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Abstract: Explicit formulae for the 4 × 4 Lorentz transformation matrices corresponding to a pure
boost and a pure three-dimensional rotation are very well known. Significantly less well known is
the explicit formula for a general Lorentz transformation with arbitrary non-zero boost and rotation
parameters. We revisit this more general formula by presenting two different derivations. The first
derivation (which is somewhat simpler than previous ones appearing in the literature) evaluates the
exponential of a 4× 4 real matrix A, where A is a product of the diagonal matrix diag(+1,−1,−1,−1)
and an arbitrary 4 × 4 real antisymmetric matrix. The formula for exp A depends only on the
eigenvalues of A and makes use of the Lagrange interpolating polynomial. The second derivation
exploits the observation that the spinor product η†σµχ transforms as a Lorentz four-vector, where χ

and η are two-component spinors. The advantage of the latter derivation is that the corresponding
formula for a general Lorentz transformation Λ reduces to the computation of the trace of a product
of 2 × 2 matrices. Both computations are shown to yield equivalent expressions for Λ.

Keywords: Lorentz transformation; four-vector; Lie group and algebra; matrix exponential; two-
component spinors; rotations and boosts; matrix representations

1. Introduction

In the theory of special relativity, space and time are combined into Minkowski
spacetime (e.g., see Ref. [1]). Two different inertial reference frames (with coinciding
origins fixed) are related through a Lorentz transformation. Equivalently, consider a four-
vector, x = (x0 ; x⃗), with squared-length ∥x∥2 ≡ ηµνxµxν = (x0)2 − |⃗x|2 (with an implied
double sum over the repeated indices µ, ν ∈ {0, 1, 2, 3}), where ηµν = diag(+1,−1,−1,−1)
is the Minkowski spacetime metric. One can also define the Lorentz transformation Λ
as a symmetry transformation of a four-vector, x′ = Λx, that preserves the length of x.
Since the length of a four-vector is a scalar quantity and thus invariant under a Lorentz
transformation, it follows that ηαβ = Λµ

αΛν
βηµν, which serves as the general definition

of the 4 × 4 Lorentz transformation matrix [cf. Equations (30)–(32)]. Moreover, this same
equation implies that ηµν is an invariant tensor. Indeed, the Lorentz transformations (along
with spacetime translations) are the maximally allowed symmetry transformations of
Minkowski spacetime in which the spacetime metric is left invariant (e.g., see Ref. [2]).

Consider two inertial reference frames with coinciding origins, where one reference
frame is moving with respect to the other with three-vector velocity v⃗. The corresponding
Lorentz transformation is called a Lorentz boost. The boost parameters are defined by
the components of the three-vector ζ⃗ ≡ (⃗v/v) tanh−1(v/c), where v ≡ |⃗v| and c is the
speed of light. However, this is not the most general Lorentz transformation. For example,
let R be an arbitrary 3 × 3 orthogonal matrix of unit determinant, i.e., a proper rotation
matrix parametrized by the components of the three-vector θ⃗ ≡ θn̂ (such that θ is the angle
of rotation, counterclockwise, about a fixed axis that lies along the unit vector n̂). Then,
the transformation x′ 0 = x0 and x⃗ ′ = Rx⃗ is also a Lorentz transformation as it leaves
the Minkowski spacetime metric invariant. The corresponding matrix representations
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of the general Lorentz boost and three-dimensional rotation are quite well known [see
Equations (22) and (26), respectively] and are reviewed in Section 2.

A more general Lorentz transformation matrix, which shall henceforth be denoted by
Λ(⃗ζ , θ⃗), corresponds to a simultaneous boost and rotation. As shown in Section 3, Λ(⃗ζ , θ⃗)
can be expressed as the exponential of a 4 × 4 matrix,

Λ(⃗ζ , θ⃗) = exp


0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0

. (1)

In contrast to Λ(⃗ζ , 0⃗) and Λ(⃗0 , θ⃗), which correspond to a Lorentz boost matrix and a three-
dimensional rotation, respectively, an explicit form for Λ(⃗ζ , θ⃗) is much less well known.

The first published formula for Λ(⃗ζ , θ⃗) appeared in Ref. [3]. Subsequent derivations
have also been given in Refs. [4–6]. These derivations are based on the Cayley–Hamilton
theorem of linear algebra (e.g., see Section 8.4 of Ref. [7]), which asserts that any n × n
matrix A satisfies its own characteristic equation, p(x) = det(A − xIn) = 0, where In is the
n × n identity matrix and p(x) is an nth-order polynomial whose roots are the eigenvalues
of A. That is, p(A) is equal to the zero matrix. It follows that for any integer k ≥ n, the
matrix Ak can be expressed as a linear combination of In, A, A2, . . . Ak−1. In particular,

Λ(⃗ζ , θ⃗) ≡ exp A =
∞

∑
k=0

Ak

k!
= c0 I4 + c1 A + c2 A2 + c3 A3 , (2)

where each of the coefficients ck is an infinite series whose terms depend on the eigenvalues
of A. Note that by setting either θ⃗ = 0⃗ or ζ⃗ = 0⃗ in Equation (1), one can easily compute the
resulting matrix exponential to derive the well-known expressions given in Equations (22)
and (26), respectively. In contrast, if both the boost vector and the rotation vector are
non-zero, then the corresponding computation of the matrix exponential, which is carried
out in Refs. [3,4], is significantly more difficult. In Ref. [5], this computation is performed by
showing that a Lorentz transformation matrix g exists such that the 4× 4 matrix Ã ≡ gAg−1

in block matrix form is made up of very simple 2 × 2 matrix blocks. The exponential exp Ã
is then easy to evaluate directly via its Taylor series to obtain the coefficients ck, and

exp A = g−1(exp Ã)g = g−1[c0 I4+c1 Ã+c2 Ã 2+c3 Ã 3]g = c0 I4+c1 A+c2 A2+c3 A3 . (3)

Finally, Ref. [6] derives a system of four linear equations for the coefficients ck in Equation (2),
whose solution provides the desired expression for exp A.

In this paper, we shall provide a somewhat simpler and more straightforward evalua-
tion of Λ(⃗ζ , θ⃗) as compared to the derivations given in Refs. [3–6]. In Section 2, we first
exhibit the explicit forms for the general Lorentz boost and the three-dimensional rotation
matrices of Minkowski spacetime, which correspond to special cases of the more general
4 × 4 Lorentz transformation matrix, as noted above. In Section 3, an expression for the
most general Lorentz transformation is then derived. Indeed, it is sufficient to consider the
set of all Lorentz transformations that are continuously connected to the identity, known as
the proper orthochronous Lorentz transformations (e.g., see Ref. [1]). The matrix represen-
tation of any element of this latter set can be expressed in the form given by Equation (1),
as discussed below Equation (40). In Section 4, we explicitly evaluate Equation (1) for arbi-
trary boost and rotation parameters. We then demonstrate that an alternative derivation of
Λ(⃗ζ , θ⃗) can be given that only involves the manipulation of 2 × 2 matrices, by making use
of two-component spinors. In particular, we show in Section 5 that the most general proper
orthochronous Lorentz transformation matrix can be expressed as a trace of the product
of four 2 × 2 matrices, which is then explicitly evaluated. Both methods for computing
Λ(⃗ζ , θ⃗) are carried out in pedagogical detail. In Section 6, we check that both computations
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yield the same expression for Λ(⃗ζ , θ⃗). Final remarks are presented in Section 7, and some
related discussions are relegated to the appendices.

2. Lorentz Transformations—Special Cases

In a first encounter with special relativity, a student learns how the spacetime coordi-
nates change between two inertial reference frames K and K′. If the spacetime coordinates
with respect to K are (ct; x, y, z) and the spacetime coordinates with respect to K′ are
(ct′; x′, y′, z′), where K′ is moving relative to K with velocity v⃗ = vx̂ in the x direction, then

ct′ = γ(ct − βx) , (4)

x′ = γ(x − βct) , (5)

y′ = y , (6)

z′ = z , (7)

where c is the speed of light and

β ≡ v
c

, γ ≡ (1 − β2)−1/2 . (8)

It is straightforward to generalize the above results for an arbitrary velocity v⃗ by writing

x⃗ = x⃗∥ + x⃗⊥ , (9)

where x⃗∥ is the projection of x⃗ along the direction of v⃗ ≡ cβ⃗, and x⃗⊥ is perpendicular to v⃗
(so that x⃗∥ · x⃗⊥ = 0). The definition of x⃗∥ implies that

x⃗∥
|⃗x∥|

=
β⃗

β
, (10)

where β ≡ |β⃗|. Note that 0 ≤ β < 1 for any particle of non-zero mass.
In light of Equation (10), Equations (4)–(7) are equivalent to

ct′ = γ(ct − β⃗· x⃗∥) , (11)

x⃗∥
′ = γ(⃗x∥ − β⃗ct) , (12)

x⃗⊥
′ = x⃗⊥ , (13)

where γ ≡ (1 − |β⃗|2)−1/2. Note that 1 ≤ γ < ∞ for any particle of non-zero mass. More
explicitly,

x⃗∥ =

(
β⃗· x⃗
β2

)
β⃗ , x⃗⊥ = x⃗ −

(
β⃗· x⃗
β2

)
β⃗ , (14)

which yield β⃗· x⃗∥ = β⃗· x⃗ and β⃗· x⃗⊥ = 0 as required. Inserting the expressions given in
Equation (14) back into Equations (11)–(13), we end up with the well-known result (e.g.,
see Equation (11.19) of Ref. [8]):

ct′ = γ(ct − β⃗· x⃗) , (15)

x⃗ ′ = x⃗ +
(γ − 1)

β2 (β⃗· x⃗)β⃗ − γβ⃗ct . (16)

Following Equation (11.20) of Ref. [8], it is convenient to introduce the boost parameter
ζ (also called the rapidity),

γ = cosh ζ , γβ = sinh ζ , (17)
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since the definitions of β and γ are consistent with the relation cosh2 ζ − sinh2 ζ = 1. In
particular, note that 0 ≤ ζ < ∞. We then define the boost vector ζ⃗ to be the vector of
magnitude ζ that points in the direction of β⃗. Since Equation (17) yields β = tanh ζ, it
follows that

ζ⃗ ≡ β⃗

β
tanh−1 β . (18)

In terms of the boost vector ζ⃗ and its magnitude ζ ≡ |⃗ζ|, Equations (15) and (16) yield

ct′ = ct cosh ζ − ζ⃗ · x⃗
ζ

sinh ζ , (19)

x⃗ ′ = x⃗ − ζ⃗

ζ

[
ct sinh ζ − ζ⃗ · x⃗

ζ
(cosh ζ − 1)

]
. (20)

Before proceeding, it is instructive to distinguish between active and passive Lorentz
transformations (e.g., see Ref. [1]). The Lorentz transformation discussed above is a passive
transformation, since the reference frame K (specified by the coordinate axes) is transformed
into K′, while leaving the observer fixed. Equivalently, one can consider an active transfor-
mation, in which the coordinate axes are held fixed while the location of the observer in
spacetime is boosted using the inverse of the transformation specified by Equations (19)
and (20). That is, a spacetime point of the observer located at (ct ; x⃗) is transformed by
the boost to (ct′ ; x⃗ ′) using Equations (19) and (20) with ζ⃗ replaced by −ζ⃗. Henceforth, all
Lorentz transformations treated in this paper will correspond to active transformations.

The transformation that boosts the spacetime point (ct ; x⃗) to (ct′ ; x⃗ ′) is given byct′

x′i

 = Λ(⃗ζ , 0⃗)

ct

xj

 , (21)

where the 4 × 4 matrix Λ(⃗ζ , 0⃗) can be written in block matrix form as

Λ(⃗ζ , 0⃗) =


cosh ζ

ζ j

ζ
sinh ζ

ζ i

ζ
sinh ζ δij +

ζ iζ j

|⃗ζ|2
(cosh ζ − 1)

 , (22)

after converting Equations (19) and (20) to an active transformation via ζ⃗ → −ζ⃗. In
Equation (22),

δij =

{
1 , if i = j,
0 , if i ̸= j,

(23)

where the Latin indices i, j ∈ {1, 2, 3} refer to the x, y, and z components of the three-
vector ζ⃗, and there is an implicit sum over the repeated index j on the right hand side of
Equation (21).

The matrix Λ(⃗ζ ,⃗ 0) is sometimes inaccurately called the Lorentz transformation matrix.
In fact, this matrix represents a special type of Lorentz transformation consisting of a boost
without rotation [the latter is indicated by the second argument of Λ(⃗ζ , 0⃗)]. Furthermore,
note that Λ(⃗0,⃗ 0) = I4 is the 4 × 4 identity matrix. Any Lorentz transformation of the form
Λ(⃗ζ , 0⃗) can be continuously deformed into the identity matrix by continuously shrinking
the vector ζ⃗ to the zero vector.

Another example of a Lorentz transformation is a three-dimensional proper rotation
of the vector x⃗ into the vector x⃗ ′ = Rx⃗ by an angle θ, counterclockwise, about a fixed axis n̂,
where R is a 3 × 3 orthogonal matrix of unit determinant, and the time coordinate is not
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transformed. In this notation, n̂ = (n1, n2, n3) is a unit vector (i.e., n̂· n̂ = 1). It is then
convenient to define a three-vector quantity called the rotation vector,

θ⃗ ≡ θn̂ , (24)

where 0 ≤ θ ≤ π. In the case of a proper three-dimensional rotation, the transformation of
the spacetime point (ct ; x⃗) to (ct′ ; x⃗ ′) is given byct′

x′i

 = Λ(⃗0 , θ⃗)

ct

xj

 , (25)

where the 4 × 4 matrix Λ(⃗0 , θ⃗) can be written in block matrix form as

Λ(⃗0 , θ⃗) =

(
1 0j

0i Rij(n̂, θ)

)
, (26)

where 0j [0i] are the components of the zero row [column] vector (with i, j ∈ {1, 2, 3}), and

Rij(n̂, θ) = δij cos θ + ninj(1 − cos θ)− ϵijknk sin θ . (27)

In Equation (27), the Levi–Civita symbol is defined by ϵijk = +1 [−1] when ijk is an even
[odd] permutation of 123, and ϵijk = 0 if any two of the indices coincide. Equation (27) is
known as Rodrigues’ rotation formula (e.g., see Refs. [9,10]). A clever proof of this formula
is provided in Appendix A.

3. General Lorentz Transformations

Consider a four-vector vµ = (v0 ; v⃗). Under an active Lorentz transformation, the
spacetime components of the four-vector vµ transform as

v′µ = Λµ
αvα , (28)

where the Greek indices such as µ, α ∈ {0, 1, 2, 3}, and there is an implied sum over any
repeated upper/lower index pair. The quantities Λµ

α can be viewed as the elements of a
4 × 4 real matrix, where µ labels the row and α labels the column. In special relativity, the
metric tensor (in a rectangular coordinate system) is given by the diagonal matrix.

ηµν = diag(+1;−1,−1,−1) , (29)

where the so-called mostly minus convention for the metric tensor has been chosen.
To construct a Lorentz-invariant scalar quantity that is unchanged under a Lorentz

transformation, one only needs to combine tensors in such a way that all upper/lower
index pairs are summed over and no unsummed indices remain. For example,

ηµνv′µv′ν = ηαβvαvβ . (30)

Using Equations (28) and (30), it follows that

(ηµνΛµ
αΛν

β − ηαβ)vαvβ = 0 . (31)

Since the four-vector v is arbitrary, it follows that

Λµ
αηµνΛν

β = ηαβ . (32)

Equation (32) defines the most general Lorentz transformation matrix Λ. The set of all
such 4 × 4 Lorentz transformation matrices is a group (under matrix multiplication) and is
denoted by O(1, 3). Here, the notation (1, 3) refers to the number of plus and minus signs in
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the metric tensor ηµν [cf. Equation (29)]. In particular, O(1, 3) is a Lie group, appropriately
called the Lorentz group (e.g., see Refs. [1,2,10]).

After taking the determinant of both sides of Equation (32), one obtains (det Λ)2 = 1.
Hence,

det Λ = ±1 . (33)

Moreover, by setting α = β = 0 in Equation (32) and summing over µ and ν, one obtains

(Λ0
0)

2 = 1 + (Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2 =⇒ (Λ0
0)

2 ≥ 1 . (34)

The Lie group SO(1, 3) is the group of proper Lorentz transformation matrices that
satisfy det Λ = +1. The elements of the subgroup of SO(1, 3) that also satisfy Λ0

0 ≥ +1 are
continuously connected to the identity element [the 4 × 4 identity matrix, denoted by I4]
and constitute the set of proper orthochronous Lorentz transformations, which is often
denoted by SO0(1, 3). Three examples of Lorentz transformations that are not continuously
connected to the identity are as follows

ΛP = diag(1,−1,−1,−1) , ΛT = diag(−1, 1, 1, 1) , ΛPΛT = diag(−1,−1,−1,−1) . (35)

In particular, there is no way to continuously change the parameters of a proper ortho-
chronous Lorentz transformation to yield a Lorentz transformation with det Λ = −1
and/or Λ0

0 ≤ −1 in light of Equations (33) and (34).
The complete list of Lorentz transformations is then given by{

Λ , ΛPΛ , ΛTΛ , ΛPΛTΛ |Λ ∈ SO0(1, 3)
}

. (36)

Consequently, to determine the explicit form of the most general Lorentz transformation,
it suffices to consider the explicit form of the most general proper orthochronous Lorentz
transformation.

The Lie algebra of the Lorentz group is obtained by considering an infinitesimal
Lorentz transformation,

Λ = I4 + A , (37)

where A is a 4× 4 matrix that depends on infinitesimal Lorentz group parameters. In partic-
ular, terms that are quadratic or of higher order in the infinitesimal group parameters are ne-
glected. Inserting Equation (37) into Equation (32), and denoting G = diag(+1,−1,−1,−1)
to be the 4 × 4 matrix whose matrix elements are ηµν, it follows that(

I4 + AT)G(I4 + A) = G . (38)

Keeping only terms up to linear order in the infinitesimal group parameters, we conclude
that ATG = −GA or equivalent (since G is a diagonal matrix),

(GA)T = −GA . (39)

That is, GA is a 4 × 4 real antisymmetric matrix. Hence, the Lie algebra of the Lorentz
group, henceforth denoted by so(1, 3), consists of all 4 × 4 real matrices A such that GA is
an antisymmetric matrix.

To construct a proper orthochronous Lorentz transformation, one can choose any 4× 4
real matrix A that satisfies Equation (39), and consider a large positive integer n such that
A/n is an infinitesimal quantity. Then, a proper orthochronous Lorentz transformation is
obtained by applying a sequence of n infinitesimal Lorentz transformations in the limit as
n → ∞,

Λ = lim
n→∞

(
I4 +

A
n

)n
= exp A . (40)

Note that Λ is continuously connected to the identity matrix since one can continuously
deform A into the zero matrix. Hence, it follows that Λ ∈ SO0(1, 3). However, one can
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make a stronger statement: the exponential map, exp : so(1, 3) → SO0(1, 3), is surjective.
A proof of this result can be found in Section 6.3 of Ref. [10]. That is, the set of all proper
orthochronous Lorentz transformations consists of matrices of the form exp A, where GA
is a 4 × 4 real antisymmetric matrix.

Let us first reconsider the two special cases examined in Section 2. A matrix represen-
tation of an infinitesimal boost is obtained by evaluating Equation (22) to leading order
in ζ,

Λ(⃗ζ , 0⃗) ≃
(

1 ζ j

ζ i δij

)
= I4 − iζ⃗ ·⃗k +O(|⃗ζ|2) , (41)

where the three matrices k⃗ = (k1 , k2 , k3) are defined by

k1= i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, k2= i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

, k3= i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

. (42)

Similarly, a matrix representation of an infinitesimal rotation is obtained by evaluating
Equations (26) and (27) to leading order in θ (with θk ≡ θnk),

Λ(⃗0 , θ⃗) ≃
(

1 0j

0i δij − ϵijkθk

)
= I4 − i⃗θ ·⃗s +O(|⃗θ|2) , (43)

where the three matrices s⃗ = (s1 , s2 , s3) are defined by

s1= i


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

, s2= i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

, s3= i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

. (44)

The six matrices k⃗ = (k1 , k2 , k3) and s⃗ = (s1 , s2 , s3) satisfy the following commutation
relations:

[si , sj] = iϵijℓsℓ , [ki , kj] = −iϵijℓsℓ , [si , kj] = iϵijℓkℓ , (45)

where i, j, ℓ ∈ {1, 2, 3} and there is an implicit sum over the repeated index ℓ.
Using Equations (41) and (43), it follows that the matrix representation of a general

infinitesimal Lorentz transformation, to linear order in the boost and rotation parameters,
is given by

Λ(⃗ζ , θ⃗) ≃ Λ(⃗0 , θ⃗)Λ(⃗ζ , 0⃗) ≃
(

1 ζ j

ζ i δij − ϵijkθk

)
≃ I4 − i⃗θ ·⃗s − iζ⃗ ·⃗k . (46)

Note that we also could have written Λ(⃗ζ , θ⃗) ≃ Λ(⃗ζ , 0⃗)Λ(⃗0 , θ⃗) in Equation (46), since the
infinitesimal Lorentz transformations commute at linear order.

In light of the remarks below Equation (40), one can conclude that the most general
proper orthochronous Lorentz transformation matrix Λ(⃗ζ, θ⃗) is a 4 × 4 matrix given by

Λ(⃗ζ , θ⃗) = exp
(
−i⃗θ ·⃗s − iζ⃗ ·⃗k

)
. (47)

Here, we follow the conventions of Refs. [11,12]. Note that in the notation of Ref. [8], k⃗ = iK⃗
and s⃗ = i⃗S, where the 4 × 4 matrix representations of K⃗ and S⃗ are given in Equation (11.91)
of Ref. [8] and yield Λ = exp(⃗θ· S⃗ + ζ⃗ ·K⃗). The argument of exp differs by an overall sign
with Equation (11.93) of Ref. [8], where a passive Lorentz transformation is employed, which
amounts to replacing {⃗ζ, θ⃗} with {−ζ⃗,−θ⃗}.
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Equations (42), (44) and (47) imply that

Λ(⃗ζ , θ⃗) = exp A , where A ≡ −i⃗θ ·⃗s − iζ⃗ ·⃗k =


0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0

. (48)

As anticipated in Equation (39), GA is the most general 4 × 4 real antisymmetric matrix,
which depends on six real independent parameters ζ i and θi (i ∈ {1, 2, 3}). The {si , ki}
satisfy the commutation relations [Equation (45)] of the real Lie algebra so(1, 3). As in-
dicated in Equation (48), A is a real linear combination of the six Lie algebra generators
{−isi , −iki} and thus constitutes a general element of so(1, 3). In Section 4, we provide an
explicit computation of exp A.

Before moving on, we shall introduce a useful notation that assembles the matrices
{si , ki} into six independent non-zero matrices, sρλ = −sλρ (with λ, ρ ∈ {0, 1, 2, 3})
such that

sℓ ≡ 1
2 ϵijℓsij , ki ≡ s0i = −si0 . (49)

Note that Equation (49) implies that sij = ϵijℓsℓ, so that the six independent matrices can be
taken to be sij (i < j) and s0i (i, j ∈ {1, 2, 3}). The matrix elements of the sρλ are given by

(sρλ)µ
ν = i

(
ηρµδλ

ν − ηλµδ
ρ
ν

)
, (50)

where µ indicates the row and ν indicates the column of the corresponding matrix.
Using Equation (49), one can check that Equation (50) is equivalent to Equations (42)

and (44). In addition, the so(1, 3) commutation relations exhibited in Equation (45) now
take the following form:

[sαβ, sρλ] = i(ηβρ sαλ − ηαρ sβλ − ηβλ sαρ + ηαλ sβρ). (51)

One can also assemble the boost and rotation parameters {ζ i , θi} into a second rank
antisymmetric tensor θαβ by defining

θij ≡ ϵijℓθℓ , θi0 = −θ0i ≡ ζ i . (52)

With this new notation, Equation (47) can be rewritten as

Λ(⃗ζ , θ⃗) = exp
(
− 1

2 iθρλsρλ
)

, (53)

where θρλ ≡ ηραηλβθαβ. As usual, there is an implied sum over each pair of repeated
upper/lower indices.

4. An Explicit Evaluation of Λ(⃗ζ , θ⃗) = exp A

We now proceed to evaluate exp A, where A is given by Equation (48). First, we
compute the characteristic polynomial of A,

p(x) ≡ det(A − xI4) = x4 +
(
|⃗θ|2 − |⃗ζ|2

)
x2 − (⃗θ· ζ⃗)2 ≡ (x2 + a2)(x2 − b2) , (54)

where
a2b2 = (⃗θ· ζ⃗)2 , a2 − b2 = |⃗θ|2 − |⃗ζ|2 . (55)
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Solving Equation (55) for a2 and b2 yields

a2 =
1
2

[
|⃗θ|2 − |⃗ζ|2 +

√(
|⃗θ|2 − |⃗ζ|2

)
2 + 4(⃗θ· ζ⃗)2

]
, (56)

b2 =
1
2

[
|⃗ζ|2 − |⃗θ|2 +

√(
|⃗θ|2 − |⃗ζ|2

)
2 + 4(⃗θ· ζ⃗)2

]
. (57)

Note that a2 ≥ 0 and b2 ≥ 0 so that a, b ∈ R. The individual signs of a and b are not
determined, but none of the results that follow depend on these signs. The eigenvalues
of A, denoted by λi (i = 1, 2, 3, 4), are the solutions of p(x) = 0, which are given by

λi = ia,−ia, b,−b . (58)

If ab ̸= 0, then the four eigenvalues of A [Equation (58)] are distinct, which implies that A
is a diagonalizable matrix.

To evaluate exp A for a diagonalizable matrix A, we shall make use of a formula
[Equation (60) below] that is based on the Lagrange interpolating polynomial. Consider an
n× n matrix A with n eigenvalues of which m are distinct and denoted by λi (i = 1, 2, . . . , m).
The matrix A is diagonalizable if and only if (e.g., see Section 8.3.2 of Ref. [7] or Section 7.11
of Ref. [13])

m

∏
i=1

(A − λi In) = 0 , (59)

where In is the n × n identify matrix. Note that if m = n (i.e., all n eigenvalues are distinct),
then A is diagonalizable, since in this case Equation (59) is automatically satisfied due to
the Cayley–Hamilton theorem.

Any function of a diagonalizable matrix A is given by the following formula (e.g.,
see Equations (7.3.6) and (7.3.11) of Ref. [13], Equation (5.4.17) of Ref. [14], or Chapter V,
Section 2.2 of Ref. [15]):

f (A) =
m

∑
i=1

f (λi)Ki , where Ki =
m

∏
j=1
j ̸=i

A − λj In

λi − λj
, (60)

if 2 ≤ m ≤ n and K1 ≡ In if m = 1. Note that ∑m
i=1 Ki = In.

Applying Equation (60) to f (A) = exp A, where A is given by Equation (48), under
the assumption that ab ̸= 0, it follows that

exp A = eia
(

A + iaI4

2ia

)(
A − bI4

ia − b

)(
A + bI4

ia + b

)
+ e−ia

(
A − iaI4

−2ia

)(
A − bI4

−ia − b

)(
A + bI4

−ia + b

)
+ eb

(
A − iaI4

b − ia

)(
A + iaI4

b + ia

)(
A + bI4

2b

)
+ e−b

(
A − iaI4

−b − ia

)(
A + iaI4

−b + ia

)(
A − bI4

−2b

)
.

(61)

Simplifying the above expression yields

exp A =
1

a2 + b2

{
(b2 I4 − A2)

(
A

sin a
a

+ I4 cos a
)
+ (A2 + a2 I4)

(
A

sinh b
b

+ I4 cosh b
)}

. (62)

Combining terms, we end up with

exp


0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0

 =
1

a2 + b2

{
f0(a, b)I4 + f1(a, b)A + f2(a, b)A2 + f3(a, b)A3

}
, (63)
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where a and b are defined in Equation (55) and

f0(a, b) = b2 cos a + a2 cosh b , f1(a, b) =
b2

a
sin a +

a2

b
sinh b , (64)

f2(a, b) = cosh b − cos a , f3(a, b) =
sinh b

b
− sin a

a
, (65)

in agreement with the results previously obtained in Refs. [3–6].
The matrix A and its powers can be conveniently written in block matrix form:

A =

(
0 ζ j

ζ i −ϵijkθk

)
, A2 =

(
|⃗ζ|2 ϵjkℓζkθℓ

− ϵikℓζkθℓ ζ iζ j + θiθ j − δij |⃗θ|2

)
, (66)

and

A3 =

(
0

(
|⃗ζ|2 − |⃗θ|2

)
ζ j + (⃗θ· ζ⃗)θ j(

|⃗ζ|2 − |⃗θ|2
)
ζ i + (⃗θ· ζ⃗)θi (ϵjkℓζ i − ϵikℓζ j)ζkθℓ + ϵijkθk |⃗θ|2

)
. (67)

The ij element of A3 can be simplified by noting that the ij element of any 3 × 3 anti-
symmetric matrix must be of the form ϵijkCk (after summing over the repeated index k).
Thus,

(ϵjkℓζ i − ϵikℓζ j)ζkθℓ = ϵijkCk . (68)

Multiplying the above equation by ϵijm and summing over i and j yields

(δiℓδkm − δikδℓm)ζ iζkθℓ − (δjkδℓm − δjℓδkm)ζ jζkθℓ = 2δkmCk . (69)

It follows that Cm = (⃗θ· ζ⃗)ζm − |⃗ζ|2θm . That is, we have derived the identity

(ϵjkℓζ i − ϵikℓζ j)ζkθℓ = ϵijk[(⃗θ· ζ⃗)ζk − |⃗ζ|2θk] . (70)

Thus, the matrix A3 [Equation (67)] can be rewritten in a more convenient form,

A3 =

(
0

(
|⃗ζ|2 − |⃗θ|2

)
ζ j + (⃗θ· ζ⃗)θ j(

|⃗ζ|2 − |⃗θ|2
)
ζ i + (⃗θ· ζ⃗)θi ϵijk[(⃗θ· ζ⃗)ζk −

(
|⃗ζ|2 − |⃗θ|2

)
θk]

)
. (71)

Consider separately the case of ab = 0. The eigenvalues given in Equation (58) are no
longer distinct. If a = 0 and b ̸= 0, then the matrix A is diagonalizable since A satisfies
Equation (59), i.e., A(A2 − b2 I4) = 0. In particular, if a = 0 then Equation (55) implies that
θ⃗· ζ⃗ = 0 and b2 = |⃗ζ|2 − |⃗θ|2. Plugging these results into Equations (66) and (71) yields
A3 − b2 A = 0. Consequently, one can make use of Equation (60) with m = 3 to obtain

exp A =

(
A − bI4

−b

)(
A + bI4

b

)
+ eb

(
A
b

)(
A + bI4

2b

)
+ e−b

(
A
−b

)(
A − bI4

−2b

)
= I4 +

sinh b
b

A +

(
cosh b − 1

b2

)
A2 , for a = 0.

(72)

One can check that Equation (72) coincides with the a → 0 limit of Equations (63)–(65) after
making use of A3 = b2 A.

Likewise, if b = 0 and a ̸= 0, then the matrix A is diagonalizable since A satisfies
Equation (59), i.e., A(A2 + a2 I4) = 0. In particular, if b = 0, then Equation (55) implies
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that θ⃗· ζ⃗ = 0 and a2 = |⃗θ|2 − |⃗ζ|2. Plugging these results into Equations (66) and (71) yields
A3 + a2 A = 0. Consequently, one can make use of Equation (60) with m = 3 to obtain

exp A =

(
A − iaI4

−ia

)(
A + iaI4

ia

)
+ eia

(
A
ia

)(
A + iaI4

2ia

)
+ e−ia

(
A
−ia

)(
A − iaI4

−2ia

)
= I4 +

sin a
a

A +

(
1 − cos a

a2

)
A2 , for b = 0.

(73)

One can check that Equation (73) coincides with the b → 0 limit of Equations (63)–(65) after
making use of A3 = −a2 A.

Finally, in the case of a = b = 0, Equation (55) yields θ⃗· ζ⃗ = 0 and |⃗ζ|2 = |⃗θ|2. Using
Equation (71), it then follows that A3 = 0. Thus, the Taylor series of the exponential
terminates and one obtains

exp A = 1 + A + 1
2 A2 , for a = b = 0. (74)

Although one cannot directly employ Equation (60) in this final case (since A is no longer
diagonalizable), one can still recover Equation (74) either by taking the b → 0 limit of
Equation (72) or the a → 0 limit of Equation (73).

It is instructive to check the two limiting cases exhibited in Section 2. First, if θ⃗ = 0⃗,
then a = 0 and b = |⃗ζ| ≡ ζ. It then follows that

A =

(
0 ζ j

ζ i 0ij

)
, A2 =

(
|⃗ζ|2 0⃗

0⃗ ζ iζ j

)
, (75)

where 0ij is a 3 × 3 matrix of zeros. Using Equations (72) and (75), we obtain

Λ(⃗ζ , 0⃗) =


cosh ζ

ζ j

ζ
sinh ζ

ζ i

ζ
sinh ζ δij +

ζ iζ j

|⃗ζ|2
(cosh ζ − 1)

, (76)

in agreement with Equation (22).
Second, if ζ⃗ = 0⃗, then a = |⃗θ| ≡ θ and b = 0. It follows that

A =

(
0 0⃗

0⃗ − ϵijkθk

)
, A2 =

(
0 0⃗

0⃗ θiθ j − δij |⃗θ|2

)
. (77)

Using Equations (73) and (77), we end up with

Λ(⃗0 , θ⃗) =

(
1 0⃗

0⃗ δij cos θ + ninj(1 − cos θ)− ϵijknk sin θ

)
, (78)

after identifying θi = θni. We have thus recovered Equation (26) and Rodrigues’ rotation
formula [Equation (27)].

A final limiting case of interest is the most general orthochronous Lorentz transforma-
tion in 2 + 1 spacetime dimensions. In this case, we can choose θ⃗ = θẑ and ζ⃗ = ζ1 x̂ + ζ2ŷ,
which implies that ab = 0 [cf. Equation (55)]. Without loss of generality, one can take b = 0
and a2 = θ2 − |⃗ζ|2, where θ2 is the square of the rotation angle θ (in two space dimensions,
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there is no danger in confusing θ2 with the second component of the vector θ⃗ = θẑ). Hence,
Equation (73) yields

exp

 0 ζ1 ζ2

ζ1 0 −θ
ζ2 θ 0

 = I3 +

 sin
√

θ2 − |⃗ζ|2√
θ2 − |⃗ζ|2

A +

1 − cos
√

θ2 − |⃗ζ|2

θ2 − |⃗ζ|2

A2 , (79)

where the 3 × 3 matrices A and A2 are given in block-diagonal form by

A =

(
0 ζ j

ζ i −θϵij

)
, A2 =

(
|⃗ζ|2 −θϵkjζk

− θϵikζk ζ iζ j − θ2δij

)
, (80)

with i, j ∈ {1, 2} (and an implied sum over k = 1, 2), ϵ12 = −ϵ21 = 1, and ϵ11 = ϵ22 = 0.

5. An Explicit Evaluation of Λµ
ν = 1

2 Tr
(

M†σµ Mσν
)

In Section 3, we remarked that a general element of the Lie algebra so(1, 3) is a real
linear combination of the six generators {−isi , −iki}. In particular, the matrix A defined
in Equation (48) provides a four-dimensional matrix representation of so(1, 3). The cor-
responding 4 × 4 matrix that represents a general element of the proper orthochronous
Lorentz group, SO0(1,3), is then obtained by exponentiation, Λ(⃗ζ, θ⃗) = exp A. In this
section, we will take advantage of the existence of a two-dimensional matrix representation
of so(1, 3). It is noteworthy that by exponentiating this two-dimensional representation,
one obtains a two-dimensional matrix representation of the group of complex 2× 2 matrices
with unit determinant, which defines the Lie group SL(2,C). Thus, the two-dimensional ma-
trix representation of SL(2,C) provides representation matrices M [defined in Equation (81)
below] for the elements of SO0(1,3). However, in this case, the 2 × 2 matrices M and −M of
SL(2,C) represent the same element of SO0(1,3) [cf. Equation (91)].

For example, consider the general element of the two-dimensional representation of
SL(2,C) that is given by

M = exp
(
− 1

2 i⃗θ·σ⃗ − 1
2 ζ⃗ ·σ⃗

)
, (81)

where ζ⃗ and θ⃗ are the boost and rotation vectors that parametrize an element of the proper
orthochronous Lorentz group and σ⃗ = (σ1 , σ2 , σ3) are the three Pauli matrices assembled
into a vector whose components are the 2 × 2 matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (82)

It is convenient to define a fourth Pauli matrix, σ0 = I2, where I2 is the 2 × 2 identity
matrix. We can then define the four Pauli matrices in a unified notation. Following the
notation of Refs. [11,12], we define

σµ = (I2 ; σ⃗) , σµ = (I2 ; −σ⃗) , (83)

where µ ∈ {0, 1, 2, 3}. Note that these sigma matrices have been defined with an upper
(contravariant) index. They are related to sigma matrices with a lower (covariant) index in
the usual way:

σµ = ηµνσν = (I2 ; −σ⃗) , σµ = ηµνσν = (I2 ; σ⃗) . (84)

However, the use of the spacetime indices µ and ν is slightly deceptive since the sigma ma-
trices defined above are fixed matrices that do not change under a Lorentz transformation.

It is also convenient to introduce the set of 2 × 2 matrices,

σµν = −σνµ ≡ 1
4 i
(
σµσν − σνσµ

)
. (85)
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One can then rewrite Equation (81) in the following form that is reminiscent of Equation (53),

M = exp
(
− 1

2 iθµνσµν
)

. (86)

That is, the six independent −iσµν matrices are generators of the Lie algebra of SL(2,C),
henceforth denoted by sl(2,C). It is straightforward to check that the 2 × 2 matrices σµν

possess the same commutation relations as the 4 × 4 matrices sµν [cf. Equation (51)], which
establishes the isomorphism so(1, 3) ≃ sl(2,C).

Under an active Lorentz transformation, a two-component spinor χα (where α ∈ {1, 2})
transforms as

χ′
α = Mα

βχβ, α, β ∈ {1, 2}. (87)

Suppose that χ and η are two-component spinors and consider the spinor product η†σµχ.
Under a Lorentz transformation,

η†σµχ −→ (Mη)†σµ(Mχ) = η†(M†σµ M)χ . (88)

We assert that the quantity η†σµχ transforms as a Lorentz four-vector,

η†σµχ −→ Λµ
ν η†σνχ . (89)

The standard proof of this assertion based on the analysis of infinitesimal Lorentz trans-
formations is given in Appendix B. (See also Appendix C, where the corresponding result
is obtained by employing the four-component spinor formalism.) Equations (88) and (89)
imply that the following identity must be satisfied:

M†σµ M = Λµ
νσν . (90)

Multiplying Equation (90) on the right by σρ and using Tr(σνσρ) = 2δν
ρ , it follows that

Λµ
ν = 1

2 Tr
(

M†σµ Mσν

)
. (91)

It is now convenient to introduce the complex vector, z⃗ ≡ ζ⃗ + i⃗θ, and the associated
quantity,

∆ ≡
(⃗
z ·⃗z
)1/2

=
(
|⃗ζ|2 − |⃗θ|2 + 2i⃗θ· ζ⃗

)1/2 . (92)

One can now evaluate the matrix exponential M = exp
(
− 1

2 z⃗·σ⃗
)

[cf. Equation (81)] by
making use of Equation (60) if ∆ ̸= 0. The corresponding eigenvalues of − 1

2 z⃗·σ⃗ are
λ = ± 1

2 ∆. Hence,

M = exp
(
− 1

2 z⃗·σ⃗
)
= e∆/2

(
I2∆ − z⃗·σ⃗

2∆

)
+ e−∆/2

(
I2∆ + z⃗·σ⃗

2∆

)
= I2 cosh

( 1
2 ∆
)
− z⃗·σ⃗

sinh
( 1

2 ∆
)

∆
.

(93)

Note that the limit as ∆ → 0 is continuous and yields M = I2 − 1
2 z⃗·σ⃗.

Since the Pauli matrices are hermitian,

M† = exp
(
− 1

2 z⃗ ∗ ·σ⃗
)
= I2 cosh

( 1
2 ∆∗)− z⃗ ∗ ·σ⃗

sinh
( 1

2 ∆∗)
∆∗ . (94)

We shall evaluate Λµ
ν in four separate cases depending whether the spacetime index is 0

or i ∈ {1, 2, 3}. In particular, using block matrix notation, Equation (91) yields

Λ(⃗ζ , θ⃗) =

(
Λ0

0 Λ0
j

Λi
0 Λi

j

)
=

1
2

(
Tr(M† M) −Tr(Mσj M†)

−Tr(M†σi M) Tr(M†σi Mσj)

)
, (95)
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where we have used σj = −σj to obtain the final matrix expression above.
Plugging Equations (93) and (94) into Equation (91) and evaluating the traces,

Tr(σiσj) = 2δij , (96)

Tr(σiσjσk) = 2iϵijk , (97)

Tr(σiσjσkσℓ) = 2(δijδkℓ − δikδjℓ + δiℓδjk) , (98)

we end up with the following expressions:

Λ0
0 = | cosh

( 1
2 ∆
)
|2 +

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2(|⃗ζ|2 + |⃗θ|2
)

, (99)

Λ0
j =

(
cosh

( 1
2 ∆∗) sinh

( 1
2 ∆
)

∆
zj + c.c.

)
+ i

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2ϵjkℓzkz∗ℓ , (100)

Λi
0 =

(
cosh

( 1
2 ∆∗) sinh

( 1
2 ∆
)

∆
zi + c.c.

)
+ i

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2ϵikℓz∗kzℓ , (101)

Λi
j =

{
| cosh

( 1
2 ∆
)
|2 −

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2(|⃗ζ|2 + |⃗θ|2
)}

δij + (z∗izj + ziz∗j)

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2
+

(
i sinh

( 1
2 ∆
)

cosh
( 1

2 ∆∗)
∆

ϵijkzk + c.c.

)
,

(102)

where c.c. means the complex conjugate of the previous term and ∆ is defined in
Equation (92). Note that since ∆ is a complex quantity, |cosh

( 1
2 ∆
)
|2 = cosh

( 1
2 ∆
)

cosh
( 1

2 ∆∗)
and |sinh

( 1
2 ∆
)
/∆|2 = sinh

( 1
2 ∆
)

sinh
( 1

2 ∆∗)/|∆|2 in Equations (99)–(102).
We can check the results of Equations (99)–(102) in three special cases. First, consider

the case of a pure boost, where θ⃗ = 0⃗. Then, z⃗ = z⃗ ∗ = ζ⃗ and ∆ = |⃗ζ| ≡ ζ. Plugging these
values into Equations (99)–(102) yields the following block matrix form:

Λ(⃗ζ , 0⃗) =


cosh ζ

ζ j

ζ
sinh ζ

ζ i

ζ
sinh ζ δij +

ζ iζ j

|⃗ζ|2
(cosh ζ − 1)

, (103)

which again reproduces the result of Equation (22).
Second, consider the case of ζ⃗ = 0⃗. Then, z⃗ = −⃗z ∗ = i⃗θ and ∆ = iθ. Plugging these

values into Equations (99)–(102) and writing θi = θni yields

Λ(⃗0 , θ⃗) =

(
1 0j

0i δij cos θ + ninj(1 − cos θ)− ϵijknk sin θ

)
. (104)

Once again, we have recovered Equation (26) and Rodrigues’ rotation formula [Equation (27)].
Third, one can check that Equations (99)–(102) reduce to the most general orthochronous

Lorentz transformation in 2 + 1 spacetime dimensions for i, j ∈ {1, 2} if we take z1 = ζ1,
z2 = ζ2, and z3 = iθ, which implies that ∆ =

(⃗
z ·⃗z
)1/2

=
(
|⃗ζ|2 − θ2)1/2. The resulting

formulae reproduce the expressions obtained in Equations (79) and (80).
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Finally, it is instructive to consider the case of an infinitesimal Lorentz transformation.
Working to linear order in ζ⃗ and θ⃗, note that ∆ ≃ 0 in light of Equation (92). Hence,
Equations (99)–(102) reduce to the following result given in block matrix form:

Λ(⃗ζ , θ⃗) ≃
(

1 ζ j

ζ i δij − ϵijkθk

)
, (105)

which coincides with Equation (46).

6. Reconciling the Results of Sections 4 and 5

In this section, we shall verify that the explicit expressions for Λ(⃗ζ , θ⃗) obtained,
respectively, in Sections 4 and 5 coincide in the general case of non-zero boost and rotation
parameters.

First, it is convenient to rewrite Equations (56) and (57) as follows:

a2 = 1
2
(
|⃗θ|2 − |⃗ζ|2 + |∆|2

)
, b2 = 1

2
(
|⃗ζ|2 − |⃗θ|2 + |∆|2

)
, (106)

where ∆ is defined in Equation (92). As noted below Equation (57), a, b ∈ R but their
undetermined signs have no impact on the expressions obtained for the matrix elements of
Λ(⃗ζ , θ⃗). Using Equation (55), we can fix the relative sign of a and b by choosing ab = θ⃗· ζ⃗.
It then follows that

(b + ia)2 = b2 − a2 + 2iab = |⃗ζ|2 − |⃗θ|2 + 2i⃗θ· ζ⃗ = ∆2 . (107)

After taking the positive square root, the signs of a and b are now fixed by identifying

∆ = b + ia . (108)

One can check that Equations (99)–(102) are unchanged if ∆ → −∆ and/or ∆ → ∆∗. This
reflects the fact that the expressions obtained for the matrix elements of Λ(⃗ζ , θ⃗) do not
depend on the choice of signs for a and b.

Thus, Equations (63)–(66) and (71) yield:

Λ0
0 =

1
|∆|2

[(
b2 − |⃗ζ|2) cos a +

(
a2 + |⃗ζ|2

)
cosh b

]
= 1

2 (cosh b + cos a) +
|⃗ζ|2 + |⃗θ|2

2|∆|2
(
cosh b − cos a) ,

(109)

after making use of Equation (106). We now employ the following two identities:

cosh b + cos a = 2 cosh
(

b + ia
2

)
cosh

(
b − ia

2

)
= 2

∣∣∣∣cosh
(

b + ia
2

)∣∣∣∣2 , (110)

cosh b − cos a = 2 sinh
(

b + ia
2

)
sinh

(
b − ia

2

)
= 2

∣∣∣∣sinh
(

b + ia
2

)∣∣∣∣2 . (111)

Hence, Equations (108) and (109) yield

Λ0
0 = | cosh

( 1
2 ∆
)
|2 +

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2(|⃗ζ|2 + |⃗θ|2
)

, (112)

in agreement with Equation (99).



Symmetry 2024, 16, 1155 16 of 23

Next, Equations (63)–(66) and (71) yield

Λ0
j =

1
|∆|2

{(
b2

a
sin a +

a2

b
sinh b

)
ζ j + (cosh b − cos a)ϵjkℓζkθℓ

+

(
sinh b

b
− sin a

a

)[(
|⃗ζ|2 − |⃗θ|2

)
ζ j + (⃗θ· ζ⃗)θ j

]}
.

(113)

Using Equation (55), it follows that |⃗ζ|2 − |⃗θ|2 = b2 − a2 and θ⃗· ζ⃗ = ab [the latter with the
sign conventions adopted above Equation (107)]. Inserting these results into Equation (113),
we obtain

Λ0
j =

1
|∆|2

[
(b sinh b + a sin a)ζ j + (a sinh b − b sin a)θ j + (cosh b − cos a)ϵjkℓζkθℓ

]
. (114)

We can rewrite Equation (114) with the help of some identities. It is straightforward to
show that

b sinh b + a sin a = ∆∗ sinh
( 1

2 ∆
)

cosh
( 1

2 ∆∗)+ c.c. , (115)

a sinh b − b sin a = i∆∗ sinh
( 1

2 ∆
)

cosh
( 1

2 ∆∗)+ c.c. , (116)

(cosh b − cos a)ϵjkℓζkθℓ = i
∣∣sinh

( 1
2 ∆
)∣∣ϵjkℓzkz∗ℓ . (117)

Collecting the results obtained above, we end up with

Λ0
j =

(
sinh

( 1
2 ∆
)

cosh
( 1

2 ∆∗)
∆

(ζ j + iθ j) + c.c.

)
+ i

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2ϵjkℓzkz∗ℓ , (118)

in agreement with Equation (100).
The computation of Λi

0 is nearly identical. The only change is due to the change in
the sign multiplying the term proportional to the Levi–Civita tensor. Consequently, it is
convenient to replace Equation (117) with an equivalent form:

(cosh b − cos a)ϵikℓζkθℓ = −i
∣∣sinh

( 1
2 ∆
)∣∣ϵikℓz∗kzℓ . (119)

Hence, we end up with

Λi
0 =

1
|∆|2

[
(b sinh b + a sin a)ζ i + (a sinh b − b sin a)θi − (cosh b − cos a)ϵikℓζkθℓ

]

=

(
sinh

( 1
2 ∆
)

cosh
( 1

2 ∆∗)
∆

(ζ i + iθi) + c.c.

)
+ i

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2ϵikℓz∗kzℓ ,

(120)

in agreement with Equation (101).
Finally, we use Equations (63)–(66) and (71) to obtain

Λi
j =

1
|∆|2

{
(b2 cos a + a2 cosh b)δij −

(
b2

a
sin a +

a2

b
sinh b

)
ϵijkθk

+(cosh b − cos a)(ζ iζ j + θiθ j − δij |⃗θ|2)

+

(
sinh b

b
− sin a

a

)[
ϵijk[(⃗θ· ζ⃗)ζk +

(
|⃗θ|2 − |⃗ζ|2

)
θk]]} .

(121)
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The following identities can be derived:

1
|∆|2 (cosh b − cos a)(ζ iζ j + θiθ j) =

(
z∗izj + ziz∗j)∣∣∣∣∣ sinh

( 1
2 ∆
)

∆

∣∣∣∣∣
2

, (122)

1
|∆|2

(
sinh b

b
− sin a

a

)⃗
θ· ζ⃗ = i

sinh
( 1

2 ∆
)

∆
cosh

( 1
2 ∆∗)+ c.c. , (123)

1
|∆|2

[
b2 cos a + a2 cosh b − (cosh b − cos a)|⃗θ|2

]

= | cosh
( 1

2 ∆
)
|2 −

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣
2(
|⃗ζ|2 + |⃗θ|2

)
,

(124)

1
|∆|2

{(
sinh b

b
− sin a

a

)(
|⃗θ|2 − |⃗ζ|2

)
−
(

b2

a
sin a +

a2

b
sinh b

)}

= −
{

sinh
( 1

2 ∆
)

∆
cosh

( 1
2 ∆∗)+ c.c.

}
.

(125)

Note that the terms proportional to ϵijk in Equation (121) combine nicely and yield

i sinh
( 1

2 ∆
)

cosh
( 1

2 ∆∗)
∆

ϵijkzk + c.c. , (126)

after putting zk = ζk + iθk.
Collecting the results obtained above, we end up with

Λi
j =

{
| cosh

( 1
2 ∆
)
|2 −

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣
2(
|⃗ζ|2 + |⃗θ|2

)}
δij + (z∗izj + ziz∗j)

∣∣∣∣∣ sinh
( 1

2 ∆
)

∆

∣∣∣∣∣2

+

(
i sinh

( 1
2 ∆
)

cosh
( 1

2 ∆∗)
∆

ϵijkzk + c.c.

)
,

(127)

in agreement with Equation (102).
We have therefore verified by an explicit computation that the results obtained in

Equations (63)–(65) are equivalent to Equations (99)–(102). In particular, we have estab-
lished that

Λµ
ν (⃗ζ, θ⃗) = 1

2 Tr
(

M†σµ Mσν

)
, (128)

where M = exp
{
− 1

2 (⃗ζ + i⃗θ)·σ⃗
}

.

7. Final Remarks

The main goal of this paper is to exhibit an explicit form for the 4 × 4 proper or-
thochronous Lorentz transformation matrix as a function of general boost and rotation
parameters ζ⃗ and θ⃗. Whereas the matrices Λ(⃗ζ, 0⃗) and Λ(⃗0, θ⃗) are well known and appear
in many textbooks, the explicit form for more general Λ(⃗ζ, θ⃗) is much less well known. Two
different derivations are provided for Λ(⃗ζ, θ⃗). One derivation evaluates the exponential of a
real 4× 4 matrix A that satisfies (GA)T = −GA [where G ≡ diag(1,−1,−1,−1)], and a sec-
ond derivation evaluates 1

2 Tr
(

M†σµ Mσν

)
, where the 2× 2 matrix M = exp{− 1

2 (⃗ζ + i⃗θ)·σ⃗}.
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Although the results obtained by the two computations look somewhat different at first,
we have verified by explicit calculation that these two results are actually equivalent.

One can also obtain the most general proper orthochronous Lorentz transformation in
another way by invoking the following theorem (e.g., see Section 1.5 of Ref. [1], Section 6.6
of Ref. [16], or Section 4.5 of Ref. [17]):

Every proper orthochronous Lorentz transformation Λ(⃗ζ, θ⃗) possesses a
unique factorization into a product of a boost and a rotation in two different
ways:

Λ(⃗ζ, θ⃗) = Λ(⃗ζ′, 0⃗)Λ(⃗0, θ⃗′) = Λ(⃗0, θ⃗′′)Λ(⃗ζ′′, 0⃗). (129)

for an appropriate choice of parameters {⃗ζ′, θ⃗′} and {⃗ζ′′, θ⃗′′}, respectively.
Equation (129) is called the polar decomposition of SO0(1,3) in Refs. [10,18,19].

In particular, if none of the parameters are zero, then ζ⃗ ̸= ζ⃗′ ̸= ζ⃗′′ and θ⃗ ̸= θ⃗′ ̸= θ⃗′′ due to
the fact that boosts and rotations do not commute [as a consequence of the commutation
relations given in Equation (45)]. Indeed, for non-vanishing boost and rotation parameters,

Λ(⃗ζ , θ⃗)=exp
(
−i⃗θ ·⃗s − iζ⃗ ·⃗k

)
̸= exp

(
−i⃗θ ·⃗s

)
exp

(
−iζ⃗ ·⃗k

)
̸= exp

(
−iζ⃗ ·⃗k

)
exp

(
−i⃗θ ·⃗s

)
. (130)

In contrast to Equation (130), when considering infinitesimal Lorentz transformations, the
boost matrix [Equation (41)] and the rotation matrix [Equation (43)] commute at linear
order, which results in Equation (46). The effects of the noncommutativity appear first at
quadratic order in the boost and rotation parameters.

Given the parameters {⃗ζ′, θ⃗′} (or {⃗ζ′′, θ⃗′′}), it would be quite useful to be able to obtain
expressions for the corresponding parameters of Λ(⃗ζ, θ⃗). The formulae that determine
{⃗ζ, θ⃗} in Equation (129) are quite complicated [20], although they could in principle be
derived by using the explicit matrix representations given in this paper. This is left as an
exercise for the reader.

Funding: This research was partially supported by the U.S. Department of Energy Grant number
DE-SC0010107.

Data Availability Statement: Data are contained within the article.

Acknowledgments: I am grateful to João P. Silva for discussions in which he challenged me to provide
an explicit proof of Equation (128) and for his encouragements during the writeup of this work.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Rodrigues’ Rotation Formula

A proper rotation matrix R(n̂, θ) [which satisfies RRT = I3 and det R = 1] represents
an active transformation consisting of a counterclockwise rotation by an angle θ about
an axis n̂ with respect to a fixed Cartesian coordinate system. For example, the matrix
representation of the counterclockwise rotation by an angle θ about the z-axis is given by

R(ẑ, θ) ≡

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (A1)

The matrix elements of R(n̂, θ) will be denoted by Rij, where the indices of the tensors
in this Appendix are written in the lowered position to simplify the typography of the
presentation. The goal of this Appendix is to provide a simple derivation of Rodrigues’
formula for an active (counterclockwise) rotation by an angle θ about an axis that points
along the unit vector n̂ = (n1 , n2 , n3). Note that since n̂ is a unit vector, it follows that

n2
1 + n2

2 + n2
3 = 1 . (A2)
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The traditional approach to deriving Rodrigues’ rotation formula involves the compu-
tation of the exponential of an arbitrary 3× 3 real antisymmetric matrix (e.g., see Refs. [9,10]).
Below, we provide an alternative derivation of the formula for Rij that makes use of the
techniques of tensor algebra.

Consider how Rij changes under an orthogonal change of basis, which can be viewed
as a orthogonal transformation of the coordinate axes. Using the well-known results derived
in any textbook on matrices and linear algebra, one can check that the transformation of
the components of Rij under a change of basis corresponds to the transformation law of a
second-rank Cartesian tensor. Likewise, the ni are components of a vector (equivalently, a
first-rank tensor). Two other important quantities of the analysis are the invariant tensors
δij (the Kronecker delta) and ϵijk (the Levi–Civita tensor). If we invoke the covariance of
Cartesian tensor equations, then one must be able to express Rij in terms of a second-rank
tensor composed of ni, δij and ϵijk, as there are no other tensors in the problem that could
provide a source of indices. Thus, the form of the formula for Rij must be

Rij = a δij + b ninj + c ϵijknk , (A3)

where there is an implicit sum over the repeated index k in the last term of Equation (A3).
The numbers a, b and c are real scalar quantities. As such, a, b and c are functions of θ, since
the rotation angle is the only scalar variable in this problem.

We now determine the conditions that are satisfied by a, b and c. The first condition is
obtained by noting that

R(n̂, θ)n̂ = n̂ . (A4)

This is clearly true, since R(n̂, θ), when acting on a vector, rotates the vector around the
axis n̂, whereas any vector parallel to the axis of rotation is invariant under the action of
R(n̂, θ). In terms of components,

Rijnj = ni . (A5)

To determine the consequence of this equation, we insert Equation (A3) into Equation (A5).
In light of Equation (A2), it follows immediately that ni(a + b) = ni. Hence,

a + b = 1 . (A6)

Since the formula for Rij given by Equation (A3) must be completely general, it must
hold for any special case. In particular, consider the case where n̂ = ẑ. In this case,
Equations (A1) and (A3) yield

R(k, θ)11 = cos θ = a , R(k, θ)12 = − sin θ = c , (A7)

after using n3 = ϵ123 = 1. Consequently, Equations (A6) and (A7) yield

a = cos θ , b = 1 − cos θ , c = − sin θ . (A8)

Inserting these results into Equation (A3), we obtain Rodrigues’ rotation formula:

Rij(n̂, θ) = cos θ δij + (1 − cos θ)ninj − sin θ ϵijknk . (A9)

Note that

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (A10)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (A11)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) , (A12)
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which implies that any three-dimensional proper rotation can be described by a counter-
clockwise rotation by an angle θ about some axis n̂, where 0 ≤ θ ≤ π.

Appendix B. η†σµχ Transforms as a Lorentz Four-Vector

Equation (89) asserts that the spinor product η†σµχ transforms as a Lorentz four-vector.
In light of Equation (88), it follows that Equation (90) must be satisfied (and vice versa). In
this Appendix, we shall establish Equation (90) by demonstrating that both sides of this
identity agree to first order in ζ⃗ and θ⃗.

In addition to the σµν defined in Equation (85), it is convenient to introduce the set of
2 × 2 matrices,

σµν = −σνµ ≡ 1
4 i(σµσν − σνσµ) . (A13)

Then, using the properties of the Pauli matrices, Equations (81) and (86) yield

M† = exp
(

1
2 iθρλσρλ

)
= exp

(
1
2 i⃗θ·σ⃗ − 1

2 ζ⃗ ·σ⃗
)

. (A14)

Working to first order in the parameters θρλ and making use of Equations (50), (53),
(86), and (A14),

Λµ
ν ≃ δ

µ
ν + 1

2

(
θλνηλµ − θνρηρµ

)
, (A15)

M ≃ I2 − 1
2 iθρλσρλ , (A16)

M† ≃ I2 +
1
2 iθρλσρλ . (A17)

It then follows that

M†σµ M ≃
(

I2 +
1
2 iθρλσρλ

)
σµ
(

I2 − 1
2 iθρλσρλ

)
≃ σµ + 1

2 iθρλ

(
σρλσµ − σµσρλ

)
. (A18)

One can easily derive the following identity [11,12]:

σρλσµ − σµσρλ = i
(
ηλµσρ − ηρµσλ

)
. (A19)

Hence, Equation (A18) yields

M†σµ M ≃ σµ − 1
2 θρλ

(
ηλµσρ − ηρµσλ

)
≃
[
δ

µ
ν − 1

2 θρλ

(
ηλµδ

ρ
ν − ηρµδλ

ν

)]
σν

≃
[
δ

µ
ν − 1

2
(
θνληλµ − θρνηρµ

)]
σν ≃

[
δ

µ
ν + 1

2
(
θλνηλµ − θνρηρµ

)]
σν = Λµ

νσν ,
(A20)

after using the antisymmetry of θνλ in the penultimate step above. After employing
Equation (A15) in the final step above, we conclude that

M†σµ M = Λµ
νσν , (A21)

thereby confirming Equation (90). In particular, it follows that η†σµχ transforms as a
Lorentz four-vector in light of Equations (88) and (89), as previously noted. Equation (A21)
is a statement of the well-known isomorphism SO(1, 3)0 ∼= SL(2, C)/Z2, since the SL(2, C)
matrices M and −M correspond to the same Lorentz transformation Λ.

Of course, the derivation of Equation (A21) is much simpler than a direct derivation of
Equation (91), which requires the explicit evaluation of all the relevant matrix exponentials.
Indeed, we can assert that having derived Equation (A21) to first order in θρλ, this result
must be true for arbitrary θρλ. The reason that a derivation based on the infinitesimal forms
of Λ, M and M† is sufficient is due to the strong constraints imposed by the group multipli-
cation law of the Lorentz group near the identity element, which in light of the discussion
following Equation (40) implies that a proper orthochronous Lorentz transformation can
be expressed as an exponential of an element of the corresponding Lie algebra.
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There is a second inequivalent two-dimensional matrix representation of SL(2,C)
whose general element is represented by the matrix (M−1)†, as discussed in greater detail
in Refs. [11,12]. This leads to a second identity that is similar to that of Equation (A21):

M−1σµ(M−1)† = Λµ
ν σν . (A22)

One can derive Equation (A22) by again working to first order in the parameters θρλ and
making use of Equations (A15)–(A17):

M−1σµ(M−1)† ≃
(

I2 +
1
2 iθρλσρλ

)
σµ
(

I2 − 1
2 iθρλσρλ

)
≃ σµ + 1

2 iθρλ

(
σρλσµ − σµσρλ

)
. (A23)

In light of the identity [11,12],

σρλσµ − σµσρλ = i
(
ηλµσρ − ηρµσλ

)
, (A24)

it follows that

M−1σµ(M−1)† ≃ σµ − 1
2 θρλ

(
ηλµσρ − ηρµσλ

)
≃
[
δ

µ
ν − 1

2 θρλ

(
ηλµδ

ρ
ν − ηρµδλ

ν

)]
σν

≃
[
δ

µ
ν − 1

2
(
θνληλµ − θρνηρµ

)]
σν ≃

[
δ

µ
ν + 1

2
(
θλνηλµ − θνρηρµ

)]
σν = Λµ

ν σν,
(A25)

which establishes Equation (A22) after employing Equation (A15) in the final step above.
Multiplying Equation (A22) on the right by σρ and using Tr(σνσρ) = 2δν

ρ , it follows that

Λµ
ν = 1

2 Tr
[
M−1σµ(M−1)†σν

]
, (A26)

which provides yet another formula for the most general orthochronous Lorentz transfor-
mation matrix. Using block matrix notation, Equation (A26) yields

Λ(⃗ζ , θ⃗) =

(
Λ0

0 Λ0
j

Λi
0 Λi

j

)
=

1
2

(
Tr
[
M−1(M−1)†] Tr

[
(M−1)†σj M−1]

Tr
[
M−1σi(M−1)†] Tr

[
M−1σi(M−1)†σj]

)
, (A27)

after noting that σj = −σj = σj [cf. Equation (83)]. Comparing with Equation (95), we see
that M → (M−1)† and M† → M−1, which results in θ⃗ → θ⃗ and ζ⃗ → −ζ⃗, or equivalently
z⃗ → −⃗z ∗ and ∆ → ∆∗. In addition, the block off-diagonal elements of Λ(⃗ζ , θ⃗) have
changed sign. Under these replacements, it is straightforward to check that the resulting
expressions for Λµ

ν are the same as those obtained previously in Equations (99)–(102). That
is, Equation (A26) is established by explicit calculation.

Appendix C. ΨγµΨ Transforms as a Lorentz Four-Vector

Most textbook treatments of the Dirac equation employ the more familiar four-
component spinors and Dirac gamma matrices (e.g., see Ref. [21]). The relation between
the two-component and four-component spinor formalisms is briefly presented in this
Appendix. Further details can be found in Refs. [11,12].

One can construct four-component spinors

Ψ ≡
(

χ

η†

)
, (A28)

in terms of a pair of two-component spinors χ and η. The Dirac gamma matrices are
defined via their anticommutation relations:

{γµ , γν} ≡ γµγν + γνγµ = 2ηµν . (A29)
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In the so-called chiral representation of the gamma matrices,

γµ =

(
0 σµ

σµ 0

)
. (A30)

It is convenient to introduce

1
2 Σµν ≡ 1

4 i[γµ, γν] =

(
σµν 0
0 σµν

)
, (A31)

where [γµ, γν] ≡ γµγν − γνγµ. The Dirac adjoint spinor is defined by

Ψ(x) ≡ Ψ†(x)γ0 =
(
η χ†) . (A32)

The matrices γµ and Σµν satisfy

γ0γµγ0 = (γµ)† , (A33)

γ0Σµνγ0 = (Σµν)† . (A34)

Four-component spinors transform under an active Lorentz transformation as

Ψ′ =MΨ , (A35)

where

M ≡
(

M 0
0 (M−1)†

)
= exp

(
− 1

4 iθµνΣµν
)

(A36)

combines the two inequivalent two-dimensional matrix representations of SL(2,C),

M = exp
(
− 1

2 iθρλσρλ
)
= exp

(
− 1

2 i⃗θ·σ⃗ − 1
2 ζ⃗ ·σ⃗

)
, (A37)

(M−1)† = exp
(
− 1

2 iθρλσρλ
)
= exp

(
− 1

2 i⃗θ·σ⃗ + 1
2 ζ⃗ ·σ⃗

)
. (A38)

To compute the corresponding matrix inverses, simply change the overall sign of the
parameters θµν. For example,

M−1 = exp
(

1
4 iθµνΣµν

)
. (A39)

In light of Equation (A34), one can easily check that the 4 × 4 matrixM satisfies

γ0Mγ0 = (M−1)† . (A40)

Using Equations (A32) and (A35), it then follows that

Ψ ′ ≡ Ψ′†γ0 = Ψ†M†γ0 = Ψγ0M†γ0 . (A41)

Finally, taking the hermitian conjugate of Equation (A40) and using Equation (A33) [which
implies that (γ0)† = γ0 in light of Equation (A29)], we end up with

Ψ ′ = ΨM−1 , (A42)

under an active Lorentz transformation.
It is now straightforward to verify that the identities, Equations (A21) and (A22),

derived in Appendix B, are equivalent to

M−1γµM = Λµ
νγν , (A43)
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after employing Equations (A30) and (A36). Consequently, in light of Equations (A35),
(A42) and (A43), it follows that under an active Lorentz transformation,

ΨγµΨ −→ ΨM−1γµMΨ = Λµ
νΨγνΨ . (A44)

That is, under a Lorentz transformation, ΨγµΨ transforms as a four-vector. Moreover,
using Tr(γµγν) = 4δ

µ
ν , Equation (A43) yields

Λµ
ν = 1

4 Tr(M−1γµMγν) . (A45)

Of course, Equation (A45) is equivalent to Equations (91) and (A26) taken together.
Note that using Equation (A45) to obtain an explicit form for Λµ

ν requires the evalua-
tion of the trace of a product of four 4 × 4 matrices. In contrast, the computation of Λµ

ν

presented in Section 5 is more straightforward involving less duplication of effort.
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