Yukawa couplings can be chosen real (in the one-generation model), Σ Lt = ΣLt . Note that after suppressing the color degrees of freedom,
ΣLt ,ΣRt andΣDt are one-dimensional matrices, so we do not employ boldface letters in this case.
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Fig. 6.24.1. One-loop contributions to the 1PI self-energy functions for the top quark in the Standard Model. The external momentum of the physical top
quark, pµ , flows from the right to the left. The loop momentum kµ in the text is taken to flow clockwise. Spinor and color indices are suppressed. The
external legs are amputated. The last diagram contains one-loop tadpole contributions.

Fig. 6.24.2. The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, provided that one expands around a Higgs vacuum expectation value
that minimizes the one-loop effective potential (rather than the tree-level Higgs potential, which would yield no tree-level tadpole).

dimensions, but with the vector bosons possessing
D ≡ 4− 2εδMS (6.24.4)

components, where

δMS ≡

{
1 for MS,
0 for DR.

(6.24.5)

In other words, the metric gµν appearing explicitly in the vector propagator is treated as four dimensional in DR, but as
d-dimensional in MS. The renormalization scale Q is related to the regularization scale µ in both cases by the modified
minimal subtraction relation of Eq. (6.23.10).
The calculation of the non-tadpole contributions to the self-energy functions will be performed below in a general

Rξ gauge, with a vector boson propagator as in Fig. 4.2.5. There are different ways to treat the tadpole contributions,
corresponding to different choices for the Higgs vacuum expectation value around which the tree-level Lagrangian is
expanded. If one chooses to expand around the minimum of the tree-level Higgs potential, then there are no tree-level
tadpoles, but there will be non-zero contributions from the last diagram shown in Fig. 6.24.1. (This corresponds to the
treatment given, for example, in Ref. [224].) Alternatively, one can choose to expand around the Higgs vacuum expectation
value v that minimizes the one-loop Landau gauge69 effective potential. In that case, the one-loop tadpole contribution is
precisely canceled by the tree-level Higgs tadpole, as shown in Fig. 6.24.2. Here, we have in mind the latter prescription;
the calculation for the pole mass is therefore complete without tadpole contributions provided that the tree-level top quark
mass is taken to be

mt = Ytv, (6.24.6)
where Yt is the MS or DR Yukawa coupling, and v is the Higgs vacuum expectation value at the minimum of the one-loop
effective potential in Landau gauge. To be consistent with this choice, ξ = 0 should be taken in all formulae below that
involve electroweak gauge bosons or Goldstone bosons. (The gluon contribution is naturally independent of ξ because the
gauge symmetry is unbroken, providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality we will
keep the dependence on ξ in the computation of the individual non-tadpole self-energy diagrams below.
Consider the one-loop calculation of the self-energy ΣLt , which is the sum of individual diagram contributions ΣLt =

[ΣLt ]g + [ΣLt ]γ + [ΣLt ]Z + [ΣLt ]W + [ΣLt ]hSM + [ΣLt ]G0 + [ΣLt ]G+ . First, consider the diagrams involving exchanges of the
scalars φ = hSM,G0,G±. These contributions all have the same form

− ip · σ [ΣLt ]φ = µ2ε
∫

ddk
(2π)d

(−iY ∗)
(
i(k+ p) · σ
(k+ p)2 −m2f

)
(−iY )

(
i

k2 −m2φ

)
, (6.24.7)

69 This procedure is considerably more involved outside of Landau gauge, because the propagators mix the longitudinal components of the vector boson
with the Nambu–Goldstone bosons for ξ 6= 0 if one expands around a Higgs vacuum expectation value that does not minimize the tree-level potential.
This is the same reason the effective potential is traditionally calculated specifically in Landau gauge.
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where the loop momentum kµ flows clockwise, and the couplings and propagator masses are, using the Feynman rules of
Figs. J.1.3 and J.1.4,

for φ = hSM : Y = Yt/
√
2; mf = mt; m2φ = m

2
hSM , (6.24.8)

for φ = G0 : Y = iYt/
√
2; mf = mt; m2φ = ξm

2
Z , (6.24.9)

for φ = G± : Y = Yb; mf = mb; m2φ = ξm
2
W . (6.24.10)

Multiplying both sides by p · σ and taking the trace over spinor indices using Eq. (B.2.5), one finds

[ΣLt ]φ = i|Y |2
µ2ε

p2

∫
ddk
(2π)d

p · (k+ p)
[(k+ p)2 −m2f ][k2 −m

2
φ]
. (6.24.11)

Performing the loop momentum integration in the standard way [114,220], and expanding in ε up to constant terms, one
finds that in each case

[ΣLt ]φ = −
1
16π2

|Y |2 IFS(s;m2f ,m
2
φ). (6.24.12)

Here we have introduced some notation for the loop integral:

IFS(s; x, y) ≡
1
2ε
+
(s+ x− y)B(s; x, y)+ A(x)− A(y)

2s
, (6.24.13)

where the Passarino–Veltman functions A(x) and B(s; x, y)were defined in Eqs. (6.23.8) and (6.23.9). These functions depend
on the renormalization scale Q , which is related to µ via Eq. (6.23.10). It can be checked that IFS(s; x, y) has a smooth limit
as s→ 0.
Next, let us consider the contributions toΣLt involving the vector bosons V = g, γ , Z,W . These have the common form:

− ip · σ [ΣLt ]V = µ2ε
∫

ddk
(2π)d

(
−iG σµ

) ( i(k+ p) · σ
(k+ p)2 −m2f

)
(−iG σ ν)

×

(
−i

k2 −m2V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2V

)
, (6.24.14)

where again the loop momentum k flows clockwise, and, using the rules of Figs. J.1.2 and K.5.1:

for V = g : G = gsT a, mf = mt , (6.24.15)

for V = γ : G = eQt , mf = mt , (6.24.16)

for V = Z : G = g(T t3 − s
2
WQt)/cW , mf = mt , (6.24.17)

for V = W : G = g/
√
2, mf = mb. (6.24.18)

In the case of gluon exchange (V = g), the T a are the SU(3)C generators (with color indices suppressed). The adjoint
representation index a is summed over, producing a factor of the Casimir invariant (T aT a)ij = CFδij = 4

3δij. We now use
σµ σρ σ ν gµν = −(D−2) σ ρ [see Eq. (B.2.11)]; note that this introduces a difference between theMS and DR schemes. Also,
we use k · σ(k + p) · σk · σ = (k2 + 2k · p)k · σ − k2p · σ , which follows from Eq. (2.54). One therefore obtains, after
multiplying by p · σ and taking the trace over spinor indices:

[ΣLt ]V = −i G2
µ2ε

p2

∫
ddk
(2π)d

1
[(k+ p)2 −m2f ][k2 −m

2
V ]

×

[
(2− D)p · (k+ p)+

(
k2k · p+ 2(k · p)2 − k2p2

) (ξ − 1)
k2 − ξm2V

]
. (6.24.19)

Performing the loop momentum integration, one finds that

[ΣLt ]V = −
1
16π2

G2IFV (s;m2f ,m
2
V ), (6.24.20)

where we have introduced the notation

IFV (s; x, y) =
ξ

ε
+ [(s+ x− y)B(s; x, y)+ A(x)− A(y)]/s− δMS +

{
(s− x)[A(y)− A(ξy)]

+ [(s− x)2 − y(s+ x)]B(s; x, y)− [(s− x)2 − ξy(s+ x)]B(s; x, ξy)
}
/2ys, (6.24.21)
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after dropping terms that vanish as ε → 0. Combining the results of Eqs. (6.24.12) and (6.24.20):

ΣLt = −
1
16π2

[(
g2s CF + e

2Q 2t
)
IFV (m2t ;m

2
t , 0)+ [g(T

t
3 − s

2
WQt)/cW ]

2IFV (m2t ;m
2
t ,m

2
Z )

+
1
2
g2IFV (m2t ;m

2
b,m

2
W )+

1
2
Y 2t IFS(m

2
t ;m

2
t ,m

2
hSM)+

1
2
Y 2t IFS(m

2
t ;m

2
t , ξm

2
Z )+ Y

2
b IFS(m

2
t ;m

2
b, ξm

2
W )
]
, (6.24.22)

where we have now substituted s = m2t . It is useful to note that for massless gauge bosons,

IFV (x; x, 0) = ξ
[
1
ε
− ln(x/Q 2)+ 2

]
+ 1− δMS. (6.24.23)

The contributions toΣRt = [ΣRt ]g + [ΣRt ]γ + [ΣRt ]Z + [ΣRt ]hSM + [ΣRt ]G0 + [ΣRt ]G± are obtained similarly. [Note that
there is noW boson contribution, since the right-handed top quark is an SU(2)L singlet.] For the scalar exchange diagrams
with φ = hSM,G0,G±, the general form is:

− ip · σ [ΣRt ]φ = µ2ε
∫

ddk
(2π)d

(−iY )
(
i(k+ p) · σ
(k+ p)2 −m2f

)
(−iY ∗)

(
i

k2 −m2φ

)
, (6.24.24)

which yields

[ΣRt ]φ = −
1
16π2

|Y |2 IFS(s;m2f ,m
2
φ). (6.24.25)

Here the couplings and propagator masses for hSM and G0 are the same as in Eqs. (6.24.8), (6.24.9), but now instead of Eq.
(6.24.10),

for φ = G± : Y = −Yt , mf = mb, m2φ = ξm
2
W , (6.24.26)

from Fig. J.1.4. For the contributions due to exchanges of vectors v = g, γ , Z , the general form is given by

− ip · σ [ΣRt ]V = µ2ε
∫

ddk
(2π)d

(
iG σµ

) ( i(k+ p) · σ
(k+ p)2 −m2f

)
(iG σν)

(
−i

k2 −m2V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2V

)
, (6.24.27)

where

for V = g : G = −gsT a, (6.24.28)
for V = γ : G = −eQt , (6.24.29)

for V = Z : G = gs2WQt/cW , (6.24.30)

after using the rules of Figs. J.1.2 and K.5.1 with mf = mt in each case. We then make use of σµ σ ρ σν gµν = −(D − 2) σρ
[cf. Eq. (B.2.10)] and k · σ(k+ p) · σk · σ = (k2 + 2k · p)k · σ − k2p · σ [cf. Eq. (2.53)]. After multiplying by p · σ and taking
the trace over spinor indices [using Eq. (B.2.5)], we obtain

[ΣRt ]V = −
1
16π2

G2IFV (s;m2t ,m
2
V ), (6.24.31)

in terms of the same function appearing in Eqs. (6.24.21) and (6.24.23). Adding up these contributions and taking s = m2t
yields

ΣRt = −
1
16π2

[(
g2s CF + e

2Q 2t
)
IFV (m2t ;m

2
t , 0)+ (g

2Q 2t s
4
W/c

2
W )IFV (m

2
t ;m

2
t ,m

2
Z )

+
1
2
Y 2t IFS(m

2
t ;m

2
t ,m

2
hSM)+

1
2
Y 2t IFS(m

2
t ;m

2
t , ξm

2
Z )+ Y

2
t IFS(m

2
t ;m

2
b, ξm

2
W )
]
. (6.24.32)

Next, consider the contributions toΣDt = [ΣDt ]g+[ΣDt ]γ +[ΣDt ]Z+[ΣDt ]hSM+[ΣDt ]G0+[ΣDt ]G± , ignoring the tadpole
contribution for now. The diagrams involving the exchange of scalars φ = hSM,G0,G± have the form:

− i[ΣDt ]φ = µ2ε
∫

ddk
(2π)d

(−iY1)
(

imf
(k+ p)2 −m2f

)
(−iY2)

(
i

k2 −m2φ

)
, (6.24.33)

so that

[ΣDt ]φ = imf Y1Y2µ2ε
∫

ddk
(2π)d

1
[(k+ p)2 −m2f ][k2 −m

2
φ]

=
1
16π2

mf Y1Y2IFS(s;m
2
f ,m

2
φ), (6.24.34)
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where we have introduced the notation:

IFS(s; x, y) ≡ −
1
ε
− B(s; x, y), (6.24.35)

after dropping terms that vanish as ε → 0. The relevant couplings and masses are, from Figs. J.1.3 and J.1.4:

for φ = hSM : Y1 = Y2 = Yt/
√
2, mf = mt , m2φ = m

2
hSM , (6.24.36)

for φ = G0 : Y1 = Y2 = iYt/
√
2, mf = mt , m2φ = ξm

2
Z , (6.24.37)

for φ = G± : Y1 = Yb, Y2 = −Yt , mf = mb, m2φ = ξm
2
W . (6.24.38)

The contributions from vector boson exchanges are of the form

− i[ΣDt ]V = µ2ε
∫

ddk
(2π)d

(
iG1σµ

) ( imf
(k+ p)2 −m2f

)
(−iG2σ ν)

(
−i

k2 −m2V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2V

)
. (6.24.39)

Using σµσ νgµν = D [see Eq. (B.2.8)] and k · σk · σ = k2 [from Eq. (2.51)] yields

[ΣDt ]V = imf G1G2µ2ε
∫

ddk
(2π)d

1
[(k+ p)2 −m2f ][k2 −m

2
V ]

[
D+

(ξ − 1)k2

k2 − ξm2V

]
=

1
16π2

mf G1G2IFV (s;m
2
f ,m

2
V ), (6.24.40)

where

IFV (s; x, y) ≡ −
3+ ξ
ε
− 3B(s; x, y)− ξB(s; x, ξy)+ 2δMS, (6.24.41)

after dropping terms that vanish as ε → 0. It is useful to note that for massless gauge bosons

IFV (x; x, 0) ≡ −
3+ ξ
ε
+ (3+ ξ)[ln(x/Q 2)− 2] + 2δMS. (6.24.42)

The relevant couplings are obtained from the rules of Figs. J.1.2 and K.5.1:

for V = g : G1 = −G2 = gsT a, (6.24.43)
for V = γ : G1 = −G2 = eQt , (6.24.44)

for V = Z : G1 = g(T t3 − s
2
WQt)/cW , G2 = gs2WQt/cW , (6.24.45)

andmf = mt in each case. Adding up these contributions and taking s = m2t , we have:

ΣDt =
mt
16π2

{
g2
[
(T t3 − s

2
WQt)s

2
WQt/c

2
W

]
IFV (m

2
t ;m

2
t ,m

2
Z )− (g

2
s CF + e

2Q 2t )IFV (m
2
t ;m

2
t , 0)

+
1
2Y
2
t IFS(m

2
t ;m

2
t ,m

2
hSM)−

1
2Y
2
t IFS(m

2
t ;m

2
t , ξm

2
Z )− Y

2
b IFS(m

2
t ;m

2
b, ξm

2
W )

}
, (6.24.46)

where Yt = mtYb/mb was used on the last term.
In each of the self-energy functions above, there are poles in 1/ε, contained within the functions IFV , IFS , IFV and IFS . In

the MS or DR schemes, these poles are simply canceled by counterterms, which have no other effect at one-loop order. The
one-loop top quark pole mass can now be obtained by plugging Eq. (6.24.22), (6.24.32), and (6.24.46) into Eq. (6.24.2) with
ξ = 0, as discussed earlier. It is not hard to check that the terms from massless Nambu–Goldstone boson exchange just
cancel against the terms from the vector exchange diagrams that came from ξm2W and ξm

2
Z .

As a simple example, consider the one-loop pole mass with only QCD effects included. Then the result of Eq. (6.24.2) has
no imaginary part. Taking the square root (and dropping a two-loop order part) yields the well-known result [225]:

Mt,pole = mt(1+ 1
2ΣLt +

1
2ΣRt)+ΣDt

= mt
(
1−

CFg2s
16π2

[
IFV (m2t ;m

2
t , 0)+ IFV (m

2
t ;m

2
t , 0)

])
= mt

(
1+

αs

4π
CF
[
5− δMS − 3 ln(m

2
t /Q

2)
])
. (6.24.47)
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Fig. 6.25.1. Self-energy functions for the gluino in supersymmetry. The external momentum pµ flows from the right to the left. The loop momentum kµ
in the text is taken to flow clockwise. Spinor and color indices are suppressed. The index x = 1, 2 labels the two squark mass eigenstates of a given flavor
q = u, d, s, c, b, t . Both x and qmust be summed over. The external legs are amputated.

As another check, consider the imaginary part of the pole squared mass of the top quark. At leading order, Eq. (6.24.2)
implies:

Γt = −Im[mt(ΣLt +ΣRt)+ 2ΣDt ]

=
mt
16π2

Im
[g2
2
IFV (m2t ;m

2
b,m

2
W )+ (Y

2
t + Y

2
b )IFS(m

2
t ;m

2
b, ξm

2
W )+ 2Y

2
b IFS(m

2
t ;m

2
b, ξm

2
W )
]

=
1

32π2mt

{
(g2 + Y 2t + Y

2
b )(m

2
t +m

2
b −m

2
W )− 4Y

2
bm

2
t

}
Im[B(m2t ;m

2
b,m

2
W )]. (6.24.48)

The fact that the ξ dependence canceled here is a successful check of gauge-fixing invariance, since the tadpole diagram
in Fig. 6.24.1 does not contribute to the absorptive part of the self-energy. One can express Im[B(s; x, y)] in terms of the
triangle function [cf. Eq. (6.1.11)],

Im[B(s; x, y)] =
{
0 for s ≤ (

√
x+
√
y)2,

πλ1/2(s, x, y)/s for s > (
√
x+
√
y)2.

(6.24.49)

Eq. (6.24.48) then reproduces the result of Eq. (6.1.10) for the top quark width at leading order.

6.25. Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. 6.25.1. Since the gluino is a Majorana fermion, we
can use the general formalism of Section 4.6. We will compute the self-energy functions Ξg̃ ≡ Ξg̃ g̃ andΩg̃ ≡ Ω g̃ g̃ defined
in Fig. 4.6.3, and inferΩ g̃ ≡ Ω g̃ g̃ from the latter by replacing all Lagrangian parameters by their complex conjugates.70 At
one-loop order, it follows from the general result of Eq. (4.6.23) that the complex pole squared mass of the gluino is related
to the tree-level massmg̃ by

M2g̃ − iMg̃Γg̃ =
[
m2g̃(1+ 2Ξg̃)+mg̃(Ωg̃ +Ω g̃)

]∣∣∣
s=m2g̃+iε

. (6.25.1)

It is convenient to split the self-energy functions into gluon/gluino loop and squark/quark loop contributions, as

Ξg̃ = [Ξg̃ ]g +
∑
q

∑
x=1,2

[Ξg̃ ]q̃x , and Ωg̃ = [Ωg̃ ]g +
∑
q

∑
x=1,2

[Ωg̃ ]q̃x , (6.25.2)

where the sum over q runs over the six squark flavors u, d, s, c, b, t , and x = 1, 2 corresponds to the two squark mass
eigenstates [i.e., the two appropriate linear combinations (for fixed squark flavor) of q̃L and q̃R]. The gluon exchange
contributions, following from the Feynman rules of Fig. K.5.1, are:

−ip · σ [Ξg̃ ]g δab = µ2ε
∫

ddk
(2π)d

(
−gsf aecσµ

) ( i(k+ p) · σ
(k+ p)2 −m2g̃

) (
−gsf ebcσ ν

)
×

(
−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
, (6.25.3)

−i [Ωg̃ ]g δab = µ2ε
∫

ddk
(2π)d

(
gsf eacσµ

) ( img̃
(k+ p)2 −m2g̃

) (
−gsf ebcσ ν

) (−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
. (6.25.4)

70 Suppressing the color degrees of freedom,Ξ ,Ω andΩ are one-dimensional matrices, so we do not employ boldface letters in this case.
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The internal gluon and gluino lines carry SU(3)c adjoint representation index indices c and e respectively, while the external
gluinos on the left and right carry indices a and b respectively. The gluino external momentum pµ flows from right to left,
and the loop momentum kµ flows clockwise. Comparing with the derivations of Eqs. (6.24.20) and (6.24.40) in the previous
subsection, and using−f aec f ebc = f eac f ebc = δabCA [with CA = 3 for SU(3)c ], we can immediately conclude that

[Ξg̃ ]g = −
αs

4π
CAIFV (s;m2g̃ , 0), (6.25.5)

[Ωg̃ ]g = −
αs

4π
CAmg̃ IFV (s;m

2
g̃ , 0), (6.25.6)

where the loop integral functions IFV and IFV were defined in Eqs. (6.24.21) and (6.24.41).
Next consider the virtual squark exchange diagrams contributing toΞg̃ . Labeling the quark and squark with color indices

j, k respectively, we have for each squark mass eigenstate:

− ip · σ [Ξg̃ ]q̃x δ
ab
= µ2ε

∫
ddk
(2π)d

(
−i
√
2gsT akj Lq̃x

) ( i(k+ p) · σ
(k+ p)2 −m2q

) (
−i
√
2gsT

bj
k L
∗

q̃x

)( i
k2 −m2q̃x

)

+µ2ε
∫

ddk
(2π)d

(
i
√
2gsT

aj
k R
∗

q̃x

)( i(k+ p) · σ
(k+ p)2 −m2q

)(
i
√
2gsT bkj Rq̃x

)( i
k2 −m2q̃x

)
. (6.25.7)

This uses the Feynman rules shown in Fig. K.5.3, given in terms of the squark mixing parameters Lq̃x and Rq̃x defined in
Eq. (K.4.1). Using Tr[T aT b] = 1

2δ
ab and |Lq̃x |

2
+ |Rq̃x |

2
= 1, and comparing to the derivation of Eq. (6.24.12) of the previous

subsection, we obtain:

[Ξg̃ ]q̃x = −
αs

4π
IFS(s;m2q,m

2
q̃x). (6.25.8)

Similarly, for the last two diagrams of Fig. 6.25.1, we obtain:

− i[Ωg̃ ]q̃x δ
ab
= µ2ε

∫
ddk
(2π)d

(
−i
√
2gsT
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k L
∗
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)(
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)

+µ2ε
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)(
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)( i
k2 −m2q̃x

)
, (6.25.9)

again using the Feynman rules shown in Fig. K.5.3. As before, j and k are the color indices for the quark and the squark,
respectively. Comparing to the derivation of Eq. (6.24.34) of the previous subsection, we obtain:

[Ωg̃ ]q̃x = −
αs

2π
L∗q̃xRq̃xmqIFS(s;m

2
q,m

2
q̃x). (6.25.10)

Summing up the results obtained above, and taking s = m2g̃ , we have:

Ξg̃ = −
αs

4π

[
CAIFV (m2g̃;m

2
g̃ , 0)+

∑
q

∑
x=1,2

IFS(m2g̃;m
2
q,m

2
q̃x)

]
, (6.25.11)

Ωg̃ = −
αs

4π

[
CAmg̃ IFV (m

2
g̃;m

2
g̃ , 0)+ 2

∑
q

∑
x=1,2

L∗q̃xRq̃xmqIFS(m
2
g̃;m

2
q,m

2
q̃x)

]
. (6.25.12)

As previously noted, we can now write downΩ g̃ by replacing the Lagrangian parameters of Eq. (6.25.12) by their complex
conjugates:

Ω g̃ = −
αs

4π

[
CAmg̃ IFV (m

2
g̃;m

2
g̃ , 0)+ 2

∑
q

∑
x=1,2
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∗

q̃xmqIFS(m
2
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2
q,m

2
q̃x)

]
. (6.25.13)

Inserting the results of Eqs. (6.25.11)–(6.25.13) into Eq. (6.25.1), one obtains the result [226,227]:

M2g̃ − iMg̃Γg̃ = m
2
g̃

[
1+

αs

2π

{
CA
[
5− δMS − 3 ln

(
m2g̃/Q

2)]
−

∑
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∑
x=1,2

[
IFS(m2g̃;m

2
q,m

2
q̃x)+ 2Re[L

∗

q̃xRq̃x ]
mq
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IFS(m

2
g̃;m

2
q,m

2
q̃x)
]}]

, (6.25.14)

with δMS defined in Eq. (6.24.5).
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Fig. 6.26.1. Feynman rule for the coupling of a current carrying vector index µ and corresponding to the symmetry generator T a acting on ( 12 , 0) [left-
handed] fermions. Spinor indices are suppressed.

Fig. 6.26.2. Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion spinor and flavor indices are suppressed. The fermion momenta,
as labeled, flow in the arrow directions.

6.26. Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from the triangle diagram
involving three currents carrying vector indices.71 Since the anomaly is independent of the fermion masses, we simplify
the computation by setting all fermion masses to zero. In four-component notation,72 the treatment of the anomaly
requires care because of the difficulty in defining a consistent and unambiguous γ5 and the epsilon tensor in dimensional
regularization [230,231]. The same subtleties arise in two-component language, of course, but in a slightly different form
since γ5 does not appear explicitly.
We shall assemble all the ( 12 , 0) [left-handed] two-component fermion fields of the theory into a multiplet ψj. For

example, the fermions of the Standard Model are: ψj = (`k, ¯̀k, νk, qi`, q̄i`), where k = 1, 2, 3 and i = 1, 2, . . . , 6 are
flavor labels and ` = 1, 2, 3 are color labels [see Table 5.1]. The two-component spinor indices are suppressed here. Let the
symmetry generators be given by hermitian matrices T a, so that the ψj transform as:

δψj = iθ a(T a)j
kψk, (6.26.1)

for infinitesimal parameters θ a. Thematrices T a form a representation R of the generators of the Lie algebra of the symmetry
group. In general R will be reducible, in which case the T a have a block diagonal structure, where each block separately
transforms (irreducibly) the corresponding field of ψj according to its symmetry transformation properties. Some or all of
these symmetriesmay be gauged. The Feynman rule for the corresponding currents is the same as for external gauge bosons,
as in Fig. 4.3.2 (but without the gauge couplings), and is shown in Fig. 6.26.1.
Fig. 6.26.2 exhibits the two Feynman diagrams that contribute at one-loop to the three-point function of the symmetry

currents. Applying the σ -version of the Feynman rule for the currents given in Fig. 6.26.1, and employing the Feynman rules
of Fig. 4.2.1 (with m = 0) for the propagators [traversing the loop in the direction dictated by Eq. (4.4.2)], the sum of the
two triangle diagrams shown in Fig. 6.26.2 can be evaluated.
The resulting sum of loop integrals is

iΓ abcµνρ = (−1)
∫

d4k
(2π)4

Tr
{
(−i σµT a)

i(k− p+ A) · σ
(k− p+ A)2

(−i σ νT b)
i(k+ A) · σ
(k+ A)2

(−i σ ρT c)
i(k+ q+ A) · σ
(k+ q+ A)2

+ (−i σµT a)
i(k− q+ B) · σ
(k− q+ B)2

(−i σ ρT c)
i(k+ B) · σ
(k+ B)2

(−i σ νT b)
i(k+ p+ B) · σ
(k+ p+ B)2

}
, (6.26.2)

where the overall factor of (−1) is due to the presence of a closed fermion loop. The trace is taken over fermion flavor/group
and spinor indices, both of which are suppressed. Because the individual integrals are linearly divergent, we must allow for
arbitrary constant four-vectors Aµ and Bµ as offsets for the loopmomentumwhen defining the loop integrations for the two
diagrams [232,233].

71 The discussion here parallels that given in Ref. [228], Section 22.3.
72 For an excellent review of the computation of the chiral anomaly via four-component massless and massive spinor triangle loops, see Ref. [229].
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Fig. 6.26.3. The one-loop contribution to the current–current two-point function. The fermion momenta, as labeled, flow along the corresponding arrow
directions.

The persistence of the symmetry in the quantum theory for the currents labeled by µ, a and ν, b and ρ, c implies the
naive Ward identities73:

(p+ q)µ iΓ abcµνρ(−p− q, p, q) = f
abdΠdcνρ(q)+ f

acdΠbdνρ(p), (6.26.3)

−pν iΓ abcµνρ(−p− q, p, q) = f
bcdΠdaρµ(p+ q)+ f

badΠ cdρµ(q), (6.26.4)

−qρ iΓ abcµνρ(−p− q, p, q) = f
cadΠdbµν(p)+ f

cbdΠadµν(p+ q), (6.26.5)

where iΠabµν(p) is the one-loop current–current two-point function shown in Fig. 6.26.3.
By Lorentz covariance, Πabµν(p) is a rank-two symmetric tensor that is an even function of the four-momentum p [cf.

Eq. (6.26.41)]. In Eqs. (6.26.3)–(6.26.5), we have employed a convention in which the arguments of iΓ correspond to the
outgoing momentumof the external legs of the corresponding one-loop Feynman diagrams, and the order of themomentum
arguments matches the order of the indices.
It is convenient to define the symmetrized three-point function by symmetrizing over the indices a, b and c:

Aabcµνρ =
1
6
iΓ abcµνρ + [five permutations of a, b, c]. (6.26.6)

In terms of the symmetrized three-point function, the naive Ward identities imply

(p+ q)µAabcµνρ = 0, −pνAabcµνρ = 0, and − qρAabcµνρ = 0. (6.26.7)

We now perform the explicit diagrammatic computation to show that the naiveWard identities exhibited in Eq. (6.26.7)
are violated due to a quantum anomaly. Although the symmetrized three-point function is ultraviolet finite, the individual
loop momentum integrals are divergent, and must be defined with care. We do not regularize them by the usual procedure
of continuing to d = 4− 2ε dimensions, because the trace over sigma matrices crucially involves the antisymmetric tensor
with four indices, brought in by Eqs. (B.2.26) and (B.2.27), for which there is no consistent and unambiguous generalization
outside of four dimensions. (This is related to the difficulty of defining γ5 in the four-component spinor formalism.) The
existence of the vectors A and B corresponds to an ambiguity in the regulation procedure, which can be fixed to preserve
some of the symmetries, as we will see below.
Starting from Eq. (6.26.2), it follows from Eq. (E.2.8) that the symmetrized three-point function is proportional to the

group theory factor (often called the anomaly coefficient),

Dabc = 1
2Tr[{T

a, T b
}T c
], (6.26.8)

where the numerical values of the Dabc depend on the representation R. As discussed in Appendix E, Dabc vanishes for all
simple Lie groups, with the exception of SU(N) forN ≥ 3. TheDabc are also non-vanishing in general for any non-semisimple
compact Lie group, which contains at least one U(1) factor.
First, consider the result for (p+ q)µAabcµνρ . This can be simplified by rewriting

(p+ q)µ = (k+ q+ A)µ − (k− p+ A)µ, (6.26.9)

(p+ q)µ = (k+ p+ B)µ − (k− q+ B)µ, (6.26.10)

in the first and second diagram terms, respectively, and then applying the formulae

v · σ v · σ = v2, v · σ v · σ = v2, (6.26.11)

which follow from Eqs. (B.2.1) and (B.2.2). After rearranging the terms using the cyclic property of the trace, we obtain:

(p+ q)µAabcµνρ = −D
abc Tr[σκσ νσλσ ρ] Xκλ,

= −2Dabc
[
Xνρ + Xρν − gνρXλλ + iεκνλρXκλ

]
, (6.26.12)

73 The derivation of the Ward identities is most easily achieved by writing the three-point function in position space as a vacuum expectation value of
the time-ordered product of three currents. After taking the divergence (with respect to the position of any one of the three currents) of the time-ordered
product and using the fact that the currents are conserved (∂µjaµ = 0), the surviving terms can be evaluated using the equal-time commutation relations,
δ(x0 − y0)[ja0(x), jbν(y)] = if abc jcν(x)δ4(x − y). Fourier transforming the result yields the terms on the right-hand side of Eqs. (6.26.3)–(6.26.5). See
Refs. [234,235] for further details.
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after applying Eq. (B.2.26). (In our conventions, ε0123 = −1.) The integral Xκλ is given by:

Xκλ =
∫

d4k
(2π)4

[
(k− p+ A)κ

(k− p+ A)2
(k+ A)λ

(k+ A)2
−
(k+ q+ A)κ

(k+ q+ A)2
(k+ A)λ

(k+ A)2

+
(k+ B)κ

(k+ B)2
(k− q+ B)λ

(k− q+ B)2
−
(k+ B)κ

(k+ B)2
(k+ p+ B)λ

(k+ p+ B)2

]
. (6.26.13)

Naively, this integral appears to vanish, because the first term is equal to the negative of the fourth term after a
momentum shift k→ k− p+ A− B, and the second term is equal to the negative of the third term after k→ k+ q+ A− B.
However, these momentum shifts are not valid for the individually divergent integrals. Instead, Xκλ can be evaluated by a
Wick rotation to Euclidean space, followed by isolating the terms that contribute for large k2 and are responsible for the
integral not vanishing, and then employing the divergence (Gauss’) theorem in four dimensions to rewrite Xκλ as an angular
integral over a three-sphere with radius tending to infinity. This integral is initially evaluated at large but finite Euclidean
k, with the limit k → ∞ taken at the end of the computation. For example, consider a smooth function f (k) of the four-
momentum kwith the property that the integral∫

d4kf (k) (6.26.14)

is at worst quadratically divergent. We define the even and odd parts of f (k), respectively, by:

fe(k) ≡ 1
2 [f (k)+ f (−k)] , fo(k) ≡ 1

2 [f (k)− f (−k)] . (6.26.15)

It then follows that [234,236,237]∫
d4k
(2π)4

[f (k+ a)− f (k)] =
i

(2π)4

[
2π2aµ lim

k→∞
kµk2fo(k)+ π2aµaν lim

k→∞
kµk2

∂

∂kν
fe(k)

]
(6.26.16)

has a finite limit.74 In deriving this result, we have expanded f (k+a) in a Taylor expansion and follow the procedure outlined
above Eq. (6.26.14). Note that the angular integration removes the even parts of f (k) and ∂ f /∂kν ≡ 2kν ∂ f /∂k2 from the
right-hand side of Eq. (6.26.16). The ‘‘limits’’ in Eq. (6.26.16) actually correspond to an average over the three-sphere at large
Euclidean k, and thus should be interpreted by the use of:

lim
k→∞

kµkν

k2
=
1
4g

µν, (6.26.17)

lim
k→∞

kµkνkρkλ

(k2)2
=
1
24

(
gµνgρλ + gµρgνλ + gµλgνρ

)
. (6.26.18)

For example, if

f (k) =
(k− p+ A)κ(k+ A)λ

(k− p+ A)2(k+ A)2
, (6.26.19)

then in evaluating Eq. (6.26.16), it is sufficient to write:

fo(k) ' 1
2 (k− p+ A)

κ(k+ A)λ
[
1

(k2)2
+
2k · (p− 2A)

(k2)3

]
− (k→−k)

'
kκAλ − kλ(p− A)κ

(k2)2
+
2kκkλ k · (p− 2A)

(k2)3
, (6.26.20)

where we have dropped terms that do not contribute to Eq. (6.26.16) in the limit of k→∞. Similarly,

∂ fe
∂kν
'
gκνkλ + gλνkκ

(k2)2
−
4kκkλkν

(k2)3
. (6.26.21)

The evaluation of Xκλ is now straightforward [after using Eqs. (6.26.17) and (6.26.18)]:

Xκλ =
i

96π2

[
gκλ(p+ q) · (A+ B)+ (A− 2B)κ(p+ q)λ + (p+ q)κ(B− 2A)λ

]
. (6.26.22)

74 If Eq. (6.26.14) is linearly divergent, then the second term on the right-hand side of Eq. (6.26.16) is zero. If Eq. (6.26.14) is logarithmically divergent or
finite, then the right-hand side of Eq. (6.26.16) vanishes.
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Hence, Eq. (6.26.12) yields the result for the anomaly in the current labeled by µ, a:

(p+ q)µAabcµνρ =
i

48π2
Dabc

[
(p+ q)ν(A+ B)ρ + (A+ B)ν(p+ q)ρ + gνρ(p+ q) · (A+ B)

− 3iενρκλ(p+ q)κ(A− B)λ
]
. (6.26.23)

Repeating all of the steps starting with Eq. (6.26.9), we similarly obtain75:

−pνAabcµνρ = −
i

48π2
Dabc

[
pρ(A+ B)µ + pµ(A+ B)ρ + gµρp · (A+ B)− 3iερµκλpκ(A− B+ 2q)λ

]
, (6.26.24)

−qρAabcµνρ = −
i

48π2
Dabc

[
qµ(A+ B)ν + qν(A+ B)µ + gµνq · (A+ B)− 3iεµνκλqκ(A− B− 2p)λ

]
. (6.26.25)

Non-chiral anomalies will arise for all three of the currents (assuming Dabc is non-vanishing), unless we choose the
arbitrary constant vectors A and B such that

A+ B = 0, (6.26.26)
with the result:

(p+ q)µAabcµνρ =
1
8π2
Dabcενρκλ(p+ q)κAλ, (6.26.27)

−pνAabcµνρ = −
1
8π2
Dabcερµκλpκ(A+ q)λ, (6.26.28)

−qρAabcµνρ = −
1
8π2
Dabcεµνκλqκ(A− p)λ. (6.26.29)

If Dabc is non-vanishing, it is not possible to avoid an anomaly simultaneously in all three symmetries, but one can still
arrange for two of the symmetries to be non-anomalous. If one wants an anomaly to arise only in the current labeled byµ, a
(for example, if the symmetries labeled by b, c are gauged), one must now choose A = p− q. The standard result follows:

(p+ q)µAabcµνρ = −
1
4π2
Dabcενρκλpκqλ, (6.26.30)

−pνAabcµνρ = 0, (6.26.31)

−qρAabcµνρ = 0. (6.26.32)

In particular, one cannot gauge all three symmetries labeled by a, b, c unless Dabc = 0.
If all three currents are identical, then by Bose symmetry the anomalies of the three currents must coincide. This can be

achieved by choosing A = 1
3 (p− q), in which case,

(p+ q)µAabcµνρ = −
1
12π2

Dabcενρκλpκqλ, (6.26.33)

−pνAabcµνρ = −
1
12π2

Dabcερµκλpκqλ, (6.26.34)

−qρAabcµνρ = −
1
12π2

Dabcεµνκλpκqλ. (6.26.35)

Returning briefly to the original naiveWard identities given in Eqs. (6.26.3)–(6.26.5), the analysis above shows that these
identities must be modified by an additional additive contribution given by the right-hand side of Eqs. (6.26.27)–(6.26.29).
In particular, there is no anomalous contribution proportional to f abc . This can be checked explicitly by a diagrammatic
computation of the two-point and three-point functions that appear in Eqs. (6.26.3) and (6.26.5). We use Eqs. (E.2.12) and
(E.2.16) to write

Tr(T aT bT c) = Dabc(R)+
i
2
I2(R)f abc, (6.26.36)

where I2(R) is the index defined in Eq. (E.2.1) and R is the representation of the generators T a. For example, inserting this
result in Eq. (6.26.2), it follows that:

(p+ q)µ iΓ abcµνρ = −

[
Dabc Xκλ +

i
2
I2(R)f abc Y κλ

]
Tr[σκσ νσλσ ρ], (6.26.37)

75 Alternatively, one can simply note that Eq. (6.26.24) follows from Eq. (6.26.23) by making the replacements µ → ν, ν → ρ, ρ → µ, A → A + q,
B → B − q, p → q, and q → −p − q, while Eq. (6.26.25) follows from Eq. (6.26.23) by making the replacements µ → ρ, ν → µ, ρ → ν, A → A − p,
B→ B+ p, p→−p− q, and q→ p.
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where the integral Y κλ is given by76:

Y κλ =
∫

d4k
(2π)4

[
(k− p)κ

(k− p)2
kλ

k2
−
(k+ q)κ

(k+ q)2
kλ

k2
−
kκ

k2
(k− q)λ

(k− q)2
+
kκ

k2
(k+ p)λ

(k+ p)2

]
. (6.26.38)

By letting k → −k in the third and fourth term in the integrand of Eq. (6.26.38), we see that Y κλ = Y λκ , and hence by
Eq. (B.2.26),

−
i
2
I2(R)f abc Y κλTr[σκσ νσλσ ρ] = −iI2(R)f abc

[
2Yνρ − gνρYλλ

]
. (6.26.39)

Since no ε-tensor appears, we can evaluate this integral in d 6= 4 dimensions using the standard techniques of dimensional
regularization.
One can check that this result matches the diagrammatic calculation of the right-hand side of Eq. (6.26.27). In particular,

Fig. 6.26.3 yields

iΠabµν(q) = (−1)
∫

d4k
(2π)4

Tr
[
(−iσµT a)

ik · σ
k2

(−iσ νT b)
i(k+ q) · σ
(k+ q)2

]
= −I2(R)δabTr(σµσρσ νσλ)

∫
d4k
(2π)4

kρ(k+ q)λ

k2(k+ q)2
, (6.26.40)

where we have used Eq. (E.2.1). Lorentz covariance implies that

iΠabµν(q) = δ
ab [C1(q2)gµν + C2(q2)qµqν] , (6.26.41)

for some scalar functions C1 and C2. It follows thatΠabµν(q) = Π
ab
µν(−q) andΠ

ab
µν(q) = Π

ab
νµ(q). Consequently, we can write:

Πabµν(q) =
i
2
I2(R)δabTr(σµσρσ νσλ + σ νσρσµσλ)

∫
d4k
(2π)4

kρ(k+ q)λ

k2(k+ q)2
, (6.26.42)

and so no ε-tensor appears in the evaluation of the trace. As above, we are now free to evaluate the integral in d 6= 4
dimensions. Comparing Eqs. (6.26.37) and (6.26.38) to Eq. (6.26.42), and using Eq. (6.26.27), the end result is

(p+ q)µ iΓ abcµνρ(−p− q, p, q) = I2(R)f
abc [Πνρ(q)−Πνρ(p)

]
+
1
8π2
Dabc(R)ενρκλ(p+ q)κAλ, (6.26.43)

where we have writtenΠabνρ ≡ I2(R)δ
abΠνρ . Indeed the terms on the right-hand side proportional to f abc match those of the

naive Ward identity given in Eq. (6.26.3). As previously asserted, the anomaly only resides in the contributions to the Ward
identity proportional to Dabc .
In writing down Eq. (6.26.2), we chose to use the rules with σ matrices for the current vertices and σ matrices for the

massless fermion propagators. If we had chosen the opposite prescription (i.e., σ matrices for the current vertices and σ
matrices for themassless fermion propagators), then the order of the factors inside the trace of Eq. (6.26.2) would have been
reversed.77 Instead of Eq. (6.26.12), we would have obtained

(p+ q)µAabcµνρ = −D
abc Tr[σ κσνσ λσρ]X̄κλ = −2Dabc

[
X̄νρ + X̄ρν − gνρ X̄λλ − iεκνλρ X̄κλ

]
, (6.26.44)

after applying Eq. (B.2.27). The integral X̄κλ is simply related to Xκλ by:

X̄κλ = Xλκ . (6.26.45)

Inserting Eq. (6.26.45) into Eq. (6.26.44), we immediately reproduce the result of Eq. (6.26.12), as expected.
It is instructive to examine the case of massless QED. The terms of the Lagrangian involving the electron fields is given

by

L = iχĎσµDµχ + iηĎσµDµη, (6.26.46)

where Dµ ≡ ∂µ+ iQAµ is the covariant derivative, and Q is the charge operator. Here, we identify χ as the two-component
(left-handed) electron field and η as the two-component (left-handed) positron field. The corresponding eigenvalues of

76 Here Y κλ is obtained from Xκλ by setting A = B = 0, since we can use dimensional regularization for this part of the computation as explained below
Eq. (6.26.38).
77 The arrowed fermion lines in the loop must be traversed in the direction parallel [antiparallel] to the arrow directions when the σ [σ ] versions of the
propagator rule are employed, as indicated in Eq. (4.4.2) [and in the discussion that follows]. This rule determines the order of the factors inside the spinor
trace.
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the charge operator are: Qχ = −eχ and Qη = +eη (where e > 0 is the electromagnetic gauge coupling constant, or
equivalently the electric charge of the positron).
At the classical level, the massless QED Lagrangian [Eq. (6.26.46)] is invariant under a U(1)V × U(1)A global symmetry.

Under a U(1)V × U(1)A transformation specified by the infinitesimal parameters θV and θA,

U(1)V : δχ = ieθVχ, δη = −ieθVη, (6.26.47)
U(1)A : δχ = iθAχ, δη = iθAη. (6.26.48)

We can combine these equations into a two-dimensional matrix equation,

δψj = −iθa(T a)j
kψk, where ψ =

(
χ
η

)
, (6.26.49)

and the index a takes on two values, a = V , A. It follows that the U(1)V × U(1)A generators are given by

TV = e
(
−1 0
0 1

)
, for U(1)V , (6.26.50)

TA =
(
−1 0
0 −1

)
, for U(1)A. (6.26.51)

The classically conserved Noether currents corresponding to the U(1)V ×U(1)A global symmetry are the vector and axial
currents78:

JµV = −e(χ
Ďσµχ − ηĎσµη), (6.26.52)

JµA = −χ
Ďσµχ − ηĎσµη. (6.26.53)

Since the U(1)V symmetry is gauged, we demand that this symmetry should be anomaly free. Thus, we make use of Eqs.
(6.26.30)–(6.26.32), where we identify the index pairµ, awith the axial vector current and the index pairs ν, b and ρ, c with
the vector current. Thus, we compute:

DAVV = Tr (TATV TV ) = −2e2. (6.26.54)

Moreover, for an abelian symmetry group, f abc = 0. Hence, using Eq. (6.26.30) [which also applies in this case to the
unsymmetrized three-point function], the U(1) axial vector anomaly equation reads:

(p+ q)µ iΓ AVVµνρ =
e2

2π2
ενρκλpκqλ, (6.26.55)

in agreement with the well-known result.79

Wenow convert Eq. (6.26.55) into an operator equation. Consider the process of two photon production by an axial vector
current source [239]. First, we note that ∂µJ

µ

A (x) = i[P
µ, JAµ(x)], where Pµ is the momentum operator. It follows that:〈

p, q|∂µJ
µ

A (0)|0
〉
= i

〈
p, q|[Pµ, JAµ(0)]|0

〉
= i(p+ q)µ

〈
p, q|JAµ(0)| 0

〉
. (6.26.56)

We identify the S-matrix amplitude for the two photon production as:

iΓ AVVµνρ ε
ν ∗(p)ερ ∗(q) =

〈
p, q| − iJAµ(0)| 0

〉
, (6.26.57)

where ε(p) and ε(q) are the polarization vectors for the final state photons. Note that the factor of −i on the right-hand
side of Eq. (6.26.57) has been inserted to be consistent with the Feynman rule for the axial vector current insertion given in
Fig. 6.26.1. Thus, using Eqs. (6.26.55)–(6.26.57), we end up with [114]:〈

p, q|∂µJ
µ

A (0)|0
〉
= −

e2

2π2
ενρκλε

ν ∗(p)ερ ∗(q)pκqλ

= −
e2

16π2
〈p, q|εκνλρF κνFλρ(0) |0〉, (6.26.58)

78 Note that the interaction Lagrangian for massless QED isLint = −J
µ

V Aµ , as expected. This accounts for the factor of e in the definition of the vector
current. The axial vector current does not couple to the photon field; hence no coupling constant is included in its definition.
79 This result was first obtained by Adler [238]. In comparing Eq. (6.26.55) with Adler’s result, note that the normalization of the triangle amplitude in
Ref. [238] differs by a factor of (2π)4 and the opposite sign convention for ε0123 is employed.
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where εκνλρF κνFλρ = 4εκνλρ(∂κAν)(∂λAρ) has been used to eliminate the photon fields in favor of a product of
electromagnetic field strength tensors. In deriving Eq. (6.26.58), an additional factor of two arises due to two possible
contractions of the photon fields with the external states. We thus obtain the operator form for the axial vector anomaly80:

∂µJ
µ

A = −
e2

8π2
Fλρ F̃λρ, (6.26.59)

where the dual electromagnetic field strength tensor is defined by F̃λρ ≡ 1
2εκνλρF

κν .
As a final example, we examine the anomalous baryon number and lepton number currents in the theory of electroweak

interactions [240–242]. For simplicity of notation, we consider a one-generation model. The baryon number current is a
vector current given by:

JµB =
1
3

[
uĎσµu+ dĎσµd− ūĎσµū− d̄Ďσµd̄

]
, (6.26.60)

following the particle naming conventions of Table 5.1. Consider the process of gauge boson pair production by a baryon
number current source. It is convenient to work in the interaction basis of gauge fields, {Wµ a, Bµ}, whereWµ a is an SU(2)-
triplet of gauge fields and Bµ is a U(1)Y hypercharge gauge field. We consider triangle diagrams where one generation of
quarks runs in the loop. The external vertices consist of the baryon number current source and the two gauge bosons.
The generators corresponding to the SU(2) gauge boson vertices are given in block diagonal form by:

T b
= g diag

(
τ b

2
⊗ 13×3, 0, 0

)
, (6.26.61)

where the τ b are the Pauli matrices, 13×3 is the identity matrix in color space, and⊗ is the Kronecker product.81 We have
included a factor of the weak SU(2) coupling g in the definition of T b, since the Feynman rule given by Fig. 6.26.1 does not
explicitly include the gauge coupling. Likewise, the generators corresponding to the U(1)Y gauge boson vertices are given
in block diagonal form by (cf. Table J.1):

Y = g ′ diag
(
1
6
12×2 ⊗ 13×3, −

2
3
13×3,

1
3
13×3

)
, (6.26.62)

where 12×2 is the identity matrix in weak isospin space, and g ′ is the U(1)Y hypercharge gauge coupling. Finally, the
generator corresponding to the baryon number current source is given in block diagonal form by:

B = 1
3diag (12×2 ⊗ 13×3, −13×3, −13×3) . (6.26.63)

Consider first the production of two SU(2)-triplet gauge fields. We put T a
= B and associate the indices b and c with the

SU(2)-triplet gauge bosons. A simple calculation yields

DBbc = g2Tr(BT bT c) = 1
2g
2δbc, (6.26.64)

where the superscript index B refers to the baryon number current. Since the gauged weak SU(2) and hypercharge
U(1)Y currents must be anomaly free for the mathematical consistency of the electroweak theory, it follows that
Eqs. (6.26.30)–(6.26.32) apply. That is, the symmetrized amplitude for the production of SU(2) gauge boson pairs by a baryon
number source is anomalous:

(p+ q)µABbcµνρ = −
g2

8π2
δbcενρκλpκqλ. (6.26.65)

Next, consider the production of two U(1)Y hypercharge gauge fields. A simple calculation yields

DBYY = g ′ 2Tr(BY 2) = − 12g
′ 2. (6.26.66)

That is, the symmetrized amplitude for the production of U(1)Y gauge boson pairs by a baryon number source is anomalous:

(p+ q)µABYYµνρ =
g ′ 2

8π2
ενρκλpκqλ. (6.26.67)

Finally, the symmetrized amplitude for the associated production of an SU(2)-triplet and U(1)Y hypercharge gauge field
exhibits no anomaly as the corresponding DBYc = gg ′Tr(BY T c) = 0.

80 In the literature, Eq. (6.26.59) often occurs with the opposite sign due to a sign convention for the Levi-Civita ε-tensor that is opposite to the one
employed in this review. Here, we have reproduced the form given in Ref. [114].
81 The Kronecker product of an n × n matrix and an m × m matrix is an nm × nm matrix. In addition, the following two properties of the Kronecker
product are noteworthy [159,243]: (i) (A⊗ B)(C ⊗ D) = AC ⊗ BD, and (ii) Tr(A⊗ B) = Tr A Tr B.
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The symmetrized amplitudes of the triangle diagrams involving a baryon number current source and a pair of SU(2) or
U(1)Y gauge bosons are anomalous. Since the baryon number current is a vector current, we conclude that the source of the
anomaly is a VVA triangle diagram in which one of the gauge boson currents is vector (V) and the other gauge boson current
is axial vector (A). Nevertheless, the gauge boson axial vector current must be conserved, as noted above. Hence, the baryon
number vector current must be anomalous [240]. In Eqs. (6.26.55)–(6.26.58), we showed how to derive the operator form
of the anomaly equation from the anomalous non-conservation of the symmetrized triangle amplitude. Following the same
set of steps starting with Eqs. (6.26.65) and (6.26.67), one obtains the anomalous non-conservation of the baryon number
vector current, in a model with Ng quark generations [55,241,242]:

∂µJ
µ

B =
g2Ng
32π2

W λρbW̃ bλρ −
g ′ 2Ng
32π2

Bλρ B̃λρ, (6.26.68)

where Bλρ and

W bλρ = ∂λW
b
ρ − ∂ρW

b
λ − gε

bcaW cλW
a
ρ , (6.26.69)

are the field strength tensors for the hypercharge U(1)Y gauge boson and SU(2) gauge boson fields, respectively.82 Note that
for the non-abelian SU(2) gauge fieldsW aµ,

W λρb W̃ bλρ = 2ε
κνλρ

[
(∂κW bν )(∂λW

b
ρ )− gε

abc(∂κW aν )W
b
λW

c
ρ

]
= 2εκνλρ∂κ

[
W bν (∂λW

b
ρ )−

1
3gε

abcW aνW
b
λW

c
ρ

]
. (6.26.70)

Strictly speaking, the triangle graphs yield only the terms on the right-hand side of Eq. (6.26.68) that are quadratic in the
gauge fields. To obtain the corresponding terms that are cubic in the gauge terms, one must compute the anomalies that
arise from VVVA and VAAA box diagrams [234,244].
For completeness, we re-express the anomalous non-conservation of the baryon number current in terms of the mass-

eigenstate SU(2)× U(1)Y gauge fields:

∂µJ
µ

B =
g2Ng
16π2

W λρ+W̃−λρ −
g2Ng
32π2c2W

Zλρ Z̃λρ −
egNg
32π2cW

[
Zλρ F̃λρ + Fλρ Z̃λρ

]
, (6.26.71)

where cW ≡ cos θW , andW±λρ , Zλρ and Fλρ are theW
±, Z and the electromagnetic field strength tensors, respectively.

By a similar analysis, one can also compute the anomalous non-conservation of the lepton number vector current,

JµL = `
Ďσµ`+ νĎσµν − ¯̀Ďσµ ¯̀, (6.26.72)

due to triangle diagrams with Ng generations of leptons running in the loop. In the one-generation calculation, the relevant
generators are:

T b
= g diag

(
τ b

2
, 0
)
, Y = g ′ diag

(
−
1
212×2, 1

)
, L = diag (12×2, −1) . (6.26.73)

Thus, we end up with:

DLbc = 1
2g
2δbc, DLYY = − 12g

′ 2, DLYc = 0. (6.26.74)

Thus, in the Standard Model with Ng generations of quarks and leptons,

∂µJ
µ

L = ∂µJ
µ

B . (6.26.75)

In particular, the B− L current is conserved and anomaly free.
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Appendix A. Metric and sigma matrix conventions

In this review, the metric tensor of four-dimensional Minkowski space is taken to be83:

gµν = gµν = diag(+1,−1,−1,−1) , (A.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors (e.g. positions, momenta, gauge fields and
currents) are defined with raised indices, and covariant four-vectors (e.g. derivatives) with lowered indices:

xµ = (t; Ex), (A.2)

pµ = (E; Ep), (A.3)

Aµ(x) = (Φ(Ex, t); EA(Ex, t)), (A.4)

Jµ(x) = (ρ(Ex, t); EJ(Ex, t)), (A.5)

∂µ ≡
∂

∂xµ
= (∂/∂t; E∇), (A.6)

in units with c = 1. The totally antisymmetric pseudo-tensor εµνρσ is defined such that

ε0123 = −ε0123 = +1. (A.7)

Eqs. (A.2)–(A.7) are taken to be independent of the metric signature convention.
The sigmamatrices are definedwith a raised (contravariant) index to be independent of themetric signature convention,

σµ = (12×2; Eσ), σµ = (12×2;−Eσ), (A.8)

where the three-vector of Pauli matrices is given by Eσ ≡ (σ 1, σ 2, σ 3) [cf. Eq. (2.27)] and 12×2 is the 2× 2 identity matrix.
The corresponding quantities with lower (covariant) index are:

σµ = gµνσ ν = (12×2;−Eσ), σµ = gµνσ ν = (12×2; Eσ). (A.9)

Various identities involving products of sigma matrices are given in Appendix B. The generators of the ( 12 , 0) and (0,
1
2 )

representations of the Lorentz group are, respectively, given by:

σµν ≡
i
4
(σµσ ν − σ νσµ), σµν ≡

i
4
(σµσ ν − σ νσµ). (A.10)

In adopting the above definition of the sigma matrices, we differ from the corresponding conventions of Wess and
Bagger [68] and Bilal [82]. The Wess/Bagger and Bilal (WBB) definition of the sigma matrices can be written (with lowered
index µ) as84:

(σWBB)µαβ̇ = σ0αγ̇ σ
γ̇ δ
µ σ0δβ̇ = (12×2; Eσ), (A.11)

(σWBB)α̇βµ = σ
α̇γ

0 σµγ δ̇σ
δ̇β

0 = (12×2;−Eσ). (A.12)

One consequence of the WBB definition of σ and σ is that γ5 = diag(12×2, −12×2) in the chiral representation
[cf. Eq. (G.1.2)]. This associates a lowered undotted [raised dotted] two-component spinor with a right-handed [left-

83 An otherwise identical version of this paper with the opposite metric signature is also available; see footnote 2.
84 Although Wess/Bagger and Bilal employ opposite metric signatures of g00 = −1 and g00 = +1, respectively, their definitions of σµ and σµ (with
covariant index µ) coincide. Note that the spinor structure of the σ and σ matrices and the definitions of the various (two-index and four-index) epsilon
tensors [cf. Eqs. (2.19) and (A.7)] are identical in both the WBB conventions and in our conventions.
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handed] four-component spinor [cf. Eqs. (G.1.6) and (G.1.8)]. Indeed, this was the common convention in the older literature
(e.g., see Refs. [35,36,38,39,41,58]).85 However, in the modern formulation of electroweak theory in terms of left-handed
fermions, it is now more common to associate a lower undotted [raised dotted] two-component spinor with a left-
handed [right-handed] four-component spinor. This is the motivation for our conventions for the sigma matrices given
in Eqs. (A.8) and (A.9).
In order to facilitate the comparisonwith themetric signature with g00 = −1, we provide the key ingredients needed for

translating betweenMinkowski metrics of opposite signature. In our conventions [cf. Eqs. (A.2)–(A.9)], each of the following
objects (with the Lorentz index heights as shown) is defined independently of the metric signature:

xµ, pµ, ∂µ, σµ, σµ, Sµ, Jµ, Aµ,Dµ,Gµν, γ µ, γ5, δµν , ε
µνρσ , εµνρσ , [no sign change], (A.13)

but the following objects change sign when the Minkowski metric signature is reversed:

gµν, gµν, xµ, pµ, ∂µ, σµ, σµ, Sµ, Jµ, Aµ,Dµ,Gµν,Gµν, γµ, [sign change]. (A.14)

Here, the spin four-vector Sµ is defined in Eq. (3.1.15), Jµ is any conserved current, Aµ is any gauge vector potential, and
Dµ and Gµν are the corresponding covariant derivative and antisymmetric tensor field strength, respectively. The Dirac
gamma matrices are defined in Eq. (G.1.2). The list of Eq. (A.14) can be deduced from Eq. (A.13) by using the metric tensor
and its inverse to lower and raise Lorentz indices, simply because each metric or inverse metric changes sign when the
metric signature is reversed. Given any other object not included in Eqs. (A.13) and (A.14), it is straightforward to make the
appropriate assignment by considering how the object is defined. For example, we must assign σµν , σµν , σµν and σµν to
the list of Eq. (A.13), based on the definitions given in Eqs. (2.70) and (2.71). In general, objects that do not carry Lorentz
vector indices (including all fermion spinor fields and spinor wave functions) are defined to be the same in the two metric
signatures, with the obvious exception of scalar quantities formed from an odd number of objects from the list of Eq. (A.14).
For example, the dot product of two four-vectors may or may not change sign when the Minkowski metric signature is
reversed. By writing out the dot product explicitly using the metric tensor to contract the indices, one can use Eqs. (A.13)
and (A.14) to determine the behavior of a dot product under the reversal of the metric signature. In particular, p · A changes
sign whereas p · σ does not change sign, when the Minkowski metric signature is reversed.
The translation between Minkowski metrics of opposite signatures is now straightforward. Given any relativistic

covariant quantity or equation in the convention where g00 = +1, one need only employ Eqs. (A.13) and (A.14) to obtain
the same quantity or equation in the convention where g00 = −1, and vice versa.86
As an example, let us verify that under the reversal of the Minkowski metric signature the gauge covariant derivative Dµ

does not change sign and the gauge field strength tensor Gµν changes sign. In themetric signature with g00 = +1, we define

Dµ ≡ IdR∂µ + igAµ, (g00 = +1), (A.15)

where Aµ ≡ AaµT
a is the matrix gauge field for a representation R of dimension dR, and IdR is the dR × dR identity matrix.

Since under the reversal of the metric signature, ∂µ does not change sign [according to Eq. (A.13)] whereas Aµ changes sign
[according to Eq. (A.14)], it follows that the quantity defined in the metric signature where g00 = −1,

Dµ ≡ IdR∂µ − igAµ, (g00 = −1) (A.16)

has the same overall sign as Eq. (A.15). It follows thatwhen themetric signature is reversed,Dµ does not change signwhereas
Dµ ≡ gµνDν does change sign, as indicated in Eqs. (A.13) and (A.14). Next, consider the matrix gauge field strength tensor
Gµν ≡ GaµνT

a, defined by

Gµν ≡
−i
g
[Dµ,Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν], (g00 = +1), (A.17)

where the commutator [Dµ,Dν] is an operator that acts on fields that transformwith respect to an arbitrary representation
R. In themetric signature with g00 = −1, we define the gauge field strength tensor as a commutator of covariant derivatives
with the opposite overall sign:

Gµν ≡
i
g
[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν], (g00 = −1). (A.18)

where Dµ is now defined as in Eq. (A.16). Since under a reversal of the metric signature, Aµ does not change sign [according
to Eq. (A.13)] whereas ∂µ changes sign [according to Eq. (A.14)], it follows that Gµν and Gµν ≡ gµρgνσGρσ do indeed change
sign when the metric signature is reversed, as stated in Eq. (A.14).

85 This convention persists in the literature of the spinor helicity method (cf. footnote 156 in Appendix I.2).
86 Note that for any relativistic covariant term appearing additively in a valid equation, the relative sign that results from changing between Minkowski
metrics of opposite signature is simply given by S = (−1)N , whereN ≡ Nm + Nd + NG + · · · . Here Nm is the number of metric tensors appearing either
explicitly or implicitly through contracted upper and lower indices, Nd is the number of spacetime and/or covariant derivatives, NG is the number of gauge
field strength tensors, and the ellipsis (. . .) accounts for any additional quantities whose contravariant forms (with all Lorentz indices raised) appear in the
list of Eq. (A.14).
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As another simple illustration, consider the σ -matrix identity,

σµσ νσ ρ = gµνσ ρ − gµρσ ν + gνρσµ − iεµνρκσ κ , (g00 = +1), (A.19)

In the opposite metric signature with g00 = −1, we apply the results of Eqs. (A.13) and (A.14) and then multiply both sides
of the equation by−1 to obtain:

σµσ νσ ρ = −gµνσ ρ + gµρσ ν − gνρσµ + iεµνρκσ κ , (g00 = −1). (A.20)

Finally, in the sigma matrix conventions of Wess/Bagger [68] and Bilal [82], both Eqs. (A.19) and (A.20) are modified by
changing the overall sign of iεµνρκσ κ . In general, to convert the identities of Appendix B to the conventions ofWBB, onemust
first convert (if necessary) to the appropriate metric signature, and then interchange σ ↔ σ [cf. Eqs. (A.11) and (A.12)].
We end this appendix with a brief summary of our conventions for four-dimensional Euclidean space. The Euclidean

components of the coordinates [represented in Minkowski space by the contravariant four-vector, xµ = (x0; Ex), for
µ = 0, 1, 2, 3], are defined as

xµE = xE µ = (Ex, x
4
E), x4E = xE4 ≡ ix

0, (µ = 1, 2, 3, 4). (A.21)

The four-momentum operator in Minkowski space is pµ = i∂µ = i(∂/∂t,−E∇). Following the conventions of Ref. [245], the
Euclidean counterpart of the momentum operator is

pµE = pEµ = (Ep, p
4
E) = −i∂

µ

E = −i( E∇, ∂/∂x
4
E), p4E = pE4 = ip

0. (A.22)

The Minkowski space Green functions are obtained from Euclidean space Green functions by means of a Wick
rotation [123,245,246] of x4E ≡ ix

0 in a counterclockwise sense.87 Scalar products of Euclidean four-vectors are carried
out by employing the Euclidean metric tensor δµν = δµν = diag(1, 1, 1, 1). For example, the Euclidean counterpart of
−p · x = −p0x0 + Ep · Ex is pµE x

µ

E = Ep · Ex + p
4
Ex
4
E , etc. Given any tensorial equation in Euclidean space, the heights of the

indices is irrelevant. Consequently, one can simply place all indices at the same height (either all raised or all lowered), with
an implied sum over a pair of repeated indices.
One can also introduce Euclidean sigma matrices [247]:

σ
µ

E ≡ (−iEσ, σ
4
E ), σ

µ

E ≡ (iEσ, σ
4
E ), where σ 4E = σ

4
E ≡ 12×2, (A.23)

which satisfy88:

σ
µ

E σ
ν
E + σ

ν
E σ

µ

E = 2δ
µν, σ

µ

E σ
ν
E + σ

ν
Eσ

µ

E = 2δ
µν . (A.24)

The four-dimensional rotation group in Euclidean space is SO(4),which is locally equivalent to SU(2)×SU(2). It possesses two
independent pseudo-real two-dimensional spinor representations ( 12 , 0) and (0,

1
2 ) [not related by hermitian conjugation

in contrast to the Lorentz group], with corresponding hermitian generators σµνE and σµνE , respectively:

σ
µν

E =
i
4

(
σ
µ

E σ
ν
E − σ

ν
E σ

µ

E

)
, σ

µν

E =
i
4

(
σ
µ

E σ
ν
E − σ

ν
Eσ

µ

E

)
. (A.25)

These tensors are anti-self-dual and self-dual, respectively [120],

σ
µν

E = −
1
2ε
µνρτσ

ρτ

E , σ
µν

E =
1
2ε
µνρτσ

ρτ

E , (A.26)

where the totally antisymmetric Levi-Civita tensor is defined in Euclidean space such that ε1234 = ε1234 = +1. One can
express σµνE and σµνE in terms of the ’t Hooft eta symbols [248],

σ
µν

E = −
1
2η
kµνσ k, σ

µν

E = −
1
2η
kµνσ k, (A.27)

where µ, ν = 1, 2, 3, 4 and there is an implicit sum over k = 1, 2, 3. Equivalently,

σ
µ

E σ
ν
E = δ

µν
+ iηkµνσ k, σ

µ

E σ
ν
E = δ

µν
+ iηkµνσ k. (A.28)

The ’t Hooft symbols η and η satisfy self-duality and anti-self-duality properties, respectively:

ηkµν = 1
2ε
µνρληkρλ, ηkµν = − 12ε

µνρληkρλ, (A.29)

and are explicitly given by:

ηkij = ηkij = ε ijk, ηkj4 = −ηk4j = ηk4j = −ηkj4 = δkj, ηk44 = ηk44 = 0. (A.30)

For a more comprehensive treatment of two-component spinors in Euclidean space, see Ref. [128].

87 Expressing the corresponding Green functions as Fourier transforms of momentum space Green functions, one must simultaneously Wick-rotate
p4E ≡ ip

0 in a clockwise sense to avoid singularities in the complex p0-plane.
88 It is seemingly more natural to define σµE ≡ (Eσ, σ

4
E ) and σ

µ

E ≡ (−Eσ, σ
4
E) where σ

4
E = σ

4
E ≡ i12×2 , in which case one must replace δ

µν with−δµν in
Eq. (A.24). Nevertheless we prefer Eq. (A.23), which avoids an overall minus sign in the respective anticommutation relations of the Euclidean sigma and
gamma matrices [cf. footnote 133].
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Appendix B. Sigma matrix identities and Fierz identities

In Section 2, we derived a number of identities involving σµ, σµ, σµν and σµν . When considering a theory regularized
by dimensional continuation [124], one must give meaning to the sigma matrices and their respective identities in d 6= 4
dimensions. In many cases, it is possible to reinterpret the sigma matrix identities for d 6= 4. However, the Fierz identities,
which depend on the completeness of {12×2, σ i} in the vector space of 2×2matrices, do not have a consistent, unambiguous
meaning outside of four dimensions (e.g., see Refs. [249–252] and references therein). In Appendix B.1, we exhibit a
comprehensive list of identities from which many generalized Fierz identities can be derived. In Appendix B.2, we examine
the class of sigma matrix identities that can unambiguously be extended to d 6= 4 dimension and thus can be employed in
the context of dimensional regularization.

B.1. Two-component spinor Fierz identities

We begin with the basic identity for 2× 2 matrices [77],

δabδcd =
1
2

[
δadδcb + σ

i
adσ

i
cb

]
, (B.1.1)

where there is an implicit sum over the repeated superscript i = 1, 2, 3. Eq. (B.1.1) is a consequence of the completeness
of {12×2, σ i} in the four-dimensional vector space of 2 × 2 matrices. In particular, we denote the four-dimensional vector
spaces of 2×2matrices labeled by undotted and dotted spinor indices, respectively, byV andV . It is also useful to consider
matrices with one undotted and one dotted index. Hence, we construct the Kronecker product V ⊗ V , which is a sixteen-
dimensional vector space. The sixteen linearly independent matrices taken from the set,89

Γ ≡

{
δα
β , σ

µ

αβ̇
, σµνα

β , δα̇ β̇ , σµ α̇β , σµν α̇ β̇

}
, (B.1.2)

serve as a complete basis set for V ⊗ V . Elements of Γ will be denoted by Γ (n) (n = 1, 2, . . . , 6).
Starting from Eq. (B.1.1), one can establish a set of 21 identities of the following form:

(Γ (k))IAB(Γ
(n))

J
CD =

∑
p,q,K ,L

(Cknpq )
IJ
KL (Γ

(p))KAD(Γ
(q))LCB, (B.1.3)

where each label I , J , K and L can represent zero, one or two Lorentz spacetime indices, and A, B, C and D represent
two-component spinor indices, each of which may be undotted or dotted and in the lowered or raised position as
appropriate. The sum in Eq. (B.1.3) is taken over the matrices specified in Eq. (B.1.2), and the Cknpq are numerical coefficients
[cf. Eqs. (B.1.5)–(B.1.25)].
Let us multiply Eq. (B.1.3) by four (commuting or anticommuting) two-component spinors Z1AZ2BZ3CZ4D, where Zi stands

for either the undaggered or daggered spinor zi or z
Ď
i , depending on whether the corresponding spinor index is undotted or

dotted. This procedure yields generalized Fierz identities of the form [74,77,85,88]:

(Z1Γ (k)IZ2)(Z3Γ (n)JZ4) = (−1)A
∑
p,q,K ,L

(Cknpq )
IJ
KL(Z1Γ

(p)KZ4)(Z3Γ (q)LZ2), (B.1.4)

where (−1)A = +1 [−1] for commuting [anticommuting] spinors.90
The explicit expressions for the 21 identities represented by Eq. (B.1.3) are as follows

δα
βδβ̇ α̇ =

1
2σ

µ

αα̇σ
β̇β
µ , (B.1.5)

δα
βδγ

τ
=
1
2

[
δα
τ δγ

β
+ (σµν)α

τ (σµν)γ
β
]
, (B.1.6)

δα̇ β̇δ
γ̇
τ̇ =

1
2

[
δα̇ τ̇ δ

γ̇
β̇ + (σ

µν)α̇ τ̇ (σµν)
γ̇
β̇

]
, (B.1.7)

δα
βσ

µ

γ α̇ =
1
2σ

µ

αα̇δγ
β
− iσν αα̇(σµν)γ β , (B.1.8)

δα
βσµ β̇γ = 1

2δα
γ σµ β̇β + i(σµν)αγ σ β̇βν , (B.1.9)

89 Due to the self-duality relations of Eq. (2.75), σµν and σµν are completely determined by the six matrices σ 0i and σ 0i (i = 1, 2, 3). However, for
convenience we keep all σµν and σµν matrices in the set Γ .
90 It is often convenient to reverse the order of the spinors Z2 and Z3 on the right-hand side of Eq. (B.1.4) by using Eqs. (2.59)–(2.61) and (2.94)–(2.95) to
eliminate the factor of (−1)A [cf. Eq. (2.67)].
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δα̇ β̇σ
µ

βγ̇ =
1
2δ
α̇
γ̇ σ

µ

ββ̇
+ i(σµν)α̇ γ̇ σν ββ̇ , (B.1.10)

δα̇ β̇σ
µ γ̇ α
=
1
2σ

µ α̇αδγ̇ β̇ − iσ
α̇α
ν (σ

µν)γ̇ β̇ , (B.1.11)

δα
β(σµν)γ

τ
=
1
2

{
(σµν)α

τ δγ
β
+ δα

τ (σµν)γ
β
− igρκ

[
(σµκ)α

τ (σ νρ)γ
β
− (σ νκ)α

τ (σµρ)γ
β
]}
, (B.1.12)

δα
β(σµν)β̇ α̇ = −

1
4 i
[
σ
µ

αα̇σ
ν β̇β
− σ ναα̇σ

µ β̇β
+ iεµνρκσρ αα̇σ β̇βκ

]
, (B.1.13)

δα̇ β̇(σ
µν)β

α
= −

1
4 i
[
σµ α̇ασ ν

ββ̇
− σ ν α̇ασ

µ

ββ̇
− iεµνρκσ α̇αρ σκ ββ̇

]
, (B.1.14)

δα̇ β̇(σ
µν)γ̇ τ̇ =

1
2

{
(σµν)α̇ τ̇ δ

γ̇
β̇ + δ

α̇
τ̇ (σ

µν)γ̇ β̇ − igρκ
[
(σµκ)α̇ τ̇ (σ

νρ)γ̇ β̇ − (σ
νκ)α̇ τ̇ (σ

µρ)γ̇ β̇
]}
, (B.1.15)

σ
µ

αα̇σ
ν

ββ̇
=
1
2

[
σ
µ

αβ̇
σ νβα̇ + σ

ν

αβ̇
σ
µ

βα̇ − g
µνσ λ

αβ̇
σλ βα̇ + iεµνρκσρ αβ̇ σκ βα̇

]
, (B.1.16)

σµα̇ασ νβ̇β = 1
2

[
σµα̇βσ νβ̇α + σ να̇βσµβ̇α − gµνσ λ α̇βσ β̇αλ − iε

µνρκσ α̇βρ σ β̇ακ

]
, (B.1.17)

σ
µ

αα̇σ
νβ̇β
=
1
2

[
gµνδαβδβ̇ α̇ − 2i(σµν)αβδβ̇ α̇ + 2iδαβ(σµν)β̇ α̇ − 4gρκ(σµκ)αβ(σ νρ)β̇ α̇

]
, (B.1.18)

(σµν)α
βσ

ρ

γ α̇ =
1
2

[
σ ναα̇(σ

µρ)γ
β
− σ

µ

αα̇(σ
νρ)γ

β
+ iεµνκλσκ αα̇(σ λρ)γ β

−
1
2 i
(
gµρσ ναα̇ − g

νρσ
µ

αα̇ − iε
µνρκσκ αα̇

)
δγ
β
]
, (B.1.19)

σ ρ α̇β(σµν)γ
α
=
1
2

[
σ ν α̇α(σµρ)γ

β
− σµ α̇α(σ νρ)γ

β
+ iεµνκλσ α̇ακ (σ

λρ)γ
β

+
1
2 i
(
gµρσ ν α̇α − gνρσµ α̇α − iεµνρκσ α̇ακ

)
δγ
β
]
, (B.1.20)

σ
ρ

αβ̇
(σµν)γ̇ α̇ =

1
2

[
σ ναα̇(σ

µρ)γ̇ β̇ − σ
µ

αα̇(σ
νρ)γ̇ β̇ − iε

µνκ
λσκ αα̇(σ

λρ)γ̇ β̇

+
1
2 i
(
gµρσ ναα̇ − g

νρσ
µ

αα̇ + iε
µνρκσκ αα̇

)
δγ̇ β̇

]
, (B.1.21)

(σµν)α̇ β̇σ
ρ γ̇ α
=
1
2

[
σ ν α̇α(σµρ)γ̇ β̇ − σ

µ α̇α(σ νρ)γ̇ β̇ − iε
µνκ

λσ
α̇α
κ (σ

λρ)γ̇ β̇

−
1
2 i
(
gµρσ ν α̇α − gνρσµ α̇α + iεµνρκσ α̇ακ

)
δγ̇ β̇

]
, (B.1.22)

(σµν)α
β(σ ρκ)γ

τ
=
1
2 (σ

µν)α
τ (σ ρκ)γ

β
+
1
8δα

τ δγ
β (gµρgνκ − gµκgνρ − iεµνρκ)

+
1
4 iδα

τ (gµρσ νκ + gνκσµρ − gνρσµκ − gµκσ νρ)γ
β

−
1
4 iδγ

β (gµρσ νκ + gνκσµρ − gνρσµκ − gµκσ νρ)α
τ

+
1
4

[
(σµρ)α

τ (σ νκ)γ
β
+ (σ νκ)α

τ (σµρ)γ
β
− (σ νρ)α

τ (σµκ)γ
β
− (σµκ)α

τ (σ νρ)γ
β
]

+
1
4gλσ

[
gµκ(σ ρσ )ατ (σ νλ)γ β + gνρ(σ κσ )ατ (σµλ)γ β

− gνκ(σ ρσ )ατ (σµλ)γ β − gµρ(σ κσ )ατ (σ νλ)γ β
]
, (B.1.23)
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(σµν)α̇ β̇(σ
ρκ)γ̇ τ̇ =

1
2 (σ

µν)α̇ τ̇ (σ
ρκ)γ̇ β̇ +

1
8δ
α̇
τ̇ δ
γ̇
β̇ (g

µρgνκ − gµκgνρ + iεµνρκ)

+
1
4 iδ

α̇
τ̇ (gµρσ νκ + gνκσµρ − gνρσµκ − gµκσ νρ)

γ̇
β̇

−
1
4 iδ

γ̇
β̇ (g

µρσ νκ + gνκσµρ − gνρσµκ − gµκσ νρ)α̇ τ̇

+
1
4

[
(σµρ)α̇ τ̇ (σ

νκ)γ̇ β̇ + (σ
νκ)α̇ τ̇ (σ

µρ)γ̇ β̇ − (σ
νρ)α̇ τ̇ (σ

µκ)γ̇ β̇ − (σ
µκ)α̇ τ̇ (σ

νρ)γ̇ β̇
]

+
1
4gλσ

[
gµκ(σ ρσ )α̇ τ̇ (σ νλ)γ̇ β̇ + g

νρ(σ κσ )α̇ τ̇ (σ
µλ)γ̇ β̇

− gνκ(σ ρσ )α̇ τ̇ (σµλ)γ̇ β̇ − g
µρ(σ κσ )α̇ τ̇ (σ

νλ)γ̇ β̇
]
, (B.1.24)

(σµν)α
β(σ ρκ)β̇ α̇ =

1
8

[
(gµρgνκ − gµκgνρ)σ λαα̇σ

β̇β

λ

+ iεµνρλσλαα̇σ κ β̇β − iεµνκλσλαα̇σ ρ β̇β − iεµρκλσ ναα̇σ
β̇β

λ + iε
νρκλσ

µ

αα̇σ
β̇β

λ

− gµρ(σ καα̇σ
ν β̇β
+ σ ναα̇σ

κ β̇β)+ gνρ(σ καα̇σ
µ β̇β
+ σ

µ

αα̇σ
κ β̇β)

+ gµκ(σ ραα̇σ
ν β̇β
+ σ ναα̇σ

ρ β̇β)− gνκ(σ ραα̇σ
µ β̇β
+ σ

µ

αα̇σ
ρ β̇β)

]
. (B.1.25)

From Eqs. (B.1.5)–(B.1.25), one immediately obtains the corresponding 21 Fierz identities represented by Eq. (B.1.4).
Eleven of these identities also appear in Appendix B of Ref. [77].91

The derivation of the 21 identities listed above is straightforward. Eqs. (B.1.5)–(B.1.7) are equivalent to the completeness
relation of Eq. (B.1.1). The next eight identities [Eqs. (B.1.8)–(B.1.15)] are easily derived starting from Eqs. (B.1.5)–(B.1.7). As
a simple example, using the results of Eqs. (B.1.6) and (B.2.20), it follows that

δα
βσ

µ

γ α̇ = δα
βδγ

τσ
µ

τα̇ =
1
2

[
δα
τ δγ

β
+ (σ ρκ)α

τ (σρκ)γ
β
]
σ
µ

τα̇

=
1
2

[
σ
µ

αα̇δγ
β
+ (σ ρκσµ)αα̇(σρκ)γ

β
]

=
1
2

[
σ
µ

αα̇δγ
β
+
1
2 i(g

κµσ ρ − gρµσ κ + iερκµνσν)αα̇(σρκ)γ β
]

=
1
2δα

γ σµ β̇β + i(σµν)αγ σ β̇βν , (B.1.26)

where Eq. (2.75) was employed in the final step. We can now use Eqs. (B.1.8)–(B.1.11) to derive Eqs. (B.1.16)–(B.1.22) by a
similar technique. Finally, starting from Eqs. (B.1.12)–(B.1.15) we may employ the same technique once more to derive Eqs.
(B.1.23)–(B.1.25).92 A useful check of the last three identities can be carried out by multiplying these results by gµρgνκ and
summing over the two repeated Lorentz index pairs. We then find:

(σµν)α
β(σµν)γ

τ
= −

1
2 (σ

µν)α
τ (σµν)γ

β
+
3
2δα

τ δγ
β , (B.1.27)

(σµν)α̇ β̇(σµν)
γ̇
τ̇ = −

1
2 (σ

µν)α̇ τ̇ (σµν)
γ̇
β̇ +

3
2δ
α̇
τ̇ δ
γ̇
β̇ , (B.1.28)

(σµν)α
β(σµν)

γ̇
τ̇ = 0. (B.1.29)

Eq. (B.1.29) has already been recorded in Eq. (2.83). To verify Eqs. (B.1.27) and (B.1.28), we first rewrite these equations with
the interchange of β ↔ τ and β̇ ↔ τ̇ . Inserting the resulting equations back into Eqs. (B.1.27) and (B.1.28) then yields the
previously obtained Eqs. (2.81) and (2.82) [or equivalently, Eqs. (B.1.6) and (B.1.7)].
A similar check can be performed on Eqs. (B.1.16)–(B.1.18) by multiplying these results by gµν and summing over the

repeated Lorentz index pair [with assistance from Eq. (B.1.29)]:

σ
µ

αα̇σµββ̇ = −σ
µ

αβ̇
σµβα̇, (B.1.30)

σµ α̇ασ β̇βµ = −σ
µ α̇βσ β̇αµ , (B.1.31)

σ
µ

αα̇σ
β̇β
µ = 2 δα

βδβ̇ α̇. (B.1.32)

It follows that:

σ
µ

αα̇σµββ̇ = 2 εαβεα̇β̇ , (B.1.33)

σµ α̇ασ β̇βµ = 2 ε
αβεα̇β̇ , (B.1.34)

91 Note that in Ref. [77], εµνρκ has the opposite sign with respect to our conventions, and σµν is defined without an overall factor of i. Taking these
differences into account, we have confirmed that the results of Appendix B of Ref. [77] match the corresponding results obtained here.
92 In particular, the identities given in Eqs. (B.2.18) and (B.2.19) are especially useful in the evaluation of Eqs. (B.1.19)–(B.1.24).
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since Eqs. (B.1.30) and (B.1.31) are antisymmetric under the separate interchanges of α ↔ β and α̇ ↔ β̇ . The coefficients in
Eqs. (B.1.33) and (B.1.34) are determined by substituting α = α̇ = 1 and β = β̇ = 2. Thus, we have confirmed the results
previously obtained in Eqs. (2.48)–(2.50).
Eqs. (B.1.5)–(B.1.7) can also be used to derive four additional identities, which yield Fierz identities of a different form.

Simply multiply each of these equations by two ε symbols (with appropriately chosen undotted and/or dotted spinor
indices), and use Eqs. (2.31) and (2.78). Two of the resulting identities coincide with Eqs. (B.1.33) and (B.1.34), while the
other two are:

εαβε
γ τ
= −

1
2

[
δα
γ δβ

τ
− (σµν)α

γ (σµν)β
τ
]
, (B.1.35)

εα̇β̇εγ̇ τ̇ = −
1
2

[
δα̇ γ̇ δ

β̇
τ̇ − (σ

µν)α̇ γ̇ (σµν)
β̇
τ̇

]
. (B.1.36)

One can check that Eqs. (B.1.35) and (B.1.36) are equivalent to the previously obtained Eqs. (2.81) and (2.82). Multiplying
Eqs. (B.1.33)–(B.1.36) by four (commuting or anticommuting) two-component spinors Z1AZ2BZ3CZ4D yields the corresponding
Fierz identities of the form:

(Z1Γ (k)IZ2)(Z3Γ (n)JZ4) = (−1)A
∑
p,q,K ,L

(Cknpq )
IJ
KL(Z1Γ

(p)KZ3)(Z2Γ (q)LZ4), (B.1.37)

which differs from Eq. (B.1.4) in the ordering of the spinors on the right-hand side.
Finally, we note that the Schouten identities,

εαβεγ δ + εαγ εδβ + εαδεβγ = 0, εα̇β̇εγ̇ δ̇ + εα̇γ̇ εδ̇β̇ + εα̇δ̇εβ̇γ̇ = 0, (B.1.38)

are the basis for Fierz identities given by Eqs. (2.65) and (2.66), which do not assume the simple forms of either Eqs. (B.1.4)
or (B.1.37).

B.2. Sigma matrix identities in d 6= 4 dimensions

When considering a theory regularized by dimensional continuation [124], one must be careful in treating cases
with contracted spacetime vector indices µ, ν, κ, ρ, . . .. Instead of taking on four possible values, these vector indices
formally run over d values, where d is infinitesimally different from 4. This means that some identities that would hold in
unregularized four-dimensional theories are inconsistent and must not be used; other identities remain valid if d replaces
4 in the appropriate spots; and still other identities hold without modification.
Two important identities that do hold in d 6= 4 dimensions are:

[σµσ ν + σ νσµ]α
β
= 2gµνδαβ , (B.2.1)

[σµσ ν + σ νσµ]α̇ β̇ = 2g
µνδα̇ β̇ . (B.2.2)

Equivalently,

(σµσ ν)α
β
= gµνδαβ − 2i(σµν)αβ , (B.2.3)

(σµσ ν)α̇ β̇ = g
µνδα̇ β̇ − 2i(σ

µν)α̇ β̇ , (B.2.4)

where σµν and σµν are defined in Eq. (A.10). The trace identities,

Tr[σµσ ν] = Tr[σµσ ν] = 2gµν, (B.2.5)

Trσµν = Trσµν = 0, (B.2.6)

then follow. We also note that the spinor index trace identity,

Tr[1] = δαα = δ
α̇
α̇ = 2, (B.2.7)

continues to hold in dimensional continuation regularization methods. In contrast, the Fierz identities of Appendix B.1 do
not have a consistent, unambiguous meaning outside of four dimensions [249–252]. However, the following identities that
are implied by Eq. (B.1.5) do consistently generalize to d 6= 4 spacetime dimensions:

[σµσµ]α
β
= dδβα , (B.2.8)

[σµσµ]
α̇
β̇ = dδ

α̇

β̇
. (B.2.9)
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Using Eqs. (B.2.8) and (B.2.9) along with the repeated use of Eqs. (B.2.1) and (B.2.2) then yields:

[σµσ νσµ]αβ̇ = −(d− 2)σ
ν

αβ̇
, (B.2.10)

[σµσνσµ]
α̇β
= −(d− 2)σ α̇βν , (B.2.11)

[σµσ νσ ρσµ]α
β
= 4gνρδβα − (4− d)[σ

νσ ρ]α
β , (B.2.12)

[σµσ νσ ρσµ]
α̇
β̇ = 4g

νρδα̇
β̇
− (4− d)[σ νσ ρ]α̇ β̇ , (B.2.13)

[σµσ νσ ρσ κσµ]αβ̇ = −2[σ
κσ ρσ ν]αβ̇ + (4− d)[σ

νσ ρσ κ ]αβ̇ , (B.2.14)

[σµσ νσ ρσ κσµ]
α̇β
= −2[σ κσ ρσ ν]α̇β + (4− d)[σ νσ ρσ κ ]α̇β . (B.2.15)

Identities that involve the (explicitly and inextricably four-dimensional) εµνρκ symbol

σµσ νσ ρ = gµνσ ρ − gµρσ ν + gνρσµ − iεµνρκσ κ , (B.2.16)

σµσ νσ ρ = gµνσ ρ − gµρσ ν + gνρσµ + iεµνρκσκ , (B.2.17)

εµνκλσ
λρ
= −i (gκρσµν − gνρσµκ + gµρσ νκ) , (B.2.18)

εµνκλσ
λρ
= i (gκρσµν − gνρσµκ + gµρσ νκ) , (B.2.19)

σµνσ ρ = 1
2 i (g

νρσµ − gµρσ ν + iεµνρκσκ) , (B.2.20)

σµνσ ρ = 1
2 i (g

νρσµ − gµρσ ν − iεµνρκσ κ) , (B.2.21)

σµσ νρ = 1
2 i (g

µνσ ρ − gµρσ ν − iεµνρκσ κ) , (B.2.22)

σµσ νρ = 1
2 i (g

µνσ ρ − gµρσ ν + iεµνρκσκ) , (B.2.23)

σµνσ ρκ = − 14 (g
νρgµκ − gµρgνκ + iεµνρκ)+ 1

2 i(g
νρσµκ + gµκσ νρ − gµρσ νκ − gνκσµρ), (B.2.24)

σµνσ ρκ = − 14 (g
νρgµκ − gµρgνκ − iεµνρκ)+ 1

2 i(g
νρσµκ + gµκσ νρ − gµρσ νκ − gνκσµρ), (B.2.25)

are also only meaningful in exactly four dimensions. This applies as well to the trace identities which follow from them.93
For example,

Tr[σµσ νσ ρσ κ ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) , (B.2.26)

Tr[σµσ νσ ρσ κ ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ) . (B.2.27)

This could lead to ambiguities in loop computations where it is necessary to perform the computation in d 6= 4 dimensions
(until the end of the calculation where the limit d → 4 is taken). However, in practice one typically finds that the above
expressions appear multiplied by the metric and/or other external tensors (such as four-momenta appropriate to the
problem at hand). In almost all such cases, two of the indices appearing in Eqs. (B.2.26) and (B.2.27) are symmetrized which
eliminates the εµνρκ term, rendering the resulting expressions unambiguous. Similarly, the sum of the above trace identities
can be assigned an unambiguous meaning in d 6= 4 dimensions:

Tr[σµσ νσ ρσ κ ] + Tr[σµσ νσ ρσ κ ] = 4 (gµνgρκ − gµρgνκ + gµκgνρ) . (B.2.28)

One can recursively derive trace formulae for products of six or more σ / σ matrices by using the results of Eqs. (B.2.16) and
(B.2.17) to reduce the number of σ /σ matrices by two. For example,

Tr[σµσ νσ ρσ κσ λσ δ] = gµνTr[σ ρσ κσ λσ δ] − gµρTr[σ νσ κσ λσ δ] + gνρTr[σµσ κσ λσ δ]
+ iεµνρεTr[σεσ κσ λσ δ], (B.2.29)

Tr[σµσ νσ ρσ κσ λσ δ] = gµνTr[σ ρσ κσ λσ δ] − gµρTr[σ νσ κσ λσ δ] + gνρTr[σµσ κσ λσ δ]
− iεµνρεTr[σ εσ κσ λσ δ]. (B.2.30)

We then use Eqs. (B.2.26) and (B.2.27) to evaluate the remaining traces over four σ /σ matrices.

93 This is analogous to the statement that Tr (γ5γ µγ νγ ργ κ ) = −4iεµνρκ [in our convention where ε0123 = +1, and γ5 is defined by Eq. (G.1.2)] is only
meaningful in d = 4 dimensions. In two-component notation, the equivalent result is Tr[σµσ νσ ρσ κ − σµσ νσ ρσ κ ] = 4iεµνρκ . In the literature various
schemes have been proposed for defining the properties of γ5 in d 6= 4 dimensions [231,252]. In two-component notation, this would translate into a
procedure for dealing with general traces involving four or more σ /σ matrices.
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Appendix C. Explicit forms for the two-component spinor wave functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator 12 Eσ · ŝ, and examine their
properties. For massive fermions, it is possible to transform to the rest frame, and quantize the spin along a fixed axis in
space. The corresponding spinor wave functions will be called fixed-axis spinors. For either massive or massive fermions,
one can quantize the spin along the direction of momentum. The corresponding spinor wave functions are helicity spinors.
Helicity spinor wave functions are most conveniently applied to massless fermions or fermions in the relativistic limit of
high energy E � m. Fixed-axis spinors are most conveniently applied to massive fermions in the non-relativistic limit.

C.1. Fixed-axis spinor wave functions

Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis specified by the unit vector

ŝ ≡ (sin θ cosφ, sin θ sinφ, cos θ), (C.1.1)

with polar angle θ and azimuthal angle φ with respect to a fixed z-axis. The relevant basis of two-component fixed-axis
spinors χs are eigenstates of 12 Eσ · ŝ, i.e.,

1
2 Eσ · ŝχs = sχs, s = ± 12 . (C.1.2)

In order to construct the eigenstates of 12 Eσ · ŝ, we first consider the casewhere ŝ = ẑ . In this case,we define the eigenstates
of 12σ

3 to be:

χ1/2(ẑ) =
(
1
0

)
, χ−1/2(ẑ) =

(
0
1

)
. (C.1.3)

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of Eq. (C.1.3) to unity. We then
determine χs(ŝ) from χs(ẑ) by employing the spin-1/2 rotation operator that corresponds to a rotation from ẑ to ŝ. This
rotation is represented by a 3 × 3 matrix R such that ŝ = Rẑ . However, this rotation operator is not unique. In its most
general form, the rotation operator can be parameterized in terms of three Euler angles (e.g., see Refs. [44,45]):

R(φ, θ, γ ) ≡ R(ẑ, φ) R(ŷ, θ) R(ẑ, γ ). (C.1.4)

The Euler angles can be chosen to lie in the range 0 ≤ θ ≤ π and 0 ≤ φ, γ < 2π . Here, R(n̂, θ) is a 3× 3 orthogonal matrix
that represents a rotation by an angle θ about a fixed axis n̂,

Rij(n̂, θ) = exp(−iθ n̂ · ES) = ninj + (δij − ninj) cos θ − ε ijknk sin θ, (C.1.5)

where the ES = (S1, S2, S3) are three 3× 3 matrices whose matrix elements are given by (Si)jk = −iε ijk [cf. Eq. (2.9)].
However, the angle γ is arbitrary, since R(ẑ, γ )ẑ = ẑ . Thus,

ŝ = Rẑ = (sin θ cosφ, sin θ sinφ, cos θ), (C.1.6)

independently of the choice of γ . For θ = 0 or θ = π , where ŝ is parallel to the z-axis, the azimuthal angle φ is undefined.
Since ŝ→−ŝ corresponds in general to θ → π − θ and φ→ φ + π (mod 2π ), we shall adopt a convention whereby:

φ =

{
0, for ŝ = ẑ, (θ = 0),
π, for ŝ = −ẑ, (θ = π).

(C.1.7)

Using the spin-1/2 rotation operator corresponding toR(φ, θ, γ ), one can compute χs(ŝ),

χs(ŝ) = D(φ, θ, γ ) χs(ẑ), (C.1.8)

whereD is the spin-1/2 unitary representation matrix [253]

D(φ, θ, γ ) ≡ D(ẑ, φ)D(ŷ, θ)D(ẑ, γ ), (C.1.9)

and D is the 2× 2 unitary matrix

D(n̂, θ) ≡ exp
(
−iθ n̂ · Eσ/2

)
= cos

θ

2
− in̂ · Eσ sin

θ

2
. (C.1.10)

Eq. (C.1.8) yields explicit forms for the eigenstates of 12 Eσ · ŝ:

χ1/2(ŝ) =

e−i(φ+γ )/2 cos
θ

2

ei(φ−γ )/2 sin
θ

2

 , χ−1/2(ŝ) =

−e−i(φ−γ )/2 sin θ2
ei(φ+γ )/2 cos

θ

2

 . (C.1.11)
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The well-known two-to-one mapping between SU(2) and SO(3) implies that for a given rotation matrixR there are two
corresponding spin-1/2 rotation matricesD . In particular,

D(φ + 2π, θ, γ ) = −D(φ, θ, γ ), (C.1.12)
which implies that a rotation of a spinor by 2π yields an overall change of sign in the spinor wave function (an effect that
can be observed in quantum interference experiments!). Strictly speaking, we should take the range of the Euler angles to
be 0 ≤ φ < 4π , 0 ≤ θ ≤ π and 0 ≤ γ < 2π . However, when constructing the spinor wave function of a spin-1/2 particle
whose spin quantization axis is given by Eq. (C.1.6), we will fix the overall sign of the spinor wave function by convention.
More generally, the overall phase of the spinor wave function is unphysical. Noting that D(ẑ, γ ) χs(ẑ) = e−isγχs(ẑ), the

choice of γ is also a matter of convention. First, we will require that when ŝ = ẑ , Eq. (C.1.8) should reproduce the spinor
wave functions given in Eq. (C.1.3). This implies that:

γ = 0, for ŝ = ẑ, (θ = φ = 0). (C.1.13)
For ŝ = −ẑ , we use Eq. (C.1.7) to obtain:

χs(−ẑ) = ie−isγ (−ẑ) χ−s(ẑ), s = ± 12 , (C.1.14)

where the notation γ (−ẑ) has been employed to allow the possibility that the convention for γ depends on the direction
indicated by its argument.
Two different conventions are commonly employed in the literature. In the first convention, one chooses γ = −φ. This

choice has the good feature that R(φ, 0,−φ) = 13×3, independently of the angle φ, which is undefined when θ = 0.94
Moreover, the rotation matrixR(φ, θ,−φ) and the corresponding spin-1/2 rotation matrixD(φ, θ,−φ) can be expressed
simply as a single rotation by an angle θ about a fixed axis that points along a unit vector in the azimuthal direction:

ϕ̂ ≡ (− sinφ, cosφ, 0). (C.1.15)
In particular,

R(ϕ̂, θ) = R(ẑ, φ) R(ŷ, θ) R(ẑ,−φ), (C.1.16)

D(ϕ̂, θ) = D(φ, θ,−φ). (C.1.17)
Hence, in this conventionχs(ŝ) = D(ϕ̂, θ)χs(ẑ), which is themost common choice for the spinorwave function [36,254,255].
In the second convention, one chooses γ = 0. One motivation for this choice is that the corresponding rotation matrix

is somewhat simpler:

R(φ, θ, 0) = R(ẑ, φ) R(ŷ, θ) =

(cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

)
. (C.1.18)

Employing the corresponding spin-1/2 rotation operatorD(φ, θ, 0) in Eq. (C.1.8) yields a slightly more symmetrical form
for the spinor wave function [256].
Explicit forms for the spinor wave functions in the two conventions are obtained from Eq. (C.1.11) by taking γ (ŝ) = −φ

and γ (ŝ) = 0, respectively. For example, Eq. (C.1.14) reduces to:

χs(−ẑ) =
{
−2sχ−s(ẑ) for γ (−ẑ) = −φ = −π,
iχ−s(ẑ) for γ (−ẑ) = 0, s = ± 12 , (C.1.19)

in the convention specified by Eq. (C.1.7).
Many of the properties of the spinor wave functions are independent of the choice of the Euler angle γ . The spinor wave

functions χs defined by Eq. (C.1.8) are normalized such that

χĎ
s (ŝ)χs′(ŝ) = δss′ , (C.1.20)

and satisfy the following completeness relation:∑
s

χs(ŝ)χĎ
s (ŝ) =

(
1 0
0 1

)
. (C.1.21)

The spinor wave functions χs(ŝ) and χ−s(ŝ) are connected by the following relation:

χ−s(ŝ) = −2siσ 2 χ∗s (ŝ). (C.1.22)

Consider a spin-1/2 fermion with four-momentum pµ = (E, Ep), with E = (|Ep|2+m2)1/2, and the direction of Ep given by

p̂ = (sin θp cosφp, sin θp sinφp, cos θp). (C.1.23)
Using Eqs. (2.107) and (2.108), one can employ Eqs. (3.1.19)–(3.1.22) to obtain explicit expressions for the two-component
spinor wave functions x(Ep, s), y(Ep, s), xĎ(Ep, s) and yĎ(Ep, s).

94 However,R(φ, π,−φ) 6= 13×3 even though φ is also undefined when θ = π .
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Additional properties of the χs can be derived by introducing an orthonormal set of unit three-vectors ŝ
a that provide a

basis for a right-handed coordinate system. Explicitly,

ŝa · ŝb = δab, (C.1.24)

ŝa × ŝb = εabc ŝc . (C.1.25)

We shall identify

ŝ3 ≡ ŝ (C.1.26)

as the quantization axis used in defining the third component of the spin of the fermion in its rest frame. The unit vectors
ŝ1 and ŝ2 are then chosen such that Eqs. (C.1.24) and (C.1.25) are satisfied. To explicitly construct the ŝa, we begin with the
orthonormal set {x̂, ŷ, ẑ}, and employ the same rotation operatorR used to define χs(ŝ). That is,

(ŝ1, ŝ2, ŝ3) = (Rx̂,Rŷ,Rẑ), whereR ≡ R(φ, θ, γ ), (C.1.27)

and φ, θ and γ are the Euler angles used to define the spinor wave function in Eq. (C.1.8). From Eq. (C.1.27), one can
immediately derive the completeness relation (as a consequence ofRRT

= 1),

ŝaiŝaj = δij, (C.1.28)

where i and j label the space components of the three-vector ŝa.
We can use the ŝa to extend the defining equation of χs [Eq. (C.1.2)]:

1
2 Eσ · ŝ

a
χs′(ŝ) = 1

2τ
a
ss′χs(ŝ), (C.1.29)

where the τ ass′ are the matrix elements of the Pauli matrices.
95 That is, 12 Eσ · (s

1
± is2) serve as ladder operators that connect

the spinor wave functions χ1/2 and χ−1/2. Using Eq. (C.1.20), it follows that Eq. (C.1.29) is equivalent to:

χĎ
s (ŝ) Eσ · ŝ

a
χs′(ŝ) = τ ass′ . (C.1.30)

It is instructive to prove Eq. (C.1.30) directly. Employing Eq. (C.1.8) and using the fact thatD is a unitary matrix,

χĎ
s (ŝ) Eσ · ŝ

a
χs′(ŝ) = χĎ

s (ẑ) [D(φ, θ, γ )]
−1
Eσ · ŝa D(φ, θ, γ )χs′(ẑ). (C.1.31)

The above result can be simplified by a repeated use of the following identity,

eiθ n̂· Eσ/2 σ j e−iθ n̂· Eσ/2 = Rjk(n̂, θ)σ k, (C.1.32)

which is valid for any fixed-axis n̂, where R(n̂, θ) is the rotation matrix defined in Eq. (C.1.5). It follows that

[D(φ, θ, γ )]−1 σ jD(φ, θ, γ ) = Rjk(φ, θ, γ ) σ k, (C.1.33)

whereR(φ, θ, γ ) is defined in Eq. (C.1.4). SinceRT
= R−1,

χĎ
s (ŝ) Eσ · ŝ

a
χs′(ŝ) = χĎ

s (ẑ) Eσ ·
[
R−1ŝa

]
χs′(ẑ). (C.1.34)

Eq. (C.1.27) implies that (R−1ŝ1,R−1ŝ2,R−1ŝ3) = (x̂, ŷ, ẑ), and it follows that

Eσ ·
[
R−1ŝa

]
= σ a. (C.1.35)

Consequently, we end up with

χĎ
s (ŝ) Eσ · ŝ

a
χs′(ŝ) = χĎ

s (ẑ)σ
aχs′(ẑ) ≡ τ ass′ , (C.1.36)

which defines the matrix elements of the Pauli matrices, and our proof of Eq. (C.1.30) is complete.
Using the completeness relation given by Eq. (C.1.28), we can rewrite Eq. (C.1.30) as

χĎ
s (ŝ) σ

iχs′(ŝ) = τ ass′ ŝ
a i. (C.1.37)

Taking the hermitian conjugate of Eq. (C.1.37) is equivalent to interchanging s ↔ s′, since the σ i are hermitian matrices
and (τ ass′)

∗
= τ as′s. To evaluate expressions similar to Eq. (C.1.37) that contain products of σ -matrices, it is sufficient to use

95 We use the symbol τ rather than σ to emphasize that the indices of the Pauli matrices τ a are spin labels s, s′ and not spinor indices α, α̇. The first
(second) row and column of the τ -matrices correspond to s = 1/2 (−1/2). For example, τ 3ss′ = 2sδss′ (no sum over s).
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the relation σ iσ j = δij1 + iε ijkσ k as many times as needed to reduce the final expression to terms containing at most one
σ -matrix. For example, using Eqs. (C.1.20) and (C.1.37), it follows that

χĎ
s (ŝ) σ

iσ jχs′(ŝ) = δss′δij + iε ijkτ ass′ ŝ
ak. (C.1.38)

It is sometimes useful to have a more explicit representation of the ŝa. In the convention where γ = −φ, Eq. (C.1.27)
yields:

ŝ1 =
(
1− 2 cos2 φ sin2

θ

2
,− sin 2φ sin2

θ

2
,− sin θ cosφ

)
,

ŝ2 =
(
− sin 2φ sin2

θ

2
, 1− 2 sin2 φ sin2

θ

2
,− sin θ sinφ

)
,

ŝ3 = (sin θ cosφ, sin θ sinφ, cos θ). (C.1.39)

The explicit forms for the ŝa are somewhat simpler in the convention where γ = 0. In this case, Eqs. (C.1.18) and (C.1.27)
yield:

ŝ1 = (cos θ cosφ, cos θ sinφ,− sin θ),

ŝ2 = (− sinφ, cosφ, 0),

ŝ3 = (sin θ cosφ, sin θ sinφ, cos θ). (C.1.40)

C.2. Fixed-axis spinors in the non-relativistic limit

Consider an on-shell massive fermion of three-momentum Ep, massm and spin quantum number s, where s = ± 12 are the
possible projections of the spin vector (in units of h̄) along the fixed ŝ direction [cf. Eq. (C.1.2)]. The spinor wave functions,
x, y, and their hermitian conjugates are given by Eqs. (3.1.19)–(3.1.22). In the non-relativistic limit,

√
p · σ '

√
m
(
1−
Eσ · Ep
2m

)
,

√
p · σ '

√
m
(
1+
Eσ · Ep
2m

)
, (C.2.1)

where we keep terms only up to O(|Ep|/m). Inserting the above results into Eqs. (3.1.19)–(3.1.22) yields:

xα(Ep, s) '
√
m
(
1−
Eσ · Ep
2m

)
χs(ŝ), (C.2.2)

xα(Ep, s) ' −2s
√
mχĎ
−s(ŝ)

(
1+
Eσ · Ep
2m

)
, (C.2.3)

yα(Ep, s) ' 2s
√
m
(
1−
Eσ · Ep
2m

)
χ−s(ŝ), (C.2.4)

yα(Ep, s) '
√
mχĎ

s (ŝ)
(
1+
Eσ · Ep
2m

)
, (C.2.5)

for the undotted spinor wave functions and

xĎα̇(Ep, s) ' −2s
√
m
(
1+
Eσ · Ep
2m

)
χ−s(ŝ), (C.2.6)

xĎα̇(Ep, s) '
√
mχĎ

s (ŝ)
(
1−
Eσ · Ep
2m

)
, (C.2.7)

yĎα̇(Ep, s) '
√
m
(
1+
Eσ · Ep
2m

)
χs(ŝ), (C.2.8)

yĎα̇(Ep, s) ' 2s
√
mχĎ
−s(ŝ)

(
1−
Eσ · Ep
2m

)
, (C.2.9)

for the dotted spinor wave functions.
In the computation of the S-matrix amplitudes for scattering and decay processes, one typically must evaluate a bilinear

product of spinors, i.e. quantities of the form

z1(Ep1, s1)Γ z2(Ep2, s2), (C.2.10)
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where z1 and z2 represent one of the two-component spinor wave functions x, y, xĎ or yĎ, and Γ is a 2× 2 matrix (in spinor
space) that is either the identity matrix, or is made up of alternating products of σ and σ . In the non-relativistic limit, these
bilinears take on rather simple forms. In what follows, we work to first order in |Epi|/mi. For example,

yα(Ep1, s1)xα(Ep2, s2) '
√
m1m2 χĎ

s1(ŝ)
(
1+
Eσ · Ep
2m1
−
Eσ · Ep
2m2

)
χs2(ŝ)

'
√
m1m2

[
δs1,s2 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as1,s2

]
, (C.2.11)

where we have used the results of Eqs. (C.1.20) and (C.1.37). Similarly,

yα(p1, s1)σ
µ

αβ̇
yĎβ̇(p2, s2) '

√
m1m2 χĎ

s1(ŝ)
[
σµ +

Eσ · Ep1
2m1

σµ + σµ
Eσ · Ep2
2m2

]
χs2(ŝ)

'
√
m1m2 Zµs1,s2( Ep1, Ep2), (C.2.12)

where96

Zµss′( Ep1, Ep2) ≡


δss′ +

(
Ep1
2m1
+
Ep2
2m2

)
· ŝaτ ass′ , for µ = 0,

ŝaiτ ass′ +
(
pi1
2m1
+
pi2
2m2

)
δss′ +

(
pj2
2m2
−
pj1
2m1

)
iε ijkŝakτ ass′ , for µ = i = 1, 2, 3,

(C.2.13)

is obtained after using the results of Eqs. (C.1.37) and (C.1.38).
In summary, we list the non-relativistic forms of the spinor bilinears. Referring to Eq. (C.2.10), if Γ = 1, then

xα(Ep1, s1)xα(Ep2, s2) ' 2s2
√
m1m2

[
δ−s2,s1 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ a

−s2,s1

]
, (C.2.14)

yα(Ep1, s1)yα(Ep2, s2) ' 2s2
√
m1m2

[
δs1,−s2 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as1,−s2

]
, (C.2.15)

xα(Ep1, s1)yα(Ep2, s2) '
√
m1m2

[
−δs2,s1 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as2,s1

]
, (C.2.16)

yα(Ep1, s1)xα(Ep2, s2) '
√
m1m2

[
δs1,s2 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as1,s2

]
, (C.2.17)

where we have used

τ as′s = −4ss
′τ a
−s,−s′ , s, s′ = ± 12 , (C.2.18)

to arrive at the final forms given in Eqs. (C.2.14) and (C.2.16). However, in using the above results, one must now pay close
attention to the ordering of the subscript indices of the τ a. The corresponding formulae for dotted spinor wave function
bilinears are obtained by taking the hermitian conjugates of Eqs. (C.2.14)–(C.2.17), which complex conjugates the τ a that
appear on the right-hand side of these equations. Since (τ ass′)

∗
= τ as′s, we obtain

xĎα̇(Ep1, s1)x
Ďα̇(Ep2, s2) ' 2s1

√
m1m2

[
δs2,−s1 −

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as2,−s1

]
, (C.2.19)

yĎα̇(Ep1, s1)y
Ďα̇(Ep2, s2) ' 2s1

√
m1m2

[
δ−s1,s2 −

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ a

−s1,s2

]
, (C.2.20)

yĎα̇(Ep1, s1)x
Ďα̇(Ep2, s2) ' −

√
m1m2

[
δs2,s1 +

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as2,s1

]
, (C.2.21)

xĎα̇(Ep1, s1)y
Ďα̇(Ep2, s2) '

√
m1m2

[
δs1,s2 −

(
Ep1
2m1
−
Ep2
2m2

)
· ŝaτ as1,s2

]
. (C.2.22)

96 We also define Zµs′s( Ep2, Ep1) as the expression given by Eq. (C.2.13) with the interchange of {s, Ep1,m1} and {s
′, Ep2,m2}.
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Likewise, if Γ = σµ, then

xα(p1, s1)σ
µ

αβ̇
xĎβ̇(p2, s2) ' 4s1s2

√
m1m2 Z

µ
−s1,−s2( Ep1, Ep2), (C.2.23)

yα(p1, s1)σ
µ

αβ̇
yĎβ̇(p2, s2) '

√
m1m2 Zµs1,s2( Ep1, Ep2), (C.2.24)

xα(p1, s1)σ
µ

αβ̇
yĎβ̇(p2, s2) ' −2s1

√
m1m2 Z

µ
−s1,s2( Ep1, Ep2), (C.2.25)

yα(p1, s1)σ
µ

αβ̇
xĎβ̇(p2, s2) ' −2s2

√
m1m2 Z

µ
s1,−s2( Ep1, Ep2), (C.2.26)

where Zµss′( Ep1, Ep2) is defined in Eq. (C.2.13). If Γ = σ
µ, one can use z1σµz

Ď
2 = z

Ď
2σ

µz1 [i.e. Eq. (2.61) for commuting spinors]
to obtain the corresponding formulae for the spinor wave function bilinears (cf. footnote 96):

xĎα̇(p1, s1)σ
µα̇βxβ(p2, s2) ' 4s1s2

√
m1m2 Z

µ
−s2,−s1( Ep2, Ep1), (C.2.27)

yĎα̇(p1, s1)σ
µα̇βyβ(p2, s2) '

√
m1m2 Zµs2,s1( Ep2, Ep1), (C.2.28)

yĎα̇(p1, s1)σ
µα̇βxβ(p2, s2) ' −2s2

√
m1m2 Z

µ
−s2,s1( Ep2, Ep1), (C.2.29)

xĎα̇(p1, s1)σ
µα̇βyβ(p2, s2) ' −2s1

√
m1m2 Z

µ
s2,−s1( Ep2, Ep1). (C.2.30)

These results can also be derived directly from Eqs. (C.2.2)–(C.2.9), after employing Eq. (C.2.18).
It is straightforward to evaluate the spinor wave function bilinears when Γ is a product of two or more σ/σ matrices.

As the corresponding expressions are considerably more complicated, we shall not write them out explicitly here.

C.3. Helicity spinor wave functions

All the results of Appendix C.1 apply to the helicity spinors χλ, which are defined to be eigenstates of 12 Eσ · p̂, i.e.,

1
2 Eσ · p̂χλ(p̂) = λχλ(p̂), λ = ± 12 , (C.3.1)

where p̂ = (sin θp cosφp, sin θp sinφp, cos θp). It follows that:
√
p · σ χλ(p̂) = ω−λ(Ep) χλ(p̂),

√
p · σ χλ(p̂) = ωλ(Ep) χλ(p̂), (C.3.2)

where

ωλ(Ep) ≡ (E + 2λ|Ep| )1/2, E =
√
|Ep|2 +m2. (C.3.3)

As a result, the explicit forms for the two-component helicity spinor wave functions [cf. Eqs. (3.1.19)–(3.1.22)] simplify:

xα(Ep, λ) = ω−λ χλ(p̂), xα(Ep, λ) = −2λω−λ χ
Ď
−λ(p̂), (C.3.4)

yα(Ep, λ) = 2λωλ χ−λ(p̂), yα(Ep, λ) = ωλ χ
Ď
λ(p̂), (C.3.5)

xĎα̇(Ep, λ) = −2λω−λ χ−λ(p̂), xĎα̇(Ep, λ) = ω−λ χ
Ď
λ(p̂), (C.3.6)

yĎα̇(Ep, λ) = ωλ χλ(p̂), yĎα̇(Ep, λ) = 2λωλ χ
Ď
−λ(p̂), (C.3.7)

where ω±λ = ω±λ(Ep).
In analogy with the ŝa, it is convenient to introduce an orthonormal set of unit three-vectors p̂a such that p̂3 = p̂. Then,

Eqs. (C.1.24)–(C.1.30) apply as well to the two-component helicity spinors after taking ŝa = p̂a.
In scattering processes, it is often convenient to work in the rest frame of the incoming particles, in which the

corresponding incoming fermion three-momenta are denoted by Ep and−Ep, respectively. The helicity spinor wave function
of the second fermion depends on the definition of χλ(−p̂). In this review, we follow a convention97 in which χλ(−p̂) is
defined to be the spinor wave function obtained from χλ(ẑ) via a rotation by a polar angle π − θp and an azimuthal angle
φp + π with respect to the ẑ-direction. Then,

χλ(−p̂) = D(φp + π, π − θp, γ (−p̂)) χλ(ẑ), (C.3.8)

97 An alternative convention (called the second-particle convention) advocated by Jacob and Wick [257] is to define χλ(−p̂) by starting with χ−λ(ẑ) and
then rotating the spinor by polar and azimuthal angles θp and φp . In this case, χλ(−p̂) = χ−λ(p̂), and the extra phase factors of Eq. (C.3.11) is absent,
i.e. ξλ(p̂) = 1 in Eq. (C.3.11). However, this convention is less suited to scattering processes involving final states with more than two fermions. Hence, we
do not adopt the second-particle convention in this review.
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where we have exhibited the possible dependence of γ on the direction −p̂. Using the properties of the spin-1/2 rotation
matrices, one can derive

D(φp + π, π − θp, γ (−p̂)) = −D(φp, θp, γ (p̂))D(ẑ,−γ (p̂)− γ (−p̂))D(x̂, π). (C.3.9)
Inserting this result in Eq. (C.3.8) and using the relation

D(x̂, π)χλ(ẑ) = −iσ 1χλ(ẑ) = −iχ−λ(ẑ), (C.3.10)
we obtain

χλ(−p̂) = ξ−λ(p̂)χ−λ(p̂), (C.3.11)
where the phase factor ξλ(p̂) is given by

ξλ(p̂) = ieiλ[γ (p̂)+γ (−p̂)], λ = ± 12 . (C.3.12)
Since γ is a real angle, it follows that:

ξ ∗λ (p̂) =
1

ξλ(p̂)
= −ξ−λ(p̂). (C.3.13)

Using Eq. (C.3.12), we note that χλ(p̂) possesses the peculiar property that:

χλ(−(−p̂)) = −χλ(p̂). (C.3.14)
This is a consequence of the fact that the result of two successive inversions is equivalent to φp → φp + 2π , which yields
an overall change of sign of a spinor wave function [cf. Eq. (C.1.12)].98
For example, corresponding to the two conventional choices for γ ,

ξλ(p̂) =
{
(−1)

1
2−λ e−2iλφp for γ (p̂) = −φp, γ (−p̂) = −π + φp,

i for γ (p̂) = γ (−p̂) = 0,
(C.3.15)

with the proviso that for p̂ = ±ẑ , we define φp according to Eq. (C.1.7).
Suppose that the two fermions considered above have equal mass. In the center-of-mass frame, if the four-momentum

of one of the fermions is pµ = (E, Ep), then the four-momentum of the other fermion is
p̃µ ≡ (E,−Ep). (C.3.16)

The following numerical identities are then satisfied: σ · p̃ = σ ·p and σ · p̃ = σ ·p. However, in order tomaintain covariance
with respect to the undotted and dotted spinor indices, we shall write these identities as:

p̃ · σαβ̇ = σ
0
αα̇(p · σ

α̇β) σ 0
ββ̇
, (C.3.17)

p̃ · σ α̇β = σ 0α̇α(p · σαβ̇) σ
0β̇β . (C.3.18)

Taking thematrix square root of both sides of Eqs. (C.3.17) and (C.3.18) removes one of the factors of σ 0 and σ 0, respectively
[cf. Eqs. (2.109)–(2.115)]. Thus, using Eqs. (3.1.19) and (C.3.11),

xα(−Ep,−λ) =
√̃
p · σχ−λ(−p̂) = σ 0

√
p · σ ξλ(p̂) χλ(Ep) = σ 0αβ̇ ξλ(p̂) y

Ďβ̇(Ep, λ). (C.3.19)

In this way, we can derive all relations of this kind for the helicity spinor wave functions:

xα(−Ep,−λ) = ξλσ 0αβ̇ y
Ďβ̇(Ep, λ) = ωλξλ χλ(p̂), (C.3.20)

yα(−Ep,−λ) = ξ−λσ 0αβ̇ x
Ďβ̇(Ep, λ) = −2λω−λξ−λ χ−λ(p̂), (C.3.21)

xĎα̇(−Ep,−λ) = ξ−λσ 0α̇β yβ(Ep, λ) = 2λωλξ−λ χ−λ(p̂), (C.3.22)

yĎα̇(−Ep,−λ) = ξλσ 0α̇β xβ(Ep, λ) = ω−λξλ χλ(p̂), (C.3.23)
where ω±λ ≡ ω±λ(Ep) and ξλ ≡ ξλ(p̂). Raising the undotted index and lowering the dotted index yields:

xα(−Ep,−λ) = yĎ
β̇
(Ep, λ) ξ−λσ 0β̇α = 2λωλξ−λχ

Ď
−λ(p̂), (C.3.24)

yα(−Ep,−λ) = xĎ
β̇
(Ep, λ) ξλσ 0β̇α = ω−λξλ χ

Ď
λ(p̂), (C.3.25)

xĎα̇(−Ep,−λ) = y
β(Ep, λ) ξλσ 0βα̇ = ωλξλ χ

Ď
λ(p̂), (C.3.26)

yĎα̇(−Ep,−λ) = x
β(Ep, λ) ξ−λσ 0βα̇ = −2λω−λξ−λ χ

Ď
−λ(p̂). (C.3.27)

Eqs. (C.3.20)–(C.3.27) can also be obtained directly from Eqs. (C.3.4)–(C.3.7).

98 A slightly modified procedure (not adopted in this review) is to take the azimuthal angle of−p̂ to be φp ± π , where the± sign is chosen according to
which of the two conditions 0 ≤ φp ± π < 2π is true. This procedure would yield an extra minus sign in the definition of ξλ(p̂) when π ≤ φp < 2π . In
this convention, two successive inversions are equivalent to the identity rotation so that χλ(−(−p̂)) = χλ(p̂).
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Appendix D. Matrix decompositions for mass matrix diagonalization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M2 is straightforward. For a theory of n
complex scalar fields,M2 is an hermitian n× nmatrix, which can be diagonalized by a unitary matrixW :

W ĎM2W = m2 = diag(m21,m
2
2, . . . ,m

2
n). (D.1)

For a theory of n real scalar fields,M2 is a real symmetric n×nmatrix, which can be diagonalized by an orthogonalmatrixQ :

Q TM2Q = m2 = diag(m21,m
2
2, . . . ,m

2
n). (D.2)

In both cases, the eigenvaluesm2k ofM
2 are real. These are the standard matrix diagonalization problems that are treated in

all elementary linear algebra textbooks.
In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the Lagrangian, written in terms

of two-component spinors, is complex and symmetric [cf. Section 3.2]. If the Lagrangian exhibits a U(1) symmetry, then a
basis can be found such that fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix
then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex symmetric neutral fermion
mass matrix. In this Appendix, we review the linear algebra theory relevant for the matrix decompositions associated with
the general charged and neutral spin-1/2 fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion
massmatrix is governed by the singular value decomposition of a complexmatrix, as shown in Appendix D.1. In contrast, the
diagonalization of a neutral fermion mass matrix is governed by the Takagi diagonalization of a complex symmetric matrix,
which is treated in Appendix D.2.99 These two techniques are compared and contrasted in Appendix D.3. Dirac fermions
can also arise in the case of a pseudo-real representation of fermion fields. As shown in Section 3.2, this latter case requires
the reduction of a complex antisymmetric fermion mass matrix to real normal form. The relevant theorem and its proof are
given in Appendix D.4.

D.1. Singular value decomposition

The diagonalization of the charged (Dirac) fermionmassmatrix requires the singular value decomposition of an arbitrary
complex matrixM .

Theorem. For any complex [or real] n× n matrix M, unitary [or real orthogonal] matrices L and R exist such that

LTMR = MD = diag(m1,m2, . . . ,mn), (D.1.1)

where the mk are real and non-negative. This is called the singular value decomposition of the matrix M (e.g., see Refs. [147,258]).

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values of the general complex matrix
M , which are defined to be the non-negative square roots of the eigenvalues of MĎM (or equivalently of MMĎ). An
equivalent definition of the singular values can be established as follows. Since MĎM is an hermitian non-negative matrix,
its eigenvalues are real and non-negative and its eigenvectors, vk, defined by MĎMvk = m2kvk, can be chosen to be
orthonormal.100 Consider first the eigenvectors corresponding to the non-zero eigenvalues of MĎM . Then, we define the
vectors wk such that Mvk = mkw∗k . It follows that m

2
kvk = M

ĎMvk = mkMĎw∗k , which yields: M
Ďw∗k = mkvk. Note that

these equations also imply that MMĎw∗k = m
2
kw
∗

k . The orthonormality of the vk implies the orthonormality of the wk, and
vice versa. For example,

δjk = 〈vj|vk〉 =
1
mjmk

〈MĎw∗j |M
Ďw∗k 〉 =

1
mjmk

〈wj|MMĎw∗k 〉 =
mk
mj
〈w∗j |w

∗

k 〉, (D.1.2)

which yields 〈wk|wj〉 = δjk. If M is a real matrix, then the eigenvectors vk can be chosen to be real, in which case the
correspondingwk are also real.
If vi is an eigenvector of MĎM with zero eigenvalue, then 0 = v

Ď
i M

ĎMvi = 〈Mvi|Mvi〉, which implies that Mvi = 0.
Likewise, if w∗i is an eigenvector of MM

Ď with zero eigenvalue, then 0 = wT
i MM

Ďw∗i = 〈M
Twi|MTwi〉

∗, which implies
that MTwi = 0. Because the eigenvectors of MĎM [MMĎ] can be chosen orthonormal, the eigenvectors corresponding to
the zero eigenvalues of M [MĎ] can be taken to be orthonormal.101 Finally, these eigenvectors are also orthogonal to the

99 One may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator. In this case, all fermions are governed by
a complex symmetric mass matrix, which can be Takagi diagonalized according to the procedure described in Appendix D.2.
100 We define the inner product of two vectors to be 〈v|w〉 ≡ vĎw. Then, v and w are orthonormal if 〈v|w〉 = 0. The norm of a vector is defined by
‖v ‖ = 〈v|v〉1/2 .
101 This analysis shows that the number of linearly independent zero eigenvectors of MĎM [MMĎ] with zero eigenvalue, coincides with the number of
linearly independent eigenvectors ofM [MĎ] with zero eigenvalue.



H.K. Dreiner et al. / Physics Reports 494 (2010) 1–196 119

eigenvectors corresponding to thenon-zero eigenvalues ofMĎM [MMĎ]. That is, if the indices i and j run over the eigenvectors
corresponding to the zero and non-zero eigenvalues ofMĎM [MMĎ], respectively, then

〈vj|vi〉 =
1
mj
〈MĎw∗j |vi〉 =

1
mj
〈w∗j |Mvi〉 = 0, (D.1.3)

and similarly 〈wj|wi〉 = 0.
Thus, we can define the singular values of a general complex n× nmatrixM to be the simultaneous solutions (with real

non-negativemk) of102:

Mvk = mkw∗k , wT
kM = mkv

Ď
k . (D.1.4)

The corresponding vk (wk), normalized to have unit norm, are called the right (left) singular vectors ofM . In particular, the
number of linearly independent vk coincides with the number of linearly independentwk and is equal to n.

Proof of the singular value decomposition theorem. Eqs. (D.1.2) and (D.1.3) imply that the right [left] singular vectors
can be chosen to be orthonormal. Consequently, the unitarymatrix R [L] can be constructed such that its kth column is given
by the right [left] singular vector vk [wk]. It then follows from Eq. (D.1.4) that:

wT
kMv` = mkδk`, (no sum over k). (D.1.5)

In matrix form, Eq. (D.1.5) coincides with Eq. (D.1.1), and the singular value decomposition is established. IfM is real, then
the right and left singular vectors, vk and wk, can be chosen to be real, in which case Eq. (D.1.1) holds for real orthogonal
matrices L and R.
The singular values of a complex matrix M are unique (up to ordering), as they correspond to the eigenvalues of MĎM

(or equivalently the eigenvalues ofMMĎ). The unitary matrices L and R are not unique. The matrix Rmust satisfy

RĎMĎMR = M2D, (D.1.6)

which follows directly from Eq. (D.1.1) by computingMĎ
DMD = M

2
D. That is, R is a unitary matrix that diagonalizes the non-

negative definite matrixMĎM . Since the eigenvectors ofMĎM are orthonormal, each vk corresponding to a non-degenerate
eigenvalue of MĎM can be multiplied by an arbitrary phase eiθk . For the case of degenerate eigenvalues, any orthonormal
linear combination of the corresponding eigenvectors is also an eigenvector of MĎM . It follows that within the subspace
spanned by the eigenvectors corresponding to non-degenerate eigenvalues, R is uniquely determined up to multiplication
on the right by an arbitrary diagonal unitarymatrix.Within the subspace spanned by the eigenvectors ofMĎM corresponding
to a degenerate eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.
Once R is fixed, L is obtained from Eq. (D.1.1):

L = (MT)−1R∗MD. (D.1.7)

However, if some of the diagonal elements of MD are zero, then L is not uniquely defined. Writing MD in 2 × 2 block form
such that the upper left block is a diagonal matrix with positive diagonal elements and the other three blocks are equal to
the zero matrix of the appropriate dimensions, it follows that,MD = MDW , where

(D.1.8)

W0 is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear in the diagonal elements of
MD, and 1 and O are respectively the identity matrix and zero matrix of the appropriate size. Hence, we can multiply both
sides of Eq. (D.1.7) on the right byW , whichmeans that L is only determined up tomultiplication on the right by an arbitrary
unitary matrix whose form is given by Eq. (D.1.8).103
If M is a real matrix, then the derivation of the singular value decomposition of M is given by Eq. (D.1.1), where L and

R are real orthogonal matrices. This result is easily established by replacing ‘‘phase’’ with ‘‘sign’’ and replacing ‘‘unitary’’ by
‘‘real orthogonal’’ in the above proof.

102 One can always find a solution to Eq. (D.1.4) such that the mk are real and non-negative. Given a solution where mk is complex, we simply write
mk = |mk|eiθ and redefinewk → wkeiθ to remove the phase θ .
103 Of course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.1.1) implies that LTMMĎL∗ = M2D , in which case L is
determined up to multiplication on the right by an arbitrary [diagonal] unitary matrix within the subspace spanned by the eigenvectors corresponding to
the degenerate [non-degenerate] eigenvalues ofMMĎ . Having fixed L, one can obtain R = M−1L∗MD from Eq. (D.1.1). As above, R is only determined up to
multiplication on the right by a unitary matrix whose form is given by Eq. (D.1.8).
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D.2. Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic basis) is complex and
symmetric. Thismassmatrixmust be diagonalized in order to identify the physical fermionmass eigenstates and to compute
their masses. However, the fermion mass matrix is not diagonalized by the standard unitary similarity transformation.
Instead a different diagonalization equation is employed that was discovered by Takagi [111], and rediscovered many times
since [147].104

Theorem. For any complex symmetric n× n matrix M, there exists a unitary matrixΩ such that:

ΩTMΩ = MD = diag(m1,m2, . . . ,mn), (D.2.1)

where the mk are real and non-negative. This is the Takagi diagonalization105 of the complex symmetric matrix M.

In general, themk are not the eigenvalues ofM . Rather, themk are the singular values of the symmetric matrixM . From
Eq. (D.2.1) it follows that:

ΩĎMĎMΩ = M2D = diag(m
2
1,m

2
2, . . . ,m

2
n). (D.2.2)

If all of the singular values mk are non-degenerate, then one can find a solution to Eq. (D.2.1) for Ω from Eq. (D.2.2). This
is no longer true if some of the singular values are degenerate. For example, if M =

( 0 m
m 0

)
, then the singular value

|m| is doubly degenerate, but Eq. (D.2.2) yields ΩĎΩ = 12×2, which does not specify Ω . That is, in the degenerate case,
the physical fermion states cannot be determined by the diagonalization of MĎM . Instead, one must make direct use of
Eq. (D.2.1). Below, we shall present a constructive method for determiningΩ that is applicable in both the non-degenerate
and the degenerate cases.
Eq. (D.2.1) can be rewritten asMΩ = Ω∗MD, where the columns ofΩ are orthonormal. If we denote the kth column of

Ω by vk, then,

Mvk = mkv∗k , (D.2.3)

where the mk are the singular values and the vectors vk are normalized to have unit norm. Following Ref. [261], the vk are
called the Takagi vectors of the complex symmetric n×nmatrixM . The Takagi vectors corresponding to non-degenerate non-
zero [zero] singular values are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi
vectors corresponding to a set of degenerate non-zero [zero] singular values is also a Takagi vector corresponding to the
same singular value. Using these results, one can determine the degree of non-uniqueness of thematrixΩ . For definiteness,
we fix an ordering of the diagonal elements ofMD.106 If the singular values ofM are distinct, then the matrixΩ is uniquely
determined up to multiplication by a diagonal matrix whose entries are either ±1 (i.e., a diagonal orthogonal matrix). If
there are degeneracies corresponding to non-zero singular values, then within the degenerate subspace,Ω is unique up to
multiplication on the right by an arbitrary orthogonal matrix. Finally, in the subspace corresponding to zero singular values,
Ω is unique up to multiplication on the right by an arbitrary unitary matrix.
For a real symmetric matrixM , the Takagi diagonalization [Eq. (D.2.1)] still holds for a unitary matrixΩ , which is easily

determined as follows. Any real symmetric matrixM can be diagonalized by a real orthogonal matrix Z ,

ZTMZ = diag(ε1m1, ε2m2, . . . , εnmn), (D.2.4)

where the mk are real and non-negative and the εkmk are the real eigenvalues of M with corresponding signs εk = ±1.107
Then, the Takagi diagonalization ofM is achieved by taking:

Ωij = ε
1/2
i Zij, no sum over i. (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonalization of a complex symmetric matrix,
it is sufficient to provide an algorithm for constructing the orthonormal Takagi vectors vk that make up the columns ofΩ .

104 Subsequently, it was recognized in Ref. [258] that the Takagi diagonalization was first established for nonsingular complex symmetric matrices by
Autonne [259]. In the physics literature, the first proof of Eq. (D.2.1) was given in Ref. [149]. Applications of Takagi diagonalization to the study of neutrino
mass matrices can be found in Refs. [5,260].
105 In Ref. [147], Eq. (D.2.1) is called the Takagi factorization of a complex symmetric matrix. We choose to refer to this as Takagi diagonalization to
emphasize and contrast this with themore standard diagonalization of normalmatrices by a unitary similarity transformation. In particular, not all complex
symmetric matrices are diagonalizable by a similarity transformation, whereas complex symmetric matrices are always Takagi diagonalizable.
106 Permuting the order of the singular values is equivalent to permuting the order of the columns ofΩ .
107 In the case ofmk = 0, we conventionally choose the corresponding εk = +1.
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This is achieved by rewriting the n × n complex matrix equation Mv = mv∗ [with m real and non-negative] as a 2n × 2n
real matrix equation [262,263]:

MR

(
Re v
Im v

)
≡

(
ReM −ImM
−ImM −ReM

) (
Re v
Im v

)
= m

(
Re v
Im v

)
, wherem ≥ 0. (D.2.6)

SinceM = MT, the 2n × 2nmatrixMR ≡
( ReM −ImM
−ImM −ReM

)
is a real symmetric matrix.108 In particular,MR is diagonalizable

by a real orthogonal similarity transformation, and its eigenvalues are real. Moreover, if m is an eigenvalue of MR with
eigenvector (Re v, Im v), then −m is an eigenvalue of MR with (orthogonal) eigenvector (−Im v, Re v). This observation
implies thatMR has an equal number of positive and negative eigenvalues and an even number of zero eigenvalues.109 Thus,
Eq. (D.2.3) has been converted into an ordinary eigenvalue problem for a real symmetric matrix. Sincem ≥ 0, we solve the
eigenvalue problemMRu = mu for the real eigenvectors u ≡ (Re v, Im v) corresponding to the non-negative eigenvalues of
MR,110 which then immediately yields the complex Takagi vectors, v. It is straightforward to prove that the total number of
linearly independent Takagi vectors is equal to n. Simply note that the orthogonality of (Re v1, Im v1) and (−Im v1, Re v1)
with (Re v2, Im v2) implies that v

Ď
1v2 = 0.

Thus,we have derived a constructivemethod for obtaining the Takagi vectors vk. If there are degeneracies, one can always
choose the vk in the degenerate subspace to be orthonormal. The Takagi vectors then make up the columns of the matrixΩ
in Eq. (D.2.1). A numerical package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in Ref. [264] (see also Refs. [261,265] for previous numerical approaches to Takagi diagonalization).

D.3. Relation between Takagi diagonalization and singular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex matrix M in Eq. (D.1.1)
is symmetric, M = MT, then the Takagi diagonalization corresponds toΩ = L = R. In this case, the right and left singular
vectors coincide (vk = wk) and are identified with the Takagi vectors defined in Eq. (D.2.3). However as previously noted,
the matrixΩ cannot be determined from Eq. (D.2.2) in cases where there is a degeneracy among the singular values.111 For
example, one possible singular value decomposition of the matrixM =

( 0 m
m 0

)
[withm assumed real and positive] can be

obtained by choosing R =
( 1 0
0 1

)
and L =

( 0 1
1 0

)
, in which case LTMR =

( m 0
0 m

)
= MD. Of course, this is not a Takagi

diagonalization because L 6= R. Since R is only defined modulo the multiplication on the right by an arbitrary 2× 2 unitary
matrixO, then at least one singular value decomposition exists that is also a Takagi diagonalization. For the example under
consideration, it is not difficult to deduce the Takagi diagonalization:ΩTMΩ = MD, where

Ω =
1
√
2

(
1 i
1 −i

)
O, (D.3.1)

and O is any 2× 2 orthogonal matrix.
Since the Takagi diagonalization is a special case of the singular value decomposition, it seems plausible that one can

prove the former from the latter. This turns out to be correct; for completeness, we provide the proof below. Our second
proof depends on the following lemma:

Lemma. For any symmetric unitary matrix V , there exists a unitary matrix U such that V = UTU.

Proof of the Lemma: For any n× n unitary matrix V , there exists an hermitian matrix H such that V = exp(iH) (this is the
polar decomposition of V ). If V = V T then H = HT

= H∗ (since H is hermitian); therefore H is real symmetric. But, any
real symmetric matrix can be diagonalized by an orthogonal transformation. It follows that V can also be diagonalized by
an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases, there exists a real orthogonal
matrix Q such that Q TVQ = diag (eiθ1 , eiθ2 , . . . , eiθn). Thus, the unitary matrix,

U = diag (eiθ1/2, eiθ2/2, . . . , eiθn/2)Q T, (D.3.2)

satisfies V = UTU and the lemma is proved. Note that U is unique modulo multiplication on the left by an arbitrary real
orthogonal matrix.

108 The 2n× 2nmatrixMR is a real representation of the n× n complex matrixM .
109 Note that (−Im v, Re v) corresponds to replacing vk in Eq. (D.2.3) by ivk . However, form < 0 these solutions are not relevant for Takagi diagonalization
(where themk are by definition non-negative). The case ofm = 0 is considered in footnote 110.
110 For m = 0, the corresponding vectors (Re v, Im v) and (−Im v, Re v) are two linearly independent eigenvectors of MR; but these yield only one
independent Takagi vector v (since v and iv are linearly dependent).
111 This is in contrast to the singular value decomposition, where R can be determined from Eq. (D.1.6) modulo right multiplication by a [diagonal] unitary
matrix in the [non-]degenerate subspace and L is then determined by Eq. (D.1.7) modulo multiplication on the right by Eq. (D.1.8).
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Second Proof of the Takagi diagonalization. Starting from the singular value decomposition of M , there exist unitary
matrices L and R such that M = L∗MDRĎ, where MD is the diagonal matrix of singular values. Since M = MT

= R∗MDLĎ,
we have two different singular value decompositions for M . However, as noted below Eq. (D.1.6), R is unique modulo
multiplication on the right by an arbitrary [diagonal] unitary matrix, V , within the [non-]degenerate subspace. Thus, it
follows that a [diagonal] unitary matrix V exists such that L = RV . Moreover, V = V T. This is manifestly true within the
non-degenerate subspace where V is diagonal. Within the degenerate subspace, MD is proportional to the identity matrix
so that L∗RĎ = R∗LĎ. Inserting L = RV then yields V T

= V . Using the lemma proved above, there exists a unitary matrix U
such that V = UTU . That is,

L = RUTU, (D.3.3)
for some unitary matrix U . Moreover, it is now straightforward to show that

MDU∗ = U∗MD. (D.3.4)
To see this, note that within the degenerate subspace, Eq. (D.3.4) is trivially true since MD is proportional to the identity
matrix. Within the non-degenerate subspace V is diagonal; hence we may choose U = UT

= V 1/2, so that Eq. (D.3.4) is
true since diagonal matrices commute. Using Eqs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M
as follows

M = L∗MDRĎ = R∗UĎU∗MDRĎ = (RUT)∗MDU∗RĎ = Ω∗MDΩĎ, (D.3.5)
where Ω ≡ RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an arbitrary complex symmetric
matrix [Eq. (D.2.1)] is once again proved.
In the diagonalization of the two-component fermion mass matrix, M , the eigenvalues of MĎM typically fall into

two classes—non-degenerate eigenvalues corresponding to neutral fermion mass eigenstates and degenerate pairs
corresponding to charged (Dirac) mass eigenstates. In this case, the sector of the neutral fermions corresponds to a non-
degenerate subspace of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it is
sufficient to diagonalizeMĎM with a unitary matrix R [as in Eq. (D.1.6)], and then adjust the overall phase of each column of
R so that the resulting matrixΩ satisfiesΩTMΩ = MD, whereMD is a diagonal matrix of the non-negative fermion masses.
This last result is a consequence of Eqs. (D.3.3)–(D.3.5), whereΩ = RV 1/2 and V is a diagonal matrix of phases.

D.4. Reduction of a complex antisymmetric matrix to the real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a compact Lie group
[cf. Eq. (3.2.35)], the corresponding mass matrix is in general complex and antisymmetric. In this case, one needs the
antisymmetric analogue of the Takagi diagonalization of a complex symmetric matrix [147].

Theorem. For any complex [or real] antisymmetric n × n matrix M, there exists a unitary [or real orthogonal] matrix U such
that:

UTMU = N ≡ diag
{(

0 m1
−m1 0

)
,

(
0 m2
−m2 0

)
, . . . ,

(
0 mp
−mp 0

)
,On−2p

}
, (D.4.1)

where N is written in block diagonal form with 2× 2matrices appearing along the diagonal, followed by an (n− 2p)× (n− 2p)
block of zeros (denoted by On−2p), and the mj are real and positive. N is called the real normal form of an antisymmetric
matrix [149,266,267].

Proof. A number of proofs can be found in the literature [148,149,266–268]. Here we provide a proof inspired by Ref. [266].
Following Appendix D.1, we first consider the eigenvalue equation forMĎM:

MĎMvk = m2kvk, mk > 0, and MĎMuk = 0, (D.4.2)

where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero eigenvalues, respectively.
The quantitiesmk are the positive singular values ofM . Noting that u

Ď
kM

ĎMuk = 〈Muk |Muk〉 = 0, it follows that

Muk = 0, (D.4.3)

so that the uk are the eigenvectors corresponding to the zero eigenvalues ofM . For each eigenvector ofMĎM with mk 6= 0,
we define a new vector

wk ≡
1
mk
M∗v∗k . (D.4.4)

It follows thatm2kvk = M
ĎMvk = mkMĎw∗k , which yieldsM

Ďw∗k = mkvk. Comparingwith Eq. (D.1.4), we identify vk andwk as
the right and left singular vectors, respectively, corresponding to the non-zero singular values ofM . For any antisymmetric
matrix,MĎ

= −M∗. Hence,

Mvk = mkw∗k , Mwk = −mkv∗k , (D.4.5)
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and

MĎMwk = −mkMĎv∗k = mkM
∗v∗k = m

2
kwk, mk > 0. (D.4.6)

That is, thewk are also eigenvectors ofMĎM .
The key observation is that for fixed k the vectors vk andwk are orthogonal, since Eq. (D.4.5) implies that:

〈wk|vk〉 = 〈vk|wk〉
∗
= −

1
m2k
〈Mwk|Mvk〉 = −

1
m2k
〈wk|MĎMvk〉 = − 〈wk|vk〉 , (D.4.7)

which yields 〈wk|vk〉 = 0. Thus, if all the mk are distinct, it follows that m2k is a doubly degenerate eigenvalue of M
ĎM ,

with corresponding linearly independent eigenvectors vk and wk, where k = 1, 2, . . . , p (and p ≤ 1
2n). The remaining zero

eigenvalues are (n−2p)-fold degenerate, with corresponding eigenvectors uk (for k = 1, 2, . . . , n − 2p). If some of the mk
are degenerate, these conclusions still apply. For example, suppose thatmj = mk for j 6= k, which means thatm2k is at least
a three-fold degenerate eigenvalue of MĎM . Then, there must exist an eigenvector vj that is orthogonal to vk and wk such
thatMĎMvj = m2kvj. We now constructwj ≡ M

∗v∗j /mk according to Eq. (D.4.4). According to Eq. (D.4.7),wj is orthogonal to
vj. But, we still must show thatwj is also orthogonal to vk andwk. But this is straightforward:〈

wj|wk
〉
=
〈
wk|wj

〉∗
=
1
m2k
〈Mvk|Mvj〉 =

1
m2k
〈vk|MĎMvj〉 =

〈
vk|vj

〉
= 0, (D.4.8)

〈
wj|vk

〉
=
〈
vk|wj

〉∗
= −

1
m2k
〈Mwk|Mvj〉 = −

1
m2k
〈wk|MĎMvj〉 = −

〈
wk|vj

〉
= 0, (D.4.9)

where we have used the assumed orthogonality of vj with vk and wk, respectively. If follows that vj, wj, vk and wk are
linearly independent eigenvectors corresponding to a four-fold degenerate eigenvaluem2k ofM

ĎM . Additional degeneracies
are treated in the same way.
Thus, the number of non-zero eigenvalues of MĎM must be an even number, denoted by 2p above. Moreover, one can

always choose the complete set of eigenvectors {uk, vk, wk} of MĎM to be orthonormal. These orthonormal vectors can be
used to construct a unitary matrix U with matrix elements:

U`,2k−1 = (wk)`, U`,2k = (vk)`, k = 1, 2, . . . , p,

U`,k+2p = (uk)`, k = 1, 2, . . . , n− 2p, (D.4.10)

for ` = 1, 2, . . . , n, where e.g., (vk)` is the `th component of the vector vk with respect to the standard orthonormal basis.
The orthonormality of {uk, vk, wk} implies that (UĎU)`k = δ`k as required. Eqs. (D.4.3) and (D.4.5) are thus equivalent to the
matrix equationMU = U∗N , which immediately yields Eq. (D.4.1), and the theorem is proven. IfM is a real antisymmetric
matrix, then all the eigenvectors ofMĎM can be chosen to be real, in which case U is a real orthogonal matrix.
Finally, we address the non-uniqueness of thematrixU . For definiteness, we fix an ordering of the 2×2 blocks containing

the mk in the matrix N . In the subspace corresponding to a non-zero singular value of degeneracy d, U is unique up to
multiplication on the right by a 2d× 2d unitary matrix S that satisfies:

STJS = J, (D.4.11)

where the 2d× 2dmatrix J , defined by

J = diag
{(

0 1
−1 0

)
,

(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
, (D.4.12)

is a block diagonal matrix with d blocks of 2 × 2 matrices. A unitary matrix S that satisfies Eq. (D.4.11) is an element of
the unitary symplectic group, Sp(d). If there are no degeneracies among the mk, then d = 1. Identifying Sp(1) ∼= SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U is unique up to multiplication on the
right by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues of M , U is unique up to
multiplication on the right by an arbitrary unitary matrix.

Appendix E. Lie group theoretical techniques for gauge theories

E.1. Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [269]. The most general form for G is a direct product of compact simple
groups and U(1) groups. If no U(1) factors are present, then G is semisimple. For any U ∈ G,

U = exp(−iθ aT a), (E.1.1)
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where the T a are called the generators of G, and the θ a are real numbers that parameterize the elements of G. The
corresponding real Lie algebra g consists of arbitrary real linear combinations of the generators, θ aT a. The Lie group
generators T a satisfy the commutation relations:

[T a, T b
] = if abc T c , (E.1.2)

where the real structure constants f abc define the compact Lie algebra. The generator indices run over a, b, c = 1, 2, . . . , dG,
where dG is the dimension of the Lie algebra. For compact Lie algebras, the Killing form gab = Tr(T aT b) is positive definite,
so one can always choose a basis for the Lie algebra in which gab ∝ δab (where the proportionality constant is a positive real
number). With respect to this new basis, the structure constants f abc ≡ gadf bcd are totally antisymmetric with respect to the
interchange of the indices a, b and c. Henceforth, we shall always assume that such a preferred basis of generators has been
chosen.
The elements of the compact Lie group G act on a multiplet of fields that transform under some dR-dimensional

representation R of G. The group elements U ∈ G are represented by dR×dR unitarymatrices, DR(U) = exp(−iθ aT a
R), where

the T a
R are dR × dR hermitian matrices that satisfy Eq. (E.1.2) and thus provide a representation of the Lie group generators.

For any representation R of a semisimple group, Tr T a
R = 0 for all a. A representation R

′ is unitarily equivalent to R if there
exists a fixed unitary matrix S such that DR′(U) = S−1DR(U)S for all U ∈ G. Similarly, the corresponding generators satisfy
T a

R′ = S
−1T a

RS for all a = 1, 2, . . . , dG.
For compact semisimple Lie groups, two representations are noteworthy. If G is one of the classical groups, SU(N)

[for N ≥ 2], SO(N) [for N ≥ 3] or Sp(N/2) [the latter is defined by Eqs. (D.4.11) and (D.4.12) for even N ≥ 2], then
the N × N matrices that define these groups comprise the fundamental (or defining) representation F , with dF = N . For
example, the fundamental representation of SU(N) consists of N × N unitary matrices with determinant equal to one, and
the corresponding generators comprise a suitably chosen basis for theN×N traceless hermitianmatrices. Every Lie group G
also possesses an adjoint representation A, with dA = dG. Thematrix elements of the generators in the adjoint representation
are given by112

(T a
A)
bc
= −if abc . (E.1.3)

Given the unitary representation matrices DR(U) of the representation R of G, the matrices [DR(U)]∗ constitute the
conjugate representation R∗. Equivalently, if the T a

R comprise a representation of the Lie algebra g, then the −(T a
R)
∗
=

−(T a
R)

T comprise a representation R∗ of g of the same dimension dR. If R and R∗ are unitarily equivalent representations,
then we say that the representation R is self-conjugate. Otherwise, we say that the representation R is complex, or ‘‘strictly
complex’’ in the language of Ref. [270]. However, the representation matrices DR(U) of a self-conjugate representation can
also be complex. We can then define two classes of self-conjugate representations. If R and R∗ are unitarily equivalent to
a representation R′ that satisfies the reality property [DR′(U)]∗ = [DR′(U)] for all U ∈ G (equivalently, the matrices iT a

R′
are real for all a), then R is said to be real, or ‘‘strictly real’’ in the language of Ref. [270]. If R and R∗ are unitarily equivalent
representations, but neither is unitarily equivalent to a representation that satisfies the reality property above, then R is said
to be pseudo-real.
Henceforth, we drop the adjective ‘‘strictly’’ and simply refer to real, pseudo-real and complex representations.

Self-conjugate representations are either real or pseudo-real. An important theorem states that for self-conjugate
representations, there exists a constant unitary matrixW such that [270]

[DR(U)]∗ = WDR(U)W−1, or equivalently, (iT a
R)
∗
= W (iT a

R)W
−1, (E.1.4)

where

WW ∗ = 1, W T
= W , for real representations, (E.1.5)

WW ∗ = −1, W T
= −W , for pseudo-real representations, (E.1.6)

and 1 is the dR × dR identity matrix. Taking the determinant of Eq. (E.1.6), and using the fact thatW is unitary (and hence
invertible), it follows that 1 = (−1)dR . Therefore, a pseudo-real representation must be even-dimensional.
If we redefine the basis for the Lie group generators by T a

R → V−1T a
R V , where V is unitary, then W → V TWV . We

can make use of this change of basis to transform W to a canonical form. Since W is unitary, its singular values (i.e. the
positive square roots of the eigenvalues ofW ĎW ) are all equal to 1. Hence, in the two cases corresponding toW T

= ±W ,
respectively, Eqs. (D.2.1) and (D.4.1) yield the following canonical forms (for an appropriately chosen V ),

W = 1, for a real representation R, with εη = +1, (E.1.7)

W = J, for a pseudo-real representation R, with εη = −1, (E.1.8)

where J ≡ diag
{(

0 1
−1 0

)
,
(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
is a dR × dR matrix (and dR is even).

112 Since the f abc are real, the iT a
A are real antisymmetric matrices. The heights of the adjoint labels a, b and c are not significant, as they can be lowered

by the inverse Killing form given by gab ∝ δab in the preferred basis.
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There are many examples of complex, real and pseudo-real representations in mathematical physics. For example, the
fundamental representation of SU(N) is complex for N ≥ 3. The adjoint representation of any compact Lie group is real
[cf. footnote 112]. The simplest example of a pseudo-real representation is the two-dimensional representation of SU(2),113
where T a

=
1
2τ
a (and the τ a are the usual Pauli matrices). More generally, the generators of a pseudo-real representation

must satisfy

(iT a
R)
∗
= C−1(iT a

R)C, (E.1.9)

for some fixed unitary antisymmetric matrix C [previously denoted by W−1 in Eqs. (E.1.4) and (E.1.6)]. For the doublet
representation of SU(2) just given, Cab = (iτ 2)ab ≡ εab is the familiar SU(2)-invariant tensor.
Finally, we note that for U(1), all irreducible representations are one-dimensional. The structure constants vanish

and any d-dimensional representation of the U(1)-generator is given by the d × d identity matrix multiplied by the
corresponding U(1)-charge. For a Lie group that is a direct product of a semisimple group and U(1) groups, Tr T a

R is non-
zero when a corresponds to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of
the representation R vanishes.

E.2. The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact semisimple Lie algebra g. The
index I2(R) of the representation R is defined by [269,271–273]

Tr(T a
RT

b
R) = I2(R)δ

ab, (E.2.1)

where I2(R) is a positive real number that depends on R. Once I2(R) is defined for one representation, its value is uniquely
fixed for any other representation. In the case of a simple compact Lie algebra g, it is traditional to normalize the generators
of the fundamental (or defining) representation F according to114

Tr(T a
FT

b
F ) =

1
2δ
ab. (E.2.2)

If the representation R is reducible, it can be decomposed into the direct sum of irreducible representations, R =
∑
k Rk.

In this case, the index of R is given by

I2(R) =
∑
k

I2(Rk). (E.2.3)

The index of a tensor product of two representations R1 and R2 is given by [271]

I2(R1 ⊗ R2) = dR1 I2(R2)+ dR2 I2(R1). (E.2.4)

Finally, we note that if R∗ is the complex conjugate of the representation R, then

I2(R∗) = I2(R). (E.2.5)

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators T a. If the representation of
the T a is irreducible, then Schur’s lemma implies that the Casimir operator is a multiple of the identity. The proportionality
constant depends on the representation R. The quadratic Casimir operator of an irreducible representation R is given by

(T 2R)i
j
≡ (T a

R)i
k(T a

R)k
j
= CRδij, (E.2.6)

where the sumover the repeated indices are implicit and i, j, k = 1, 2 . . . dR. A simple computation then yields the eigenvalue
of the quadratic Casimir operator, CR,

CR =
I2(R)dG
dR

. (E.2.7)

For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows that CA = I2(A). For a
reducible representation, T 2 is a block diagonal matrix consisting of dRk × dRk blocks given by CRk1 for each irreducible
component Rk of R.
The example of the simple Lie algebra su(N) is well known. The dimension of this Lie algebra (equal to the number of

generators) is given by N2 − 1. As previously noted, dF = N and I2(F) = 1
2 . It then follows that CF = (N

2
− 1)/(2N). One

can also check that CA = I2(A) = N .

113 No unitary matrixW exists such that theWiτ aW−1 are real for all a = 1, 2, 3. Thus, the two-dimensional representation of SU(2) is not real. However,
(iτ a)∗ = (iτ 2)(iτ a)(iτ 2)−1 for a = 1, 2, 3, which proves that the two-dimensional representation of SU(2) is pseudo-real.
114 In the literature, the index is often defined as the ratio I2(R)/I2(F), where I2(F) is fixed by some convention. This has the advantage that the index of R
is independent of the normalization convention of the generators. In this Appendix, we will simply refer to I2(R) as the index.
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The Lie algebras su(N) [N ≥ 3] are the only simple Lie algebra that possesses a cubic Casimir operator. First, we define
the symmetrized trace of three generators [273,274]:

Dabc ≡ Str (T aT bT c) =
1
6
Tr(T aT bT c

+ perm.), (E.2.8)

where ‘‘perm.’’ indicates five other terms obtained by permuting the indices a, b and c in all possible ways. Due to the
properties of the trace, it follows that for a given representation R,

Dabc(R) = 1
2Tr

[
{T a

R, T
b
R}T

c
R
]
. (E.2.9)

For the N-dimensional defining representation of su(N), it is conventional to define

dabc ≡ 2Tr
[
{T a

F , T
b
F }T

c
F
]
. (E.2.10)

One important property of the dabc is [275,276]:

dabcdabc =
(N2 − 1)(N2 − 4)

N
. (E.2.11)

In general, Dabc(R) is proportional to dabc . In particular, the cubic index I3(R) of a representation R is defined such
that [273,275,277],

Dabc(R) = I3(R)dabc . (E.2.12)

Having fixed I3(F) = 1
4 , the cubic index is uniquely determined for all representations of su(N) [275,277–279]. As in the

case of the quadratic index I2(R), we have:

I3(R) =
∑
k

I3(Rk), (E.2.13)

for a reducible representation R =
∑
k Rk. The cubic index of a tensor product of two representations R1 and R2 is given

by [277]

I3(R1 ⊗ R2) = dR1 I3(R2)+ dR2 I3(R1). (E.2.14)

If the generators of the representation R are T a
R , then the generators of the complex conjugate representation R

∗ are−T a
R
T.

It then follows that

I3(R∗) = −I3(R). (E.2.15)

In particular, the cubic index of a self-conjugate representation vanishes. Note that the converse is not true. That is, it is
possible for the cubic index of a complex representation of su(N) to vanish in special circumstances [279].
One can show that among the simple Lie groups, Dabc = 0 except for the case of SU(N), when N ≥ 3 [275]. For any

non-semisimple Lie group (i.e., a Lie group that is a direct product of simple Lie groups and at least one U(1) factor), Dabc
is generally non-vanishing. For example, suppose that the T a

R constitute an irreducible representation of the generators of
G×U(1), where G is a semisimple Lie group. Then the U(1) generator (whichwe denote by setting a = Q ) is TQ

R ≡ q1, where
q is the corresponding U(1)-charge. It then follows that DQab = qI2(R)δab. More generally, for a compact non-semisimple Lie
group, Dabc can be non-zero when either one or three of its indices corresponds to a U(1) generator.
In the computation of the anomaly [cf. Section 6.26], the quantity Tr(T a

RT
b
RT

c
R) appears. We can evaluate this trace using

Eqs. (E.1.2) and (E.2.12):

Tr(T a
RT

b
RT

c
R) = I3(R)d

abc
+
i
2
I2(R)f abc . (E.2.16)

The cubic Casimir operator of an irreducible representation R is given by

(T 3
R)i
j
≡ dabc(T a

RT
b
RT

c
R)i
j
= C3Rδij. (E.2.17)

Using Eqs. (E.2.11) and (E.2.12), we obtain a relation between the eigenvalue of the cubic Casimir operator, C3R and the cubic
index [275]:

C3R =
(N2 − 1)(N2 − 4)I3(R)

NdR
. (E.2.18)

Again, we provide two examples. For the fundamental representation of su(N), I3(F) = 1
4 and C3F = (N

2
−1)(N2−4)/(4N2).

For the adjoint representation, I3(A) = C3A = 0, since the adjoint representation is self-conjugate. A general formula for the
eigenvalue of the cubic Casimir operator in an arbitrary su(N) representation [or equivalently the cubic index I3(R), which
is related to C3R by Eq. (E.2.18)] can be found in Refs. [275,277–279].
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Appendix F. Path integral treatment of two-component fermion propagators

In Section 4.2wederived the two-component fermionpropagators inmomentumspace,which are the Fourier transforms
of the free-field expectation values of time-ordered products of two two-component fermion fields, for example,

〈0| Tξα(x)ξ
Ď

β̇
(y) |0〉FT ≡

∫
d4w 〈0| Tξα(x)ξ

Ď

β̇
(y) |0〉 eip·w, w ≡ x− y, (F.1)

where the (translationally invariant) expectation values such as 〈0| Tξα(x)ξ
Ď

β̇
(y) |0〉 are functions of the coordinate difference

w ≡ x − y. In Section 4.2, the Fourier transforms of these quantities were computed by using the free-field expansion
obtained from the canonical quantization procedure, and then evaluating the resulting spin sums. In this Appendix, we
provide a derivation of the same result by employing path integral techniques. We follow the analysis given in Appendix
C of Ref. [280] (with a few minor changes in notation). For a similar textbook treatment of two-component fermion
propagators see for example Ref. [220]. For the analogous treatment of the four-component fermion propagator, see for
example Ref. [114].
We first consider the action for a single massive neutral two-component fermion ξα(x), coupled to an anticommuting

two-component fermionic source term Jα(x) [cf. Eq. (3.1.1)]:

S =
∫
d4x (L + Jξ + ξ ĎJĎ) =

∫
d4x

{
1
2

[
iξ Ďσµ∂µξ + iξσµ∂µξ Ď −m(ξξ + ξ Ďξ Ď)

]
+ Jξ + ξ ĎJĎ

}
, (F.2)

where we have split the kinetic energy term symmetrically into two terms. The generating functional is given by

W [J, JĎ] = N
∫

Dξ Dξ Ď eiS[ξ,ξ
Ď,J,JĎ], (F.3)

where N is a normalization factor chosen such thatW [0, 0] = 1 and Dξ Dξ Ď is the integration measure. It is convenient
to Fourier transform the fields ξ(x), ξ Ď(x) and sources J(x), JĎ(x) in Eq. (F.3), and rewrite the action in terms of the
corresponding Fourier coefficients ξ̂ (p), ξ̂ Ď(p), Ĵ(p) and Ĵ Ď(p):

ξα(x) =
∫

d4p
(2π)4

e−ip· x̂ξα(p), ξ
Ď
α̇(x) =

∫
d4p
(2π)4

eip· x̂ξ Ď
α̇ (p), (F.4)

Jα(x) =
∫

d4p
(2π)4

e−ip· x̂Jα(p), JĎα̇(x) =
∫

d4p
(2π)4

eip· x̂J Ďα̇ (p). (F.5)

Furthermore, we introduce the integral representation of the delta function:

δ(4)(x− x′) =
∫

d4p
(2π)4

e−ip·(x−x
′). (F.6)

In order to rewrite Eq. (F.3) in a more convenient matrix form, we introduce the following definitions:

Ω(p) ≡
(
ξ̂ Ďα̇(−p)
ξ̂α(p)

)
, X(p) ≡

(
Ĵα(p)
Ĵ Ďα̇(−p)

)
, M(p) ≡

(
p · σαβ̇ −m δαβ

−m δα̇ β̇ p · σ α̇β

)
. (F.7)

Note that M is an hermitian matrix. We can then rewrite the action [Eq. (F.2)] in the following matrix form [after using
Eqs. (2.59) and (2.60) to write the product of the spinor field and the source in a symmetrical fashion]:

S =
1
2

∫
d4p
(2π)4

(
ΩĎMΩ +ΩĎX + XĎΩ

)
. (F.8)

The linear term in the fieldΩ can be removed by a field redefinition

Ω ′ = Ω +M−1X . (F.9)

In terms ofΩ ′, the action now takes the convenient form:

S =
1
2

∫
d4p
(2π)4

(
Ω ′ĎMΩ ′ − XĎM−1X

)
, (F.10)

where the inverse of the matrixM is given by

M−1 =
1

p2 −m2

(
p · σ α̇β m δα̇ β̇
m δαβ p · σαβ̇

)
. (F.11)
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The Jacobian of the field transformation given in Eq. (F.9) is unity. Hence, one can insert the new action, Eq. (F.10), in the
generating functional, Eq. (F.3) to obtain (after dropping the primes on the two-component fermion fields):

W [̂J, Ĵ Ď] = N
∫

Dξ Dξ Ď exp
{
i
2

∫
d4p
(2π)4

(
ΩĎMΩ − XĎM−1X

)}
(F.12)

= N
[∫

Dξ Dξ Ď exp
{
i
2
ΩĎMΩ

}]
exp

{
−
i
2

∫
d4p
(2π)4

XĎM−1X
}

(F.13)

= exp
{
−
i
2

∫
d4p
(2π)4

XĎM−1X
}
, (F.14)

where we have defined the normalization constant N such thatW [0, 0] = 1. Inserting the explicit forms for X andM into
Eq. (F.14), we obtain

W [̂J, Ĵ Ď] = exp
{
−
1
2

∫
d4p
(2π)4

(̂
Jα(−p)

ip · σαβ̇
p2 −m2

Ĵ Ďβ̇(−p)+ Ĵ Ďα̇ (p)
ip · σ α̇β

p2 −m2
Ĵβ(p)

+ Ĵα(−p)
imδαβ

p2 −m2
Ĵβ(p)+ Ĵ

Ď
α̇ (p)

imδα̇ β̇
p2 −m2

Ĵ Ďβ̇(−p)
)}
. (F.15)

Using Eq. (2.61), it is convenient to rewrite the first two terms of the integrand on the right-hand side of Eq. (F.15) in two
different ways:

1
2

∫
d4p
(2π)4

[̂
Jα(−p)

ip · σαβ̇
p2 −m2

Ĵ Ďβ̇(−p)+ Ĵ Ďα̇ (p)
ip · σ α̇β

p2 −m2
Ĵβ(p)

]
=

∫
d4p
(2π)4

Ĵα(−p)
ip · σαβ̇
p2 −m2

Ĵ Ďβ̇(−p) =
∫

d4p
(2π)4

Ĵ Ďα̇ (p)
ip · σ α̇β

p2 −m2
Ĵβ(p), (F.16)

where we have changed integration variables from p→−p in relating the two terms above. The vacuum expectation value
of the time-ordered product of two spinor fields in configuration space is obtained by taking two functional derivatives of
the generating functional with respect to the sources J and JĎ and then setting J = JĎ = 0 at the end of the computation
(e.g., see Ref. [114]). For example,(

−i
−→
δ

δJα(x1)

)
W [J, JĎ]

(
−i

←−
δ

δJĎβ̇(x2)

)∣∣∣∣∣
J=JĎ=0

= N
∫

Dξ Dξ Ď ξα(x1)ξ
Ď

β̇
(x2) exp

(
i
∫
d4xL

)
= 〈0|Tξα(x1)ξ

Ď

β̇
(x2)|0〉, (F.17)

where the functional derivatives act in the indicated direction (which ensures that no extra minus signs are generated
due to the anticommutativity properties of the sources and their functional derivatives). To obtain the two-point functions
involving the product of two spinor fields with different combinations of dotted and undotted spinors, it may be more
convenient to write Jξ = ξ J and/or ξ ĎJĎ = JĎξ Ď in Eq. (F.3). One can then easily verify the following expressions for the four
possible two-point functions:

〈0|Tξα(x1)ξ
Ď

β̇
(x2)|0〉 =

(
−i
−→
δ

δJα(x1)

)
W [J, JĎ]

(
−i

←−
δ

δJĎβ̇(x2)

)∣∣∣∣∣
J=JĎ=0

, (F.18)

〈0|Tξ Ďα̇(x1)ξβ(x2)|0〉 =

(
−i
−→
δ

δJĎα̇(x1)

)
W [J, JĎ]

(
−i
←−
δ

δJβ(x2)

)∣∣∣∣∣
J=JĎ=0

, (F.19)

〈0|Tξ Ďα̇(x1)ξ
Ď

β̇
(x2)|0〉 =

(
−i
−→
δ

δJĎα̇(x1)

)
W [J, JĎ]

(
−i

←−
δ

δJĎβ̇(x2)

)∣∣∣∣∣
J=JĎ=0

, (F.20)

〈0|Tξα(x1)ξβ(x2)|0〉 =

(
−i
−→
δ

δJα(x1)

)
W [J, JĎ]

(
−i
←−
δ

δJβ(x2)

)∣∣∣∣∣
J=JĎ=0

. (F.21)

As an example, we provide details for the evaluation of Eq. (F.18). Using Eqs. (F.15) and (F.16), we obtain:

〈0|Tξα(x1)ξ
Ď

β̇
(x2)|0〉 =

−→
δ

δJα(x1)

(∫
d4p
(2π)4

Ĵα(−p)
ip · σαβ̇
p2 −m2

Ĵ Ďβ̇(−p)
) ←−

δ

δJĎβ̇(x2)
. (F.22)
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The chain rule for functional differentiation and the inverse Fourier transforms of Eq. (F.5) yield:

δ

δJα(x1)
=

∫
d4p1

δ̂Jβ(−p1)
δJα(x1)

δ

δ̂Jβ(−p1)
=

∫
d4p1 e−ip1 ·x1

δ

δ̂Jα(−p1)
, (F.23)

δ

δJĎβ̇(x2)
=

∫
d4p2

δ̂J Ďα̇(−p2)

δJĎβ̇(x2)

δ

δ̂J Ďα̇(−p2)
=

∫
d4p2 eip2 ·x2

δ

δ̂J Ďβ̇(−p2)
. (F.24)

Applying Eqs. (F.23) and (F.24) to Eq. (F.22), we obtain:

〈0|Tξα(x1)ξ
Ď

β̇
(x2)|0〉 =

∫
d4p
(2π)4

e−ip·(x1−x2)
ip · σαβ̇
p2 −m2

, (F.25)

which is equivalent to Eq. (4.2.1) of Section 4.2.With the samemethods applied to Eqs. (F.19)–(F.21), one can easily reproduce
the results of Eqs. (4.2.2)–(4.2.4).
We next consider the action for a single massive Dirac two-component fermion. We shall work in a basis of fields where

the action, including external anticommuting sources, is given by

S[χ, χĎ, η, ηĎ, Jχ , JĎχ , Jη, J
Ď
η ] =

∫
d4x
[
iχĎσµ∂µχ + iηĎσµ∂µη −m(χη + χĎηĎ)

+ Jχχ + χĎJĎχ + Jηη + η
ĎJĎη
]
. (F.26)

Following the techniques employed above, we introduce Fourier coefficients for all the fields and sources and define

Ωc(p) ≡
(
η̂ Ďα̇(−p)
χ̂α(p)

)
, Xc(p) ≡

(
Ĵηα(p)

ĴĎα̇χ (−p)

)
. (F.27)

The action functional, Eq. (F.26), can then rewritten in matrix form as before (but with no overall factor of 1/2):

S =
∫

d4p
(2π)4

(
ΩĎ
cMΩc +Ω

Ď
c Xc + X

Ď
cΩc

)
, (F.28)

whereM is again given by Eq. (F.7). The remaining calculation proceeds as before with few modifications, and yields the
Dirac two-component fermion free-field propagators given in Eqs. (4.2.7)–(4.2.10).

Appendix G. Correspondence to four-component spinor notation

G.1. Dirac gamma matrices and four-component spinors

In four-dimensional Minkowski space, four-component spinor notation employs four-component Dirac spinor fields and
the 4× 4 Dirac gamma matrices, whose defining property is:

{γ µ, γ ν} = 2gµν1, (G.1.1)
where 1 is the 4× 4 identity matrix.
The correspondence between the two-component spinor notation and the four-component Dirac spinor notation is most

easily exhibited in the basis in which γ5 is diagonal (this is called the chiral representation115). In 2× 2 blocks, the gamma
matrices are given by116:

γ µ ≡

(
0 σ

µ

αβ̇

σµ α̇β 0

)
, γ5 ≡ iγ 0γ 1γ 2γ 3 =

(
−δα

β 0
0 δα̇ β̇

)
, (G.1.2)

and the 4× 4 identity matrix that appears in Eq. (G.1.1) can be written as:

1 =
(
δα
β 0
0 δα̇ β̇

)
. (G.1.3)

In addition, we identify the generators of the Lorentz group in the ( 12 , 0)⊕ (0,
1
2 ) representation

117:

1
2Σ

µν
≡
i
4
[γ µ, γ ν] =

(
σµνα

β 0
0 σµν α̇ β̇

)
, (G.1.4)

115 For a review of other representations of the Dirac gamma matrices and their properties, see e.g. Refs. [281,282].
116 Employing the conventions for the sigma matrices described in Appendix A, it follows that the definition of γ µ is independent of the choice of metric
signature, whereas γµ ≡ gµνγ ν changes sign under a reversal of the metric signature. In the metric signature convention with g00 = +1, our gamma
matrix conventions follow those of Ref. [114], whereas in the convention with g00 = −1, our gamma matrix conventions follow those of Ref. [65].
117 In most textbooks,Σµν is called σµν . Here, we use the former symbol so that there is no confusion with definition of σµναβ given in Eq. (2.70).
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whereΣµν satisfies the duality relation,

γ5Σ
µν
=
1
2 iε

µνρτΣρτ . (G.1.5)

A four-component Dirac spinor field, Ψ (x), is made up of two mass-degenerate two-component spinor fields, χα(x) and
ηα(x), of opposite U(1)-charge as follows:

Ψ (x) ≡
(
χα(x)

ηĎα̇(x)

)
. (G.1.6)

We next introduce the chiral projections operators,

PL ≡ 1
2 (1− γ5) =

(
δα
β 0
0 0

)
, and PR ≡ 1

2 (1+ γ5) =
(
0 0
0 δα̇ β̇

)
, (G.1.7)

and the (left- and right-handed)Weyl spinor fields, ΨL(x) and ΨR(x), which are defined by118:

ΨL(x) ≡ PLΨ (x) =
(
χα(x)
0

)
, ΨR(x) ≡ PRΨ (x) =

(
0

ηĎα̇(x)

)
. (G.1.8)

Equivalently, one can define theWeyl spinorsΨL andΨR as the four-component spinor eigenstates of γ5 with corresponding
eigenvalues−1 and+1, respectively (i.e., γ5ΨL,R = ∓ΨL,R).
The Dirac conjugate field Ψ (x) and the charge conjugate field Ψ C (x) are defined by:

Ψ (x) ≡ Ψ ĎA =
(
ηα(x), χĎ

α̇(x)
)
, (G.1.9)

Ψ C (x) ≡ CΨ T
(x) =

(
ηα(x)
χĎα̇(x)

)
, (G.1.10)

where the Dirac conjugation matrix A and the charge conjugation matrix C satisfy [283–285]:

AγµA−1 = γ Ď
µ, C−1γµC = −γ T

µ . (G.1.11)

It is convenient to introduce a notation for left- and right-handed charge-conjugated fields (which are also Weyl spinor
fields) following the conventions of Refs. [67,286],119

Ψ CL (x) ≡ PLΨ
C (x) = CΨ T

R(x) = [ΨR(x)]
C , (G.1.12)

Ψ CR (x) ≡ PRΨ
C (x) = CΨ T

L (x) = [ΨL(x)]
C . (G.1.13)

To fix the properties of A and C , it is conventional to impose two additional conditions:

Ψ = A−1Ψ Ď
, (Ψ C )C = Ψ . (G.1.14)

The first of these conditions together with Eq. (G.1.9) is equivalent to the statement that ΨΨ is hermitian. The second
condition corresponds to the statement that the (discrete) charge conjugation transformation applied twice is equal to the
identity operator. Using Eqs. (G.1.11) and (G.1.14) and the defining property of the gamma matrices [Eq. (G.1.1)], one can
show (independently of the gamma matrix representation) that the matrices A and C must satisfy:

AĎ = A, CT
= −C, (AC)−1 = (AC)∗. (G.1.15)

Following Ref. [135], it is convenient to introduce a matrix D such that

D ≡ CAT, D−1γµD = −γ ∗µ, (G.1.16)

and D∗D = DD∗ = 1. The charge-conjugated four-component spinor is then given by:

Ψ C (x) ≡ DΨ ∗(x). (G.1.17)

118 In the earlier literature, a different set of conventions for the sigma matrices in which the roles of σ and σ were reversed [e.g., as in Eqs. (A.11) and
(A.12)] resulted in γ5 = diag(12×2,−12×2) in the chiral representation, which differs from our convention by an overall sign [cf. Eq. (G.1.2)]. As a result,
in this latter convention, PL [PR] projects out the raised dotted [lowered undotted] two-component spinor field. This latter convention is still prevalent in
the literature of the spinor helicity method (see footnote 156 in Appendix I.2).
119 The reader is warned that the opposite convention is often employed in the literature (e.g., see Ref. [287]) in which Ψ CL is a right-handed field and Ψ

C
R

is a left-handed field.
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A four-componentMajorana spinor field, ΨM(x), is defined by imposing the constraint Ψ C (x) = Ψ (x) on a four-component
Dirac spinor, which sets η = χ . That is, theMajorana condition is

ΨM(x) = DΨ ∗M(x) =
(
χα(x)
χĎα̇(x)

)
. (G.1.18)

For a review of the Majorana field and its properties, see e.g. Refs. [143,144].
For completeness, we also introduce a matrix B that satisfies [283–285,288]:

B ≡ −C−1γ5, BγµB−1 = γ T
µ . (G.1.19)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral representation, A, B, C and D
are explicitly given by

A =
(
0 δα̇ β̇
δα
β 0

)
, C =

(
εαβ 0
0 εα̇β̇

)
, (G.1.20)

B =
(
εαβ 0
0 −εα̇β̇

)
, D =

(
0 εαβ

εα̇β̇ 0

)
. (G.1.21)

Note the numerical equalities, A = γ 0, B = γ 1γ 3, C = iγ 0γ 2 and D = −iγ 2. However these identifications do not respect
either the structure of the undotted and dotted spinor indices specified in Eqs. (G.1.20) and (G.1.21), or the four-component
spinor index structure introduced below [cf. Eqs. (G.1.46) and (G.1.47)].120 In translating between two-component and
four-component spinor notation, Eqs. (G.1.20) and (G.1.21) should always be used. In practical four-component spinor
calculations, there is often no harm in employing the numerical values for A, B, C and D.
Using Eqs. (G.1.11)–(G.1.19), the following results are easily derived:

AΓ A−1 = ηAΓ Γ
Ď, ηAΓ =

{
+1, for Γ = 1, γ µ, γ µγ5,Σµν ,
−1, for Γ = γ5,Σµνγ5,

(G.1.22)

BΓ B−1 = ηBΓ Γ
T, ηBΓ =

{
+1, for Γ = 1, γ5, γ µ,
−1, for Γ = γ µγ5,Σµν,Σµνγ5,

(G.1.23)

C−1Γ C = ηCΓ Γ
T, ηCΓ =

{
+1, for Γ = 1, γ5, γ µγ5,
−1, for Γ = γ µ,Σµν,Σµνγ5.

(G.1.24)

D−1Γ D = ηDΓ Γ
∗, ηDΓ =

{
+1, for Γ = 1, γ µγ5,Σµνγ5,
−1, for Γ = γ µ, γ5,Σµν . (G.1.25)

The Lorentz transformation properties of the four-component spinor field can be determined from those of the two-
component spinor fields given in Section 2. The 4 × 4 representation matrices of the Lorentz group in the ( 12 , 0) ⊕ (0,

1
2 )

representation are given by

M =
(
M 0
0 (M−1)Ď

)
= exp

(
−
i
4
θµνΣ

µν

)
' 14×4 − 1

4 iθµνΣ
µν, (G.1.26)

where the infinitesimal forms ofM and (M−1)Ď are given in Eqs. (2.100) and (2.101). Two useful identities that follow from
Eqs. (G.1.22), (G.1.24) and (G.1.26) are121:

AMA−1 = (M−1)Ď, (G.1.27)

C−1MC = (M−1)T. (G.1.28)

The four-component Dirac or Majorana spinor, Ψa , is assigned a lowered spinor index a, and is defined in terms of two-
component spinors by Eq. (G.1.6) or (G.1.18), respectively. Four-component spinor indices, which will be chosen in general
from the beginning of the lower case Roman alphabet, a, b, c, . . . , can assume integer values 1, 2, 3, 4. Under a Lorentz
transformation, Ψa transforms as

Ψa → Ma
b Ψb. (G.1.29)

120 When treated as ordinary 4×4matrices A, B, C andD are unitary. But whenwritten in 2×2 block form [noting that δα̇ β̇ = (δ
α
β )
∗ and εα̇β̇ ≡ (εαβ )∗ , as

indicated belowEqs. (2.19) and (2.23)], the productsAAĎ ,BBĎ ,CCĎ andDDĎ are not covariantwith respect to the dotted andundotted two-component spinor
indices. Similarly, these matrix products are not covariant with respect to the four-component spinor indices. In practice, only covariant combinations of
A, B, C , D and the four-component spinor fields arise in typical calculations.
121 Note that Eq. (G.1.28) is a direct consequence of the identities in two-component spinor notation given in Eqs. (2.102) and (2.103).
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In analogy with the conventions for two-component spinor indices, we sum implicitly over a pair of repeated indices
consisting of a raised and a lowered spinor index. The transformation law for the Dirac conjugate spinor (often called the
Dirac adjoint spinor), Ψ = Ψ ĎA, is obtained from Eq. (G.1.29) after employing AĎ = A and Eq. (G.1.27),

Ψ
a
→ Ψ

b
(M−1)ba. (G.1.30)

In particular,ΨΨ ≡ Ψ aΨa is a Lorentz scalar, which justifies the assignment of a raised spinor index for the Dirac conjugate
spinor Ψ a.
It is convenient to introduce barred four-component spinor indices [289] in the transformation laws of the hermitian-

conjugated four-component spinors,122

Ψ
Ď
ā → Ψ

Ď

b̄
(MĎ)b̄ ā, (G.1.31)

Ψ
Ď ā
→ [(M−1)Ď]ā b̄ Ψ

Ď b̄
, (G.1.32)

where there is an implicit sum over the repeated lowered and raised barred spinor indices, and

Ψ
Ď
ā ≡ (Ψa)

Ď, Ψ
Ď ā
≡ (Ψ

a
)Ď. (G.1.33)

The spinor index structure of the Dirac conjugation matrix A is then fixed by noting that the Dirac conjugate spinor,
Ψ
b
≡ Ψ

Ď
ā A
āb, has a raised unbarred spinor index, whereas the hermitian-conjugated spinor has a lowered barred spinor

index.
The charge conjugation matrix can be used to raise and lower four-component spinor indices [289], which we shall

employ in defining the spinors Ψ a, Ψ Ď ā, Ψ a and Ψ
Ď

ā ,
123

Ψa = CabΨ b, Ψ a = (C−1)abΨb, (G.1.34)

Ψ
Ď
ā = Cāb̄Ψ

Ď b̄, Ψ Ď ā
= (C−1)āb̄Ψ Ď

b̄
, (G.1.35)

where

Cāb̄ ≡ (Cab)
∗, (C−1)āb̄ ≡ [(C−1)ab]∗. (G.1.36)

Eqs. (G.1.34) and (G.1.35) also apply to Ψ a, Ψ a and their hermitian conjugates. In particular, one can identify the Dirac
conjugate spinor with a lowered spinor index (Ψ a) as the charge-conjugated spinor, Ψ C ≡ CΨ

T, and the Dirac spinor with
a raised spinor index (Ψ a) as the Dirac conjugate of the charged-conjugated spinor, Ψ C = −Ψ T C−1. That is,124

Ψ Ca ≡ Ψ a = CabΨ
b
, Ψ C

a
= Ψ a = (C−1)abΨb. (G.1.37)

The rules for raising and lowering spinor indices are consistent with the Lorentz transformation properties of Eqs.
(G.1.29)–(G.1.32), as a consequence of Eq. (G.1.28). In particular, the condition for a self-conjugate four-component
(Majorana) spinor, Ψ a ≡ Ψ Ca = Ψa, is Lorentz covariant.
Using Eq. (G.1.15), (G.1.34), (G.1.35), and the definition of the Dirac conjugate spinor, it then follows that:

Ψ a = (A−1)ab̄Ψ
Ď b̄, Ψ

a
= Ψ

Ď

b̄
Ab̄a, (G.1.38)

Ψ
Ď
ā = Ψ

b
(A−1)bā, Ψ Ď ā

= Aāb Ψ b. (G.1.39)

One can check that Eqs. (G.1.38) and (G.1.39) are consistent with the Lorentz transformation properties of Eqs.
(G.1.29)–(G.1.32), as a consequence of Eq. (G.1.27).
In addition to the Lorentz scalarΨΨ ≡ Ψ aΨa, one can construct two additional independent Lorentz scalar quantities,125

− Ψ TC−1 Ψ ≡ −Ψa(C−1)abΨb = Ψ aΨa, (G.1.40)

and its hermitian conjugate,

Ψ C Ψ T
≡ Ψ

aCabΨ
b
= Ψ

a
Ψ a = Ψ

Ď
ā Ψ

Ď ā
= (Ψ aΨa)

Ď, (G.1.41)

122 Of course, Eqs. (G.1.29)–(G.1.32) can also be derived directly from the corresponding two-component spinor transformation laws of Section 2.
123 In contrast to the epsilon symbols of the two-component spinor formalism, here we prefer to explicitly exhibit the inverse symbols in (C−1)ab and
(C−1)āb̄ [cf. footnote 7].
124 For a Dirac spinor field defined in Eq. (G.1.6), Ψ a(x) = Ψ Ca (x) is given in terms of two-component spinors by Eq. (G.1.10), and Ψ

a(x) = Ψ C
a
(x) =(

χα(x), ηĎα̇(x)
)
.

125 A fourth possible Lorentz scalar, Ψ aΨ a = (C−1)abCacΨbΨ
c
= −ΨcΨ

c
= Ψ

c
Ψc , is not independent. Here, we have used CT

= −C and the
anticommutativity of the spinors. Equivalently, Ψ CΨ C = ΨΨ .
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after using C−1 and C to raise and lower the appropriate spinor indices, respectively. The penultimate equality in Eq. (G.1.41)
is a consequence of Eq. (G.1.39). The Lorentz invariance ofΨ aΨa,Ψ aΨa andΨ

Ď
ā Ψ

Ď ā
=Ψ

a
Ψ a ismanifest and demonstrates the

power of the four-component spinor index notation developed above. After invoking Eq. (G.1.37), we note that [analogous to
Eq. (2.36)] descending contracted unbarred spinor indices and ascending contracted barred spinor indices can be suppressed
in spinor-index-contracted products. For example,

Ψ
a
Ψa ≡ ΨΨ Ψ aΨa = Ψ

C
a
Ψa ≡ Ψ

CΨ Ψ
a
Ψ a = Ψ

a
Ψ Ca ≡ ΨΨ

C , (G.1.42)

where the suppression of barred spinor indices is implicit in the definition of Ψ b ≡ Ψ Ď
ā A
āb.

The charge-conjugated spinor can also be written as Ψ Ca ≡ Da
c̄Ψ

Ď
c̄ [cf. Eq. (G.1.17)]. The spinor index structure of D (and

its inverse) derives from:

Dac̄ ≡ Cab(AT)bc̄ = CabAc̄b, (D−1)āc ≡ (C∗A)āc = Cāb̄A
b̄c, (G.1.43)

where we have used D−1 = D∗. Combining the results of Eqs. (G.1.34), (G.1.35), (G.1.38) and (G.1.39) then yields:

Ψ a = Dac̄ Ψ
Ď
c̄ , Ψ

Ď
ā = (D

−1)ā
c Ψ c, (G.1.44)

Ψ
a
= −Ψ Ď c̄(D−1)c̄ a, Ψ Ď ā

= −Ψ
cDc ā. (G.1.45)

In summary, a four-component spinorΨa and its charge-conjugated spinorΨ Ca possess a lowered unbarred spinor index,
whereas the corresponding Dirac conjugates, Ψ a and Ψ C

a
, possess a raised unbarred spinor index. The corresponding

hermitian-conjugated spinors exhibit barred spinor indices (with the height of each spinor index unchanged). Following
Eqs. (G.1.34) and (G.1.35), one can also lower or raise a four-component unbarred or barred spinor index by multiplying by
the appropriate matrix C , C−1, C∗ or (C−1)∗, respectively.
The identity matrix, the gammamatrices and their products are denoted collectively by Γ . The spinor index structure of

these matrices and their inverses is given by:

δba,Γa
b, (Γ −1)a

b, (G.1.46)

where the δba are thematrix elements of the identitymatrix 1. In this case, the rows are labeled by the lowered index and the
columns are labeled by the raised index. Note that the quantitiesΨ a

Γa
b Ψb,Ψ a Γab Ψb, andΨ

a
Γa
b Ψ

b transform as Lorentz
tensors, whose rank is equal to the number of (suppressed) spacetime indices of Γ .
For the matrices A, B, C , D and their inverses, the spinor index structure is given by:

Aāb, (A−1)ab̄, B
ab, (B−1)ab, Cab, (C−1)ab,Dab̄, (D−1)āb. (G.1.47)

The corresponding complex-conjugatedmatrices exhibit the analogous spinor index structure with unbarred spinor indices
changed to barred spinor indices and vice versa. Matrix transposition interchanges rows and columns. For example,

(Γ T)ab ≡ Γb
a, (AT)ab̄ ≡ Ab̄a, (CT)ab = Cba, (DT)āb ≡ Dbā. (G.1.48)

Hermitian conjugation is complex conjugation followed by matrix transposition. For example,

(Γ Ď)ā b̄ ≡ (Γb
a)∗, (AĎ)āb ≡ (Ab̄a)∗, (CĎ)āb̄ = (Cba)

∗, (DĎ)ab̄ ≡ (Db
ā)∗. (G.1.49)

Using the above results, it is straightforward to identify the four-component spinor index structure of Eqs. (G.1.1)–(G.1.28).
For example, specifying the four-component spinor indices of Eq. (G.1.28) yields:

(C−1)abMb
cCcd = [(M−1)T]ad ≡ (M−1)da. (G.1.50)

To complete the spinor index formalism, we introduce hybrid quantities L, L, R and R that contain an unbarred four-
component spinor index and a two-component undotted or dotted spinor index [290]:

Lβ b = (12×2 O2×2) , Rβ̇ b = (O2×2 12×2) , (G.1.51)

Lbβ =
(
12×2
O2×2

)
, Rbβ̇ =

(
O2×2
12×2

)
. (G.1.52)

These quantities satisfy:

LaαLαb = (PL)ab, LαaLaβ = δαβ , (G.1.53)

Raα̇Rα̇ b = (PR)ab, Rα̇ aRaβ̇ = δ
α̇
β̇ , (G.1.54)
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where PL and PR are the chiral projection operators defined in Eq. (G.1.7). It then follows that:

Lαa(PL)ab = Lαb, (PL)abLbβ = Laβ , (G.1.55)

Rα̇ a(PR)ab = Rα̇ b, (PR)abRbβ̇ = Raβ̇ . (G.1.56)

The hybrid quantities L, L, R and R connect objects with four-component and two-component spinor indices. For the Dirac
spinor defined in Eq. (G.1.6), it follows that:

χα = LαbΨb, ηα = Ψ
b Lbα, (G.1.57)

ηĎα̇ = Rα̇ bΨb, χ
Ď
α̇ = Ψ

b Rbα̇. (G.1.58)

The corresponding inverse relations are:

(PL)ab Ψb = Laβχβ , Ψ
a
(PL)ab = ηβLβ b, (G.1.59)

(PR)ab Ψb = Raβ̇η
Ďβ̇ , Ψ

a
(PR)ab = χ

Ď

β̇
Rβ̇ b. (G.1.60)

One can use Eqs. (G.1.2), (G.1.4) and (G.1.20) to identify:

σ
µ

αβ̇
= Lαa(γ µ)abRbβ̇ , σµα̇β = Rα̇ a(γ µ)abLbβ , (G.1.61)

σµνα
β
= Lαa

( 1
2Σ

µν
)
a
bLbβ , σµνα̇ β̇ = R

α̇ a ( 1
2Σ

µν
)
a
bRbβ̇ , (G.1.62)

δα
β
= −Lαa(γ5)abLbβ , δα̇ β̇ = R

α̇ a(γ5)a
bRbβ̇ , (G.1.63)

εαβ = LαaCabLβ b, εα̇β̇ = Rα̇ aCabRβ̇ b, (G.1.64)

εαβ = Laα(C−1)abLbβ , εα̇β̇ = Raα̇(C
−1)abRbβ̇ . (G.1.65)

Inverting these results yields:

(γ µPL)c d = Rcα̇σµα̇βLβd, (γ µPR)c d = Lcασ
µ

αβ̇
Rβ̇d, (G.1.66)

1
2 (Σ

µνPL)c d = LcασµναβLβd 1
2 (Σ

µνPR)c d = Rcα̇σµνα̇ β̇R
β̇d, (G.1.67)

(APL)c d = RcβLβd, (APR)c d = Lcβ̇R
β̇d, (G.1.68)

(PLC)cd = εαβLcαLdβ , (PRC)cd = εα̇β̇Rcα̇Rdβ̇ , (G.1.69)

(C−1PL)cd = εαβLαcLβd, (C−1PR)cd = εα̇β̇R
α̇cRβ̇d. (G.1.70)

Likewise, one can introduce LĎ, L
Ď
, RĎ and R

Ď
, which are hybrid quantities that contain a barred four-component spinor

index and a two-component undotted or dotted spinor index:

(LĎ)āβ̇ ≡ (Lβ
a)∗, (RĎ)āβ ≡ (Rβ̇a)∗, (G.1.71)

(L
Ď
)β̇ ā ≡ (Laβ)∗, (R

Ď
)β ā ≡ (Raβ̇)

∗. (G.1.72)

In particular, using Eqs. (G.1.59) and (G.1.60), one can relate the quantities L, L, R and R and their hermitian conjugates:

(LĎ)āβ̇ = A
ābRbβ̇ , (RĎ)āβ = AābLbβ , (G.1.73)

(L
Ď
)β̇ ā = Rβ̇b(A−1)bā, (R

Ď
)β ā = Lβ b(A−1)bā, (G.1.74)

after employing APL = P
Ď
RA [cf. Eq. (G.1.22)] and A

Ď
= A. The set of equations analogous to Eqs. (G.1.53)–(G.1.70) involving

the corresponding hermitian-conjugated quantities can also be obtained. However, such formulae will rarely be needed in
practice.
Eqs. (G.1.53)–(G.1.70) [and their hermitian conjugates] can be employed to translate any expression involving two-

component spinors into the corresponding expression involving four-component spinors, and vice versa. With a little
practice, both two-component and four-component spinor indices can be suppressed, which greatly simplifies the
manipulation of the spinor quantities. In particular, by treating the four-component spinors Ψa and Ψ Ca as column vectors
and their hermitian (Dirac) conjugates Ψ Ď

ā and Ψ
C Ď
ā (Ψ a and Ψ C

a
) as row vectors, all equations in the four-component

spinor formalism have a natural interpretation as products of matrices and vectors. Henceforth, we shall suppress all four-
component spinor indices.
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Multiple species of fermions are indicated with a flavor index such as i and j. Dirac fermions are constructed from two-
component fields of opposite charge, χ i and η i (hence the opposite flavor index heights). Thus, we establish the following
conventions for the flavor indices of four-component Dirac fermions:

Ψi(x) ≡

(
χαi(x)

η
Ďα̇
i (x)

)
, Ψ

i
(x) =

(
ηαi(x), χĎ i

α̇ (x)
)
, Ψ C i(x) ≡

(
η iα(x)

χĎα̇i(x)

)
. (G.1.75)

Note that χĎ i
= (χi)

Ď and ηĎi ≡ (η
i)Ď following the conventions established in Section 3.2. Raised flavor indices can only be

contracted with lowered flavor indices and vice versa. In contrast, Majorana fermions are neutral so that there is no a priori
distinction between raised and lowered flavor indices. That is,

ΨMi(x) = Ψ iM(x) = Ψ
C
Mi(x) = Ψ

C i(x) ≡
(
ξαi(x)
ξ Ďα̇i(x)

)
, Ψ Mi(x) = Ψ

i
M(x) ≡

(
ξαi (x), ξ

Ď i
α̇ (x)

)
. (G.1.76)

In this case, the contraction of two repeated flavor indices is allowed in all cases, irrespective of the heights of the two
indices. In the convention adopted in Section 3.2, inwhich all neutral left-handed ( 12 , 0) [right-handed (0,

1
2 )] fermions have

lowered [raised] flavor indices, the height of the flavor index of a four-component Majorana fermion field is meaningful
when multiplied by a left-handed or right-handed projection operator. Thus, the height of the flavor index for Majorana
fermions can be consistently chosen according to one of the following four cases:

PLΨMi, Ψ MiPL, PRΨ i
M , Ψ

i
MPR. (G.1.77)

Bilinear covariants are quantities that are quadratic in the spinor fields and transform irreducibly as Lorentz tensors.
We first construct a translation table between the two-component form and the four-component form for the bilinear
covariants made up of a pair of Dirac fields. Using Eqs. (G.1.59) and (G.1.60) to convert the four-component spinor fields
into the corresponding two-component spinor fields, and employing the appropriate identities involving products of the
hybrid quantities L, L, R and R, the following results are then obtained:

Ψ
iPLΨj = η iχj, (G.1.78)

Ψ
iPRΨj = χĎ iη

Ď
j , (G.1.79)

Ψ
i
γ µPLΨj = χĎ iσµχj, (G.1.80)

Ψ
i
γ µPRΨj = η iσµη

Ď
j , (G.1.81)

Ψ
i
ΣµνPLΨj = 2 η iσµνχj, (G.1.82)

Ψ
i
ΣµνPRΨj = 2χĎ iσµνη

Ď
j . (G.1.83)

The first two results above follow immediately after using Eqs. (G.1.53) and (G.1.54), respectively, and the last four results
are a consequence of Eqs. (G.1.61) and (G.1.62).
Eqs. (G.1.78)–(G.1.83) apply to both commuting and anticommuting fermion fields.126 These results can then be used to

express the standard four-component spinor bilinear covariants in terms of two-component spinor bilinears:

Ψ
i
Ψj = η

iχj + χ
Ď iη

Ď
j (G.1.84)

Ψ
i
γ5Ψj = −η

iχj + χ
Ď iη

Ď
j (G.1.85)

Ψ
i
γ µΨj = χ

Ď iσµχj + η
iσµη

Ď
j (G.1.86)

Ψ
i
γ µγ5Ψj = −χ

Ď iσµχj + η
iσµη

Ď
j (G.1.87)

Ψ
i
ΣµνΨj = 2(η iσµνχj + χĎ iσµνη

Ď
j ) (G.1.88)

Ψ
i
Σµνγ5Ψj = 2(−η iσµνχj + χĎ iσµνη

Ď
j ). (G.1.89)

126 In the case of anticommuting spinors, it is often useful to apply Eq. (2.61) to Eqs. (G.1.81), (G.1.86) and (G.1.87) and rewrite η iσµηĎj = −η
Ď
j σ

µη i .
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Additional identities can be derived that involve the charge-conjugated four-component Dirac fermion fields. As an
example, we may use CT

= −C and Ψ C = −Ψ TC−1 to prove that

Ψ Ci Γ Ψ
C j
= −(−1)AΨ jC Γ T C−1Ψi = −(−1)AηCΓ Ψ

j
Γ Ψi, (G.1.90)

where the sign ηCΓ is given in Eq. (G.1.24). The factor of (−1)
A
= ±1 [for commuting/anticommuting fermion fields,

respectively] arises at the second step above after reversing the order of the terms by matrix transposition. Identities
involving just one charge-conjugated four-component field can also be easily obtained. For example, using Eqs. (G.1.57)
and (G.1.70),

Ψ Ci PLΨj = −Ψ
T
i C
−1PLΨj = −ΨaiεαβLαaLβ bΨbj = −εαβχαiχβj = χiχj. (G.1.91)

In general, if one replaces Ψk with Ψ C k in Eqs. (G.1.78)–(G.1.89), then in the corresponding two-component expression one
simply interchanges χk ↔ ηk and χĎ k

↔ η
Ď
k .

Eqs. (G.1.78)–(G.1.89) also apply to four-component Majorana spinors, ΨMi, by setting χi = ηi ≡ ξi, and χĎ i
= η

Ď
i ≡ ξ

Ď i.
This implements the Majorana condition, ΨMi = DΨ ∗Mi, and imposes additional restrictions on the Majorana bilinear
covariants. For example, Eqs. (G.1.24) and (G.1.90) imply that anticommuting Majorana four-component fermions satisfy127:

Ψ MiΨMj = Ψ MjΨMi, (G.1.92)

Ψ Miγ5ΨMj = Ψ Mjγ5ΨMi, (G.1.93)

Ψ Miγ
µΨMj = −Ψ Mjγ

µΨMi, (G.1.94)

Ψ Miγ
µγ5ΨMj = Ψ Mjγ

µγ5ΨMi, (G.1.95)

Ψ MiΣ
µνΨMj = −Ψ MjΣ

µνΨMi, (G.1.96)

Ψ MiΣ
µνγ5ΨMj = −Ψ MjΣ

µνγ5ΨMi. (G.1.97)

By setting i = j, it follows that Ψ Mγ µΨM = Ψ MΣµνΨM = Ψ MΣ
µνγ5ΨM = 0. One additional useful result is:

Ψ
i
Mγ

µPLΨMj = −Ψ Mjγ µPRΨ iM , (G.1.98)

which follows immediately from Eqs. (G.1.94) and (G.1.95). Note that in Eq. (G.1.98), the heights of the flavor indices follow
the convention established in Eq. (G.1.77).
In the four-component spinor formalism, Fierz identities (first introduced in Ref. [291]) consist of relations among

products of two bilinear covariants, in which the fermion fields appear in two different orders. The corresponding two-
component spinor Fierz identities are treated in detail in Appendix B.1. In principle, the latter can be converted into four-
component spinor Fierz identities using the techniques developed in this appendix. However, it is easier to derive the four-
component spinor Fierz identities directly using the properties of the gamma matrix algebra [281,288].
Instead of Eqs. (B.1.5)–(B.1.7), the equivalent identity relevant for four-component spinors is:

δbaδ
d
c =

1
4

[
δdaδ

b
c + (γ5)a

d(γ5)c
b
+ (γ µ)a

d(γµ)c
b
− (γ µγ5)a

d(γµγ5)c
b
+
1
2 (Σ

µν)a
d(Σµν)c

b] . (G.1.99)

This is the fundamental identity from which many other such identities can be derived (cf. the Appendix of Ref. [285]).
One of many possible Fierz identities can be obtained by multiplying Eq. (G.1.99) by Ψ a1Ψ2bΨ

c
3Ψ4d = (−1)

A Ψ
a
1Ψ4dΨ

c
3Ψ2b,

where (−1)A = +1 [−1] for commuting [anticommuting] Dirac, Majorana or Weyl spinors. More generally [281,292,293],

(Ψ 1Γ
(k)IΨ2)(Ψ 3Γ

(k)
I Ψ4) = (−1)A

5∑
n=1

F kn (Ψ 1Γ (n)JΨ4)(Ψ 3Γ
(n)
J Ψ2), (G.1.100)

where the sum is taken over the 4× 4 matrices, Γ (n)
∈ Γ , which have been ordered as follows,128

Γ = {1, γ µ,Σµν(µ < ν), γ µγ5, γ5}, (G.1.101)

I , J represent zero, one or two spacetime indices (sums over repeated I and J are implied), and

F =
1
4


1 1 1

2 −1 1
4 −2 0 −2 −4
12 0 −2 0 12
−4 −2 0 −2 4
1 −1 1

2 1 1

 . (G.1.102)

127 Here, one is free to choose all flavor indices to be in the lowered position [cf. Eq. (G.1.76)].
128 The 16 matrices of Γ constitute a complete set that spans the sixteen-dimensional vector space of 4× 4 matrices.
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For example, taking k = 1 in Eq. (G.1.100) yields a result equivalent to Eq. (G.1.99):

(Ψ 1Ψ2)(Ψ 3Ψ4) =
1
4 (−1)

A
[
(Ψ 1Ψ4)(Ψ 3Ψ2)+ (Ψ 1γ5Ψ4)(Ψ 3γ5Ψ2)+ (Ψ 1γ

µΨ4)(Ψ 3γµΨ2)

− (Ψ 1γ
µγ5Ψ4)(Ψ 3γµγ5Ψ2)+

1
2 (Ψ 1Σ

µνΨ4)(Ψ 3ΣµνΨ2)
]
. (G.1.103)

For a comprehensive treatment of all possible four-component spinor Fierz identities, see Ref. [294]. Simple derivations
of generalized Fierz identities have also been given in Refs. [293,295]. A Mathematica package for performing Fierz
transformations is available in Ref. [296].

G.2. Free-field four-component fermion Lagrangians

The free-field Lagrangian density in four-component spinor notation can be obtained from the corresponding
two-component fermion Lagrangian by employing the relevant identities for the bilinear covariants given in
Eqs. (G.1.78)–(G.1.89). First, consider a collection of free anticommuting four-component Majorana fields, ΨMi = Ψ CMi. The
free-field Lagrangian (in terms ofmass-eigenstate fields)may be obtained fromEq. (3.2.10) by converting to four-component
spinor notation using Eqs. (G.1.84) and (G.1.86) with χ = η ≡ ξ , which yields [3]:

L = 1
2 iΨ Miγ

µ∂µΨMi −
1
2miΨ MiΨMi, (G.2.1)

where the sum over i is implicit. The corresponding free-field equation for ΨMi is the Dirac equation:

(iγ µ∂µ −m)ΨMi = 0. (G.2.2)

For simplicity, we focus on a theory of a single four-component Majorana fermion field, ΨM(x) = Ψ CM(x). One can
rewrite the free-field Majorana fermion Lagrangian in terms of a single Weyl fermion, ΨL(x) ≡ PLΨ (x), where Ψ (x) is a
four-component fermion field whose lower two components (in the chiral representation) are irrelevant for the present
discussion. The Majorana and Weyl fields are related by:

ΨM(x) = ΨL(x)+ Ψ CR (x), (G.2.3)

where Ψ CR (x) is defined in Eq. (G.1.13). The corresponding Dirac conjugate field is given by Ψ M(x) = Ψ L(x)+Ψ
C
R (x), where

Ψ L(x) ≡ [PLΨ (x)]ĎA = Ψ (x)PR, (G.2.4)

Ψ CR (x) ≡ Ψ C (x)PL = −Ψ
T(x)C−1PL = −Ψ T

L (x)C
−1. (G.2.5)

Using the identity129:

Ψ CR γ
µ∂µΨ

C
R = −Ψ

TC−1PLγ µ∂µPRCΨ
T
= Ψ Lγ

µ∂µΨL + total divergence, (G.2.6)

the Lagrangian for a single Majorana field can be written in terms of a single Weyl field130:

L = iΨ Lγ µ∂µΨL + 1
2m

(
Ψ T
L C
−1ΨL − Ψ LCΨ

T
L

)
. (G.2.7)

The corresponding free-field equation is

iγ µ∂µΨL = mCΨ
T
L , (G.2.8)

where we have used (Ψ LC)T = −CΨ
T
L and the anticommutativity ofΨL,Ψ L. The generalization of Eqs. (G.2.3)–(G.2.7) to the

case of a multiplet of four-component Majorana fields is straightforward and is left as an exercise for the reader.
Of course, one could have chosen instead to rewrite the four-component Majorana fermion Lagrangian in terms of a

single Weyl fermion, ΨR(x) ≡ PRΨ (x), in which case the upper two components (in the chiral representation) of Ψ (x) are
not relevant. In this case, the Majorana and Weyl fields are related by131:

ΨM(x) = ΨR(x)+ Ψ CL (x), (G.2.9)

129 In deriving Eq. (G.2.6), we have used Eq. (G.1.24) and the anticommutativity of the spinor fields. The total divergence can be dropped from the
Lagrangian, as it does not contribute to the field equations.
130 Using Eq. (G.1.15), it follows that (Ψ TC−1Ψ )Ď = −Ψ A−1C−1 ∗A−1 ∗Ψ T

= −Ψ C Ψ T .
131 If Ψ is an unconstrained four-component spinor, then ΨL and ΨR are independent Weyl fields, in which case ΨL + Ψ CR and ΨR + Ψ

C
L are independent

self-conjugate fields.
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where Ψ CL (x) is defined in Eq. (G.1.12). The corresponding Dirac conjugate field is given by Ψ M(x) = Ψ R(x)+Ψ
C
L (x), where

Ψ R(x) ≡ [PRΨ (x)]ĎA = Ψ (x)PL, (G.2.10)

Ψ CL (x) ≡ Ψ C (x)PR = −Ψ
T(x)C−1PR = −Ψ T

R (x)C
−1. (G.2.11)

The corresponding Weyl fermion Lagrangian is given by Eq. (G.2.7) with L replaced by R.
Thus, a Majorana fermion can be represented either by a four-component self-conjugate field ΨM(x) or by a single Weyl

field [either ΨL(x) or ΨR(x)]. Both descriptions are unitarily equivalent [287,297]; i.e., one can construct a unitary similarity
transformation that connects a Majorana field operator and aWeyl field operator (and vice versa). Of course, this is hardly a
surprise in the two-component spinor formalism, where both the Majorana and Weyl forms of the Lagrangian correspond
to the same field theory of a single two-component spinor field ξα(x).
For m 6= 0, the Weyl Lagrangian given by Eq. (G.2.7) possesses no global symmetry, and hence no conserved charge. In

contrast, form = 0 the Weyl Lagrangian exhibits a U(1) chiral symmetry. In a theory of massless neutrinos, the U(1) chiral
charge of the neutrino is correlated with its lepton number L, and one is free to use either aMajorana orWeyl description. In
the former, the neutrino is a neutral self-conjugate fermion,which is not an eigenstate of L. In the latter,ΨL(x) corresponds to
the left-handed neutrino andΨ CR (x) corresponds to the right-handed antineutrino, which are eigenstates of Lwith opposite
sign lepton numbers. No experimental observable can distinguish between these two descriptions.
We now consider a collection of free anticommuting four-component Dirac fields,Ψi. The free-field Lagrangian (in terms

of mass-eigenstate fields) may be obtained from Eq. (3.2.34) by converting to four-component spinor notation. We then
obtain the standard textbook result:

L = iΨ iγ µ∂µΨi −miΨ
i
Ψi. (G.2.12)

By writing Ψ = ΨL + ΨR, we see that the Lagrangian for a single Dirac field can be written in terms of two Weyl fields:

L = iΨ Lγ µ∂µΨL + iΨ Rγ µ∂µΨR −m
(
Ψ LΨR + Ψ RΨL

)
. (G.2.13)

The corresponding free-field equations are:

iγ µ∂µΨL = mΨR, iγ µ∂µΨR = mΨL. (G.2.14)

Summing these two equations yields the Dirac equation, (iγ µ∂µ −m)Ψ = 0.
As a pedagogical example in which both Dirac and Majorana mass terms are present, we perform the diagonalization

of the neutrino mass matrix in a one-generation seesaw model132 using the four-component spinor formalism. Following
Appendix A of Ref. [298], we first introduce a four-component anticommuting neutrino field νD, and the correspondingWeyl
fields,

νL ≡ PLνD, νCL ≡ PLν
C
D , νR ≡ PRνD, and νCR ≡ PRν

C
D . (G.2.15)

Note that Eqs. (G.1.12) and (G.2.5) imply that the anticommuting Weyl fermion fields satisfy:

νCR ν
C
L = νRνL, νCL ν

C
R = νLνR. (G.2.16)

A Dirac mass term for the neutrinos in the one-generation seesaw model couples νL and νCL (and by hermiticity of the
Lagrangian, νCR and νR), and can be written equivalently as:

mD(νTL C
−1νCL + ν

T
R C
−1νCR ) = −mD(ν

C
R ν
C
L + ν

C
L ν
C
R ) = −mD(νRνL + νLνR) = −mDνDνD, (G.2.17)

after making use of Eq. (G.2.16). The Majorana mass term for the neutrinos in the one-generation seesaw model couples νCL
to itself (and by hermiticity of the Lagrangian, νR to itself), and can be written equivalently as:

1
2M(ν

C T
L C

−1νCL + ν
T
R C
−1νR) = −

1
2M(νRν

C
L + ν

C
L νR). (G.2.18)

We shall define the phases of the neutrino fields such that the parametersmD andM are real and non-negative.
Thus, the mass terms of the one-generation neutrino seesaw Lagrangian, given in Eq. (J.2.18) in terms of two-component

fermion fields, translates in four-component spinor notation to

Lmass = −
1
2mD(νLνR + νRνL + ν

C
L ν
C
R + ν

C
R ν
C
L )−

1
2M(νRν

C
L + ν

C
L νR)

= −
1
2

(
νCR νR

) ( 0 mD
mD M

) (
νL
νCL

)
−
1
2

(
νL νCL

) ( 0 mD
mD M

) (
νCR
νR

)
=

1
2

(
νTL νC T

L

)
C−1

(
0 mD
mD M

) (
νL
νCL

)
+ h.c., (G.2.19)

132 In Appendix J.2, the seesaw model of neutrino masses is introduced using the two-component spinor formalism.
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wherewe have used Eq. (G.2.16) towrite the first line of Eq. (G.2.19) in a symmetrical fashion and Eqs. (G.1.12) and (G.2.5) to
obtain the final form above. Note that ifM = 0, then one can writeLmass = −mDνDνD and identify νD as a four-component
massive Dirac neutrino.
The Takagi diagonalization of the neutrino mass matrix yields two mass eigenstates, which we designate by ν` and νh,

where ` and h stand for light and heavy, respectively. Themass-eigenstateWeyl neutrino fields are related to the interaction-
eigenstate Weyl neutrino fields via(

νL
νCL

)
= U

(
PLν`
PLνCh

)
, (G.2.20)

whereU is a 2× 2 unitary matrix that is chosen such that

UT

(
0 mD
mD M

)
U =

(
mν` 0
0 mνh

)
. (G.2.21)

ForM 6= 0, the neutrinomass eigenstates are not Dirac fermions. In the seesaw limit ofM � mD, the corresponding neutrino
masses are mν` ' m

2
D/M and mνh ' M + m

2
D/M , with mν` � mνh . In terms of the mass eigenstates, the neutrino mass

Lagrangian is:

Lmass =
1
2

[
mν`ν

T
`C
−1PLν` +mνhν

C T
h C

−1PLνCh
]
+ h.c., (G.2.22)

after using Eq. (G.1.24). We now define four-component self-conjugate Majorana neutrino fields, denoted by Ψ` and Ψh
respectively, according to Eqs. (G.2.3) and (G.2.9),

Ψ` ≡ PLν` + PR CνT`, Ψ ` ≡ ν`PR − νT`C
−1PL, (G.2.23)

Ψh ≡ PRνh + PLCνTh, Ψ h ≡ νhPL − νThC
−1PR. (G.2.24)

Then, Eq. (G.2.22) reduces to the expected form:

Lmass = −
1
2

[
mν`Ψ `Ψ` +mνhΨ hΨh

]
. (G.2.25)

A comparison with the analysis of the neutrino mass matrix given in Appendix J.2 exhibits the power and the simplicity
of the two-component spinor formalism, as compared to the rather awkward four-component spinor analysis presented
above.

G.3. Gamma matrices and spinors in spacetimes of diverse dimensions and signatures

The translation from two-component to four-component spinor notation given in Appendix G.1 is specific to 3 +
1 spacetime dimensions. In d = 4 Euclidean space dimensions (independently of the choice of convention for the
Minkowski metric), the Dirac gamma matrix algebra is defined by {γ µE , γ

ν
E } = 2δ

µν1, where δµν ≡ diag(1, 1, 1, 1). Using
Eqs. (A.23) and (G.1.2), the Euclidean gamma matrices (defined for µ, ν = 1, . . . , 4) are hermitian and given by γ kE ≡ −iγ

k

(k = 1, 2, 3), γ 4E ≡ γ 0 and γ5E ≡ −γ 1E γ
2
E γ

3
E γ

4
E = γ5 (e.g., see Appendix A.1.2 of Ref. [299]).133 The four-dimensional

reducible (Dirac) spinor representation corresponds to the ( 12 , 0)⊗ (0,
1
2 ) representation of SO(4), although the (

1
2 , 0) and

(0, 12 ) representations are independent pseudo-real representations of SO(4) not related by hermitian conjugation, as noted
at the end of Section 2. A complete treatment of Euclidean two-component spinors can be found in Ref. [128].
The Euclidean space formalism for fermions is necessary for a rigorous definition of the path integral in quantum field

theory [121,122]. Using the Euclidean Dirac gamma matrices introduced above, one can express the four-component Dirac
Lagrangian directly in Euclidean space [220]. Carrying out the same procedure for the four-componentMajorana Lagrangian
is problematical. Because the ( 12 , 0) and (0,

1
2 ) representations of SO(4) are not hermitian conjugates of each other, a self-

conjugate Euclidean Majorana fermion does not exist. Nevertheless, it is possible to devise a continuousWick rotation from
Minkowski spacetime to Euclidean space for Dirac, Majorana andWeyl spinor fields and the gammamatrices. In particular,
one can construct a non-hermitian Euclidean action for a singleMajorana orWeyl field whose Green functions are related to
the usual Minkowski space Green functions by analytic continuation and aWick rotation of the spinor fields. Further details
can be found in Refs. [126,127].134
The two-component spinor technology of this review is specifically designed to treat spinors in three space and one time

dimension. In theories of d spacetime dimensions (where d is any positive integer), more general techniques are required.

133 One can also choose to define the Euclidean Dirac algebra by {γ µE , γ
ν
E } = −2δ

µν1 (simply by multiplying all gamma matrices by a factor of i), in
which case the Euclidean gamma matrices, γ kE ≡ γ k and γ 4E ≡ iγ

0 are anti-hermitian, and γ5E ≡ −γ 1E γ
2
E γ

3
E γ

4
E = γ5 is hermitian (e.g., see Ref. [300]).

These conventions arisemore naturally in the general treatment of gammamatrices in d spacetime dimensions as defined in Eq. (G.3.1). The corresponding
Euclidean sigma matrices would then be defined as in footnote 88.
134 Previous attempts in the literature to define Euclidean Majorana field theories can be found in Ref. [125].
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By considering spinors in this more general setting, one gains insight into the concepts of Majorana, Weyl and Dirac spinors
and their distinguishing features.
The mathematics of spinors [130] in spacetimes of dimension d = t + s (where t is the number of time dimensions

and s is the number of space dimensions) is most easily treated by introducing higher-dimensional analogues of the gamma
matrices, Γ µ, which satisfy the Clifford algebra [90,91,131–136,140–142,289,301], 135

{Γ µ,Γ ν
} = 2ηµν1, ηµν = diag(++ · · · +︸ ︷︷ ︸

t

,−− · · · −︸ ︷︷ ︸
s

), (G.3.1)

where the identity matrix 1 and the Γ µ are 2[d/2] × 2[d/2] matrices, and [d/2] is the integer part of d/2,

[d/2] ≡
{
d/2, for d even,
(d− 1)/2, for d odd. (G.3.2)

The choice of (s, t) denotes the signature of the spacetime. One can choose Γ µ Ď
= Γ µ forµ = 1, 2, . . . , t and Γ µ Ď

= −Γ µ

forµ = t+1, t+2, . . . , d. We identify 12Σ
µν
≡
1
4 i [Γ

µ,Γ ν
] as the generators of SO(s, t) in the spinor representation. Next,

we introduce the [d/2]-component (complex) Dirac spinor Ψ and its Dirac conjugate Ψ ≡ Ψ ĎA, where A = Γ 1Γ 2 · · ·Γ t is
a unitary matrix that satisfies136:

AΓ µA−1 = (−1)t+1Γ µ Ď, AĎ = (−1)t(t−1)/2A. (G.3.3)

One can now build SO(s, t)-covariant bilinears, ΨΓΨ , where Γ is a product of gamma matrices. Biquadratic spinor Fierz
identities involving quantities such as (Ψ 1Γ IΨ2)(Ψ 3ΓIΨ4) can also be derived [302], where the Γ I =

{
1,Γ µ,Γ µν (µ <

ν),Γ µΓ νΓ λ (µ < ν < λ), . . . ,Γ 1Γ 2 · · ·Γ 2[d/2]
}
are a complete set of 22[d/2] linearly independent matrices [which

generalizes Eq. (G.1.101)].
If d is even, one can also introduce the d-dimensional analogue of γ5 by defining137

Γd+1 ≡ i(s−t)/2 Γ 1Γ 2 · · ·Γ d, (G.3.4)

which is hermitian and satisfies (Γd+1)2 = 1 and {Γ µ,Γd+1} = 0. In the case of even-dimensional spacetimes, there are
two possible choices for the charge-conjugated spinor Ψ C ,138

Ψ C = B−1η Ψ
∗, where η = ±1, (G.3.5)

and the Bη are unitary matrices that satisfy:

BηΓ µB−1η = ηΓ
µ ∗, η = ±1. (G.3.6)

For even d, a convenient choice is B+ = B−Γd+1 [135].
If d is odd with signature (s, t), then the 2(d−1)/2 × 2(d−1)/2 gamma matrices Γ µ (µ = 1, 2, . . . , d) consist of{

Γ 1,Γ 2, . . . ,Γ d−1,±iΓd+1
}
of the (d − 1)-dimensional theory of signature (s − 1, t). By assumption, µ = d is a space

index, so that Γ d ≡ ±iΓd+1 is anti-hermitian. In the case of odd d, only one sign choice for η, namely η = (−1)(s−t+1)/2, is
consistent with Eq. (G.3.6) as applied to Γ d.139 Consequently, only one definition of the charge-conjugated spinor is viable,
namely Ψ C = B−1− Ψ ∗ for s− t = 1, 5 (mod 8) and Ψ C = B

−1
+ Ψ

∗ for s− t = 3, 7 (mod 8).
One important property of the Bη is [131,134,140,141]:

B∗ηBη = εη, εη = ±1, (G.3.7)

for η = ±1 in even-dimensional spacetimes and η = (−1)(s−t+1)/2 in odd-dimensional spacetimes. In particular [134],140

ε− =

{
+1, for s− t = 0, 1, 2 (mod 8),
−1, for s− t = 4, 5, 6 (mod 8), ε+ =

{
+1, for s− t = 0, 6, 7 (mod 8),
−1, for s− t = 2, 3, 4 (mod 8). (G.3.8)

135 This includes the Euclidean case [139] corresponding to t = 0 and s = d [cf. footnote 133], and the Minkowski case corresponding to t = 1 and
s = d− 1.
136 In d-dimensional Euclidean space (where t = 0), Γ µĎ

= −Γ µ for all µ = 1, 2, . . . , d. As a result, we may choose A = 1, in which case Ψ = Ψ Ď .
137 For t = 1 and d even, one traditionally takes µ = 0, 1, 2, . . . , d− 1 (where 0 is the time index), in which case, Γd+1 ≡ i(d−2)/2 Γ 0Γ 1 · · ·Γ d−1 .
138 In four-dimensional Minkowski spacetime, we identify D = B−1− [cf. Eq. (G.1.17)] and γ5D = B

−1
+ .

139 The two sign choices for Γ d correspond to two inequivalent representations of the Clifford algebra [Eq. (G.3.1)] for d odd. Nevertheless, the
correspondingΣµν yield equivalent spinor representations of SO(s, t).
140 For d even, one can use B+ = B−Γd+1 and BηΓd+1B−1η = (−1)

(s−t)/2Γ ∗d+1 to derive ε+ = (−1)
(s−t)/2 ε− .
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Using the charge-conjugated spinor defined in Eq. (G.3.5), one can define a self-conjugate spinor, Ψ C = Ψ . Two cases
arise depending on the sign of η [134,140–142],

Majorana spinor: Ψ = B−1
−
Ψ ∗, (G.3.9)

pseudo-Majorana spinor: Ψ = B−1
+
Ψ ∗. (G.3.10)

Due to the reality conditions [Eqs. (G.3.9) and (G.3.10)], the (pseudo-)Majorana spinor possesses 2[d/2] real degrees of
freedom. Using Eq. (G.3.7), one immediately sees that Eqs. (G.3.9) and (G.3.10) are respectively consistent if and only if
εη = +1.141 The possible existence of Majorana [pseudo-Majorana] spinors in d-dimensional spacetime depends on the
choice of s− t such that ε− = +1 [ε+ = +1]. Using Eq. (G.3.8), it follows that Majorana spinors can only exist in spacetimes
where s − t = 0, 1, 2 (mod 8), and pseudo-Majorana can only exist in spacetimes where s − t = 0, 6, 7 (mod 8).142 In
particular, a Majorana spinor cannot exist in four-dimensional Euclidean space.
Given a choice of sign for η = ±1, one can define a corresponding charge conjugation matrix Cη , which is unitary and is

defined by143

Cη ≡ BTηA, where CηΓ µC−1η = η(−1)
t+1Γ µ T. (G.3.11)

Eq. (G.3.5) then yields Ψ C = C∗η Ψ
T. The unitary matrices A, Bη and Cη satisfy the following useful identities[134,140]:

BTη = εηBη, CT
η = εηη

t(−1)t(t−1)/2Cη, A∗Bη = ηtBηA, ATCη = ηtCηA−1. (G.3.12)

In the case of even d, one can define left- and right-handed chiral projection operators:

PL ≡ 1
2 (1− Γd+1), PR ≡ 1

2 (1+ Γd+1), (G.3.13)

and introduce Weyl fermions, ΨL and ΨR, which satisfy Γd+1ΨR,L = ±ΨR,L. Equivalently,

ΨL ≡ PLΨ , ΨR ≡ PRΨ , (G.3.14)

so that ΨL (and likewise ΨR) possesses 2(d−2)/2 complex degrees of freedom. It is possible for a spinor to be simultaneously
a (pseudo) Majorana and a Weyl spinor if the spinor and its charge conjugate have the same chirality, in which case
BηΓd+1B−1η = Γ

∗

d+1 (for even d). The latter condition holds when i
s−t
= 1 or equivalently s− t = 0 (mod 4). Combining this

requirement with the condition for the existence of a (pseudo) Majorana spinor, it follows that a (pseudo) Majorana–Weyl
spinor, which possesses 2(d−2)/2 real degrees of freedom, can only exist in spacetimes where s− t = 0 (mod 8). For further
details, see Refs. [91,131–134,140–142,289].
As in Section 3.2, one can also consider a multiplet of fermions Ψi that transforms under a complex, real or pseudo-real

representation R of the flavor group G as

Ψi → (DR)ijΨj, DR = exp(−iθ aT a
R), i, j = 1, 2, . . . , dR, (G.3.15)

where DR is unitary and the corresponding generators T a
R are hermitian. The dimension of R is denoted by dR, whichmust be

even in the pseudo-real case. In both the real and pseudo-real cases, one can also impose a reality condition that generalizes
the Majorana conditions of Eqs. (G.3.9) and (G.3.10),

(Ψi)
∗
≡ Ψ ∗ i = W ijBηΨj, (G.3.16)

whereW is a unitarymatrix and Bη acts on the (suppressed) spinor indices ofΨj. Additional constraints on the form ofW are
obtained as follows. First, taking the complex conjugate of Eq. (G.3.16) and inserting the result back into the same equation,
it follows that

W ∗W = εη1, (G.3.17)

after making use of Eq. (G.3.7). Second, Eq. (G.3.16) must hold true if Ψ is replaced by DRΨ on both sides of the equation, in
order to be compatible with the flavor symmetry group transformation law [Eq. (G.3.15)]. This latter requirement combined
with Eq. (G.3.17) yields:

DR = εηW ∗D∗RW = W
−1D∗RW . (G.3.18)

141 If εη = −1 then one can introduce a generalized reality condition [cf. Eq. (G.3.16)], which constrains the structure of a multiplet of Dirac fermions that
transforms under a pseudo-real representation of the flavor group. In this case, the corresponding (generalized) self-conjugate spinors are called symplectic
(pseudo-)Majorana spinors, as discussed below Eq. (G.3.20).
142 As shown in Refs. [134,140], no SO(s, t)-invariant mass term is allowed for a pseudo-Majorana spinor.
143 In four-dimensional Minkowski spacetime, we identify C = (CT

−
)−1 = C∗

−
[cf. Eq. (G.1.10)] and B = C+ [cf. Eq. (G.1.19)]. In this case, one cannot use

C+ to consistently define a self-conjugate spinor, as the corresponding ε+ = −1.
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Eq. (G.3.18) can be expressed in terms of the flavor group generators,

iT a
R = W

−1(iT a
R)
∗W . (G.3.19)

Comparing with Eqs. (E.1.4)–(E.1.6), we conclude that the unitary matrixW satisfies:

W = εηW T, εη =

{
+1, R is a real representation,
−1, R is a pseudo-real representation. (G.3.20)

When R is a real representation,W = W T, and a basis for the flavor group generators can be chosen such thatW = 1
[cf. Eq. (E.1.7)], in which case DR is a real orthogonal matrix. Since εη = +1, Eq. (G.3.16) yields (pseudo-)Majorana spinors
(depending on the sign of η) as defined previously in Eqs. (G.3.9) and (G.3.10).
When R is a pseudo-real representation, W = −W T, and a basis for the flavor group generators can be chosen such

thatW = J ≡ diag
{(

0 1
−1 0

)
,
(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
is a dR × dR matrix, where dR is even [cf. Eq. (E.1.8)]. In this case,

DT
RJDR = J , which implies that DR is a unitary symplectic matrix [136]. Moreover, εη = −1, which was incompatible with
the reality conditions of Eqs. (G.3.9) and (G.3.10), but is compatible with the generalized reality condition of Eq. (G.3.16).
Therefore, we define symplectic (pseudo-)Majorana spinors [134,136,137,142,289] to be spinors that transform as a

pseudo-real representation under some flavor group and satisfy the generalized reality condition of Eq. (G.3.16), where
W is a unitary antisymmetric matrix, depending on the choice of η = ±1 (with η = −1 yielding the ‘‘pseudo’’ designation).
As suggested by Eqs. (3.2.35)–(3.2.40), 2dR symplectic (pseudo-)Majorana spinors are equivalent to dR Dirac fermions.
The possible existence of symplectic (pseudo-)Majorana spinors in a d-dimensional spacetime is governed by Eq. (G.3.8).
Requiring that εη = −1 implies that symplectic Majorana spinors exist in spacetimes where s − t = 4, 5, 6 (mod 8),
and symplectic pseudo-Majorana spinors exist in spacetimes where s − t = 2, 3, 4 (mod 8). Using this nomenclature,
the fermions described by the four-dimensional Minkowski space Lagrangian given in Eq. (3.2.35) are symplectic pseudo-
Majorana spinors.

G.4. Four-component spinor wave functions

In four-dimensional Minkowski space, the free four-component Majorana field can be expanded in a Fourier series; each
positive [negative] frequency mode is multiplied by a commuting spinor wave function u(Ep, s) [v(Ep, s)] as in Eq. (3.2.11),144

ΨMi(x) =
∑
s

∫
d3Ep

(2π)3/2(2Eip)1/2

[
u(Ep, s)ai(Ep, s)e−ip·x + v(Ep, s)a

Ď
i (Ep, s)e

ip·x
]
, (G.4.1)

where Eip ≡ (|Ep|2+m2i )
1/2, and the creation operators aĎi and the annihilation operators ai satisfy anticommutation relations:

{ai(Ep, s), a
Ď
j (Ep
′
, s′)} = δ3(Ep− Ep ′)δss′δij, (G.4.2)

with all other anticommutation relations vanishing. We employ covariant normalization of the one-particle states given by
Eq. (3.2.13). It then follows that

〈0|ΨM(x)
∣∣Ep, s〉 = u(Ep, s)e−ip·x, 〈0|Ψ M(x)

∣∣Ep, s〉 = v̄(Ep, s)e−ip·x, (G.4.3)〈
Ep, s
∣∣Ψ M(x) |0〉 = ū(Ep, s)eip·x, 〈

Ep, s
∣∣ΨM(x) |0〉 = v(Ep, s)eip·x. (G.4.4)

These results are the four-component spinor versions of Eqs. (3.1.7) and (3.1.8).
Likewise, the free Dirac field can be expanded in a Fourier series,

Ψi(x) =
∑
s

∫
d3Ep

(2π)3/2(2Eip)1/2

[
u(Ep, s)ai(Ep, s)e−ip·x + v(Ep, s)b

Ď
i (Ep, s)e

ip·x
]
, (G.4.5)

where the creation operators aĎi and b
Ď
i and the annihilation operators ai and bi satisfy anticommutation relations:

{ai(Ep, s), a
Ď
j (Ep
′
, s′)} = δ3(Ep− Ep ′)δss′δij, (G.4.6)

{bi(Ep, s), b
Ď
j (Ep
′
, s′)} = δ3(Ep− Ep ′)δss′δij, (G.4.7)

with all other anticommutation relations vanishing.We employ covariant normalization of the fermion (F) and antifermion
(F ) one-particle states given by Eq. (3.2.22). It then follows that

〈0|Ψ (x)
∣∣Ep, s; F 〉 = u(Ep, s)e−ip·x, 〈0|Ψ (x)

∣∣Ep, s; F 〉 = v̄(Ep, s)e−ip·x, (G.4.8)〈
Ep, s; F

∣∣Ψ (x) |0〉 = ū(Ep, s)eip·x, 〈
Ep, s; F

∣∣Ψ (x) |0〉 = v(Ep, s)eip·x, (G.4.9)

144 Some subtleties arise in the choice of relative phases of the creation and annihilation operators, which are related to the C, CP and CPT transformation
properties of the Majorana field. For further details, see Ref. [303].
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and the four other single-particle matrix elements vanish. These results are the four-component spinor versions of
Eqs. (3.2.23)–(3.2.26). The Fourier expansion of the charge-conjugated free Dirac field Ψ Ci (x) = CΨ

T
i (x) is given by:

Ψ Ci (x) =
∑
s

∫
d3Ep

(2π)3/2(2Eip)1/2

[
u(Ep, s)bi(Ep, s)e−ip·x + v(Ep, s)a

Ď
i (Ep, s)e

ip·x
]
, (G.4.10)

where we have used Eq. (G.4.13). That is, the charge conjugation transformation interchanges the annihilation and creation
operators, ai ↔ bi and a

Ď
i ↔ b

Ď
i . Thus, if Ψ

C (x) = Ψ (x), then we must identify a = b and aĎ = bĎ, corresponding to the free
Majorana field given in Eq. (G.4.1).
The two-component spinor momentum space wave functions are related to the traditional four-component spinor wave

functions according to:

u(Ep, s) =
(
xα(Ep, s)
yĎα̇(Ep, s)

)
, ū(Ep, s) = (yα(Ep, s), xĎα̇(Ep, s)), (G.4.11)

v(Ep, s) =
(
yα(Ep, s)
xĎα̇(Ep, s)

)
, v̄(Ep, s) = (xα(Ep, s), yĎα̇(Ep, s)), (G.4.12)

where the u and v-spinors are related by

v(Ep, s) = Cū(Ep, s)T, u(Ep, s) = C v̄(Ep, s)T, (G.4.13)

v̄(Ep, s) = −u(Ep, s)TC−1, ū(Ep, s) = −v(Ep, s)TC−1. (G.4.14)

The spin quantum number takes on values s = ± 12 , and refers either to the component of the spin as measured in the
rest frame with respect to a fixed axis or to the helicity (as discussed in Section 3.1 and Appendix C). Note that the u and
v-spinors also satisfy:

v(Ep, s) = −2sγ5u(Ep,−s), u(Ep, s) = 2sγ5v(Ep,−s), (G.4.15)

which follows from Eq. (3.1.23). Explicit forms for the four-component spinor wave functions in the chiral representation
can be obtained using Eqs. (3.1.19)–(3.1.22), where χs(ŝ) is given in Eq. (C.1.11). For helicity spinors, further simplifications
result by employing Eqs. (C.3.4)–(C.3.7).
One can check that u and v satisfy the Dirac equations

(6 p−m) u(Ep, s) = (6 p+m) v(Ep, s) = 0, (G.4.16)

ū(Ep, s) (6 p−m) = v̄(Ep, s) (6 p+m) = 0, (G.4.17)

corresponding to Eqs. (3.1.9)–(3.1.12), and

(2sγ5 6 S − 1) u(Ep, s) = (2sγ5 6 S − 1) v(Ep, s) = 0, (G.4.18)

ū(Ep, s) (2sγ5 6 S − 1) = v̄(Ep, s) (2sγ5 6 S − 1) = 0, (G.4.19)

corresponding to Eqs. (3.1.24)–(3.1.27), where the spin vector Sµ is defined in Eq. (3.1.15).145 For massive fermions,
Eqs. (3.1.46)–(3.1.49) correspond to

u(Ep, s)ū(Ep, s) = 1
2 (1+ 2sγ5 6 S) (6 p+m), (G.4.20)

v(Ep, s)v̄(Ep, s) = 1
2 (1+ 2sγ5 6 S) (6 p−m). (G.4.21)

To apply the above formulae to the massless case we must employ helicity states, where s is replaced by the helicity
quantum number λ, and Sµ is defined by Eq. (3.1.16). In particular, in them→ 0 limit, Sµ = pµ/m+O(m/E). Inserting this
result in Eqs. (G.4.18) and (G.4.19) and using the Dirac equations, it follows that themassless helicity spinors are eigenstates
of γ5,

γ5u(Ep, λ) = 2λu(Ep, λ), γ5v(Ep, λ) = −2λv(Ep, λ). (G.4.22)

Combining these results with Eq. (G.4.15) [with s replaced by λ] yields:

v(p, λ) = −2λγ5u(p,−λ) = u(p,−λ), λ = ± 12 , (G.4.23)

and we see that the massless u and v spinors of opposite helicity are the same.

145 We use the standard Feynman slash notation: 6 p ≡ γµpµ and 6 S ≡ γµSµ .
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Applying the above m → 0 limiting procedure to Eqs. (G.4.20) and (G.4.21) and using the mass–shell condition
(6 p6 p = p2 = m2), one obtains the massless helicity projection operators corresponding to Eqs. (3.1.54)–(3.1.57):

u(Ep, λ)ū(Ep, λ) = 1
2 (1+ 2λγ5) 6 p, (G.4.24)

v(Ep, λ)v̄(Ep, λ) = 1
2 (1− 2λγ5) 6 p. (G.4.25)

Summing over the spin degree of freedom, we obtain the spin-sum identities corresponding to Eqs. (3.1.58)–(3.1.61),∑
s

u(Ep, s)ū(Ep, s) =6 p+m, (G.4.26)∑
s

v(Ep, s)v̄(Ep, s) =6 p−m, (G.4.27)∑
s

u(Ep, s)vT(Ep, s) = (6 p+m)CT, (G.4.28)∑
s

ūT(Ep, s)v̄(Ep, s) = C−1(6 p−m), (G.4.29)∑
s

v̄T(Ep, s)ū(Ep, s) = C−1(6 p+m), (G.4.30)∑
s

v(Ep, s)uT(Ep, s) = (6 p−m)CT, (G.4.31)

which are valid for both the massive case and the masslessm→ 0 limit.
As previously noted, the results for the bilinear covariants obtained in Eqs. (G.1.78)–(G.1.89) can also be applied to

expressions involving the commuting spinor wave functions. Various relations among the possible bilinear covariants can
be established by using Eqs. (G.4.13) and (G.4.14). As an example, for Γ = 1, γ5, γ µ, γ µγ5,Σµν,Σµνγ5,

ū(Ep1, s1)Γ v(Ep2, s2) = −v(Ep1, s1)
TC−1Γ Cū(Ep2, s2)

T
= −ηCΓ ū(Ep2, s2)Γ v(Ep1, s1), (G.4.32)

ū(Ep1, s1)Γ u(Ep2, s2) = −v(Ep1, s1)
TC−1Γ C v̄(Ep2, s2)

T
= −ηCΓ v̄(Ep2, s2)Γ v(Ep1, s1), (G.4.33)

where the sign ηCΓ [defined in Eq. (G.1.24)] arises after taking the transpose and applying Eq. (G.1.24). In particular, the
(commuting) u and v spinors satisfy the following relations:

ū(Ep1, s1)PLv(Ep2, s2) = −ū(Ep2, s2)PLv(Ep1, s1), (G.4.34)

ū(Ep1, s1)PRv(Ep2, s2) = −ū(Ep2, s2)PRv(Ep1, s1), (G.4.35)

ū(Ep1, s1)γ
µPLv(Ep2, s2) = ū(Ep2, s2)γ

µPRv(Ep1, s1), (G.4.36)

ū(Ep1, s1)γ
µPRv(Ep2, s2) = ū(Ep2, s2)γ

µPLv(Ep1, s1), (G.4.37)

and four similar relations obtained by interchanging v(Ep2, s2)↔ u(Ep2, s2).

G.5. Feynman rules for four-component fermions

We now illustrate some basic applications of the above formalism. In particular, we shall establish a set of Feynman rules
for four-component fermions that treat both Dirac and Majorana fermions on the same footing. These rules generalize the
standard Feynman rules for four-component Dirac fermions found inmost quantum field theory textbooks. Two advantages
of the rules presented here are: (i) no factors of the charge conjugation matrix C are required for fermion interaction
vertices and propagators, and (ii) the relative sign between different diagrams corresponding to the same physical process is
simply determined. Our rules have been obtained by translating our two-component fermion Feynman rules into the four-
component spinor language. The resulting Feynman rules for four-component Majorana fermions are equivalent to the set
of rules independently obtained in Ref. [304] (see also Refs. [305,306]).
Consider first the Feynman rule for the four-component fermion propagator. Virtual Dirac fermion lines can either

correspond to Ψ or Ψ C . Here, there is no ambiguity in the propagator Feynman rule, since for free Dirac fermion fields,146

〈0| T [Ψa(x)Ψ
b
(y)] |0〉 = 〈0| T [Ψ Ca (x)Ψ C

b
(y)] |0〉 , (G.5.1)

so that the Feynman rules for the propagator of a Ψ and Ψ C line, exhibited in Fig. G.5.1, are identical. The same rule also
applies to a four-component Majorana fermion.

146 In deriving Eq. (G.5.1), we have usedC Ψa C−1 = ηcΨ
C
a andC Ψ

a
C−1 = η∗c Ψ

C
a
, whereC is the charge conjugation operator that acts on the quantum

Hilbert space and ηc is a convention-dependent phase factor [36,38]. Note that C is a unitary operator and C |0〉 = |0〉 in the free-field vacuum.
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Fig. G.5.1. Feynman rule for the propagator of a four-component fermion with massm. The same rule applies to a Majorana, Dirac and charge-conjugated
Dirac fermion. The four-component spinor labels a and b are specified.

Using Eq. (G.1.2), the four-component fermion propagator Feynman rule can be expressed as a partitionedmatrix of 2×2
blocks,

=
i

p2 −m2 + iε

(
m δαβ p · σαβ̇
p · σ α̇β m δα̇ β̇

)
, (G.5.2)

where a and b are four-component spinor indices. That is, Eq. (G.5.2) is a partitioned matrix whose blocks consist of two-
component fermion propagators defined in Fig. 4.2.1, with the undotted and dotted α [β] indices on the left [right] and with
the momentum flowing from right to left.
The derivation of the four-component Dirac fermion propagator is treated in most modern textbooks of quantum field

theory (see, e.g., Ref. [114]). Here, we briefly sketch the path integral derivation of the four-component fermion propagator
by exploiting the path integral treatment of the two-component fermion propagators outlined in Appendix F. Consider a
single massive Dirac fermion Ψ (x) coupled to an anticommuting four-component Dirac fermionic source term

Jψ (x) ≡
(
Jηα(x)
JĎα̇χ (x)

)
. (G.5.3)

The corresponding action [Eq. (F.2)] in four-component notation is given by

S =
∫
d4x (L + JψΨ + Ψ Jψ ) =

∫
d4x

[
Ψ (i6∂ −m)Ψ + JψΨ + Ψ Jψ

]
. (G.5.4)

Introducing the momentum space Fourier coefficients:

Ψ (x) =
∫

d4p
(2π)4

e−ip·xΨ̂ (p), Jψ (x) =
∫

d4p
(2π)4

e−ip· x̂Jψ (p), (G.5.5)

we can identify the following four-component quantities with matrices of two-component quantities given in Eqs. (F.7) and
(F.27):

Ψ̂ (p) = A−1Ωc(p), Ĵψ (p) = Xc(p), 6 p−m =M(p)A, (G.5.6)

where A is the Dirac conjugation matrix defined in Eqs. (G.1.9) and (G.1.11). Using the results of Appendix F, one easily
derives:

〈0|T (Ψ (x1)Ψ (x2))|0〉 =

(
−i
−→
δ

δJψ (x1)

)
W [J, J]

(
−i
←−
δ

δJψ (x2)

)∣∣∣∣∣
Jψ=Jψ=0

, (G.5.7)

where

W [Jψ , Jψ ] = exp
{
−i
∫

d4p
(2π)4

Ĵψ (p)
6 p+m
p2 −m2

Ĵψ (p)
}
. (G.5.8)

Using the analogues of Eqs. (F.23) and (F.24), we end up with the expected result

〈0|T (Ψ (x1)Ψ (x2))|0〉 =
∫

d4p
(2π)4

e−ip·(x1−x2)
i(6 p+m)
p2 −m2

. (G.5.9)

In principle, the analogous computation can be carried out for a single four-component Majorana fermion field ΨM(x)
coupled to aMajorana fermionic source, Jξ (x). The corresponding action is similar to that of Eq. (G.5.4), with an extra overall
factor of 1/2. However, in evaluating the functional derivative in Eq. (G.5.8), one must take into account that the Majorana
fermionic source Jξ (x) satisfies JCξ ≡ CJ

T
ξ = Jξ . Consequently, the functional derivative with respect to Jξ is related to the

corresponding functional derivative with respect to Jξ . Hence, the calculation of Eq. (G.5.8) will yield two equal terms that
will cancel the overall factor of 1/2, resulting again in Eq. (G.5.9). Nevertheless, this computation is somewhat awkward
using four-component spinor notation, in contrast to the straightforward calculation of Appendix F.
We next examine the various interactions involving four-component fermions. First, we consider the interactions of a

neutral scalar φ or a gauge boson Aaµ with a pair of Majorana fermions. To obtain the interactions of the four-component
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Fig. G.5.2. Feynman rules for neutral scalar and gauge boson interactions with a pair of four-component Majorana fermions (labeled by four-component
spinor indices b and c). The Ga are defined in Eq. (4.3.16). The index a runs over the neutral (mass-eigenstate) gauge bosons.

fermion fields, we first identify the neutral two-component fermion mass-eigenstate neutral fields ξi. Using Eqs. (4.3.9) and
(4.3.15), the interaction Lagrangian in two-component form is given by:

Lint = −
1
2 (λ

ijξiξj + λijξ
Ďiξ Ďj)φ − (Ga)ij ξ ĎiσµξjAaµ, (G.5.10)

where λ is a complex symmetric matrix with λij ≡ λ∗ij [cf. Eq. (3.2.2)], the A
a
µ are the mass-eigenstate gauge fields, and the

corresponding hermitian matrices Ga are defined in Eq. (4.3.16). It is now simple to convert this result into four-component
notation:

Lint = −
1
2 (λ

ijΨ MiPLΨMj + λijΨ
i
MPRΨ

j
M)φ − (G

a)i
jΨ
i
Mγ

µPLΨMjAaµ, (G.5.11)

where the ΨMj are a set of (neutral) Majorana four-component fermions. It is convenient to use Eq. (G.1.98) to rewrite the
term proportional to (Ga)ij in Eq. (G.5.11) as follows

(Ga)ijΨ
i
Mγ

µPLΨMj = 1
2 (G

a)i
j
[
Ψ
i
Mγ

µPLΨMj − Ψ Mjγ µPRΨ i
M

]
=

1
2Ψ Miγ

µ
[
(Ga)ijPL − (Ga)jiPR

]
ΨMj. (G.5.12)

In the last step above, we have lowered the flavor indices of the four-component Majorana fermion fields, as the heights of
these indices can be arbitrarily chosen [cf. Eq. (G.1.76)].
Using standard four-component spinormethods, the corresponding four-component spinor Feynman rules are displayed

in Fig. G.5.2. A Majorana fermion is neutral under all conserved charges (and thus equal to its own antiparticle). Hence, an
arrow on aMajorana fermion line simply reflects the structure of the interaction Lagrangian; i.e.,Ψ M [ΨM ] is represented by
an arrow pointing out of [into] the vertex. These arrows are then used for determining the placement of the u and v spinors
in an invariant amplitude, according to the rules of Appendix G.6. In particular, the four-component spinor labels of Fig. G.5.2
indicate that one should traverse any continuous fermion line bymoving antiparallel to the direction of the fermion arrows.
Next, we consider the interactions of a (possibly complex) scalar Φ or a gauge boson Aaµ with a pair of Dirac fermions.

The Dirac fermions are charged with respect to some global or local U(1) symmetry, which is assumed to be a symmetry
of the Lagrangian. To obtain the interactions of the four-component fermion fields, we first identify the mass-degenerate
oppositely charged pairs χj and ηj (with U(1)-charges qj and −qj, respectively) that combine to form the mass-eigenstate
Dirac fermions. The scalar field Φ carries a U(1)-charge qΦ . We also identify the gauge boson mass eigenstates of definite
U(1)-charge by Aaµ as described in Section 4.3 (cf. footnote 41). Using Eqs. (4.3.9) and (4.3.18), the interaction Lagrangian in
two-component form is given by:

Lint = −κ
i
jχiη

jΦ − κi
jχĎiη

Ď
j Φ

Ď
−

[
(GaL)i

jχĎiσµχj − (GaR)j
iη

Ď
i σ

µηj
]
Aaµ, (G.5.13)

where κij ≡ (κ ij)
∗ [cf. Eq. (3.2.28)] and κ is an arbitrary complex matrix coupling, subject to the conditions that κ ij = 0

unless qΦ = qj − qi. For the gauge boson couplings, we follow the notation of Eqs. (4.3.19) and (4.3.20). In particular, AaµG
a
L

and AaµG
a
R are hermitianmatrix-valued gauge fields, whichwhen summed over a can contain both neutral and charged [with

respect to U(1)] mass-eigenstate gauge boson fields. Converting to four-component notation yields:

Lint = −κ
i
jΨ
jPLΨiΦ − κijΨ

iPRΨjΦĎ
−

[
(GaL)i

jΨ
i
γ µPLΨj + (GaR)i

jΨ
i
γ µPRΨj

]
Aaµ, (G.5.14)

where theΨj are a set of Dirac four-component fermions. IfΦ is a real (neutral) scalar field, thenwe shall writeφ ≡ Φ = ΦĎ.
The corresponding four-component spinor Feynman rules are exhibited in Fig. G.5.3. The rules involving the charge-
conjugated Dirac fields have been obtained by using Eq. (G.1.90). Note that the arrows on the charged scalar and Dirac
fermion lines depict the flow of the conserved U(1)-charge.
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Fig. G.5.3. Feynman rules for neutral scalar (φ), charged scalar (Φ) and gauge boson (Aµa) interactions with a pair of four-component Dirac fermions
(labeled by four-component spinor indices b and c). In each case, one has two choices for the corresponding Feynman rule: one involving Ψ and one
involving the oppositely charged Ψ C (with the arrows of the corresponding Ψ and Ψ C lines pointing in opposite directions). The arrows indicate the
direction of flow of the U(1)-charges of the Dirac fermion and charged scalar fields. The index a runs over both neutral and charged (mass-eigenstate)
gauge bosons, consistent with charge conservation at the vertex.

Finally, we treat the interaction of a charged scalar boson Φ (with U(1)-charge qΦ ) or a charged vector bosonW (with
U(1)-charge qW ) with a fermion pair consisting of one Majorana and one Dirac fermion. We denote the neutral fermion
mass-eigenstate fields by ξi and pairs of oppositely charged fermion mass-eigenstate fields by χj and ηj (with U(1)-charges
qj and−qj, respectively). Using Eqs. (4.3.9) and (4.3.21), the interaction Lagrangian is given by:

Lint = −Φ[(κ1)
i
jξiη

j
+ (κ2)ijξ

ĎiχĎj
] − ΦĎ

[(κ2)
ijξiχj + (κ1)i

jξ
Ďi
i η

Ď
j ]

−Wµ[(G1)jiχĎjσµξi − (G2)ijξ Ďiσµηj] −W Ď
µ[(G1)

j
iξ

Ďiσµχj − (G2)ijη
Ď
j σ

µξi], (G.5.15)

where κ1, κ2, G1, and G2 are arbitrary complex coupling matrices, subject to the conditions that (κ1)ij = (κ2)ij = 0 unless
qΦ = qj, and (G1)ji = (G2)ij = 0 unless qW = qj. Converting to four-component spinor notation yields:

Lint = −

[
(κ1)

i
jΨ
jPLΨMi + (κ2)ijΨ

jPRΨ iM
]
Φ −

[
(G1)jiΨ

j
γ µPLΨMi + (G2)ijΨ

j
γ µPRΨ iM

]
Wµ + h.c. (G.5.16)

The corresponding four-component spinor Feynman rules are exhibited in Fig. G.5.4.
There is an equivalent form for the interactions given by Eqs. (G.5.13) and (G.5.16) where Lint is written in terms of

charge-conjugated Dirac fields [after using Eq. (G.1.90)]. The Feynman rules involving Dirac fermions can take two possible
forms, as shown in Figs. G.5.3 and G.5.4. As previously noted, the direction of an arrow on a Dirac fermion line indicates
the direction of the fermion charge flow (whereas the arrow on the Majorana fermion line is unconnected to charge flow).
However, we are free to choose either aΨ orΨ C line to represent a Dirac fermion at any place in a given Feynman graph.147
For any decay or scattering process, a suitable choice of either the Ψ -rule or the Ψ C -rule at each vertex (the choice can

147 Since the charge ofΨ C is opposite in sign to the charge ofΨ , the corresponding arrowdirections of theΨ andΨ C linesmust point in opposite directions.
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Fig. G.5.4. Feynman rules for charged scalar and vector boson interactions with a fermion pair consisting of one Majorana and one Dirac four-component
fermion (labeled by four-component spinor indices b and c). In each case, one has two choices for the corresponding Feynman rule: one involving Ψ and
one involving the oppositely charged Ψ C (with the arrows of the Ψ and Ψ C lines pointing in opposite directions). The arrows of the Dirac fermion and
charged bosons indicate the direction of flow of the corresponding U(1)-charges. That is, the charge of the boson (eitherΦ orW above) must coincide with
the charge ofΨj . The arrows of theMajorana fermions satisfy the requirement that the fermion line arrow directions flow continuously through the vertex.

be different at different vertices), will guarantee that the arrow directions on fermion lines flow continuously through the
Feynman diagram. Then, to evaluate an invariant amplitude, one should traverse any continuous fermion line (either Ψ or
Ψ C ) by moving antiparallel to the direction of the fermion arrows, as indicated by the order of the four-component spinor
labels in the Feynman rules of Figs. G.5.3 and G.5.4. Examples will be provided in Appendix G.6.

G.6. Applications of four-component spinor Feynman rules

For a given process, there may be a number of distinct choices for the arrow directions on the Majorana fermion lines,
which may depend on whether one represents a given Dirac fermion by Ψ or Ψ C . However, different choices do not lead to
independent Feynman diagrams.148 When computing an invariant amplitude, one first writes down the relevant Feynman
diagrams with no arrows on any Majorana fermion line. The number of distinct graphs contributing to the process is then
determined. Finally, onemakes some choice for how to distribute the arrows on theMajorana fermion lines and how to label

148 In contrast, the two-component Feynman rules developed in Section 4 require that two vertices differing by the direction of the arrows on the two-
component fermion lines must both be included in the calculation of the matrix element.
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Dirac fermion lines (either as the fieldΨ or its charge conjugateΨ C ) in a manner consistent with the rules of Figs. G.5.2 and
G.5.4. The end result for the invariant amplitude (apart from an overall unobservable phase) does not depend on the choices
made for the direction of the fermion arrows.
Using the above procedure, the Feynman rules for the external fermion wave functions are the same for Dirac and

Majorana fermions:

• u(Ep, s): incoming Ψ [or Ψ C ] with momentum Ep parallel to the arrow direction,
• ū(Ep, s): outgoing Ψ [or Ψ C ] with momentum Ep parallel to the arrow direction,
• v(Ep, s): outgoing Ψ [or Ψ C ] with momentum Ep antiparallel to the arrow direction,
• v̄(Ep, s): incoming Ψ [or Ψ C ] with momentum Ep antiparallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana fermions is straightforward.
Simply insert the plane wave expansion of the Majorana field given by Eq. (G.4.1) into Eq. (G.5.11), and evaluate matrix
elements for, e.g., the decay of a scalar or vector particle into a pair of Majorana fermions.
We now reconsider the matrix elements for scalar and vector particle decays into fermion pairs and 2 → 2 elastic

scattering of a fermion off a scalar and vector boson, respectively.We shall compute thematrix elements using the Feynman
rules of Fig. G.5.2, and check that the results agree with the ones obtained by two-component methods in Section 4.5.
Consider first the decay of a neutral scalar bosonφ into a pair ofMajorana fermions,φ→ ΨMi(Ep1, s1)ΨMj(Ep2, s2), of flavor

i and j, respectively. Here, ΨMi(Ep, s) denotes the one-particle state given by Eq. (3.2.13). The matrix element for the decay is
given by

iM = −iū(Ep1, s1)(λ
ijPL + λijPR)v(Ep2, s2). (G.6.1)

One can easily check that this result matches with Eq. (4.5.2), which was derived using two-component spinor techniques.
Note that if one had chosen to switch the two final states (equivalent to switching the directions of the Majorana fermion
arrows), then the resulting matrix element would simply exhibit an overall sign change [due to the results of Eqs. (G.4.34)
and (G.4.35)]. This overall sign change is a consequence of the Fermi–Dirac statistics, and corresponds to changing which
order one uses to construct the two-particle final state.
Consider next the decay of a (neutral or charged) scalar bosonΦ into a pair of Dirac fermions, Φ → Fi(Ep1, s1)F

j
(Ep2, s2),

where by F(Ep, s) and F(Ep, s)wemean the one-particle states given by Eq. (3.2.22). Thematrix element for the decay is given
by

iM = −iū(Ep1, s1)(κ
j
iPL + κijPR)v(Ep2, s2), (G.6.2)

which is equivalent to Eq. (4.5.5), which was derived using two-component spinor techniques.
For the decay of a neutral vector boson (denoted by Aµ) into a pair of Majorana fermions, Aµ → ΨMi(Ep1, s1)ΨMj(Ep2, s2),

we use the Feynman rules of Fig. G.5.2 to obtain:

iM = −iū(Ep1, s1)γ
µ
[
GijPL − GjiPR

]
v(Ep2, s2)εµ, (G.6.3)

The above result is equivalent to Eq. (4.5.8), whichwas derived using two-component spinor techniques. Again, we note that
if one had chosen to switch the two final states (equivalent to switching the directions of theMajorana fermion arrows), then
the resulting matrix element would simply exhibit an overall sign change [due to the results of Eqs. (G.4.36) and (G.4.37)].
For i = j, Eq. (G.6.3) simplifies to

iM = iGū(Ep1, s1)γ
µγ5v(Ep2, s2)εµ, (G.6.4)

whereG ≡ Gi i. The absence of a vector coupling of the vector boson to a pair of identicalMajorana fermions is a consequence
of the identity Ψ Mγ µΨM = 0 noted below Eq. (G.1.97).
For the decay of a (neutral or charged) vector particle Aµ into a fermion pair consisting of a Dirac fermion and antifermion,

Aµ → Fi(Ep1, s1)F
j
(Ep2, s2), the matrix element is given by:

iM = −iū(Ep1, s1)γ
µ
[
(GL)ijPL + (GR)ijPR

]
v(Ep2, s2)εµ, (G.6.5)

which matches the result of Eq. (4.5.12).
Finally, we consider the decay of a charged boson to a fermion pair consisting of one Dirac fermion and one Majorana

fermion. Using the Feynman rules of Fig. G.5.4, we see that we have a choice of two rules for each decay process. As an
example, consider the decayW → ΨMi(Ep1, s1)Fj(Ep2, s2). If we apply theWΨMΨ Feynman rule of Fig. G.5.4, we obtain:

iM = −iū(Ep2, s2)
[
(G1)jiPL + (G2)ijPR

]
v(Ep1, s1). (G.6.6)

If we apply the correspondingWΨMΨ C Feynman rule, we obtain the negative of Eq. (G.6.6) with PL ↔ PR and (Ep1, s1) ↔
(Ep2, s2). Using Eqs. (G.4.36) and (G.4.37), the resulting amplitude is the negative of Eq. (G.6.6), as expected since the order of
the spinor wave functions in the two computations is reversed. A similar conclusion is obtained for the decayΦ → ΨMiFj.
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Turning to the elastic scattering of a Majorana fermion and a neutral scalar, we shall examine two equivalent ways for
computing the amplitude. Following the rules previously stated, there are two possible choices for the direction of arrows
on the Majorana fermion lines. Thus, may evaluate either one of the following two diagrams:

plus a second set of diagrams (not shown) where the initial and final state scalars are crossed.
Evaluating the first diagram above, the matrix element for φΨM → φΨM is given by:

iM =
−i
s−m2

ū(Ep2, s2)(λPL + λ
∗PR)(6 p+m)(λPL + λ∗PR)u(Ep1, s1)+ (crossed)

=
−i
s−m2

ū(Ep2, s2)
[
|λ|2 6 p+

(
λ2PL + (λ∗)2PR

)
m
]
u(Ep1, s1)+ (crossed), (G.6.7)

where m is the Majorana fermion mass and
√
s is the center-of-mass energy. Using Eqs. (G.1.2) and (G.4.11), one recovers

the results of Eq. (4.5.13). Had we chosen to evaluate the second diagram instead, the resulting amplitude would have been
given by:

iM =
−i
s−m2

v̄(Ep1, s1)
[
−|λ|2 6 p+

(
λ2PL + (λ∗)2PR

)
m
]
v(Ep2, s2)+ (crossed). (G.6.8)

Using Eq. (G.4.33), it follow that:

v̄(Ep1, s1)v(Ep2, s2) = −ū(Ep2, s2)u(Ep1, s1), (G.6.9)

v̄(Ep1, s1)γ
µv(Ep2, s2) = ū(Ep2, s2)γ

µu(Ep1, s1). (G.6.10)

Consequently, the amplitude computed in Eq. (G.6.8) is just the negative of Eq. (G.6.7). This is expected, since the order of
spinor wave functions in Eq. (G.6.8) is an odd permutation of the order of spinor wave functions in Eq. (G.6.7) [(12) and (21),
respectively]. As in the two-component Feynman rules, the overall sign of the amplitude is arbitrary, but the relative signs
of any pair of diagrams is unambiguous. This relative sign is positive [negative] if the permutation of the order of spinor
wave functions of one diagram relative to the other diagram is even [odd].
Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again, we examine two equivalent

ways for computing the amplitude. Following our rules, there are two possible choices for the directions of the fermion line
arrows, depending on whether we represent the fermion by Ψ or Ψ C . Thus, we may evaluate either one of the following
two diagrams:

plus a second set of diagrams (not shown) where the initial and final state scalars are crossed. Evaluating the first diagram
above, the matrix element for φF → φF is given by Eq. (G.6.7), with λ replaced by κ . Had we chose to evaluate the second
diagram instead, the resulting amplitude would have been given by Eq. (G.6.8), with λ replaced by κ . Thus, the discussion
above in the case of neutral fermion scattering processes also applies to charged fermion scattering processes.
In processes that only involve vertices with two Dirac fields, it is never necessary to use charge-conjugated Dirac fermion

lines. In contrast, consider the following process that involves a vertexwith oneDirac and oneMajorana fermion. Specifically,
we examine the scattering of a Dirac fermion and a charged scalar into its charge-conjugated final state, via the exchange of
a Majorana fermion:ΦĎF → ΦF . If one attempts to draw the relevant Feynman diagram employing Dirac fermion lines but
with no charge-conjugated Dirac fermion lines, one finds that there is no possible choice of arrow direction for theMajorana
fermion that is consistent with the vertex rules of Fig. G.5.4. The resolution is simple: one can choose the incoming line to
be Ψ and the outgoing line to be Ψ C or vice versa. Thus, the two possible choices are given by:
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plus a second diagram in each case (not shown) in which the initial and final scalars are crossed. If we evaluate the first
diagram, the resulting amplitude is given by:

iM =
−i
s−m2

ū(Ep2, s2)(κ2PL + κ
∗

1 PR)(6 p+m)(κ2PL + κ
∗

1 PR)u(Ep1, s1)+ (crossed)

=
−i
s−m2

ū(Ep2, s2)
[
κ∗1κ2 6 p+

(
κ22PL + (κ

∗

1 )
2PR
)
m
]
u(Ep1, s1)+ (crossed), (G.6.11)

where m is the Majorana fermion mass. This result is equivalent to Eq. (4.5.17) obtained via the two-component spinor
methods. Had we evaluated the second diagram, then one finds after using Eqs. (G.6.9) and (G.6.10) that the resulting
amplitude is just the negative of Eq. (G.6.11), as expected. As before, the relative sign between diagrams for the same process
is unambiguous.
In the literature, there are a number of alternative methods for dealing with scattering processes involving Majorana

particles. For example, one can define a fermion number violating propagator for four-component fermions (see, e.g.,
Ref. [7]). Using the methods of Ref. [7], factors of the charge conjugation matrix C appear both in fermion-number-violating
propagators and vertices. However, all such factors of C eventually cancel out by the end of the computation of any S-matrix
amplitude.Moreover, suchmethods often involve subtle choices of signs that require first-principles computations to verify.
As previously noted, our four-component fermion diagrammatic techniques do not suffer fromeither of these complications.
In the case of elastic scattering of a Majorana fermion and a neutral vector boson, the two contributing diagrams include

the following diagram:

plus a second diagram (not shown) where the initial and final state vector bosons are crossed. Consider first the scattering
of a neutral Majorana fermion of mass m. Using the Feynman rules of Fig. G.5.2, the Feynman rule for the AµΨ MΨM vertex
is given by iGγ µγ5. Hence, the corresponding matrix element is given by

iM =
−iG2

s−m2
ū(Ep2, s2) γ · ε

∗

2 (6 p−m) γ · ε1u(Ep1, s1)+ (crossed), (G.6.12)

where we have used γ νγ5(6 p+m)γ µγ5 = γ ν(6 p−m)γ µ. Using Eqs. (G.1.2) and (G.4.11), one easily recovers the results of
Eq. (4.5.14).
The scattering of a Dirac fermion of mass m and a neutral vector boson can be similarly treated. The relevant Feynman

graphs are the same as in the previous case, and the matrix element is given by

iM =
−i
s−m2

ū(Ep2, s2) γ · ε
∗

2 (GLPL + GRPR)(6 p+m) γ · ε1 (GLPL + GRPR)u(Ep1, s1)+ (crossed)

=
−i
s−m2

ū(Ep2, s2) γ · ε
∗

2

[
(G2LPL + G

2
RPR) 6 p+ GLGRm

]
γ · ε1u(Ep1, s1)+ (crossed). (G.6.13)

One can easily check that this result coincides with that of Eq. (4.5.18).
Finally, we examine the elastic scattering of two identical Majorana fermions via scalar exchange. The three contributing

diagrams are:

and the corresponding matrix element is given by

iM =
−i

s−m2φ

[
v̄1(λPL + λ∗PR)u2 ū3(λPL + λ∗PR)v4

]
+ (−1)

−i
t −m2φ

[
ū3(λPL + λ∗PR)u1 ū4(λPL + λ∗PR)u2

]
+
−i

u−m2φ

[
ū4(λPL + λ∗PR)u1 ū3(λPL + λ∗PR)u2

]
, (G.6.14)

where ui ≡ u(Epi, si), vj ≡ v(Epj, sj) and mφ is the exchanged scalar mass. The relative minus sign of the t-channel graph
relative to the s and u-channel graphs is obtained by noting that 3142 [4132] is an odd [even] permutation of 1234. Using
Eqs. (G.1.7), (G.4.11) and (G.4.12), one easily recovers the results of Eq. (4.5.19).
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Fig. G.7.1. The full, loop-corrected propagator for four-component Dirac fermions, i(Sab)i j(p), is denoted by the shaded box, which represents the sum of
all connected Feynman diagrams, with external legs included. The self-energy function for four-component Dirac fermions,−i(6ab)i j(p), is denoted by the
shaded circle, which represents the sum of all one-particle irreducible, connected Feynman diagrams with the external legs amputated. In both cases, the
four-momentum p flows from right to left.

G.7. Self-energy functions and pole masses for four-component fermions

In this section, we examine the self-energy functions and the pole masses for a set of four-component fermions. We first
consider four-component Dirac fermion fieldsΨαi, where α is the four-component spinor index and i is the flavor index. The
full, loop-corrected Feynman propagators with four-momentum pµ are defined by the Fourier transforms [cf. footnote 35]
of vacuum expectation values of time-ordered products of bilinears of the fully interacting four-component fermion fields:

〈0| TΨai(x)Ψ
bj
(y) |0〉FT = i(Sa

b)i
j(p), (G.7.1)

with [307–314]

S(p) ≡6 p
[
PLST

L(p
2)+ PRSR(p2)

]
+ PLS

T
D(p

2)+ PRSD(p2), (G.7.2)

where the four-component spinor indices α and β and the flavor indices i and j have been suppressed. As in Section 4.6, we
shall organize the computation of the full propagator in terms of the 1PI self-energy function[310]149:

6(p) ≡6 p
[
PL6L(p2)+ PR6T

R(p
2)
]
+ PL6D(p2)+ PR6

T
D(p

2). (G.7.3)

Diagrammatically, iS and−i6 are shown in Fig. G.7.1.
The hermiticity of the effective action implies that S and 6 satisfy hermiticity conditions [299,315]

[ST
]
?
= ASA−1, [6T

]
?
= A6A−1, (G.7.4)

where A is the Dirac conjugation matrix [A = γ 0 in the standard representations; see Eq. (G.1.20) and the text that follows]
and the star symbol was defined in the paragraph below Eq. (4.6.6). Applying Eq. (G.7.4) to Eqs. (G.7.2) and (G.7.3) then
yields the following conditions for the complex matrix functions:

[ST
L]
?
= SL, [ST

R]
?
= SR, SD = S ?D, (G.7.5)

[6T
L]
?
= 6L, [6T

R]
?
= 6R, 6D = 6

?
D. (G.7.6)

Starting at tree level and comparing with Fig. G.5.1, the full propagator function is given by:

S ij(p) = (6 p+m)δ
j
i/(p

2
−m2i )+ . . . , (G.7.7)

with no sum over i implied. The full loop-corrected propagator can be expressed diagrammatically in terms of the 1PI self-
energy function:

(G.7.8)

As in Section 4.6, the algebraic representation of Eq. (G.7.8) can be written as [cf. footnote 53]:

S = T + TΣS = (T−1 − 6)−1, (G.7.9)

where T ij ≡ (6 p + m)δji/(p
2
− m2i ) is the tree-level contribution to S given in Eq. (G.7.7). By writing the expressions for

S and 6 given in Eqs. (G.7.2) and (G.7.3) and T in block matrix form using Eq. (G.1.2), one can verify that Eq. (G.7.9) is
equivalent to Eq. (4.6.26). Consequently, the complex polemasses of the corresponding Dirac fermions are again determined
from Eq. (4.6.31).
In the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED or QCD), the pseudoscalar

and pseudovector parts of S(p) and6(p)must be absent. Thus, the following relations must hold among the loop-corrected

149 Our notation in Eq. (G.7.3) differs from that of Ref. [310], as we employ6T
R instead of6R . Our motivation for this choice is that in the case of Majorana

fermions [cf. Eq. (G.7.15)], we simply have 6L = 6R , without an extra transpose (or conjugation). We have also chosen to employ ST
L in Eq. (G.7.2) for

similar reasons.
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propagator functions and self-energy functions, respectively:

SR = ST
L, SD = [S T

D]
?, (G.7.10)

6L = 6
T
R, 6D = [6

T
D]
?, (G.7.11)

in agreement with Eqs. (4.6.32) and (4.6.33).
In the case of a set of four-componentMajorana fermion fields,we can still use the results of Eqs. (G.7.2)–(G.7.9). However,

one obtains additional constraints on the full propagator and self-energy matrix functions due to the Majorana condition
ΨMi = CΨ

T
Mi. Inserting this result into Eq. (G.7.1), and making use of the anticommutativity of the fermion fields, one easily

derives:

〈0| TΨMai(x)Ψ
b
Mj(y) |0〉FT = Cae 〈0| TΨMdi(x)Ψ

e
Mj(y) |0〉FT (C

−1)db. (G.7.12)
Consequently,

CSTC−1 = S, C6TC−1 = 6. (G.7.13)
Inserting the expressions for S and 6 [Eqs. (G.7.2) and (G.7.3)] and using the result of Eq. (G.1.90), it follows that:

SL = SR, SD = ST
D, SD = S

T
, (G.7.14)

6L = 6R, 6D = 6
T
D, 6D = 6

T
D. (G.7.15)

As expected, with these constraints the form of Eq. (4.6.26) matches precisely with the form of Eq. (4.6.16), corresponding
to the equation for the full propagator functions for a theory of generic two-component fermion fields. In the notation of
Section 4.6, we can therefore identify: C ≡ SL = SR , D ≡ SD, Ξ ≡ 6L = 6R , andΩ ≡ 6D.

Appendix H. Covariant spin operators and the Bouchiat–Michel formulae

Bouchiat and Michel derived a useful set of formulae [112] that generalize the spin projection operators used in four-
component spinor computations. In this appendix, we establish the two-component analogues of the Bouchiat–Michel
formulae, and demonstrate their equivalence to the corresponding four-component spinor formulae.

H.1. The covariant spin operators for a spin-1/2 fermion

Consider a massive spin-1/2 fermion of mass m and four-momentum p. We define a set of three four-vectors Saµ
(a = 1, 2, 3) such that the Saµ and pµ/m form an orthonormal set of four-vectors. In the rest frame of the fermion, where
pµ = (m; E0), we can define

Saµ ≡ (0; ŝa), a = 1, 2, 3, (H.1.1)
where the unit vectors ŝa are amutually orthonormal set of unit three-vectors that form a basis for a right-handed coordinate
system. Explicit forms for the ŝa depend on the Euler angle γ used to define the spinor wave function χs(ŝ). Two common
choices corresponding to γ = −φ and γ = 0 are given in Eqs. (C.1.39) and (C.1.40), respectively. Using Eq. (2.117), the three
four-vectors Saµ, in a reference frame in which the four-momentum of the fermion is pµ = (E; Ep), are given by:

Saµ =
(
Ep · ŝa

m
; ŝa +

(Ep · ŝa) Ep
m(E +m)

)
, a = 1, 2, 3. (H.1.2)

As discussed in Appendix C, we identify ŝ = ŝ3 as the quantization axis used in defining the third component of the spin
of the fermion in its rest frame. It then follows that the spin four-vector, previously introduced in Eq. (3.1.15) is given by
Sµ = S3µ.
The orthonormal set of four four-vectors pµ/m and the Saµ satisfy the following Lorentz-covariant relations:

p · Sa = 0, (H.1.3)

Sa · Sb = −δab, (H.1.4)

εµνλσpµS1ν S
2
λS
3
σ = −m, (H.1.5)

SaµS
b
ν − S

a
νS
b
µ = ε

abcεµνρσ Scρ
pσ

m
, (H.1.6)

Saµ S
a
ν = −gµν +

pµpν
m2

, (H.1.7)

where the sum over the repeated indices is implicit. It is convenient to define a matrix-valued spin four-vector S µ, whose
matrix elements are given by:

S
µ

ss′ ≡ S
aµτ ass′ , s, s′ = ± 12 , (H.1.8)
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where τ ass′ are the matrix elements of the Pauli matrices (see footnote 95). Then, we can rewrite Eqs. (H.1.4) and (H.1.6) as:

1
3 gµνS

µS ν
= −12×2, (H.1.9)

S µS ν
− S νS µ

=
2i
m
εµνρσSρpσ , (H.1.10)

where the productS µS ν corresponds to ordinary 2×2matrix multiplication. TheS µ serve as covariant spin operators for
a spin-1/2 fermion. In particular, in the rest frame, the 12S

i satisfy the usual SU(2) commutation relations, with ( 12 ES )
2
=
3
4

as expected for a spin-1/2 particle.
It is often desirable to work with helicity states. In this case, we choose:

ŝa = p̂a
, (H.1.11)

where the p̂a are an orthonormal triad of unit three-vectors with p̂3 ≡ p̂. Moreover, since p̂a
· p̂ = 0 for a 6= 3, it follows

that Saµ = (0; p̂a
) for a = 1, 2 in all reference frames obtained from the rest frame by a boost in the p̂ direction. Hence, in

a reference frame where pµ = (E; Ep), Eq. (H.1.2) yields,

S1µ = (0; p̂1), (H.1.12)

S2µ = (0; p̂2), (H.1.13)

S3µ =
(
|Ep |
m
;
E
m

p̂
)
, (H.1.14)

in a coordinate system where p̂ = (sin θ cosφ, sin θ sinφ, cos θ). One can check that Eqs. (H.1.1)–(H.1.7) are also satisfied
by the Saµ defined in Eqs. (H.1.12)–(H.1.14).
As expected, S3µ is the spin four-vector for helicity states obtained in Eq. (3.1.16). In the high energy limit (E � m),

mSaµ = pµ δa3 + O(m). (H.1.15)

Explicit forms for p̂1 and p̂2 are convention dependent and depend on the conventional choice of the Euler angle γ . For
example, consider the quantities:

Sµ− ≡
1
2S
aµτ a1

2 ,−
1
2
=
1
2 (S

1µ
− iS2µ), Sµ+ ≡

1
2S
aµτ a
−
1
2 ,
1
2
=
1
2 (S

1µ
+ iS2µ). (H.1.16)

Using Eqs. (H.1.11)–(H.1.14) and employing Eq. (C.1.27) withR given by Eq. (C.1.4),

σ · S− = eiγ

 1
2 sin θ e−iφ sin2

θ

2
−eiφ cos2

θ

2
−
1
2 sin θ

 , σ · S+ = e−iγ

 1
2 sin θ −e−iφ cos2

θ

2
eiφ sin2

θ

2
−
1
2 sin θ

 . (H.1.17)

In the convention of Eq. (C.1.39) [Eq. (C.1.40)], we take γ = −φ [γ = 0], respectively.

H.2. Two-component spinor wave function relations

In Section 3.1, we wrote down explicit forms for the undotted spinor wave functions

xα(Ep, s) =
√
p · σ χs, xα(Ep, s) = −2sχĎ

−s

√
p · σ , (H.2.1)

yα(Ep, s) = 2s
√
p · σ χ−s, yα(Ep, s) = χĎ

s

√
p · σ , (H.2.2)

and the dotted spinor wave functions

xĎα̇(Ep, s) = −2s
√
p · σ χ−s, xĎα̇(Ep, s) = χ

Ď
s
√
p · σ , (H.2.3)

yĎα̇(Ep, s) =
√
p · σ χs, yĎα̇(Ep, s) = 2sχ

Ď
−s
√
p · σ , (H.2.4)

where
√
p · σ and

√
p · σ are defined either by Eqs. (2.109) and (2.110) or by Eqs. (2.113) and (2.114), respectively (as

mandated by the spinor index structure). As shown in Appendix C, the two-component spinors χs satisfy:

1
2 Eσ · ŝ

aχs′ =
1
2τ
a
ss′χs, χĎ

s (ŝ)χs′(ŝ) = δss′ , s, s′ = ± 12 . (H.2.5)
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Next, we use Eqs. (2.118) and (2.119) to obtain:
√
p · σ Sa · σ

√
p · σ = m Eσ · ŝa, (H.2.6)√

p · σ Sa · σ
√
p · σ = −m Eσ · ŝa, (H.2.7)

which extends the results of Eqs. (3.1.17) and (3.1.18). As a result, we obtain a generalization of Eqs. (3.1.24)–(3.1.27):

(Sa · σ)α̇βxβ(Ep, s′) = τ ass′y
Ďα̇(Ep, s), (Sa · σ)αβ̇y

Ďβ̇(Ep, s′) = −τ ass′xα(Ep, s), (H.2.8)

(Sa · σ)αβ̇x
Ďβ̇(Ep, s′) = −τ as′syα(Ep, s), (Sa · σ)α̇βyβ(Ep, s′) = τ as′sx

Ďα̇(Ep, s), (H.2.9)

xα(Ep, s′)(Sa · σ)αβ̇ = −τ
a
s′sy

Ď

β̇
(Ep, s), yĎα̇(Ep, s

′)(Sa · σ)α̇β = τ as′sx
β(Ep, s), (H.2.10)

xĎα̇(Ep, s
′)(Sa · σ)α̇β = τ ass′y

β(Ep, s), yα(Ep, s′)(Sa · σ)αβ̇ = −τ
a
ss′x

Ď

β̇
(Ep, s), (H.2.11)

where there are implicit sums over the repeated labels s = ± 12 . As expected, the case of a = 3 simply reproduces the results
of Eqs. (3.1.24)–(3.1.27) obtained previously. The above equations also apply to helicity wave functions x(Ep, λ) and y(Ep, λ)
by replacing s, s′ with λ, λ′ and defining the Saµ by Eqs. (H.1.12)–(H.1.14).
The derivation of Eqs. (H.2.8)–(H.2.11) for arbitrary a closely follows the corresponding derivation for a = 3 previously

given. For example, using Eqs. (H.2.6) and (H.2.7) and the definitions for xα(Ep, s) and yĎα̇(Ep, s), we find (suppressing spinor
indices),

√
p · σ Sa · σ x(Ep, s′) =

√
p · σ Sa · σ

√
p · σ χs′ = mEσ · ŝ

a
χs′ = mτ ass′ χs, (H.2.12)

after using Eq. (H.2.5). Multiplying both sides of Eq. (H.2.12) by
√
p · σ , we end up with

Sa · σ x(Ep, s′) = τ ass′
√
p · σ χs = τ ass′ y

Ď(Ep, s). (H.2.13)

Similarly,

Sa · σ xĎ(Ep, s′) = 2s′τ a
−s,−s′
√
p · σ χ−s = −τ as′s y(Ep, s), (H.2.14)

where we have used:

4ss′τ a
−s,−s′ = −τ

a
s′s, for s, s′ = ±1/2. (H.2.15)

All the results of Eqs. (H.2.8)–(H.2.11) can be derived in this manner.

H.3. Two-component Bouchiat–Michel formulae

To establish the Bouchiat–Michel formulae, we begin with the following identity:

1
2 (δss′ + Eσ · ŝ

a
τ ass′)

∑
t=±1/2

χtχ
Ď
t = χs′χ

Ď
s . (H.3.1)

To verify Eq. (H.3.1), we used Eq. (H.2.5) to write Eσ · ŝaχt = τ at ′tχt ′ and evaluated the product of two Pauli matrices:

τ ass′τ
a
t ′t = 2 δstδs′t ′ − δss′δtt ′ . (H.3.2)

We then use Eq. (H.2.6) and the completeness relation given in Eq. (C.1.21) to rewrite Eq. (H.3.1) in terms of S µ

ss′ defined in
Eq. (H.1.8),

χs′χ
Ď
s =

1
2

(
δss′ +

1
m
√
p · σ Sss′ · σ

√
p · σ

)
. (H.3.3)

Hence, with both spinor indices in the lowered position,

x(Ep, s′)xĎ(Ep, s) =
√
p · σ χs′χĎ

s
√
p · σ

=
1
2

√
p · σ

[
δss′ +

1
m
√
p · σ Sss′ · σ

√
p · σ

]
√
p · σ

=
1
2

[
p · σδss′ +

1
m
p · σ Sss′ · σ p · σ

]
=

1
2 (p · σδss′ −mSss′ · σ) . (H.3.4)
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In the final step of Eq. (H.3.4), we simplified the product of three dot products by noting that p · Sa = 0 implies that
Sss′ · σ p · σ = −p · σ Sss′ · σ . Eq. (H.3.4) is the two-component version of one of the Bouchiat–Michel formulae. We list
below a complete set of Bouchiat–Michel formulae, which can be derived by similar techniques:

xα(Ep, s′)x
Ď

β̇
(Ep, s) = 1

2 (p δss′ −mSss′) · σαβ̇ , (H.3.5)

yĎα̇(Ep, s′)yβ(Ep, s) = 1
2 (p δss′ +mSss′) · σ

α̇β , (H.3.6)

xα(Ep, s′)yβ(Ep, s) = 1
2

[
mδss′δαβ − [(σ · Sss′) (σ · p)]αβ

]
, (H.3.7)

yĎα̇(Ep, s′)xĎ
β̇
(Ep, s) = 1

2

[
mδss′δα̇ β̇ + [(σ · Sss′) (σ · p)]

α̇
β̇

]
. (H.3.8)

If we set s = s′, we recover Eqs. (3.1.46)–(3.1.49) as expected. The Bouchiat–Michel formulae can also be verified directly
by using the explicit forms for the two-component spinor wave functions [Eq. (C.1.11)] and theS

µ

ss′ [defined in Eq. (H.1.8)].
The latter depends on the explicit form of the ŝa via Eq. (H.1.2).
An equivalent set of Bouchiat–Michel formulae can be obtained by raising and/or lowering the appropriate free spinor

indices using Eqs. (2.31) and (2.78):

xĎα̇(Ep, s′)xβ(Ep, s) = 1
2 (p δs′s −mSs′s) · σ

α̇β , (H.3.9)

yα(Ep, s′)y
Ď

β̇
(Ep, s) = 1

2 (p δs′s +mSs′s) · σαβ̇ , (H.3.10)

yα(Ep, s′)xβ(Ep, s) = − 12
[
mδs′sδαβ + [(σ · Ss′s) (σ · p)]αβ

]
, (H.3.11)

xĎα̇(Ep, s′)yĎ
β̇
(Ep, s) = − 12

[
mδs′sδα̇ β̇ − [(σ · Ss′s) (σ · p)]

α̇
β̇

]
. (H.3.12)

In this derivation, the spin labels in Eqs. (H.3.9)–(H.3.12) are reversed relative to those in Eqs. (H.3.5)–(H.3.8) due to
Eq. (H.2.15). Eight additional relations of the Bouchiat–Michel type can be obtained by replacing one x-spinor with a y-
spinor (or vice versa). Recalling that the x and y spinors are related by [cf. Eq. (3.1.23)],

y(Ep, s) = 2sx(Ep,−s), yĎ(Ep, s) = 2sxĎ(Ep,−s), (H.3.13)

all possible spinor bilinears can be obtained from Eqs. (H.3.5)–(H.3.12).
Note that Eqs. (H.3.5)–(H.3.12) also apply to helicity spinor wave functions x(Ep, λ) and y(Ep, λ) after replacing s, s′ with

λ, λ′ and using the Saµ as defined in Eqs. (H.1.12)–(H.1.14). Strictly speaking, all results involving the spinor wave functions
obtained up to this point apply in the case of a massive spin-1/2 fermion. If we take the massless limit, then the four-vector
S3µ does not exist, as its definition depends on the existence of a rest frame. (In contrast, the four-vectors S1µ and S2µ do
exist in the massless limit.) Nevertheless, massless helicity spinor wave functions are well defined; explicit forms can be
found in Eqs. (3.1.37)–(3.1.40). Using these forms, one can derive the Bouchiat–Michel formulae for a massless spin-1/2
fermion:

xα(Ep, λ′)x
Ď

β̇
(Ep, λ) =

( 1
2 − λ

)
δλλ′ p · σαβ̇ , (H.3.14)

yĎα̇(Ep, λ′)yβ(Ep, λ) =
( 1
2 + λ

)
δλλ′ p · σ α̇β , (H.3.15)

xα(Ep, λ′)yβ(Ep, λ) = −
( 1
2 − λ

′
) ( 1
2 + λ

)
[(σ · S−)(σ · p)]α

β , (H.3.16)

yĎα̇(Ep, λ′)xĎ
β̇
(Ep, λ) =

( 1
2 + λ

′
) ( 1
2 − λ

)
[(σ · S+)(σ · p)]α̇ β̇ , (H.3.17)

where Sµ− and S
µ
+ are defined in Eq. (H.1.16). The equivalent set of Bouchiat–Michel formulae, obtained by raising and/or

lowering the appropriate free spinor indices, is given by:

xĎα̇(Ep, λ′)xβ(Ep, λ) =
( 1
2 − λ

)
δλλ′ p · σ α̇β , (H.3.18)

yα(Ep, λ′)y
Ď

β̇
(Ep, λ) =

( 1
2 + λ

)
δλλ′ p · σαβ̇ , (H.3.19)

yα(Ep, λ′)xβ(Ep, λ) = −
( 1
2 + λ

′
) ( 1
2 − λ

)
[(σ · S−)(σ · p)]α

β , (H.3.20)

xĎα̇(Ep, λ′)yĎ
β̇
(Ep, λ) =

( 1
2 − λ

′
) ( 1
2 + λ

)
[(σ · S+)(σ · p)]α̇ β̇ . (H.3.21)
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Eight additional relations of the Bouchiat–Michel type can be obtained by replacing one x-spinor with a y-spinor (or vice
versa), using the results of Eq. (H.3.13). As a check, one can verify that the above results follow from Eqs. (H.3.5)–(H.3.12) by
replacing s with λ, settingmSaµ = pµ δa3, applying the mass–shell condition (p2 = m2), and taking them→ 0 limit at the
end of the computation.
We now demonstrate how to use the Bouchiat–Michel formulae to evaluate helicity amplitudes involving two equal

mass spin-1/2 fermions. A typical amplitude involving a fermion–antifermion pair, evaluated in the center-of-mass frame
of the pair has the generic structure:

z(Ep, λ)Γ z ′(−Ep, λ′), (H.3.22)

where z is one of the two-component spinor wave functions x, xĎ, y, or yĎ, and Γ is a 2 × 2 matrix (in spinor space) that is
either the identity matrix, or is made up of alternating products of σ and σ . As an illustration, we evaluate:

xĎα̇(Ep, λ)Γ
α̇β yβ(−Ep, λ′) = 2λ′ Γ α̇β xβ(−Ep,−λ′)x

Ď
α̇(Ep, λ) = 2λ

′ ξλ′(p̂) Γ α̇βσ 0
ββ̇
yĎβ̇(Ep, λ′)xĎα̇(Ep, λ), (H.3.23)

where ξλ′(p̂) is defined in Eq. (C.3.15), andwe have used Eqs. (C.3.20) and (3.1.23).We can now employ the Bouchiat–Michel
formula to convert the above result into a trace. By a similar computation, all expressions of the form of Eq. (H.3.22) can be
expressed as a trace:

xĎα̇(Ep, λ)Γ
α̇β yβ(−Ep, λ′) = λ′ ξλ′(p̂) Tr

[
Γ σ 0(mδλλ′ + σ · Sλλ′ σ · p)

]
, (H.3.24)

yα(Ep, λ)Γαβ̇ x
Ďβ̇(−Ep, λ′) = −λ′ ξλ′(p̂) Tr

[
Γ σ 0(mδλλ′ − σ · Sλλ′ σ · p)

]
, (H.3.25)

yα(Ep, λ)Γαβ yβ(−Ep, λ′) = λ′ ξλ′(p̂) Tr
[
Γ σ 0(σ · p δλλ′ +mσ · Sλλ′)

]
, (H.3.26)

xĎα̇(Ep, λ)Γ
α̇
β̇ x

Ďβ̇(−Ep, λ′) = −λ′ ξλ′(p̂) Tr
[
Γ σ 0(σ · p δλλ′ −mσ · Sλλ′)

]
, (H.3.27)

after making use of Eqs. (H.3.5) and (H.3.8). Similarly, there are four additional results that make use of Eqs. (H.3.9) and
(H.3.12):

yĎα̇(Ep, λ)Γ
α̇β xβ(−Ep, λ′) = λ′ ξ−λ′(p̂) Tr

[
Γ σ 0(mδλ′λ − σ · Sλ′λ σ · p)

]
, (H.3.28)

xα(Ep, λ)Γαβ̇ y
Ďβ̇(−Ep, λ′) = −λ′ ξ−λ′(p̂) Tr

[
Γ σ 0(mδλ′λ + σ · Sλ′λ σ · p)

]
, (H.3.29)

xα(Ep, λ)Γαβ xβ(−Ep, λ′) = −λ′ ξ−λ′(p̂) Tr
[
Γ σ 0(σ · p δλ′λ −mσ · Sλ′λ)

]
, (H.3.30)

yĎα̇(Ep, λ)Γ
α̇
β̇ y

Ďβ̇(−Ep, λ′) = λ′ ξ−λ′(p̂) Tr
[
Γ σ 0(σ · p δλ′λ +mσ · Sλ′λ)

]
. (H.3.31)

For amplitudes involving equal mass fermions (or equal mass antifermions), other combinations of spinor bilinears appear
in which one x-spinor above is replaced by a y-spinor or vice versa. These amplitudes can be reduced to one of the eight
listed above by using Eq. (3.1.23).
In the massless limit, one can again put mSaµ = pµδa3, set p2 = m2 and take m → 0 at the end of the computation.

Alternatively, one can repeat the derivation of Eqs. (H.3.24)–(H.3.31) using the results of Eqs. (H.3.14) and (H.3.21).
For completeness, we record the end result here.

xĎα̇(Ep, λ)Γ
α̇β yβ(−Ep, λ′) =

( 1
2 + λ

′
) ( 1
2 − λ

)
ξλ′(p̂) Tr(Γ σ 0σ · S− σ · p), (H.3.32)

yα(Ep, λ)Γαβ̇ x
Ďβ̇(−Ep, λ′) = −

( 1
2 − λ

′
) ( 1
2 + λ

)
ξλ′(p̂) Tr(Γ σ 0σ · S− σ · p), (H.3.33)

yα(Ep, λ)Γαβ yβ(−Ep, λ′) =
( 1
2 + λ

)
δλλ′ ξλ′(p̂) Tr(Γ σ 0 σ · p), (H.3.34)

xĎα̇(Ep, λ)Γ
α̇
β̇ x

Ďβ̇(−Ep, λ′) =
( 1
2 − λ

)
δλλ′ ξλ′(p̂) Tr(Γ σ 0 σ · p). (H.3.35)

The equivalent set of formulae, obtained by raising and/or lowering the appropriate free spinor indices as before, is given
by:

yĎα̇(Ep, λ)Γ
α̇β xβ(−Ep, λ′) =

( 1
2 − λ

′
) ( 1
2 + λ

)
ξ−λ′(p̂) Tr(Γ σ 0σ · S+ σ · p), (H.3.36)

xα(Ep, λ)Γαβ̇ y
Ďβ̇(−Ep, λ′) = −

( 1
2 + λ

′
) ( 1
2 − λ

)
ξ−λ′(p̂) Tr(Γ σ 0σ · S+ σ · p), (H.3.37)

xα(Ep, λ)Γαβ xβ(−Ep, λ′) =
( 1
2 − λ

)
δλλ′ ξ−λ′(p̂) Tr(Γ σ 0 σ · p), (H.3.38)

yĎα̇(Ep, λ)Γ
α̇
β̇ y

Ďβ̇(−Ep, λ′) =
( 1
2 + λ

)
δλλ′ ξ−λ′(p̂) Tr(Γ σ 0 σ · p). (H.3.39)
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The traces are easily evaluated using the results of Appendix B. Here, we apply the above results to the amplitude for
the decay Z0 → f f̄ [see Section 6.2]. The corresponding center-of-mass frame helicity amplitude is a linear combination of
Eqs. (H.3.24) and (H.3.25) with Γ = σ and Γ = σ , respectively. Evaluating the corresponding terms, we find for Γ = σ ,

xĎ(Ep, λ)σµy(−Ep, λ′) = 2λ′ ξλ′(p̂)
[
mgµ0δλλ′ + pµS 0

λλ′ − p
0S

µ

λλ′
− 2m(S µS 0

− S 0S µ)λλ′
]
, (H.3.40)

where we have used Eq. (H.1.10) to replace the term with the Levi-Civita tensor. Similarly, we calculate for Γ = σ ,

y(Ep, λ)σµxĎ(−Ep, λ′) = 2λ′ ξλ′(p̂)
[
−mgµ0δλλ′ + pµS 0

λλ′ − p
0S

µ

λλ′
+ 2m(S µS 0

− S 0S µ)λλ′
]
. (H.3.41)

Eqs. (H.3.40) and (H.3.41) provide explicit forms for the Z0 → f f̄ decay helicity amplitudes defined in Eqs. (6.2.3) and (6.2.4).
The above method is not applicable if the two fermions have unequal mass. In order to compute the helicity amplitudes

of the form given by Eq. (H.3.22) for unequal masses, a generalization of the above techniques is required. Somemethods for
four-component spinorwave functions have been proposed in Ref. [316].We leave it as an exercise for the reader to translate
these techniques so that they are applicable to helicity amplitudes expressed in terms of two-component spinor wave
functions. An alternative approach, which is applicable to the computation of helicity amplitudes for processes involving
multi-fermion final states of arbitrary mass, is reviewed in Appendix I.1.

H.4. Four-component Bouchiat–Michel formulae

Using the results of Appendix G, the translation of the results of Appendix H.3 into four-component spinor notation is
straightforward. First, we consider a massive spin-1/2 fermion. Eqs. (H.2.8)–(H.2.11) yield [285]:

γ5 6 Sa u(Ep, s′) = τ ass′ u(Ep, s), γ5 6 Sa v(Ep, s′) = τ as′s v(Ep, s), (H.4.1)

ū(Ep, s′) γ5 6 Sa = τ ass′ ū(Ep, s), v̄(Ep, s′) γ5 6 Sa = τ as′s v̄(Ep, s). (H.4.2)

In the case of a = 3, Eqs. (H.4.1) and (H.4.2) reduce to those of Eqs. (G.4.18) and (G.4.19).
The four-component Bouchiat–Michel formulae [112,316,317] can be obtained from Eqs. (H.3.5)–(H.3.12):

u(Ep, s′)ū(Ep, s) = 1
2

[
δss′ + γ5γ µS

µ

ss′
]
(6 p+m), (H.4.3)

v(Ep, s′)v̄(Ep, s) = 1
2

[
δs′s + γ5γ µS

µ

s′s

]
(6 p−m), (H.4.4)

where S
µ

ss′ ≡ Saµτ ass′ . As expected, the above results for s = s′ correspond to the spin projection operators given in
Eqs. (G.4.20) and (G.4.21). Related formulae involving products of u and v-spinors can be obtained by using [cf. Eq. (G.4.15)]:

v(Ep, s) = −2sγ5u(Ep,−s), u(Ep, s) = 2sγ5v(Ep,−s). (H.4.5)

Eqs. (H.4.1)–(G.4.15) also apply to helicity u and v-spinors, after replacing s, s′ with λ, λ′ and using the Sa as defined in
Eq. (H.1.14). The four-component versions of Eqs. (C.3.20)–(C.3.23) yield:

u(−p,−λ) = ξλ(p̂) γ 0 u(p, λ), v(−p,−λ) = ξλ(p̂) γ 0 v(p, λ), (H.4.6)

ū(−p,−λ) = ū(p, λ) γ 0 ξ−λ(p̂), v̄(−p,−λ) = v̄(p, λ) γ 0 ξλ(p̂), (H.4.7)

where the phase ξλ(p̂)was defined in Eq. (C.3.12). In order to consider the massless limit, one must employ helicity spinors,
as discussed in Appendix H.3. For a = 1, 2, Eqs. (H.4.1) and (H.4.2) apply in them→ 0 limit as written. The corresponding
massless limit for the case of a = 3 is smooth and results in Eq. (G.4.22). Similarly, themassless limit of the Bouchiat–Michel
formulae for helicity spinors can be obtained by setting mSaµ = pµ δa3, applying the mass–shell condition (p2 = m2), and
taking them→ 0 limit at the end of the computation. The end result is given by

u(p, λ′)ū(p, λ) = 1
2 (1+ 2λγ5) 6 pδλλ′ +

1
2γ5[6 S

1τ 1λλ′+ 6 S
2τ 2λλ′ ] 6 p, (H.4.8)

v(p, λ′)v̄(p, λ) = 1
2 (1− 2λγ5) 6 pδλ′λ +

1
2γ5[6 S

1τ 1λ′λ+ 6 S
2τ 2λ′λ] 6 p. (H.4.9)

As expected, when λ = λ′, we recover the helicity projection operators for massless spin-1/2 particles given in Eqs. (G.4.24)
and (G.4.25).
As before, we can use the Bouchiat–Michel formulae to evaluate helicity amplitudes involving two equal mass spin-1/2

fermions. A typical amplitude involving a fermion–antifermion pair, evaluated in the center-of-mass frame of the pair, has
the generic structure:

w(Ep, λ)Γ w′(−Ep, λ′), (H.4.10)

where w is either a u or v spinor, w′ is respectively either a v or u spinor, and Γ is a product of Dirac gamma matrices. For
example,

ū(Ep, λ)Γ v(−Ep, λ′) = −2λ′ū(Ep, λ)Γ γ5 u(−Ep,−λ′) = −2λ′ ξλ′(p̂) ū(Ep, λ)Γ γ5 γ 0 u(Ep, λ′), (H.4.11)
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where we have used the results of Eqs. (G.4.15) and (H.4.6). We can now employ the Bouchiat–Michel formula to convert
the above result into a trace. By a similar computation, all expressions of the form of Eq. (H.4.10) can be expressed as a trace:

ū(Ep, λ)Γ v(−Ep, λ′) = −λ′ ξλ′(p̂) Tr
[
Γ γ5γ

0(δλλ′ + γ5γ µS
µ

λλ′
)(6 p+m)

]
, (H.4.12)

v̄(Ep, λ)Γ u(−Ep, λ′) = λ′ ξ−λ′(p̂) Tr
[
Γ γ5γ

0(δλ′λ + γ5γ µS
µ

λ′λ
)(6 p−m)

]
. (H.4.13)

These results are the four-component analogues of Eqs. (H.3.24)–(H.3.27) and Eqs. (H.3.28)–(H.3.31), respectively. For
amplitudes that involve a pair of equal mass fermions [or equal mass antifermions], w and w′ in Eq. (H.4.10) are both
u-spinors [or v-spinors]. Using Eq. (G.4.15), these amplitudes can then be evaluated using the results of Eqs. (H.4.12) and
(H.4.13) above.
In the massless limit, one can again put mSaµ = pµδa3, set p2 = m2 and take m → 0 at the end of the computation.

Alternatively, one can repeat the derivation of Eqs. (H.4.12)–(H.4.13) using the results of Eqs. (H.4.8) and (H.4.9). For
completeness, we record the end result here.

ū(Ep, λ)Γ v(−Ep, λ′) = ξλ′(p̂)
{
1
2δλλ′ Tr[Γ γ

0(1+ 2λγ5) 6 p] + λ′ Tr[Γ γ 0(6 S1τ 1λλ′+ 6 S
2τ 2λλ′) 6 p]

}
, (H.4.14)

v̄(Ep, λ)Γ u(−Ep, λ′) = ξ−λ′(p̂)
{
1
2δλ′λ Tr[Γ γ

0(1− 2λγ5) 6 p] − λ′ Tr[Γ γ 0(6 S1τ 1λ′λ+ 6 S
2τ 2λ′λ) 6 p]

}
. (H.4.15)

As an example, we consider once again the decay Z0 → f f̄ . The decay amplitude is equal to Eq. (H.4.12), where Γ is a
linear combination of 12γ

µ(1− γ5) and 12γ
µ(1+ γ5). Evaluating the corresponding traces yields:

ū(Ep, λ) 12γ
µ(1− γ5) v(−Ep, λ′) = 2λ′ ξλ′(p̂)

[
mgµ0δλλ′ + pµS 0

λλ′ − p
0S

µ

λλ′
+ iε0µνρ(Sλλ′)νpρ

]
, (H.4.16)

ū(Ep, λ) 12γ
µ(1+ γ5) v(−Ep, λ′) = 2λ′ ξλ′(p̂)

[
−mgµ0δλλ′ + pµS 0

λλ′ − p
0S

µ

λλ′
− iε0µνρ(Sλλ′)νpρ

]
. (H.4.17)

Using Eq. (H.1.10), we see that Eqs. (H.4.16) and (H.4.17) reproduce exactly the results of Eqs. (H.3.40) and (H.3.41),
respectively.
Finally, we note that if the two fermions do not have the same mass, then the method presented above is not applicable.

However, generalizations of the above method exist in the literature that can be employed to evaluate helicity amplitudes
of the form of Eq. (H.4.10) for unequal mass fermions; see, e.g., Ref. [316]. An alternative approach due to Hagiwara and
Zeppenfeld [105] is reviewed in Appendix I.1.

Appendix I. Helicity amplitudes and the spinor helicity method

In Appendix H, we showed how to use the Bouchiat–Michel formulae (with versions applicable to both two-component
and four-component spinor wave functions) to construct helicity amplitudes for processes with two initial state and two
final state equalmass fermions (or a fermion–antifermionpair) in the center-of-mass frameof the two fermions. For practical
applications, it is important to extend these techniques to allow for final states with an arbitrary number of particles. The
techniques should be powerful enough to allow for pairs of fermions of unequal mass, and both massless and massive spin-
1 particles. Ideally, these techniques should produce simple analytic results (when possible) and yield efficient numerical
algorithms for the evaluation of the helicity amplitudes.

I.1. The helicity amplitude technique of Hagiwara and Zeppenfeld

Onemethod for computing helicity amplitudes formulti-particle final states that is easily amenable to numerical analysis
was developed by Hagiwara and Zeppenfeld (HZ) [105]. The HZ formalism was subsequently employed in Refs. [318,319]
in developing a fast numerical algorithm for the computation of multi-parton processes. In this section, we demonstrate
how our two-component formalism (denoted by DHM) can be connected to theirs. In particular, we present a translation
between the two formalisms in Table I.1.1.
After removing the propagator factors, an arbitrary tree amplitude with external fermions can be expressed in terms of

a four-component fermion string

Ψ iPτ 6a1 6a2 . . . 6anΨj, τ = ±1, (I.1.1)

where Ψj is a four-component spinor wave function u(pj, λj) or v(pj,−λj),150 and P± = 1
2 (1 ± γ5) are the chiral

projection operators. Furthermore, 6 ak ≡ γµa
µ

k where ak represents an arbitrary Lorentz four-vector, which can be a four-
momentum pµk , a vector boson wave function ε

µ(pk, λk), an axial vector (e.g., εµνρσpkνpmρpnσ ) or another fermion string
with uncontracted Lorentz indices (e.g., Ψ mγ µΨn).

150 HZ defines v(p, λ) = CūT(p, λ), where C = iγ 2γ 0 , which differs by an overall minus sign from the conventions employed in this review [cf. Eq.
(G.1.20)]. In this section, we will modify the HZ results in order to be consistent with our sign convention.
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Table I.1.1
Translation between our notation (denoted by DHM) and the notation of Hagiwara and Zeppenfeld (HZ) [105]. The sign convention governing the definition
of v(p, λ)± is opposite to that of HZ (cf. footnote 150).

DHM Formalism HZ Formalism

xα(p, λ) u(p, λ)−
xα(p, λ) vĎ(p, λ)+
xĎα̇(p, λ) v(p, λ)+
xĎα̇(p, λ) uĎ(p, λ)−
yα(p, λ) v(p, λ)−
yα(p, λ) uĎ(p, λ)+
yĎα̇(p, λ) u(p, λ)+
yĎα̇(p, λ) vĎ(p, λ)−
p · σ ( 6 p)+
p · σ ( 6 p)−
σµ σ

µ
+

σµ σ
µ
−

PR P+
PL P−
λ = ± 12 λ = ±1
χλ(−ẑ) −χλ(−ẑ)

In order to rewrite the fermion string, Eq. (I.1.1), in terms of two-component spinors, HZ decomposes the four-component
spinors as follows:

Ψj ≡

(
(ψj)−
(ψj)+

)
, u(pj, λj) ≡

(
u(pj, λj)−
u(pj, λj)+

)
, v(pj, λj) ≡

(
v(pj, λj)−
v(pj, λj)+

)
. (I.1.2)

Comparing with Eqs. (G.4.11) and (G.4.12), the corresponding expressions in our notation are given in Table I.1.1. Note that
λ = ±1 in the notation of HZ, whereas in our notation (which we follow below) λ = ± 12 .
The four-component fermion string is then replaced by the two-component fermion string:

Ψ iPτ 6a1 6a2 . . . 6anΨj = (ψi)Ďτ (6a1)τ (6a2)−τ . . . (6an)−δnτ (ψj)−δnτ , τ = ±1, where δn ≡ (−1)n. (I.1.3)

In the notation of HZ,

(6a)± = aµσ
µ
± , (I.1.4)

where σµ+ ≡ σµ and σ
µ
− ≡ σ

µ. In Eq. (I.1.3), the helicity labels are suppressed; more explicitly,

(ψk)τ ≡ ψk(pk, λk)τ = u(pk, λk)τ or v(pk,−λk)τ . (I.1.5)

This convention of HZ (note the−λk argument of v) allows one to write simple generic formulae in terms of (ψ)± that are
applicable to both u± and v±.
Using the results of Table I.1.1, one can verify that Eq. (I.1.3) is covariant with respect to dotted and undotted indices.

That is, the sign τ of ψĎ
i must match the sign of the first σ -matrix in the string (6 a1)τ (6 a2)−τ . . . (6 an)−δnτ . The signs of the

sigma matrices within this string alternate (either+−+− · · · or−+−+ · · · in the case of τ = +1 or−1, respectively).
Finally, the sign of the last σ -matrix in the string [which must be equal to −δnτ in light of the previous statement] must
match the sign of ψj as indicated.
As noted above, it is possible that one of the (6 ai)τ could be of the form σµτ multiplied by another fermion string with a

free µ-index. One can uncouple the two fermion strings by employing the Fierz identities given by Eqs. (2.67)–(2.69). For
example,

[(u1)
Ď
−(6a1)−σ

µ
+ (6a2)−(u2)−][(u3)

Ď
−(6a3)−σ+µ(6a4)−(u4)−]

= [(u1)
Ď
−(6a1)−(6a3)+(v3)+][(v4)

Ď
+(6a4)+(6a2)−(u2)−], (I.1.6)

which is easily derived after translating to the DHM notation.151 As a result, the helicity tree amplitude for any process can
be expressed as the product of uncoupled strings of two-component fermion spinors

FS = (ψi)Ďτ (6a1)τ (6a2)−τ . . . (6an)−δnτ (ψj)−δnτ . (I.1.7)

151 Here, we differ from HZ, who employ a Fierz identity that is not covariant with respect to the dotted and undotted indices [note the comment below
Eq. (2.54)]. Thus, Eq. (I.1.6) differs from the result obtained in Eq. (3.17b) of HZ.
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To evaluate the fermion string FS, we employ the explicit forms for the two-component helicity spinor wave functions
given in Eqs. (C.3.4)–(C.3.7), which can be rewritten as

ψ(pk, λk)τ = Ck ωτλk(Ep) χλk(p̂k), (I.1.8)

where, following the convention of Eq. (I.1.5),

Ck =
{
1 for (ψk)τ = u(pk, λk)τ ,
2λkτ for (ψk)τ = v(pk,−λk)τ ,

τ = ±1, λk = ±1/2, (I.1.9)

and ωλ(Ep) ≡ (E + 2λ|Ep|)1/2 for λ = ±1/2. Hence, the fermion string [Eq. (I.1.7)] is given by [105]

FS = Ci Cj ωτλi(Epi) ω−δnτλj(Epj) S(pi, a1, a2, . . . , an, pj)
τ
λiλj
, (I.1.10)

where the function S is defined as

S(pi, a1, a2, . . . , an, pj)τλiλj ≡ χ
Ď
λi
(p̂i)

[
n∏
k=1

(6ak)−δkτ

]
χλj(p̂j), (I.1.11)

where δk ≡ (−1)k. In the absence of the 6a±τ factors, we define

S(pi, pj)λiλj ≡ T (p̂i, p̂j)2λi,2λj = χ
Ď
λi
(p̂i)χλj(p̂j), (I.1.12)

where the T (p̂i, p̂j)2λi,2λj are proportional to the (massless) spinorial products introduced by Kleiss [98] [cf. Eqs. (I.2.22) and
(I.2.23)].
To evaluate S, we assume that the four-vectors aµk are real.

152 Then, we may employ the following identity153:

(6a)τ =
∑
τ ′=±

[
a0 − τ ′τ |Ea|

]
χτ ′/2(â)χ

Ď
τ ′/2(â), (I.1.13)

whereχτ ′/2(â) is a two-component helicity spinor with three-momentum Ea. Using Eq. (I.1.13) in Eq. (I.1.11), we end upwith
the desired expression:

S(pi, a1, a2, . . . , an, pj)τλiλj =

[
n∏
k=1

∑
τk=±

[
a0k + τkδkτ |Eak |

]]
T (p̂i, â1)2λi,τ1T (â1, â2)τ1τ2

× . . . T (ân−1, ân)τn−1τnT (ân, p̂j)τn,2λj . (I.1.14)

All that remains is to evaluate the spinorial product T (â, b̂)τa τb (τa, τb = ±1) for arbitrary unit three-vectors â and
b̂. Two properties of the spinorial product T (â, b̂)τa,τb are noteworthy. First, as this product is a scalar, it follows that
T (â, b̂)∗τa,τb = T (â, b̂)

Ď
τa,τb
. Hence, Eq. (I.1.12) implies that

T (â, b̂)τa τb = T (b̂, â)
∗

τb τa
. (I.1.15)

Second, we use Eq. (C.1.8) to write:

T (â, b̂)τa τb = χ
Ď
τa/2(ẑ) exp(iγaσ

3/2) exp(iθaσ 2/2) exp(iφaσ 3/2)

× exp(−iφbσ 3/2) exp(−iθbσ 2/2) exp(−iγbσ 3/2) χτb/2(ẑ). (I.1.16)

Complex conjugating this result, and using the fact that χ(ẑ), σ 1 and σ 3 are real and σ 2 is pure imaginary,

T (â, b̂)∗τa τb = τaτb χ
Ď
−τa/2(ẑ) σ

2 exp(−iγaσ 3/2) exp(iθaσ 2/2) exp(−iφaσ 3/2)

× exp(iφbσ 3/2) exp(−iθbσ 2/2) exp(iγbσ 3/2) σ 2 χ−τb/2(ẑ), (I.1.17)

after using Eq. (C.1.22). Since σ 2 anticommutes with σ 3, we end up with:

T (â, b̂)∗τa τb = τaτb χ
Ď
−τa/2(ẑ) exp(iγaσ

3/2) exp(iθaσ 2/2) exp(iφaσ 3/2)

× exp(−iφbσ 3/2) exp(−iθbσ 2/2) exp(−iγbσ 3/2) χ−τb/2(ẑ)

= τaτb T (â, b̂)−τa,−τb . (I.1.18)

152 In the case of complex aµ , one should decompose aµ into its real and imaginary parts and evaluate separately the real and imaginary parts of S.
153 To obtain Eq. (I.1.13), we make use of Eq. (3.1.43) applied to helicity spinors: χλχ

Ď
λ =

1
2 (1+ 2λEσ · p̂).
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Since τa, τb = ±1, it follows that

T (â, b̂)−τa,−τb = τa τb T (â, b̂)
∗

τa τb
. (I.1.19)

Using Eqs. (I.1.15) and (I.1.19), it is sufficient to give explicit forms for only two of the spinorial products [99,105]. Eq. (I.1.16)
yields:

T (â, b̂)++ = ei(φa−φb+γa−γb)/2 cos
θa

2
cos

θb

2
+ e−i(φa−φb−γa+γb)/2 sin

θa

2
sin

θb

2
, (I.1.20)

T (â, b̂)−+ = e−i(φa−φb+γa+γb)/2 cos
θa

2
sin

θb

2
− ei(φa−φb−γa−γb)/2 sin

θa

2
cos

θb

2
, (I.1.21)

where (θp, φp) are the polar and azimuthal angles of p̂ (for p̂ = â and b̂, respectively). In the case where â and/or b̂ are
parallel to the negative z-axis, we employ the convention of Eq. (C.1.7) and choose the corresponding azimuthal angle equal
to π .154 Note that HZ employ a convention for their spinor wave functions [cf. Eq. (C.1.8)] in which γ = −φ, although the
convention in which γ = 0 yields a slightly more symmetrical form for the spinorial products.
Eqs. (I.1.7), (I.1.10) and (I.1.11) can be written in a form that is reminiscent of the results obtained in Appendix H.3. For

example, using Eqs. (C.3.4)–(C.3.7),

xĎα̇(Ep, λ)Γ
α̇β yβ(Ep

′
,−λ′) = −2λ′ω−λ(Ep)ω−λ′(Ep

′
)χ

Ď
λ(p̂)Γ χλ′(p̂

′
), (I.1.22)

yα(Ep, λ)Γαβ̇ x
Ďβ̇(Ep ′,−λ′) = 2λ′ωλ(Ep)ωλ′(Ep

′
)χ

Ď
λ(p̂)Γ χλ′(p̂

′
), (I.1.23)

yα(Ep, λ)Γαβ yβ(Ep
′
,−λ′) = −2λ′ωλ(Ep)ω−λ′(Ep

′
)χ

Ď
λ(p̂)Γ χλ ′(p̂

′
), (I.1.24)

xĎα̇(Ep, λ)Γ
α̇
β̇ x

Ďβ̇(Ep ′,−λ′) = 2λ′ω−λ(Ep)ωλ′(Ep
′
)χ

Ď
λ(p̂)Γ χλ′(p̂

′
), (I.1.25)

where Γ is a product of alternating σ and σ matrices. The spinor index structure determines the identity of the first and
last matrix (e.g., Γ α̇

β̇ indicates a string of matrices that begins with a σ and ends with a σ , etc.). By suitable interchanges
of x and y, twelve additional equations of similar type may be written. Note that χĎ

λΓ χλ′ [appearing on the right-hand side
of Eqs. (I.1.22)–(I.1.25)] corresponds precisely to the S(p, a1, a2, . . . , an, p′)τλλ′ of Eq. (I.1.11), where the four possible (τ , δn)
combinations are in one-to-one correspondence with the four possible spinor index structures of Γ . If Ep ′ = −Ep, then one
should recover Eqs. (H.3.24)–(H.3.27). Thus, the HZ method provides a powerful generalization of the helicity amplitude
methods derived in Appendix H.3.

I.2. The spinor helicity method

Inmany practical calculations, themasses of the fermions can be neglected. In this case the computation ofmulti-particle
helicity amplitudes simplifies considerably. In this section, we give a brief introduction to the spinor helicity method; for
a review, see Refs. [320,321]. The spinor helicity method is a powerful technique for computing helicity amplitudes for
multi-particle processes involving massless spin-1/2 and spin-1 particles. Although initially applied to tree-level processes,
more general techniques have also been developed that are applicable to one-loop (and multiloop) diagrams [322]. Rules
for computing dimensionally regularized amplitudes within the framework of the spinor helicity method have been given
by Ref. [323]. The spinor helicity techniques are ideal for QCD where light quark masses can almost always be neglected.
Generalizations of these methods that incorporate massive spin-1/2 and spin-1 particles exist, although they tend to be
quite cumbersome [324,325]. A Mathematica implementation of the spinor helicity formalism can be found in Ref. [326]. In
this section, we restrict the discussion to the massless case.
The spinor helicity technique described below is based on a formalism developed by Xu et al. [101] (denoted henceforth

by XZC), which is a modification of techniques established by the CALKUL collaboration [327]. The XZC formalism (which
was also independently developed in Refs. [99,328]) is based on the four-component spinor formalism. Using Eq. (G.4.23),
XZC introduce a very useful notation for massless spinors

|p±〉 ≡ u
(
p,± 12

)
= v

(
p,∓ 12

)
, (I.2.1)

〈p±| ≡ ū
(
p,± 12

)
= v̄

(
p,∓ 12

)
. (I.2.2)

Using these spinor wave functions, they define two non-trivial (massless) spinor products (which are equivalent to the
spinorial products introduced by Kleiss [98])155:

〈p q〉 ≡ 〈p− |q+〉 = ū
(
p,− 12

)
u
(
q,+ 12

)
, (I.2.3)

[p q] ≡ 〈p+ |q−〉 = ū
(
p,+ 12

)
u
(
q,− 12

)
. (I.2.4)

154 This convention yields a value of χλ(−ẑ) that is opposite in sign to the convention adopted by HZ.
155 Note that 〈p− |q−〉 = 〈p+ |q+〉 = 0 due to PLPR = PRPL = 0.
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The ± notation specified by the bra and ket indicates the chirality (i.e. the eigenvalue of γ5) of the corresponding four-
component spinor [cf. Eq. (G.4.22)].
However, the two-component spinor formalism is especially economical in the case of massless spin-1/2 fermions.

Hence, we shall reformulate the XZC approach using two-component spinor notation. First, we consider the explicit forms
for the two-component helicity spinor wave functions [given by Eqs. (3.1.37)–(3.1.40)] in the massless limit:

xα
(
Ep,− 12

)
= yα

(
Ep, 12

)
= (2E)1/2 χ−1/2(p̂), xα

(
Ep,− 12

)
= yα

(
Ep, 12

)
= (2E)1/2 χĎ

1/2(p̂), (I.2.5)

xĎα̇
(
Ep,− 12

)
= yĎα̇

(
Ep, 12

)
= (2E)1/2 χ1/2(p̂), xĎα̇

(
Ep,− 12

)
= yĎα̇

(
Ep, 12

)
= (2E)1/2 χĎ

−1/2(p̂), (I.2.6)

where E = |Ep|. For all other choices of helicities, the corresponding helicity spinor wave functions vanish. Hence, we
define156:

|p+〉 = yĎα̇
(
Ep, 12

)
= xĎα̇

(
Ep,− 12

)
, 〈p+| = yα

(
Ep, 12

)
= xα

(
Ep,− 12

)
, (I.2.7)

|p−〉 = xα
(
Ep,− 12

)
= yα

(
Ep, 12

)
, 〈p−| = xĎα̇

(
Ep,− 12

)
= yĎα̇

(
Ep, 12

)
. (I.2.8)

The |p±〉 and 〈p±| satisfy the massless Dirac equation [cf. Eqs. (3.1.9)–(3.1.12)]:

p · σ± |p±〉 = 0, 〈p±| p · σ± = 0, (I.2.9)

where σ+ ≡ σ and σ− ≡ σ as indicated in Table I.1.1. The above and the following equations should each be read as
two separate equations corresponding to the upper and lower set of signs, respectively. The following properties are also
noteworthy:

|p±〉 〈p±| = p · σ∓, (I.2.10)

〈p±| σµ± |p±〉 = 2p
µ, (I.2.11)

〈p± |q∓〉 = − 〈q± |p∓〉 , (I.2.12)

〈p+| σµ+ |q+〉 = 〈q−| σ
µ
− |p−〉 , (I.2.13)

〈p±| σµ±σ
ν
∓
|q∓〉 = − 〈q±| σ ν

±
σ
µ
∓ |p∓〉 . (I.2.14)

Note that Eqs. (I.2.9)–(I.2.14) are covariant with respect to the undotted and dotted spinor indices. Eqs. (I.2.10) and (I.2.11)
follow from Eqs. (3.1.54) and (3.1.55). For example,

〈p+| σµ+ |p+〉 = y
α
(
Ep, 12

)
σ
µ

αβ̇
yĎβ̇

(
Ep, 12

)
= σ

µ

αβ̇
yĎβ̇

(
Ep, 12

)
yα
(
Ep, 12

)
= Tr (σµp · σ) = 2pµ, (I.2.15)

and similarly for 〈p−| σµ− |p−〉. Eqs. (I.2.12)–(I.2.14) follow immediately from Eqs. (2.59)–(2.63). Eqs. (I.2.13) and (I.2.14)
generalize easily to the case of a product of an even and odd number of σ /σ matrices. For any positive integer n,

〈p+| σµ1+ σ
µ2
− · · · σ

µ2n−1
+ |q+〉 = 〈q−| σµ2n−1− · · · σ

µ2
+ σ

µ1
− |p−〉 , (I.2.16)

〈p±| σµ1± σ
µ2
∓ · · · σ

µ2n
∓ |q∓〉 = − 〈q±| σµ2n± · · · σ

µ2
± σ

µ1
∓ |p∓〉 . (I.2.17)

Spinor products can be formed from the bras and kets in the usual way and satisfy:

〈p± |q∓〉∗ = 〈q∓ |p±〉 , (I.2.18)〈
p± |σµ± |q±

〉∗
=
〈
q± |σµ± |p±

〉
, (I.2.19)

where we have used the fact that the σµ± are hermitian. Covariance with respect to the undotted and dotted spinors allows
only two possible spinor products157:

〈p q〉 ≡ 〈p− |q+〉 = xĎ
(
Ep,− 12

)
yĎ
(
Eq, 12

)
, (I.2.20)

[p q] ≡ 〈p+ |q−〉 = y
(
Ep, 12

)
x
(
Eq,− 12

)
. (I.2.21)

156 The association of undotted and dotted indices in Eqs. (I.2.7) and (I.2.8) is a consequence of our convention for the Dirac gamma matrices given in
Appendix G [cf. Eq. (G.1.2)]. Note that in this convention, the left-handed [right-handed] projection operator PL [PR] projects out the lowered undotted
[raised dotted] index components of the four-component spinor [cf. Eq. (G.1.6)]. However, the reader is warned that in the literature on the spinor helicity
method, one almost always finds |p+〉 associated with a lowered undotted index and |p−〉 associated with an upper dotted index. This is due to a different
convention for the sigma matrices, such as the Wess and Bagger definition given in Eqs. (A.11) and (A.12). Numerically, this is equivalent to a convention
for the Dirac gamma matrices in which σµ and σµ are interchanged in Eq. (G.1.2), resulting in an overall change of sign in the matrix representation of
γ5 . As a result, in this latter convention the lowered undotted [raised dotted] index components are associated with positive [negative] chirality. For an
historical perspective, see the discussion following Eq. (A.12).
157 Since we wish to preserve the definition of the spinor products given in Eq. (I.2.3), 〈p q〉 is a sum over dotted indices and [p q] is a sum over undotted
indices in our two-component spinor conventions. This is to be contrasted with most of the literature on the spinor helicity method, in which 〈p q〉 is
written as a sum over undotted indices and [p q] as a sum over dotted indices. The origin of this difference is explained in footnote 156.
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In particular, the products 〈p+ |q+〉 and 〈p− |q−〉 never arise in a computation using two-component spinor notation. In
terms of the spinorial products defined in Eq. (I.1.12),

〈p q〉 ≡ 〈p− |q+〉 = (2Ep)1/2(2Eq)1/2T (p̂, q̂)−+, (I.2.22)

[p q] ≡ 〈p+ |q−〉 = (2Ep)1/2(2Eq)1/2T (p̂, q̂)+−, (I.2.23)

where Ep = |Ep| and Eq = |Eq|. Explicit forms for T (p̂, q̂)−+ and T (p̂, q̂)+− = −T (p̂, q̂)∗−+ can be obtained from Eq. (I.1.21).
Using Eqs. (I.1.15) and (I.1.19) [or equivalently, using Eqs. (I.2.12) and (I.2.18)], the spinor products satisfy the following
relations:

〈p q〉 = − 〈q p〉 , (I.2.24)
[p q] = −[q p], (I.2.25)

〈p q〉∗ = −[p q]. (I.2.26)

One immediate consequence of the above results is:

〈p p〉 = 〈p− |p+〉 = 0, (I.2.27)
[p p] = 〈p+ |p−〉 = 0. (I.2.28)

We next compute the absolute square of the spinor product:

| 〈p q〉 |2 = xĎα̇
(
Ep,− 12

)
yĎα̇

(
Eq, 12

)
xα
(
Ep,− 12

)
yα
(
Eq, 12

)
= xα

(
Ep,− 12

)
xĎα̇
(
Ep,− 12

)
yĎα̇

(
Eq, 12

)
yα
(
Eq, 12

)
= p · σαα̇ q · σ α̇α = pµqν Tr(σµσ ν) = 2p · q. (I.2.29)

Using this result and Eq. (I.2.26) yields

| 〈p q〉 |2 = |[p q]|2 = 2p · q, (I.2.30)

which indicates that the spinor products are roughly the square roots of the corresponding dot products. One other
noteworthy relation is:

〈p1 p2〉 [p2 p3] 〈p3 p4〉 [p4 p1] = Tr (σ · p1 σ · p2 σ · p3 σ · p4)

= 2(gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ)p
µ

1 p
ν
2p
ρ

3p
κ
4 , (I.2.31)

where the trace has been evaluated using Eq. (B.2.26). Note that the first line of Eq. (I.2.31) immediately follows from
Eqs. (3.1.54) and (3.1.55) after plugging in the definition of the spinor products.
In Appendix I.1, we showed that a fermion string can be expressed in terms of products of the spinorial products T

[cf. Eq. (I.1.14)]. When applied to massless spinors, Eq. (I.2.30) indicates that the square of the helicity amplitude of a multi-
fermion scattering process can be expressed in terms of products of dot products of pairs of fermion momenta. If more than
one diagram contributes to a helicity amplitude, then it is often possible to combine the contributions after a rearrangement
of momenta via the Fierz identities. Using Eqs. (2.65)–(2.69), it follows that:

〈p1 p2〉 〈p3 p4〉 = 〈p1 p3〉 〈p2 p4〉 + 〈p1 p4〉 〈p3 p2〉 , (I.2.32)
[p1 p2] [p3 p4] = [p1 p3] [p2 p4] + [p1 p4] [p3 p2], (I.2.33)〈
p1 + |σ

µ
+ |p2+

〉 〈
p3 + |σ+µ|p4+

〉
= 2 [p1 p3] 〈p4 p2〉 , (I.2.34)〈

p1 − |σ
µ
− | p2−

〉 〈
p3 − |σ−µ|p4−

〉
= 2 〈p1 p3〉 [p4 p2], (I.2.35)〈

p1 + |σ
µ
+ |p2+

〉 〈
p3 − |σ−µ|p4−

〉
= 2 [p1 p4] 〈p3 p2〉 . (I.2.36)

Eqs. (I.2.32) and (I.2.33) are often called the Schouten identities, as they follow from Eq. (2.26).
It is desirable to extend the spinor helicity formalism to multi-particle processes involving massless fermions and

massless spin-1 bosons. In particular, XZC developed a simple technique for expressing the squares of the corresponding
helicity amplitudes in terms of ratios of products of dot products. Their trick was to introduce a convenient expression for
the massless spin-1 polarization vector in terms of products of massless spin-1/2 spinor wave functions. Before exhibiting
their result, we provide a brief review of spin-1 polarization vectors in the helicity basis.
We first consider a massless spin-1 particle moving in the z-direction with four-momentum kµ = E(1; 0, 0, 1). The

textbook expression for the helicity±1 polarization vectors of a massless spin-1 boson is given by [254–256,329]:

εµ(ẑ,±1) =
1
√
2
(0;∓1,−i, 0) . (I.2.37)

Note that the εµ(ẑ, λ) are normalized eigenvectors of the spin-1 operator ES · ẑ ,

(ES · ẑ)µν εν(ẑ, λ) = λ εµ(ẑ, λ), (I.2.38)

where Si ≡ 1
2ε
ijkSjk, and the matrix elements of the 4× 4 matrices Sjk are given by Eq. (2.9).
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If we transform εµ(ẑ, λ) by employing a three-dimensional rotation R such that k̂ = R ẑ , then we can obtain the
polarization vector for a massless spin-1 boson of energy E moving in the direction k̂ = (sin θ cosφ, sin θ sinφ, cos θ). That
is,

εµ(k̂, λ) = Λµν(φ, θ, γ ) εν(ẑ, λ), (I.2.39)

where

Λ00 = 1, Λi0 = Λ
0
i = 0, and Λij = Rij(φ, θ, γ ), (I.2.40)

andR(φ, θ, γ ) is the rotation matrix introduced in Eq. (C.1.4). A simple computation yields:

εµ(k̂,±1) =
1
√
2
e∓iγ (0;∓ cos θ cosφ + i sinφ,∓ cos θ sinφ − i cosφ,± sin θ) . (I.2.41)

Note that εµ(k̂,±1) depends only on the direction of Ek and not on its magnitude E = |Ek|. One can easily check that the
εµ(k̂,±1) are normalized eigenstates of ES · k̂ with corresponding eigenvalues±1.
Similar to the corresponding discussion in Appendix C for the spin-1/2 spinor wave functions, the Euler angle γ is

arbitrary. In the literature, one typically finds conventionswhere γ = −φ [36,254,255] or γ = 0 [256], andwewill consider
both possibilities below.
Although we will not need it here, the expressions given by Eqs. (I.2.37) and (I.2.41) also apply in the case of a massive

spin-1 particle. In addition, there is a helicity λ = 0 polarization vector which depends on the magnitude of the momentum
as well as its direction:

εµ(|Ek|ẑ, 0) = (|Ek|/m; 0, 0, E/m), (I.2.42)

where E = (|Ek|2+m2)1/2. One can use Eq. (I.2.39) to obtain the helicity zero polarization vector for amassive spin-1 particle
moving in an arbitrary direction

εµ(Ek, 0) =
1
m

(
|Ek|; E sin θ cosφ, E sin θ sinφ, E cos θ

)
. (I.2.43)

Note that both the massless and massive spin-1 polarization vectors satisfy158:

εµ(k, λ)∗ = (−1)λεµ(k,−λ). (I.2.44)

One can check that the εµ(k, λ) also satisfies the standard conditions for a valid polarization four-vector:

k · ε(k, λ) = 0, ε(k, λ) · ε(k, λ′)∗ = −δλλ′ . (I.2.45)

If the spin-1 boson three-momentum is −Ek, then its polarization vector can be obtained from Eqs. (I.2.41) and (I.2.43)
by taking θ → π − θ and φ → φ + π . It can also be derived from Eqs. (I.2.39) and (I.2.40) by making use of the spin-1
analogue of Eq. (C.3.9),

R(φ + π, π − θ, γ (−k̂)) = R(φ, θ, γ (k̂)) R(ẑ,−γ (k̂)− γ (−k̂)) R(x̂, π), (I.2.46)

wherewe have exhibited the possible dependence of γ on the direction of k̂, and R is the rotationmatrix given by Eq. (C.1.5).
Introducing the notation εµ ≡ (ε0; ε̂), and noting the relations:

R(x̂, π)ε̂(ẑ, λ) = −ε̂(ẑ,−λ), (I.2.47)

R(ẑ, β)ε̂(ẑ, λ) = e−iλβ ε̂(ẑ, λ), (I.2.48)

it follows that:

εµ(−Ek, λ) = −gµµ ξ−λ(k̂) εµ(Ek,−λ), λ = 0,±1, (I.2.49)

where there is no sum over the repeated index µ, and

ξλ(k̂) = −eiλ[γ (k̂)+γ (−k̂)], λ = 0,±1. (I.2.50)

158 Some authors introduce polarization vectors where the sign factor (−1)λ in Eq. (I.2.44) is omitted. One motivation for Eq. (I.2.44) is to maintain
consistency with the Condon–Shortley phase conventions [330] for the eigenfunctions of the spin angular momentum operators ES

2
and Sz (for spin-1

particles). In particular, note the relation r̂ · ε̂µ(ẑ,±1) = (4π/3)1/2Y1,±1(θ, φ) between the polarization three-vector and the ` = 1 spherical harmonics
without any additional sign factors.
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Note that for λ = ±1, the phase factor ξλ(k̂) depends on the convention for the definition of the Euler angle γ used to define
the spin-1 polarization vector. As an example, corresponding to the two conventional choices for γ ,

ξλ(k̂) =
{
(−1)1−λe−2iλφ for γ (k̂) = −φ, γ (−k̂) = −π + φ,
−1 for γ (k̂) = γ (−k̂) = 0.

(I.2.51)

To motivate the XZC form for the massless spin-1 polarization vectors, we first introduce a four-vector

k̃µ ≡ E(1;−k̂), (I.2.52)

corresponding to the four-momentum kµ = E(1; k̂) of themassless spin-1 boson. A straightforward calculation then shows
that

εµ(k,±1) =
1
√
2

〈
k∓

∣∣σµ∓ ∣∣ k̃∓〉〈
k± |̃k∓

〉 (I.2.53)

precisely reproduces the result of Eq. (I.2.41), where themassless spinor wave functions are defined according to Eq. (C.1.8).
Eq. (I.2.53) is somewhat inconvenient because the four-vector k̃ cannot be covariantly defined in terms of k. XZC finessed
this problem by introducing a ‘‘reference’’ four-vector p (in practical computations, p is taken to be another four-momentum
vector in the scattering process of interest), with the properties that p2 = 0 and p ·k 6= 0. The XZC spin-1 polarization vectors
are given by [cf. Eq. (2.33)]159

εµ(k,±1) =
1
√
2

〈k∓| σµ∓ |p∓〉
〈k± |p∓〉

. (I.2.54)

One can immediately check that εµ(k, λ) so defined satisfy the standard conditions for a valid polarization four-vector
given in Eq. (I.2.45) and the phase convention of Eq. (I.2.44). The representation of the massless spin-1 polarization vector
in terms of spinor products [Eqs. (I.2.53) and (I.2.54)] is an application of the spinor calculus that was first developed by van
der Waerden [1].
The significance of the reference four-vector p can be discerned from the property that if a different referencemomentum

is chosen then εµ is shifted by a factor proportional to kµ. Explicitly, if εµ(k, p, λ) is a polarization vector with reference
momentum p, then160

εµ(k, q,±1) = εµ(k, p,±1)+

√
2 〈q± |p∓〉

〈k± |q∓〉 〈k± |p∓〉
kµ. (I.2.55)

In particular, if we choose q = k̃, we see that the difference of the XZC spin-1 polarization vector and the polarization vector
given by Eq. (I.2.41) is proportional to kµ. This shift of the reference momentum from p to q in the XZC definition of the
polarization vector does not affect Eq. (I.2.45) since k2 = 0 for massless spin-1 particles. Moreover, this shift does not affect
the final result for any observable (in particular the sum of amplitudes of any gauge invariant set of Feynman diagrams
remains unchanged). Thus, the presence of the arbitrary four-vector p just reflects the gauge invariance of the theory of
massless spin-1 particles.
We can also verify that εµ(k, p, λ) defined in Eq. (I.2.54) behaves as expected under rotations. Using Eq. (C.1.8), massless

spinors transform as:

|k±〉 −→ D(φ, θ, γ ) |k±〉 , 〈k±| −→ 〈k±| [D(φ, θ, γ )]−1, (I.2.56)

under a rotation specified by the Euler angles φ, θ and γ . We shall rotate the spin-1 polarization vectors by rotating both
Ek and the reference momentum Ep simultaneously (since one is always free to shift the reference vector with no physical
consequence). Using Eq. (C.1.33), it follows that:

[D(φ, θ, γ )]−1 σ
µ
± D(φ, θ, γ ) = Λµνσ

ν
±
, (I.2.57)

whereΛµν is specified by Eq. (I.2.40). Indeed, if we simultaneously rotate both k and p via kµ → Λµνkν and pµ → Λµνpν ,
then

εµ(k, p, λ) −→ Λµν ε
µ(k, p, λ), (I.2.58)

159 In the literature on the spinor helicity method, the spin-1 polarization vector ε is employed in Feynman diagram computations for an outgoing final
state boson, in contrast to the standard conventions of most quantum field theory textbooks. In this review, we subscribe to the latter [as indicated at
the end of Section 4.1]. Hence, to be consistent with our conventions above for the spin-1 polarization vector, we have taken the complex conjugate
of the original definition of the XZC spin-1 polarization vectors. In addition, we have removed an overall ± sign in order to conform to Eq. (I.2.44)
[cf. footnote 158].
160 To derive Eq. (I.2.55), evaluate εµ(k, q, λ)− εµ(k, p, λ), and simplify the resulting expression using Eqs. (I.2.10), (I.2.13) and (I.2.14).
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as expected. By a similar computation, one can check that under Ek → −Ek and Ep→ −Ep, Eq. (I.2.49) is satisfied.161 In terms
of the λ±1/2 defined in Eq. (C.3.12), we find

ξλ(Ek) = −

(
ξ−λ/2(Ek)
ξλ/2(Ek)

)∗
=

[
ξλ/2(Ek)

]2
, λ = ±1, (I.2.59)

which agrees with Eq. (I.2.50).
The following additional properties of εµ(k, p, λ) defined in Eq. (I.2.54) are noteworthy:

p · ε(k, p, λ) = 0, (I.2.60)∑
λ=±1

εµ(k, p, λ)εν(k, p, λ)∗ = −gµν +
pµkν + pνkµ
p · k

. (I.2.61)

For example, to prove Eq. (I.2.61), we use Eqs. (I.2.18) and (I.2.19), and simplify the resulting expression with the help of
Eqs. (I.2.10) and (I.2.16), which yields:∑

λ=±1

εµ(k, p, λ)εν(k, p, λ)∗ =
〈k+| (σµp · σσν + σνp · σσµ) |k+〉

2 〈k+| p · σ |k+〉
. (I.2.62)

Using Eq. (B.2.17) to simplify the product of three σ/σ matrices, and employing Eq. (I.2.11) then yields Eq. (I.2.61).
Finally, using the Fierz identities given in Eqs. (B.1.5)–(B.1.7), one derives from Eq. (I.2.54) that

σ± · ε(k,±1) =

√
2 |p∓〉 〈k∓|
〈k± |p∓〉

, σ± · ε(k,±1)∗ =

√
2 |k∓〉 〈p∓|
〈p∓ |k±〉

, (I.2.63)

σ∓ · ε(k,±1) =

√
2 |k±〉 〈p±|
〈k± |p∓〉

, σ∓ · ε(k,±1)∗ =

√
2 |p±〉 〈k±|
〈p∓ |k±〉

. (I.2.64)

Note that each equation in Eqs. (I.2.63) and (I.2.64) represents two separate equations, corresponding to the upper and lower
signs in each equation, respectively.
It should now be clear how to convert the square of a helicity amplitude for a multi-particle process involving massless

spin-1/2 and massless spin-1 particles into a ratio of products of dot products of momenta. By writing all massless spin-1
polarization vectors in the form of Eq. (I.2.54) and using the properties given above, the helicity amplitudes can easily be
expressed as a ratio of two quantities, each of which is a product of spinor products. Squaring the corresponding amplitude
then yields a ratio of products of dot products of four-momenta. A following simple examplewill demonstrate the technique.
Consider Compton scattering in QED, e−(Ep1, λ1)γ (Ek1, λ′1)→ e−(Ep2, λ2)γ (Ek2, λ′2), in the limit of massless electrons. The

amplitude for this process is given by Eq. (4.5.18) withm = 0 and GL = GR = −e. Writing out the ‘‘crossed’’ term explicitly,
and noting that for massless particles, s ≡ (p1 + k1)2 = 2p1 · k1 and u ≡ (p1 − k2)2 = −2p1 · k2,

iM =
−ie2

2p1 · k1

{
xĎ(Ep2, λ2) σ · ε

∗

2 σ · (p1 + k1) σ · ε1 x(Ep1, λ1)+ y(Ep2, λ2) σ · ε
∗

2 σ · (p1 + k1) σ · ε1y
Ď(Ep1, λ1)

}
+

ie2

2p1 · k2

{
xĎ(Ep2, λ2) σ · ε1 σ · (p1 − k2) σ · ε

∗

2 x(Ep1, λ1)+ y(Ep2, λ2) σ · ε1 σ · (p1 − k2) σ · ε
∗

2y
Ď(Ep1, λ1)

}
.

(I.2.65)

The results of Eqs. (3.1.37)–(3.1.40) imply that the helicity amplitudes with λ1 6= λ2 vanish. Using Eqs. (I.2.7) and (I.2.8), we
identify:

iM
(
λ1 = λ2 =

1
2

)
=
−ie2

2p1 · k1

〈
p2 + |σ+ · ε∗2 σ− · (p1 + k1) σ+ · ε1|p1+

〉
+

ie2

2p1 · k2

〈
p2 + |σ+ · ε1 σ− · (p1 − k2) σ+ · ε∗2 |p1+

〉
, (I.2.66)

iM
(
λ1 = λ2 = −

1
2

)
=
−ie2

2p1 · k1

〈
p2 − |σ− · ε∗2 σ+ · (p1 + k1) σ− · ε1|p1−

〉
+

ie2

2p1 · k2

〈
p2 − |σ− · ε1 σ+ · (p1 − k2) σ− · ε∗2 |p1−

〉
. (I.2.67)

161 Here, we have used Eqs. (B.2.16) and (B.2.17) to write σ 0
±
σ
µ
∓σ

0
±
= −σ

µ
± + 2gµ0σ 0± = g

µµσ
µ
± (no sum over µ).
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Further simplification ensues when we apply the results of Eqs. (I.2.63) and (I.2.64). To use these results, we must select a
reference momentum p, which can be any lightlike four-vector that is not parallel to the corresponding photon polarization
vector. One is free to choose a different reference momentum for each photon polarization vector. Moreover, when
computing two different helicity amplitudes (each of which are gauge invariant quantities), one may select a different
reference momentum for the same photon polarization vector in the two computations. The decision on which reference
momenta to choose is somewhat of an art; experiencewill teach youwhich choices lead to themost simplification in a given
calculation.
We shall consider two possible choices for the reference momenta for ε1 and ε2, which we denote as p(1) and p(2),

respectively:

1. p(1) = p1 and p(2) = p2,
2. p(1) = p2 and p(2) = p1.

With either choice, it is straightforward to show that M(λ1 = λ2 = ±
1
2 ) vanish unless the photon helicities are equal,

i.e. λ′1 = λ
′

2. This leaves only four possible non-vanishing helicity amplitudes.
For the case of λ1 = λ2 = ± 12 and λ

′

1 = λ
′

2 = ±1 (i.e., λ1λ
′

1 > 0), we choose referencemomenta p
(1)
= p2 and p(2) = p1.

Then, the second term vanishes on the right-hand side of Eqs. (I.2.66) and (I.2.67), respectively. Making use of Eqs. (I.2.10),
(I.2.63) and (I.2.64), we find

iM
(
λ1 = λ2 =

1
2 , λ
′

1 = λ
′

2 = 1
)
=
−ie2

p1 · k1

〈p2 + |k2−〉 〈p1 − |k1+〉 〈k1 + |p2−〉 〈k1 − |p1+〉
〈p1 − |k2+〉 〈k1 + |p2−〉

=
−ie2

p1 · k1

〈p1 k1〉 〈k1 p1〉 [p2 k2]
〈p1 k2〉

. (I.2.68)

Using Eqs. (I.2.24) and (I.2.30) to write the dot product in terms of spinor products, we obtain:

iM
(
λ1 = λ2 =

1
2 , λ
′

1 = λ
′

2 = 1
)
= 2ie2

〈p1 k1〉
〈p1 k1〉∗

[p2 k2]
〈p1 k2〉

. (I.2.69)

A similar computation yields

iM
(
λ1 = λ2 = −

1
2 , λ
′

1 = λ
′

2 = −1
)
= 2ie2

[p1 k1]
[p1 k1]∗

〈p2 k2〉
[p1 k2]

. (I.2.70)

For the case of λ1 = λ2 = ± 12 and λ
′

1 = λ
′

2 = ∓1 (i.e., λ1λ
′

1 < 0), we choose referencemomenta p
(1)
= p1 and p(2) = p2.

Then, the first term vanishes on the right-hand side of Eqs. (I.2.69) and (I.2.70), respectively. A similar calculation to the one
given above yields:

iM
(
λ1 = λ2 = −

1
2 , λ
′

1 = λ
′

2 = 1
)
= 2ie2

[p1 k2]
[p1 k2]∗

〈p2 k1〉
[p1 k1]

, (I.2.71)

iM
(
λ1 = λ2 =

1
2 , λ
′

1 = λ
′

2 = −1
)
= 2ie2

〈p1 k2〉
〈p1 k2〉∗

[p2 k1]
〈p1 k1〉

. (I.2.72)

Note that each pair of helicity amplitudes above is simply related:

Mλ1,λ
′
1;λ2,λ

′
2
(s, θ, φ)∗ =M−λ1,−λ′1;−λ2,−λ

′
2
(s, θ, φ), (I.2.73)

which is a consequence of rotational and parity invariance (as shown below). Thus in this example, we only need to evaluate
two non-zero helicity amplitudes. It is clear that we have simplified the computation enormously by our choice of reference
momenta. With a less judicious choice, the calculation is significantly more tedious, although gauge invariance guarantees
that one must arrive at the same result for the helicity amplitudes quoted above.
One can easily evaluate the spinor products above in the center-of-mass system. Writing pµ1 = E(1; ẑ), k

µ

1 = E(1;−ẑ),
pµ2 = E(1; p̂CM) and k

µ

2 = E(1;−p̂CM), and using the results of Eqs. (I.1.21) and (I.2.22), we obtain:

〈p1 k1〉 = 2Eξ−1/2(ẑ), 〈p1 k2〉 = 2Eei[φ+γ (p̂CM)]/2ξ−1/2(p̂CM) cos(θ/2), (I.2.74)

〈p2 k2〉 = 2Eξ−1/2(p̂CM), 〈p2 k1〉 = 2Ee−i[φ+γ (p̂CM)]/2ξ−1/2(ẑ) cos(θ/2), (I.2.75)

where θ and φ are the polar and azimuthal angles of p̂CM. Phase factors involving ξ−1/2 arise from the use of Eqs. (C.3.11)
and (C.3.12). For example, corresponding to the two conventional choices for γ , we use Eq. (C.3.15) to obtain

ξ−1/2(ẑ) =
{
−1 for γ (ẑ) = 0, γ (−ẑ) = −π,
i for γ (ẑ) = γ (−ẑ) = 0, (I.2.76)

ξ−1/2(p̂CM) =
{
−eiφ for γ (p̂) = −φ, γ (−p̂) = −π + φ
i for γ (p̂) = γ (−p̂) = 0. (I.2.77)
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All other relevant spinor products can be found using Eqs. (I.2.24)–(I.2.26).
It is always possible to define the plane of the scattering process to be the x–z plane, in which case φ = 0 and all the

spinor products in Eqs. (I.2.74) and (I.2.75) are manifestly real. Nevertheless, by keeping the explicit φ-dependence, one
maintains a useful check of the calculation. Inserting the explicit forms for the spinor products into Eqs. (I.2.69)–(I.2.72), we
confirm that the φ-dependence of the helicity amplitudes is given by [256,331]:

Mλ1,λ
′
1;λ2,λ

′
2
(s, θ, φ) =

{
ei(λ1−λ

′
1−λ2−λ

′
2)φMλ1,λ

′
1;λ2,λ

′
2
(s, θ), for γ (p̂CM) = −φ, and γ (−p̂CM) = −π + φ,

ei(λ1−λ
′
1)φMλ1,λ

′
1;λ2,λ

′
2
(s, θ), for γ (p̂CM) = γ (−p̂CM) = 0,

(I.2.78)

as a consequence of rotational invariance [257].162 The remaining θ-dependent amplitudes are easily evaluated and
are in agreement with the results of Refs. [256,332]. Note that parity invariance implies that Eqs. (I.2.69)–(I.2.72) must
satisfy [256,257,332]

Mλ1,λ
′
1;λ2,λ

′
2
(s, θ) =M−λ1,−λ′1;−λ2,−λ

′
2
(s, θ). (I.2.79)

Indeed, in our computation above, Eq. (I.2.73) is satisfied, which is consistent with Eq. (I.2.79) in light of Eq. (I.2.78).
To compute the unpolarized cross-section for Compton scattering, one must sum the absolute squares of the helicity

amplitudes and divide by 4 to average over the initial helicities. Since quantities such as 〈p1 k1〉 / 〈p1 k1〉∗ are pure phases,
one immediately obtains:∣∣M (

λ1 = λ2 =
1
2 , λ
′

1 = λ
′

2 = 1
)∣∣2 = ∣∣M (

λ1 = λ2 = −
1
2 , λ
′

1 = λ
′

2 = −1
)∣∣2 = 4e4 p1 · k1

p1 · k2
, (I.2.80)

∣∣M (
λ1 = λ2 = −

1
2 , λ
′

1 = λ
′

2 = 1
)∣∣2 = ∣∣M (

λ1 = λ2 =
1
2 , λ
′

1 = λ
′

2 = −1
)∣∣2 = 4e4 p1 · k2

p1 · k1
, (I.2.81)

after employing Eq. (I.2.30) and noting that p1 · k1 = p2 · k2 and p1 · k2 = p2 · k1 (which follow from four-momentum
conservation, p1 + k1 = p2 + k2, for the scattering of massless particles). Thus,

1
4

∑
spins

|M|2 = 2e4
(
p1 · k1
p1 · k2

+
p1 · k2
p1 · k1

)
, (I.2.82)

which coincides with the well-known result quoted in Ref. [114].

Appendix J. The Standard Model and its seesaw extension

In the StandardModel, three generations of quarks and leptons are described by the two-component fermion fields listed
in Table J.1, where Y is the weak hypercharge, T3 is the third component of the weak isospin, and Q = T3 + Y is the electric
charge. After SU(2)L × U(1)Y breaking, the quark and lepton fields gain mass in such a way that the above two-component
fields combine to make up four-component Dirac fermions:

Ui =
(
ui
ūĎi

)
, Di =

(
di
d̄Ďi

)
, Li =

(
`i

¯̀Ďi

)
, (J.1)

while the neutrinos νi remain massless. The extension of the Standard Model to include neutrino masses will be treated in
Appendix J.2.
Here, we follow the convention for particle symbols established in Table 5.1. Note that u, ū, d, d̄, ` and ¯̀ are two-

component fields, whereas the usual four-component quark and charged lepton fields are denoted by capital letters U ,
D and E. Consider a generic four-component field expressed in terms of the corresponding two-component fields:

F =
(
f

f̄ Ď

)
. (J.2)

The electroweak quantum numbers of f are denoted by T f3 , Yf and Qf , whereas the corresponding quantum numbers for f̄

are T f̄3 = 0 and Qf̄ = Yf̄ = −Qf . Thus we have the correspondence to our general notation [Eq. (G.1.6)]

f ←→ χ, f̄ ←→ η. (J.3)

We can then immediately translate the couplings given in the general case in Fig. 4.3.3 to the Standard Model.

162 In the first case, where γ (p̂CM) = −φ and γ (−p̂CM) = −π + φ, the sign of λ′2 in the φ-dependent phase factor of Eq. (I.2.78) is opposite to the one
given in Ref. [257], due to the Jacob–Wick second-particle convention, which we do not employ here. Since λ1 = λ2 and λ′1 = λ

′

2 , the latter would imply
that the φ-dependent phase cancels exactly if the Jacob–Wick second-particle convention is used. This is easily checked by putting γ (p̂CM) = −φ and
ξλ = 1 in Eqs. (I.2.74) and (I.2.75), in which case all the spinor products are real.
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Table J.1
Fermions of the Standard Model (following the naming conventions of Table 5.1) and their SU(3) × SU(2)L × U(1)Y quantum numbers. The generation
indices run over i = 1, 2, 3. Color indices for the quarks are suppressed. The bars on the two-component antifermion fields are part of their names, and do
not denote some form of complex conjugation.

Two-component fermion fields SU(3) SU(2)L Y T3 Q = T3 + Y

Q i ≡
(
ui
di

)
triplet doublet

1
6

1
2

2
3

triplet 1
6 −

1
2 −

1
3

ūi anti-triplet singlet −
2
3 0 −

2
3

d̄i anti-triplet singlet 1
3 0 1

3

L i ≡
(
νi
`i

)
singlet doublet −

1
2

1
2 0

singlet −
1
2 −

1
2 −1

¯̀ i singlet singlet 1 0 1

Fig. J.1.1. Fermionic Feynman rules for QCD that involve the gluon, with q = u, d, c, s, t, b. Lowered (raised) indicesm, n correspond to the fundamental
(anti-fundamental) representation of SU(3)c . The gluon interactions are flavor-diagonal (where i, j are flavor indices). For each rule, a corresponding one
with lowered spinor indices is obtained by σ α̇βµ →−σµβα̇ .

J.1. Standard Model fermion interaction vertices

The QCD color interactions of the quarks are governed by the following interaction Lagrangian:

Lint = −gsAµa q
Ďmi σµ(T a)mnqni + gsAµa q̄

Ď
ni σµ(T

a)m
nq̄mi, (J.1.1)

summed over the generations i, where q is a (mass-eigenstate) quark field,m and n are SU(3) color triplet indices, Aµa is the
gluon field (with the corresponding gluons denoted by ga), and T a are the color generators in the triplet representation of
SU(3). The corresponding Feynman rules are given in Fig. J.1.1.
Next, we write out the Feynman rules for the electroweak interactions of quarks and leptons. Using Eqs. (4.3.11) and

(4.3.12), the interactions of the gauge bosons and quarks are given by:

Lint = −
g
√
2

[
(ûĎiσµd̂i + ν̂Ďiσµ ˆ̀ i)W+µ + (d̂

Ďiσµûi + ˆ̀Ďiσµν̂i)W−µ
]

−
g
cW

∑
f=u,d,ν,`

{
(T f3 − s

2
WQf )f̂

Ďiσµ f̂i + s2WQf
ˆ̄f
Ďi
σµ ˆ̄f i

}
Zµ − e

∑
f=u,d,`

Q f (f̂ Ďiσµ f̂i − ˆ̄f
Ďi
σµ ˆ̄f i)Aµ, (J.1.2)

where sW ≡ sin θW , cW ≡ cos θW , the hatted symbols indicate fermion interaction eigenstates and i labels the generations.
Following the discussion of Section 3.2, we must convert from fermion interaction eigenstates to mass eigenstates. In order
to accomplish this step, we must first identify the quark and lepton mass matrices. In the electroweak theory, the fermion
mass matrices originate from the fermion–Higgs Yukawa interactions.
The Higgs field of the Standard Model is a complex SU(2)L doublet of hypercharge Y =

1
2 ,

8a ≡

(
Φ+

Φ0

)
, (J.1.3)

where the SU(2)L index a = 1, 2 is defined such that 81 ≡ Φ+ and 82 ≡ Φ0. Here, the superscripts + and 0 refer to the
electric charge of the Higgs field, Q = T3 + Y , with Y = 1

2 and T3 = ±
1
2 . Since 8a is complex, we can also introduce the

complex conjugate Higgs doublet field with hypercharge Y = − 12 ,

8Ď a
≡
(
Φ−, (Φ0)Ď

)
, (J.1.4)

whereΦ− ≡ (Φ+)Ď. The SU(2)L×U(1)Y gauge invariant Yukawa interactions of the quarks and leptons with the Higgs field
are then given by:

LY = ε
ab(Y u)ij8aQ̂ biū

j
− (Y d)ij8Ď aQ̂ ai

ˆ̄d
j
− (Y `)ij8Ď aL̂ai ˆ̄`

j
+ h.c. (J.1.5)
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where εab is the antisymmetric invariant tensor of SU(2)L, defined such that ε12 = −ε21 = +1. Using the definitions of the
SU(2)L doublet quark and lepton fields given in Table J.1, one can rewrite Eq. (J.1.5) more explicitly as:

− LY = (Y u)ij
[
Φ0ûi ˆ̄u

j
− Φ+d̂i ˆ̄u

j]
+ (Y d)ij

[
Φ−ûi ˆ̄d

j
+ Φ0∗d̂i ˆ̄d

j
]
+ (Y `)ij

[
Φ−ν̂i
ˆ̄`
j
+ Φ0∗ ˆ̀ i

ˆ̄`
j
]
+ h.c. (J.1.6)

The Higgs fields can be written in terms of the physical Higgs scalar hSM and Nambu–Goldstone bosons G0,G± as

Φ0 = v +
1
√
2
(hSM + iG0), (J.1.7)

Φ+ = G+ = (Φ−)Ď = (G−)Ď. (J.1.8)

where v =
√
2mW/g ' 174 GeV. In the unitary gauge appropriate for tree-level calculations, the Nambu–Goldstone

bosons become infinitely heavy and decouple. We identify the quark and lepton mass matrices by setting Φ0 = v and
Φ+ = Φ− = 0 in Eq. (J.1.6):

(Mu)
i
j = v(Y u)ij, (Md)

i
j = v(Y d)ij, (M`)

i
j = v(Y `)ij. (J.1.9)

The neutrinos remain massless. An extension of the Standard Model that incorporates massive neutrinos is treated in
Appendix J.2.
To diagonalize the quark and lepton mass matrices, we introduce four unitary matrices for the quark mass

diagonalization, Lu, Ld, Ru and Rd, and two unitary matrices for the lepton mass diagonalization, L` and R` [cf. Eq. (3.2.31)]
such that

ûi = (Lu)ijuj, d̂i = (Ld)ijdj, ˆ̄u
i
= (Ru)ijūj, ˆ̄d

i
= (Rd)ijd̄j, (J.1.10)

ˆ̀ i = (L`)ij`j, ˆ̄`
i
= (R`)ij ¯̀ j, (J.1.11)

where the unhatted fields u, d, ū and d̄ are the corresponding quark mass eigenstates and ν, ` and ¯̀ are the corresponding
lepton mass eigenstates. The fermion mass diagonalization procedure consists of the singular value decomposition of the
quark and lepton mass matrices:

LTuMuRu = diag(mu,mc,mt), (J.1.12)

LTdMdRd = diag(md,ms,mb), (J.1.13)

LT`M`R` = diag(me,mµ,mτ ), (J.1.14)

where the diagonalized masses are real and non-negative (cf. Appendix D.1). Since the neutrinos are massless, we are free
to define the physical neutrino fields, νi, as the weak SU(2) partners of the corresponding charged lepton mass-eigenstate
fields. That is,

ν̂i = (L`)ijνj. (J.1.15)

We can now write out the couplings of the mass-eigenstate quarks and leptons to the gauge bosons and Higgs bosons.
Consider first the charged current interactions of the quarks and leptons. Using Eq. (J.1.10), it follows that ûĎiσµd̂i =
K ijuĎiσµdj, where

K = LĎuLd (J.1.16)

is the unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix [333].163 Due to Eq. (J.1.15), the corresponding leptonic CKM
matrix is the unit matrix. Hence, the charged current interactions take the form

Lint = −
g
√
2

[
K ijuĎiσµdjW+µ + (K

Ď)i
jdĎiσµujW−µ + ν

Ďiσµ`iW+µ + `
ĎiσµνiW−µ

]
, (J.1.17)

where [K Ď
]i
j
≡ [K ji]∗. Note that in the Standard Model, ū, d̄ and ¯̀ do not couple to theW±.

To obtain the neutral current interactions, we insert Eqs. (J.1.10)–(J.1.15) into Eq. (J.1.2). All factors of the unitarymatrices
Lf and Rf (f = u, d, `) cancel out, and the resulting interactions are flavor-diagonal. That is, we may simply remove
the hats from the quark and lepton fields that couple to the Z and photon fields in Eq. (J.1.2). This is the well-known
Glashow–Iliopoulos–Maiani (GIM) mechanism for the flavor-conserving neutral currents [335].164

163 The CKMmatrix elements Vij as defined in Ref. [334] are related by, for example, Vtb = K 33 and Vus = K 12 .
164 This also provides the justification for employing mass-eigenstate quark fields in the QCD interaction Lagrangian in Eq. (J.1.1).
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Fig. J.1.2. Feynman rules for the two-component fermion interactionswith electroweak gauge bosons in the StandardModel. The couplings of the fermions
to γ and Z are flavor-diagonal. In all couplings, i and j label the fermion generations; an upper [lowered] flavor index in the corresponding Feynman rule is
associated with a fermion line that points into [out from] the vertex. For theW± bosons, the charge indicated is flowing into the vertex. The electric charge
is denoted by Qf (in units of e > 0), with Qe = −1 for the electron. T

f
3 = 1/2 for f = u, ν, and T

f
3 = −1/2 for f = d, `. The CKMmixing matrix is denoted

by K , and sW ≡ sin θW , cW ≡ cos θW and e ≡ g sin θW . For each rule, a corresponding one with lowered spinor indices is obtained by σ α̇βµ →−σµβα̇ .

The Feynman rules for the interactions of the quarks and leptonswith the charged and neutral gauge bosons are exhibited
in Fig. J.1.2. For each of the rules of Fig. J.1.2, we have chosen to employ σ α̇βµ . If the indices are lowered one should take
σ α̇βµ →−σµβα̇ .
Finally, we exhibit the interactions of the quark and leptonmass eigenstates with the Higgs fields. The diagonalization of

the fermionmass matrices is equivalent to the diagonalization of the Yukawa couplings [cf. Eqs. (J.1.9) and (J.1.12)–(J.1.14)].
Thus, we define165

Yfi = mfi/v, f = u, d, `, (J.1.18)

where i labels the fermion generation. It is convenient to rewrite Eqs. (J.1.12)–(J.1.14) as follows:

(Lf )kj(Y f )km(Rf )mi = Yfiδ
j
i, f = u, d, `, (J.1.19)

with no sumover the repeated index i. Using theunitarity of Lf (f = u, d), Eq. (J.1.19) is equivalent to the following convenient
form:

(Y f Rf )ki = Yfi(L
Ď
f )i
k. (J.1.20)

Inserting Eqs. (J.1.10), (J.1.15) and (J.1.19) into Eq. (J.1.6), the resulting Higgs–fermion Lagrangian is flavor-diagonal:

Lint = −
1
√
2
hSM

[
Yuiuiūi + Ydidid̄i + Y`i`i ¯̀ i

]
+ h.c. (J.1.21)

The corresponding Feynman rules for the Higgs–fermion interaction are shown in Fig. J.1.3.
In the case of more general covariant gauge-fixing (e.g., the ’t Hooft–Feynman gauge or Landau gauge), the Goldstone

bosons appear explicitly in internal lines of Feynman diagrams. The Feynman rules for G0–fermion interactions are flavor-
diagonal, whereas the corresponding rules for G± exhibit flavor-changing interactions that depend on the CKM matrix

165 Boldfaced symbols are used for the non-diagonal Yukawa matrices, while non-boldfaced symbols are used for the diagonalized Yukawa couplings.
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Fig. J.1.3. Feynman rules for the Standard Model Higgs boson interactions with fermions, where Yfi ≡ mfi/v, and i, j label the generations.

Fig. J.1.4. Feynman rules for the Standard Model Nambu–Goldstone boson interactions with quarks and leptons, where Yfi ≡ mfi/v, and i, j label the
generations.

elements, as shown in Fig. J.1.4. In the derivation of the couplings of the Nambu–Goldstone bosons to the fermion mass
eigenstates [cf. Eqs. (J.1.6)–(J.1.8)], the following quantities appear:

(Ld)kj(Y u)km(Ru)mi = Yui(Ld)kj(LĎu)i
k
= Yui(LĎuLd)i

j
= [K ]ijYui, (J.1.22)

(Lu)kj(Y d)km(Rd)mi = Ydi(Lu)kj(L
Ď
d)i
k
= Ydi(L

Ď
dLu)i

j
= [K Ď

]i
jYdi, (J.1.23)
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with no sum over the repeated index i. The CKM matrix, K , appears by virtue of Eqs. (J.1.16) and (J.1.20). Hence, the
interaction Lagrangian for the coupling of the Nambu–Goldstone bosons to the fermion mass eigenstates is given by:

Lint = Yui[K ]ijdjūiG+ − Ydi[K Ď
]i
jujd̄iG− − Y`iνi ¯̀ iG− +

i
√
2

[
Ydidid̄i − Yuiuiūi + Y` i`i ¯̀ i

]
G0 + h.c., (J.1.24)

which yields the diagrammatic Feynman rules shown in Fig. J.1.4.

J.2. Incorporating massive neutrinos into the Standard Model

To accommodate massive neutrinos, we must slightly extend the Standard Model [336]. The simplest approach is to
introduce an SU(2)×U(1) gauge invariant dimension-five operator [337],

L5 = −
F̂
ij

2Λ
(εab8aL̂bi)(εcd8c L̂dj)+ h.c.

= −
F̂
ij

2Λ
(Φ0ν̂i − Φ

+ ˆ̀ i)(Φ
0ν̂j − Φ

+ ˆ̀ j)+ h.c., (J.2.1)

where F̂
ij
are generalized Yukawa couplings, the hatted fields indicate two-component fermion interaction eigenstates (with

spinor indices suppressed), and i, j label the three generations. After electroweak symmetry breaking, the neutral component
of the doublet Higgs field acquires a vacuum expectation value, and a Majorana mass matrix for the neutrinos is generated.
The diagonalization of the charged lepton mass matrix is unmodified from the treatment given in Appendix J.1, where

the unhatted mass-eigenstate charged lepton fields are given by Eq. (J.1.11), and L` and R` satisfy Eq. (J.1.14). However, the
unhatted neutrino field introduced in Eq. (J.1.15) is not a neutrino mass-eigenstate field when the effect of the dimension-
five Lagrangian, Eq. (J.2.1), is taken into account. To avoid confusion, we replace the unhatted neutrino fields of Eq. (J.1.15)
with new neutrino fields ν̆j. That is, we define

ν̂i = (L`)ijν̆j. (J.2.2)

We then rewrite Eq. (J.2.1) in terms of the charged lepton mass-eigenstate field and the new neutrino field defined
by Eq. (J.2.2):

L5 = −
F ij

2Λ
(Φ0ν̆i − Φ

+`i)(Φ
0ν̆j − Φ

+`j)+ h.c., (J.2.3)

where F ≡ LT` F̂L`. Setting Φ
0
= v and Φ+ = Φ− = 0, we identify the 3 × 3 complex symmetric effective light neutrino

mass matrix,Mν` , by

− Lmν =
1
2 (Mν`)

ijν̆iν̆j + h.c., (J.2.4)

where

Mν` =
v2

Λ
F . (J.2.5)

Current bounds on light neutrino masses suggest that v2/Λ . 1 eV, orΛ & 1013 GeV [334,338].
The physical neutrinomass-eigenstate fields can be identified by introducing the unitaryMaki–Nakagawa–Sakata (MNS)

matrix, UMNS, such that [339],166

(ν̆`)i = (UMNS)ij(ν`)j, (J.2.6)

where the unhatted (ν`)j fields [j = 1, 2, 3] denote the physical (mass-eigenstate) Majorana neutrino fields. UMNS is
determined by the Takagi diagonalization ofMν` [cf. Appendix D.2]:

UT
MNSMν`UMNS = diag(mν`1,mν`2,mν`3), (J.2.7)

where themν`j are the (real non-negative) masses of the physical neutrinos.
The interaction Lagrangian of the neutrino mass eigenstates can now be determined. The charged current neutrino

interactions are given by [cf. Eq. (J.1.17)]:

Lint = −
g
√
2

[
ν̆Ďiσµ`iW+µ + `

Ďiσµν̆iW−µ
]

= −
g
√
2

[
(U Ď
MNS)j

iν
Ďj
` σ

µ`iW+µ + (UMNS)i
j`Ďiσµν`jW−µ

]
, (J.2.8)

166 In the literature, the MNS matrix is often defined such that U∗MNS (and notUMNS) appears in Eq. (J.2.6).
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Fig. J.2.1. Feynman rules for the interactions of the two-component light neutrino (ν`) with electroweak gauge bosons, the Standard Model Higgs boson
and the Nambu–Goldstone bosons, where i, j label the generation. For the W± bosons and G± scalars, the charge indicated is flowing into the vertex.
The MNS mixing matrix is denoted by UMNS . For the rules involving W± and Z bosons, a corresponding one with lowered spinor indices is obtained by
σ α̇βµ →−σµβα̇ . In the h

0
SM and G

0 interactions, a factor of 2 is included to account for the identical neutrinos.

where we have used Eq. (J.2.6) to express the interaction Lagrangian in terms of the neutrino mass-eigenstate fields. The
neutral current neutrino interactions are flavor-diagonal (which follows from the unitarity of UMNS), and are thus equivalent
to those of the Standard Model. Finally, the couplings of the neutrinos to the Higgs and Nambu–Goldstone fields arise from
Eq. (J.2.3) and from the term in Eq. (J.1.6) proportional to Y`. Neglecting terms of O(m2ν/v

2), one obtains:

Lint =
1
v

∑
i,j

[
(mν`)j(U

Ď
MNS)j

i(ν`)j `i G+ − (m`)i(UMNS)ij(ν`)j ¯̀ i G− + h.c.
]

−
1
√
2v

∑
j

(mν`)j
[
(ν`)j(ν`)j(hSM + iG0)+ h.c.

]
. (J.2.9)

The Feynman rules for the interactions of the neutrino with the electroweak gauge bosons, the Higgs boson and the
Nambu–Goldstone bosons are exhibited in Fig. J.2.1.
The dimension-five Lagrangian, Eq. (J.2.1), is generated by new physics beyond the Standard Model at the scale Λ.

A possible realization of Eq. (J.2.1) is the seesaw mechanism, which was independently discovered on a number of
occasions [4]. In the seesaw extension of the Standard Model [5], one introduces the SU(3)×SU(2)×U(1) gauge singlet two-
component neutrino fields ν̄ I (I = 1, 2, . . . , n) and writes down the most general renormalizable couplings of the ν̄ I to the
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Standard Model fields:

Lseesaw = ε
ab(Ŷ ν)iJ8aL̂bi ˆ̄ν

J
−
1
2 M̂ IJ ˆ̄ν

I
ˆ̄ν
J
+ h.c., (J.2.10)

where the Yukawa coupling proportional to Ŷ ν is the leptonic analogue of the Higgs–quark Yukawa coupling proportional to
Ŷ u [cf. Eq. (J.1.5)]. In Eq. (J.2.10), we have distinguished the flavor labels of three generations of StandardModel neutrino and
charged lepton fields (denoted by lower case Roman letters i, j, . . .) and the flavor labels of singlet neutrino fields (denoted
by upper case Roman letters I , J, . . .). Note that Ŷ ν is a 3 × n matrix and M̂ is an n × n matrix, where n is the number of
singlet neutrino flavors. In general, we shall not specify the value of n, whichmay differ from the number of StandardModel
lepton generations.
IfΛ ≡ ‖M̂‖ � v,167 then a dimension-five operator of the form given by Eq. (J.2.1) is generated in the effective theory at

energy scales belowΛ. In this limit, we may neglect the kinetic energy term of the gauge singlet neutrino fields. Using the
Lagrange field equations, we may solve for ˆ̄ν

I
. Inserting the solution back into Eq. (J.2.10) then yields Eq. (J.2.1), with F̂/Λ

given by

F̂
ij
/Λ = −(Ŷ ν)iK (Ŷ ν)jN(M̂

−1
)KN . (J.2.11)

Using the definition of the SU(2)L doublet lepton field given in Table J.1, one can rewrite Eq. (J.2.10) more explicitly as:

Lseesaw = −(Ŷ ν)iJ
[
Φ0ν̂i ˆ̄ν

J
− Φ+ ˆ̀ i ˆ̄ν

J
]
−
1
2 M̂ IJ ˆ̄ν

I
ˆ̄ν
J
+ h.c. (J.2.12)

To analyze the physical consequences of the seesaw Lagrangian, we first express Eq. (J.2.12) in terms of the unhatted mass-
eigenstate charged lepton fields [cf. Eq. (J.1.11)], and the light neutrino fields ν̆i introduced in Eq. (J.2.2). It is also convenient
to introduce new gauge singlet neutrino fields ˘̄ν

J
by defining

ˆ̄ν
I
= N I J ˘̄ν

J
, (J.2.13)

where N is the unitary matrix that Takagi diagonalizes the complex symmetric matrix M̂ . That is,

M ≡ NTM̂N = diag(M1,M2, . . . ,Mn), (J.2.14)

where the MI are the singular values of M̂ (i.e., the non-negative square roots of the eigenvalues of M̂
Ď
M̂). In terms of the

mass-eigenstate charged lepton fields `i and the neutrino fields ν̆i and ˘̄ν
I
, the seesaw Lagrangian [Eq. (J.2.12)] is then given

by:

Lseesaw = −(Y ν)iJ
[
Φ0ν̆i ˘̄ν

J
− Φ+`i ˘̄ν

J
]
−
1
2M IJ ˘̄ν

I
˘̄ν
J
+ h.c., (J.2.15)

where

Y ν ≡ LT`Ŷ νN. (J.2.16)

As above, in the limit of Λ ≡ ‖M̂‖ = ‖M‖ � v, it is also possible to directly generate the effective dimension-five
operator [Eq. (J.2.3)] in terms of the mass-eigenstate charged lepton fields and the new neutrino fields ν̆j. We then identify
the corresponding coefficient, F/Λ, as

F ij/Λ = −(Y ν)iK (Y ν)jN(M−1)KN . (J.2.17)

Recalling that F = LT` F̂L`, one can check that Eq. (J.2.17) indeed follows from Eqs. (J.2.11), (J.2.14) and (J.2.16).
To identify the neutrino mass matrix, we setΦ0 = v andΦ+ = Φ− = 0 in Eq. (J.2.15):

− Lmν =
1
2 (ν̆i

˘̄ν
J
)Mν

(
ν̆k

˘̄ν
M

)
+ h.c. (J.2.18)

The neutrino mass matrixMν is a (3+ n)× (3+ n) complex symmetric matrix given in block form by:

Mν ≡

(
O MD
MT

D M

)
, (J.2.19)

where O is the 3× 3 zero matrix,M is the diagonal matrix defined in Eq. (J.2.14) andMD is a 3× n complex matrix (called
the Dirac neutrino mass matrix),

(MD)
i
j ≡ v(Y ν)ij. (J.2.20)

167 The Euclidean matrix norm is defined by ‖A‖ ≡
[
Tr(AĎA)

]1/2
=
[∑

i,j |aij|
2
]1/2 , for a matrix Awhose matrix elements are given by aij .
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Note that if n = 3 and M = O, then MD is a 3 × 3 matrix that is simply the leptonic analogue of the up-type quark
mass matrixMu. In this case, we would perform a singular value decomposition ofMD and identify the unhatted neutrino
mass-eigenstate fields, which can be assembled into three generations of four-component Dirac neutrinos,

Ni =
(
νi
ν̄Ďi

)
, i = 1, 2, 3. (J.2.21)

In the seesawmodel (with n not specified), we assume that ‖M‖ � ‖MD‖. In this case, the neutrino mass matrix can be
perturbatively Takagi block diagonalized as follows [280,298,340]. Introduce the (3 + n) × (3 + n) (approximate) unitary
matrix:

U =

(
13×3 − 1

2M
∗

DM
−2MT

D M∗DM
−1

−M−1MT
D 1n×n − 1

2M
−1MT

DM
∗

DM
−1

)
, (J.2.22)

where 1 is the identity matrix (whose dimension is explicitly specified above). We define transformed [light (`) and heavy
(h)] neutrino states (ν̆`)i and ( ˘̄νh)j by:(

ν̆i

˘̄ν
J

)
= U

(
(ν̆`)k

( ˘̄νh)
M

)
. (J.2.23)

By straightforward matrix multiplication, one can verify that to second order accuracy in perturbation theory,

UTMν U '

(
−MDM−1MT

D O
OT M + 1

2 (M
−1MĎ

DMD +MT
DM
∗

DM
−1)

)
, (J.2.24)

where O is the 3× n zero matrix.
We now can identify an effective 3 × 3 complex symmetric mass matrixMν` for the three light neutrinos as the upper

left-hand block of Eq. (J.2.24),

Mν` ' −MDM−1MT
D, (J.2.25)

where corrections of O(v4/Λ3) have been neglected. Using Eqs. (J.2.17) and (J.2.20), we see that the light neutrino mass
matrix obtained in Eq. (J.2.5) has been correctly reproduced to leading order in v2/Λ2.
The physical light neutrino mass-eigenstate fields and their masses are identified by Eqs. (J.2.6) and (J.2.7). At energy

scales below the heavy neutrino mass scale, Λ ≡ ‖M‖, and we can set ˘̄νh = 0. Neglecting corrections of O(v2/Λ2),
Eqs. (J.2.20)–(J.2.25) imply that168

ν̆i ' (UMNS)ij(ν`)j, (J.2.26)

(Y ν)iJ ˘̄ν
J
'
1
v
(Mν`UMNS)

ik(ν`)k =
1
v

∑
k

(U Ď
MNS)k

i (mν`)k(ν`)k, (J.2.27)

where in the last step above we have used Eq. (J.2.7) and (U Ď
MNS)j

i
≡ [(UMNS)ij]∗. Using Eqs. (J.2.26) and (J.2.27) to express

the seesaw Lagrangian in terms of the light neutrino mass-eigenstate fields, one can verify that the resulting interactions
of the light neutrinos (and charged leptons) to gauge bosons, the Higgs boson and the Nambu–Goldstone bosons reproduce
the results of Eqs. (J.2.8) and (J.2.9) at leading order in v2/Λ2.
For completeness, we examine the effective n × n complex symmetric mass matrix of the heavy neutrino states, Mνh ,

which is identified as the lower right-hand block in Eq. (J.2.24),

Mνh ' M + 1
2 (M

−1MĎ
DMD +MT

DM
∗

DM
−1). (J.2.28)

Although M is diagonal by definition [cf. Eq. (J.2.14)], the right-hand side of Eq. (J.2.28) is no longer diagonal due to the
second order perturbative correction. However, we do not have to perform another Takagi diagonalization, since the off-
diagonal elements of the lower right-hand block only affect the physical (diagonal) masses at higher order in perturbation
theory. Thus, we identify the physical heavy neutrino mass eigenstates to leading order by the unhatted fields,

ν̄
J
h '
˘̄ν
J
h, (J.2.29)

168 Strictly speaking, Eq. (J.2.27) should be written as:

(Y ν)i J ˘̄ν
J
'
1
v

∑
k,n

(UĎ
MNS)n

i δnk(mν` )k(ν`)k,

to maintain covariance in the flavor indices.
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with masses

mνhJ ' MJ

(
1+

1
M2J

∑
i

|(MD)
i
J |
2

)
, (J.2.30)

where the MJ are the diagonal elements ofM (and no sum over the repeated index J is implied). That is, the masses of the
heavy neutrinos are simply given bymνhJ ' MJ , up to corrections that are of the same order as the light neutrino masses.
The interactions of the heavy neutrinos can be likewise obtained. The only unsuppressed interactions are heavy neutrino

couplings to the Higgs boson and Nambu–Goldstone bosons that are proportional to the Dirac neutrino mass matrix,

Lint = −
1
√
2v
(UT
MNSMD)

k
J ν̄
J
h(ν`)k(h

0
SM + iG

0)+
1
v
(MD)

i
J`iν̄

J
hG
+
+ h.c. (J.2.31)

All other couplings of the heavy neutrinos to the W± and Z bosons (and additional contributions to the couplings of the
heavy neutrinos to the Higgs boson and Nambu–Goldstone bosons) are suppressed by (at least) a factor of O(v/Λ).

Appendix K. MSSM fermion interaction vertices

In this section, we provide the Feynman rules for the MSSM interaction vertices. To complete the tabulation of all MSSM
Feynman rules, one requires the rules for the purely bosonic interactions of theMSSM. These can be found in Refs. [341,342].

K.1. Higgs–fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two Higgs doublet model containing eight real scalar degrees of freedom: one complex
Y = − 12 doublet, Hd = (H0d ,H

−

d ) and one complex Y = +
1
2 doublet, Hu = (H+u ,H

0
u ). The notation reflects the form of the

MSSM Higgs sector coupling to fermions:

LY = ε
ab
[
(Y u)ij(Hu)aQ̂ bi ˆ̄u

j
− (Y d)ij(Hd)aQ̂ bi

ˆ̄d
j
− (Y `)ij(Hd)aL̂bi ˆ̄`

j
]
+ h.c., (K.1.1)

where the hatted fields are interaction-eigenstate quark and lepton fields (with generation labels i and j), a and b are SU(2)L
indices and the invariant SU(2)L tensor εab is defined below Eq. (J.1.5). That is, the neutral Higgs fields H0d [H

0
u ] couple

exclusively to down-type [up-type] fermion pairs, respectively. In the supersymmetric model, both hypercharge Y = − 12
and Y = + 12 complex Higgs doublets are required in order that the theory (which now contains the corresponding higgsino

superpartners) remain anomaly free. The supersymmetric structure of the theory forbids the coupling of HĎ
u to
ˆ̄d
j
and ˆ̄`

j

or the coupling of HĎ
d to ˆ̄u

j
, as such couplings would not be holomorphic. Consequently, (at least) two Higgs doublets are

required in the MSSM to generate mass for both ‘‘up’’-type and ‘‘down’’-type quarks and charged leptons [170,343,344].
To find the couplings of the Higgs fields, we expand them around the neutral Higgs field vacuum expectation values

vd ≡
〈
H0d
〉
and vu ≡

〈
H0u
〉
. Depending on the application, these may be chosen to be the minimum of the tree-level scalar

potential, or of the full loop-corrected effective potential, or just left arbitrary. It is always possible to choose the phases of
the Higgs fields such that vu and vd are real and positive. We then define

β ≡ tan−1
(
vu

vd

)
, 0 ≤ β ≤

π

2
. (K.1.2)

The one potentially complex squared-mass parameter that appears in the tree-level MSSM Higgs scalar potential is
necessarily real in the convention where the vacuum expectation values of the neutral Higgs fields are real and positive.169
Consequently, the tree-levelMSSMHiggs sector conserves CP, which implies that the neutral Higgsmass eigenstates possess
definite CP quantum numbers.170 Spontaneous electroweak symmetry breaking results in three Goldstone bosons G±, G0
(the neutral Goldstone boson is a CP-odd scalar field), which are absorbed and become the longitudinal components of the
W± and Z . The remaining five physical Higgs particles consist of a charged Higgs pair H±, one CP-odd scalar A0, and two
CP-even scalars h0 and H0.

169 The coefficients of the quartic terms of the tree-level MSSM Higgs potential are related to the electroweak gauge couplings and are manifestly real,
independently of the convention for the phases of the Higgs fields.
170 When one-loop corrections are taken into account, newMSSM phases can enter in the loops that cannot be removed. In this case, the physical neutral
Higgs states can be mixtures of CP-even and CP-odd scalar states [345].
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It is convenient to define H−u ≡ (H
+
u )

Ď and H+d ≡ (H
−

d )
Ď. One can then parameterize the mixing angles between Higgs

gauge eigenstates and mass eigenstates by writing:

H0u = vu +
1
√
2

∑
φ0

kuφ0φ
0, H±u =

∑
φ±

kuφ±φ
±, (K.1.3)

H0d = vd +
1
√
2

∑
φ0

kdφ0φ
0, H±d =

∑
φ±

kdφ±φ
±. (K.1.4)

For φ± = (H±,G±),171

kuφ± = (cosβ±, sinβ±), (K.1.5)

kdφ± = (sinβ±,− cosβ±), (K.1.6)

and for φ0 = (h0,H0, A0,G0),

kuφ0 = (cosα, sinα, i cosβ0, i sinβ0), (K.1.7)

kdφ0 = (− sinα, cosα, i sinβ0,−i cosβ0), (K.1.8)

where the mixing angle α parameterizes the orthogonal matrix that diagonalizes the 2 × 2 CP-even Higgs squared-mass
matrixM2

0 [defined in Eq. (K.1.11) below].
In Eqs. (K.1.3) and (K.1.4), the normalization of the vacuum expectation values is

v2d + v
2
u = 2m

2
W/g

2
' (174 GeV)2, (K.1.9)

if one chooses vu, vd to be near the true minimum of the Higgs effective potential. Note that in the special case that vu and
vd are at the minimum of the tree-level potential, the mixing angles β± in the charged Higgs sector and β0 in the CP-odd
neutral Higgs sectors coincide such that β± = β0 = β , where β is defined in Eq. (K.1.2). However, if one expands around a
more general choice of vu, vd, including for example the minimum of the full effective potential, then the tree-level mixing
angles β0 and β± are distinct from each other and from β . (Depending on the choice of renormalization scale for a particular
calculation, the tree-level potential in the MSSM may have a very different minimum from the true minimum of the full
effective potential, or may not have a proper minimum at all.) Therefore, we do not assume anything specific about vu and
vd except that they are real and positive by convention.
All MSSM Higgs boson masses and the mixing angle α are determined at tree level by two Higgs sector parameters,

usually taken to be the ratio of the tree-level vacuum expectation values, tanβ = vu/vd, and the mass of the CP-odd Higgs
scalar,mA [170,344]. The tree-level value of the squared mass of the charged Higgs boson is given by

m2H± = m
2
A +m

2
W . (K.1.10)

The CP-even Higgs bosons h0 and H0 are eigenstates of the tree-level squared-mass matrix,

M2
0 =

(
m2A sin

2 β +m2Z cos
2 β −(m2A +m

2
Z ) sinβ cosβ

−(m2A +m
2
Z ) sinβ cosβ m2A cos

2 β +m2Z sin
2 β

)
. (K.1.11)

The eigenvalues ofM2
0 are the tree-level squared masses of the two CP-even Higgs scalars,

m2H,h =
1
2

(
m2A +m

2
Z ±

√
(m2A +m

2
Z )
2 − 4m2Zm

2
A cos2 2β

)
, (K.1.12)

withmh ≤ mH . The angle α of the orthogonal matrix that diagonalizesM2
0 is given by [346]:

sin 2α = − sin 2β
(
m2A +m

2
Z

m2H −m
2
h

)
, cos 2α = − cos 2β

(
m2A −m

2
Z

m2H −m
2
h

)
. (K.1.13)

Since sin 2α ≤ 0, the tree-level value of α is restricted to lie in the range−π/2 ≤ α ≤ 0.
Radiative corrections can have a significant impact on the tree-level Higgs masses and mixing angle α [345,347]. For

example, the tree-level bound mh ≤ mZ | cos 2β| ≤ mZ [which follows from Eq. (K.1.12)] is significantly modified by an
incomplete cancellation of top quark and top squark loop corrections. Including the latter implies thatmh . 135 GeV [348],
which (in contrast to the tree-level prediction) is not experimentally excluded.

171 Note that φ− ≡ (φ+)Ď . Since the kf φ± (for f = u, d) are real quantities, we adopt the notation in which kf φ+ = kf φ− ≡ kφ± and β+ = β− ≡ β± .
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Fig. K.1.1. Feynman rules for the interactions of neutral Higgs bosons φ0 = (h0,H0, A0,G0) with fermion–antifermion pairs in the MSSM. The repeated
index j is not summed.

Fig. K.1.2. Feynman rules for the interactions of charged Higgs bosons φ± = (H±,G±)with fermion–antifermion pairs in the MSSM.

The Higgs–fermion Yukawa couplings in the gauge-interaction basis are given by Eq. (K.1.1). Explicitly,

− LY = (Yu)ij
[
ûi ˆ̄u

j
H0u − d̂i ˆ̄u

j
H+u
]
+ (Yd)ij

[
d̂i ˆ̄d
j
H0d − ûi

ˆ̄d
j
H−d

]
+ (Y`)ij

[
ˆ̀ i
ˆ̄`
j
H0d − ν̂i

ˆ̄`
j
H−d

]
+ h.c. (K.1.14)

We use Eqs. (K.1.3) and (K.1.4) to express the interaction-eigenstate Higgs fields in terms of the physical Higgs fields and
Goldstone fields.We can identify the quark and leptonmassmatrices simply by settingH0u = vu,H

0
d = vd andH

+
u = H

−

d = 0
in Eq. (K.1.14),

(Mu)
i
j = vu(Yu)ij, (Md)

i
j = vd(Yd)ij, (M`)

i
j = vd(Y`)ij. (K.1.15)

We then use Eqs. (J.1.10) and (J.1.11) to express the interaction-eigenstate quark and lepton fields in terms of the
correspondingmass-eigenstate fields. Eqs. (J.1.12) and (J.1.14) ensure that the fermionmassmatrices are diagonal (with real
non-negative elements) in the fermionmass-eigenstate basis. In this basis, the resulting neutral Higgs–fermion interactions
are diagonal. Here, the diagonalized Higgs–fermion Yukawa coupling matrices appear:

diag(Yu1, Yu2, Yu3) ≡ diag(Yu, Yc, Yt) = LTuYuRu, (K.1.16)

diag(Yd1, Yd2, Yd3) ≡ diag(Yd, Ys, Yb) = LTdYdRd, (K.1.17)

diag(Y`1, Y`2, Y`3) ≡ diag(Ye, Yµ, Yτ ) = LT`Y`R`. (K.1.18)
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The diagonalized Yukawa couplings are related to the corresponding fermion masses by

Yui = mui/vu, Ydi = mdi/vd, Y`i = m`i/vd. (K.1.19)

Wehaveused the same symbol for theYukawa couplings in theMSSMaswedid for the StandardModel Yukawa couplings
in Appendix J.1. However, it is important to note that the MSSM Yukawa couplings are normalized differently because of
the presence of two neutral Higgs field vacuum expectation values. Using a superscript SM to denote the Standard Model
Yukawa couplings of Appendix J.1, the MSSM Yukawa couplings defined here are related by:

Yui = Y SMui / sinβ, Ydi = Y SMdi / cosβ, Y`i = Y SM`i / cosβ. (K.1.20)

The interactions of the neutral Higgs and Goldstone scalars φ0 = (h0,H0, A0,G0) with Standard Model fermions are
given in Fig. K.1.1. Note that the rules involving undotted spinor indices are proportional to either couplings kdφ0 and kuφ0 ,
whereas the rules involving dotted spinor indices are proportional to the corresponding complex-conjugated couplings. For
the CP-even scalars, h0 and H0, the corresponding couplings are real. Hence, starting with the rule for the coupling of the
CP-even neutral scalars to fermions with undotted indices, one obtains the corresponding rule for the coupling to fermions
with dotted indices (with the direction of the arrows reversed) by taking δαβ → δα̇ β̇ . In contrast, for the CP-odd scalars, A

0

and G0, the corresponding couplings kdφ0 and kuφ0 are purely imaginary. Therefore, starting with the rule for the coupling
of the CP-odd neutral scalars to fermions with undotted indices, one obtains the corresponding rule for the coupling to
fermions with dotted indices (with the direction of the arrows reversed) by taking δαβ → −δα̇ β̇ . The latter minus sign is
a signal that A0 and G0 are CP-odd scalars. In particular, due to the fact that the Feynman rules for A0 and G0 arise from a
term inLint proportional to i Im H0, the latter i flips sign when the rule is conjugated resulting in the extra minus sign noted
above. As an additional consequence, since the Feynman rules are obtained from iLint, the overall A0 and G0 rules are real.
The couplings of the charged Higgs and Goldstone bosons to quark–antiquark pairs are not flavor-diagonal and involve

the CKM matrix K . Starting with Eq. (K.1.14), and changing to the mass-eigenstate basis as before, we make use of
Eqs. (J.1.22) and (J.1.23) to obtain

Lint = Yui[K ]ijdjūiH+ cosβ± + Ydi[K Ď
]i
jujd̄iH− sinβ± + Y`iνi ¯̀ iH− sinβ±

+ Yui[K ]ijdjūiG+ sinβ± − Ydi[K Ď
]i
jujd̄iG− cosβ± − Y`iνi ¯̀ iG− cosβ± + h.c. (K.1.21)

The resulting charged scalar Feynman rules of the MSSM are given in Fig. K.1.2. Note that when Eq. (K.1.20) is taken into
account, the fermion couplings to the neutral and charged Goldstone bosons are equivalent to those of the Standard Model
[cf. Eq. (J.1.24)] if we choose β0 = β± = β .

K.2. Gauge-interaction vertices for neutralinos and charginos

Following Eqs. (C83) and (C88) of Ref. [7], we define:

OLij = −
1
√
2
Ni4V ∗j2 + Ni2V

∗

j1, (K.2.1)

ORij =
1
√
2
N∗i3Uj2 + N

∗

i2Uj1, (K.2.2)

O′Lij = −Vi1V
∗

j1 −
1
2Vi2V

∗

j2 + δijs
2
W , (K.2.3)

O′Rij = −U
∗

i1Uj1 −
1
2U
∗

i2Uj2 + δijs
2
W , (K.2.4)

O′′Lij = −O
′′R
ji =

1
2 (Ni4N

∗

j4 − Ni3N
∗

j3), (K.2.5)

where sW ≡ sin θW . Here U and V are the unitary matrices that diagonalize the chargino mass matrix via the singular value
decomposition:

U∗Mψ±V
−1
= diag(mC̃1 ,mC̃2), (K.2.6)

with

Mψ± =
(
M2 gvu
gvd µ

)
. (K.2.7)

Similarly, N is a unitary matrix that Takagi diagonalizes the neutralino mass matrix,

N∗Mψ0N
−1
= diag(mÑ1 ,mÑ2 ,mÑ3 ,mÑ4), (K.2.8)
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Fig. K.2.1. Feynman rules for the chargino and neutralino interactions with neutral gauge bosons. The couplingmatrices are defined in Eqs. (K.2.3)–(K.2.5)
and cW ≡ cos θW . For each rule, a corresponding one with lowered spinor indices is obtained by σ α̇βµ →−σµβα̇ .

Fig. K.2.2. Feynman rules for the chargino and neutralino interactions withW± gauge bosons. The charge indicated on theW boson is flowing into the
vertex in each case. The couplingmatrices are defined in Eqs. (K.2.1) and (K.2.2). For each rule, a corresponding one with lowered spinor indices is obtained
by σ α̇βµ →−σµβα̇ .

with

Mψ0 =


M1 0 −g ′vd/

√
2 g ′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g ′vd/
√
2 gvd/

√
2 0 −µ

g ′vu/
√
2 −gvu/

√
2 −µ 0

 . (K.2.9)

As noted above Eq. (K.1.2), we work in a convention in which vu and vd are real and positive. The gaugino mass parameters
M1,M2 and the higgsino mass parameter µ are potentially complex.
Wenow list the gauge boson interactionswith the neutralinos and charginos in the formof Feynman rules. Here,wemake

use of the results presented in Figs. 4.3.2–4.3.4. The Feynman rules for Z and γ interactions with charginos and neutralinos
are given in Fig. K.2.1 and the corresponding rules for W± interactions are given in Fig. K.2.2. For each of these rules, one
has a version with lowered spinor indices by replacing σ α̇βµ → −σµβα̇ . We label fermion lines with the symbols of the
two-component fermion fields as given in Table 5.1. The ZÑiÑj interaction vertex also subsumes the O′′Rij interaction found
in four-component Majorana Feynman rules as in Ref. [7], due to the result of Eq. (G.1.98) and the relation O′′Rij = −O

′′L
ji of

Eq. (K.2.5).
The chargino sector is CP-conserving if Im(M2µ∗) = 0. In this case, the chargino fields can be rephased such thatM2 and

µ are real, and the chargino mixing matrices U and V can be chosen to be real orthogonal. In particular, the couplings O′ L
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Fig. K.3.1. Feynman rules for the interactions of neutral Higgs bosons φ0 = (h0,H0, A0,G0)with neutralino pairs and chargino pairs, respectively, and the
interaction of charged Higgs bosons φ± = (H±,G±)with chargino–neutralino pairs. For each rule, there is a corresponding one with all arrows reversed,
undotted indices changed to dotted indices with the opposite height, and the Y coupling (without the explicit−i) replaced by its complex conjugate.

and O′ R are manifestly real. Likewise, the neutralino sector is CP-conserving if Im(M1µ∗)= Im(M2µ∗)= Im(M1M∗2 )=0.
172

In this case, the neutralino fields can be rephased such thatM1,M2 and µ are all real, and the neutralino mixing matrix can
be chosen [cf. Eqs. (D.2.4) and (D.2.5)] such that [170]:

Nij = ε
1/2
i Zij, no sum over i, (K.2.10)

where Z is a real orthogonal matrix, and εi is the sign (either ±1) of the ith eigenvalue of the real symmetric neutralino
mass matrix,Mψ0 . That is, the ith row of N is purely real [imaginary] if εi = +1 [−1]. In particular, the matrix element O

′′ L
ij

is purely real [imaginary] if εiεj = +1 [−1]. More generally, the neutralino and chargino interactions with the electroweak
gauge bosons are CP-conserving if the corresponding Feynman rules for the interaction vertices are either purely real or
purely imaginary.
In the CP-violating case, the matrices U and V cannot be chosen to be real orthogonal, and N cannot be written in the

form of Eq. (K.2.10).173 Nevertheless, the diagonal couplings O′ Lii , O
′ R
ii and O

′′ L
ii are manifestly real. This indicates that the

diagonal Z0C̃+i C̃
−

i and Z
0ÑiÑi couplings are CP-conserving at tree level, even in the presence of a CP-violating chargino and

neutralino sector. Similarly, the diagonal γ C̃+i C̃
−

i couplings are CP-conserving, whereas the off-diagonal γ C̃
±

i C̃
∓

j couplings
(i 6= j) vanish at tree level, as expected from gauge invariance.

K.3. Higgs interactions with charginos and neutralinos

The couplings of chargino and neutralino mass eigenstates to the Higgs mass eigenstates can be written, in terms of
the Higgs mixing parameters of Eqs. (K.1.7) and (K.1.8) and the neutralino and chargino mixing matrices of Appendix K.2,
as [170]:

Yφ
0χ0i χ

0
j =

1
2
(k∗dφ0N

∗

i3 − k
∗

uφ0N
∗

i4)(gN
∗

j2 − g
′N∗j1)+ (i↔ j), (K.3.1)

Yφ
0χ−i χ

+

j =
g
√
2
(k∗uφ0U

∗

i1V
∗

j2 + k
∗

dφ0U
∗

i2V
∗

j1), (K.3.2)

Yφ
+χ0i χ

−

j = kdφ±
[
g
(
N∗i3U

∗

j1 −
1
√
2
N∗i2U

∗

j2

)
−
g ′
√
2
N∗i1U

∗

j2

]
, (K.3.3)

Yφ
−χ0i χ

+

j = kuφ±
[
g
(
N∗i4V

∗

j1 +
1
√
2
N∗i2V

∗

j2

)
+
g ′
√
2
N∗i1V

∗

j2

]
, (K.3.4)

for φ0 = h0,H0, A0,G0 and φ± = H±,G±. We exhibit the Higgs boson and Goldstone boson interactions with the
neutralinos and charginos in Fig. K.3.1. For each of the Feynman rules in Fig. K.3.1, one can reverse all arrows by taking
δα
β
→ δα̇ β̇ and complex conjugating the corresponding coupling (but not the overall factor of−i).
Goldstone bosons may appear as internal lines in of Feynman graphs that are evaluated in the ’t Hooft–Feynman gauge.

The propagation of a Goldstone boson yields a result that is identical to the propagation of the corresponding longitudinal
gauge boson in the unitary gauge. It is thus convenient to express the Goldstone boson couplings to the neutralinos and

172 If all three of the potentially complex parameters M1 , M2 and µ are non-zero, then only two of the three conditions for a CP-conserving neutralino
sector are independent, since the third condition follows automatically from the first two conditions.
173 SinceMψ0 is in general a complex symmetric matrix, its eigenvalues are not necessarily all real. In particular, if the ith eigenvalue is not real, then there
is no longer any meaning to the sign εi .
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Fig. K.4.1. Feynman rules for the interactions of charginos with fermion/sfermion pairs in the MSSM. The fermions are taken to be in a mass-eigenstate
basis, and the sfermions are in a basis whose elements are the supersymmetric partners of them. For each rule, there is a corresponding onewith all arrows
reversed, undotted indices changed to dotted indices with the opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.
Note that chargino interaction vertices involving ū̃dR and d̄̃uR do not occur in the MSSM. An alternative version of these rules, for the case that mixing is
allowed only among third-family sfermions, is given in Fig. K.4.3.

charginos in terms of the corresponding gauge boson couplings. To accomplish this, we first record a number of identities
among the neutralino and chargino mixing matrices. First, we use Eqs. (K.2.6) and (K.2.7) to derive:

M2U∗i1 + gvdU
∗

i2 = mC̃iVi1, gvuU∗i1 + µU
∗

i2 = mC̃iVi2, (K.3.5)

M2V ∗i1 + gvuV
∗

i2 = mC̃iUi1, gvdV ∗i1 + µV
∗

i2 = mC̃iUi2. (K.3.6)

Next, we use Eqs. (K.2.8) and (K.2.9) to derive:

mÑiNi4 =
4∑
j=1

N∗ij (Mψ0)j4 =
vu
√
2

(
g ′N∗i1 − gN

∗

i2

)
− µN∗i3, (K.3.7)

mÑiNi3 =
4∑
j=1

N∗ij (Mψ0)j3 = −
vd
√
2

(
g ′N∗i1 − gN

∗

i2

)
− µN∗i4, (K.3.8)

mÑiNi2 =
4∑
j=1

N∗ij (Mψ0)j2 = N
∗

i2M2 +
g
√
2

(
vdN∗i3 − vuN

∗

i4

)
. (K.3.9)

By a judicious combination of the above identities, µ andM2 can be eliminated. One can then rewrite the Goldstone boson
couplings of Eqs. (K.3.1)–(K.3.4) in terms of the gauge boson couplings OL,R, O′ L,R and O′′ L,R defined in Eqs. (K.2.1)–(K.2.5). It
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Fig. K.4.2. Feynman rules for the interactions of neutralinos with fermion/sfermion pairs in the MSSM. The fermions are taken to be in a mass-eigenstate
basis, and the sfermions are in a basis whose elements are the supersymmetric partners of them. For each rule, there is a corresponding onewith all arrows
reversed, undotted indices changed to dotted indices with the opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.
An alternative version of these rules, for the case that mixing is allowed only among third-family sfermions, is given in Fig. K.4.4.

then follows that:

iY G
0χ0i χ

0
j =

√
2
v

(
mÑiO

′′ L
ij −mÑjO

′′ R
ij

)
, (K.3.10)

iY G
0χ−i χ

+

j =

√
2
v

(
mC̃iO

′ L
ij −mC̃jO

′ R
ij

)
, (K.3.11)

Y G
+χ0i χ

−

j =

√
2
v

(
mC̃jO

L ∗
ij −mÑiO

R ∗
ij

)
, (K.3.12)

Y G
−χ0i χ

+

j = −

√
2
v

(
mÑiO

L
ij −mC̃jO

R
ij

)
. (K.3.13)

Note that by using O′′ Rij = −O
′′ L
ji , it follows from Eq. (K.3.10) that iY

G0χ0i χ
0
j is symmetric under the interchange of i and j, as

expected.
In general, for a CP-violating chargino and neutralino sector, the couplings Yφ

0χ0i χ
0
i and Yφ

0χ+i χ
−

i for φ0 = h0,H0, A0
are neither purely real nor purely imaginary. That is, the diagonal neutralino and chargino couplings to the physical neutral
Higgs bosons are generically CP-violating. However for φ0 = G0, the diagonal neutralino and chargino couplings to the
neutral Goldstone boson (when multiplied by i) are manifestly real. In particular, Eqs. (K.3.10) and (K.3.11) yield:

iY G
0χ0i χ

0
i =

2
√
2mÑi
v

O′′ Lii =

√
2mÑi
v

[
|Ni4|2 − |Ni3|2

]
, (K.3.14)

iY G
0χ−i χ

+

i =

√
2mC̃i
v

(O′ Lii − O
′ R
ii ) =

mC̃i
√
2 v

[
|Vi2|2 − |Ui2|2

]
, (K.3.15)
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Fig. K.4.3. Feynman rules for the interactions of charginos with third-family fermion/sfermion pairs in the MSSM. The fermions are taken to be in a mass-
eigenstate basis. CKM mixing is neglected, and the sfermions are assumed to only mix within the third family. The corresponding rules for the first and
second families with the approximation of no mixing and vanishing fermion masses can be obtained from these by setting Yf = 0 and Lf̃2 = Rf̃1 = 1 and
Lf̃1 = Rf̃2 = 0 (so that f̃1 = f̃R and f̃2 = f̃L). For each rule, there is a corresponding one with all arrows reversed, undotted indices changed to dotted indices
with the opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.

where the unitarity of U and V has been used to obtain the final expression in Eq. (K.3.15). It follows that the diagonal
neutralino and chargino couplings to the neutral Goldstone boson are CP-conserving. This result is not surprising, as the
corresponding diagonal tree-level couplings of the (longitudinal) Z0 boson are always CP-conserving as noted at the end of
Appendix K.2.

K.4. Chargino and neutralino interactions with fermions and sfermions

In theMSSM, the scalar partners of the two-component fields q and q̄Ď are the squarks, denoted by q̃L and q̃R, respectively.
In our notation, q̃ ∗L and q̃

∗

R denote both the complex conjugate fields and the names of the corresponding anti-squarks. Thus
u, ũL and ũR all have electric charges+2/3, whereas ū, ũ ∗L and ũ

∗

R all have electric charges−2/3. Likewise, the scalar partners
of the two-component fields ` and ¯̀Ď are the charged sleptons, denoted by ˜̀L and ˜̀R, respectively, with ` = e, µ, τ . The
sneutrino, ν̃ is the superpartner of the neutrino. There is no ν̃R, since there is no ν̄ in the theory.174
The Feynman rules for the chargino–quark–squark interactions are given in Fig. K.4.1, and the rules for the

neutralino–quark–squark interactions are given in Fig. K.4.2. Here we have taken the quark and lepton two-component
fields to be in a mass-eigenstate basis, and the squark and slepton field basis consists of the superpartners of these fields, as
described above. Therefore, in practical applications, onemust include unitary rotationmatrix elements relating the squarks
and sleptons as given to the mass eigenstates, which can be different.
In principle, all sfermions with a given electric charge can mix with each other. However, there is a popular, and

perhaps phenomenologically and theoretically favored, approximation in which only the sfermions of the third family have
significant mixing. For f = t, b, τ , one can then write the relationship between the gauge eigenstates f̃L, f̃R and the mass
eigenstates f̃1, f̃2 as [349](

f̃R
f̃L

)
= Xf̃

(
f̃1
f̃2

)
, Xf̃ ≡

(
Rf̃1 Rf̃2
Lf̃1 Lf̃2

)
, (K.4.1)

174 It is possible to construct a seesaw-extended MSSM that would be the minimal supersymmetric extension of the seesaw-extended Standard Model
described in Appendix J.2. In the seesaw-extended MSSM, both ν̄ and its supersymmetric partner ν̃R exist. For further details on the sneutrino sector of the
seesaw-extended MSSM, see Ref. [298].
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Fig. K.4.4. Feynman rules for the interactions of neutralinos with third-family fermion/sfermion pairs in the MSSM. The comments of the caption of
Fig. K.4.3 also apply here.

where X is a 2× 2 unitary matrix. Then one can choose Rf̃1 = L
∗

f̃2
= cf̃ , and Lf̃1 = −R

∗

f̃2
= sf̃ with

|cf̃ |
2
+ |sf̃ |

2
= 1. (K.4.2)

If there is no CP violation, then cf̃ and sf̃ can be taken real, and they are the cosine and sine of a sfermion mixing angle.
175

For the other charged sfermions (̃f = ũ, d̃, c̃, s̃, ẽ, µ̃), one can use the same notation, and approximate Lf̃2 = Rf̃1 = 1 and
Lf̃1 = Rf̃2 = 0. The resulting Feynman rules for squarks and sleptons thatmixwithin each generation are shown in Figs. K.4.3
and K.4.4.
For each Feynman rule in Figs. K.4.1–K.4.4, one can reverse all arrows by taking δαβ → δα̇ β̇ and complex conjugating the

corresponding rule (but leaving the explicit factor of i intact).

175 Our convention for cf̃ , sf̃ has the property that for zero mixing angle, f̃1 = f̃R and f̃2 = f̃L . The conventions most commonly found in the literature
unfortunately do not have this nice property.
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Fig. K.5.1. Fermionic Feynman rules for SUSY-QCD that involve the gluon, with q = u, d, c, s, t, b. Lowered (raised) indices j, k correspond to the
fundamental (anti-fundamental) representation of SU(3)c . For each rule, a corresponding one with lowered spinor indices is obtained by σ α̇βµ →−σµβα̇ .

Fig. K.5.2. Fermionic Feynman rules for SUSY-QCD that involve the squarks, in a basis corresponding to the quark mass eigenstates q = u, d, c, s, t, b.
Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental) representation of SU(3)c , and the index a labels the adjoint representation
carried by the gluino. The spinor index heights can be exchanged in each case, by replacing δαβ → δβ

α or δα̇ β̇ → δβ̇ α̇ . For an alternative set of rules,
incorporating q̃L–̃qR mixing, see Fig. K.5.3.

Fig. K.5.3. Fermionic Feynman rules for SUSY-QCD that involve the squarks in the mass-eigenstate basis labeled by x = 1, 2 and q = u, d, c, s, t, b, in
the approximation where mixing is allowed only within a given flavor (typically, for the third family only), as in Eq. (K.4.1). Lowered (raised) indices j, k
correspond to the fundamental (anti-fundamental) representation of SU(3)c , and the index a labels the adjoint representation carried by the gluino. The
spinor index heights can be exchanged in each case, by replacing δαβ → δβ

α or δα̇ β̇ → δβ̇ α̇ .

K.5. SUSY-QCD Feynman rules

In supersymmetric (SUSY) QCD, the Lagrangian governing the gluon interactions with colored fermions (gluinos and
quarks) in two-component spinor notation, which derives from the covariant derivatives in the kinetic terms, is given by

Lint = igsf abd (g̃Ďa σµ g̃b)A
µ

d − gsT
ak
j

∑
q

[
qĎjσµqk − q̄

Ď
kσµq̄

j
]
Aµa . (K.5.1)

Here gs is the strong coupling constant, a, b, d = 1, 2, . . . , 8 are SU(3)c adjoint representation indices, and f abd are the
SU(3) structure constants. Raised (lowered) indices j, k = 1, 2, 3 are color indices in the fundamental (anti-fundamental)
representation. We have denoted the two-component gluino field by g̃a as in Table 5.1 and the gluon field by A

µ
a . The sum∑

q is over the six flavors q = u, d, s, c, b, t (in either the mass-eigenstate or electroweak gauge-eigenstate basis). The
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Fig. L.1. Feynman rules for the Yukawa couplings of two-component fermions due to the supersymmetric, R-parity-violating Yukawa LagrangianLLLē
[cf. Eq. (L.1)]. For each diagram, there is another with all arrows reversed and λijk → λ∗ijk .

Fig. L.2. Feynman rules for the Yukawa couplings of two-component fermions for the supersymmetric, R-parity-violating Yukawa Lagrangian LLQ d̄
[cf. Eq. (L.2)]. For each diagram, there is another with all arrows reversed and λ′ijk → λ′∗ijk .

Fig. L.3. Feynman rules for the Yukawa couplings of two-component fermions due to the supersymmetric, R-parity-violating Yukawa LagrangianLūd̄d̄
[cf. Eq. (L.3)]. For each diagram, there is another with all arrows reversed and λ′′ijk → λ′′∗ijk .

corresponding Feynman rules are shown in Fig. K.5.1. The gluino–squark–quark Lagrangian is given by:

Lint = −
√
2gsT akj

∑
q

[
g̃aqk q̃

∗j
L + g̃

Ď
a q

Ďj q̃Lk − g̃aq̄j q̃Rk − g̃Ďa q̄
Ď
k q̃
∗j
R

]
, (K.5.2)

where the squark fields are taken to be in the same basis as the quarks. The Feynman rules resulting from these Lagrangian
terms are shown in Fig. K.5.2.
For practical applications, one typically takes the quark fields as the familiarmass eigenstates, and thenperforms aunitary

rotation on the squarks in the corresponding basis to obtain their mass-eigenstate basis. In the approximation described at
the end of Appendix K.4 [cf. Eqs. (K.4.1) and (K.4.2) and the accompanying text], one obtains the Feynman rules of Fig. K.5.3,
as an alternative to those of Fig. K.5.2.

Appendix L. Trilinear R-parity-violating Yukawa interactions

In the MSSM, a multiplicative R-parity invariance is imposed, where R = (−1)3(B−L)+2S for a particle of baryon number
B, lepton number L and spin S [350]. Equivalently, R-parity can be defined to be an additive quantum number modulo 2,
where R = +1 corresponds to an even R-parity and R = −1 corresponds to an odd R-parity. In particular, all the ordinary
Standard Model particles are R parity even, whereas the corresponding supersymmetric partners are R parity odd. In the
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R-parity-violating extension of theMSSM (denoted below as RPV-MSSM), new interactions are allowed that violate R-parity.
Such interactions necessarily violate the B − L global symmetry. R-parity-violating interactions can significantly alter the
phenomenology at colliders (see for example [205,208]), especially as the lightest supersymmetric particle (LSP) is no longer
stable [209,351]. Moreover, the LSP need not be restricted to the lightest neutralino (or perhaps the sneutrino) as in the
MSSM, but can be any supersymmetric particle [204].
In this appendix, we focus on new trilinear supersymmetric Yukawa interactions that can appear in an RPV-MSSM

[351–354]:

LLLē = −
1
2λijk

(̃
`∗Rkνi`j + ν̃i`j

¯̀k +˜̀Lj ¯̀kνi −˜̀∗Rk`iνj − ν̃j ¯̀k`i −˜̀Liνj ¯̀k)+ h.c., (L.1)

LLQ d̄ = −λ
′

ijk

(̃
d∗Rkνidj + ν̃idjd̄k + d̃Ljd̄kνi − d̃

∗

Rk`iuj − ũLjd̄k`i −˜̀Liujd̄k)+ h.c., (L.2)

Lūd̄d̄ = −
1
2λ
′

ijkεpqr
[̃
up∗Ri d̄

q
j d̄
r
k + d̃

q∗
Rj ū

p
i d̄
r
k + d̃

r∗
Rkū

p
i d̄
q
j

]
+ h.c., (L.3)

where repeated indices are summed over176. In Eqs. (L.1)–(L.3), λijk, λ′ijk, λ
′′

ijk are dimensionless coupling constants, i, j, k are
generation indices, and p, q, r = 1, 2, 3 are color SU(3) indices, respectively. The couplings proportional to λ and λ′ violate
L and conserve B, whereas the couplings proportional to λ′′ violate B and conserve L. Various phenomenological constraints
on these couplings are summarized in Ref. [354].
In addition to λijk, λ′ijk, λ

′′

ijk, the Lagrangian of the RPV-MSSM contains one additional supersymmetric L-violating mass
parameter, κi, which leads to slepton–Higgsmixing and lepton–higgsinomixing. Finally, supersymmetry-breaking R-parity-
violating parameters would also contribute to slepton–Higgs mixing and yields new trilinear scalar interactions. These
effects modify the Feynman rules of Appendix K through additional mixing matrices, which we do not include here (for
further details, see e.g. Ref. [199]).
Recently, the two-component fermion Feynman rules for the neutral fermions have been given in Refs. [280,355]. Using

Eq. (4.3.2) and Fig. 4.3.1 we can now directly determine the corresponding Feynman rules. These are given in Figs. L.1–L.3.
The same Lagrangian for the Yukawa interactions is given in terms of four-component fermions in Refs. [206,207]. Two
sample computations that make use of these rules are presented in Sections 6.20 and 6.21.
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