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Abstract

We provide a complete set of Feynman rules for fermions using two-component spinor
notation. These rules are suitable for practical calculations of cross-sections, decay rates, and
radiative corrections in the Standard Model and its extensions, including supersymmetry.
A unified treatment applies for massless Weyl fermions and massive Dirac and Majorana
fermions. Numerous examples are given.
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion
quantum numbers and interactions. According to the modern understanding of the electroweak
symmetry, the fundamental degrees of freedom for quarks and leptons are two-component Weyl-
van der Waerden fermions, i.e. 2-component spinors under the Lorentz group, that transform
as irreducible representations under the gauge group SU(2)r x U(1)y. Furthermore, within
the context of supersymmetric field theories, two-component spinors enter naturally, due to the
spinor-nature of the symmetry generators themselves, as well as through the holomorphic nature
of the superpotential. Despite this, most pedagogical treatments and practical calculations in
high-energy physics continue to use the four-component Dirac notation, which combines distinct
irreducible representations of the symmetry groups. Parity-conserving theories such as QED and
QCD are well-suited to the four-component fermion methods. There is also a certain perceived

advantage to familiarity. However, as we progress to phenomena at and above the scale of



electroweak symmetry breaking, it seems increasingly natural to employ two-component fermion
notation, in harmony with the irreducible transformation properties dictated by the physics.

One occasionally encounters the misconception that two-component fermion notations are
somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a
lack of examples of calculations using two-component language in the pedagogical literature.
In this paper, we seek to dispel this idea by presenting Feynman rules for fermions using two-
component spinor notation, intended for practical calculations of cross-sections, decays, and
radiative corrections. This formalism employs a unified framework that applies equally well to
Dirac fermions like the Standard Model quarks and leptons, and to Majorana fermions such as
the light neutrinos that appear in the seesaw extension of the Standard Model! or the neutralinos
of the minimal supersymmetric extension of the Standard Model (MSSM) [47-49].

Spinors were introduced by E. Cartan in 1913 as projective representations of the rota-
tion group [1]. They entered into physics via the Dirac equation in 1928 [3]. In the same year,
H. Weyl discussed the representations of the Lorentz group, including the two-component spinor
representations, in terms of stereographic projective coordinates [4]. The extension of the tensor
calculus (or tensor analysis) to spinor calculus (spinor analysis) was given by B. L. van der Waer-
den [5], upon instigation of P. Ehrenfest. It is in this paper also that v. d. Waerden (not Weyl
as often claimed in the literature) first introduces the notation of dotted and undotted indices
for the irreducible (%,O) and (0,%) representations of the Lorentz group. Both Weyl and van
der Waerden independently consider the decomposition of the Dirac equation into two coupled
differential equations for two-component spinors. Early, more pedagogical discussions of two-
component spinors are given in [6-8]. See also [9]. Ref. [6], is also the first English paper to
employ the dotted and undotted index notation. Very nice early reviews on spinor techniques
were written by Bade and Jehle in 1953 [10] and in German by Cap in 1954 [11].

Two component spinors have also been discussed in many non-supersymmetric textbooks,
see for example [4,12-31]. Among the early books, we would like to draw attention to [12], which
has an extensive discussion and the appendix of [19]. Scheck [21] includes a short discussion of
the field theory of two-component spinors, including the propagator. The most extensive field
theoretic discussion is given by Ticciati [24]. This includes a complete set of Feynman rules for
a Yukawa theory as well as three example calculations. recently, Srednicki [31] has written an
introduction into quantum field theory with a dsicussion of two-component fermions, including
their quantization.

[I have not checked the books [18,26-28,30] since they are not in our library.]

All text books on supersymmetry [32-45] include a discussion of two-component spinors

on some level. This also typically includes a discussion of dotted and undotted indices as well

n the limit of zero mass, neutrinos can be described by either Majorana or Weyl fermions. Both are naturally
described in the two-component fermion formalism.



as a collection of identities involving the sigma matrices. Particularly extensive and useful sets
of identities can be found in [32, 37, 38,42, 43]. Terning [43] also includes some field theoretic
details.

[This part is about the previous work on van der Waerden spinors in particle physics pa-
pers.] The standard technique for computing scattering cross sections with initial and final
state fermions involves squaring the amplitudes, summing over the spin states and then com-
puting the traces of products of gamma matrices, or in the two-component case, over products
of sigma matrices. We employ this latter technique throughout this paper. However, the com-
putational effort rises with the square of the number of interfering diagrams. This typically
becomes impractical with four or more particles in the final state. One approach to make such
extensive calculations manageable, is the helicity amplitude technique. Here the scattering pro-
cess is decomposed into the scattering of helicity eigenstates. Then the individual amplitudes
are computed analytically in terms of Lorentz scalar invariants, i.e. a complex number, which
can be readily computed. It is then a simple numerical task to sum the amplitudes and square
them. This was first explored in refs [51-54], using four-component spinors, see also refs [55-59].
For spinor techniques in th helicity formalism see also [60]. The natural spinor formalism for
the helicity amplitude techniques are in fact the 2-component Weyl-van der Waerden spinors,
which we discuss in detail in this paper. They were implemented in the helicity amplitude
technique in refs. [61-66]. Recently the two-component formalism has been implemented in a
computer program for the numerical computation of amplitudes and cross sections for event
generators multi-particle processes refs [133,134]. In order to to see how to apply our work to
the case of multi-particle final states, we present in Appendix G the translation between our
notation and that of the widely used Hagiwara and Zeppenfeld (HZ) formalism ref. [63]. It is
then straightforward to implement amplitudes as computed here into a numerical cross section
computation.

[Something like this is still missing, I just sketched it.] This report is outlined as follows.
In Sect. 2, we present our conventions and notation. In Sect. 3 we derive the basic properties
of the quantized two-component fermion fields. In Sect. 4 we derive the Feynman rules for
two-component spinors and describe how to write down amplitudes in our formalism. In Sect. 5
we give our convention for fermion and anti-fermion names and fields. This is important for
consistently writing down the amplitudes for a given physical process and also for comparing
with previous 4-component computations. In Sect. 6 we then compute an extensive number of

examples using our formalism. This is the central part of our paper.



2 Essential conventions and notations
We begin with a discussion of necessary conventions. The metric tensor is taken? to be:
g = diag(+1,—-1,-1,-1), (2.1)

where p,v,p... = 0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. posi-
tions and momenta) are defined with indices raised, and covariant four-vectors (e.g. derivatives)

with lowered indices:

= (t, @), (2.2)
p”:(E,ﬁ)a (2 3)
auza;;:(a/atﬁ), (2.4)

in units with ¢ = 1. The totally antisymmetric pseudo-tensor e*”?? is defined such that

The irreducible building blocks for spin-1/2 fermions are fields that transform either under
the left-handed (3,0) or the right-handed (0, ) representation of the Lorentz group. Hermitian
conjugation interchanges these two representations. A massive Majorana fermion field can be
constructed from either representation; this is the spin-1/2 analog of a real scalar field. The
Dirac field combines two equal mass two-component fields into a reducible representation of the
form (1,0) & (0, 1); this is the spin-1/2 analog of a complex scalar field. It is also possible to
use four-component notation to describe Majorana fermions by imposing a reality condition on
the spinor in order to reduce the number of degrees of freedom in half. However, in this paper,
we shall focus primarily on two-component spinor notation for all fermions. In the following,
(%,0) spinors carry undotted indices o, f3,... = 1,2, and (0, %) spinors carry dotted indices
&, 6,...=1,2.

We begin by briefly considering the representations of the Lorentz group. Under a Lorentz

transformation, a contravariant four-vector x* transforms as

ol — ot = Ay (2.6)

2The published version of this paper uses the (+,—,—,—) metric. An otherwise identical version, using the
(=, 4+, +,+) metric favored by one of the authors, may be found at http://zippy.physics.niu.edu/rules.html.
It can also be constructed by changing a single macro within the I¥TEX source file, in an obvious way. You can
tell which version you are presently reading from equation (2.1). In general, the relative minus sign needed to
switch between one metric signature and the other is given by:

(_1)(NO'+Nm+Nd)
where N, is the total number of o and & matrices, Ny, is the number of metric tensors appearing either explicitly

or implicitly through contracted upper and lower indices, and N, is the number of spacetime derivatives. This
applies to any relativistically covariant term appearing additively in a valid equation.



where A satisfies A, g,,A?x = gx,. It then follows that the transformation of the corresponding

covariant four-vector x, = g, x" satisfies:
— o AM
z, =z, A", (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected
to the identity), corresponding to a rotation by an angle § about an axis n [5 = On] and a boost

vector ¢ = ®tanh™' 3 [where & = @/|7] and 3 = |5]], is a 4 x 4 matrix given by:

A =exp (—%HPJSPU) = exp (—zﬁ-é’— sz) , (2.8)
where 0 = 161740, ¢0 = 070 = 9% st = Letiks ki = 59 = —s70 and
(Spa)ul/ = Z’(gpu Gov — gau gpl/) . (29)

Here, the indices i, j,k = 1,2,3 and €'?3 = +1.

It follows from eqs. (2.8) and (2.9) that an infinitesimal orthochronous Lorentz transforma-
tion is given by A*, ~ §*, + 6, (after noting that 0*, = —6,#). Moreover, the infinitesimal
boost parameter is 5 = dtanh™' g ~ o = ﬁ, since 8 < 1 for an infinitesimal boost. Hence,
the actions of the infinitesimal boosts and rotations on the spacetime coordinates are

E—@ ~E+(0xT)

Rotations: (2.10)
t— t'~t

F—T ~T+ 0t
Boosts: (2.11)

t— ' ~t+3-F,
with exactly analogous transformations for any contravariant four-vector.
With respect to the Lorentz transformation A, a general n-component field ¢ transforms
as ®(z#) — Mp(A) ®'(a'#), where Mr(A) is a (finite) n-dimensional matrix representation, R,

of the Lorentz group. Equivalently, the functional form of the transformed field ® obeys
' (xH) = Mp(A)D([AHH,zY). (2.12)

For proper orthochronous Lorentz transformations,

7: - = - —

Mp = exp <—§9WJ’“’> ~]—i0-J—-i(-K, (2.13)
where 6, parameterizes the Lorentz transformation A [eq. (2.8)], and J* is a matrix-valued
antisymmetric tensor corresponding to the representation R. For infinitesimal Lorentz trans-
formations, we identify J and K as the generators of rotations parameterized by 6 and boosts

parameterized by C_': respectively. These three-vector generators are related to J#” by

Ji= %eiijjk, Ki=J%, (2.14)



Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra.
These are the two-dimensional (inequivalent) representations: (%,0) and (0,%). In the (3,0)
representation, J = &/2 and K = —i&/2 in eq. (2.13), where & are the Pauli matrices. This
yields

M =M~1]-i6-3/2—C-3/2. (2.15)
27

By definition M carries undotted spinor indices, as indicated by M,?. A two-component (%, 0)
spinor is denoted by 1, and transforms as ¥, — Maﬁi/)g, omitting the coordinate arguments
of the fields, which are as in eq. (2.12). Note that in our conventions for the location of the
spinor indices, one sums over a repeated index pair in which one index is lowered and one index
is raised.

In the (0, 3) representation, J=—&"/2 and K = —i*/2 in eq. (2.13), so that its repre-
sentation matrix is M*, the complex conjugate of eq. (2.15). By definition, the indices carried
by M* are dotted, as indicated by (M *)dﬁ . A two-component (0, 1) spinor is denoted by 9 and
transforms as ¢ — (M *)QB@B, again suppressing the coordinate arguments of the fields, which
are as in eq. (2.12). The reason for distinguishing between the undotted and dotted spinor index
types is that they cannot be directly contracted with each other to form a Lorentz invariant
quantity.

It follows that the (0, 3) and (3, 0) representations can be related by complex conjugation.
That is, if ¢ is a (0,3) fermion, then (14)* transforms as a (%,0) fermion. This means that
we can, and will, describe all fermion degrees of freedom using only fields defined as left-handed
(%,0) fermions 1., and their conjugates. We can combine spinors to make Lorentz tensors, so

it is useful to regard 4 as a row vector, and 1, as a column vector, with:

Yo = (Ya). (2.16)

A check of the Lorentz transformation property of 1 then follows from (¥b,)" — (v5)T(M T)Bd,
where (M T)B o= (M *)aB reflects the definition of the hermitian adjoint matrix as the complex
conjugate transpose of the matrix. Again the coordinate arguments of the fields have been
suppressed, and are as in eq. (2.12). We will use the dotted-index notation in association
with the bar over the symbol as a synonym for hermitian conjugation, as above. [Many other
references write QDL to mean the same thing as eq. (2.16).]

There are two additional spin-1/2 irreducible representations of the Lorentz group, (M ~1)T
and (M~1)T, but these are equivalent representations to the (%, 0) and the (0, %) representations,
respectively. The spinors that transform under these representations have raised spinor indices,
e.g., 1 and 9%, respectively. The spinor indices are raised and lowered with the two-index

21

antisymmetric symbol with components €!? = —e?! = €9y = —¢€j5 = 1, and the same set of sign

conventions for the corresponding dotted spinor indices. Thus

¢a = Eaﬁwﬁ s ¢a = Eaﬁwﬁ s &d = Edﬁ'&ﬁ. 5 T/_)d = Edﬁ.qﬁg . (217)



The € symbol satisfies:*

€ape’? = —670% + 8057, ep€” = —010% + 5;'25; , (2.18)

from which it follows that:

ape’’ = Pesy = 87, €. P = E;YBEBO.J = 52 (2.19)

ap

€9 (e4p) is also called the “spinor metric tensor” since it raises (lowers) spinor indices. It was
first introduced in this context in [5], but see also [6,7,10,50] for related early work.

To construct Lorentz invariant Lagrangians and observables, one needs to first combine
products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz

vectors are obtained by introducing the sigma matrices o pof and Eﬁ‘ﬁ defined by [4,5,7,8]

_ 1 0 _ B 0 1

0p =00 = 0o 1/’ 01 = —01= 1 0o/’

_ B 0 —1 _ B 1 0 (220)
09 = —09 = ; 0] 03 = —03 = 0 —1/° .

The o-matrices above have been defined with a lower (covariant) index. We also define the

corresponding quantities with upper (contravariant) indices:
ot =g"o, = (Iy; &), ot = g7, = (Iy; —&), (2.21)

where [5 is the 2 x 2 identity matrix. The relations between o# and * are

O'Zd = Eaﬁﬁdﬁ'EuBﬁ, Fhaa _ EaﬁedBJZB ’ (2.22)
eaﬁagd = edﬁﬁ“ﬁa, eo‘ﬁagg Y i (2.23)

In general, just like tensors, we can have spinor objects with more than one spinor index:
o1 09 em P o i where each a-index transforms separately according to M, “ in eq. (2.15)

and each B—index transforms according to (M¥) 5,_6 ‘. Using the above Eﬁa there is a one-to-one

correspondence between each bi-spinor Vaﬁ- and a corresponding Lorentz four-vector V#

VE=T0V, (2.24)

$Various subsets of the subsequent identities in this section involving commuting and non-commuting two-
component spinors, as well as the € and o-matrices appear in many books, and papers, e.g. the books [8,32-45],
and the papers [61-66]



When constructing Lorentz tensors from fermion fields, the heights of spinor indices must
be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, indices contracted like
%Y and &%, (2.25)

can be suppressed. In all spinor products given in this paper, contracted indices always have

heights that conform to eq. (2.25). For example,

&n = €N, (2.26)
& = &ail, (2.27)
Eot'n = E45" g, (2.28)
gotij = &0k 7. (2.29)

As previously noted, it is convenient to regard 7, as a column vector and & as a row vector.
Consequently, if we also regard £ as a row vector and 7% as a column vector then all the
spinor-index contraced products above have natural interpretations as products of matrices and
vectors.

The behavior of the spinor products under hermitian conjugation (for quantum field oper-

ators) or complex conjugation (for classical fields) is as follows:

(&m)' = 7€, (2.30)
(o"'m)t = ot (2.31)
(Eotn)t = o, (2.32)
(&otT” 77)Jr = e’ ot €. (2.33)

More generally,

(€5t = 7%.€, (2.34)
()" = n%.€, (2.35)
where in each case ¥ stands for any sequence of alternating o and @ matrices, and X, is obtained
from ¥ by reversing the order of all of the o and & matrices. Note that egs. (2.30)—(2.35) are

applicable both to anti-commuting and to commuting spinors.

The following identities can be used to systematically simplify expressions involving prod-

10



ucts of o and & matrices:

ot T = 25850, (2.36)
0oy = 2€apaf (2.37)
E“daﬁgﬁ = 2eaﬁed5, (2.38)
(0" + 0¥5M"” = 2¢" 7, (2.39)
oo” + 57" = 29“”52 : (2.40)
otaof = g"of — g"Po¥ + g"Pot + e PRoy (2.41)
ato’al = g"'a? — g"'PTY + ¢VPTH — i T, . (2.42)

Computations of cross sections and decay rates generally require traces of alternating products

of o and @ matrices (see for example [62]):

Trjo"5”] = Tr[g"c”]| = 2¢"", (2.43)
Tr[oHc" 0P| = 2 (g"" g — g"’ " + """ g"P + il | (2.44)
Tr[c* o "] = 2 (g" g — g"Pg"" + """ g"P — ie!VP") . (2.45)

Traces involving a larger even number of ¢ and @ matrices can be systematically obtained from
eqs. (2.43)—(2.45) by repeated use of egs. (2.39) and (2.40) and the cyclic property of the trace.
Traces involving an odd number of ¢ and & matrices cannot arise, since there is no way to
connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion fields, we of-
ten must deal with products of commuting spinor wave functions that arise when evaluating
the Feynman rules. In the following expressions we denote the generic spinor by z;. In the
various identities listed below, an extra minus sign arises when manipulating a product of anti-

commuting fermion fields. Thus, we employ the notation:

A +1, commuting spinors,

(—1)* = (2.46)
—1, anticommuting spinors.
The following identities hold for the z;:
_ A

Z129 = —(—1) Z9221 (2.47)
2129 = —(—1)A§2§1 (2.48)
z10MZ9 = (—1)A225“z1 (2.49)
210MT 29 = —(—1)A220'V5M21 (250)
721510 7 = — (1) %057 0" 7 (2.51)
Z1oH 0P 29 = (—I)Azga’jﬁpa“él , (2.52)

11



and so on.
Two-component spinor products can often be simplified by using Fierz identities. The

antisymmetry of the suppressed two-component € symbol [eq. (2.18)] implies the identities:

(2’12’2)(2324) —(2123)(2422) — (2’12’4)(2223), (253)
(2122)(2374) = —(2123)(ZaZ2) — (2124)(2273) (2.54)
where we have used egs. (2.47) and (2.48) to cancel out any residual factors of (—1)4. Similarly,

eq. (2.36) can be used to derive

(210“22)(235u24) = —2(212’4)(5253), (255)
(Zlﬁuzg)(235uz4) = 2(2153)(Z422) , (2.56)
(ZlduZQ)(Z30“54) = 2(2123)(2452) . (2.57)

Egs. (2.53)—(2.57) hold for both commuting and anticommuting spinors. Other Fierz identities
for spinors can be constructed trivially from these by appropriate choices of z1, 2o, 23, and z4.

From the sigma matrices, one can construct the antisymmetrized products:
(U’“’)aﬁ = 2 (agﬁwﬁ — agﬁi’”ﬁ> , (2.58)

(E,uz/)dﬁ, = i (Eud’yo-:ﬁ _ EVdWUfYLB) . (259)

The matrices o#” and o satisfy self-duality relations
ot = —%ie““p“am, ghv = %z’e“"p“ﬁpﬁ. (2.60)
In addition, eq. (2.18) implies that

aTO_,uz/a,B — o

€8p€ o eﬁpemﬁ“"dﬁ- =P (2.61)

aT _uv v T —uv i — VP
Tt P = PBat o €50 5= epBU“ P, (2.62)

where we have used Tr(c*”) = Tr(a"") = 0.

The 0" and " can be identified as the generators J*” [see eq. (2.13)] of the Lorentz
group in the (%, 0) and (0, %) representations, respectively. That is, for the (%, 0) representation
with a lowered undotted index (e.g. 1), J** = o, while for the (0, %) representation with a
raised dotted index (e.g. ¥%), J* = &"¥. In particular, the infinitesimal forms for the 4 x 4
Lorentz transformation matrix A and the corresponding matrices M and (M ~1)T that transform

the (%,0) and (0, %) spinors, respectively, are given by:

i
M2y = L0 (2.63)
(M_l)T = I2 - %euuﬁwja (2.64)
AP, 5, 4 (ea,,g“” - eyggﬁ“) . (2.65)

12



The inverses of these quantities are obtained (to first order in #) by replacing § — —6 in the
above formulae. Using these infinitesimal forms [with the assistance of eqs. (A.18)—(A.21)], one

can establish the following two results:
MGHM = A, 5", (2.66)
M7t (M~ = AH, 0. (2.67)

Egs. (2.66) and (2.67) can be used to prove the covariance properties (with respect to Lorentz
transformations) of the transformation law for the two-component undotted and dotted spinor
fields, respectively.

As an example, consider a pure boost from the rest frame to a frame where p* = (Ep, P),
which corresponds to ;; = 0 and (¢ = 6 = —0%. The matrices M,” and [(M_l)T]‘j‘B that
govern the Lorentz transformations of spinor fields with a lowered undotted index and spinor

fields with a raised dotted index, respectively, are given by:

, M = exp —%5-6" = ]ﬂ, for (%,O),
i m
exp <—§9WJ‘“’> = (2.68)
_ -, po
(M I)T = eXp <%C-O’> = W) fOI‘ (O’%)v
where?
E,+m—6-p
Jpo=—p"M_0P 2.69
P 5Ly + m) (2.69)
E = =
s Bptm+ 5B (2.70)

V2(Ep+m)

These matrix square roots are defined under the assumption that p° = Ez = (|p]? +m?)1/2

, and
are chosen to be the unique hermitian matrices with non-negative eigenvalues whose squares are
equal to p-o and p-7, respectively.

Consider an arbitrary four-vector S* [defined in a referecne frame where p* = (E; p)],

whose rest frame value is S, i.e.

SH=AMSh,  with A= | S i |- (2.71)
v S5t e E )

Then, using egs. (2.7), (2.67) and (2.68), it follows that:

VD-08-G\/p-o0 =mSg7, (2.72)
\/p7S-0/pT=mSg-0o. (2.73)

4One can check the validity of eqs. (2.69) and (2.70) by squaring both sides of the respective equations.
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The generalization of the spinor results of this section to d # 4, useful for dimensional con-
tinuation regularization schemes, is discussed in Appendix A. In particular, the Fierz identities
of egs. (2.36)—(2.37) and eqs. (2.55)—(2.57) and the identities (2.41), (2.42), (2.44) and (2.45)
involving the 4-dimensional € tensor are not valid unless p is a Lorentz vector index in exactly
4 dimensions. In d # 4 dimensions, as used for loop amplitudes in dimensional regularization
and dimensional reduction schemes, the necessary modifications are given in Appendix A. We
also direct the reader’s attention to Appendix E, which gives a detailed correspondence between

two-component spinor and four-component spinor notations.

3 Properties of fermion fields
3.1 A single two-component fermion field

We begin by describing the properties of a free neutral massive anti-commuting spin-1/2 field,

1

denoted &, (z), which transforms as (5,0) under the Lorentz group. The field £, therefore

describes a Majorana fermion. The free-field Lagrangian density is [5-7]:
= i€ 9, € — Fm(EE +EE). (3.1)
On-shell, ¢ satisfies the free-field Dirac equation [4,5],
9,65 = mE®. (3.2)

Consequently after quantization, £, can be expanded in a Fourier series [46]:

35 ‘ '
$) = Z/ (27T)3/(21(§Ep)1/2 $a(ﬁ7 S)G(ﬁa S)e_lp'x + ya(ﬁ: S)CLT(ﬁ: S)ezp-gc] s (3.3)

where Ep, = (|p]? + m?)'/2, and the creation and annihilation operators af and a satisfy anti-

commutation relations:

{a(P,s),a’(P",5")} = 6*(F — P")dss (3.4)
and all other anticommutators vanish. It follows that
*p = SN ipx | o (= S\ —ipx
Gl = | Grrpmy PO 5l B ] 39

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention
7, s) = (2m)*2(2Ep)" %l (5, 5) |0) | (3.6)
so that (, s|p”,s') = (2m)3(2Ep)83(F — P”)dss . Therefore,

(01€a(2) B, 5) = za(B.s)e™ P, (0] &a (@) B, s) = Ga (B, s)e™ ", (3.7)
(B, 5] €a() [0) = ya (B, s)e™ ", (B, 5] Ea() 0) = T4 (B, 5)e™" . (3.8)
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It should be emphasized that £,(x) is an anticommuting spinor field, whereas =, and y, are
commuting two-component spinor wave functions. The anticommuting properties of the fields
are carried by the creation and annihilation operators.

Applying eq. (3.2) to eq. (3.3), we find that the z, and y, satisfy momentum space Dirac

equations. These conditions can be written down in a number of equivalent ways:

(07)* g = my" (p-0)op” = mia . (3.9)
(p‘a)agfﬁ = —MYa , (p-7)*Pys = —mz® | (3.10)
2 (p-0) 5 = —mypy Ja(p-7)* = —mal (3.11)
Za(p-0)™ =my” Y (po)yy = mi . (3.12)

Using the identities [(p-0)(p-7)]o” = p? d.” and [(p-7) (p-a)]‘j‘ﬁ- = p? 5d6’ one can quickly check

2 (or equivalently, p° = Ep).

that both x, and y, must satisfy the mass-shell condition, p? = m
We will later see that egs. (3.9)—(3.12) are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall consider
two approaches for constructing the spin-1/2 states. In the first approach, we consider the
particle in its rest frame and quantize the spin along a fixed axis specified by the unit vector
§ = (sinfcos ¢, sinfsin ¢, cos ) with polar angle # and azimuthal angle ¢ with respect to a
fixed z-axis.> The corresponding spin states will be called fixed-axis spin states. The relevant

basis of two-component spinors X are eigenstates of %&'-é, ie.,

N[ —
N[ —

F-8x, = SXs, s=+ (3.13)

Explicit forms for the two-component spinors x, and their properties are given in Appendix B.

The fixed-axis spin states described above are not very convenient for particles in relativistic
motion. Moreover, these states cannot be empoyed for massless particles since no rest frame
exists. Thus, a second approach is to consider helicity states and the corresponding basis of

two-component helicity spinors x, that are eigenstates of %&’-ﬁ, ie.,
$3-Px, = Xy, A==+1. (3.14)

Here p is the unit vector in the direction of the three-momentum, with polar angle 6 and
azimuthal angle ¢ with respect to a fixed z-axis. That is, the two-component helicity spinors
can be obtained from the fixed-axis spinors by replacing § by p and identifying 6 and ¢ as the
polar and azimuthal angles of p.

For fermions of mass m # 0, it is possible to define the spin four-vector S*, which is specified

in the rest frame by (0;8). The unit three-vector § corresponds to the axis of spin quantization

5 . . . . ~ ~ .
°In the literature, it is a common practice to choose § = 2. However in order to be somewhat more general,
we shall not assume this convention here.
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in the case of fixed-axis spin states. In an arbitrary reference frame, the spin four-vector satisfies
S-p=0and S-S = —1. After boosting from the rest frame to a frame in which p# = (E, p)
[cf. eq. (2.71)], one finds:

(B, (9P
S (m,s+m(E+m) . (3.15)

If necessary, we shall write S#(§) to emphasize the dependence of S* on 8.

The spin four-vector for helicity states is defined by taking § = p. Eq. (3.15) then reduces to
1 .
§" = —(|71; B9) (3.16)

In the non-relativistic limit, the spin four-vector for helicity states is S* ~ (0; p), as expected.”
In the high energy limit (E > m), S* = p#/m + O(m/E). For a massless fermion, the spin
four-vector does not exist (as there is no rest frame). Nevertheless, one can obtain consistent
results by working with massive helicity states and taking the m — 0 limit at the end of the
computation. In this case, one can simply use S* = p*/m+ O(m/FE); in practical computations
the final result will be well-defined in the zero mass limit. In contrast, for massive fermions at
rest, the helicity state does not exist without reference to some particular boost direction as
noted in footnote 6.

Using egs. (2.72) and (2.73), with S = (0; 8), the following two important formulae are

obtained:

VpoS-T\poc=ma-§, (3.17)
\V/pG@S-0/pT=—md&-§. (3.18)

These results can also be derived directly by employing the explicit form for the spin vector S*
[eq. (3.15)] and the results of egs. (2.69) and (2.70).

The two-component spinor wave functions z and y can now be given explicitly in terms
of the x, defined in eq. (B.6). First, we note that eq. (3.9) when evaluated in the rest frame
yields 1 = 7! and xy = 72, That is, as column vectors, z,(p = 0) = y%(p = 0) can be
expressed in general as some linear combination of the x, (s = :l:%) Hence, we may choose
1o(P=0,s5) = 74P = 0,s) = /mxs, where the factor of /m reflects the standard relativistic
normalization of the rest-frame spin states. These wave functions can be boosted to an arbitrary
frame using eq. (2.68). The resulting undotted spinor wave functions are given by (see [62]) for

related expressions

xa(ﬁs) = \/p'UXs7 wa(ﬁ,s) = _2SXT_S V pE? (319)
Ya(Prs) = 25/D0 X_, y* (P, s) = x!\/p-7, (3.20)

5Strictly speaking, p is not defined in the rest frame. In practice, helicity states are defined in some moving
frame with momentum p. The rest frame is achieved by boosting in the direction of —p.
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and the dotted spinor wave functions are given by

7%(P,s) = —2s\/PTX_, Zo(P,s) = x\vpo, (3.21)
s) =\/PTX,, Ja(P,s) = 2sx! /o, (3.22)

where \/p-0 and /p-7 are defined in egs. (2.69) and (2.70).

The phase choices in egs. (3.19)—(3.22) are consistent with those employed for four-component
spinor wave functions [see Appendix E]. We again emphasize that in egs. (3.19)—(3.22), one may
either choose x, to be an eigenstate of -3, where the spin is measured in the rest frame along
the quantization axis §, or choose X, to be an eigenstate of &:p (in this case we write s = \),
which yields the helicity spinor wave functions.

The following equations can now be derived:

(5-7) 5B, 5) = 259° (. ) (5-0) 57" (B.5) = ~2s24(F.5) . (3.23)
(S-0) 57 B(P,s) = —2sya(P,5) (S-7)%Pys(P, s) = 2s7%(P,s) ,  (3.24)
2 (B, 5)(S-0) 0 = —2575(F, 5) 75 (D, )(S-0) = 2s2°(F,s) ,  (3.25)
2a(P,5)(5-0)" = 259 (P, 5) Y (D,8)(S-0) 0 = —2524(P,s) . (3.26)

For example, using eqgs. (3.17) and (3.18) and the definitions above for z,(p, s) and %(p, s), we

find (suppressing spinor indices),

VD0 S Tx(P,s) =/p0oST\pox,=mG8x, =2smx,. (3.27)
Multiplying both sides of eq. (3.27) by +/p-@ and noting that \/p-7./p-0d = m, we end up with
S-Tx(p,s) =25\/pTx, = 25Y(P,s). (3.28)

All the results of egs. (3.23)—(3.26) can be derived in this manner.
The consistency of egs. (3.23)—(3.26) can also be checked as follows. First, each of these
equations yields
(5-0)aa(S-7)% = -7, (S-7)(S-0) s = —53. (3.29)
after noting that 4s®> = 1 (for s = £3). From egs. (2.39) and (2.40) it follows that S-S = —1,
as required. Second, if one applies
(p-aS-E—l—S'ap-E)aﬁ = 2p-56,.°, (p-ES-o—i—S-Ep-a)dﬁ- :2p-55‘j‘5, (3.30)

to egs. (3.9)—(3.12) and eqs. (3.23)—(3.26), it follows that p-S = 0.
It is useful to combine the results of egs. (3.9)—(3.12) and egs. (3.23)—(3.26) as follows:

(P — 2smS*) T3 w5 (P, s) = (pu — 2smS,)o" @5( p,s) =0, (3.31)
(p" + 25mS*)5, ys(P, 5) = 0, (P + 2smS,)o “ﬁyﬁ(p, 5) =0, (3.32)
(P, s)agﬁ-( —2smS,) =0, Za(D, 8)T aﬁ(p —2smS*) =0, (3.33)
y* (P, s)o ﬁ(pu +2smS,) =0, Yo (D, S)Eu (p" 4+ 2smSH*) = 0. (3.34)
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Eqgs. (3.23)-(3.26) and eqgs. (3.31)—(3.34) also apply to the helicity wave functions x(p, \) and
y(P, \) simply by replacing s with A and S*(8) [eq. (3.15)] with S*(p) [eq. (3.16)].

The above results are applicable only for massive fermions (where the spin four-vector S*
exists). We may treat the case of massless fermions directly by employing helicity spinors in

egs. (3.19)—(3.22). Putting F = |p] and m = 0, we easily obtain:

Ta(, ) = V2E (3 = A xy (B, A) = V2E (5 - xl,, 3.35)
Yol N) = V2E (3+2)x_y, v (B, A) = V2E (5 + V)x) (3.36)

or equivalently
(PN = V2E (3 - N x_y, 7a(BN) = V2E (3 = Mx) 3.37)
74BN = V2E (3+ X)) Xy, Ja(P, ) = V2E (5 + ', (3.38)

It follows that:
(3 + )z N =0, (3 +X) 2N =0, (3.39)
(5 =N y@N =0, (5 -2 @) =0, (3.40)

The significance of egs. (3.39) and (3.40) is clear; for massless fermions, only one helicity com-
ponent of x and y is non-zero. Applying this result to neutrinos, we find that massless neutrinos
are left-handed (A = —1/2), while anti-neutrinos are right-handed (A = +1/2).

Egs. (3.39) and (3.40) can also be derived by carefully taking the m — 0 limit of eqgs. (3.31)
and (3.32) applied to the helicity wave functions z(p, A) and y(p,\) [i.e., replacing s with A].
We then replace mS* with p*, which is the leading term in the limit of £ > m. Using the
results of egs. (3.9) and (3.10) and dividing out by an overall factor or m (before finally taking
the m — 0 limit) reproduces egs. (3.39) and (3.40).

Having defined explicit forms for the two-component spinor wave functions, we can now
write down the spin projection matrices. Noting that %(1 +256-8)xy = %(1 +4s5") x5 = 55/ X!

(since s, s’ = j:%), one can write:

XXl =11+255-8) Y x.xl. (3.41)

S

Using the completeness relation given in eq. (B.8), and eq. (3.17) for &-8, it follows that

2
XXt =3 (1 + Esx/p-a S \/p~0> : (3.42)
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Hence, with both spinor indices in the lowered position,

2(P,5)Z(P,s) = /PO XX VDO
2
e |1+ 2 s i Vi

2
m
=1[p-o—2smS-o] . (3.43)
In the final step above, we simplified the product of three dot-products by noting that p-S =0

implies that S-@ p-0c = —p-7@ S-0. The other spin projection formulae for massive fermions can

be similarly derived. The complete set of such formulae is given below: (see also [62])

51704( D, S)i‘ﬁ( p, 5) = %(pﬂ - 2smSH)O-ZB > (344)
74 (B, 5)y" (B, s) = 50" + 2smSH)7,” (3.45)
zo(D, $)YP (B, s) = : <m5aﬁ - ZS[S-ap-E]aﬁ> , (3.46)
5 (7, 5)2 (B, 5) = 4 <m5d5+2s[5-ﬁp-a]6‘ﬁ~> , (3.47)

or equivalently,

VP, )2’ (P, s) = %(p“ QSmS“)Efjﬁ, (3.48)
Ya(P, 8)75(P,s) = 5 (pu + 2smSM)a”ﬁ : (3.49)
Ya(P, 5)2" (P, s) = -1 (méaﬁ + 2s[S-ap-E]aﬁ> , (3.50)
(5, 5)55(B,5) = — 3 (mo® — 25[5-7p-0]y) . (3.51)

For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The
corresponding massless projection operators can be obtained directly from the explicit forms for

the two-component spinor wave functions given in egs. (3.35)—(3.38):

2a(P, NZ5(B,A) = (5 — Np-0yg, (@ N2 (B A) = (3 = Npa*’,  (3.52)
7 BNy (BN = (5 + Np-5°7 Ya(B 70, A) = (5 + Mp-o,s,  (3.53)
2a(B, Ny’ (B,2) = 0, Yo (B, N2’ (5, ) =0, (3.54)
7 (B, T, \) =0, (P, N7, \) =0 (3.55)

As a check, one can verify that the above results follow from eqs. (3.44)—(3.51), by replacing s
with A, setting mS* = p#, and taking the m — 0 limit at the end of the computation.

Having listed the projection operators for definite spin projection or helicity, we may now
sum over spins to derive the spin-sum identities. These arise when computing squared matrix

elements for unpolarized scattering and decay. There are only four basic identities, but for
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convenience we list each of them with the two index height permutations that can occur in
squared amplitudes by following the rules given in this paper. The results can be derived by
inspection of the spin projection operators, since summing over s = i% simply removes all terms

linear in the spin four-vector S*.

> 2B, 8)85(B,8) = p-oyy, >z, s)a’ (B,s) =p7*,  (3.56)
> 7B 5)y (B.s) = p77, D valB,9)7(B,5) =p-ony,  (3.57)
Y walB,8)y’ (B, 5) = méa” > va(@ )2’ (Bs) = —mda”,  (3.58)
D 5B 8)T (B, 5) = md > #4B,s)yyB,s) = —md%;. (3.59)

These results are applicable both to spin-sums and helicity-sums, and hold for both massive and
massless spin-1/2 fermions.

One can also work out generalizations of the massive and massive projection operators.
These are products of two-component spinor wave functions, where the spin or helicity of each
spinor may be different. These are the Bouchiat-Michel formulae [135], which are derived in

Appendix F.

3.2 Fermion mass diagonalization and external wave functions in a general
theory

Consider a collection of free anti-commuting two-component spin-1/2 fields, ém-(:n), which trans-

form as (%,0) fields under the Lorentz group. Here, « is the spinor index, and i labels the
distinct fields of the collection. The free-field Lagrangian is given by (see for example [67] for a

discussion of this Lagrangian)
L =i T0,E — IMIEE — LMEiET (3.60)

where
M;j = (M7)*, (3.61)

Note that M is a complex symmetric matrix, since the product of anticommuting two-component
fields satisfies é,fj = fjé [with the spinor contraction rule according to eq. (2.25)].

In eq. (3.60), we have used the following convention concerning the “flavor” labels ¢ and j.
Each left-handed (%, 0) fermion always has an index with the opposite height of the corresponding
right-handed (0, %) fermion. Raised indices can only be contracted with lowered indices and vice

versa. Flipping the heights of all flavor indices of an object corresponds to complex conjugation,
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as in eq. (3.61).7
We can diagonalize the mass matrix and rewrite the Lagrangian in terms of mass eigenstates
&ai , which have corresponding real non-negative masses m;. To do this, we introduce a unitary
matrix {2
& = QFe, (3.62)

and demand that M¥ QiijZ = myoHt (no sum over k), where the my, are real and non-negative.

Equivalently, in matrix notation with suppressed indices,?

QTM Q = m = diag(m1,ma, ...). (3.63)

This is the so-called Takagi diagonalization [69,70] of an arbitrary complex symmetric matrix,
which is discussed in more detail in Appendix D. To compute the values of the diagonal elements
of m, note that

QMTMQT = m?. (3.64)

Indeed MTM is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the
elements of the diagonal matrix m are the non-negative square roots of the corresponding
eigenvalues of MTM. However, in cases where MTM has degenerate eigenvalues, eq. (3.64)
cannot be employed to determine the unitary matrix € that satisfies eq. (3.63). A more general
technique for determining €2 that works in all cases is given in Appendix D.

In terms of the mass eigenstates,
& =i'T"0,& — smi(&& + €€ (3.65)

Each &,; can now be expanded in a Fourier series, exactly as in the previous subsection:

B | T |
Eai(x) = / Zai (D, s)ai (P, s)e” " + yai(P, s)a (P, s)e? |, (3.66)
> | @, |

T

where Fi, = (|p]? + m?)Y/2, and the creation and annihilation operators, a| and a; satisfy

anticommutation relations:

{ai(P, 5),al(F',s)} = 0> (B — §")0ss0ij - (3.67)

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention

1B, s) = (2m)*/2(2E;p)%al (5, 5) [0) (3.68)

"In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor
indices, which implies that all of the right-handed fermions have raised flavor indices. However, in cases where a
subset of left-handed fermions transform according to some representation R of a (global) symmetry whereas a
different subset of left-handed fermions transform according to the conjugate representation R*, it is often more
convenient to employ a raised flavor index for the latter subset of left-handed fields.

8In general, the m; are not the eigenvalues of M. Rather, they are the singular values of the matrix M, which
are defined to be the positive square roots of the eigenvalues of M tM. See Appendix D for further details.
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so that (pIp") = (2m)3(2E;p)0° (P — §”).

There is a useful modification to the mass diagonalization procedure above that is convenient
when there are massive Dirac fermions carrying a conserved charge. The key observation is that
one only needs a diagonal squared-mass matrix to ensure that the denominators of propagators
are diagonal. If x, is a charged massive field, then there must be an associated independent
two-component spinor field 7, of equal mass with the opposite charge. They appear in the

free-field Lagrangian as [6]:
L =ixo"Oux + o Oun — m(xn + X7) - (3.69)

Together, x and 7 constitute a single Dirac fermion. We can then write:

3—»
Z/ 2) 3/g 2E,)1/? [%(ﬁvS)a(ﬁ,S) Ty (B, 5)bT (B, 5)e™ x] . (3.70)

d3_‘ D, D. —ip-z 7¥ = ip-x
Z/ om)32(2E,) /2 [xa(p,S)b(p,s)e PT 4y (P, s)al (P, s)e™® ]7 (3.71)

where E, = (|p]* + m?)1/2, the creation and annihilation operators, af, b, a and b satisfy

anticommutation relations:

{a(p,s),a'(p,s)} = {b(D,s),b' (p,s")} = (B — P')dssr (3.72)

and all other anticommutators vanish. We now must distinguish between two types of one

particle states, which we can call fermion (F') and anti-fermion (A):

1B, s; F) = (2m)%2(2E,) ' %al (9, 5) |0) | (3.73)
1B, 5; A) = (2m)*/2(2E,) /201 (P, 5) [0) - (3.74)

Note that both n(z) and y(z) can create |p,s; F') from the vacuum, while 77(x) and y(x) can

create |p, s; A). The one-particle wave functions are given by:

(0l Xa(2) B, 51 F) = wa(F,s)e™ """, (0176 (x) |, 5; F) = ga (B, s)e™ ", (3.75)
(F; 5, 5] 110(2) |0) = ya(B, 5)e™" (F: P, s Xa(2) 0) = Za(F, 5)e™" , (3.76)
(010 () 1P, 53 A) = 2o (B, 5)e™ "7, (0] Xa () B, 5; 4) = ga(B, s)e™ ", (3.77)
(455, 5| Xa(2)[0) = ya(P, 5)eP™", (A5 7, 5] 716 (2) [0) = T4 (B, 5)e™" (3.78)

and the eight other single-particle matrix elements vanish.
More generally, consider a collection of such free anti-commuting charged massive spin-
1/2 fields, which can be represented by pairs of two-component fields Yai(z), 7% (x). These

fields transform in (possibly reducible) representations of the unbroken symmetry group that
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are complex conjugates of each other. (This is the reason for the difference in the flavor index

height i.) The free-field Lagrangian is given by
L =ix TN + inio O — M'yxay — M?X'n;, (3.79)

where M?; is an arbitrary complex matrix, and M;? = (M?;)* as before. We diagonalize the

mass matrix by introducing eigenstates x; and 7' and unitary matrices L and R,
X = Lixk i = Rin", (3.80)

and demand that M Z'jLikRj ¢ = mkéf (no sum over k). In matrix form, this is written as (see
footnote 8):
LTMR = M = diag(M,, Ms,...), (3.81)

with the m; real and non-negative. The singular-value decomposition of linear algebra, discussed
more fully in Appendix D, states that for any complex matrix M, unitary matrices L and R

exist such that eq. (3.81) is satisfied. It follows that:?
LT (MMY)L* = RY(MTM)R = M?>. (3.82)

That is, since MM T and MTM are both hermitian (with the same real non-negative eigenvalues),
they can be diagonalized by unitary matrices. The diagonal elements of M are therefore the
non-negative square roots of the corresponding eigenvalues of MM (or MTM).

Thus, in terms of the mass eigenstates,

&L = ix'T0,x; + inic"um’ — mi(xin' + X'7i) - (3.83)

The mass matrix now consists of 2 x 2 blocks ( ,& ”81) along the diagonal. More importantly,

the squared-mass matrix is diagonal with doubly degenerate entries m? that will appear in the
denominators of the propagators of the theory. It describes a collection of Dirac fermions.'®

Therefore, the result of the mass diagonalization procedure in a general theory always
consists of a collection of Majorana fermions as in equation (3.65), plus a collection of Dirac
fermions as in equation (3.83). This is the basis of the Feynman rules to be presented in the
next section.

For completeness, we review the squared-mass matrix diagonalization procedure for scalar

fields. First, consider a collection of free commuting real spin-0 fields, ¢;(z), where the flavor

%Consistency of notation requires that (MT)"; = M;* = (M?,)* [and likewise (M");7 = M?; = (M;*)*]. This
permits the multiplication of MM' and MTM in a U(N)-covariant fashion.

00f course, one could always choose instead to treat the Dirac fermions in a basis with a fully diagonalized
mass matrix, as in equation (3.65), by defining £2:—1 = (xs —l—ni)/\/i and &2; = i(xs —ni)/ﬂ. These fermion fields
do not carry well-defined charges, and are analogous to writing a charged scalar field ¢ and its oppositely-charged
conjugate ¢* in terms of their real and imaginary parts. However, it is rarely, if ever, convenient to do so; practical
calculations only require that the squared-mass matrix is diagonal, and it is of course more pleasant to employ
fields that carry well-defined charges.
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index i again labels the distinct scalar fields of the collection. The free-field Lagrangian is given
by

& = 50.0i0"pi — M55 (3.84)
where ij is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by
introducing mass-eigenstates ¢; and the orthogonal matrix ) such that ¢; = Q;;p;, with

ijQiijg =m0k (no sum over k). In matrix form, the latter reads
QTM?Q = m? = diag(m?,m2,...). (3.85)

This is the standard diagonalization problem for a real symmetric matrix. The eigenvalues m%
are real.'!

Second, consider a collection of free commuting complex spin-0 fields, (i%(a;) For complex
fields, we follow the convention for flavor indices enunciated below eq. (3.61) [e.g., ¢ = ($;)*].

The free-field Lagrangian is given by
L = 0,0 D, — (M?) ;0,07 (3.86)

where (M?); is an hermitian matrix [which satisfies (M?2)%; = (M?);" (see footnote 9)].
We diagonalize the scalar squared-mass matrix by introducing mass-egienstates ®; and the
unitary matrix W such that d; = Wk, (and Pt = WiL®F), with (M2)ijWiijg = M,?éf (no

sum over k). In matrix form, the latter reads
WIM2W = M? = diag(M?, M3,...). (3.87)

This is the standard diagonalization problem for an hermitian matrix. The eigenvalues mz are

real (see footnote 11).

4 Feynman rules with two-component spinors

In order to systematically perform perturbative calculations using two-component spinors, we
here present the basic Feynman rules. The Feynman rules for some specific models are given
in the Appendices E, F and G. Two-component Feynman rules have also been discussed in

24, 64-66]

4.1 External fermion rules

Let us consider a general theory, for which we may assume that the mass matrix for fermions has

been diagonalized as discussed in the previous section. The rules for assigning two-component

external state spinors are then as follows.!?

Negative eigenvalues of M? imply that the naive vacuum is unstable. One should shift the scalar fields by
their vacuum expectation values and check that the resulting scalar squared-matrix possesses only non-negative
eigenvalues.

2WWe will often suppress the momentum and spin arguments of the spinor wave functions.
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e For an initial-state left-handed (1,0) fermion: =.
e For an initial-state right-handed (0, ) fermion: .
e For a final-state left-handed (3,0) fermion: z.

e For a final-state right-handed (0, 3) fermion: y.

Note that, in general, the two-component external state fermion wave functions are distinguished
by their Lorentz group transformation properties, rather than by their particle or antiparticle
status as in four-component Feynman rules. This helps to explain why two-component notation
is especially convenient for (i) theories with Majorana particles, in which there is no fundamental
distinction between particles and antiparticles, and (ii) theories like the Standard Model and
MSSM in which the left and right-handed fermions transform under different representations of
the gauge group and (iii) problems with polarized particle beams. These rules are summarized

in the mnemonic diagram of Figure 1.

L (3,0) fermion

Initial State Final State

R (0, 3) fermion

Figure 1: The external wave-function spinors should be assigned as indicated here, for initial-
state and final-state left-handed (3, 0) and right-handed (0, ) fermions.

In contrast to four-component Feynman rules, the direction of the arrows do not correspond
to the flow of charge or fermion number. These rules simply correspond to the formulae for the
one-particle wave functions given in egs. (3.7) and (3.8) [with the convention that |p,s) is an
initial-state fermion and (P, s| is a final-state fermion]. In particular, the arrows indicate the
spinor index structure, with fields of undotted indices flowing into any vertex and fields of dotted
indices flowing out of any vertex.

The rules above apply to any mass eigenstate two-component fermion external wave func-
tions. It is noteworthy that the same rules apply for the two-component fermions governed by

the Lagrangians of eq. (3.65) [Majorana] and eq. (3.83) [Dirac].
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4.2 Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of
the two-component fermion propagators using path integral techniques is given in Appendix C.
Here, we will follow the more elementary approach typically given in an initial textbook treat-
ment of quantum field theory.

Fermion propagators are the Fourier transforms of the free-field vacuum expectation values
of time-ordered products of two fermion fields. They are obtained by inserting the free-field
expansion of the two-component fermion field and evaluating the spin sums using the formulas
given in eqs. (3.56) and (3.59). For the case of a single neutral two-component fermion field &
of mass m [see egs. (3.65)-(3.68)] [24,46,64-66,68],

? ?

01 T¢a@)5(0) O)r = e 3 2alBs)04(5.9) = o prse (L)
OITEWE W Ot = i, T FW F0) = s agep ™ (12
O1TE @) 0) 10)er = 3 5 75 9)73(55) = e (43
OITE W) Oer = e D o F0) =y mgomd”s (44)

where FT indicates the Fourier transform from position to momentum space.'® These results

have an obvious diagrammatic representation, as shown in Fig. 2.

_Pr _ P,
@ © g
ip-aag ip-748
2 —m? p? —m?
—- . — -
© - @ 3 -
. B
P2 — m2 5a6 P2 — m2 Oa

Figure 2: Feynman rules for propagator lines of a neutral two-component fermion with mass m.
(The +ie terms in the denominators have been omitted here and from now on, for simplicity.)

3The Fourier transform of a translationally invariant function f(z,y) = f(z — y) is given by

~

faw) = [ s Fwye e,

~

In the notation of the text above, f(z,y)pr = f(p)-
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or

_r 5 PO, —ip-gPe
> - 2-m? 5 pP2_m?

B
Figure 3: This rule summarizes the results of both figs. 2(a) and (b) for a neutral two-
component fermion with mass m.

Note that the direction of the momentum flow p* here is determined by the creation operator
that appears in the evaluation of the free-field propagator. Arrows on fermion lines always run
away from dotted indices at a vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction of
arrows, so it has one dotted and one undotted index. For this type of propagator, it is convenient
to establish a convention where p# in the diagram is defined to be the momentum flowing in the
direction of the arrow on the fermion propagator. With this convention, the two rules above for
propagators of the first type can be summarized by one rule, as shown in Fig. 3. Here the choice
of the o or the @ version of the rule is uniquely determined by the height of the indices on the
vertex to which the propagator is connected.'® These heights should always be chosen so that
they are contracted as in eq. (2.25). It should be noted that in diagrams (a) and (b) of Fig. 2
as drawn, the indices on the ¢ and & read from right to left. This means that the most efficient
way to use the propagator rules of diagrams (a) and (b) [or equivalently, the propagator rule of
Fig. 3] in a Feynman diagram computation is to traverse the propagator lines in the direction
antiparallel [parallel] to the arrowed line segment for the o [] version of the rule.

The second type of propagator shown in diagrams (c) and (d) of Fig. 2 does not preserve the
direction of arrows, and corresponds to an odd number of mass insertions. The indices on §¢ 3
and 0,° are staggered as shown to indicate that ¢& or a are to be contracted with an expression
to the left, while ﬂ or 8 are to be contracted with an expression to the right, in accord with
eq. (2.25).19

Starting with massless fermion propagators, one can derive the massive fermion propagators
by employing mass insertions as interaction vertices, as shown in Fig. 4. By summing up an
infinite chain of such mass insertions between massless fermion propagators, one can reproduce
the massive fermion propagators of both types.

It is convenient to treat separately the case of charged massive fermions. Consider a charged
Dirac fermion of mass m, which is described by a pair of two-component fields x and 7 [eq. (3.69)].

Using the free field expansions given by eqs. (3.70) and (3.71), and the appropriate spin-sums

The second form of the rule in Fig. 3 arises when when one flips diagram (b) of Fig. 2 around by a 180°
rotation (about an axis perpendicular to the plane of the diagram), and then relabels p — —p, & — ﬁ and 8 — a.

5 As in Fig. 3, alternative versions of the rules corresponding to diagrams (c) and (d) of Fig. 2 can be given
for which the indices on the Kronicker deltas are staggered as 6°4 and 03“. These versions correspond to flipping
the two respective diagrams by 180° and relabeling the indices & — ﬂ and 8 — a.
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I} Q 1] Q

—imd,” —imédB

Figure 4: Fermion mass insertions (indicated by the crosses) can be treated as a type of
interaction vertex, using the Feynman rules shown here.

[egs. (3.56)—(3.59)], the two-component free-field propagators are obtained:

i

(0] Txa (@)X () [0)pr = (0| Tna()74(y) [0)pr = oy R (4.5)
(O1Tx*(2)x" (y) |0)pr = (O] T7%(2)7°(y) [0)pp = pz%mgp-ﬁ‘w, (4.6)
(01 TXa @) ) D) = (O Ta2 () [0 = 5= m . (4.7)
O/ T @)500) 0 = (O] TH @R5(0) O = =~ m 6%, (438)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.

These results again have a simple diagrammatic representation, as shown in Fig. 5.

P, _p
(a) X 5 > - X (b) n 5 > - n
z'p-aaﬁ- _Z'p.EBOC ip-aaﬁ- _ip.gﬁa
or or
2 —m2 = 2 —m2 p2 —m?2 - p2 —m?2
———<— ———
(c) X ﬁ - n (d) X 3 - n
. B
2 —m2 5a6 p2 —m?2 Oa

Figure 5: Feynman rules for propagator lines of a pair of charged two-component fermions with
a Dirac mass m. As in Fig. 3, the direction of the momentum is taken to flow from the dotted
to the undotted index in diagrams (a) and (b).

Note that for Dirac fermions, the propagators with opposing arrows (proportional to a mass)
necessarily change the identity (x or 1) of the two-component fermion, while the single-arrow
propagators are diagonal in the fields. In processes involving such a charged fermion, one must
of course distinguish between the x and 7 fields.

For completeness, we provide the propagators for scalar and vector bosons in Fig. 6.
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pr'p”

2 VaVaVaVaVaV U 1=
g” +(£ 1)p2_§m2

K v P2 —m?2

Figure 6: The Feynman rules for propagators of scalar bosons, and vector bosons in R, gauge,
carrying momentum p* in each case. Here £ = 1 is Feynman gauge, and & = 0 is Landau gauge.

4.3 Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-
invariant interactions involving fermions must consist of bilinears in the fermion fields, which
transform as a Lorentz scalar or vector, coupled to the appropriate bosonic scalar or vector field
to make an overall Lorentz scalar quantity.

Let us write all of the two-component left-handed fermions of the theory as %-, where j
runs over all of the gauge group representation and flavor degrees of freedom. The most general

set of interactions with the scalars of the theory ¢; are then given by:
Ling = —3Y %@y, — $Y1500 70", (4.9)

where ff]jk = (Y” )* and qASI = (QZBI)* We have suppressed the spinor indices here; the product
of two component spinors is always performed according to the index convention indicated in
eq. (2.25). The flavor index I runs over a collection of real scalar fields ¢; and pairs of complex
scalar fields <i>j and (i)j)*.lﬁ The Yukawa couplings Y77% are symmetric under interchange of j
and k. The hatted fields are the so-called interaction-eigenstate fields.

However, in general the mass-eigenstates can be different, as discussed in subsection 3.2.
The computation of matrix elements for physical processes is more conveniently done in terms
of the propagating mass-eigenstate fields. In general, the interaction-eigenstate (%, 0)-fermion
fields t; consist of Majorana fermions &;, and Dirac fermion pairs ¥; and 7' after mass terms
(both explicit and coming from spontaneous symmetry breaking) are taken into account. The
mass-eigenstate basis v is related to the interaction-eigenstate basis ¥ by a unitary rotation U

on the flavor indices. In matrix form:

(€ Q 0 0\ /¢
v=|x|=Uvp=|0 L 0] |x]. (4.10)
7l 0 0 R/ \n

where €2, L, and R are constructed as described previously in Section 3.2 [see egs. (3.63) and

(3.81)]. Likewise, the interaction-eigenstate scalar fields ¢ generally consist of real scalar fields

18For example, in a theory with one complex scalar field <i>7 we would take (;31 =& and qBQ = o,
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Jy o

(a) —[— » - —iYlik§ B or — iYIjkdﬁa
k,p
j,

(b) ik —iYRd%y or = i¥go”s
k3

Figure 7: Feynman rules for Yukawa couplings of scalars to two-component fermions in a
general field theory. The choice of which rule to use depends on how the vertex connects to
the rest of the amplitude. When indices are suppressed, the spinor index part is always just
proportional to the identity matrix.

p; and complex scalar fields ®;. The mass eigenstate basis ¢ is related to the interaction

eigenstate basis qg by a unitary rotation V7’ on the flavor indices. In matrix form:

=) =(3 R)E)

where Q and W are constructed according to egs. (3.85) and (3.87).

Thus, we may rewrite eq. (4.9) in terms of mass-eigenstate fields:
Ling = —5Y 01000 — 510" 074" (4.12)
where
vk = v 1o, u, by tmn (4.13)

The corresponding Feynman rules are shown in Fig. 7. Note that if the scalar ¢; is complex,
then one can associate an arrow with the flow of analyticity,!” which would point into the vertex
in (a) and would point out of the vertex in (b).

The renormalizable interactions of vector bosons with fermions and scalars arise from gauge
interactions. These interaction terms of the Lagrangian derive from the respective kinetic energy

terms of the fermions and scalars when the derivative is promoted to the covariant derivative:
(Dp)i? = 678, + iga AL (T, (4.14)

where the index a labels the (real or complex) vector bosons A/ and is summed over. The index

17As in the case of the fermions, the arrow on the dashed line representing the scalar field does not represent
the flow of a conserved charge. It simply keeps track of the height of the scalar flavor index entering or leaving a
given vertex.
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a runs over the adjoint representation of the gauge group,'® and the (T%);/ are hermitian rep-

resentation matrices!® of the Lie algebra of the gauge group acting on the left-handed fermions.

There is a separate coupling g, for each simple group or U(1) factor of the gauge group G.?°
In the gauge-interaction basis for the left-handed two-component fermions the corresponding

interaction Lagrangian is given by
Lt = —Ga AP T, (T ;. (4.15)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson
squared mass matrix. The form of eq. (4.15) still applies where Af, are gauge boson fields of
definite mass, although in this case for a fixed value of a, g,T* [which multiplies A}, in eq. (4.15)]
is some linear combination of the original g,T® of the unbroken theory.?2! Henceforth, we assume
that that the Aj, are the gauge boson mass-eigenstate fields.

To obtain the desired Feynman rule, we must rewrite eq. (4.15) in terms of mass-eigenstate

fermion fields. The resulting interaction Lagrangian takes the form
Ling = — A5 3, (G) i, (4.17)

where

(G = gaU (T Uni? (4.18)
or in matrix form, G% = g,UTT*U (no sum over a). Note that G is an hermitian matrix. The
corresponding Feynman rule is shown in Fig. 8.

The above treatment of gauge interactions of (two-component) fermions is general, but it
is useful to consider separately the special case of gauge interactions of charged Dirac fermions.
Consider pairs of left-handed (%, 0) interaction-eigenstate fermions y; and 7’ that transform as
conjugate representations of the gauge group (hence the difference in the flavor index heights).
The fermion mass matrix couples x and 7 type fields as in eq. (3.79). The Lagrangian for the

gauge interactions of Dirac fermions can be written in the form:

Lint = —ga X Tu(T)I %) + 9a A7 7, (T (4.19)

18Since the adjoint representation is a real representation, the height of the adjoint index a is not significant.
The choice of a subscript or superscript adjoint index is based solely on typographical considerations.

9For a U(1) gauge group, the T are replaced by real numbers corresponding to the U(1) charges of the
left-handed (3, 0) fermions.

20That is, the generators T separate out into distinct classes, each of which is associated with a simple group
or one of the U(1) factors contained in the direct product that defines G. In particular, go = g if 7% and T b are
in the same class. If GG is simple, then g, = g for all a.

*'For example, in the electroweak Standard Model, G=SU(2)xU(1) and T* = (37, 1Y), where the 7 are
the usual Pauli matrices. Then, after diagonalizing the gauge boson squared-mass matrlx one finds:

a_a + + g 3 .2
TgWir® + 1¢'B,Y = 2\/_(W + W, T )+m(f +2Qsin® 0w ) Z, + eQA,, (4.16)
where 7% = 7! 4 i72, Q 1(r*+Y), and e = gsinfw = ¢’ cosOw. Here {W, B,} are the gauge fields of the

unbroken theory and W+ Z and A are the gauge boson mass-eigenstates of the broken theory.
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Figure 8: The Feynman rules for two-component fermion interactions with vector bosons. The
choice of which rule to use depends on how the vertex connects to the rest of the amplitude. G¢
is defined in eq. (4.18).

where the A7, are gauge boson mass-eigenstate fields. Here we have used the fact that if (T
are the representation matrices for the x;, then the 7); transform in the complex conjugate
representation with generator matrices —(T%)* = —(T'*)T, where we have used the hermiticity
of the generator matrices. Again we rewrite eq. (4.19) in terms of mass-eigenstate fermion fields.

The resulting interaction Lagrangian is given by:

Ling = —ALX"7,(G1)i7 x5 + AL T, (GR);' (4.20)

where
(G1)i? = gaL*(T*)s™ L, (4.21)
(GR);" = gaR™ (T " Ry (4.22)

In matrix form, egs. (4.21) and (4.22) read: G¢ = g,LIT*L and G% = g,RT*R (no sum
over a); G¢ and G% are hermitian matrices. The corresponding Feynman rules for the gauge

interactions of Dirac fermions are shown in Fig. 9.

Xi

~i(G)77"  or  ig(GL)d ousa
X;
ni

i(GY); T or  —ig(G%); o upa
77]'

Figure 9: The Feynman rules for two-component fermion interactions with vector bosons, in
the case that y; and 7 form a Dirac fermion. The matrices G¢ and G% are related to the group
generators for the representation carried by the x; according to eqgs. (4.21) and (4.22). The
two-component field labels conform to the conventions of Section 5.

In Figs. 7-9, two versions are given for each of the boson-fermion-fermion Feynman rules.

The correct version to use depends in a unique way on the heights of indices used to connect
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each fermion line to the rest of the diagram. For example, the way of writing the vector-fermion-
fermion interaction rule depends on whether we used 1;"5”%, or its equivalent form —d)ja‘%ﬂ",
from eq. (4.15). Note the different heights of the undotted and dotted spinor indices that adorn
o* and @*. The choice of which rule to use is thus dictated by the height of the indices on
the lines that connect to the vertex. These heights should always be chosen so that they are
contracted as in eq. (2.25). Similarly, for the scalar-fermion-fermion vertices, one should choose
the rule which correctly matches the indices with the rest of the diagram. However, when all
spinor indices are suppressed, the scalar-fermion-fermion rules will have an identical appearance
for both cases, since they are just proportional to the identity matrix on the 2 X 2 spinor space.)

These above comments will be clarified by examples in Section 4.5. Numerous examples

and applications of the results of this subsection can be found in Appendices D and E.

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that
conform with the rules given above for external wavefunctions, propagators, and interactions.
Starting from any external wave function spinor, or from any vertex on a fermion loop, factors
corresponding to each propagator and vertex should be written down from left to right, following
the line until it ends at another external state wave function or at the original point on the
fermion loop. If one starts a fermion line at an x or y external state spinor, it should have
a raised undotted index in accord with eq. (2.25). Or, if one starts with an Z or g, it should
have a lowered dotted spinor index. Then, all spinor indices should always be contracted as in
eq. (2.25). If one ends with an x or y external state spinor, it will have a lowered undotted index,
while if one ends with an Z or g spinor, it will have a raised dotted index. For arrow-preserving
fermion propagators and gauge vertices, the preceding determines whether the o or & rule should
be used. With only a little practice, one can write down amplitudes immediately with all spinor
indices suppressed.

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:
e Each closed fermion loop gets a factor of —1.

e A relative minus sign is imposed between terms contributing to a given amplitude whenever

the ordering of external state spinors (written left-to-right) differs by an odd permutation.

Amplitudes generated according to these rules will contain objects of the form:
a=21%2 (4.23)

where z7 and zy are each commuting external spinor wave functions z, Z, y, or ¢, and X is a
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sequence of alternating ¢ and @ matrices. The complex conjugate of this quantity is given by
a* = 75,7 (424)

where ¥, is obtained from X by reversing the order of all the o and @ matrices, and using the
same rule for suppressed spinor indices. (Notice that this rule for taking complex conjugates
has the same form as for anticommuting spinors.) We emphasize that in principle, it does not
matter in what direction a diagram is traversed while applying the rules. However, for each
diagram one must include a sign that depends on the ordering of the external fermions. This
sign can be fixed by first choosing some canonical ordering of the external fermions. Then for any
graph that contributes to the process of interest, the corresponding sign is positive (negative)
if the ordering of external fermions is an even (odd) permutation with respect to the canonical
ordering. If one chooses a different canonical ordering, then the resulting amplitude changes
by an overall sign (is unchanged) if this ordering is an odd (even) permutation of the original
canonical ordering.?? This is consistent with the fact that the amplitude is only defined up to
an overall sign, which is not physically observable.

Note that different graphs contributing to the same process will often have different external
state wave function spinors, with different arrow directions, for the same external fermion.
Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in
some four-component Feynman rules for Majorana fermions. Instead, one must add together all

Feynman graphs that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

A few simple examples will help clarify these rules. (A larger number of examples, drawn from

practical calculations, are given in section 6.) Let us first consider a theory with a single,

1

uncharged, massive (3,0) fermion £, and a real scalar ¢, with interaction

Lint = —3 (A& + NEE) ¢ (4.25)

Consider the decay ¢ — £(P7, s1)&(P2, S2), where by £ we mean the one particle state given by
eq. (3.6). Two diagrams contribute to this process, as shown in Figure 10.

The matrix element is then given by

iM = y(P, Sl)a(—i)\éaﬁ)y(ﬁz, s2)p + (D7, Sl)a(—i)\*‘sdg)i‘(ﬁ% 52)5

= —i\y(P1, $1)Y(Ds, S2) — IN'T(P], $1)T(Ps, S2). (4.26)

22For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. However, if there are four or more
external fermions, it may happen that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen
according to the relative sign of the permutation of the corresponding external fermion spinors. This guarantees
that the total amplitude is antisymmetric under the interchange of any pair of external fermions.
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(p1, 51) &(p1,s1)

Figure 10: The two tree-level Feynman diagrams contributing to the decay of a scalar into a
Majorana fermion pair.

The second line could be written down directly by recalling that the sum over suppressed spinor
indices is taken according to eq. (2.25). Note that if we reverse the ordering for the external
fermions, the overall sign of the amplitude changes sign. This is easily checked, since for the
commuting spinor wave functions (z and y), the spinor products in eq. (4.26) change sign when
the order is reversed [see egs. (2.47) and (2.48)]. This overall sign is not significant and depends
on the order used in constructing the two particle state. One could even make the choice of

starting the first diagram from fermion 1, and the second diagram from fermion 2:
iM = iy (By. 51)y(Bs 52) — (—L)iN'E(By, 52)F(B) 1) (4.27)

Here the first term establishes the canonical ordering of fermions (12), and the contribution from
the second diagram therefore includes the relative minus sign in parentheses. Indeed, eqs. (4.26)
and (4.27) are equal. The computation of the total decay rate is straightforward. Of course,
one must multiply the integral over the total phase space by 1/2 to account for the identical
particles.

Consider next the decay of a massive neutral vector A, into a Majorana fermion pair

A, — &(P1, 51)&(Py, s2), following from the interaction
Ling = —GAMET,E, (4.28)

where G is a real coupling parameter. The two diagrams shown in Figure 11 contribute.

f(p1,81) 5(]91,51)

6(]92782) é(p2782)

Figure 11: The two tree-level Feynman diagrams contributing to the decay of a massive vector
boson A, into a pair of Majorana fermions &.

We start from the fermion with momentum p; and spin vector s; and end at the fermion

with momentum po and spin vector sz, using the rules of Fig. 8. The resulting amplitude for
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the decay is
iM = e [-iGZ(PY, 51)0,y(Pa, s2) + iGY(P1, $1)0,%(Py, 52)] (4.29)

where e is the vector boson polarization vector. We have used the &-version of the vector-
fermion-fermion rule [see Fig. 8] for the first diagram of Fig. 11 and the o-version for the
second diagram of Fig. 11, as dictated by the implicit spinor indices, which we have suppressed.
However, we could have chosen to evaluate the second diagram of Fig. 11 using the a-version of
the vector-fermion-fermion rule by starting from the fermion with momentum po. In that case,

the factor +iGy(p, s1)0,Z(Py, s2) in eq. (4.29) is replaced by
(—1)[~iGE (B, 52)T (B, 51)]. (4.30)

In eq. (4.30), the factor of —iG arises from the use of the -version of the vector-fermion-fermion
rule, and the overall factor of —1 appears because the order of the fermion wave functions has
been reversed; i.e. (21) is an odd permutation of (12). This is in accord with the ordering rule
stated at the end of Section 4.4. Thus, the resulting amplitude for the decay of the vector boson

into the pair of Majorana fermions now takes the form:
iM = e [—iGZ(Py, 51)0y(Pa, 52) + IGT(Dy; 52)0.y (1, 51)] - (4.31)

By using yotz = Zo*y, which follows from eq. (2.49) with commuting spinors, one sees that
eqs. (4.29) and (4.31) are identical. The form given in eq. (4.31) explicitly exhibits the fact that
the amplitude is antisymmetric under the interchange of the two external identical fermions.
Again, the absolute sign of the total amplitude is not significant and depends on the choice of
ordering of the outgoing states.

Next, we consider the decay of a massive neutral vector boson into a charged fermion-
antifermion pair. Suppose that we identify x and 7 as left-handed fields with charges @ = 1 and

@ = —1, respectively. The corresponding interaction is given by:
Ling = —A¥[GLXTux — GRG0 (4.32)
There are two contributing graphs, as shown in Figure 12.
x(p1, 1) n(p1, s1)
A, A,

X(p2782) 77(]92,52)

Figure 12: The two tree-level Feynman diagrams contributing to the decay of a massive neutral
vector boson A, into a Dirac fermion-antifermion pair.

To evaluate the amplitude, we start from the charge @ = +1 fermion (with momentum

p1 and spin vector s1), and end at the charge @ = —1 fermion (with momentum py and spin
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vector $g). In particular, for the final state fermion lines, the outgoing x with arrow pointing
outward from the vertex and the outgoing n with arrow pointing inward to the vertex both

correspond to outgoing () = +1 states. The amplitude for the decay is

iM = el [-iGLz(p), Sl)Euy(ﬁm s9) — iGRY(PY, Sl)aui"(ﬁzy 52)]
= et [_iGL‘%(ﬁlv 31)6uy(ﬁ27 32) - Z‘GR‘%(ﬁ% SQ)EMy(ﬁlv 51)] . (433)

As in the case of the decay to a pair of Majorana fermions, we have exhibited two forms for the
amplitude in eq. (4.33) that depend on whether the g-version or the o-version of the Feynman
rule has been employed. Of course, the resulting amplitude is the same in each method (up to
an overall sign of the total amplitude which is not determined).

The next level of complexity consists of diagrams that involve fermion propagators. For our
first example of this type, consider the tree-level matrix element for the scattering of a neutral
scalar and a two-component neutral massive fermion (¢ — ¢¢), with the interaction Lagrangian
given above in eq. (4.25). Using the corresponding Feynman rules, there are eight contributing
diagrams. Four are depicted in Fig. 13; there are another four diagrams (not shown) where the
initial and final state scalars are crossed (i.e., the initial state scalar is attached to the same

vertex as the final state fermion).

N 7 N 7
N Ve N Ve
N k s N k s
N Ve N Ve
<l |-

/ ) \\ / -

N 7 N 7
N Ve N Ve
N 7 N 7
N e N e

Figure 13: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a neutral two-component fermion. There are four more diagrams, obtained from
these by crossing the initial and final scalar lines.

We shall write down the amplitudes for the four diagrams shown, starting with the final

state fermion line and moving toward the initial state fermion line. Then,

. _i — (= — — — — =
iM = ——— AP [E(Py, 52) Tk a(Py, 1) + Y(Dy, 52) 0k Gy, 51)]
k —mg

+me [N2y(By, 52)2 (P, 51) + (\*)2Z (P, 52)5(Py 51)] } + (crossed).  (4.34)
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Figure 14: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a neutral two-component fermion. There are four more diagrams, obtained
from these by crossing the initial and final scalar lines.

where k* is the sum of the two incoming (or outgoing) four-momenta, (p1,s1) are the momentum
and spin four-vectors of the incoming fermion, and (p2, s9) are those of the outgoing fermion.
(We will not write down the “crossed” terms, which have the the initial and final scalars inter-
changed.) Note that we could have evaluated the diagrams above by starting with the initial
vertex and moving toward the final vertex. It is easy to check that the resulting amplitude is
the negative of the one obtained in eq. (4.34); the overall sign change simply corresponds to
swapping the order of the two fermions and has no physical consequence. The overall minus
sign is a consequence of eqgs. (2.47)-(2.49) and the minus sign difference between the two ways
of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a vector boson and a
neutral massive two-component fermion £ with the interaction Lagrangian of eq. (4.28). Again
there are eight diagrams: the four diagrams depicted in Fig. 14 plus another four (not shown)
where the initial and final state vector bosons are crossed. Starting with the final state fermion
line and moving toward the initial state, we obtain

—iG?

iM= W{f(ﬁz, $2)0-c,0kT e x(Py,81) +y(Pa,52) 0657 k&7 (P, 51)

—mg [y(ﬁQ, s2) 06,061 (P}, 51) + T(Pa, 52) T4 061 Y(PY, 31)] } + (crossed),  (4.35)

where €, and e, are the initial and final vector boson polarization four-vectors, respectively.
As before, k* is the sum of the two incoming (or outgoing) four-momenta, and (p1, s1) are the
momentum and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing
fermion. (We again omit the “crossed” terms, which have the the initial and final vector bosons
interchanged.) If one evaluates the diagrams above by starting with the initial vertex and moving

toward the final vertex, the resulting amplitude is the negative of the one obtained in eq. (4.35),
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N 7 N 7
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N 7 N 7
N e N e
N Ve N Ve

Figure 15: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

as expected.
As our next example, we consider the scattering of a charged Dirac fermion with a neutral
scalar. The left-handed fields x and n have opposite charges ) = 4+1 and —1 respectively, and

interact with the scalar ¢ according to
Lt = —@[rxn + K" X7] (4.36)

where k is a coupling parameter. Then, for the elastic scattering of a ) = +1 fermion and a
scalar, the diagrams of Fig. 15 contribute at tree-level plus another four diagrams (not shown)
where the initial and final state scalars are crossed. Now, these diagrams match precisely those
of Fig. 13. Thus, applying the Feynman rules yields the same matrix element, eq. (4.34),
previously obtained for the scattering of a neutral scalar and neutral two-component fermion,
with the replacement of A with .

Consider next the scattering of a charged Dirac fermion and a charged scalar, where both
the scalar and fermion have the same absolute value of the charge. As above, we denote the
charged @@ = +1 fermion by the pair of two-component fermions x and 1 and the (intermediate
state) neutral two-component fermion by £. The charged @ = %1 scalar is represented by the

scalar field ¢ and its complex conjugate. The interaction Lagrangian takes the form:

Line = =" [F1xE + K57E] — SRINE + ramg] - (4.37)
Consider the scattering of an initial boson-fermion state into its charge-conjugated final state
via the exchange of a neutral fermion. The relevant diagrams are shown in Fig. 16 plus the
corresponding diagrams with the initial and final scalars crossed. We define the four-momentum

k to be the sum of the two initial state four-momenta as shown in Fig. 16. The derivation of
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N Ve N Ve

X 1 7 X
N R4 N R4

Figure 16: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the
initial and final scalar lines.

the amplitude is similar to the ones given previously, and we end up with
—1

M = ko, 52T 50) + B 52) 0 )
3

T me [y 52)2(Br, 51) + (K322 By, 52)(B, 1) } T (crossed). (4.38)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly
treated. For example, consider the amplitude for the elastic scattering of a charged fermion
and a neutral vector boson. Again taking the interactions as given in eq. (4.32), the relevant
diagrams are those shown in Fig. 17, plus four diagrams (not shown) obtained from these by

crossing the initial and final state vectors.

Figure 17: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a charged Dirac fermion. There are four more diagrams, obtained from these
by crossing the initial and final vector lines.
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Applying the Feynman rules following from eq. (4.28) as before, one obtains the following
matrix element
. —1 P _ _ - _, — _
iM= W{G%x(m, $2)T-,0-kT-e x(Py,51) + Goy(Py, 52) 0,0 ko-€y(p,s1)
—mGLGR [y(Py, s52) 0-€5 T, (D), 51) + Z(Py, 52) T3 7€, §(By, 51)] } + (crossed)  (4.39)
and the assignments of momenta and spins are as before.
The computation of the amplitude for the scattering of a charged fermion and a charged
vector boson is straightforward and will not be given explicitly here.
Finally, let us work out an example with four external-state fermions. Consider the case of
elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the
interaction of eq. (4.25). The diagrams for scattering initial fermions labeled 1,2 into final state

fermions labeled 3,4 are shown in Fig. 18. The resulting matrix element is:

—1

iM = —— {N(@12) (ysya) + (V) (0152) (B374) + AP [(2122) (2574) + (7152) (yya)] }
¢
+(=1)7 __:ni {N(ys21) (yawa) + (N*)*(Z391) (ZaB2) + [N [(Z351) (yax2) + (ysw1)(Z472)] }
- __;2 {N(yaz1) (y32) + (N)*(Z431) (Z3772) + AP [(Zad1) (ysw2) + (yaw1) (ZsB2)]}
¢
(4.40)
1 3 1 3 1 3 1 3
2 4 2 4 2 4 2 4
1 3 1 3 1 3 1 3

N7 N P Y

Figure 18: Tree-level Feynman diagrams contributing to the elastic scattering of identical
neutral Majorana fermions via scalar exchange in the s-channel (top row), t-channel (middle
row), and u-channel (bottom row).
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where z; = z(P},s:), ¥i = y(P;,s:i), mg is the mass of the exchanged scalar, s = (p1 + p2)?,
t = (p1 — p3)? and u = (p1 — ps)?>. The relative minus sign (in parentheses) between the t-
channel diagram and the s and u-channel diagrams is obtained by observing that 3142 is an odd
permutation and 4132 is an even permutation of 1234.%3

Eq. (4.40) can be factorized with respect to the scalar line:

. —1 *— — *— = { * = — * = —
iM = 5 (AT122 + A" 9192) (AY3ya + A" Z3%4) + 5 (Aysz1 + A" Z391) (Ayam2 + A" Zal2)
s — m(z) t— m¢
i . L
R (Ayaz1 + XN Zay1) (Aysz2 + A T382). (4.41)
e

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates
the typical feature that, compared to the four-component formalism, two-component fermion

Feynman rules yield more diagrams, although the contribution of each of the diagrams is simpler.

4.6 Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation,
taking into account the possibilities of loop-induced mixing and absorptive parts corresponding
to decays to intermediate states. This formalism is useful in the computation of loop-corrected
physical pole masses.

Consider a theory with left-handed fermion degrees of freedom v; labeled by an index
i1=1,2,...,N. Associated which each 1[12 is a right-handed fermion 1/?, where the flavor labels
are treated as described below eq. (3.61). The theory is assumed to contain arbitrary interactions,
which we will not need to refer to explicitly. As discussed in Section 3.2, we diagonalize the
fermion mass matrix and identify the fermion mass-eigenstates 1; as indicated in eq. (4.10).
In general, the mass-eigenstates consist of neutral Majorana fermions & (k = 1,... N — 2n)
and Dirac fermion pairs x, and 7, (£ = 1,...,n).2* With respect to this basis, the symmetric

N x N tree-level fermion mass matrix, m%, is made up of diagonal elements my, and 2 x 2 blocks

(Om(

me 0 ) along the diagonal, where the mj and m; are real and non-negative. Since m% is real,

the height of the flavor indices is not significant. Nevertheless, it is useful to define m;; = m" in
order to maintain the convention that two repeated flavor indices are summed when one index

[ 5 ETNEY -
my; = m;d; is a diagonal matrix.

is raised and the other is lowered.?®> Note that 7;;m* = m!
The full, loop-corrected Feynman propagators with four-momentum p# are defined by the

Fourier transforms of vacuum expectation values of time-ordered products of bilinears of the

23Note that we would have obtained the same sign for the u-channel diagram had we crossed the initial state
fermion lines instead of the final state fermion lines.

241n order to have a unified description, we shall take the flavor index of all left-handed fields (including 7 ) in
the lowered position in this subsection, in contrast to the convention adopted in subsections 3.2 and 4.3.

25We will soon be suppressing the indices, so the reason for the bar on m;; is merely to distinguish the lowered-
index mass matrix.
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Figure 19: The full, loop-corrected propagators for two-component fermions are associated
with functions C(p?);? [and its matrix transpose], D(p?)¥, and D(p?);;, as shown. The shaded
boxes represent the sum of all connected Feynman diagrams, with external legs included. The
four-momentum p flows from right to left.

fully interacting two-component fermion fields [cf. footnotefnft]. Following egs. (4.1)—(4.4), we
define:

(O Tai ()4 () [0)py = ip- 0,5 CF (07, (4.42)
(0] TP (@) (y) [0) g = ip-7*7 (CT) (07, (4.43)
(01 T (), () [0)pp = i6% 5 DY (p?), (4.44)
(O] Tebas(@)¥] (1) 10) pr = 0" Di(p?) , (4.45)
where
chi,=c;t. (4.46)

One can derive eq. (4.43) from eq. (4.42) by first writing
DY ()0 (y) = =€ e (y) D (@), (4.47)

where the minus sign arises due to the anticommutativity of the fields, and then using eq. (2.22);
the interchange of z and y (after FT) simply changes p* to —p*.

In general, D and D are complex symmetric matrices, and D = D*. The matrix C
satisfies the hermiticity condition [CT]* = C. Here, we have introduced the star symbol to
mean that a quantity Q* is obtained from @ by taking the complex conjugate of all Lagrangian
parameters appearing in its calculation, but not taking the complex conjugates of Euclideanized
loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths
to multi-particle intermediate states. That is, the dispersive part of C' is hermitian and the
absorptive part of C' is anti-hermitian.

The diagrammatic representations of the full propagators are displayed in Fig. 19, where
C,;7, DY and Eij defined above are each N x N matrix functions. Note that the second diagram
of Fig. 19, when flipped by 180° about the vertical axis, is equivalent to the first diagram of
Fig. 19 (with p — —p, a — [, 6 — & and i < j). In analogy with Fig. 3, one could replace the

first two diagrammatic rules of Fig. 19 with a single rule:
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a B | . |
—<— < ipoCJ o —ip7’(CTY,

? J

where we have used eq. (4.46) to rewrite the second version of the rule in terms of C'T. Indeed,
by using the second version of the above rule and flipping the corresponding diagram by 180°
as described above, one reproduces the rule of the second diagram of Fig. 19.

In what follows, we prefer to keep the first two rules of Fig. 19 as separate entities. This
will permit us to conveniently assemble the four diagrams of Fig. 19 into a 2 x 2 block matrix
of two-component propagators [c.f. eq. (E.58)]. In addition, by choosing the momentum flow in
the two-component propagators from right to left, the left-to-right orderings of the spinor labels
of the diagrams coincide with the ordering of spinor indices that occurs in the corresponding
algebraic representations. Thus, we can multiply diagrams together and interpret them as the
product of the respective algebraic quantities taken from left to right in the normal fashion.

Starting at tree-level and comparing with Fig. 2, the full propagator functions are given by:

C/ =67 /(p* —mi) + ... (4.48)
D =m"/(p* —m?) +.. (4.49)
Dj; =my;/(p* —mi) + ..., (4.50)

with no sum on ¢ in each case. They are functions of the external momentum invariant p?
and of the masses and couplings of the theory. Inserting the leading terms [eqs. (4.48)—(4.50)]
into Fig. 19 and organizing the result in a 2 x 2 block matrix of two-component propagators
reproduces the usual four-component fermion tree-level propagator given in eq. (E.58).

The computation of the full propagators can be organized, as usual in quantum field theory,
in terms of one-particle irreducible (1PI) self-energy functions. These are formally defined to be
the sum of all Feynman diagrams (excluding the tree-level) that contribute to the 1PI two-point

Green function. Diagrammatically, the 1PI self-energy functions are defined in Fig. 20.

!
]

—ip-oiPE,J —ip-oaﬁ-(ET)ij —i6,° QY _iddgﬁij

Figure 20: The self-energy functions for two-component fermions are associated with functions
E(p?);/ [and its matrix transpose], ©(p?)¥, and Q(p?);;, as shown. The shaded circles represent
the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs are
amputated. The four-momentum p flows from right to left.
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As in the case of the full loop-corrected propagators, [ET]* = = and Q = Q*, where the star
symbol was defined in the paragraph following eq. (4.47), and (ET)!; = E,'.
We illustrate the computation of the full propagator by considering first the following dia-

grammatic identity (with momentum p flowing from right to left):

a 3 a 3
— - - = < -
) J 7 J
a o 3 ! ) 3
+ —-—  + ——
1 k 4 J i k 4 J
« 0 ) 3 « 0 ) 3
+ L« .
i k ! J 7 k / J

(4.51)

Similar diagrammmatic identities can be constructed for the three other full loop-corrected
propagators of Fig. 19. The resulting four equations can be neatly summarized by the following

matrix diagrammatic identity:

»—D—» »—D—« > - 0 1 «—O+ «—Q» »—D—» »—D—«
(4.52)

We have chosen the labeling and momentum flow in Figs. 19 and 20 such that the spinor
and flavor labels of the diagrams appear in the appropriate left-to-right order to permit the
interpretation of eq. (4.52) as a matrix equation. The algebraic representation of eq. (4.52) can
be written as F' =T 4+ TSF, where F is the matrix of full loop-corrected propagators, 1" is the
matrix of tree-level propagators and S is the matrix of self-energy functions. Multiplying?® on
the left by T~! and on the right by F~! yields T-! = F~! +S. Thus, F = [T~! - S]7!. In
pictures:

-1

_ _ (4.53)
e ) [\ <) o 0

26 Alternatively, one can solve eq. (4.52) by iteration. This yields:

F=T+TST+TS(T+TS(--))=T+TST+TSTST+...=T[1+ 5T+ (ST)2 +...]=T[1 —ST]717

where in the last step, we have summed the geometric series. Taking the inverse of F' = T[1 — ST]fl7 multiplying
out the resulting expression and then taking the inverse of both sides yields eq. (4.53).
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We evaluate the tree-level propagator matrix and its inverse using eqs. (4.48)—(4.50), keeping

in mind that the direction of momentum flow is from right to left:

- 1 imij 5(]5 Z.p.o-aﬁ. 52,]'
= o B (4.54)
L P> —m} \ip-5o% 6t imi 6,
_1 .. .
s z'm” (5a’6 _Z‘p.o—aﬁ. (5Zj
- > —Zp‘Ea’B (5ij Zmij (5(16‘

where we follow the index structure defined in Figs. 19 and 20. Inserting eq. (4.55) into eq. (4.53),

one obtains a 4N x 4N matrix equation for the full propagator functions:

( iD ip-aC') _( i(m+ Q) —z‘p'a(l—ET)>_1

_ (4.56)
ipaCT iD

—ipT(1-8)  im+ Q)
where 1 is the N x N identity matrix. The right hand side of eq. (4.56) can be evaluated by

employing the following identity for the inverse of a block-partitioned matrix [71]:

P Q\'_((P-QST'R)T (R-5Q7'P)!
<R S) a <(Q—PR_1S)_1 (S—RP—lQ)—1> ) (4.57)

under the assumption that all inverses appearing in eq. (4.57) exist. Applying this result to
eq. (4.56), we obtain

Cl'=p’1-E)-m+Q1-EN) ' (m+Q), (4.58)
D'=p’ 1 -E)(m+Q)'1-E"-m+Q), (4.59)
D' =pPa-g2Nm+9)1-8) - (m+Q). (4.60)

Note that eq. (4.60) is consistent with eq. (4.59) as E* = ET.

The pole mass can be found most easily by considering the rest frame of the (off-shell)
fermion, in which the space components of p# vanish. This reduces the spinor-index dependence
to a triviality. Setting p* = (\/s; 0), we search for values of s where the inverse of the full
propagator has a zero eigenvalue. This is equivalent to setting the determinant of the inverse of
the full propagator to zero. Here we shall use the well-known formula for the determinant of a

block-partitioned matrix [71]:
P Q L
det =det P det (S—RP™°Q). (4.61)
R S
The end result is that the poles of the full propagator (which are in general complex),
Spole,j = M —il'jM;, (4.62)
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are formally the solutions to the non-linear equation?”

det [s1-(1-EN) ' (m+Q)(1-E)"'(m+Q)] =0, (4.63)

with s = p?.

Some care is required in using eq. (4.63), since the pole squared mass always has a non-
positive imaginary part, while the loop integrals used to find the self-energy functions are complex
functions of a real variable s that is given an infinitesimal positive imaginary part. Therefore,
eq. (4.63) should be solved iteratively by first expanding the self-energy function matrices Z,
Q and Q in a series in s about either m? + i€ or M j2 + ie. The complex pole mass quantities
Spole,j are renormalization-group and gauge invariant physical observables. Examples are given
in subsections 6.23 and 6.24.

The results of this section can be applied to an arbitrary collection of fermions (both
Majorana or Dirac). However, it is convenient to treat separately the case where all fermions
are Dirac fermions (consisting of pairs of two-component fields y; and 7;). As discussed in
Section 3.2, the Dirac fermion mass-eigenstates are defined in eq. (3.80) and are determined by
the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass
basis, we denote the diagonal Dirac fermion mass matrix by M%. The elements of this matrix
are real and non-negative. Nevertheless, it will be convenient as before to define M. =M i to
maintain covariance when manipulating tensors with flavor indices.

At tree-level, there are four propagators for each pair of x and n fields as shown in Fig. 5.

The corresponding full, loop-corrected propagators are shown in Fig. 21.

p p
- -
a & g8 & 3 ! g
X — % — X N > n 1 > X X 7
1 7 ) J ) J 1 J
’L'p'O'aﬁ' SRZ'j ip-ﬁdﬁ (S}:)Z] 2'50'16, SDij iéaﬁ (g;)m

Figure 21: The full, loop-corrected propagators for Dirac fermions, represented by pairs of
two-component (oppositely charged) fermion fields x; and 7;, are associated with functions
Sr(p?), S{(p2)ij, Sp(p*)¥, and g;(pz)ij, as shown. The shaded boxes represent the sum of
all connected Feynman diagrams, with external legs included. The four-momentum p and the
charge of x flow from right to left.

The naming and sign conventions employed for the full, loop-corrected Dirac fermion propagator
functions in Fig. 21 derives from the correponding functions used in the more traditional four-

component treatment presented in Appendix E [c.f. eq. (E.79)].

2"The determinant of the inverse of the full propagator [the inverse of eq. (4.56)] is equal to eq. (4.63) multiplied
by det [—(1 — E)(1 — E")]. We assume that the latter does not vanish. This must be true perturbatively since
the eigenvalues of 2 are one-loop (or higher) quantities, which one assumes cannot be as large as 1.
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In general, the complex matrices Sg and Sy, satisfy hermiticity conditions [511-'-:]* = Sgr and
[SB* = Sr., whereas the complex matrices Sp and Sp are related by Sp = S D, where the
star symbol is defined in the paragraph below eq. (4.47). In contrast to the general case treated
earlier, Sg and Sy, are unrelated and Sp is a complex matrix (not necessarily symmetric).

Instead of working in a y—n basis for the two-component Dirac fermion fields, one can
Takagi-digonalize the fermion mass matrix. In the new -basis, the loop-corrected propagators
of Fig. 19 are applicable. It is easy to check that the number of independent functions is the
same in both methods for treating Dirac fermions. In particular, the loop-corrected propagator

functions in the 1)-basis are given in terms of the corresponding functions in the y—7 basis by:?

Sr 0 0 ST = 0 Sy
C = , D= D D=|_ D | . 4.64
( 0o S L> <S p 0 ) <S p O (4.64)
We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the

x—7 basis, where the corresponding self-energy functions are defined in Fig. 22.

P p
% +QF +©+ % .
—ip-7B¥y I —ip-o, (ET) —i0,"Ep" —250‘ _D )ij

Figure 22: The self-energy functions for two-component Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields x; and n;, are associated with functions
Sr(p?)d, E}i(gﬂ)ij, Sp(p?)¥, and fg(gﬁ)ij, as shown. The shaded circles represent the sum of
all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated.
The four-momentum p flows from right to left.

As before, the naming and sign conventions employed for the Dirac fermion self-energy functions
above derives from the correponding functions used in the more traditional four-component
treatment of Appendix E [c.f. eq. (E.80)].

Once again, the complex matrices X1 and X g satisfy hermiticity conditions [ZE]* =37
and [2-1':-‘]* = Mg, whereas the complex matrices ¥ p and X p are related by Xp = X7, where
the star symbol is defined in the paragraph below eq. (4.47). Likewise, ¥ 1, and ¥ g are unrelated
and X p is a complex matrix (not necessarily symmetric). The self-energy functions in the -

basis are given in terms of the corresponding functions in the x-—7 basis by:2®

<T
- (3L O 0 X 5
=_ (o 7 Q- D) a-(" >*b). (4.65)
0 Xgr 3p 0 b 0
28The simple forms of C' in eq. (4.64) and E in eq. (4.65) motivate our definitions of Sz and X g with the
transpose as indicated in Figs. 21 and 22, respectively.
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In the case of Dirac fermions fields, eq. (4.53) still holds in the x—n basis, which yields:

-1

< iS5 ipo SR> _ ( i(M+Xp) —ip-o (1 — EIT%)> (466

ip-c ST  iSp —ipa(1-31) i(M+Z))

Using eq. (4.57), it follows that:
S ' =p(1-2Rr) - (M +XZp)1-2]) (M +X=p), (4.67)
Sg' =p’(1- 1)~ (M+Zp)(1 - =)~ (M +3p), (4.68)
Sp ' =p*(1-Sp)(M +2p)'(1 - =F) - (T +3p,), (4.69)
S, =P -SH)(M+3p)'(1-Zg) - (M +3T). (4.70)

Note that eq. (4.70) is consistent with eq. (4.69) as X7 p = EI’R.
The pole mass is now easily computed using the technique previously outlined. In particular,

eq. (4.63) is replaced by:
det [s1—(1-3}) ' (M +XZp)(1-%,) ' (M+X])] =0, (4.71)

which determines the complex pole squared masses sl of the corresponding Dirac fermions.
Again, the self-energy functions should be expanded in a series in s about a point with an
infinitesimal positive imaginary part.

Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac
fermions (such as QED or QCD). In this case, the following relations hold among the loop-

corrected propagator functions and self-energy functions, respectively:2°

Sri’ = (S1);, Sp=(Sh)is, (4.72)
2l = (ZR)Y, Ep7 = (X)) (4.73)

By imposing eq. (4.73) on eqgs. (4.67)—(4.70) and recalling that M,;; = M"Y it is straightforward
to verify that eq. (4.72) is satisfied.

5 Conventions for fermion and anti-fermion names and fields

In this section, we discuss conventions for labeling Feynman diagrams that contain two-component
fermion fields of the Standard Model (SM) and its minimal supersymmetric extension (MSSM).

In the case of Majorana fermions, there is a one-to-one correspondence between the par-
ticle names and the unbarred (3,0) [left-handed] fields. In contrast, for Dirac fermions there
are always two distinct two-component fields that correspond to each particle name. This is

illustrated in Table 1, which lists the SM and MSSM fermion particle names together with the

2These relations are derived using four-component spinor methods in Appendix E [cf. egs. (E.87) and (E.88)].
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Table 1: Fermion and anti-fermion names and two-component fields in the Standard Model and
the MSSM. In the listing of two-component fields, the first is an unbarred (3,0) [left-handed]
field and the second is a barred (0, 3) [right-handed] field. (In this table, neutrinos are considered
to be exactly massless and the left-handed antineutrino v¢ is absent from the spectrum).

Fermion name Two-component fields

¢~ (lepton) 0,

(" (anti-lepton) AN
v (neutrino) v, —

v (antineutrino) -, U
q (quark) q,4q°

q (anti-quark) q°, q

f (quark or lepton) f, fe
f (anti-quark or anti-lepton) fe, f
N; (neutralino) XY, x_?
éf (chargino) Xi ;
6’2_ (anti-chargino) X; E
7 (ghuino) 7,7

corresponding two-component fields. For each particle, we list the two-component field with the
same quantum numbers, i.e., the field that contains a creation operator for that one-particle
state when acting to the right on the vacuum state |0).

There is an option of labeling fermion lines in Feynman diagrams by particle names or by
field names; each choice has advantages and disadvantages.?0 In all of the examples that follow,
we have chosen to eliminate the possibility of ambiguity as follows. We always label fermion lines
with two-component fields (rather than particle names), and adopt the following conventions:

e In the Feynman rules for interaction vertices, the external lines are always labeled by the
unbarred (%, 0) [left-handed] field, regardless of whether the corresponding arrow is pointed in
or out of the vertex. Two-component fermion lines with arrows pointing away from the vertex
correspond to dotted indices, and two-component fermion lines with arrows pointing toward the
vertex always correspond to undotted indices. This also applies to Feynman diagrams where

the initial state and the final state roles are ambiguous (such as self-energy diagrams).

30Unfortunately, the notation for fermion names can be ambiguous because some of the symbols used also

appear as names for one of the two-component fermion fields. In practice, it should be clear from the context
which set of names are being employed.
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e Internal fermion lines in Feynman diagrams are also always labeled by the unbarred (%, 0)
[left-handed] field(s). Internal fermion lines containing a propagator with opposing arrows can
carry two labels (see e.g. Fig. 15).

e Initial-state external fermion lines (which always have physical four-momenta pointing
into the vertex) in Feynman diagrams are labeled by the corresponding unbarred (%,0) [left-
handed] field if the arrow is into the vertex, and by the barred (0, 3) [right-handed] field if the
arrow is away from the vertex.

e Final-state external fermion lines in complete Feynman diagrams (which always have
physical four-momenta pointing out of the vertex) are labeled by the corresponding barred
(0,1) [right-handed] field if the arrow is into the vertex, and by the unbarred (3,0) [left-handed]
field if the arrow is away from the vertex.

In particular, the field labels used for external fermion lines always correspond to the same
conserved quantities (charges, lepton numbers, baryon numbers) as the corresponding physical
particle. As an example, for either initial or final states, the two-component fields e and e€
both represent the negatively charged electron, conventionally denoted by e~, whereas both e
and € represent the positively charged positron, conventionally denoted by e™ (as indicated in

Table 1). The rules for using these states as external particles are summarized in Fig. 23.

Initial-state e™:
Initial-state et:
Final-state e™:

e : ec S
e : e S
e e

Final-state e*: Q—H ©—<—
Figure 23: The two-component field labeling conventions for external fermion lines in a Feyn-
man diagram for a physical process. The top row corresponds to an initial-state electron, the
second row to an initial-state positron, the third row to a final-state electron, and the fourth
row to a final-state positron. The labels above each line are the two-component field names.

The corresponding conventions for a massless neutrino are obtained by deleting the diagrams
with €€ or e¢, and of course changing e and € to v and 7.
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Final-state KQ

. - X7 X!
Initial-state N;: 4,_0 H_Q
C X3 C X7

Figure 24: The two-component field labeling conventions for external neutralino lines in a
Feynman diagram for a physical process. The top row corresponds to an initial-state neutralino,
and the second row to a final-state neutralino. The labels above each line are the two-component
field names. (The neutralino is its own antiparticle.)

The applicaiton of our naming conventions to processes involving Majorana fermions is
completely straightforward. For example, the conventions for employing the neutralino states
as external particles are summarized in Fig. 24.

As a simple example, consider Bhabha scattering (e~e™ — e~e™) [72]. We require the
the two-component Feynman rules for the QED coupling of electrons and positrons to the
photon, which are exhibited in Fig. 25. Consider the s-channel tree-level Feynman diagrams
that contribute to the invariant amplitude for e“e™ — e~e™. If we were to label the external
fermion lines according to the corresponding particle names (which does not conform to the
conventions introduced above), the result is shown in Fig. 26. One can find the identity of the

external two-component fermion fields by carefully observing the direction of the arrow of each

(&

(a) z‘eﬁfjﬁ or  —ie0,B4
(&
eC

(b) —z‘eﬁ,‘i‘ﬁ or  ie0,B4
eC

Figure 25: The two-component Feynman rules for the QED vertex. Following the conventions
outlined in this Section, we label these rules with the (1,0) [left-handed] fields e and e, which
comprise the Dirac electron. Note that e > 0 and Q. = —1 [cf. Fig. 67].
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fermion line. For contrast, the same diagrams, relabeled with two-component fields following
the conventions established in this section (c.f. Fig. 23), are shown in Fig. 27. An explicit

computation of the invariant amplitude is given in Section 6.3.

e e e e
e>W<e 6>W<e
et et et et

Figure 26: Tree-level s-channel Feynman diagrams for e et — e~ e, with the external lines
labeled according to the particle names. The initial state is on the left, and the final state is on
the right. Thus, the physical momentum flow of the external particles, as well as the flow of the
labeled charges, are indicated by the arrows adjacent to the corresponding fermion lines in the
upper left diagram.

e e e e
6>MW<6 60>MW<6
e e e¢ e

Figure 27: Tree-level s-channel Feynman diagrams for ete™ — ete™. These diagrams are the
same as in Fig. 26, but with the external lines relabeled by the two-component fermion fields
according to our conventions.
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6 Practical examples from the Standard Model and supersym-
metry

In this section we will present some examples to illustrate the use of the rules presented in this
paper. These examples are chosen from the Standard Model [73] and the MSSM [47-49], in
order to provide an unambiguous point of reference. In all cases, the fermion lines in Feynman
diagrams are labeled by two-component field names, rather than the particle names, as explained

in Section 5.

6.1 Top quark decay: t — bW+

We begin by calculating the decay width of a top quark into a bottom quark and W™ vector
boson. For simplicity, we treat this as a one-generation problem and ignore Cabibbo-Kobayashi-
Maskawa (CKM) [74] mixing among the three quark generations [see eq. (H.7) and the sur-
rounding text]. Let the four-momenta and helicities of these particle be (p¢, A), (kp, \p) and

(kW, Aw ), respectively. Then p% = m%, kg = m% and k%v = m%/v and
201 -kyy = mi —mi +miy, (6.1)
2p¢-ky = m? +mi —miy, (6.2)
2kyy -k = m? —mi —miy . (6.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for
t — bWT is the one shown in Fig. 28. The corresponding amplitude can be read off of the
Feynman rule of Fig. 67 in Appendix H. Here the initial-state top quark is a two-component
field ¢ going into the vertex and the final-state bottom quark is created by a two-component

field b. Therefore the amplitude is given by:

. . g _
IM = —i—=¢] 1oty , 6.4
\/é utb t ( )

where ¢, = EZ(kW,)\W) is the polarization vector of the W+, and 7, = :/E(Eb,)\b) and z; =

x(Py, \¢) are the external-state wavefunction factors for the bottom and top quark. Squaring

this amplitude yields:
2

M2 = %s;ey(zbaﬂxt) (Z7" ) | (6.5)
W (kw, Aw)
t(pt, At)
b(kp, Ap)

Figure 28: The Feynman diagram for t — bW ™ at tree level.

o4



where we have used equation (2.32). Next, we can average over the top quark spin polarizations
using eq. (3.56):
—Z M = —E LEVTVO PO T Ty - (6.6)

Summing over the bottom quark spin polarizations in the same way yields a trace over spinor
indices:

2
= Z IM? = ey Tr[ot'p-0 7 ky-0] = 926“61, (Pi'ky + KDY — g pe-k) (6.7)
)\t7)\b

where we have used eq. (2.45). Finally we can sum over the W™ polarizations according to:
Z EZEV = —9uw + (kw)u(kw)v/m%/v . (6.8)
The result is:
S Z M2 = 5 [pe-ky + 2(pe-Fy) (ko -y ) /iy ] (6.9)

spms

After performing the phase space integration, one obtains:

1 1

L(t — bW™) = 16mm
t

spins

g
= L V2t ) [(m 4 2 (m — i)+ mimy — 2m) + ] (611
wi'

where

ANz,y,2) = 2 +y* + 2% — 2oy — 22z — 2y2. (6.12)

In the approximation mj; < my;,, m, one ends up with the well-known result [75]

2 2 2 2
Dt — bW™) = 96:“ <2+ m; ) ( — m—V2V> : (6.13)
m my, my

which exhibits the Nambu-Goldstone enhancement factor (m?/m%v) for the longitudinal W

contribution compared to the two transverse W contributions [75].

6.2 Z° vector boson decay: 7° — ff

Consider the partial decay width of the Z° boson into Standard Model fermion-antifermion final
states. There are two Feynman diagrams (as in the generic example of Fig. 12), shown in Fig. 29.
In the first diagram, the fermion particle f in the final state is created by a two-component field
f in the Feynman rule, and the anti-fermion particle f by a two-component field f. In the

second diagram, the fermion particle f in the final state is created by a two-component field
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flkg, Ap) Te(ky, Ay)
Z%(p,Az) Z%p,ep)

fk7,27) fe(ks, M)
(a) PoF (b) PoF

Figure 29: The Feynman diagrams for Z° decay into a fermion-antifermion pair. Fermion lines
are labeled according to the two-component fermion field labeling convention (see Section 5).

f¢, and the anti-fermion particle f by a two-component field f¢. Let us call the initial Z° four-

momentum and helicity (p, Az) and the final state fermion (f) and anti-fermion (f) momentum

and helicities (kf, A¢) and (kf, )\?), respectively. Then, kJ% = k% = m% and p? = m2Z, and
L 2
p-kf=pks;= %mzz . (6.15)

According to the rules of Fig. 67, the matrix elements for the two Feynman graphs are:

. . g -

iM, = —ZJ(TJ —Qfsgv)sua:fa“y?, (6.16)
§2

iMy = ngfC—W Eny oty (6.17)
W

where x; = 1"(]_5@, i) and y; = y(l_c;, N), fori=f, f, and g, = £,,(p, \z).

Using the Bouchiat-Michel formulae developed in Appendix F, one can explicitly evaluate
M, and My, as a function of the final state fermion helicities. The result of this computation is
given in egs. (F.64) and (F.65). If the final state helicities are not measured, then it is simpler
to square the amplitude and sum over the final state spins.

It is convenient to define:
ar = T?fc - QfS%/V; by = —Qfs%/v. (6.18)
Then the squared matrix element for the decay is, using egs. (2.31) and (2.32),
2 g9
IM|* = CTgﬂez (afi‘fﬁ“y?—l— bfny'”i‘?> (afgfﬁ”:nf + bfﬂj?dyﬂf> . (6.19)
w
Summing over the anti-fermion helicity using egs. (3.56)—(3.59) gives:

2
D M= chgu&?i (a?@fﬁ”’ff"ﬁ”xf + bjyoky g0y
A+ w
f
—mfafbfi"fﬁ“a”gjf — mfafbfyfcr“ﬁ”:nf) . (6.20)
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Next, we sum over the fermion helicity:

Z IM|? = —sue <a3:Tr[E“k7.JEVk:f-a] —{—bffTr[aﬂk?.ﬁng;f.g]
Af Ay

—m?cafbfTr[E"J”] - m?cafbfTr[a"E”]) . (6.21)

Averaging over the Z° polarization using

1

- ZEMEV* = § — G +pup,,/m22) (6.22)
and applying eqgs. (2.43)—(2.45), one gets:
1 2 92 2 2 2 2

S IMP = [(af +12) <2kf-k7+4kf-pk7-p/mz) +12a,b;m> (6.23)

spins w

2¢° 2

= g [( f+b )( —mf)+6afbfmf] (6.24)

W

where we have used egs. (6.14) and (6.15). After the standard phase-space integration, we obtain
the well-known result for the partial width of the Z°:

167m ,

f m2\ /2
(20— f) = — (1—4—f> %Z\MF (6.25)

spins

1/2 9 9

ch g my 4m3‘ 2, 12 My My
=—“2 11— — b 11— — 6arbr—=| . 6.26
247'(‘6%/‘/ mzz (af + o ) m2Z +0arby mzz ( )

Here we have also included a factor of ch (equal to 1 for leptons and 3 for quarks) for the sum
over colors. (Since the Z° is a color singlet, the color factor is simply equal to the dimension of

the color representation of the outgoing fermions.)

6.3 Bhabha scattering: e e™ — e et

In our next example, we consider the computation of Bhabha scattering in QED (that is, we
we consider photon exchange but neglect Z%exchange) [72]. Bhabha scattering has also been
computed using two-component spinors in [62]. We denote the initial state electron and positron
momenta and helicities by (p1, A1) and (p2, A2) and the final state electron and positron momenta
and helicities by (ps, A3) and (p4, \4), respectively. Neglecting the electron mass, we have in

terms of the usual Mandelstam variables s, t, u:

D1'P2 =P3'Pa = %8, (6.27)
p1-ps =Dpa-ps = —3t, (6.28)
P1'Pa=DP2-p3s = —3u, (6.29)
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\
\ 4
\ 4

\
\
A
A

e‘ e‘ e e
ec ec ec ec
> > < <

e‘ e‘ e e

Figure 30: Tree-level t-channel Feynman diagrams for e e™ — e~ e, with the external lines
labeled according to the two-component field names. The momentum flow of the external
particles is from left to right.

and p? =0 fori=1,...,4. There are eight distinct Feynman diagrams. First, there are four
s-channel diagrams, as shown in Fig. 27 with amplitudes that follow from the Feynman rules of

Fig. 25 (more generally, see Fig. 67 in Appendix H):

. —igh” . . _ . . _
Mg = < . ) [(—zemlauyg)(zeygayu) + (—ie 1T ux2)(le y30,T4)

+(—i6 a:laugjg)(ie i‘gﬁ,,y4) + (—ie glﬁuxg)(z’e i‘gﬁ,,y4) R (630)

where xz; = x(P5, A;) and y; = y(Pis, Ai), for i = 1,4. The photon propagator in Feynman gauge
is —igh /(p1 + p2)? = —ig"”/s. Here, we have chosen to follow the fermion lines in the order
1,2,3,4. This dictates in each term the use of either the @ or o forms of the Feynman rules of

Fig. 25. One can group the terms of eq. (6.30) together more compactly:

—ighv

iMs = e < ) (T10,92 + 110 u72) (Y30, T4 + T35 ,Y4) - (6.31)

There are also four ¢t-channel diagrams, as shown in Fig. 30. The corresponding amplitudes

for these four diagrams can be written:

—ighv

iMy = (—1)e? < > (10,3 + 110 ,Y3) (20,74 + J20,Y4) - (6.32)

Here, the overall factor of (—1) comes from Fermi-Dirac statistics, since the external fermion
wave functions are written in an odd permutation (1,3,2,4) of the original order (1,2,3,4)
established by the first term in eq. (6.30).

Fierzing each term using egs. (2.55)-(2.57), and using eqgs. (2.47) and (2.48), the total
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amplitude can be written as:

M= Mot My = 26| o) () + @) ) + (5 + 7 ) a0 )
+(3+7) @) - (o) @an) - Hom) ] (6.33)

Squaring this amplitude and summing over spins, all of the cross-terms will vanish in the m, — 0
limit. This is because each cross term will have an x or an Z for some electron or positron
combined with a y or a g for the same particle, and the corresponding spin sum is proportional
to me [see egs. (3.58) and (3.59)]. Hence, summing over final state spins and averaging over initial

state spins, the end result contains only the sum of the squares of the six terms in eq. (6.33):

i Z M? = ¢ Z s% [(21y3) (9321) (Y2Z4) (zay2) + (9123) (23y1) (22Y4) (§2Z2)]

spins A1,2A2,A3,A4

<

_|_

®» |
~ | =

> [(U174) (xay1) (T2y3) (Y3Z2) + (21Y4) (Y4Z1) (Y273) (w3Y2)]

22 [(2122)(2221) (2374) (2423) + (ylyz)(yzyl)(y3y4)(y4y3)]} . (6.34)

Here we have used eq. (2.30) to get the complex square of the fermion bilinears. Performing

these spin sums using egs. (3.56) and (3.57) and using the trace identities eq. (A.3):

2
D2 p4p1 P3  D1°P2P3 P4 1 1
i Z IM|? = 8e [ + 2 + <§ + ;) pl'p4p2'p3}

spms

vy [’52 +3_2+(“+%)2] (6.35)

Thus, the differential cross section for Bhabha scattering is given by:
2

do 1 1 9 ora? [t2 s u o u\2
&t (1) =T p e )] (6:36)

spins

This agrees with the result of, for example, problem 5.2 of ref. [76].

6.4 Polarized Muon Decay

So far we have only treated cases where the initial state fermion spins are averaged and the final
state spins are summed. In the case of the polarized decay of a particle or polarized scattering
we must project out the appropriate polarization of the particles in the spin sums. This is
achieved by replacing the spin sums given in eqs. (3.56)-(3.59) by the corresponding polarized
spin projections egs. (3.31)-(3.34). As an example, we consider the decay of a polarized muon.
Polarized muon decay has also been computed using two-component spinors in [62], however

with an effective four-fermion interaction.
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Vi (ku,s Av,)

Figure 31: Feynman diagram for electroweak muon decay.

In Fig. 31, we show the single leading order Feynman diagram for muon decay, including
the definition of the momenta. We denote the mass of the muon by m,,, and neglect the electron

mass. We shall assume the muon is polarized with a (contravariant) spin four-vector3!
s” =(0;0,0,1), (6.37)

along the z-axis in the muon rest frame. The amplitude is then given by

O ) S —igfT
M= W (:c,,uapxu) (Ze0rYs,) D ) (6.38)
where Dy = (p — k:,,u)2 — MI%V is the denominator of the W-boson propagator. Here z, =
z(p, s) for the spin-polarized initial state muon, and z,, = x(EUH,AVM), Te = f(Ee,Ae), and
Yo, = y(ks,, \p.). Squaring the amplitude using eq. (2.32), we obtain
2 94
IM|* = D (2,,5%2,) (2407 30,) (20 ,y5.) (5. 5-Tc) (6.39)
w

Summing over the neutrino and electron spins using egs. (3.56)-(3.57), and using eq. (3.44) for

the muon spin yields:

4
S MP= 8)‘;2 Telky, -0 57 (p-0 — mys-0) &) Trlke-0 5 ki, -0 5] (6.40)
Avp e Are w
2 4
= Di2 ke ko, k- (p — mys). (6.41)
w

To obtain the second line we have used the trace identity eq. (2.44) twice; note that the resulting
terms linear in the antisymmetric tensor do not contribute, but the term quadratic in the
antisymmetric tensor does.

The differential decay amplitude is now given by
1 B Pk, Bk, Pk,

dr =
2m,, M (21)32E, (21)32E,, (21)32E,,

(2m)*6" (p — ke — ki, — ki), (6.42)

31Throughout this subsection y and v are particle labels and not Lorentz vector indices. Instead we use p, 7.

60



f¢(p2, A2) f(p1, M)

(a) f(p1, A1) (b) f¢(p2, A2)

Figure 32: The Feynman diagrams for the decays ¢ — ff, where ¢ = h0, HO, A" are the
neutral Higgs scalar bosons of minimal supersymmetry, and f is a Standard Model quark or
lepton, and f is the corresponding antiparticle. We have labeled the external fermions according
to the two-component field names.

where E;, i = e, 7,1, are the energies of the final state particles in the muon rest frame. In
the following we shall neglect both the electron mass and the momentum in the W-propagator
compared to the W-boson mass, so Dy — _Mvzv- We can now use the following identity to

integrate over the neutrino momenta [77]

/ e o (27)164(q — kv, — b, KEKT, = —— (a2 +2¢°0") (6.43)
(2n)32Ey, (2m)2E,, e AR -

where ¢ = p — k.. It follows that

g* k.

U = ——————— [¢* ke~ (p — 2 k. q-(p —
1536m4m,, M;:, 0% ke (p — mpus) + 2q-ke q-(p — mys)] ol

(6.44)

In the muon rest frame k. = E,.(1;cos ¢sinf,sin ¢ sinf,cos ), so that ¢ = mi - 2E.,m,, and
ke-(p —mys) = muEe(1+ cos ) and q-ke = m,E, and q-(p — mys) = myu(m, — E. — E.cos0).
Noting that the maximum energy of the electron is m,/2 (when the neutrino and antineutrino

both recoil in the opposite direction), we obtain

dr tm? M2 AE, 4E,
dcost __ 9 - “ / dE,E? [3 - + (1 - —) Ccos 9] (6.45)
cosf)  T68m3My, Jo my, my,
4,5
__9my 1
~ 12288730, <1 3 " 6) (6.46)

in agreement with ref. [77].

6.5 Neutral Higgs boson decays ¢ — ff, for ¢° = h°, H°, A in supersymmetry

In this subsection, we consider the decays of the neutral Higgs scalar bosons ¢? = h?, H%, and A°
of minimal supersymmetry into Standard Model fermion-antifermion pairs. The relevant tree-
level Feynman diagrams are shown in Fig. 32. The final state fermion is assigned four-momentum
p1 and polarization A1, and the antifermion is assigned four-momentum ps and polarization As.

We will first work out the case that f is a charge —1/3 quark or a charged lepton, and later
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note the simple change needed for charge +2/3 quarks. Then the Feynman rules of Figure 70
of Appendix I tell us that the resulting amplitudes are:

e
7

Here Y is the Yukawa coupling of the fermion, k440 is the Higgs mixing parameter from eq. (1.6),

iM, Yy kg0 y192 5 (6.47)

My = Yf /ﬁd¢o 122 . (6.48)

and the external wave functions are denoted x1 = z(pj, \1), y1 = y(P;, A1) for the fermion
and x9 = x(Pa, A2), Y2 = y(Py, A2) for the antifermion. Squaring the total amplitude iM =
iMg + My using eq. (2.30) results in:
1 *

IM|? = §|Yf|2 [|kd¢0|2(y1y2 JoU1 + T1T2 2271) + (Kggo ) T1T2 Joi + (kd¢o)2y1y2 $2JE1} . (6.49)

Summing over the final-state antifermion spin using egs. (3.56)-(3.59) gives:
1 o - x

> IMP = §|Yf|2 [|kd¢0|2(y1p2'091 + Z1py-T1) — (kggo)mpTai — (k’d¢o)2mfy1$1} . (6.50)

A2
Summing over the fermion spins in the same way yields:

1 *
> IMP =Sl {\kd¢o\2(Tr[p2.ap1-a] + Tr[ps-7p1-0]) — 2(kgg0)?m? — 2(kd¢0)2m§} (6.51)
A1,A2

= V¢ [? {2lkqgo [*p1-p2 — 2Re[(kggo)*]m7 } (6.52)
= |v;? {|kd¢o|2(m;0 —2m?) — 2Re[(k:d¢o)2]m§c} , (6.53)
where we have used the trace identity eq. (2.43) to obtain the second equality. The corresponding

expression for charge 4-2/3 quarks can be obtained by simply replacing k440 with k4. The total

decay rates now follow from integration over phase space [78]

P — ) = 2 (1- 4m§/m§)0)1/2 S IME. (6.54)
16mmgo o
The factor of N = 3 for quarks and 1 for leptons comes from the sum over colors.
Results for special cases are obtained by putting in the relevant values for the couplings
and the mixing parameters including egs. (I.5) and (I1.6). In particular, for the CP-even Higgs

bosons h° and HO, kqgo and k40 are real, so one obtains:

L'(h° — bb) = 16% Vi sin® amyo (1 — 4mg/m}2lo)3/2 , (6.55)
L'(h’ — ce) = 16% 2 cos® ampyo (1- 4m3/mio)3/2, (6.56)
TR — 777 = % V2 sin? amyo (1 — 4m?/m2)*? (6.57)
T(H® — ) = % Y2 sin? ampo (1 — 4m2 /m20)** | (6.58)
L(H° — bb) = % Y cos® ampo (1— 4mg/m§{0)3/2, (6.59)
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Figure 33: The Feynman diagram for v, — 5:_6_ in the MSSM.

etc., which check with the expressions in Appendix B of ref. [79]. For the pseudo-scalar Higgs

boson A°, the mixing parameters k, 40 = icos 3y and k40 = isin By are purely imaginary, so

3
(A% — tf) = Ton Y2 cos? By mi 40 (1- 4m?/mio)1/2 , (6.60)
3
D(A® — bb) = 7= ¥;? sin® By mgo (1 - am3 m%o) "7, (6.61)
1
D(A® = 777) = 7 V2 sin® fymgo (1 - am?2 m%) " . (6.62)

Note that the differing kinematic factors for the pseudo-scalar decays came about because
of the different relative sign between the two Feynman diagrams. For example, in the case of
h? — bb, the matrix element is

IM = LYb sin o (y1y2 + T172), (6.63)

V2
while for A® — bb, it is

iM= %Yb sin By (y1y2 — Z1Z2). (6.64)

The differing sign follows from the imaginary pseudo-scalar Lagrangian coupling, which is com-

plex conjugated in the second diagram.

6.6 Sneutrino decay 7, — C;e”

Next we consider the process of sneutrino decay v, — éf e~ in minimal supersymmetry. Be-
cause only the left-handed electron can couple to the chargino and sneutrino (with the excellent
approximation that the electron Yukawa coupling is 0), there is just one Feynman diagram,
shown in Fig. 33. The external wave functions of the electron and chargino are denoted as
Te = x(Ee, Ae), and zp = $(Eé, Ag), respectively. From the corresponding Feynman rule given

in Fig. 75 of Appendix I, the amplitude is:
IM = —igVy TETes (665)

where V;; is one of the two matrices used to diagonalize the chargino masses [c¢f. eq. (I.21].

Squaring this using eq. (2.30) yields:
M2 = @IVa? (2p20) (o) (6.66)
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Figure 34: The Feynman diagram for 6:' — VeeT in the MSSM.

Now summing over the electron and chargino spin polarizations using eq. (3.56) yields

Y M = @V PTrfke T ko] = 26° Vi | kevkig = ¢*[Via [ (m3, —m? ), (6.67)
e A

where we have used 2k.-ks = m?;e — mzé., neglecting the electron mass. Therefore, after inte-

grating over phase space in the standard way, the decay width is:

m

1 m2~ 2 2 2

~ Ci 2 2 Ci

I've — C+ )= T6mme <1 — 3 ) E \M\ = 16 Vi1|“map, (1 - ) , (6.68)
€ AE7

Ve Ve

which agrees with ref. [80] and eq. (3.8) in ref. [48].

6.7 Chargino Decay C; — 7.e*

Here again, there is just one Feynman diagram (neglecting the electron mass in the Yukawa
coupling) shown in Fig. 34. The external wave functions for the chargino and the positron
are denoted by x5 = x(Ps, A\5) and yo = y(Ee,Ae), respectively. The fermion momenta and
helicities are denoted as in Fig. 34. As in the previous example, the amplitude can be directly

determined using the Feynman rule given in Fig. 75 in Appendix I:
M = —igV] x5 ye - (6.69)
Squaring this using eq. (2.30) yields:
IM* = gV |? (zve) (Fe ) - (6.70)

Summing over the electron helicity and averaging over the chargino helicity using eqs. (3.56)
and (3.57) we obtain:

2
g

E IM|? = Lg* |Vt P Tr[ke -0 pa-5] = 6| Vit ke pe = glelz(ma —m3) . (6.71)

)\e,)\

So the decay width is, neglecting the electron mass:

g m \*
> Z IM]*| = 32—7T|Vi1|2méi ( m2”6> , (6.72)
)\67

Cz

C;

(C’+ —vet) = 1 (1

167Tmc

which agrees with ref. [80].
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Figure 35: The Feynman diagrams for N; — quﬁo in the MSSM.

6.8 Neutralino Decays N; — ¢°N;, for ¢° = h°, H, A°
Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs scalar
boson ¢° = hY, HY or A°. The two tree-level Feynman graphs are shown in Fig. 35, where we
have also labeled the momenta and helicities. We denote the masses for the neutralinos and the
Higgs boson as m Ny My, and mgo. Using the Feynman rules of Fig. 74, the amplitudes are
respectively given by
iMl = —1Y ZiYj (673)
My = —iY" YiZj , (6.74)
where the coupling Y = Yo" X} is defined in eq. (I.25), and the external wave functions are
zi = (P, i)y 9i = Y(Bis M), v = y(ky, Aj), and &5 = 2(kj, Aj).
Taking the square of the total matrix element using eq. (2.30) gives:
’MP = \Y\z(wingjfi + gifjxjyi) + Y2xiyja:jy,~ + Y*Qﬂif]’%fi. (6.75)

Now summing over the final-state neutralino spins using egs. (3.56)-(3.59) yields

Z ‘MF ‘Y’ wzk -0X; + yzk Uyz) Y2m[\7jxiyi - Y*2mﬁjgii'i' (676)

Averaging over the initial-state neutralino spins in the same way gives

1 1 _ _
5 > M = §|Y|2(Tr[kj-api-0] + Trlkj-pi-o]) + Re[Y *Jmg m g Ti[1] (6.77)
AiL A
=2|Y *p;i-k; + 2Re[Y2]m]\7imA7j (6.78)
= |Y|2(m%l + m?vj - mio) + 2Re[Y2]mﬁimﬁj, (6.79)

where we have used eq. (2.43) to obtain the second equality. The total decay rate is therefore

- - 1
T(N; — ¢°N;) = T A2 (m2 mZo,m Z IM|? (6.80)
N; )\Z,)\

e
= 5121y ) yY¢’°X?X?!2(1+rj—r¢>+2Re[(Y¢OX?"9)2}\/T7]’ (6:81)
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Figure 36: The Feynman diagrams for N; — NjZO in the MSSM.

where r; = m%/m?v and ry = mio/m%. The results for ¢ = h% H° AY can now be obtained
J ? i

by using eqs. (I.5) and (I.6) in eq. (I.25). In comparing eq. (6.81) with the original calculation

in [81], it is helpful to employ eqs. (4.51) and (4.53) of [82]. The results agree.

6.9 N, — Z°N;

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. 36 with the

definitions of the helicities and the momenta. The two amplitudes are given by 32

iIMq = —iiol-,il'l‘iO'Mi‘j€Z (6.82)
cw
iMg = Z—O"Lyla“y] (6.83)
where the external wave functions are z; = x(P;, \i), i = U(P;, \i), T; = f(Ej,Aj), Yy =

y(kj,\;), and €)= EZ(Ez, Az). Noting that O”L O’/L* [see eq. (1.20)], and applying egs. (2.31)
and (2.32), we find that the matrix element squared is:

g2
‘ME = 2 |:’O//L (ZCiU“fjij'Vfi + gjﬁ“ngjjﬁ”yi) (684)
W
2 __ _ 2 o
—(O1F) gietyjm0 ;- (OFF) wm“wjyjo”yi] (6.85)
Now summing over the final-state neutralino spin using egs. (3.56)-(3.59) yields:
¢
Z |M|2 2 €M€V |:|(9”L (l‘iO'Mk’j'EUVJ_}i + ﬂiﬁuk‘j 00" Y;) (6.86)
Aj “w
2 2 _
+ (O;/JL) mﬁjgjﬁ“a”i‘i + (OZL ) mg. xia“a”yi]. (6.87)
Averaging over the initial-state neutralino spins in the same way gives
= Z M2 = —a e, [\O”L (Tr[a“kjﬁa”pi-ﬁ] +Tr[5ﬂkj.aavp,~-a]> (6.88)
)\Z,)\

— (O4F) mgmg Tela"o”] — (O1F)° mﬁimﬁjﬁ[a“ﬁ”}] (6.89)

2 2 * v v v 2 v
= c%sua,,{\o# 2 (kp! + ol — pickg™) — Re| (OFF)? g myg, 0" } (6.90)
w

#2When comparing with the 4-component Feynman rule in ref. [48] note that O} = —O}**, c.f. eq. (1.20).
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Figure 37: Feynman diagrams for e"e™ — e ej,.

where in the last equality we have applied egs. (2.43)-(2.45). Now using

D et = —g + kiKY /m (6.91)
Az
we obtain
1 2
3 Z |./\/l|2 {|O”L ( pi'kj—|—2pi-kzk‘j-kz/m22)+3mﬁimﬁjRe[(O;}L) ]} (6.92)
XA Az civ
and, noting that and 2k;-kz = m%z — m%j — m2Z, 2p;-k; = m + mﬁj — m2Z, and 2p;-ky; =
2 2 2 :
mg mﬁj +m7, we get the total decay width
F(]V-HZON-)—;)\I/z(m m?,m%) L > IMP (6.93)
’ 77 16mmi N 2N 2 '
N; AirAj Az
2
g mpy, 2
mwz(uz,m) OFF12 (14 7j = 2rz + (1= 15)%/rz) + 6Re[(O}F)] /75|, (6.94)

where

T = m /m , and rZ_mZ/m , (6.95)

and the triangle kinematic function was defined in eq. (6.12). The result eq. (6.94) agrees with

the original calculation in [81].

6.10 Selectron pair production in electron-electron collisions

6.10.1 ee” —e e,

Here there are two Feynman graphs (neglecting the electron mass and Yukawa couplings), shown
in Fig. 37. Note that these two graphs are related by interchange of the identical initial state
electrons. Let the electrons have momenta p; and py and the selectrons have momenta kz, and
ke ki = ngS s=(p1+p2)? = (ki +ko) t = (ki —p1)® =

cr» SO that p? =p3 =0; k2 = m?2
(k2 —p2)?; u = (k1 —p2)? = (ka—p1)?. The matrix element for the first graph, for each neutralino

6L7

Ni exchanged in the ¢ channel, is:

ey ()| o] [t o om
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Here we have used the Feynman rules from Fig. 76. We employ the notation for the external
wave functions x; = (P;, A;), ¢ = 1,2 and analogously for y;, Z;, §;. The matrix elements for the

second (u-channel) graph are the same with the two incoming electrons exchanged, e; < es:

, g « | SW s s SW i(k1 —p2)-o |
iMy=(-1) |i—=—= | N+ —N, —ivV29=2% Ny | z . 6.97
o= ) i (8 2 )| [ivas i, 2[%_@)2_% TR
Note that since we have written the fermion wave function spinors in the opposite order in Mo
compared to My, there is a factor (—1) for Fermi-Dirac statistics. Alternatively, starting at the

electron with momentum p; and using the Feynman rules as above, we can directly write:

. . g * SW A . SW _ —i(kﬁl —pQ)'E
o= i (Np+ 2N ) | | —ivag 2, , |
iM |:Z\/§ < 2t cw zl>:| |: Z\/_gCW 1:| Y1 [(k’l _p2)2 — m?v] T2 (6 98)

This has no Fermi-Dirac factor (—1) because the wave function spinors are written in the same
order as in M;. However, now the Feynman rule for the propagator has an extra minus sign, as
can be seen in Fig. 3. We can also obtain eq. (6.98) from eq. (6.97) by using eq. (2.49). So we

can write for the total amplitude:

M=Mi+ M, = r1a-0Ys + y1b-0x2, (699)
where
9 sw - SW 1
b= EF — pt N;1 (N — N —— 6.100
a cw (1 pl); 1( Z2+CW Zl)t—m?v_’ ( )
g2sW 1 SWw 1
b= — (B} = p5) > Nua(Njp + =—Nj)——5 . (6.101)
cw i1 Cw U — mNZ_
So, using egs. (2.31) and (2.32):
|./\/l|2 = (:L'la'UﬂQ) (yga*-ai‘l) + (ﬂlb'ﬁfL‘Q) (i’gb*'ﬁyl) + (IL‘1(L'O‘§2) (i’gb*'ﬁyl)
+ (g1b-7x2) (y2a*-0Z1) . (6.102)

Averaging over the initial state electron spins using egs. (3.56)-(3.59), the a,b* and a*,b cross

terms are proportional to m. and can thus be neglected in our approximation. We get:

1 1 1
1 E IM|? = ZTr[a-a p2-T a*-o p1-T) +1Tr[b-5p2'a b*-7 pr-o]. (6.103)
A1,A2

These terms can be simplified using the identities:

Tr[(k1 —p1)-0 p2-T (k1 —p1)-0 p1-7) = Tr[(k1 — p2)-T p2-0 (k1 —p2)-T p1-o]  (6.104)
= tu — mg, m? (6.105)

eER’
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Figure 38: The two Feynman diagrams for e"e™ — €€ in the limit where m, — 0.

which follow from eq. (2.44) and (2.45), resulting in:

s SW u s
- Z IM|* = g W(tu —m? m Z N1 N (NG, + -V 1) (Ni2 + —WNil)
cw cw
,\1,A2 4j=1
1 n L (6.106)
(t—m?vi)(t—mi?j) (u—m?vi)(u—m%j) ' '

To get the differential cross-section do/dt, multiply this by 1/(167s?):

do Ta? tu —m2 m
@ _ NN (N ) (Nig + YN,
o 48%03‘/( );1 1N j1) (Nia = -Nia)
1 1
v . (6.107)
[(t—m?vi)(t—m?vj) (u—m?vl)(u—m?vj)]

To compare with the original calculation in [83] and with eq. E26, p. 244 in ref. [48], note that
for a pure photino exchange, N;; — cwd;1 and N2 — sy diq, so that

1

As T2 o ‘Nﬂ’ ‘Nz2 + — 21‘2 — 1. (6108)

S W

Also note that in [83] polarized electron beams are assumed. The result checks.
6.10.2 e"e” —egep

For this process, there are again two Feynman graphs, which are related by the exchange of
identical electrons in the initial state or equivalently by exchange of the identical selectrons in
the final state, as shown in Fig. 38. (We again neglect the electron mass and thus the Higgsino
coupling to the electron.) Let the electrons have momenta p; and py and the selectrons have
momenta k1 and ko, so that p? = p2 = 0; k? = k3 = m~ is = (p1+p2)% t = (k1 — p1)?;
u = (k1 — p2)?. Using the Feynman rules of Fig. 76, the amplitude for the first graph is:

9 )
, . /5. SW LMy, _

= | —1V2g—N; : 1
ZMt < ng aw 1> [(kl 2 2 ] Y1y2 (6 09)

_pl) - mﬁz
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for each exchanged neutralino. The amplitudes for the second graph are the same, but with the

electrons interchanged:

2 ims
iM, = (—z’x/igs—WNi1> e E (6.110)
cw (k1 — p2)? —m%

Since we have chosen to write the external state wave function spinors in the same order in M
and M, there is no factor of (—1) for Fermi-Dirac statistics. So, applying eq. (2.30), the total

amplitude squared is:

4

4g4s4 o .
IM* = CTW(ywz)(yzyﬂ Z (Ni )2(Nj1)2mﬁimﬁj
w ij=1
1 1 1 1
(t 5 T 5 > ; — + 5 (6.111)
—mg o u—my — mﬁj u— mﬁj
The sum over the electron spins is obtained from
> (G152) (y2u1) = Tr[pa-Tp1-0] = 2pa-p1 = 5. (6.112)
A1;A2
So, using eq. (3.57), the spin-averaged differential cross-section is:
do (1 1 EZ‘ME (6.113)
dt — \2) 16ms? | 4 '
A1;A2
2 & mgmg, 1 1 1 1
= Y (N PN R + ¥ (6.114)
2ct J s t—m%  u—m% t—m%  u-—mZ
Wij=1 N; N; N; N;

The first factor of (1/2) in eq. (6.113) comes from the fact that there are identical sleptons in
the final state and thus the phase space is degenerate.
To compare with [83] and also with eq. E27, p. 245 in ref. [48], note that for a pure photino

exchange, N;1 — cwdi1, so it checks.
6.10.3 e"e” —erep

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related
by the exchange of identical electrons in the initial state or equivalently by exchange of the
identical selectrons in the final state. As shown in Fig. 39, they are exactly like the previous
example, but with all arrows reversed. Using the Feynman rules of Fig. 76, the amplitude for

the first graph is:

2 .

. g sw tmpy,

M = <z—[NZ-*2 + — 1*1]> [ 5> ] T1T9 (6.115)
V2 cw (p1 — k1)? — mg.
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Figure 39: The two Feynman diagrams for e"e™ — €, ¢, in the limit of vanishing electron
mass.

for each exchanged neutralino. The amplitudes for the second graph are the same, but with

b1 < p2:

2 .

. g Sw tmy,

M, = <z—[N;2+— Z-*l]> [ N ]xm (6.116)
V2 cw (P2 — k1)? —m%

Since we have chosen to write the external state wave function spinors in the same order in M

and My, there is no factor of (—1) for Fermi-Dirac statistics. The total amplitude squared is:

4

4
g - = * SW. ars Sw
IM|? = Z(Jﬁ:ﬂz)(mﬂm) Z (Niy + o )2 (Nj2 + JNJ' )zmﬁimﬁj
ij=1
1 1 1 1
<t 5+ 5 ) " 5 + 5 . (6.117)
—my u—my —mﬁj u—mﬁj
The average over the electron spins follows from eq. (3.56):
Z (:Clxg)(.f'gi'l) = Tr[pg-dpl'ﬁ] =2po-p1 = S. (6.118)
A1,A2
So the spin-averaged differential cross-section is:
do 1 1 1 9
— ==z — 6.119
7= () o (3 2 619

A1,A2

2 4 Mg Mz

T Sw Sw N;"""N;

= 1 > (Nh+ ==Nj)*(Nj2 + —Nj ) ——
32syy, i cw cw S

1 1 1 1
(t — + 5 ) ; — + 5 (6.120)
—mg u—mg — mﬁj U — mﬁj

where the first factor of (1/2) in eq. (6.119) comes from the fact that there are identical sleptons
in the final state. To compare with [83] and also with eq. (E27), p. 245 in ref. [48], note that for

a pure photino exchange, N;;1 — ¢y d;1 and Nyg — swds1, so it checks.
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Figure 40: The Feynman diagrams for e~e™ — vr*.

6.11 e et —vr*

Consider now the pair-production of sneutrinos in electron-positron collisions. There are two
graphs featuring the s-channel exchange of the Z°. We will neglect the electron mass and Yukawa
coupling, so there is only one graph involving the t-channel exchange of the charginos. These
three Feynman diagrams are shown in in Fig. 40, where we have also defined the helicities and
momenta of the particles. The Mandelstam variables can be expressed in terms of the external

momenta and the sneutrino mass:

2p1p2 = 8; 2ky ko = s — 2m3; (6.121)
2p1-k1 = 2py-ky = mj —t; (6.122)
2p1-ky = 2po-ky = m2 —u. (6.123)

Using the Feynman rules of Fig. 67, the amplitudes for the two s-channel Z boson exchange

diagrams are:

. g —ig"” g o ] _
My = |—i—— (k1 — k - 1 — —1/2)| z10, 6.124
! |: QCW( ! 2)M:| |:(p1 +p2)2 — m2Z + zfzmz] |: CW( W / ) 1ovy2 ( )
. g —igh gsiy ] _
= |—1——(k1 — k v 6.125
iMs [ Z2CW( 1 2)4 {(pl R —Hszz] {z o ] §10,T2 ( )

where the first factor in each case is the Feynman rule from the Z boson coupling to the sneutrinos

(see Fig. 72c, ref. [48]). The t-channel diagram due to each chargino gives a contribution

. Lo . (k1 — p1)- B
iMsz = (—igVi1) (—igVir) 21 [(klz(—lpl)gl—) Zﬂ ] Y2, (6.126)
C;
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using the rules of Fig. 75. Therefore, the total amplitude can be rewritten as:

M= clxl(/cl — kg)'UQQ + c2§1(k1 — kg)-ﬁxg + ngl(kl —pl)-agjg (6.127)
where
2 2 2.2 2
g°(1 —2s3) 9" Sw 2 2 /02
=7 = — = E Vi - —1). (6.128
“ 4C%VDZ ’ = 20%,1?27 “=9 i:l‘ 1 /(ij ) ( )

and Dy =s — m2Z + il'zmy is the denominator of the Z boson propagator.
We will now square the amplitude and sum over the electron and positron spins. In doing
so, the interference terms involving co will vanish for m. = 0, because of egs. (3.58) and (3.59).

Therefore, we have

Z M| = Z {|61|2$1(k1 — ko) o2 ya(k1 — ko) 02

A1,A2 AL A2
Hlea? Gu(ks — ke)-Tws Ta(ky — k2) Ty

+c3 @ik — p1)-oGaya(ks — p1)-0%
+2Re[cre3 21 (k1 — ko) -0y2 y2 (k1 — p1) 'ail]} (6.129)
= [e1[* Tr[(ky — ka)-opa-T (k1 — k2)-0p1 -]
+leo* Tr[(ky — k2)-opa-o(k1 — ka)-op1-0]
+c3 Tr[(k1 — p1)-opa-a (k1 — p1)-op1-5]
+2Re[c1]es Tr[(k1 — k2)-op2-T(k1 — p1)-op1-7], (6.130)
where we have used egs. (3.56) and (3.57) to do the spin sums to obtain the second equality. Now,

applying the trace identities (2.44) and (2.45) and reducing the results using egs. (6.121)-(6.123)

andusz%—s—t,weget

S IMP2 = —[st+ (¢ = m2)?] (4er]? + el + & + 4Referles) (6131)
A1,A2

en mg = mg_ , this agrees with eqgs. - of ref. and wit . e differentia
When mg G, thi ith E46)-(E48) of ref. [48]% and with [84]. The differential

cross-section follows in the standard way by averaging over the initial-state spins:

do 1 1 9
— = Tons <4 > IM| > (6.132)

1,A2

Note that

t=m2 — (1 — fcosf)s/2; B=(1—4m2/s)"/?, (6.133)

33There is a typo in eq. (E48) of [48]; the right-hand side should be multiplied by 1/cos® 6.
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where 6 is the angle between the initial-state electron and the final-state sneutrino in the center-
of-momentum frame. The upper and lower limits ¢y and ¢_ are obtained by inserting cos§ = +1
above, respectively.

Doing the integration over ¢ to obtain the total cross-section, one obtains

tdo, 9 (5 Z S; Zs > (6.134)
o= —dt = + ij + i .
. dt 6471'5 z ) J Zi
where
ﬁ?: 2
Sz = 54 TS (8sty — 4sty + 1) —— D, (6.135)
Si; = |Vi1| (1 —2v)Li — 2p], (6.136)
Sip = So1 = |Vi1 Via? {[(ma + 573) Ly — (m2c~1 + Sfyf)Ll]/(m% — mél) 5} . (6.137)
252, — 1 s—m
Szi = O =V v (2, + s9DIL + s - 172)] C -T2, (6.138)
Gy ¢ [Dz|
with
v = (m2 —m%)/s Li=ln Lt_ (6.139)
v Ci ’ m% — t+

This agrees with egs. (E49)-(E52) of ref. [48] in the limit of degenerate charginos, or of a single
wino chargino with |V31| = 1 and Vi3 = 0 and with [84].

6.12 e et — N,N,

Next we consider the pair production of neutralinos via e~ e™ annihilation. There are four
Feynman graphs for s-channel Z° exchange, shown in Figure 41, and four for t-channel selectron
exchange, shown in Figure 42. The momenta and polarizations are as labeled in the graphs.

We denote the neutralino masses as m N My, and the selectron masses as mg, and mg,. The

electron mass will again be neglected. The kinematic variables are then given by

$=2p1-py = m%i + m%j + 2k; -k, (6.140)

t= m?vi — 2py ki = m?vj — 2py-kj, (6.141)

u=m% —2py-ki =m% —2p1-kj. (6.142)
[3 J

By applying the Feynman rules of figs. 67 and 72, we obtain for the sum of the s-channel
diagrams in Fig. 41,

2
gSWylau@][ O//sz ovYj — O”Ly,a,,x] , (6.143)
w

where Oj; is given in eq. (1.20). The fermion spinors are denoted by z1 = z(p}, A1), J2 =

J(Pa, A2), T; = :E(EZ, Xi)s Yj = y(Ej, Aj), etc. Note that we have combined the matrix elements
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of the four diagrams by factorizing with respect to the common boson propagator. For the four

t and u channel diagrams, we obtain, by applying the rules of Fig. 76:

a0 i 39 (e 4 SWoas 39 (o SWo o
zMgL—( 1)[ 3 ][\/5( i T+ Zl)] [ﬂ(N]2+cWNJ >]x1y,y2w], (6.144)

t— ms cw
er

g _ | 9 (e 2 W V2 (4 SN
ZMéL B [U—mé] [\/i(Nﬂ—'_ cw ]1)] [ﬁ(NZ + CWN22>]xly]y2x“ (6.145)
MO = (- U Vi SYN Y (—in/Ba Y N Vi B
iMg = ( 1)L_m§R]< Z\/igCWNzl)< Z\/igCWNﬂ)ylw,azgyj, (6.146)
M i N (i3S N Vo £
iMey = [u_ngK ZﬂQCWNﬂ)( Z\/EQCWNﬂ)ylw]xﬂJz- (6.147)

The first factors of (—1) in each of eqs. (6.144) and (6.146) are present because the order of the
spinors in each case is an odd permutation of the ordering (1, 2,1, j) established by the s-channel
contribution. The other contributions have spinors in an even permutation of that ordering.
The s-channel diagram contribution of eq. (6.143) can be profitably rearranged using the
Fierz identities of egs. (2.55)-(2.56). Then, combining the result with the ¢-channel and s-channel

contributions, we have for the total:

M = c121Y9oTi + 2T1YiY2Tj + C3Y1TT2Y; + CAY1TjT2Y;, (6.148)

e(p1, 1) X0 (kiy \) € (p1,\1) X0 (kiy \i)
AL Z°

é(p2a)‘2) X_(J)(]{,’J,)\]) e¢ (p27)‘2) X_?(k‘)J’)‘J)

e (p1, A1) X2 (ki \i) € (p1,M1) X0 (ki i)
Z0 A

€ (p2, A2) X9 (kj, Ag) e (p2, A2) X5 (ks A7)

Figure 41: The four Feynman diagrams for e~e™ — ]vlﬁ] via s-channel Z° exchange.
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e(pla)\1L B X0 (ki \i) € (p1, A1) _ XY (kiy M)

- .|

| |
| |
€Ly €r A
| |
€ (p2, A2) X? (kj, A\j) e’ (p2, A2) X? (kj, \))
e(p1, A1) XY (i, Aj) € (p1, M) X2 (ki, M)
N g
€r \ €h A
| \\ | \\
e(p2,22) X_g(kj,)\j) € (p2, A2) XY (kj, Aj)

Figure 42: The four Feynman diagrams for e e™ — N,N] via t-channel selectron exchange.

where
2
1= CgT (1 —2s3,)00F /(s — m%) — (cwNig + swNir) (ew Ny + swNj ) /2(u — mZ,)] , (6.149)
W
2
Cy = CgT [2siy — DOJE /(s —mZ) + (ewNiy + sw ;i) (ew Nj2 + swiNjy) /2(t —mZ,)], (6.150)
W
_ 2923%/‘/ _NI'L a2 : * 2
=3 [—O/7 /(s —mz) + NuNj /(t = mg,)] , (6.151)
W
_ 2928%/‘/ O//L _ 2y *N _ 2 6.152
“==a (0577 /(s —m%) AN/ (w—mg )] (6.152)
W

Now, when we square the amplitude and average over the initial-state fermion spins, the only
terms that will survive in the massless electron limit are the ones that involve x1Z; or y1%1, and

x2Tg or yaya. This follows immediately from egs. (3.58) and (3.59).

Z IM? = Z <’01’2ijlxlijiy2y2xi + o P11 i jy2ijo T
AL, A2 A1;A2

+es|*miy 1 Zi0;Box2y; + |ea|* Ty 1 T PiTamay;
+2Re [clcggiilznlyjznjyggjgii] + 2Re [03cj$jylgj1i‘igji:f2x2yj]> (6.153)
= |e112g;p1-Tyj Tip2-0T; + |c2|*Tip1 - TY; T2+ 0T,
+les[Pwipr-o; §ip2-Ty; + |ealPajpr-07; Gipa Ty;
+2Re [clc’g‘gipl -TY; a:jpg-aafi] + 2Re [03cf1xjp1 -OT; Yip2 'Eyj] (6.154)

where eqgs. (3.56) and (3.57) have been used to do the spin sums to obtain the second equality.
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Now we do the remaining spin sums using egs. (3.56)-(3.59) again, obtaining:

Z |M|2 = |Cl|2T1“[p1'Ekj'U]TI“LPQ'U]{Ii'E] + |62|2T1"[p1'5]{7i'0']T1"Lp2'0'kj'E]
AL A2,A6,A5
’ +les 2 Tx[py - ok -3 Tx[pa ;0] + |ea 2 Trlpy - ok -7 Te[ps - 5ki 0]

+2Re[clc§]mﬁimﬁjﬁ[p2.ap1-E] + 2Re[03cj]mﬁimﬁjﬁ[p1.ap2-6]. (6.155)
Applying the trace identity of eq. (2.43) to this yields

Z IM? = (Jer|* + leal®)4p1-k;j pa-ki + (|e2]® + |es|*)4py-ki p2-k;
spins
+4Re[c1cp + 03€Z]mﬁimﬁjp1'p2 (6.156)
= (leal® + lea*) (w = mT ) (w = mT ) + (leal” + les[*)(t = mG ) (t = L)
+2Re[c1 65 +C3CZ]mﬁimﬁj3- (6.157)

The differential cross-section then follows:

do 1 1

spins

This agrees with the first complete calculation presented in [85]. For the case of pure photino
pair production, i.e. N;;1 — cwd;1 and Njo — syd;1 and for degenerate selectron masses this also
agrees with eq. (E9) of the erratum of [48]. Other earlier calculations with some simplifications
are given in [86, 87].

Defining cos § = pq-k; (the cosine of the angle between the initial-state electron and one of

the neutralinos in the center-of-momentum frame), the Mandelstam variables ¢, u can be written

as
1

t = 3 [m?\z + m?vj — s+ Al/Z(S,m?vi,m?vj) cos 9} , (6.159)
1

u=3 [m?\ﬁ + m%j —5— )\1/2(3,mi7i,m%j)cos H} . (6.160)

Taking into account the identical fermions in the final state, the total cross section is

1 [ do
o= —

i it (6.161)

where t_ and ¢ are obtained by inserting cos = F1 in eq. (6.159), respectively.

6.13 e et — C;Cf

Next we consider the pair production of charginos in electron-positron collisions. The s-channel

Feynman diagrams are shown in Fig. 43, where we have also introduced the notation for the
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e(pi, A1) X; (kis Ai) €€ (p1, A1) x; (ki Ai)

v, Z° v, Z°
e(p2,22) Xj (kj, A) e (P2, Xa) X (k5 \)
e (p1, M) X (kiy A & (p1,\1) Xi (Kiy A
7, 2" v, Z°
é(]727)\2) X;— (k’j,)\j) e (pz,)\2) X;_ (k‘j,)\j)

Figure 43: Feynman diagrams for e e™ — 5;5; via s-channel v and Z% exchange.

e(p1, A1) (ki M)

A

X; (kj, Aj)

A 4

Figure 44: The Feynman diagram for e “e™ — 52._ 5; via the t-channel exchange of a sneutrino.

fermion momenta and polarizations. The Mandelstam variables are given by

$=2p1-py = m%l + m%j + 2k; -k, (6.162)
t= m%i —2p1-k; = m%j — 2py-kj, (6.163)
u = m%i — 2py-k; = m%j — 2p1-kj. (6.164)

Note that the negatively charged chargino carries momentum and polarization (k;, \;), while the
positively charged one carries (k;, Aj). Using the Feynman rules of Figs. 67 and 72, the sum of

the photon-exchange diagrams is:

i
iM, =

(—ie T10,Y2 — e 3715#:132) (ie 5ijyi0,,i‘j + e 5Z-jiﬁ,,yj) (6.165)
while the result from the Z-exchange diagrams is:

. —ig" 49 5 4 o igsyy 9 yp - 09
Mg s—mZ Low (st — 3) T10,92 + > ylauazg] [_Joﬁ YiO,Tj — aOﬁ xia,,yj] (6.166)
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The t-channel Feynman diagram via sneutrino exchange is shown in Fig. 44. Applying the rules
of Fig. 75, we find:
i

t —m?2

Ve

iMp, = (1) (—igViiz1y:) (—igVi i) - (6.167)

The Fermi-Dirac factor (—1) in this equation arises because the spinors appear an order which
is an odd permutation of the order used in all of the s-channel diagram results.

One can now apply the Fierz transformation identities (2.55)-(2.57) to egs. (6.165) and
(6.166) to remove the o and @ matrices. The result can be combined with the ¢-channel contri-
bution to obtain a total matrix element M with exactly the same form as eq. (6.148), but now

with:

2
c1 = 2e25;5 /s — 97(1 —253,)0 /(s —m3), (6.168)
W
¢ = 2e%0/s — % (1 —253) Ol /(s — m%) + g*Vii Vin/(t —m2,), (6.169)
W
24
c5 = 2620, )5 + =2 SWO’R (s —m2), (6.170)
W
24
ey = 2€? dij/s + J SWO/L (s —m%). (6.171)
W

The rest of this calculation is identical in form to egs. (6.148)-(6.157), so that the result is:

D IMP = (leaf® + feal®) (w = mE ) (u = me ) + (leaf® + [es|)(t — m )(t —m )

spins

+2Re[c1c5 + 0302]7”@7”@3- (6.172)

The differential cross-section then follows:

do 1 9
e P Z|M| . (6.173)

spms

Defining cos 8 = pq-k; (the cosine of the angle between the initial-state electron and CN’Z._ in the

center-of-momentum frame), the Mandelstam variables ¢, u can be written as

1
t= 3 [m%l + m%} s+ AV2(s, m2c ,m% ) cos 0] (6.174)

1
u=g [m%l + m%j — 5 — AV2(s, m2o ,m% ) cos 0] (6.175)

The total cross section can now be computed as
+ do

= —dt 6.176
) (6.176)

where ¢_ and ¢, are obtained with cosf® = —1 and +1 in eq. (6.174), respectively. Our results
agree with the original first complete calculation in [88]. Earlier work with simplifying assump-
tions is given in [89]. An extended calculation for the production of polarized charginos is given

in [90].
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u (p1, A1) x; (ki \i) u(p1, A1) x; (i Ai)
W+ W+

d (p2, \2) X7 (kj, ) d (p2, \2) X0 (i, Az)

u (p1, A1) x; (Kiy A u(p1, A1) X" (ki, A

< | <
- <

QL
h
-
A
=
h

A\

d(pQ,)\g) X? (k’j,)\j) d(pg,)\g) X_?(kjy)‘j)

Figure 45: The four tree-level Feynman diagrams for ud — éf N e

6.14 ud — C/N;

Next we consider the associated production of a chargino and a neutralino in quark, anti-quark
collisions. The leading order Feynman diagrams are shown in Fig. 45, where we have also defined

the momenta and the helicities. The corresponding Mandelstam variables are

5 =2pi-py = m%@ + m%j + 2k;-kj, (6.177)
t= m%i —2p1-k; = m%j — 2py-kj, (6.178)
u= m%i — 2py-ki = m%j — 2p1-kj. (6.179)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman

rules of figs. 67 and 73:

. —ig“" Zg _ . Lt = — . Rx _
iMs = ——— | —=z10,02 (Zngi Tio,y; +i90j; yia,,xj) . (6.180)

s—my \V2

The external spinors are denoted by x1 = x(p7, A1), U2 = §(Pa, A2), Ti = f(EZ, i) Yj = y(Ej, Aj),

etc. The matrix elements for the ¢ and u channel graphs follow from the rules of figs. 75 and 76:

My = (1) (—iqU) (PN, — SV Ty

iMy = ( 1)t _msz (—igU}) <\/§[N] " N; ])xly,ygx] (6.181)
, i : ig x _ SW =

iMy = —— 7 (—igVi1) <\/§[_ 27 3, Nj1]>l’1yjy2wi (6.182)

The first factor of (—1) in eq. (6.181) is required because the order of the spinors (1,4,2,j) is in

an odd permutation of the order (1,2,4,j) used in the s-channel and u-channel results.
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Now we can use the Fierz relations egs. (2.55) and (2.57) to rewrite the s-channel amplitude
in a form without ¢ or @ matrices. Combining the result with the t-channel and wu-channel

contributions yields a total M with exactly the same form as eq. (6.148), but now with

. 1 . SW ok
c1 =—V2g° [OJLZ /(s —miy) + Vz‘1<§Nj2 + 6o 1)/ (u— mﬂL>:| ; (6.183)
2 Rx 2 * 1 * SwW *
cr = —V2g [Oji /(s —miyy) +Uj (5 27 Gew /(= mJL)] 5 (6.184)
C3 = Cq4 = 0. (6185)

The rest of this calculation is identical in form to that of egs. (6.148)-(6.157), leading to:

Z IMP? = |e1)?(u — m%l)(u - m%ﬂ) + lea](t — m%ﬁ)(t — m%ﬂ) + 2Re[clc§]m5imﬁjs. (6.186)

spins

From this, one can obtain:

do 1 1 9
o T g 2 M (6.187)

spins

where we have included a factor of 1/3 from the color average for the incoming quarks. Eq. (6.187)
can be expressed in terms of the angle between the u quark and the chargino in the center-of-

momentum frame, using

1

t = 5 [m%@ + m%j —s+ )\1/2(s,m%i,m%j) cos 9} , (6.188)
1

u=3 [mzd + m%j —5— )\1/2(3,m2@,m%j)cos H} . (6.189)

This process occurs in proton-antiproton and proton-proton collisions, where /s is not fixed,
and the angle @ is different than the lab frame angle. The usable cross-section depends crucially
on experimental cuts. Our result in Eq. (6.187) agrees with the complete computation in [91].
Earlier calculations in special supersymmetric scenarios, e.g. with photino mass eigenstates are

given in [87,92]
6.15 N, — N;N,N,

Next we consider the decay of a neutralino ]\72 to three lighter neutralinos: Nj,ﬁk,ﬁg. This
decay is not likely to be phenomenologically relevant, because a variety of two-body decay modes
will always be available. Furthermore, the calculation itself is quite complicated because of the
large number of Feynman diagrams involved. Therefore, we consider this only as a matter-
of-principle example of a process with four external-state Majorana fermions, and will restrict
ourselves to writing down the contributing matrix element amplitudes.

At tree-level, the decay can proceed via a virtual Z° boson; the Feynman graphs are shown

in Fig. 46. In addition, it can proceed via the exchange of any of the neutral scalar Higgs bosons
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Figure 46: Four Feynman diagrams for N; — Njﬁkﬁg in the MSSM via Z° exchange. There
are four more where N; < N}, and another four where N; < Nj.

Figure 47: Four Feynman diagrams for N; — N NkNg in the MSSM via QSO = K9, HO, A°
exchange. There are four more where N > Nk and another four where N > Ng

of the MSSM, ¢° = hY, HY, A%, as shown in Fig. 47. Since any of the final state neutralinos can
directly couple to the initial state neutralino there are two more diagrams for each one shown
in Figs. 46 and 47, for a total of 48 tree-level diagrams (counting each intermediate Higgs boson
state as distinct). In all cases, the four-momenta of the neutralinos KQ, ﬁj, ﬁk, Ny are denoted

pi, kj, ki, ke respectively.
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For the sum of the four diagrams in Fig. 46, we obtain by implementing the rules of Fig. 72,

and using the Feynman gauge:

29279
z'./\/l(Zl) = Y9 /QCW 5 (O’-’inausﬁj — Oggﬁgiauyj) (Og’kackE*‘yE — ngyka“m), (6.190)
(pi — kj)* —my

[The external wave functions are z; = z(P;, \i), Tjre = x(lzz’j7k,g,)\j7k,3), and analogously for
Zi ke, and y; ke and g j k. o.] Note that we have factorized the sum of diagrams, taking advan-
tage of the common virtual boson line propagator. The contributions from the diagrams related

to these by permutations can now be obtained from the appropriate substitutions (j < k) and
(J <0

52702

iMP = (-1)——4 /;W 5 (ogf:ciau:zk - Og’,fgiauyk) (ogfgzja“yg - O;’}yjam), (6.191)
(pi — ki)? — my

.M(S) o 1 _i92/0124/ O//L = O//Lf— O//Lf — O//L s 192

iMy" = (=1) 12 2 \Ye Tioule — Uy Yio e ik Tk — Oy yro’'z; ). (6.192)
(pi — ko) my

The first factors of (—1) in iM(Zz) and i/\/l(Z?’) are present because the order of the spinors in each

case appear in an odd permutation of the canonical order set by i./\/l(Zl). Note that if we were

to proceed to a computation of the decay rate, the very first step would be to apply the Fierz

relations of egs. (2.55)-(2.57) to eliminate all of the ¢ and & matrices in the above amplitudes.
The diagrams in Fig. (47) combine to give a contribution:

—1

ZME;O) - o (Y aiy; + Yijgiz)) (Y ™ yrye + YieTr o) (6.193)

(pi — kj)* — m o
where we have adopted the shorthand notation Y% = (V;;)* = y#xIXg, Again we have factored
the amplitude using the common virtual boson propagator. As in the Z-exchange diagrams, the
other contributions can be obtained by the appropriate substitutions:

—1

A q(2) ik .. o i, o
2M¢0 - (_1) (pi — kk)2 — mi)o (Y Yk + }[zkyzxk)(yj YiYe + Y]Z‘T]xf) (6'194)

—1

Z‘M((;Z)) = (—1) 5 (Yiéxiyg + Yigyifg)(ijykyj + ijfkfj) (6.195)

(pi — ke)* —m?,
The first factors of (—1) in z./\/l((z)%) and i./\/l((;(’)) are needed because the spinors in each case are in
an odd permutation of the canonical order established earlier.

Now the total matrix element is obtained by:
3 3
M= MP+3 S MY (6.196)
n=1 o0 n=1
as given above. When computing the total decay rate, additional attention must be paid to
the case where two or more final state indices are equal, since the phase space is then reduced

by the corresponding factor to avoid over-counting of identical final states. To the best of our

knowledge this process has not been computed in the literature.
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Figure 48: Feynman diagrams for the three-body slepton decays 57}_2 — (~777] (top row) and
{r — €777 (bottom row) in the MSSM.

6.16 Three-body slepton decays Zfz —(~rE7F for {=e,pu

In this subsection, we consider the three-body decays of sleptons through a virtual neutralino.
The usual assumption in supersymmetric phenomenology is that these decays will have a very
small branching fraction, because a two-body decay to a lighter neutralino and lepton is al-
ways open. However, in Gauge Mediated Supersymmetry Breaking models with a non-minimal
messenger sector, the sleptons can be lighter than the lightest neutralino [93,94]. In that case,
the mostly right-handed smuon and selectron, jip and €gr, will decay by Z}_% — 0~7*7F. The
lightest stau mass eigenstate, 7~'1i, is a mixture of the weak eigenstates ?2: and ?}jz:, as described
in Appendix 1.4:

T, = CiTp + S:7T, (6.197)

and 7, = (7, )*, while the jig and ég are taken to be unmixed.

First consider the decay ZI} — ¢~777, which proceed by the diagrams in the first row
of Fig. 48. The momenta and polarizations of the particles are also indicated on the diagram.
Using the Feynman rules of Fig. 78, we find that the amplitudes of these two diagrams, for each

neutralino IV; exchanged, are:

: vy . T —i(p—ki)o |_

iMy = (—idh)(—ia] )yl[ — 3 :|£C2, (6.198)
(p kl) mNj

. .7 g F ZmNj

iMg = (—iab)(—ib]) [(p ")

N

J

}yz- (6.199)
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where

5 = \/ig/ ;17 (6200)
T =Y:Nj3s: + vV2¢'Njcz, (6.201)
T * % 1 * * *

The spinor wavefunction factors are y; = y(El, M), Y2 = y(Eg, A2), and Ty = :i(Eg, A2).

In the following, we will use the kinematic variables

2 = 2p-k1/m%R = 2E¢/my_, 2 = 2p‘k2/m§R =2E;/m;_, (6.203)
ry, = mNj/ml;R, rE =ms /myg, (6.204)
re =me/my, e = me/my, . (6.205)

The total amplitude then can be written as

4
M = Z lcjy1(p — k1)-0Z2 + djy1y2] (6.206)
j=1
where
. 0 7% 2 2
¢j = —ajaz”/[mi, (ry, — 1+ 20)l; (6.207)
dj = akb] my, /[m?R(r]zvj — 14 z)]. (6.208)

We consistently neglect the electron and muon Yukawa couplings (so r, = 0) in the matrix
elements, but not below in the kinematic integration over phase space, where the muon mass

can be important.
Now using egs. (2.30) and (2.31), we find

MP = [Cjc}i y1(p — k1) oZ2 22(p — k1)-oy1 + djdiy1y2 Y2th
Jik

—I—cdeyl (p — ]{31) -T2 Y2Y1 + C;k-dkl‘Q (p — ]{31) oY1 Y1Y2 | . (6.209)

Now summing over the lepton spins using egs. (3.56)-(3.59),

YoM=Y [cjc;;m(p — k) oky T(p — ky)-0ky 7] + djdi Te[ky -0k, 5]
A1, A2 J:k

—cidpm;Tr[(p — k1)-0k1-T] — c;dpm, Tr[(p — k1) -0k -E]. (6.210)
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Taking the traces using eqs. (2.43) and (2.44) yields

dMP=> {cjc,’;[4k1-(p — k)ka-(p — k1) — 2Ky ko (p — k1)?) + 2d;diks - ko

spins 7.k

—dRelc;d}mky - (p — k:l)} (6.211)

- Z {Cjc;im%[(l —2)(1 = z) — 12 + 1]
ik

+djd};m37R(zg + oz — 1472 —r2) — QRG[deZ]megRZg} (6.212)
The differential decay rate for Z}_B — {7777, then follows:
d’T mg. )
= 6.213
dzedz; 25673 <Z M| ) ( )

spins

The total decay rate in that channel can be found by integrating over z,, zr, with the limits (see

for example ref. [75]):

2y < zg < 14717 — (rr +77)°, (6.214)

1
Zr S m (2—z20) (A + 12 +712 =12 — 2)) £ (22 — ar)V2AV2 (1 442 — Zg,rz,rg)].

(6.215)

Now we turn to the competing decay Z}_% — E_T_7~'1+ , with diagrams appearing in the second

row of Fig. 48. By appealing again to the Feynman rules of Fig. 77, we find that the amplitude
has exactly the same form as in egs. (6.198) and (6.199), except now with aj— — b]%-. Therefore,

the entire previous calculation goes through precisely as before, but now with

¢y = —alB (%, — 1+ ), (6216)
d; af-aj-mNj [m?R (7“12%_ — 1+ 2] (6.217)

The differential decay widths found above can be integrated to find the total decay widths. The
3) (4)
ij i
incorrect and should be flipped. (Also, the notations for the sfermion mixing angle are different

results agree with ref. [95], except that the signs of the coefficient ¢;:” and ¢;.” in that paper are
in that paper.) If mg, — Mz — My is not too large, the resulting decays can have a macroscopic
length in a detector, and the ratio of the two decay modes can provide an interesting probe of

the supersymmetric Lagrangian.

6.17 Neutralino decay to photon and Goldstino: N; — vé

The Goldstino G is a Weyl fermion that couples to the neutralino and photon fields according
to the non-renormalizable Lagrangian term [96]:

a;

(00,750, 0"G) (97 AP = P A”) + cc. (6.218)

L
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¥ (kyy Ay) Y (kyy Ay)

X0 (0, Ax) X (0. Ax)

G (kg Ag) G (kg Ag)

Figure 49: The two Feynman diagrams for N; — vé in supersymmetric models with a light
Goldstino.

Here X? is the left-handed two-component fermion field that corresponds to the neutralino N,
particle, G is the two-component fermion field corresponding to the (nearly) massless Goldstino,

and the effective coupling is

a; = (N} cos Oy + Nj5 sin Oy ), (6.219)

1
V2(F)
where N;; the mixing matrix for the neutralinos [see eq. (1.23)], and (F') is the F-term expectation
value associated with supersymmetry breaking. Therefore NZ can decay to v plus G through

the diagrams shown in Fig. 49, with amplitudes:

iMy =i agkgo (€ Thy o —k, T 0) g, (6.220)
iMsy = —i% Uika o (" 0kyT—ky0e"T)ys. (6.221)

Here x5 = (P, Ay ), Uy = J(P, A\y), and T5 = Z(ka, A\a), ya = (ks Ag), and €% = *(ky, \,)
are the external wavefunction factors for the neutralino, Goldstino, and photon, respectively. Us-
ing the on-shell condition k,-¢* = 0, we have k,-0e*-0 = —¢*-0k,-0 and k,-0e*-0 = —c* -k, 0

from egs. (2.39) and (2.40). So we can rewrite the total amplitude as

M=Mj+ My = l‘NA:f'@ +Y5Bya (6.222)

where
A=ajkgoe"-Tky o, (6.223)
B=—aj kg0 -0kyT. (6.224)

The complex square of the matrix element is therefore
|./\/l|2 = xNA:f'éxéAi'N + gNByégGByN + ZL'NAi‘é]]éByN + ﬂNByéxéAi‘N, (6.225)

where A and B are obtained from A and B by reversing the order of the o and & matrices
and taking the complex conjugates of a; and e. [See the discussion surrounding egs. (4.23) and
(4.24).]
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Summing over the Goldstino spins using eqgs. (3.56)-(3.59) now yields:

Z ‘ME = xNAké'ﬁAi'N + ?]NBké'UByN.
Aa

(6.226)

(The A, B and A, B cross terms vanish because of meg = 0.) Now averaging over the neutralino

spins using eqs. (3.56) and (3.57), we find

1 1 _a o, 1 A
3 E IM|? = §Tr[Aké'aAp-a] + §Tr[Bké-aBp-a].
Agod

1
= §|ai|2Tr[e*-5k,y-a keTky-oeTka-opGhg-o]+ (0 < 7).
Now use

ky-ockaoky-o =2kakyky-o,

kaopokao =2kapka-o,

which follow from eq. (2.41), and the corresponding identities with o < @, to obtain:

1
5 > M = 2lail* (kg ky) (kg p)Tr[e* T ky-0 2T ko] + (0 < 7).
ARG

Applying the photon spin sum identity

2 :e,ugu* — _g,uz/

Ay

and the trace identities eq. (2.44) and (2.45), we get

1
3 2 WME =160l (g e (hp) = 2daif*mf,

So, the decay rate is [97]:

5

1 . moe
T6mm 3 E |/\/l|2 = |N;1 cos Oy + Nyg sin 9W|2 d
P\ MApAe

6.18 Gluino pair production from gluon fusion: gg — gg

()P

(6.227)

(6.228)

(6.229)
(6.230)

(6.231)

(6.232)

(6.233)

(6.234)

In this subsection we will compute the cross-section for the process gg — gg. The relevant

Feynman diagrams are shown in Figure 50. The initial state gluons have SU(3). adjoint rep-

resentation indices a and b, with momenta p; and ps and polarization vectors &} = (P}, A1)

and e = e/ (P,, \2) respectively. The final state gluinos carry adjoint representation indices c

and d, with momenta k1 and ks and wavefunction spinors T; = E(El, Ap) or y; = y(El, A]) and

Ty = T(ko, Ay) or yo = y(ks, AS), respectively.
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9a (P1, A1) Ge (k1, X))
Je
a» (P2, A2) Ga (ka, Ny)
Ja Je
Je &
9o 9
Ga ~ e
A
Je
[ gd
Ja Ge
Je \
9 Ga
ga §C
e \
b 9d

Figure 50: The ten Feynman diagrams for g¢g — gg. The momentum and spin polarization

assignments are indicated on the first diagram.
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The Feynman rules for the gluino couplings in SUSYQCD are given in Fig. 79. For the two

s-channel amplitudes, we obtain:

. _Z‘gpli
iMs = <—gsfabe[9w/(p1 - p2)p + gup(pl + 2]92)“ - gpp(2p1 -I-pz)y]) < S >
eley [(—gstde)i"ﬁnw + (g1 %) yrowia| - (6.235)

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and
the second factor is the gluon propagator. The next four (t-channel) diagrams have a total

amplitude:

. __ i(k1 —p1)-o | _
M, = (—gsfec@ MY (_ o edb v Z( »
Mg ( gsf 51)( gsf 52) T10y (r —p1)2 _mg ovY2

eca deb_v Z(kl _pl)'a _
+(.gsf 5?) (.gsf 52) Yoy [(k’l _p1)2 — m%] OpT2

R img _
(=95 f0e) (91 *"<5) 21, [(lﬁ S mJ "
g

eca M\ (__ edb v Z"I’)’Lg — 6.236
+ (g5 %) (—gs f°E5) Yo, [(lﬁ —p1)2—m§] Ty (6.236)

Finally, the u-channel Feynman diagrams result in:

. _ eda ceb_v\ = — Z(kl —pg)'O' —
ZMu - (_gsf E’f) (_gsf 52) 10y [(kl —p2)2 — m?]] T uY2

dea 1t ech v Z(kl _p2)'6 _
+(gsf 51) (gsf 52) Y10v [(kl _p2)2 — mg OuT

(k1 —p2)* —mZ
img
(k1 —p2)* —m3

(g0t (—ga oY) 217 [ ‘Mg ] 0,1

+(—gs ) (95.£€5) yr0w [ ] Tl (6.237)

We choose to work with real polarization vectors €1, 2. Since they must both be orthogonal to

the initial-state collision axis in the center of momentum frame, we have:

E1°€1 = E€9:€9 = -1 (6.238)
€1°p1 = €2°p1 = €1'p2 = €2-p2 = 0, (6.239)
61'k2 = —61'16’1, 62'1@’2 = —Eg'k‘l, (6.240)

and the sums over gluon polarizations will be accomplished by:

D et = ehet = g™ + 2 (phps + ) /s. (6.241)
A1 A2
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Before taking the complex square of the amplitude, it is convenient to rewrite the last two

terms in each of egs. (6.236) and (6.237) by using the identities [see eq. (3.12)]:
mg, = 110 k1, mgy1 = T10-k1. (6.242)

Using egs. (2.41) and (2.42), the resulting total matrix element is then reduced to a sum of

terms that each contain exactly one o or & matrix. We define convenient factors:

Gy = g2 fabefede /s, (6.243)
Gy = g2 f* f2/(t — m3), (6.244)
Gu = g2 f*% 2/ (u — m3). (6.245)

where the usual Mandelstam variables are:

s = (p1+p2)* = (k1 + k2)?, (6.246)
t = (ki —p1)* = (k2 — p2)*, (6.247)
u= (k1 —p2)* = (ks — p1)*. (6.248)

Then the total amplitude is (noting that the gluon polarizations were chosen real):
M= Mg+ My + M, =T1a-Gys +y1a" 0o, (6.249)
where
' = — (G + Gs)er-eapl — (Gy — Gs)er-eaply — 2Giky-e1 el — 2G Ky g0 €lf
—ie P o0 (Gipr — Gupa)s- (6.250)
Squaring the amplitude using egs. (2.31) and (2.32), we get:
IM|? = Zya-Gyaijpa™ -Gy + y1a*-0F2x0a-071 + T1a-Fyaxaa-0f1 + y1a*-0Tafa* -Fry. (6.251)
Now summing over the gluino spins using eqs. (3.56)-(3.59), we find:

Z IM? = Trla-Gky-0a* -Gk, -0] + Tr[a*-cky-Ga-ok, -]
UV
v —mgTr[a-Ea-a] - mgTr[a*'Ja*-E]. (6.252)
Taking the traces with egs. (2.43)-(2.45) yields:

Z IM|? = 8Re[a-kia* ko] — 4a-a* ky kg — 4ie" P ky ko a, 0, — 4m§Re[a2]. (6.253)
ALA

Now plugging in egs. (6.250), we obtain:
> IMP =2(t —m3)(u — md)[(Ge + Gu)® + 4Gs + Go)(Gs — Gu)(e1-22)7]
N
Ve +16(Gt + Gu)[Gs(t — U) + Gt(t — mg) + Gu(u — mg)](sl '62)(]{71 '61)(]{71 '62)
—32(Gt + Gu)z(k1'€1)2(k‘1'62)2. (6.254)
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The sums over gluon polarizations can be done using eq. (6.241), which implies:

> 1=4, D (e1ve2)? =2, (6.255)

A1, A2 A1,A2

> (e1-e2)(ki-e1)(ki-e2) = m3 — (t —mZ)(u—m3)/s (6.256)
A1, A2

37 (kr-e1)?(kre2)? = (m2 — (t —m2)(u—m2)/s)". (6.257)
A1, A2

Also, we can sum over colors using fobe fede pabe’ pede” — o pabe pede face’ hde’ — N2(N2 —1) =172,

SO:

72 72
Y@= gs Y G = %, (6.258)
colors colors - mg )
724 3601
PR T Y GG = O g o (6.259)
colors 9 colors 9
4 4
3 GG = —%82, Y GG, = 509, (6.260)
colors (u - mg) colors mg)(u o mg)

Putting the factors together, and averaging over the initial state colors and spins, we have:

do 1 1 1 )
= To <6_4 Cgojrsz ;; M| ) (6.261)

(s+2m)

(t—m2)(u—md)

9ra? 9
=i [2(t—m~)(u— ) 35 —4m +

g

4m§84
) (6.262)

Tl 2R )y

which agrees with the result of [87,98] (after some rearrangment). Note that in the center-of-
momentum frame, the Mandelstam variable ¢ is related to the scattering angle 6 between an

initial-state gluon and a final-state gluino by:

t=m2+ <cos0 J1— 4m2/s - 1) 5/2. (6.263)

Since the final state has identical particles, the total cross-section can now be obtained by:

1 (% do
== —dt .264
o 2/t o (6.264)

where ¢4 are obtained by inserting cos = %1 into eq. (6.263)..
6.19 R-parity violating stau decay: 74 — e"1,

Next we consider the decay of a right-handed scalar tau via an R-parity violating LL E coupling.

This is particularly relevant for a scalar tau LSP [99,100] and resonant slepton production [101].
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V_,Uz(kﬂ# ) Aﬂ# )

e(ke, Ae)

Figure 51: Feynman diagram for the R-parity violating decay 7~';§ — et

The Feynman diagram is shown in Fig. 6.19, where we have also defined the momenta and the

helicities of the fermions. The amplitude is given by
IM = —i Yy, s (6.265)

where we have denoted the external wave functions as y. = y(Ee,)\e), and yp, = y(Epu,Apu),
respectively. We have also written the R-parity-violating Yukawa coupling as A = 123 (see

Appendix J). Using eq. (2.30), the amplitude squared is
IM? = [N?Yeys, Us, Ue- (6.266)
Summing over the fermion spins using egs. (3.57) gives:

> IMP = AP Txlke-0 ks, 5] = [A*mZ, | (6.267)
Ae,)\ff”
where in the last step we have used the trace formula eq. (2.43), and neglected the mass of the

electron and the neutrino. The total decay rate is then given by

1 A2
r= Tomme, (Ag% |M|2> = %mﬁ? : (6.268)
which agrees with the computation in [102-104]. Completely analogously we can obtain the
total rate for the decays v, — 7€ and €, — 777, which proceed via the same operator, by
replacing mz, — (me,, mp, ), respectively.
In general the two-body decay rate of a sfermion f via the LQD or UDD interaction is
given by

i 2
L(f = fif2) = 01|6)\7l mg,

where we have neglected the masses m1 2 of the final state fermions. The factor C' denotes the

(6.269)

color factor. For the slepton decays via LQ D which are summed over the final-state quark colors,
C = N, = 3. For the squark decays via LQD where the initial state color is averaged over and
the final-state color is summed, C' = 1. For the squark decays via UDD, C = (N, —1)! = 2. In
realistic cases, one must also include the effects of mixing for the third-family sfermions, which

we have omitted here for simplicity.

93



,U(kua)‘u) d° (kdv)‘d)

N \ . N\ \
AL dr
d° (ka, \a) w (ks )
u (K, Ay)
x_?(pz-, Ai) 1 (ks Ap)

T

ur
d° (kq, Aa)

Figure 52: Feynman diagrams for the R-parity violating decay N, — " ud.

6.20 R-parity violating neutralino decay: NZ — puud

Next we consider the R-parity violating three-body decay of a neutralino N, — pu~ud, which
arises via the superpotential term Ay, L,Q1D1. This is of particular interest when the neutralino
is the LSP, since it determines the final-state signatures [105,106]. The three Feynman diagrams
are shown in Fig. 52, including the definitions of the momenta and helicities. We have neglected
sfermion mixing, i.e. we assume iy, 4y, and C?R are mass eigenstates. Using the Feynman rules

given in Figs. 76 (or 78) and 83, we obtain the amplitudes

[ 4 1
iMy = (iN") | —=(gNi2 + g/Nil):| Ui y T T g (6.270)
(X V2 (pi—ku)2—m%L g
My = (iX") | -GN Ui dTplu 6.271
iMg = (iX™) BE 9 Nix (pi_kd)z—mi? Ui qT % ( )
) = (IN* ——L N; 'N; ! YiTuTdx 272
iMs (z ) _ ﬁ(g 2+g 1/3)] [(pi_ku)2_m12]L] UiTuT T, (6.272)

Here we have denoted the external wave functions as y; = ¥(P;, \i), T = E(Eu,)\u), Ty =

i(Eu,Au), Ty = E(Ed,)\d), and written A’ = A,;; . In the following, we will neglect all of the
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final-state fermion masses. The results will be expressed in terms of the kinematic variables

2 = 2pi-ku/mY = 2B, /my,, (6.273)
Zd = Qpi-kd/mi?_ = 2Ed/m]\7i’ (6.274)
2y = 2pi-ku/mi~a_ = 2Eu/mNi (6.275)

which satisfy z, + 24 + 2, = 2. Then we can rewrite the total matrix element as:

M = 1§iZpTuTa + C2UiTdT Ty + C3YiTuTdly (6.276)
where
1
o1 = N (gNi + g/ Na) /[, — i (1= 2,) (6.277)
V2,0
C = —?X Q/Nil/[mZ“R - m?\h(l — 2a)], (6.278)
1
c3 = _EX*(QNZQ +¢'Niu/3)/[mZ, — m?vl(l — 2u)]. (6.279)

Before squaring the amplitude, it is convenient to use the Fierz identity (2.54) to reduce the

number of terms:
M = (c1 — e3)UiZpTulq + (C2 — C3)YildT pTu.- (6.280)
Now, using eq. (2.30), we obtain
IM|? = |e1 — e3P UiZp2 pYiTuZ aTaT + |2 — 3 GiZaTaliZ pTuTuty
—2Re[(c1 — ¢3)(ch — €3)YiZpTpTuTuTaTayil , (6.281)

where eq. (2.47) was used on the last term. Now summing over the fermion spins using
egs. (3.56)-(3.59), we obtain:

D IMP = ey — e Telky, Tp;- 0] Trlkq Thy-0) + |ea — c3* Te[kq Tpi- o] Tr[ky Thy 0]
spins

—2Re[(c1 — ¢3)(c5 — ¢§)Tr[ky, - Tky-okq-Tp;-o]] . (6.282)
Applying the trace formulas (2.43) and (2.45), we obtain

D IMPP =4ler — esPpiky kasku + 4lea — esl?pi-ka bk

spins

—4Re[(c1 — ¢3)(c5 — c3)|(kp-ku pi-ka + pi-ky ka-ku — ky-kapi-ky)  (6.283)

=i [lea P21 = 2) + lealP2a(l = za) + lesfP2u(l = 20)
—2Re[cic5](1 — 2,)(1 — zq4) — 2Re[cr1c3](1 — 2,) (1 — 24)
—2Re[ca2c3](1 — 2zq) (1 — zy) (6.284)
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where in the last equality we have used egs. (6.273)-(6.275) and

2k, kg = (1 — zu)mﬁvi, 2k, ky = (1 — zd)m?vi, cq-ky = (1 — zu)m?vi. (6.285)

The differential decay rate follows:

d’r NcmN 1 9
_ (L 2
Tondes ~ 75607 <2§S\M\ > (6.286)

where a factor of N, = 3 has been included for the sum over colors, a factor of 1/2 to average

over the neutralino spin, and the kinematic limits are

0<z, <1, (6.287)
1—2, <z <1 (6.288)

In the limit of heavy sfermions, the integrations over z; and then 2, are simple, with the result

for the total decay width:

_ Nemiy,
614473

(|c’1|2 + |ch|? + |5 > — Recy e + iy + ches]), (6.289)

where the ¢, are obtained from ¢; of egs. (6.277)-(6.279) by neglecting m?v in the denominators.
Our results agree with the complete computation given in [103,104,107], where also the complete

mixing was included. Earlier calculations with some simplifications are given in [106, 108].

6.21 Top-quark condensation from a Nambu-Jona-Lasinio model gap equa-
tion

The previous examples have involved renormalizable field theories. However, there are cases in
which it is preferable to use effective four-fermion interactions. The obvious historical example
is the use of the four-fermion Fermi theory of weak decays. This has been superseded by a
more complete and accurate theory of the weak interactions, but is still useful for leading-order
calculations of low-energy processes. Another case of some interest is the use of strong coupling
four-fermion interactions to drive symmetry breaking via a Nambu-Jona-Lasinio model [109], as
in the top-quark condensate approach [110]- [113] to electroweak symmetry breaking.

Consider an effective four-fermion Lagrangian involving the top quark [111], written in

E — to a t tCO a tc G ttc ttC . 6-290

Here the Standard Model gauge interactions have been suppressed; the quantities within paren-
theses are color singlets. Note also that there is no top quark Yukawa coupling to a Higgs scalar

boson, nor a top quark mass term, which would normally appear in the form —my(tt¢ + ¢t€).
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t, 1, a t, k, &
i%&{éﬁégag

tc7 j7 ﬁ tc’ n, ﬁ

Figure 53: Feynman rule for the four-fermion interaction in the top-quark condensate model.
The indices i, j, k,n = 1,2, 3 are for color in the fundamental representation of SU (3), and the
indices «, 3, &, § are two-component spinor indices.

@ —— —

Figure 54: The Nambu-Jona-Lasinio gap equation for a possible dynamically generated top-
quark mass mg.

Instead, the effective top quark mass is supposed to be driven by a non-perturbatively large and
positive dimensionless coupling G, with A the cutoff scale at which G arises from some more
fundamental physics such as topcolor [113].

The Feynman rule for the four-fermion interaction can be derived from the mode expansion
results of section 3, and is given in Fig. 53. The resulting gap equation for the dynamically
generated top quark mass is shown in Fig. 54. Evaluating this using the Feynman rules of figs. 4
and 5, one finds:

A 4 . i
; d*k G : im
—im.SisB = (— S (i sisksBsE ng_ Ut
imyd; 6L = ( 1)/ 2n) (z 2525,15&5&) (51955 K m? z'e)' (6.291)

Here 14,7, k,n are color indices of the fundamental representation of SU(3), and «, 3, &, 3 are
two-component spinor indices. The factor of (—1) on the right-hand side is due to the presence
of a fermion loop.

Euclideanizing the loop integration over k* by k? — —k% and [ d*k — i S d*kg, and then

rewriting the integration in terms of x = k%, this amounts to [111]:

2N0Gmt A? 2
M= T6x2A2 da /(1 +my/x) (6.292)
3G'm
= 87T2t [1 = (mi/A%) In(A®/m{) + .. ], (6.293)

where N, = 3 is the number of colors, and a factor of two arose from the sum over dotted spinor
indices of 5552‘.
For small or negative GG, only the trivial solution m; = 0 is possible. However, for G >

G

critical = 872/3 & 26, there is always a positive solution for m7/A? [111]. It is now known
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that this minimal version of the model cannot explain the top quark mass and the observed

features of electroweak symmetry breaking, but extensions of it may be viable [114].

6.22 Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard
Model electroweak vector bosons coming from quark and lepton loops. (For a derivation of
equivalent results in the four-component fermion formalism, see for example section 21.3 of [76].)
The independent self-energies are given by HZ‘ZW, nyz , H;if = H,{J , and IT}}), as shown in figs. 55
and 56. In each case, i1, is equal to the sum of Feynman diagrams for two-point functions
with amputated external legs, and is implicitly a function of the external momentum p*.

First consider the self-energy function for the W boson, shown in Fig. 55. The W boson
only couples to left-handed fermions, so there is only one Feynman diagram for each Standard
model weak isodoublet. Taking the external momentum flowing from left to right to be p, and

the loop momentum flowing counterclockwise in the upper fermion line (f) to be k, we have

from the Feynman rules of Fig. 67:

W = (1) e / (;ldT];d (f%;) NZTr[(—i%Eu) (%‘%) (—z‘%ﬁu) <%>]
(6.294)

Here p is a regularization scale for dimensional regularization in d = 4 — 2¢ dimensions. The

sum in eq. (6.294) is over the six isodoublet pairs (f, f) = (e, ve), (1, ), (7, v7), (d,u), (s,c¢),

Figure 55: Contributions to the self-energy function for the W boson in the Standard Model,
from loops involving the left-handed quark and lepton pairs (f, f') = (e,ve), (i, V), (T,v7),
(d,u), (s,c), and (b,t). The momentum of the positively charged W flows from left to right.

f I o fe o f
U vV vV vV v
nvy =
= u v voop R v
i ” i "

Figure 56: Contributions to the diagonal and off-diagonal self-energy functions for the neutral
vector bosons V.V’ = v, Z in the Standard Model, from loops involving the three generations
of leptons and quarks: f = e, v, u, vy, T,vr,d,u, s,c,b,t.
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and (b,t) with CKM mixing neglected, and

3 = quark
_{’ f = quarks, (6.295)

1, f =leptons.

The first factor of (—1) in eq. (6.294) is due to the presence of a closed fermion loop. The trace

is taken over the two-component dotted spinor indices. Using eq. (A.25), it follows that

2

g

MY = 55 3 N Lu(mf.m3), (6.26)
f

where we have defined

, A Akuk, + 2kup, + 2k,p, — 2k-(k+p) g
2\ 2 v v il z
Ty (2,y) = i(167°) p / O A e (s .

This integral can be evaluated by the standard dimensional regularization methods [76, 115],

with the result:

(6.297)

Lu(x,y) = (09 — pupu) 1 (0% 2,9) + g l2(p%; 2, y), (6.298)

where, after neglecting terms that vanish as ¢ — 0,

R(si) =~ + oo { (20 = 2~ 9)A(8) + (2y — 20— 5)A0)
+ {2(35 —y)? —s(z+y) - 32] B(s;z,y) — s(x +y) + 32/3}, (6.299)
(sizg) = T = Ha - ) [A@) - A6) + [0 o - st + )] Bl . (6300)
The functions
A(z) = zln(z/Q?%) — z, (6.301)
' _ [ Lt (Lt —t(1—t)s e
Bls:z,y) = /0 it 1 < > ) , (6.302)

are the finite parts of one-loop Passarino-Veltman functions, with the renormalization scale @

related to the regularization scale p by the modified minimal subtraction relation
p? = Q% /4x, (6.303)

where v = 0.577216 . .. is Euler’s constant.
The photon and Z boson have mixed self-energy functions, defined in Fig. 56. Applying
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the pertinent Feynman rules from Fig. 67, we obtain:

o = o [ 2 Eonf o) () o) (5725
) (o) ()
+(=iG]3,) (%fnf) (iGfo) (M—f_mf)

+(_Z~G§@> (%) (z’G{,,ay) <Mn—2f_m§> } (6.304)

where V' and V' can each be either y or Z, and ) ; is taken over the 12 Standard Model fermions.

The corresponding V f f and V f¢f¢ couplings are:34
Gl =-GI" =eqy, (6.305)
al =21l - 2,Q), = L2,Q;. (6.306)
cw cw

The four terms in eq. (6.304) correspond to the four diagrams in Fig. 56, in the same order.
The first two terms in eq. (6.304) are computed exactly as for HE,/,W, while in the last two
terms we use eq. (A.3) to compute the trace. It follows that the neutral electroweak vector

boson self-energy function matrix, after dropping terms that vanish as € — 0, is given by

! 1 c (&

174% 2 2

W = 5 Y N (GG + Gl Gl L (mfm?)
f

GLGL, + GL GLLm2 I3 (m2, m? 6.307

+g/,l,l/( v V/+ V4 V’)mf 3(mf7mf) ) ( : )

where 1, (x,y) was defined in egs. (6.298)-(6.300), and we have defined the function

d’k 92 9
el I —a)(h+pP—y e 2B(p*; x,y). (6.308)

The photon self-energy function is a simple special case of eq. (6.307):

e,y) = ~i(105*) i [

1
Iy = T Z2ch(le)2 [Iw,(mfz,m?) - gu,,m?clg(m?,m?)] (6.309)
f
o' 9/ 9 1 1 2 9 9
= 37 2 N Q} (g —Pupu){ — Ty oz [Almy) +my]
f
2m2

in agreement with the result given in, for example, eq. (7.90) of [76]. This formula satisfies
ptII)), = p“II), = 0 as required by the Ward identity of QED, and is regular in the limit
p? — 0.

34Note that there is no contribution from v¢, vy, V7, which do not exist in the Standard Model.
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In each of egs. (6.296), (6.307), and (6.310), there are 1/e poles, contained in the loop integral
functions. In the MS renormalization scheme, these poles are simply removed by counterterms,
which have no other effect.

In eqs. (6.294) and (6.304), we chose to write a 7, for the left vertex in the Feynman
diagram in each case. This is an arbitrary choice; we could also have chosen to use instead —o/,
for the left vertex in any given diagram, as mentioned in the caption for Fig. 67. This would
have dictated the replacements @ < —o throughout the expression for the diagram, including
for the fermion propagators, as was indicated in Fig. 5. It is not hard to check that the result
after computing the spinor index traces is unaffected. Note that the contribution proportional
t0 € from eq. (A.24) or eq. (A.25) vanishes; this is clear because the self-energy function is
symmetric under interchange of vector indices, and there is only one independent momentum in

the problem.

6.23 Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark in
the Standard Model, including the effects of the gauge interactions and the top and bottom quark
Yukawa couplings. As in Section 6.1, we treat this as a one-generation problem, neglecting CKM
mixing. Consequently, the corresponding Yukawa couplings Y; and Y; are real and positive (by a
suitable phase redefinition of the Higgs field®>). Using the formalism of subsection 4.6 for Dirac
fermions, the independent 1PI self-energy functions are given by3% ¥7;, Y g, and ¥p; (defined
in Fig. 22) as shown in Fig. 57. Note that in these diagrams, the physical top quark moves
from right to left, carrying momentum p*. Then according to the general formula obtained in

eq. (4.71), the top-quark pole squared mass will be given by:

(my + Xpt)?

M2 — T\ M, = , 6.311
M = T 0 - (6:311)
where m; is the tree-level mass. Working consistently to one-loop order, this yields
MP — il My = [mi(1+ 27 + Zge) + 2m Sy L, (6.312)
s=mytie

(It would be just as valid to substitute in s = M2 + ic here, as two-loop order effects are
neglected.)
It remains to calculate the self-energy functions X4, X gt and X p¢. Two regularization pro-

cedures will be used simultaneously—the MS scheme based on dimensional regularization [116]

35As shown in Section 3.2, after the fermion-mass matrix diagonalization procedure, the tree-level fermion
masses are real and non-negative. If CKM mixing is neglected, it follows from eq. (H.13) that the corresponding
diagonal Yukawa couplings are real and positive if the phase of the Higgs field is chosen such that the neutral
Higgs vacuum expectation value v > 0.

36Since the Yukawa couplings can be chosen real (in the one-generation model), Y1t = Xr:. Note that after
suppressing the color degrees of freedom, ¥+, X r: and X p; are one-dimensional matrices, so we do not employ
boldface letters in this case.
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Figure 57: One-loop contributions to the 1PI self-energy functions for the top quark in the
Standard Model. The external momentum of the physical top quark, p#, flows from the right to
the left. The loop momentum k* in the text is taken to flow clockwise. Spinor and color indices
are suppressed. The external legs are amputated. The last diagram contains one-loop tadpole
contributions.

and the DR scheme based on dimensional reduction [117]. This is accomplished by integrating
over the loop momentum in
d=4-—2¢ (6.313)

dimensions, but with the vector bosons possessing

D =4 — 2edyg (6.314)
components, where
1 for MS
0 for DR.

In other words, the metric g*¥ appearing explicitly in the vector propagator is treated as four-
dimensional in DR, but as d-dimensional in MS. The renormalization scale Q is related to the
regularization scale p in both cases by the modified minimal subtraction relation of eq. (6.303).

The calculation of the non-tadpole contributions to the self-energy functions will be per-
formed below in a general R¢ gauge, with a vector boson propagator as in fig. 6. There are
different ways to treat the tadpole contributions, corresponding to different choices for the Higgs
VEV around which the tree-level Lagrangian is expanded. If one chooses to expand around the
minimum of the tree-level Higgs potential, then there are no tree-level tadpoles, but there will
be non-zero contributions from the last diagram shown in fig. 57. (This corresponds to the

treatment given, for example, in ref. [118].) Alternatively, one can choose to expand around the
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. O

EhSM + EhSM -0

Figure 58: The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, provided
that one expands around a Higgs VEV that minimizes the one-loop effective potential (rather
than the tree-level Higgs potential, which would yield no tree-level tadpole).

Higgs VEV v that minimizes the one-loop Landau gauge3” effective potential. In that case, the
one-loop tadpole contribution is precisely cancelled by the tree-level Higgs tadpole, as shown
in fig. 58. Here, we have in mind the latter prescription; the calculation for the pole mass is
therefore complete without tadpole contributions provided that the tree-level top-quark mass is
taken to be

my = Yyv, (6.316)

where Y; is the MS or DR Yukawa coupling, and v is the Higgs VEV at the minimum of the
one-loop effective potential in Landau gauge. To be consistent with this choice, £ = 0 should
be taken in all formulas below that involve electroweak gauge bosons or Goldstone bosons.
(The gluon contribution is naturally independent of £ because the gauge symmetry is unbroken,
providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality we will
keep the dependence on £ in the computation of the individual non-tadpole self-energy diagrams
below.

Consider the one-loop calculation of the self-energy > r;, which is the sum of individual
diagram contributions X1; = [Sr4]g+[X 1]y + XLl 2+ B ndw X el hen + 2Lt go + [Ere] o+ - First,
consider the diagrams involving exchanges of the scalars ¢ = hay, GY, G*. These contributions
all have the same form

ipT[Soiy = st/% (—iy*)<%>(—iY)<k2+@>, (6.317)

where the loop momentum k* flows clockwise, and the couplings and propagator masses are,

using the Feynman rules of figs. 68 and 69,

for ¢ = hau : Y =Y,/V2; myp = my; m2 =mi (6.318)
for ¢ = GO - Y = zY}/\/ﬁ, my = my; mi = §m2Z7 (6.319)
for ¢ = G* Y =Y; my=my;  m3=Emy. (6.320)

3"This procedure is considerably more involved outside of Landau gauge, because the propagators mix the
longitudinal components of the vector boson with the Nambu-Goldstone bosons for £ # 0 if one expands around
a Higgs VEV that does not minimize the tree-level potential. This is the same reason the effective potential is
traditionally calculated specifically in Landau gauge.
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Multiplying both sides by p-o and taking the trace over spinor indices using eq. (A.3), one finds

dk p-(k+p)

= 4 2’u_26
mule = 5 | G

(6.321)

Performing the loop momentum integration in the standard way [76,115], and expanding in €
up to constant terms, one finds that in each case

1

Sy = —
[Zrlo 1672

[Y|? Ipg(s; m}, mi) (6.322)
Here we have introduced some notation for the loop integral:
1
Irs(s;z,y) = o + (s + 2 —y)B(s;2,y) + Alz) — A(y)]/2s, (6.323)

where the Passarino-Veltman functions A(z) and B(s;x,y) were defined in egs. (6.301) and
(6.302). These functions depend on the renormalization scale @, which is related to p via
eq. (6.303). It can be checked that I'rg(s;x,y) has a smooth limit as s — 0.

Next, let us consider the contributions to ¥ ; involving the vector bosons V = ¢g,~, Z, W.

These have the common form:

—ip-T[ELly = uze/(;ldT];d (—iGTy) <%> (—iG7,)
(o) (e Stz ) oo

where again the loop momentum k flows clockwise, and, using the rules of figs. 67 and 79:

forV=g: G = gsT% my = my, (6.325)
for V.=r: G = eQy; my = my, (6.326)
for V.=2: G = g(TE — s%:Q¢)/ew; my = my, (6.327)
for V.=W: G =g/V?2; my = my. (6.328)

In the case of gluon exchange (V = g), the T® are the SU(3)c generators (with color in-
dices suppressed). The adjoint representation index a is summed over, producing a factor of
the Casimir invariant (T%7%);; = Cpd;; = 30;;. We now use 6,0,5,g" = (2 — D)7, [see
eq. (A.11)]; note that this introduces a difference between the MS and DR schemes. Also, we
use k-(k + p)-ok- = (k* + 2k-p)k-T — k?p-&, which follows from eq. (2.42). One therefore

obtains, after multiplying by p-o and taking the trace over spinor indices:

. e dk 1
By =—i G2p_2 / ) [ o7 =l =] [(2 — D)p-(k+p)
+ (k2k-p + 2(k-p)? — k2p2) kz(g_%] . (6.329)
\%

104



Performing the loop momentum integration, one finds in each case that

1
Xy = —WszFV(S;minm%/), (6.330)

where we have introduced the notation

Ipv(s:,) = S+ (s + 2~ 4)Blsi,9) + AGe) — A))/s — bygs + {(s — 2)[Aly) ~ Alcy)]
(s —2)2 — yls + )| Blsiwy) — (s — ) — &yls +2)]Blsiw €9)}/2ps, (6331)

after dropping terms that vanish as e — 0. Combining the results of egs. (6.322) and (6.330):

[<9§CF + €2Q3>IFV(m§; mi,0) + [g(T4 — sy Q¢)/ew|*Ipy (mi;mi, m%)

1
S = ———
Lt 1672

1 1
+5921Fv(m3; my, miy) + §YtZIFS(m?; mi,myg,,)

1
+§Yt21FS(m%§ my, &m%) + Yy Ips(mi;mp, 5m%v)} ; (6.332)

where we have now substituted s = m?. It is useful to note that for massless gauge bosons,
1
Ipy(z;2,0) = €| = — In(z/Q%) + 2] +1 — 315 (6.333)
€

The contributions to Xry = [Erelg + [Ert]y + [Ert]z + [ERtlhey + [Ert]go + [ERt)gr are
obtained similarly. [Note that there is no W boson contribution, since the right-handed top
quark is an SU(2), singlet.] For the scalar exchange diagrams with ¢ = hgy, G°,GF, the

general form is:

, g [ dk . i(k+p)o o i
CipolSals = 12 /(%)d (—ZY)<m>(—ZY ) <l<:2—7mi> (6.334)
and so
Srils = — 155V Irs(s; 3, m3). (6.335)

Here the couplings and propagator masses for hgy and GO are the same as in eqs. (6.318),
(6.319), but now, instead of eq. (6.320),

for ¢ = G+ : Y = -V my = Mp; mi = 5m%/v (6.336)

from fig. 69. For the contributions due to exchanges of vectors v = g,~, Z, the general form is

—ip-o[Srly = uzg/(;%l (iGo,) <%> (iG o)
<ﬁ> <9“V + %) : (6.337)
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where, using the rules of figs. 67 and 79:

for V=g: G = —gsT% (6.338)
for V=r: G = —eQy; (6.339)
for V=2: G = g5 Qi /cw, (6.340)

with my = my in each case. Using 0,G,0, 9" = (2 — D)o, [see eq. (A.10)] and k-o(k +
p)-ck-0c = (k* 4+ 2k-p)k-0 — k%p-o [from eq. (2.41)], then multiplying by p-& and taking the
trace over spinor indices [using eq. (A.3)], we obtain

1

672 G Iry (s;m2,m) (6.341)

[Erelv = —

in terms of the same function appearing in eqgs. (6.331) and (6.333). Adding up these contribu-
tions and taking s = m? yields

1
T Kgch + €2Q3>1Fv(m§; mi,0) + (¢*QF sy /ciy ) L pv (mi;mi, m%)

1 1
+§3Q21Fs(mt2;mf,mf2w) +3 2 Irs(mi;mi, émy) +K21Fs(m?;m§,£m%v)]- (6.342)

Next, consider the contributions to X p; = [Epilg + [Epely + [Epelz + [EDt]hey + [EDt]go +
[Xpt]q+, ignoring the tadpole contribution for now. The diagrams involving the exchange of

scalars ¢ = hgum, G°, G* have the form:

<ol = [ e ) (G ) ) (g ) 09
so that
(Sorls = img¥iYay [ (;ldkd N — (6.344)
m)¢ [(k +p)? — mi][k? —m]
= m%mfylnffs(s;m;,m;) (6.345)
where we have introduced the notation:
Ipg(s;z,y) = —% — B(s;z,vy), (6.346)

after dropping terms that vanish as e — 0. The relevant couplings and masses are, from figs. 68
and 69:

forg=hsm:  Vi=Yo=Y/V2; mp=my  mi=mi,,  (6.347)
for ¢ = GO : Yi=Yo=iVy/V2;  my=my mi=E&md,  (6.348)
forg=G*:  Yi=Yy; Ya=-Yy  mp=my  mi=Emi. (6.349)
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The contributions from vector boson exchanges are of the form

—i[Xp]y = MQE/(;ldTI;d (iGioy) <m—fz> (—iGaoy)

(k+p)? - my
I (7 i 6.350
<k:2—m%,> <g * k2 —¢ém2 )7 (6.350)
Using 0,0,9" = D [see eq. (A.8)] and k-ok-o = k? [from eq. (2.39)] yields
. dek 1 (€ —1)k?
Xy = im G1G2,u26/ [D + 7] (6.351)
! f @2m) [(k +p)® — m3][k2 — m3] k2 —&m
1
= WmfGnglfv(s;m?c,m%/) (6.352)
where
_ 3+4¢

after dropping terms that vanish as e — 0. It is useful to note that for massless gauge bosons

Ity (z52,0) = —¥ + (34 & [n(z/Q?) — 2] + 2055 (6.354)

The relevant couplings are obtained from the rules of figs. 67 and 79:

for V=g: G = —Gq = gsT (6.355)
for V.=r: G1 = -Gy = eQy; (6.356)
for V.=727: Gy = g(T} — s%,VQt)/cW; Gy = gs%,VQt/cW; (6.357)

and my = my in each case. Adding up these contributions and taking s = m?, we have:

m
Sor = ity { (T8 Qs Qu/ ) i (mimi ) — (3C + Q) (i .0

1 1
+5 Y g (i mi s mig,,) — 5 Y Frg(mi; mi ém7) — nzfm(m%;m%,sm%m} . (6.358)

In each of the self-energy functions above, there are poles in 1/e€, contained within the
functions Iry, Irs, IFy, and Ifg. In the MS or DR schemes, these poles are simply canceled
by counterterms, which have no other effect at one-loop order. The one-loop top-quark pole
mass can now be obtained by plugging egs. (6.332), (6.342), and (6.358) into eq. (6.312) with
& = 0, as discussed earlier. It is not hard to check that the terms from the vector exchange
diagrams that depend on fm%/v and £m2Z then just cancel against contributions from massless
Nambu-Goldstone bosons.

As a simple example, consider the one-loop pole mass with only QCD effects included.

Then the result of eq. (6.312) has no imaginary part. Taking the square root (and dropping a
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two-loop order part) yields the well-known result [119]:

M pote = mu(1+ 3510 + 35 R) + S (6.359)
Crg?
= my (1 -5 [IFV(mf; m2,0) + Iz, (m2;m2, 0)}) (6.360)
«
=mi(1+ 0k [5 — g — 3ln(m§/Q2)} ). (6.361)

As another check, consider the imaginary part of the pole squared mass. Equation (6.312)

implies, at leading order:

I'y = —Im[m¢(X1s + Xge) + 25 i (6.362)
2
m
B 167:2 Im[%IFV(m?; mi,miy) + (Y + Y ) Ips(mi;mi, Emiy,)

2 g (ms mi, €miy) . (6.363)

= 32n2m, {(¢> + Y2 + Y ) (mi + my — miy) — 4 mi } Tm[B(mif; my, miy)). (6.364)

The fact that the £ dependence cancelled here is a successful check of gauge-fixing invariance,
since the tadpole diagram in fig. 57 does not contribute to the absorptive part of the self-energy.
Now, using

0 for s <(Vz+ 9%
a2 (s, ) /s for s> (Vz+ 9)>~
in eq. (6.364) reproduces the result of eq. (6.11) for the top-quark width at leading order.

Im[B(s;z,y)] = { (6.365)

6.24 Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. 59. Since the gluino is a
Majorana fermion, we can use the general formalism of subsection 4.6. We will compute the self-
energy functions Z5 = ;9 and Q5 = Q99 defined in Fig. 20, and infer Q; = Q35 from the latter
by replacing all Lagrangian parameters by their complex conjugates.?® From the general result
of eq. (4.63), it follows that the gluino complex pole squared mass is related to the tree-level
mass mg by

M —iMzDg = [m2(1 4 2Z5) + mg(Q + Q)]

(6.366)

s=m2 +ie
at one-loop order.

It is convenient to split the self-energy functions into gluon/gluino loop and squark/gluino
loop contributions, as

S =[Eglg+ Y. > [Egla, and  Q=[Qlg+> Y [Qla (6.367)

q =12 q =12

38Suppressing the color degrees of freedom, =, Q and Q are one-dimensional matrices, so we do not employ
boldface letters in this case.
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Figure 59: Self-energy functions for the gluino in supersymmetry. The external momentum p#
flows from the right to the left. The loop momentum k* in the text is taken to flow clockwise.
Spinor and color indices are suppressed. The index x = 1,2 labels the two squark mass eigen-
states of a given flavor ¢ = u,d, s, ¢, b,t. Both  and ¢ must be summed over. The external legs
are amputated.

where the sum over ¢ runs over the six squark flavors u,d, s, ¢, b,t, and x = 1,2 corresponds to
the two squark mass eigenstates [i.e., the two appropriate linear combinations (for fixed squark
flavor) of g, and gr|. The gluon exchange contributions, following from the Feynman rules of
Fig. 79, are:
- dk _ i(k+p)-o _
—ip-T [*:'g]g 5ab — M2E / W (_gsfaecau) <(—2 (—gsfebCO',,)

<;_22> (qu e 1)%> , (6.368)

. o . dk cac img cho
-1 [99]95 b= N2 /W (9sf Uu) (W) <_gsf b UV)

<;—§> (g“” +(e— 1)%) . (6.369)

The internal gluon and gluino lines carry SU(3). adjoint representation index indices ¢ and e
respectively, while the external gluinos on the left and right carry indices a and b respectively.
The gluino external momentum p* flows from right to left, and the loop momentum k* flows
clockwise. Comparing with the derivations of egs. (6.330) and (6.352) in the previous subsection,
and using — feec febe = feacfebe — §abC [with C'y = 3 for SU(3),], we can immediately conclude
that

—_ ag

[Egly = =~ Calrv(simg,0), (6.370)
Qs

[Qglg = =~ Camglpy (s; mZ,0), (6.371)

where the loop integral functions Iry and Iz, were defined in egs. (6.331) and (6.353).

Next consider the virtual squark-exchange diagrams contributing to Z3. Labeling the quark
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and squark with color indices j, k respectively, we have for each squark mass eigenstate:

% i(k+p)o . : i

ab € ak bj T %

—ip- o‘[ ]qz 0 ,u2 /—(27r)d (—Z\/igsTj qu) <—(/€ +p)2 — m(%) (—Z\/igsTkqux) <7k‘2 3 >
qx

d’k ; i(k+p)o i
2¢ . aj . bk
2g:sT," R > —_— ( 2gsT7" R ) — ). (6.372
+u / Gy (z\/_gs kg, <(k TP —m2 iV2g, i M) \ m?jz ( )
This uses the Feynman rules shown in fig. 81, given in terms of the squark mixing parameters

Lg, and Ry, defined in eqgs. (1.29) and (1.30). Using Tr[7°T%] = 16 and |Lg,|* + |Rg,|* = 1,

and comparing to the derivation of eq. (6.322) of the previous subsection, we obtain:

—_ g
[Esla. = _EIFS(S mi,mi ). (6.373)

Similarly, for the last two diagrams of Fig. 59, we obtain:

dk ; m i
_ sTO.1. sab — 2 s aj 1 * q . bk 1
05l % = [ S5 (VBT L) <—(k+p)2_mg> (iv30.TR,,) <7k2_m2 )

qx

e / (gj:;d (i\/ggsT]‘?quz) <<k+z)”—2"_n%> ( V29, T L2 ) <ﬁ> (6.374)

again using the Feynman rules shown in fig. 81. As before, j and k are the color indices for the

quark and the squark, respectively. Comparing to the derivation of eq. (6.345) of the previous

subsection, we obtain:

[la. = __L* Ramlps(s; mg,mg ). (6.375)

Summing up the results obtained above, and taking s = mg, we have:
== e [Catro i 0+ 2 5ttt (6570
Q5 = i [C’Amg Fv(m m ,0) +22 Z L: Rgmg Fs(m m mz )} . (6.377)

q x=1,2

As previously noted, we can now write down ﬁg by replacing the Lagrangian parameters of

eq. (6.377) by their complex conjugates:

Q5 =— - [C’Amg FV(m m ,0) +QZ Z Ly, R: myg Fs(m 2, m2 )]‘ (6.378)
q x=1,2

Inserting the results of egs. (6.376)—(6.378) into eq. (6.366), one obtains the result [120,121]:

M? —iMglg = m? [1 + %{C’A 5 — oy — 3In(m2/Q?%)]

=3 Y [Ees(mZim?,m?,) + 2Re(L;, R ]qu s(mZim? m2 )| }} (6.379)
¢ =12 g

with dyg defined in eq. (6.315).
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6.25 Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from
the triangle diagram involving three currents carrying vector indices.?? Since the anomaly is
independent of the fermion masses, we simplify the computation by setting all fermion masses
to zero. In four-component notation, the treatment of the anomaly requires care because of
the difficulty in defining a consistent and unambiguous 5 and the epsilon tensor in dimensional
regularization. The same subtleties arise in two-component language, of course, but in a slightly
different form since v5 does not appear explicitly.

We shall assemble all the (3,0) [left-handed] two-component fermion fields of the theory
into a (generally reducible) multiplet v;. For example, the fermions of the Standard Model are:
Vi = bk, 05, vk, Qe 45), where k =1,2,3 and i = 1,2,...,6 are flavor labels and ¢ = 1,2,3
are color labels [see Table 1]. The two-component spinor indices are suppressed here. Let the

symmetry generators be given by Hermitian matrices 7'¢, so that the ¢, transform as:
dp; = i0°(T) * g, (6.380)

for infinitesimal parameters 8. The matrices T'® form a reducible representation of a Lie algebra
of the symmetry group. In particular, the T'* have a block-diagonal structure, where each block
separately transforms the corresponding field of v; according to its symmetry transformation
properties. Some or all of these symmetries may be gauged. The Feynman rule for the cor-
responding currents is the same as for external gauge bosons, (as in Fig. 8), and is shown in
Fig. 60.

—i(T*)*7,  or i(T*); oy

Figure 60: Feynman rule for the coupling of a current carrying vector index p and correspond-
ing to the symmetry generator T acting on (%,0) [left-handed] fermions. Spinor indices are
suppressed.

Figure 61 shows the two Feynman diagrams that contribute at one-loop to the three-point
function of the symmetry currents. Applying the Feynman rules of Fig. 2 (with m = 0) for the

propagators and Fig. 60 for the currents, the sum of these diagrams is given by:

39The discussion here parallels that given in ref. [122], section 22.3.
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E+qg+ A

pc " V\/\/\Au,b Pai/\ﬂ“ k+ B %v,b
m/\% bt P »q P

Figure 61: Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion spinor
and flavor indices are suppressed. The fermion momenta as labeled flow in the arrow directions.

k—p+ A

abe d*k ik —p+ Ao, _ _ilk+ Ao, ikt qgt+ Ao
zFu?/p = (—1)/ (27T)4TI'{(—ZO'#T )m(—ZUVTb)W(—ZO'pT )m

(k —q+ B)?

i(k+ B)-o

— e _ i(k+p+ B)-o
(—io, T )W(—ZUVTI’)—

(=i (k+p+ B)?

} , (6.381)
where the overall factor of (—1) is due to the presence of a closed fermion loop. The trace is

taken over fermion flavor/group and spinor indices, both of which are suppressed. Writing
Te({T°T"\T®) = d®° + i Fobe (6.382)

where kokoskokokok kokokok

Although the symmetrized three-point function is ultraviolet finite, the individual loop mo-
mentum integrals are divergent, and must be defined with care. We do not regularize them by
the usual procedure of continuing to d = 4 — 2¢ dimensions, because the trace over sigma matri-
ces crucially involves the antisymmetric tensor with four indices, brought in by eqs. (A.24) and
(A.25), for which there is no consistent and unambiguous generalization outside of four dimen-
sions. (This is related to the difficulty of defining 75 in the four-component spinor notation.)
Because the individual integrals are linearly divergent, we must allow for arbitrary constant
four-vectors A* and B* as offsets for the loop momentum when defining the loop integrations
for the two diagrams [123]. The existence of these vectors corresponds to an ambiguity in the
regulation procedure, which can be fixed to preserve some of the symmetries, as we will see
below.

The persistence of the symmetry in the quantum theory for the currents labeled by u, a and

v,b and p, ¢ implies the conservation equations

(p+qFTi, =0,  —p'Ti =0, and —¢TW =0, (6.383)

112



respectively. Here we are interested in the potentially anomalous part obtained by symmetrizing

over the indices a, b, c:

AZZCP = %iffﬁfp + [five permutations of a, b, c|. (6.384)

Then the contribution of both diagrams involves the same group theory factor, the anomaly

coeflicient
d®e = LTe[{T*, T} 7). (6.385)
First, consider the result for (p + q)“AZ?fp. This can be simplified by rewriting
P+ =(k+q+A!—(k—p+ A", (6.386)
(p+q)=(k+p+B)—(k—q+B)" (6.387)

in the first and second diagram terms, respectively, and then applying the formulas
v-ova = v (6.388)

v-Fv-o = v (6.389)

which follow from eqgs. (A.1), (A.2). After rearranging the terms using the cyclic property of the

trace, we obtain:

(p + q)ﬂ_AZ?ij = q"** TT[O'REVO-)\E;)] XRA, (6390)

where the integral is given by:

X’“—/ d*k [(k—p+A)“(k‘+A)’\_(k‘+q+A)“(k‘—|—A))‘
) ot (k—p+A2(k+A)? (k+qg+A)? (k+ A2

(k+B)"(k—q+ B (k+B)" (k+p+B)* 6.301
(k+B)?2(k—q+B)? (k+B?2(k+p+B)?]| (6.391)

Naively, this integral appears to vanish, because the first term is equal to the negative of the
fourth term after a momentum shift ¥ — k — p + A — B, and the second term is equal to the
negative of the third term after & — k+4q+ A— B. However, these momentum shifts are not valid
for the individually divergent integrals. Instead, X" can be evaluated by a Wick rotation to
Euclidean space, followed by isolating the terms that contribute for large k? and are responsible
for the integral not vanishing, and then use of the divergence theorem in four dimensions to

rewrite the integral as one over a three-sphere with radius tending to infinity. The result is:

X G Mp+q)-(A+B)+(A—2B)" (p+ ¢+ (p+ ¢)"(B — 2A)A] . (6.392)

= 9672
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Applying eq. (A.24), we get the result for the anomaly in the current labeled by u, a:

(p+ )" Allr, = =" |(p+ Q) (A+ B), + (A+ B)u(p + ), = gup(p + 0)-(A+ B)

+3i€y (P + 7)"(A — B)A] . (6.393)

Repeating all of the steps starting with eq. (6.386), we similarly obtain:

v pabc ? aoc . K
—p 'Au?/p = _487T2d b [pp(A + B),+pu(A+ B), — gupp-(A+ B) + 3iepuap™(A— B + 2q)>‘} ,
(6.394)

{ , .
—q ALl = 220" [u(A+ B)y + 4,(A+ B)y — 9,00 (A + B) + Bicunnd"(A = B —2p)".
(6.395)

[Alternatively, one can simply note that eq. (6.394) follows from eq. (6.393) by making the
replacements y — v, v — p, p > 4, A - A+q, B — B—q, p — q, and ¢ — —p — g,
while eq. (6.395) follows from eq. (6.393) by making the replacements yu — p, v — pu, p — v,
A—A—p,B—B+p,p— —p—gq,and ¢ — p]

From egs. (6.393)—(6.395), it is clear that unless A + B = 0, all three symmetries will

definitely be anomalous unless d®¢ = 0. To avoid this, we choose B = —A, with the result:
uAabc _ 1 dabc HA)\ 6.396
(p + Q) uvp _W eupﬁ)\(p + Q) ) ( . )
4 aoc 1 aoc K
DAL, = g d™ Cpunan™(A+0), (6.397)
aoc 1 aoc K
—0" AL, = g d™ euwnad" (A — )™ (6.398)

It is still not possible to avoid an anomaly in all three symmetries if d®¢ # 0. If one wants an
anomaly to arise only in the current labeled by p,a (for example, if the symmetries labeled by

b, ¢ are gauged), one must now choose A = p — ¢q. The standard result follows:

1
(p + Q)MAZ?/Cp = Wdabceupﬁ)\pnq)\a (6399)
—p ALY, =0, (6.400)
—gP A = 0. (6.401)

In particular, one cannot gauge all three symmetries a, b, ¢ unless d%¢ = 0.

In writing down eq. (6.381), we chose to use the rules with & matrices for the current vertices
and o matrices for the massless fermion propagators. If we had chosen the opposite prescription,
the net effect would have been to obtain the same results as above, but with the opposite sign for
all terms involving the epsilon tensor, due to the sign difference in eqs. (A.24) and (A.25). This

leads to an overall sign ambiguity in the anomaly amplitude for the antisymmetric combination
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of vector indices. Since the phase of the amplitude is not observable, this does not lead to
a problem. However, when combining the two diagrams, or when including higher loop order
diagrams, a consistent choice must be made. Note that the evaluation of the anomaly above

relied on combining diagrams with a common spinor trace structure in eq. (6.390).

Appendix A: Two-component spinor identities in d # 4

When considering a theory regularized by dimensional continuation, one must be careful in
treating cases with contracted spacetime vector indices u, v, p, . . .. Instead of taking on 4 possible
values, these vector indices formally run over d values, where d is infinitesimally different from
4. This means that some identities that would hold in unregularized 4-dimensional theories are
inconsistent and must not be used; other identities remain valid if d replaces 4 in the appropriate
spots; and still other identities hold without modification.

Two important identities that do hold in d # 4 dimensions are:

[oHT” + 0”5“]aﬁ = 2g“”5§ , (A1)

[cHo” + E”a“]‘j‘ﬁ- = 29“”52‘. (A.2)
The trace identities:

Trjo#T”] = Tr[c*c”] = 29" (A.3)

then follow. We also note that the spinor index trace identity

continues to hold in dimensional continuation regularization methods.

In contrast, the Fierz identity (written here in three equivalent forms):

o 7 = 25,757 (A.5)
agdauﬁg = 2603645 (A.6)
5‘”0‘556 = 2¢B e (A.7)

does not have a consistent, unambiguous meaning outside of 4 dimensions. (See for example

refs. [124-126] and references therein.) However, the following identities that are implied by the

115



Fierz identity do consistently generalize to d # 4 spacetime dimensions:

(0" ,]o” = do? (A.8)
[0"0,)" 5 = do (A.9)
(075" op] 5 = (2 — d)a(’;ﬁ- (A.10)
[7#0,5,]% = (2 — d)75" (A.11)
(015" 075 ,)0" = 49”788 — (4 — d)[0"5"]" (A.12)
70" 50, 5 = 49”05;; — (4 —d)p"e"%;, (A.13)
(05”05 0yl 5 = —2[0"0 "] 5 + (4 — d)[0"T "] 5 (A.14)
[7"0"5°0"5, % = —2[3"0"5"]% + (4 — d)[" 0”7~ (A.15)

Eq. (A.5) is the basis for other Fierz identities that hold in 4 dimensions, which are given in
detail in Appendix A of ref. [38] as well as [37,42,43].

Identities that involve the (explicitly and inextricably 4-dimensional) e#*”* symbol,

ato’al = g"'a? — g"'PT" + ¢VPTH — i T, (A.16)
TGP = g P — ghPoV + g"Pat + e PR, (A.17)
ool = L(g"Pot — gPo¥ + i Po,) (A.18)
FHGP — %( L R PR A (A.19)
Tl = L(g"aP — g'PEY — i) (A.20)
oGP = L(g" P — gMPo” + i a,), (A.21)
oV PR — —%(g”pg‘m A P (A.22)
(g7 4 gV — ghPaVR — VRGP |
FHV PR —%(g”pg““ — g g’ — jehver) (A.23)

_,_%'(gl/pgﬁm + g — ghPEYE — VRGP |

are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from them.%® For example,
Trlo"a"oPT"| = 2 (g" g — g"Pg"" + g""g"P + ie!VPr) (A.24)
Tr[g!o"c 0" = 2 (g" g™ — g'Pg"" + M g"P — ielVPr) . (A.25)

This could lead to ambiguities in loop computations where it is necessary to perform the com-

putation in d # 4 dimensions (until the end of the calculation where the limit d — 4 is taken).

“0This is analogous to the statement that Tr (y°y*y"~y4*) = —4ie"”?* [in our convention where €"'?* = 41)
is only meaningful in d = 4 dimensions. In two-component notation, the equivalent result is Tr[c*T”c?T" —
GHo"5P0"] = 4ie"”P*. In the literature various schemes have been proposed for defining the properties of 7° in
d # 4 dimensions [126]. In two-component notation, this would translate into a procedure for dealing with general
traces involving four or more o and & matrices.
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However, in practice one typically finds that the above expressions appear multiplied by the met-
ric and/or other external tensors (such as four-momenta appropriate to the problem at hand).
In almost all such cases, two of the indices appearing in egs. (A.24) and (A.25) are symmetrized
which eliminates the e*P* term, rendering the resulting expressions unambiguous. Similarly, the

sum of the above trace identities can be assigned an unambiguous meaning in d # 4 dimensions:
Trlo#c"o?c"| + Tr[c"c"a o™ = 4 (" g™ — g’ g"" + g""g"") . (A.26)

By repeatedly applying the identities given in egs. (A.1)—(A.3) to egs. (A.24) and (A.25) in
4 dimensions and eq. (A.26) in d dimensions, and using the cyclic property of the trace, one can

recursively derive trace formulas for products of 6 or more ¢ and & matrices.

Appendix B: Explicit forms for the two-component spinor wave
functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator %&’-é,
and we examine their properties.
Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis

specified by the unit vector
§ = (sinfcos¢, sinfsing, cosf), (B.1)

with polar angle 6 and azimuthal angle ¢ with respect to a fixed z-axis. The corresponding spin
states will be called fixed-axis spin states. The relevant basis of two-component spinors x , are
eigenstates of %&'-é, ie.,

%&’-§st3)¢8, s::I:%. (B.2)

In order to construct the eigenstates of %6” -8, we first consider the case where § = 2. In

this case, we define the eignestates of %03 to be:

X1/2(2) = ) X_1/2(2) = . (B.3)
0 1

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of
eq. (B.3) to unity. We then determine x(8) from x,(£) by employing the spin-1/2 rotation
operator that corresponds to a rotation from 2 to §. However, this rotation operator is not
unique. In the convention adopted here, we first perform a rotation by an angle ¢ about the z-
axis [the corresponding rotation operator is denoted by R(Z, ¢)]. This has no effect, of course, on
the unit vector 2. However, it does result in the modification of x,(£) by an s-dependent phase

factor. We then rotate by an angle # about an axis i = (—sin ¢, cos ¢,0) [the corresponding
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rotation operator is denoted by R(7v, 0)]. As a result of the product of these two rotations [an

explicit expression for R is given in eq. (B.19)], £ is rotated into §. Explicitly, § = RZ, where*!

cos 6 cos ¢ —sing sin 6 cos ¢
R=R(R,0)R(%, ¢) = [ cosfsing cos ¢ sinfsing | - (B.4)
—sinf 0 cosf

Employing the spin-1/2 rotation operator corresponding to R, we can compute xs(§),
Xs(8) = exp (—i0A-G/2) exp (—igo®/2) x (%), N = (—sing, cos¢, 0). (B.5)

Eq. (B.5) yields explicit forms*? for the eigenstates of 1&-3:

e~ /2 cos g —e~/2 gin g
X1/2(*§) = ' 0 | X_1/2(*§) = ' 0 . (B.6)
¢?/2 sin 3 /2 cos 3

These spinors are normalized such that

Xl(g)XS’(é) = 585’ ) (B7)
and satisfy the following completeness relation:

3)xi(8) = Lo B.8
Z:xs()xs() 01 (B.8)

The spinors x,(8) and x_,(8) are connected by the following relation:

0 1
X_(8) = —2s X (3). (B.9)
-1 0
Consider a spin-1/2 fermion with four-momentum p* = (E, §), with E = (|p]> + m?)'/?, and
the direction of P’ given by
P = (siné), cos ¢, , sinb,sin ¢, , cosb,) . (B.10)

Using egs. (2.69), (2.70) and (B.6), one can employ egs. (3.19)—(3.22) to obtain explicit expres-

sions for the two-component spinor wave functions x(p, s), y(P, s), Z(p, s) and y(P, s).

“Tn the more common convention in the literature, the factor of R(Z, ¢) is absent in the definition of R.
However, our choice for R is motivated by the simplicity of the explicit form given in eq. (B.4).

“2Note that for ¢ — ¢ + 27, xs(8) — —xs(8), which simply reflects that double-valueness of SU(2) transfor-
mations. However, as the overall phase of the spinor wave function is arbitrary, we shall restrict 0 < ¢ < 27 and
0 < 0 < 7 in our definition of xs(8).
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Additional properties of the xs can be derived by introducing an orthonormal set of unit

three-vectors 8% that provide a basis for a right-handed coordinate system. Explicitly,

§%.50 = 52 (B.11)
5% x 85 = ez, (B.12)

We shall identify:
5=23° (B.13)

as the quantization axis § used in defining the third component of the spin of the fermion in

its rest frame. The unit vectors 8! and 82 are then chosen such that eqs. (B.11) and (B.12)

are satisfied. To explicitly construct the §%, we begin with the orthonormal set {&, ¢, 2}, and
rotate each unit vector with the rotation matrix R given in eq. (B.4), so that §* =R(&, g, 2).
That is,

s = (cos B cos ¢, cosfsin ¢, —sinf),

s = (= sin ¢, cos ¢, 0),

53" = (sin f cos ¢, sin O sin ¢, cosh) . (B.14)

We can use the s® to extend the defining equation of x5 [eq. (B.2)]:
508y = 3T Xs, (B.15)

where the 7, are the matrix elements of the Pauli matrices.*> That i, %&’ (st 4 is?) serve
as ladder operators that connect the spinor wave functions x,; /2 and x_; /2- Using eq. (B.7), it

follows that eq. (B.15) is equivalent to:
xha 8%y =14, . (B.16)
To prove eq. (B.16), we use eq. (B.5) to obtain:
Yo (8) = Xl(ﬁ) 100 /2 [i0T-G /2 5z sa —i0-G/2 ,—i¢o® /2 X (2). (B.17)
The above result can be simplified by using the following identity:
e~i07-3/2 57 (OR-F/2 _ Rii (7 g)gt (B.18)

where
R (i, 0) = n'n? + (6¥ —n'n?)cos 0 — e7*n¥Fsing. (B.19)

43We use the symbol 7 rather than o to emphasize that the indices of the Pauli matrices 7¢ are spin labels s, s’
and not spinor indices a, &. The first (second) row and column of the T-matrices correspond to s = 1/2 (—1/2).
For example, 73,, = 258,, (no sum over s).
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Thus,
XL(8) &8y (8) = x1(2) & [R(2, —¢)R(A, —0)3%] xs(2). (B.20)

Since

G [R(2, —¢)R(A, —0)5% = o° . (B.22)

a
!

XS’(é) = XE(E)UQXS'(E) = Tss s (B23)

which defines the matrix elements of the Pauli matrices, and our proof of eq. (B.16) is complete.
All the results of this Appendix also apply to the helicity spinors x,, which are defined to

be eigenstates of %&’-ﬁ, ie.,

, (B.24)

N[ =

%&“ﬁxx(ﬁ) =\ (D), A==+

where p is given by eq. (B.10). Egs. (B.3)—-(B.9) also apply to the two-component helicity spinors
after taking 8 = p (i.e., identifying § = 6, and ¢ = ¢,). In addition, in analogy with the 5%, we

can introduce an orthonormal set of unit three-vectors p® such that

pt" = (cos B, cos ¢, cos b, sin ¢,, —sinb,),
p? = (—sin ¢p, cos ¢p, 0),
p? = p* = (sin b, cos ¢, sinfsin ¢y, cosb,). (B.25)

In particular, egs. (B.11)—(B.16) apply as well to the two-component helicity spinors after taking
§% = p*.

The overall phase of the helicity spinor wave function of a fermion is conventional. However,
an ambiguity arises in the case of a pair of fermions in its two-particle rest frame, in which the
corresponding fermion three-momenta are p and —p, respectively. The helicity spinor wave
function of the second fermion depends on the definition of x,(—p). In the convention of
ref. [17], x,(—P) is obtained from x,(£) via a rotation by a polar angle 7 — 6,, and an azimuthal
angle ¢, + m with respect to the 2-direction. Using this convention with our definition of the
spinor wave function [eq. (B.5)] yields x,(—P) = ix_,(P). An alternative convention advocated
by Jacob and Wick [127] is to define x,(—p) by starting with x_,(£) and then rotating the

spinor by polar angle ¢, and azimuthal angle ¢,. In this case,

Xa(=P) = x_,(P), (B.26)
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and the extra phase factor is absent. We shall adopt the convention of eq. (B.26) in constructing
helicity amplitudes of processes involving fermions.

Suppose that the two fermions considered above have equal mass. In the center-of-mass
frame, if the four-momentum of one of the fermions is p* = (F, p), then the four-momentum of

the other fermion is
' =(FE, —-p). (B.27)

The following numerical identities are then satisfied: o-p = &-p and 7-p = o-p. However, in
order to maintain covariance with respect to the undotted and dotted spinor indices, we shall

write these identities as:

Uaﬁ"ﬁ = Ugd(ﬁdﬁ'p) O-gﬁ ) (B28)

77.p=5"(0,4°D) 7098 (B.29)

Taking the matrix square root of both sides of egs. (B.28) and (B.29) removes one of the factors

of ¢% and @, respectively. Hence,
To(=P, =A) = VB ox_\(=D) = 0" \/p-ox,\(P) = Ugﬁ'ﬂﬁ(ﬁ, A)s (B.30)

where we have used egs. (3.19) and (B.26). In this way, we can derive the eight possible relations

for the helicity spinor wave functions:

Ta(—F, ) = 0% 7 (5, )), 2 (~F,—)) = §5(F.N) 700 (B.31)
Yol P, —\) = 02, 5°(B, \) Y (—B,— ) = 75(B,\) 70 (B.32)
(=P, =) = 7P ys(p, ), Zo (=5, —A) = y° (B, \) 03 » (B.33)
74 (=P, =) =" xp(B\) Ja(—P, =) = 2" (B, \) 04 (B.34)

Appendix C: Path integral treatment of two-component fermion
propagators

In Section 4.2 we derived the two-component fermion propagators in momentum space, which
are the Fourier transforms of the free field expectation values of time-ordered products of two

two-component fermion fields
O\ 6@ 0y = [ ' OITE@EWI0 ™, w=o-y,  (C)

where the (translationally invariant) expectation values (0| 7€ (z)& 3(y) |0) are functions of the
coordinate difference w = x — . In Section 4.2, the Fourier transforms of these quantities were
computed by using the free-field expansion obtained from the canonical quantization procedure,

and then evaluating the resulting spin sums. In this Appendix, we provide a derivation of the
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same result by employing path integral techniques. We follow the analysis given in Appendix C
of ref. [148] (with a few minor changes in notation). For a similar textbook treatment of two-
component fermion propagators see for example ref. [115]. For the analogous treatment of the
four-component fermion propagator, see for example ref. [76].

We first consider the action for a single massive neutral two-component fermion &, (z),

coupled to an anticommuting two-component fermionic source term J, () [cf. eq. (3.1)]:
S = /d4x (L4 Je+ET) = /d4x {% [i€5" 0, + i€a" D€ — m(E€ + EE)] + JE + éj} , (C.2)

where we have split the kinetic energy term symmetrically into two terms. The generating

functional is given by

WI[J, J] = N/Dgpgeis[ﬁvalﬂ, (C.3)
where N is a normalization factor chosen such that W[0,0] = 1 and D¢ DE is the integration
measure. It is convenient to Fourier-transform the fields &(z), £(z) and sources J(z), J(x) in

eq. (C.3), and rewrite the action in terms of the corresponding Fourier coefficients £(p), g(p) , J(p)
and J(p):

~

4 ~ — 4 Lo~

o) = [ e TE). Gl = [ e, ()
4 R _ 4 oA

T = [ e ), daw) = [ e Ta). (©5)

Furthermore, we introduce the integral representation of the delta function

d4p ; ’
4 A —ip-(z—x
5()(w—x)—/(27r)4e pr(@=a’) (C.6)
In order to rewrite eq. (C.3) in a more convenient matrix form, we introduce the following
definitions:
&(—p) To(p) P oy  —md”
Q(p) = ;o X(p) = , M) =

€a(p) J4(—p) —mdt;  p-oP
(C.7)
Note that M is a Hermitian matrix. We can then rewrite the action [eq. (C.2)] in the following
matrix form [after using eqgs. (2.47) and (2.48) to write the product of the spinor field and the

source in a symmetrical fashion]:

L[ d X 4 X1
5_5/(%)4 <QMQ+QX+XQ>. (C.8)

The linear term in the field {2 can be removed by a field redfinition
Q=0+MX. (C.9)
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In terms of ', the action now takes the convenient form:

1 dp 1
S=3 / i (Q’TMQ' ~ xtMm X) , (C.10)
where the inverse of the matrix M is given by
. FaB §e .
1 p-o moTa
—1 _

m oy PO
The Jacobian of the field transformation given in eq. (C.9) is unity. Hence, one can insert

the new action, eq. (C.10), in the generating functional, eq. (C.3) to obtain (after dropping the

primes on the two-component fermion fields):

WlJ, 7] :N/Dfoexp{%/(§i§4 (QTMQ—XTM—lx)} (C.12)
—N [/Dgpg‘ exp{%QTMQ}] exp{—%/ (5;1;4 XTM—lx} (C.13)
:exp{—%/(;ljf;l XU\/l‘lX}, (C.14)

where we have defined the normalization constant N such that W[0,0] = 1. Inserting the explicit

forms for X and M into eq. (C.14), we obtain

~ 4 ~ W0, 4~ ~ in ¥
Wi :exp{_}/(;lwl))4 <Ja(—p) ~ O T8 (=p) + T (0) 2" Ta(p)

2 P2 — m? 2 —m2”P
~a Z’I’)’L(Saﬁ ~ ~ zméo‘ 3 .
+J (—p)mJﬁ(p) + J‘j‘(p);ﬁ—inf?‘]ﬂ_po } . (C15)

Using eq. (2.49), it is convenient to rewrite the first two terms of the integrand on the right-hand
side of eq. (C.15) in two different ways:

1 d4p ~ ip'UaB ~. ~ ip.ﬁdﬁ ~
L A . TA(—p) + Ta(p) 227
2/(%)4 [ ( p)pg_ 50 (—=p) + (p)pg_ 5 ﬁ(p)}

4 ~ WP 0 5~ 4~ i ‘Edﬁ N
= [ G e T e = [ T T de). ©19

where we have changed integration variables from p — —p in relating the two terms above. The
vacuum expectation value of the time-ordered product of two spinor fields in configuation space
is obtained by taking two functional derivatives of the generating functional with respect to the
sources J and J and then setting J = J = 0 at the end of the computation (see, e.g., ref. [76]).

For example,

7 i
<_275Ja($1)> W(J,J] <_275JB(1‘2)>

= N [ DEDE €o(21)Es(x2) expi | d'a
o foentainsginsen:

J=J=

= <0|T£a($1)£_ﬁ'(x2)|0> ) (017)
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where the functional derivatives act in the indicated direction (which ensures that no extra
minus signs are generated due to the anticommutativity properties of the sources and their
functional derivatives). To obtain the two-point functions involving the product of two spinor
fields with different combinations of dotted and undotted spinors, it may be more convenient to
write J¢ = ¢J and/or £ J = J € in eq. (C.3). One can then easily verify the following expressions

for the four possible two-point functions:

(0]T €0 (1) (w2)[0) = (—Z(;J%@CIJ Wi, J] (‘%ﬁim)

5 A
_%h@ﬁ>wuﬂ<ﬂaagj

<0\T§d(9€1)§5(962)\0>=<—i ° )W[JJ] (—z‘ 0 ) . (©)

, (C.18)

(0|TE% (21)€" (22)|0) = : (C.19)

5jd(l‘1)

TN (C.21)

O|T6a (@) (2)[0) = [ —inrt )wm (—z‘ g

J=J=0
As an example, we provide details for the evaluation of eq. (C.18). Using egs. (C.15) and
(C.16), we obtain:

— . «—
_ 5 dp - D04, 5
0|T¢, : 0) = J(—p)5—5JP(— —_. C.22
OT €610 = e ([ e PP Poen) ) s (€2
Using the chain rule for functional differentiation,
§ / i 0IP(=p1) & / L a0
= [d — = [d'preP —-— | C.23
6J (1) b1 6J*(z1) §JB(—py) ! 5J%(—p1) ( )
,.5 = /d4p2 5‘]7.(_]92) =~ i = /d4p2 eipg-:ﬂz/:.#’ (024)
575 (29) 8B (2) §7%(—po) 5% (—p2)

after using the inverse Fourier transform of eq. (C.5). Applying egs. (C.23) and (C.24) to
eq. (C.22), we obtain:

d4p e—ip-(rl—wg) - O-OCB
(on)’ P

0T & (o1)8(a)0) = | (C.25)

which is equivalent to eq. (4.1) of Section 4.2. With the same methods applied to egs. (C.19)—
(C.21), one can easily reproduce the results of egs. (4.2)—(4.4).
We next consider the action for a single massive Dirac two-component fermion. We shall

work in a basis of fields where the action, including external anticommuting sources, is given by

SIXG X M5 T Txes Ty Joys I :/d4a: [ixT"Opx + o 0un — m(xn + X77) + Jx X + Xy + Jon + 710y] -
(C.26)
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The techniques are similar to the ones used above. We introduce Fourier coefficients for all the
fields and sources and define

ﬁd(—p) Jna(p)
Qe(p) = , Xp)=| _ . (C.27)

Xa(p) J5(=p)
The action functional, eq. (C.26), can then rewritten in matrix form as before (but with no

overall factor of 1/2):
s= |

where M is again given by eq. (C.7). The rest of the calculation goes through as before with

d*p
ooy (QZMQC +OlX. + XJQC> , (C.28)

few modifications, and yields the Dirac two-component fermion free-field propagators given in
eqgs. (4.5)—(4.8).
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Appendix D: Matrix decompositions for mass matrix diagonal-
ization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M? is straightfor-
ward. For a theory of n complex scalar fields, M? is an hermitian n x n matrix that can be

diagonalized by a unitary matrix W:

WIM*W = m? = diag(m?,m3,...,m2). (D.1)

n

For a theory of n real scalar fields, M? is a real symmetric n x n matrix that can be diagonalized

by an orthogonal matrix Q:

QTM?*Q = m? :diag(m%,mg,...,m2). (D.2)

n

In both cases, the eigenvalues, mz of M? are real. This is the standard matrix diagonalization
problem that is treated in all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the diagonalization of the fermion mass matrix, which is
treated in Section 3.2, does not take any of the above forms. In this appendix, we review the
linear algebra theory relevant for the matrix decompositions associated with the charged and

neutral spin-1/2 fermion mass matrix diagonalizations.

D.1 Singular Value Decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value
decomposition of an arbitrary complex matrix M.

Theorem: For any complex n X n matrix M, unitary matrices L and R exist such that
LTMR = Mp = diag(m1,ma, ..., my), (D.3)

where the my, are real and non-negative. This is called the singular value decomposition of the
matrix M.

In general, the my are not the eigenvalues of M. Rather, the mj are the singular values
of the general complex matrix M, which are defined to be the non-negative square roots of
the eigenvalues of MTM (or eqivalently of MMT). An equivalent definition of the singular
values can be established as follows. Since MTM is an hermitian non-negative matrix, its
eigenvalues are real and non-negative and its eigenvectors, wy, defined by MTMw;, = m%wk,
can be chosen to be orthonormal.** Consider first the eigenvectors corresponding to the positive
eigenvalues of MTM. Then, we define the vectors vy, such that Mw;, = myvy. It follows that

miwk = MtMw, = mkMTv,’;, which yields: MT’UZ = mpwi. Note that these equations also

4We define the inner product of two vectors to be (v|w) = viw. Then, v and w are orthonormal if (v|w) = 0.
The norm of a vector is defined by ||v || = (v|v)1/2.
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imply that M M Tv,’; = miv,’; The orthonormality of the wy, implies the orthonormality of the v},
(and hence the wvy):

* * 1 * * ME o« «
(MTvy| M) = (o[ MMTog) = = (v]]0f) , (D.4)

i1 = (w;|w) =
ik = (wjlw) m;my, m;my, m; 7

which yields (v}|vg) = 6.

If w; is an eigenvector of MTM with zero eigenvalue, then 0 = w;fM " Mw; = (Muw;|Muw;),
which implies that Mw; = 0. Likewise, if v} is an eigenvector of M M t with zero eigenvalue, then
0 = v] MMTv} = (MTv;/MTv;)*, which implies that M Tv; = 0. Because the eigenvectors of
MM [MTM] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues
of M [MT] can be taken to be orthonormal.*> Finally, these eigenvectors are also orthogonal to
the eigenvectors corresponding to the non-zero eigenvalues of MM [MTM]. That is,

() = ~— (Mo i) = — (o [ M) = 0, (D.5)

J .
my mj

and similarly (v;|v;) = 0, where the index 4 [j] runs over the eigenvectors corresponding to the
zero [non-zero| eigenvalues.

Thus, we can define the singular values of a general complex matrix M to be the simulta-

neous solutions (with real non-negative my,) of:*0
Muwy, = myvy,, vi M = mkw,i . (D.6)

The corresponding vy (wy), normalized to have unit norm, are called the left (right) singular
vectors of M.

Proof of the singular value decomposition theorem: Egs. (D.4) and (D.5) imply
that the left [right] singular vectors can be chosen to be orthonormal. Consequently, the unitary
matrix L [R] can be constructed such that its kth column is given by the left [right] singular
vector vg [wg]. It then follows from eq. (D.6) that:

Vg Mwy = mpOp (no sum over k). (D.7)

In matrix form, eq. (D.7) coincides with eq. (D.3), and the singular value decomposition is
established.
The singular values of a complex matrix M are unique (up to ordering), as they correspond

to the eigenvalues of MTM (or equivalently the eigenvalues of M MT). The unitary matrices L

4°In general, the multiplicity of zero eigenvalues of M [M T] is not equal to the multiplicity of zero eigenvalues
of MtM [MMT] However the latter, which is equal to the number of linearly independent eigenvectors of MM
[MMT] with zero eigenvalue, coincides with the number of linearly independent eigenvectors of M [M ] with zero
eigenvalue. Moreover, the number of linearly independent w; coincides with the number of linearly independent v;.

460ne can always find a solution to eq. (D.6) such that the my are real and non-negative. Given a solution
where my, is complex, we simply write my = |mk|ei9 and redefine v — vkew to remove the phase 6.
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and R are not unique. The matrix R can be determined directly from eq. (D.3) by computing
M}, Mp = M3, which yields:
RIMTMR = M3 . (D.8)

That is, R is the unitary matrix that diagonalizes the non-negative definite matrix M TM.
Since the eigenvectors, wy of MTM are orthonormal, each of the wy corresponding to the
non-degenerate eigenvalues of MTM can be multiplied by an arbitrary phase e®*. The wy,
corresponding to a degenerate eigenvalue of MTM can be replaced by any orthonormal lin-
ear combination of the corresponding wy. It follows that within the subspace spanned by the
eigenvectors of MTM corresponding to non-degenerate eigenvalues, R is uniquely determined
up to multiplication on the right by an arbitrary diagonal unitary matrix. Within the sub-
space spanned by the eigenvectors of M 1M corresponding to a given degenerate eigenvalue, R
is determined up to multiplication on the right by an arbitrary unitary matrix.
Once R is fixed, L is determined by eq. (D.3):

L=(M")"'R*Mp. (D.9)

However, if some of the diagonal elements of Mp are zero, then L is not uniquely defined.
Writing Mp in 2 x 2 block form such that the upper left block is a diagonal matrix with positive
diagonal elements and the other three blocks are equal to the zero matrix of the appropriate

dimensions, it follows that, Mp = MpW , where
W= |-eaieee , (D.10)

Wy is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear
in the diagonal elements of of Mp, and 1 and O are respectively the identity matrix and zero
matrix of the appropriate size. Hence, we can multiply both sides of eq. (D.9) on the right by
W, which means that L is only determined up to multiplication on the right by an arbitrary

unitary matrix whose form is given by eq. (D.10).4”

D.2 Takagi Diagonalization

The most general neutral spin-1/2 fermion mass matrix is complex and symmetric. To identify

the physical eigenstates, this matrix must be diagonalized. However, the equation that governs

4TOf course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.3) implies
that L"MM'L* = M2, in which case L is determined up to multiplication on the right by an arbitrary [diagonal]
unitary matrix within the subspace spanned by the eigenvectors corresponding to the degenerate [non-degenerate]
eigenvalues of M M. Having fixed L, one can obtain R = M~'L*Mp from eq. (D.3). As above, R is only
determined up to multiplication on the right by a unitary matrix whose form is given by eq. (D.10).
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the identification of the physical fermion states is not the standard unitary similarity transfor-
mation. Instead it is a different diagonalization equation that was discovered by Takagi [69],
and rediscovered many times since [70].48

Theorem: For any complex symmetric n X n matrix M, there exists a unitary matrix 2

such that:
QM Q = Mp = diag(my,ma, ..., my), (D.11)

where the my, are real and non-negative. This is the Takagi diagonalization®® of the complex
symmetric matrix M. For a physics context see for example [67].
In general, the my, are not the eigenvalues of M. Rather, the mj are the singular values of

the symmetric matrix M. From eq. (D.11) it follows that:

QTMTMQ = M2 = diag(m?,m3,...,m2). (D.12)

n

If all of the singular values my are non-degenerate, then one can determine 2 from eq. (D.12).
This is no longer true if some of the singular values are degenerate. For example, if M = ((1) (1)),
then the singular value 1 is doubly-degenerate, but eq. (D.12) yields QTQ = T4y, which does
not specify 2. That is, in the degenerate case, the physical fermion states cannot be determined
by the diagonalization of M M. Instead, one must make direct use of eq. (D.11). Below, we shall
present a constructive method for determining €2 that is applicable in both the non-degenerate
and the degenerate cases.

Eq. (D.11) can be rewritten as M) = Q*Mp, where the columns of Q are orthonormal. If
we denote the kth column of {2 by wvg, then,

Muvy, = myvp (D.13)

where the my are the singular values and the vectors vy are normalized to have unit norm.
Following Ref. [138], the v are called the Takagi vectors of the complex symmetric n X n
matrix M. The Takagi vectors corresponding to non—degenerate non—zero [zero| singular values
are unique up to an overall sign [phase]. Any orthogonal [unitary]| linear combination of Takagi
vectors corresponding to a set of degenerate non—zero [zero| singular values is also a Takagi
vector corresponding to the same singular value. Using these results, one can determine the
degree of non—uniqueness of the matrix 2. For definiteness, we fix an ordering of the diagonal

elements of Mp.?° If the singular values of M are distinct, then the matrix € is uniquely

18Subsequently, it was recognized in Ref. [128] that the Takagi diagonalization was first established for nonsin-
gular complex symmetric matrices by Autonne [129].

“In Ref. [70], eq. (D.11) is called the Takagi factorization of a complex symmetric matrix. We choose to refer
to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of normal
matrices by a unitary similarity transformation. In particular, not all compler symmetric matrices are diagonal-
izable by a similarity transformation, whereas complex symmetric matrices are always Takagi-diagonalizable.

50Permuting the order of the singular values is equivalent to permuting the order of the columns of Q.
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determined up to multiplication by a diagonal matrix whose entries are either 1 (i.e., a diagonal
orthogonal matrix). If there are degeneracies corresponding to non-zero singular values, then
within the degenerate subspace, €2 is unique up to multiplication on the right by an arbitrary
orthogonal matrix. Finally, in the subspace corresponding to zero singular values, ) is unique
up to multiplication on the right by an arbitrary unitary matrix.

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonaliza-
tion of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing the
orthonormal Takagi vectors vy that make up the columns of €. This is achieved by rewriting
the n x n complex matrix equation Mv = mv* [with m real and non-negative| as a 2n x 2n real

matrix equation [130, 131]:

Rewv ReM —ImM Rew Rewv
My = =m , where m > 0. (D.14)
Imv —ImM —ReM Imwv Imv
Since M = MT, the 2n x 2n matrix My = (_gﬁ% :IR”C‘%) is a real symmetric matrix.’! In

particular, Mp is diagonalizable by a real orthogonal similarity transformation, and its eigen-
values are real. Moreover, if m is an eigenvalue of M, with eigenvector (Rev, Imv), then —m
is an eigenvalue of M with (orthogonal) eigenvector (—Imwv, Rewv). This observation implies
that Mp has an equal number of positive and negative eigenvalues and an even number of zero
eigenvalues.®® Thus, Eq.(D.13) has been converted into an ordinary eigenvalue problem for
a real symmetric matrix. Since m > 0, we solve the eigenvalue problem M pu = mu for the
eigenvectors corresponding to the non-negative eigenvalues.”® It is straightforward to prove
that the total number of linearly independent Takagi vectors is equal to n. Simply note that the
orthogonality of (Rewv;, Imwv;) and (—Imwy, Rewp) with (Rewvy, Imwy) implies that ’UIUQ =0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vg. If there
are degeneracies, one can always choose the vy in the degenerate subspace to be orthonormal.
The Takagi vectors then make up the columns of the matrix € in eq. (D.11). A numerical
package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in ref. [132] (see also refs. [138] and [139] for previous numerical approaches to

Takagi diagonalization).

51The 2n x 2n matrix M, is a real representation of the n X n complex matrix M.

®2Note that (— Imwv, Rew) corresponds to replacing vy, in Eq. (D.13) by ivs. However, for m < 0 these solutions
are not relevant for Takagi diagonalization (where the my are by definition non—negative). The case of m = 0 is
considered in footnote 53.

®3For m = 0, the corresponding vectors (Rev, Imv) and (—Imwv, Rev) are two linearly independent eigen-
vectors of Mp; but these yield only one independent Takagi vector v (since v and iv are linearly dependent).
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D.3 Relation between Takagi diagonalization and the singular value decompo-
sition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex
matrix M in eq. (D.3) is symmetric, then the Takagi diagonalization corresponds to 2 = L = R.
In this case, the left singular vectors and the right singular vectors coincide (wj = vy) and are
identified with the Takagi vectors defined in eq. (D.13). Nevertheless, in contrast to the singular
value decomposition, where R can be determined from eq. (D.8) modulo right multiplication
by a [diagonal] unitary matrix in the [non|-degenerate subspace [and L is then determined by
eq. (D.9) modulo multiplication on the right by eq. (D.10)], the matrix Q cannot be determined
from eq. (D.12) in cases where there is a degeneracy among the singular values, as previously
noted. For example, one possible singular value decomposition of the matrix M = ((1) (1]) can be
obtained by choosing R = Iy and L = M, in which case M TMI, = I. This, of course, is not
a Takagi diagonalization. Since R is only defined modulo the multiplication on the right by an
arbitrary 2 x 2 unitary matrix O, then at least one singular value decomposition exists that is
also a Takagi diagonalization. For the example under consideration, it is not difficult to deduce

the Takagi diagonalization: QTMQ = I,, where
Q=— O, (D.15)

and O is any 2 x 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it
seems plausible that one can prove the former from the latter. This turns out to be correct; for
completeness, we provide the proof below. Our second proof depends on the following lemma:

Lemma: For any symmetric unitary matrix V', there exists a unitary matrix U such that
V=UTU.

Proof of the Lemma: For any n xn unitary matrix V', there exists an hermitian matrix H
such that V = exp (iH) (this is the polar decomposition of V). If V.=V T then H = H' = H*
(since H is hermitian). But, any real symmetric matrix can be diagonalized by an orthogonal
transformation. It follows that V can also be diagonalized by an orthogonal transformation.
That is, there exists a real orthogonal matrix @ such that® QTVQ = diag (el , el | ..., i),

Thus, the unitary matrix
U = diag (ewl/Q, /2 ew”/z) QT (D.16)

satisfies V = UTU and the theorem is proven. Note that U is unique modulo multiplication on

the left by an arbitrary real orthogonal matrix.

5 . . . . .
54The eigenvalues of any unitary matrix are complex numbers of unit norm, i.e. pure phases.
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Second Proof of the Takagi diagonalization. Starting from the singular value de-
composition of M, there exist unitary matrices L and R such that M = L*MpR', where Mp
is the diagonal matrix of singular values. Since M = MT = R*MpL', we have two different
singular value decompositions for M. However, as noted below eq. (D.8), R is unique modulo
multiplication on the right by an arbitrary [diagonal] unitary matrix within the [non-|degenerate
subspace. Thus, it follows that a unitary matrix V exists of the latter form such that L = RV.
Moreover, V = V1. This is manifestly true within the non-degenerate subspace where V is
diagonal. Within the degenerate subspace, Mp is proportional to the identity matrix so that
L*R' = R*LT. Inserting L = RV then yields VT = V. Using the Lemma proved above, there
exists a unitary matrix U such that V = UTU. Hence, in the singular value decomposition of a

symmetric complex matrix, M = L*MpR!,
L=RU'U, (D.17)
for some unitary matrix U. Moreover, it is straightforward to show that:
MpU* =U*Mp. (D.18)

Within the degenerate subspace, eq. (D.18) is trivially true since Mp is proportional to the
identity matrix. Within the non-degenerate subspace V is diagonal; hence we may choose
U=UT =VY2 50 that eq. (D.18) is true since diagonal matrices commute. Using egs. (D.17)

and (D.18), we can write the singular value decomposition of M as follows
M = L*MpR' = L*Mp = R*'UTU*MpR' = (RUT)*MpU*R" = Q*MpQ', (D.19)

where Q@ = RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an

arbitrary complex symmetric matrix [eq. (D.11)] is once again proven.

Appendix E: Correspondence to four-component spinor notation
E.1 Dirac matrices and four-component spinors

Four-component spinor notation employs four-component Dirac spinor fields and the 4 x 4 Dirac

gamma matrices, whose defining property is:

{2} = 29" (E.1)

The correspondence between the two-component notation of this paper and the four-component
Dirac spinor notation is most easily exhibited in the basis in which ~5 is diagonal (this is called

the chiral representation). In 2x2 blocks, the gamma matrices are given by:

0 ot —5,% 0
=1 ¥ = i7"y = e (E.2)
ral 0 0 &%
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In addition, we introduce:%®

) v O-wjaﬁ 0
_[7“77 ] = . (E3)

Iy —
22 o 4 0 E'U‘Vd'
B

A four component Dirac spinor field, U(z), is made up of two mass-degenerate two-component

spinor fields, x(z) and n4(z) as follows:

We define chiral projections operators Pr, = %(1 —5) and Pg = %(1 + 75) so that

Xa() 0
Ugr(x) = Pr¥(x) = . (E.5)

0 7 ()

\IJL(ZL') = PL\I’(J}) =

The free fields can be expanded in a Fourier series; each mode is multiplied by a commuting
spinor wave function as in eq. (3.66). The Dirac conjugate field ¥ and the charge conjugate field

are respectively given by

U(z) = WA = (n°(x), Xa(2) , (E.6)
—T 77«1(@")

U(z)=CV (z) = _ , (E.7)
X“(z)

where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy [140, 141]:
Ayt AT = 4HT C7IN1C = —41T | (E.8)
It is conventional to impose two additional conditions:
U= AT (U)e = . (E.9)

The first of these conditions together with eq. (E.6) is equivalent to the statement that W
is hermitian. The second condition corresponds to the statement that the charge conjugation
operator applied twice is equal to the identity operator. Using egs. (E.8) and (E.9) and the
defining property of the gamma matrices [eq. (E.1)], one can show (independently of the gamma

matrix representation) that the matrices A and C' must satisfy:

AT =A, cT=-C, (AC)™! = (A0)*. (E.10)

55In most textbooks, ¥*” is called o**. Here, we use the former symbol so that there is no confusion with the
two-component definition of o#” given in eq. (2.58).
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For completeness, we also introduce a matrix B that satisfies [140, 141]:
By*BT = 44T, (E.11)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral
representation, A, B and C are explicitly given by
0 &% B 0 €0

A= oy B= : C=-—B!=

Ny (E.12)
5" 0 0 —€4p 0 €

Note the numerical equalities, A = 7%, B = 443 and C = i7°?, although these identifications
do not respect the structure of the undotted and dotted indices specified in eq. (E.12). In
calculations that involve translations between two-component and four-component notation, the
expressions given in eq. (E.12) should be used. In calculations involving only four-component
notation, there is no harm in using the numerical values for the matrices noted above.

Using egs. (E.8) and (E.11), the following results are easily derived:

1 for '=1,~*, v* v
ATA™! = ATt D T T (E.13)
-1, for I' =~y , XM, ,
1 for'=1 i
BB~ =BT, nB = {+ . e (E.14)
_17 forF:*y”’ys’Z” 72M757
1 forI'=1 i
C='rC = €17, o Y50 V5 (E.15)
-1, for I' = ~H, XKV By,

where 1 is the 4 x 4 identity matrix.
The external two-component spinor momentum space wave functions are related to the

traditional four-component spinors according to:

7o (P, 5) B B

U(ﬁ, S) = ) ’ u(ﬁv S) = (ya(ﬁ: 5)7 :L‘d(ﬁ: S)) ) (E16)
g (P, s)
Yo D, 5) B _

I 5(5.5) = (2°(,5), 7a(P.5)) (E.17)
(P, s)

where v(p, s) = Cu(p,s)T. The spin quantum number takes on values s = :l:%, and refers either

to the component of the spin as measured in the rest frame with respect to a fixed axis or to the

helicity (as discussed in Section 3.1). One can check that u and v satisfy the Dirac equations>®

(p —m)u(p,s) = (p+m)v(P,s) =0, u(@,s) (p —m) = v(P,s) (p+m) =0, (E.18)

®6We use the standard Feynman slash notation: $ = ~,p" and $ = ~,S".
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corresponding to egs. (3.9)—(3.12), and

(25758 — D u(@,s) = 2578 — 1) o) =0, a(Fs) (2578 — 1) = 5(F,5) (25958 — 1) = 0,

(E.19)
corresponding to eqgs. (3.23)—(3.26), where the spin vector S* is defined in eq. (3.15). For massive
fermions, eqs. (3.44)—(3.47) correspond to

u(P, 8)u(P, s) = 5(1+ 25758) (P +m), (E.20)
(B, 8)0(B,s) = 5(1+257;8) (b —m). (E.21)

To apply the above formulas to the massless case we must employ helicity states, where s is
replaced by the helicity quantum number A\, and S* is defined by eq. (3.16). In particular, in the
m — 0 limit, S* = p*/m + O(m/E). Inserting this result in egs. (E.18) and (E.19), it follows

that the massless helicity spinors are eigenstates of vy
Ysu(P, A) = 2 u(p, A), Y5 (D, A) = —2 (P, A) . (E.22)

Applying the same limiting procedure to eqs. (E.20) and (E.21) and using the mass-shell con-
dition (pp = p? = m?), one obtains the helicity projection operators for a massless spin-1/2

particle

(1+2M75) P, (E.23)
(1-2)5) 9, (E.24)

N[—= N[

which correspond to egs. (3.52)—(3.55). Finally, the spin-sum identities

Esjum s)u(p,s) = p+m, (E.25)
gwﬁ, S)o(B.s) =p—m, (E.26)
gum s)o’ (B,s) = (p+m)CT, (E.27)
; ' (B, 5)0(B.s) = C™H(p—m), (E.28)
gﬂﬁ, s)a(p.s) = C~H(p+m), (E.29)
> o(@ s)u’(B,s) = (p—m)CT, (E-30)

correspond to egs. (3.56)—(3.59).
Bilinear covariants are quantities that are quadratic in the Dirac spinor field which transform

irreducibly as Lorentz tensors. These are constructed from corresponding quantities that are
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quadratic in the two-component fermion fields. To construct a translation table between the
two-component form and the four-component forms for the bilinear covariants, we first introduce

two Dirac spinor fields [¢f. eq. (E.4)]:

Uy(z) = , Uy(z) = , (E.31)
mn(z) m2()

where spinor indices have been suppressed on the two-component fields x;(z) and 7;(x).>” The

following results are then obtained:®

U PLUy = nix2, (E.32)

U PRy = X172, (E.33)
Uy PLUy = X107 X2, (E.34)
UyHPrUy = motiy, (E.35)
U S P Wy = 20" xa , (E.36)
U S Prlly = 24165 . (E.37)

Note that egs. (E.32)—(E.37) apply to both commuting and anti-commuting fermion fields. In
particular, the above results imply that the following relations are satisfied by the (commuting)

u and v spinors:

(P, $1)PrLo(Py, s2) = —u(Py, s2) Pro(py, 1), (E.38)
u(Py, s1) Pro(P), 52) = — (P, 52) PR (P, 51) (E.39)
u(py, s1)7" PLo(Py, s2) = U(Py, s2)7" Pro(PY, 51) (E.40)
u(py, s1)7" Pro(Pa, 52) = (P, s2)v" PLo(py, s1) - (E.41)

If a bilinear combination of the two-component spinors is given that does not conform
to those listed in eqs. (E.32)—(E.37), then the corresponding four-component expression will
necessarily involve a charge-conjugated four-component spinor. For example, @(iPL\Ilg = X1X2,
etc. In general, if one replaces ¥; with W§ (j = 1 and/or 2) in any of the above results, then in

the corresponding two-component expression one simply interchanges x; < n; and x; < 7;.

5THere i is a flavor index. In the convention of Section 3.2, the flavor index of an unbarred two-component field
appears as a lowered index and the flavor index of a barred two-component fermion field appears as a raised index.
If one wanted to introduce both raised and lowered indices for four-component fermion fields, one would demand
that the flavor indices of ¥y, = PL,¥ and U = VP, appear as lowered indices, whereas the flavor indices of
Up=PrVUand U, = UPg appear as raised indices. We shall follow this convention for chiral theories. However,
such a convention is unwieldy for vector-like interactions. Hence when considering vector-like theories, we shall
depart from this flavor index convention, and employ only lowered flavor indices for the fermion fields.

581t is often useful to apply eq. (2.49) to egs. (E.35), (E.44) and (E.45) and rewrite n10"72 = —723" 11, where
the minus sign has been employed for anticommuting spinors.
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Using eqgs. (E.32)—(E.37), it then follows that:

U0y = mixa + X172 (E.42)
Uy5Ws = —n1x2 + X172 (E.43)
Uy Wy = X16" X2 + moi (E.44)
UiyHys Wy = —x16% x2 + motip (E.45)
WSy = 2(m ot o + X161 12) (E.46)
U Sy Wy = 2(—n1ot o + X167 12) . (E.47)

Note that egs. (E.44) and (E.45) contain both o and " [see footnote 58]. In addition, for

anticommuting fermion fields, we may use CT = —C' to prove that
T, TV = U,CTTC'0; = nS ;T (E.48)

where the sign 771(“J is given in eq. (E.15).

The results derived above also apply to four-component Majorana fermions, W 57;, by setting
1; = Xi- However, the extra condition imposed by ¥$,, = W, can yield further restrictions.
For example, eqs. (E.44)—(E.47) imply [after employing egs. (2.49)-(2.51)] that anticommuting

Majorana four-component fermions satisfy:

EM@"Y“PL\IJMJ' = —GMJ")/“PR\I’MZ‘, (E49)
Va0 = =0 S Uy, (E.50)
WMig/JV"YS\Ile = —WMjE“V’yS\I/Mi . (E51)

If we set i = j, we learn that WU, = Uy S0, = TMEW%\I’M =0.

E.2 Feynman rules for four-component fermions

We now illustrate some basic applications of the the above formalism. First, we consider neutral
and charged fermions interacting with a neutral scalar ¢ or neutral gauge boson A% .%? To obtain
the interactions of the four-component fermion fields, we first identify the neutral two-component
fermion mass-eigenstate neutral fields &; and the mass-degenerate charged pairs x; and 7; that
combine to form the (mass eigenstate) Dirac fermions. Using eqs. (4.12), (4.17) and (4.20), we

write out the following interaction Lagrangian in two-component form:
Lt = =2 (NG + N8 — (K ximj + ki X' )¢

—(GY) 7,8 A% + [(GR)IN'Tum; — (G X'a X, AL (E.52)

59Here, charged and neutral refer to some global or local U(1), which in general is orthogonal to the gauge
group under which A# transforms.
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————— —Z'()\ijPL + AijPR)

—Z'(HjiPL + ’{ijPR)

—ivu[(G*)? P, — (G*);" PR

—i7,[(GY)i Pr, + (G%) ;" PR

Figure 62: Feynman rules for four-component fermion interactions with neutral bosons

where G, G} and G% are hermitian matrices, A is a complex symmetric matrix and & is an
arbitrary complex matrix, with A\ = A;; and kY = k;; By assumption, x and 7 have the
opposite charges, while all other fields in eq. (E.52) are neutral. It is now simple to convert this

result into four-component notation:

Lt = =2 NI PLY arj + Ny Ui PRU M) — (570, PLV + £y U, PR ;)
— (G vy PLY aij + (G1) 7 Uiy PLY + (G%) ;' Ui, Pr¥;] A%, (E.53)

where W) [U;] are a set of Majorana [Dirac] four-component fermions. It is convenient to use

eq. (E.50) to rewrite the term proportional to (G?);7 in eq. (E.53) as follows
(G U piy" PO sy = 50y [(G)? P — (Ge);'Pr] Waj - (E.54)

Using standard four-component methods, the Feynman rules for the vertices are easily
obtained and displayed in Fig. 62. Note that the arrows on the Dirac fermion lines depict the
flow of the conserved charge. A Majorana fermion is neutral under all conserved charges (and
thus equal to its own anti-particle). Thus an arrow on a Majorana fermion line simply reflects

the structure of the interaction Lagrangian; i.e., Uy; [¥y] is represented by an arrow pointing
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out of [into] the vertex. The arrows are then used for determining the placement of the u and
v spinors in an invariant amplitude.

We next treat the interaction of fermions with charged bosons. Here, we consider a set
of neutral fermion mass-eigenstate fields &; and a set of charged fermions denoted by pairs of
oppositely charged mass-eigenstate fields x; and n;. The charged scalar and vector bosons are
complex fields denoted by ® and W, respectively. We shall only consider the simplest case where
the U(1) charges of ®, W and x are assumed to be equal, with n having the opposite charge.

The interaction Lagrangian in two-component form is

Lt = = [ xi&j + (ka)iji1 €] — BTl + (k1)1 X°E]
~Wul(GIX'T"E; + (Go) &t ;] — Wil(Gr); €70 xi + (Ga);'Po"&i], (B.55)

where (G; and G are hermitian matrices and k1 and k9 are complex symmetric matrices, with

(kn)ij = (k¥)* [n = 1,2]. We may then rewrite this in four-component notation:

Lt = — [(k2) T, PL 15 + (Hl)ij@PR\I’Mj] P
— [(G1)I U PLV ppj — (G2) Uy" PRV pr] Wy, + hec. (E.56)

There is an equivalent form of the interaction given in eq. (E.56) where £ is written in
terms of charge-conjugated fields [after using eq. (E.48)]. Noting that Majorana fermions are
self-conjugate, the Feynman rules for the interactions of neutral and charged fermions with
charged bosons can take two possible forms, as shown in Fig. 63. Here, the direction of an arrow
on a Dirac fermion line is meaningful and indicates the direction of charge flow. However, we are
free to choose either a ¥ or W€ line to represent a Dirac fermion at any place in a given Feynman
graph.® Moreover, the structure of the interactions above imply that the arrow directions on
fermion lines flow continuously through the diagram. This requirement then determines the
direction of the arrows on Majorana fermion lines.

Virtual Dirac fermion lines can either correspond to ¥ or W€¢. Here, there is no ambiguity

in the propagator Feynman rule, since for free Dirac fermion fields,

(01T (Ta(2)Ts(y))|0) = (OIT (V5 (2)Ts(y))[0) (E.57)

so that the Feynman rule for the propagator of a ¥ and W€ line, given in Fig. 64, are identical.
Using eq. (E.2), the four-component fermion propagator Feynman rule can be expressed as a

partitioned matrix of 2 x 2 blocks,

<p— ———— ; m e P05
@ s —_— P p-T mé‘j‘ﬁ

59Gince the charge of W€ is opposite to that of ¥, the corresponding arrow direction of the two lines are also
point in opposite directions.
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—i(/izijPL + lﬁllijPR)

—’i(/ilijPL + KgijPR)

—iy"(Gri? Pr, — G2, PR)

iv"(Gri? Pr — Ga;" Pr)

—iy" (G4 P, — Ga? PR)

iv" (G Pr — Ga;' Pr)

Figure 63: Feynman rules for four-component fermion interactions with charged bosons. The
arrows on the boson and Dirac fermion lines indicate the direction of charge flow.
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> i(p+m)ag

I6; a P2 —m? +ie

Figure 64: Feynman rule for propagator of a four-component fermion with mass m. This same
rule applies to a Majorana, Dirac and charge-conjugated Dirac fermion. The four-component
spinor labels are specified.

consisting of two-component fermion propagators defined in Fig. 2, with the undotted and dotted
a [f] indices on the left [right] and with the momentum flowing from right to left.

The derivation of the four-component Dirac fermion propagator is treated in most modern
textbooks of quantum field theory [see, e.g., ref. [76]]. Here, we briefly sketch the path-integral
derivation of the four-component fermion propagator by exploiting the path integral treatment
of the two-component fermion propagators outlined in Appendix C. Consider a single massive

Dirac fermion ¥(z) coupled to an anticommuting four-component Dirac fermionic source term

Jyp(x) = | _ : (E.59)

The corresponding action [eq. (C.2)] in four-component notation is given by

S= /d4:r (L +TpU+TJy) = /d43: (i —m) ¥+ Tp¥ + T J,] . (E.60)
Introducing the momentum space Fourier coefficients:
d4p —iprd d4p —ipx T

we can identify the following four-component quantities with matrices of two-component quan-

tities given in egs. (C.7) and (C.27):
U(p) =A%), Jop) =Xelp).  pom=M@p)A, (E.62)

where A is the Dirac conjugation matrix defined in egs. (E.6) and (E.8). Using the results of

Appendix C, one easily derives:

— —
— ) — o
0T (¥ (x1)¥(22))|0) = | —t=—— | W[J,J] | —i , E.63
(O[T (W (1) T (2))[0) ( mm)) | ]( m(m)) L (5.63)
where . 5
— . d*p = +m -~
Using the analogs of egs. (C.23) and (C.24), we end up with the expected result
U d4p —ip-(x1—x ]5 —-m

OT (W) Ta)l0) = [ e T, (E.65)
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In principle, the analogous computation can be carried out for a single four-component Ma-
jorana fermion field W/ (z) coupled to a Majorana fermionic source, J¢(x). The corresponding
action is similar to that of eq. (E.60), with an extra overall factor of 1/2. However, in evaluating
the functional derivative in eq. (E.64), one must take into account that the Majorana fermionic
source J¢(x) satisfies J¢ = ng = J¢. Consequently, the functional derivative with respect to
J¢ is related to the corresponding functional derivative with respect to J¢. As a result, the cal-
culation of eq. (E.64) will yield two equal terms that will cancel the overall factor of 1/2, and the
end result will again be eq. (E.65). Neverthless, this computation is somewhat awkward using

four-component spinor notation, in contrast to the straightforward calculation of Appendix C.

E.3 Applications of four-component spinor Feynman rules

For a given process, there may be a number of distinct choices for the arrow directions on the
Majorana fermion lines, which may depend on whether one represents a given Dirac fermion by
U or WU¢. However, different choices do not lead to independent Feynman diagrams.’® When
computing an invariant amplitude, one first writes down the relevant Feynman diagrams with
no arrows on any Majorana fermion line. The number of distinct graphs contributing to the
process is then determined. Finally, one makes some choice for how to distribute the arrows
on the Majorana fermion lines and how to label Dirac fermion lines (either as the field or its
conjugate) in a manner consistent with the rules of Figs. 62 and 63. The end result for the
invariant amplitude (apart from an overall unobservable phase) does not depend on the choices
made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion wave functions are

the same for Dirac and Majorana fermions:
e u(p,s): incoming ¥ [or U¢] with momentum p parallel to the arrow direction,
e u(p,s): outgoing ¥ [or V¢ with momentum p parallel to the arrow direction,
e v(P,s): outgoing ¥ [or ¥°] with momentum p’ anti-parallel to the arrow direction,
e U(P,s): incoming ¥ [or ¥¢] with momentum p anti-parallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana

fermions is straightforward. Simply insert the plane wave expansion of the Majorana field:

3= . .
Uy(e) =Y / (%)3/5(5%)1/2 ulB5)alB,s)e P + 0@ s)al (B 5)e 7] (B.66)

51In contrast, the two-component Feynman rules developed in Section 3 require that two vertices differing by
the direction of the arrows on the two-component fermion lines must both be included in the calculation of the
matrix element.
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into eq. (E.53), and evaluate matrix elements for, e.g., the decay of a scalar or vector particle
into a pair of Majorana fermions.

We now reconsider the matrix elements for scalar and vector particle decays into fermion
pairs and 2 — 2 elastic scattering of a fermion off a scalar and vector boson, respectively. We
shall compute the matrix elements using the Feynman rules of Fig. 62, and check that the results
agree with the ones obtained by two-component methods in Section 3.

The matrix element for the decay ¢ — W (P, s1)¥ar(Ps, S2) is given by
M= —iﬂ(ﬁl, 81)()\PL + )\*PR)U(]?Q, 82) . (E67)

One can easily check that this result matches with eq. (4.26), which was derived using two-
component techniques. Note that if one had chosen to switch the two final states (equivalent
to switching the directions of the Majorana fermion arrows), then the resulting matrix element
would simply exhibit an overall sign change [due to the results of egs. (E.38) and (E.39)].52
Similarly, for ¢ — W Was; (i # j) or for the decay into a pair of Dirac fermions, ¢ — U, one
again obtains the invariant matrix element given in eq. (E.67).

For the decay A, — Vi (P}, 51)Vn (P, s2), one obtains:
iM = iGeu(py, s1)v v5v(Ps, S2)ep - (E.68)

One can easily check that this result matches with eq. (4.29). For the decay into non-identical

Majorana fermions, A, — Wy Wy (4 # j), we can use the Feynman rules of Fig. 62 to obtain:
IM = —iﬂ,(@, si)’y” [(Gg)ijPL — (Gg)jiPR] U(ﬁ}, Sj)5u= (E69)

Again, we note that if one had chosen to switch the two final states (equivalent to switching
the directions of the Majorana fermion arrows), then the resulting matrix element would simply
exhibit an overall sign change [due to the results of egs. (E.40) and (E.41)]. Finally, for the decay
of the vector particle into a Dirac fermion-antifermion pair, A, — UV, the matrix element is
given by:

iM = —ia(py, s1)Y"(GLPrL, — GrPr)v(Ps, 52)ep (E.70)

which matches the result of eq. (4.33).

Turning to the elastic scattering of a neutral Majorana fermion and a neutral scalar, we
shall examine two equivalent ways for computing the amplitude. Following the rules previously
stated, there are two possible choices for the direction of arrows on the Majorana fermion lines.

Thus, may evaluate either one of the following two diagrams:

52The overall sign change is a consequence of the Fermi-Dirac statistics, and corresponds to changing which
order one uses to construct the two particle final state.
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plus a second diagram in each case (not shown) where the initial and final state scalars are

crossed. Evaluating the first diagram above, the matrix element for ¢pW ; — ¢W,, is given by:

. —1 — = * * —
iM = P w(Py, $2)(APL + XN*PR)(Pp + m)(APr + X Pr)u(pi, s1) + (crossed)
_i — * —
= U(Py, S2) [|)\|215+ ()\2PL + (A )QPR) m] u(py, s1) + (crossed) , (E.71)
where m is the Majorana fermion mass, s is the center-of-mass energy squared. Using egs. (E.2)
and (E.16), one recovers the results of eq. (4.34). Had we chose to evaluate the second diagram

instead, the resulting amplitude would have been given by:

iM = s—;:n? 3(Py, s1) [~ AP+ (N Pp + (\*)?Pr) m] v(Py, s2) + (crossed) . (E.72)

Using egs. (E.16) and (E.17) and the results of eqgs. (2.47)—(2.49) one can derive the following

results:

v(P, 51)v(Pa, 52) = —U(Py, s2)u(Py, 51) v(PY, 51)7"0(Pa, 52) = WPy, s2)7" u(Py, 51) -

(E.73)
Consequently, the amplitude computed in eq. (E.72) is just the negative of eq. (E.71). This is
expected, since the order of spinor wave functions (12) in eq. (E.72) is an odd permutation (21)
of the order of spinor wave functions in eq. (E.71). As in the two-component Feynman rules,
the overall sign of the amplitude is arbitrary, but the relative signs of any pair of diagrams is
not ambiguous. This relative sign is positive [negative| if the permutation of the order of spinor
wave functions of one diagram relative to the other diagram is even [odd].

Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again,
we examine two equivalent ways for computing the amplitude. Following the rules previously
stated, there are two possible choices for the direction of arrows on the fermion lines, depending
on whether we represent the fermion by ¥ or W¢. Thus, we may evaluate either one of the

following two diagrams:

plus a second diagram in each case (not shown) where the initial and final state scalars are

crossed. Evaluating the first diagram above, the matrix element for ¢¥ — ¢V is given by
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eq. (E.71), with A replaced by x. Had we chose to evaluate the second diagram instead, the
resulting amplitude would have been given by eq. (E.72), with A replaced by k. Thus, the
discussion above in the case of neutral fermion scattering processes also applies to charged
fermion scattering processes.

In processes that only involve vertices with two Dirac fields, it is never necessary to use
charge-conjugated Dirac fermion lines. In contrast, consider the following process that involves
a vertex with one Dirac and one Majorana fermion. Specifically, we examine the scattering of
a charged Dirac fermion and a charged scalar via the exchange of a neutral Majorana fermion,
in which the charge of the outgoing fermion is opposite to that of the incoming fermion. If
one attempts to draw the relevant Feynman diagram employing Dirac fermion lines but with
no charge-conjugated Dirac fermion lines, one finds that there is no possible choice of arrow
direction for the Majorana fermion that is consistent with the the vertex rules of Fig. 63. The
resolution is simple: one can choose the incoming line to be ¥ and the outgoing line to be ¥¢

or vice versa. Thus, the two possible choices are given by:

N 7 N 7
N 7 N 7

7 N 7

plus a second diagram in each case (not shown) in which the initial and final scalars are crossed.

If we evaluate the first diagram, the resulting amplitude is given by:

iM= 8__7:”2 u(Py, $2)(k1Pr + k5 Pr)(p + m) (k1 P, + k5 Pr)u(P, s1) + (crossed)
- 8%;2 (P, 52) [/11/6315 + (/{%PL + (/{3)2PR) m] u(py, s1) + (crossed) , (E.74)
where m is the Majorana fermion mass. One can check that this is equivalent to eq. (4.38)
obtained via the two-component methods. Had we evaluated the second diagram, then after
using the relations given in eq. (E.73), one finds that the resulting amplitude is just the negative
of eq. (E.74), as expected. As before, the relative sign between diagrams for the same process
is not ambiguous.

In the literature, there are a number of alternative methods for dealing with scattering
processes involving Majorana particles. For example, one can define a fermion-number violating
propagator for four-component fermions (see, e.g., [48]). These methods involve subtle choices
of signs which often require first-principles computations to verify. The advantage of the method
described above is that there is never any ambiguity in the choice of relative signs.

In the case of elastic scattering of a fermion and a neutral vector boson, the two contributing

diagrams are
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A 4
A 4
A 4

A 4
A 4

p ﬁ

plus a second diagram (not shown) where the initial and final state vector bosons are crossed.
Consider first the scattering of a neutral Majorana fermion of mass m. Using the Feynman rules
of Fig. 62, we see that the Feynman rule for the A,V ;¥ vertex is given by iG¢yvy;. Hence,
the corresponding matrix element is given by

, —iGf i} .

iM = mﬂ(pz, 52)7y-€5 (P —m)y-e,u(Py, s1) + (crossed) (E.75)
where we have used v/75(p + m)y"v; = v (p — m)¥*. Using egs. (E.2) and (E.16), one easily
recovers the results of eq. (4.35).

Next, the invariant matrix element for the scattering of a Dirac fermion is given by

. _Z — (= * —
iM = mu(m, s2) €5 (GLPL — GrPR)(P +m) -, (GLPL — GrPRr)u(Py, s1) + (crossed)
= mﬂ(m, 52) 7€, (G PL + G Pr)p — GLGrm] v-equ(P), s1) + (crossed).  (E.76)

One can easily check that this result coincides with that of eq. (4.39).
Finally, we examine the elastic scattering of two identical Majorana fermions via scalar
exchange. The three contributing diagrams are:

and the corresponding matrix element is given by

—1

M=

3 [EI(APL + )\*PR)UQ ﬂg()\PL + )\*PR)U4]
S — m¢

— " _ %
+ (—1)m [ﬂg()\PL + A PR)ul U4()\PL + A PR)’LLQ]
¢

—1

w2 [ﬂ4()\PL + )\*PR)ul ﬂg()\PL + )\*PR)’LLQ] , (E77)
¢

where u; = u(p;, s;), v; = u(p;,s;) and my is the exchanged scalar mass. The relative minus

sign of the t-channel graph relative to the other two is obtained by noting that 3142 [4132] is an
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odd [even] permutation of 1234. Using eqgs. (E.2) and (E.16), one easily recovers the results of
eq. (4.40).

subsection*E.4 Self-energy functions and pole masses for four-component fermions

In this section, we examine the self-energy functions and the pole masses for a set of four-
component fermions. We first consider four-component Dirac fermion fields ¥,;, where « is
the four-component spinor index and ¢ is the flavor index. The full, loop-corrected Feynman
propagators with four-momentum p* are defined by the Fourier transforms [cf. footnote 13] of
vacuum expectation values of time-ordered products of bilinears of the fully interacting four-

component fermion fields:
(0] T i (2) W35 (y) 0} pr = i(Sap)is () (E.78)
with [149-159]
S(p) = p | PLSL(?) + PrSr(p?)| + PLE p(p%) + PrSp(p%) . (E.79)

where the four-component spinor indices a and [ and the flavor indices 7 and j have been
suppressed. As in Section 4.6, we shall organize the computation of the full propagator in terms

of the 1PI self-energy function [152]:3
<T
(p) = § | PLZL(?) + PRER0P)] + PLEp(r?) + PrEp(r?) (E.80)

Diagrammatically, 25 and —¢3 are shown in Fig. 65.

P P
« B «Q ( > p
i J i J
i(Sap)ij(p) —i(Zap)ij(p)

Figure 65: The full, loop-corrected propagator for four-component Dirac fermions, i(S43):;(p),
is denoted by the shaded box, which represents the sum of all connected Feynman diagrams,
with external legs included. The self-energy function for four-component Dirac fermions,
—i(X43)ij(p), is denoted by the shaded circle, which represents the sum of all one-particle
irreducible, connected Feynman diagrams with the external legs amputated. In both cases, The
four-momentum p flows from right to left.

The hermiticity of the effective action implies that S and X satisfy hermiticity condi-
tions [142,143]
(ST = ASA™?, (=T =Ax%A!, (E.81)

530ur notation in eq. (E.80) differs from that of ref. [152], as we employ & instead of . Our motivation for
this choice is that in the case of Majorana fermions [cf. eq. (E.92)], we simply have 3 = X g, without an extra
transpose (or conjugation). We have also chosen to employ S} in eq. (E.79) for similar reasons.
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where A is the Dirac conjugation matrix (A = 4° in all common representations) and the star
symbol was defined in the paragraph below eq. (4.47). Applying eq. (E.81) to egs. (E.79) and

(E.80) then yields the following conditions for the complex matrix functions:
[S]]*=SL, [SE*=Sr, Sp=Sp, (E.82)
Bl =%, [ER"=%r, Zp=3p. (E.83)
Starting at tree-level and comparing with Fig. 64, the full propagator function is given by:
Sij(p) = (b +m)oi /(7 —m?) + ..., (E.84)

with no sum over i implied. The full loop-corrected propagator can be expressed diagrammati-

cally in terms of the 1PI self-energy function:

« B o' B « ) B
- . = < : + - -
i J 1 J ] k !
(E.85)
As in Section 4.6, the algebraic representation of eq. (E.85) can be written as
S=T+TES=(T"'-%)', (E.86)

where T;; = (p + m)d;;/(p? — m?) is the tree-level contribution to S given in eq. (E.84). By
writing the expressions for S and ¥ given in eqgs. (E.79) and (E.80) and T in block matrix form
using eq. (E.2), one can verify that eq. (E.86) is equivalent to eq. (4.66). Consequently, the
complex pole masses of the corresponding Dirac fermions are again determined from eq. (4.71).

In the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED
or QCD), the pseudoscalar and pseudovector parts of S(p) and X(p) must be absent. Thus,
the following relations must hold among the loop-corrected propagator functions and self-energy

functions, respectively:
Sr=S], Sp=[SE", (E.87)
YL =3%F, p ==, (E.88)
in agreement with egs. (4.72) and (4.73).
In the case of a set of four-component Majorana fermion fields, we can still use the results of
egs. (E.79)—(E.86). However, one obtains additional constraints on the full propagator and self-

energy matrix functions due to the Majorana condition ¥ y;; = C'¥,,,. Inserting this result into

eq. (E.78), and making use of the anti-commutativity of the fermion fields, one easily derives:

(0] T‘I/Mai(x)ﬁMﬁj(y) |0)pr = Cary (0] T‘I’M&(m)ﬁMw’(y) 0)pr Cs_gl : (E.89)
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Consequently,
csTct=s, cxTet=x. (E.90)

Inserting the expressions for S and X [egs. (E.79) and (E.80)] and using the result of eq. (E.48),
it follows that:

St = Sr, SD:SB, gngg, (E.91)
X, =%, Sp=3L, Ip=3. (E.92)

As expected, with these constraints the form of eq. (4.66) matches precisely with the form
of eq. (4.56), corresponding to the equation for the full propagator functions for a theory of
generic two-component fermion fields. In the notation of Section 4.6, we can therefore identify:
C=8S,=Sr, D=Sp, E=X1 =g, and 2 =Xp.

Appendix F: Covariant spin operators and the Bouchiat-Michel
Formulae

Bouchiat and Michel derived a useful set of formulae [135] that generalize the spin-projection
opertors used in four-component spinor computations. In this Appendix, we establish the two-
component analogues of the Bouchiat-Michel formulae, and demonstrate their equivalence to

the corresponding four-component spinor formulae.

F.1 The covariant spin operators for a spin-1/2 fermion

Consider a massive spin-1/2 fermion of mass m and four-momentum p. We define a set of three
four-vectors Sj; (a = 1,2,3) such that the S* and p/m form an orthonormal set of four-vectors.

In the rest frame of the fermion, where p# = (m; 6), we can define
S =(0; §%), a=1,23, (F.1)

where the unit vectors §% are a mutually orthonormal set of unit three-vectors that form a basis
for a right-handed coordinate system. Explicit forms for the §% are given in eq. (B.14). Using
eq. (2.71), the three four-vectors Sj; in a reference frame in which the four momentum of the
fermion is p* = (E'; p) is given by:

an _ (P3% e, (P3P F.2
S <m7s+m(E—|—m) ' (F-2)

As discussed in Appendix B, we identify § = §3 as the quantization axis used in defining the
third component of the spin of the fermion in its rest frame. It then follows that the spin

four-vector, previously introduced in eq. (3.15) is given by S* = S3K.
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The orthonormal set of four four-vectors p/m and the S satisfy the following Lorentz-

covariant relations:

p-S*=0, (F.3)
5.8 = —§ob (F.4)
Ap, S, 355 = —m, (F.5)
SZSIIj - SgSZ - Eabceuupo'(sc)p % ) (FG)
SZ Sy = —Guv + pul;,/ ) (F.7)
m

where the sum over the repeated indices is implicitly assumed. It is convenient to define:

Sssr = S4TL 5,8 = i% , (F.8)

where 7%, are the matrix elements of the Pauli matrices (see footnote 43). Then, we can rewrite
egs. (F.4) and (F.6) as:

G SHS” = =3, (F.9)
5,8, — 5,8, = ﬁeumsppa . (F.10)

The S* serve as covariant spin operaotrs for a spin-1/2 fermion. In particular, in the rest frame,
the %Si satisfy the usual SU(2) commutation relations, with S§? = % as expected for a spin-1/2
particle.

It is often desirable to work with helicity states. In this case, we choose:
5% =p*, ie, 0=0, and ¢ = ¢, (F.11)

where the p® are defined in eq. (B.25) [with p2 = p], in which case eqgs. (F.1)—(F.7) also apply
to the two-component helicity spinors. Moreover, since p®-p = 0 for a # 3, it follows that
S = (0; p*) for a = 1,2 in all reference frames obtained from the rest frame by a boost in
the p direction. Hence, in a reference frame where p* = (E'; p), egs. (B.14) and (F.2) provide

explicit forms for the S,

S = (0; cos 6 cos ¢, cosfsin ¢, —sinf), (F.12)

5% = (0; —sing, cos ¢, 0), (F.13)

S = <M; Eﬁ) : (F.14)
m '’ m

in a coordinate system where p = (sin 6 cos ¢, sinfsin ¢, cos#). As expected, S3* is the spin

vector for helicity states obtained in eq. (3.16). In the high energy limit (E > m),

mS™ = ph 5% + O(m). (F.15)
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F.2 Two-component spinor wave function relations
In Section 3.1, we wrote down explicit forms for the undotted spinor wave functions
:L'a(ﬁs) = VPO Xs» 'l'a(ﬁ?s) = _23XT_S\/p'67 (F16)
Ya(B.5) = 25\/PoX_,, y*(B.5) =xV/p7, (F.17)
and the dotted spinor wave functions
s) = —2s5\/poX_,, Zo(P,s) = xvpo, (F.18)
) = \VPT X, Ja(P, ) = 2sx" /o, (F.19)
where /p-c and /p-o are defined in eqs. (2.69) and (2.70). As shown in Appendix B, the

two-component spinors x, satisfy:

258%y = 578X XE(3) s (8) = b, 5,8 =+1. (F.20)

Next, we use eqgs. (2.72) and (2.73) to obtain:
VpoSte\/po=mé&-5%, (F.21)
\/paS*o+\/poc=-—mac-5%, (F.22)

which extends the results of egs. (3.17) and (3.18). As a result, we obtain a generalization of
egs. (3.23)—(3.26):

(5% 7)Pag(F,s") = 10,5%(B.s) . (ST0) 70 (B.8) = —mwa(B,s),  (F.23)
(8%:0),57°(B,8') = —70 wa(B,5) . (S©0)Pys(B,s) =70 3%(B,s) ,  (F.24)
2(F.8)(570) g = ~T0G5(F,5), GBS0 T) =78 0 (Fs),  (F.25)
2a(B,8) (S 0) =120 (Bs), Yy (B ) (S 0) s = —TL 5B, 5),  (F.26)

where there is an implicit sum over the repeated label s = :l:%. As expected, the case of a = 3
simply reproduces the results of egs. (3.23)—(3.26) obtained previously. The above equations also
apply to helicity wave functions (P, \) and y(p,\) by replacing s, s’ with A\, X and defining
the S® by egs. (F.12)—(F.14).

The derivation of egs. (F.23)—(F.26) for arbitrary a closely follows the corresponding deriva-
tion for a = 3 previously given. For example, using egs. (F.21) and (F.22) and the definitions

for 24(P, s) and §9(P, s), we find (suppressing spinor indices),

VD oS4 Tx(p,s) =\poS*T\poxy =m&-8%xy =mrd X,, (F.27)

after using eq. (F.20). Multiplying both sides of eq. (F.27) by \/p-7, we end up with
Sz x(p, s SN DT X = Tes YD, ). (F.28)
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Similarly,
S-ox(p,s') = 25/7{3,—3'\/19‘0 X_g=—Tosy(D,s), (F.29)

where we have used:
4ss'T, o= —Tog, for s,8 =41/2. (F.30)

All the results of egs. (F.23)—(F.26) can be derived in this manner.

F.3 Two-component Bouchiat-Michel formulae

To establish the Bouchiat-Michel formulae, we begin with the following identity:

(655 + 3-8 7)) Z thl = stxl. (F.31)
t==41/2

To verify eq. (F.31), we use eq. (F.20) to write &-5%x, = 757,x, and evaluated the product of

two Pauli matrices:
Tes Tt = 2050517 — Oss/Opyr - (F.32)

Using eq. (F.21) and the completeness relation given in eq. (B.8), we can rewrite eq. (F.31) as:

1
XS/XI = % <585’ + m VPO Sss1+T p'0> ) (F.33)
where Sy is defined in eq. (F.8). Hence, with both spinor indices in the lowered position,

2(5,5)7(5,5) = 5o x| VT
1
= % p-o |:6SS, + E A /p‘O'SSS,.E po-:| /p,o—

1 _
= % |:p'0'555/ + —po Sss"ap'0:|
m
=1 [p-0dsy —mSsy-0] . (F.34)

In the final step of eq. (F.34), we simplified the product of three dot-products by noting that
p-S® = 0 implies that S*-@ p-c = —p-7 S* 0. Eq. (F.34) is the two-component version of one of
the Bouchiat-Michel formulae. We list below a complete set of Bouchiat-Michel formulae, which

can be derived by similar techniques:

2a(.8)E5(F.5) = S0,y — mSy) 0, (F.35)
7 (B,5)y’ (B, s) = §(p6,y +mS,y)-a°7, (F.36)
205 )y (B,5) = § (M0 = [(0-S,0) @P))a”) (F.37)
PB4, 5) = 5 (md,00% 5+ [(7-S,) (0-D)*5) - (F.38)

If we set s = ', we recover eqs. (3.44)-(3.47) as expected.
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An equivalent set of Bouchiat-Michel formulae can be obtained by raising and/or lowering

the appropriate free spinor indices using eqs. (2.22) and (2.61):

2P, 82" (B.5) = 5(pdy, —mSy,) T, (F.39)
Yo (B, 8 )74(P,5) = 5(p0ys +mSy.) 044, (F.40)
a7 8)a” (7.5) = =5 (md 0. + [(0-5,,) (@p))a”) (F.41)
2B,V 5) = — 5 (mdy 0%, — [(@-54,) ()] 5) - (F.42)

These latter set of formulae can also be verified directly by using the explicit forms for the
two-component spinor wave functions. In this derivation, the spin labels in egs. (F.39)—(F.42)
are reversed relative to those in egs. (F.35)—(F.38) due to eq. (F.30).

Other combinations of spinor bilinears are possible. However, egs. (F.16)—(F.19) imply that

the z and y spinors are related:
y(P,s) = 2sx(P, —s), YD, s) = 2sz(P, —s). (F.43)

Using eq. (F.43), all possible spinor bilinears can be obtained from egs. (F.35)—(F.42).

Note that egs. (F.35)—(F.43) also apply to helicity spinor wave functions z(p, A) and y(p, \)
after replacing s, s’ with A\, \ and using the S as defined in eqs. (F.12)—(F.14). Strictly speaking,
all results involving the spinor wave functions obtained up to this point apply in the case of a
massive spin-1/2 fermion. If we take the massless limit, then the four-vector S* does not exist,
as its definition depends on the existence of a rest frame. (In contrast, the four-vectors S! and
S? do exist in the massless limit.) Nevertheless, massless helicity spinor wave functions are
well-defined; explicit forms can be found in egs. (3.35)—(3.38). Using these forms, one can derive

the Bouchiat-Michel formulae for a massless spin-1/2 fermion:

2o (B, N)Z5(B,N) = (5 = N) S -0, (F.44)
gd(_’v)‘/)yﬁ(j >‘) = (% + )‘) 5>\)\’p'6dﬁ ) (F 45)
2a(BN )Y (B N) = —3(3 = XN)5 + V) [(0-S12)@p)]. 7, (F.46)
7B N)E (B ) = L& + V)& = N [F-Sa1)(0-p))" 5, (F.47)
where
SlgESl l:Sl—z’SQ, So1 =S 1 1251+i52. (F48)
2°72 22
An explicit representation is given by:
sin — cos — e~ gin? = sin — cos g —e~ i cos? g
1 2 2 2 1— 2 2 2
20512 = 4 0 ol 20521 = 0
—e'? cos? = —sin — cos — e sin? = —sin — cos —
2 2 2 2 2 2
(F.49)
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The equivalent set of Bouchiat-Michel formulae, obtained by raising and/or lowering the appro-

priate free spinor indices, is given by:

245, N2’ (B, ) = (5 — A) b p-7™”, (F.50)
Yo (B, NG5, N) = (5 +A) dax P05, (F.51)
Ya(B,N)2" (B, 0) = =35+ X)(5 = N [(0-512)(@-p)]., (F.52)
(P, N )75 N) = 5(5 — XN)(5 + M) [(3-Sa1)(o-p)] 5. (F.53)

As a check, one can verify that the above results follow from egs. (F.35)—-(F.42) by replacing

2 = m?), and taking the

s with A, setting mS® = pt §®3, applying the mass-shell condition (p
m — 0 limit at the end of the computation.

We now demonstrate how to use the Bouchiet-Michel formulae to evaluate helicity ampli-
tudes involving two equal-mass spin-1/2 fermions. A typical amplitude involving a fermion-

antifermion pair, evaluated in the center-of-mass frame of the pair has the generic structure:
2B, (=P, N), (F.54)

where z is one of the two-component spinor wave functions x, T y or ¢, and I' is a 2 X 2 matrix
(in spinor space) made up of products of the identity matrix, o and &. As an illustration, we

evaluate:

(BN T ys(—5, X) = 2N T 25—, —\)24(B, ) = 2V T%65, 57 (5, V)74 (5, ), (F.55)
where we have used eqs. (B.31) and (F.43). We can now employ the Bouchiat-Michel formula
to convert the above result into a trace. By a similar computation, all expressions of the form

of eq. (F.54) can be expressed as a trace:

Za (P \) T ys(—p, N) = N Tr r ¥ (méyy + 7Sy op) . (F.56)
(BN Ty 2 (B N) = =N Tt L5 (mdyy — 0-Sw 7)) (F.57)
y* (P, A) Iy’ yo(—=PX) = N Tr [F o(@-poan + mE'SA,\')] ) (F.58)
Za(F N T2 (~F,N) = — N Tx [[7°(0 pdyy —mo-Saw)] | (F.59)

after making use of egs. (F.35) and (F.38). Similarly, there are four additional results that make
use of egs. (F.39) and (F.42):

Ja(DN) T z5(—p, N) = N Tr r ¥ (mdyy — TS op) . (F.60)
(PN T4 7 (~B,N) = —N Tr [[5%(mds + 0-Sxa7-p)] (F.61)
(BN Do’ 25(—p,N) = =N Tr [[ 0°(@-poyy — m7-Syy)] | (F.62)
Ja (P, N T 7P N) = N Tr [T 3°(0-p Sy + mo-Syy)] - (F.63)
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For amplitudes involving equal mass fermions (or equal mass antifermions), other combinations
of spinor bilinears appear in which one z-spinor above is replaced by a y-spinor or vice versa.
These amplitudes can be reduced to one of the eight listed above by using eq. (F.43).

The traces are easily evaluated using the results of Appendix A. Here, we apply the above
results to the amplitude for the decay Z° — ff [see Section 6.2]. The corresponding center-of-
mass frame helicity amplitude is a linear combination of eqs. (F.56) and (F.57) with I' = & and

I" = o, respectively. Evaluating the corresponding terms, we find for I' = 7,
(PN Y(—P N) = 2\ [mg"08sn + p"Sh — p° 5%y, — 2m(SHS0 — S9SH) ], (F.64)

where we have used eq. (F.10) to replace the term with the Levi-Civita tensor. Similarly, we

calculate for I' = o,

y(B, \) o z(—p, X) = 2X [-mg"%8,n + p" Sy — pOShy + 2m(SHSY — SO v] . (F.65)
Egs. (F.64) and (F.65) provide explicit forms for the Z° — ff decay helicity amplitudes defined
in egs. (6.16) and (6.17).

The above method is not applicable if the two fermions have unequal mass. In order to
compute the helicity amplitudes of the form given by eq. (F.54) for unequal masses, a gener-
alization of the above techniques is required. Some methods for four-component spinor wave
functions have been proposed in ref. [137]. We leave it as an exercise for the reader to trans-

late these techniques so that they are applicable to helicity amplitudes expressed in terms of

two-component spinor wave functions.

F.4 Four-component Bouchiat-Michel formulae

Using the resuls of Appendix E, the translation of the results of the previous section
into four-component spinor notation is straightforward. First, we consider a massive spin-1/2
fermion. Eqgs. (F.23)—(F.26) yield [141]:

V53 u(P, s') = i u(P.s) V53" v(B,s') = 78, v(P,s), (F.66)
ﬂ(ﬁv 8,) 75$a = Tgs’ ﬂ(ﬁv 8)’ ﬁ(ﬁ: 5,) ’75$a = g’sﬂ(_’v 5)' (F67)
In the case of a = 3, eqgs. (F.66) and (F.67) reduce to those of eq. (E.19).
The four-component Bouchiat-Michel formulae [135-137] can be obtained from eqs. (F.35)—
(F.42):
w(B, 8')a(B, s) = 3 [0ss + V5Pss] (B +m), (F.68)
(B, 8")0(B, 5) = 5 [0srs + y585] (b —m), (F.69)

where Sso = S%7%,. As expected, the above results for s = s’ correspond to the spin projection

operators given in eqs. (E.20) and (E.21). Related formulae involving products of u and v-spinors
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can be obtained by using
o(F,5) = ~2s75u(F, )., ul(B, 5) = 25750(F, )., (F.70)

which follow from eq. (F.43).
Egs. (F.66)—(F.70) also apply to helicity u and v-spinors, after replacing s, s” with A\, A" and
using the S as defined in eq. (F.14). In the convention where the two-component spinor wave

function satisfies eq. (B.26), the four-component versions of egs. (B.31)—(B.34) yield:

(

u(

—p, =) =7 u(p, ), v(=p, —A) =7"v(p, ), (F.71)
—p, =A) =a(p, M)1°, o(—p, —A) =3(p, A)7". (F.72)

In order to consider the massless limit, one must employ helicity spinors, as discussed in
Appendix F.3. For a = 1,2, egs. (F.66) and (F.67) apply in the m — 0 limit as written. The
corresponding massless limit for the case of a = 3 is smooth and results in eq. (E.22). Similarly,
the massless limit of the Bouchiat-Michel formulae for helicity spinors can be obtained by setting
mSW = pt §93 applying the mass-shell condition (p? = m?), and taking the m — 0 limit at the

end of the computation. The end result is

u(p, \)a(p, \) =
v(p, N)o(p, \) =

(1+2X)5) pow + 57518 7w + F2min ]2, (F.73)

1
3
L1 =20y o + 2 [Biriy + $278,] . (F.74)
2 Vs XA T 375 VA A

As expected, when A = )/, we recover the helicity projection operators for massless spin-1/2
particles given in egs. (E.23) and (E.24).

As before, we can use the Bouchiat-Michel formulae to evaluate helicity amplitudes involving
two equal-mass spin-1/2 fermions. A typical amplitude involving a fermion-antifermion pair,

evaluated in the center-of-mass frame of the pair, has the generic structure:
w(p, \) T w'(-p,\), (F.75)

where w is either a u or v spinor, w’ is respectively either a v or u spinor, and I" is a product of

Dirac gamma matrices. For example,
a(P, ) To(=p, ) = 2N (P, \) Tys u(—p, —X) = =2Xa(p, \) T g A u(p, N, (F.76)

where we have used the results of eqs. (F.70) and (F.71). We can now employ the Bouchiat-
Michel formula to convert the above result into a trace. By a similar computation, all expressions

of the form of eq. (F.75) can be expressed as a trace:

BN T o(=p, X) = =X Tr [Tys7 (6w + V5800 (P +m)] (F.77)
(B, ) Tu(—p, N) = X Tr [Ty;7° (6xa + 15800) (6 — m)] - (F.78)

I

<
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These results are the four-component analogues of eqs. (F.56)—(F.59) and egs. (F.60)—(F.63),
respectively. For amplitudes that involve a pair of equal mass fermions [or equal mass an-
tifermions|, w and w’ in eq. (F.75) are both w-spinors [or v-spinors]. Using eq. (F.70), these
amplitudes can then be evaluated using the results of egs. (F.77) and (F.78) above.

As an example, we consider once again the decay Z° — ff. The decay amplitude is equal
to eq. (F.77), where T' is a linear combination of £+#(1 — 7;) and $7#(1 + 7;). Evaluating the

corresponding traces yields:

N

(D, 2)
(D, 2)

Nl—= Nl

M(l - '75) U(— _’7 )\,) = 2)\, [mguoé)\)\’ +p“59\,\/ - pOSf\‘X + iEOMVp(S)\)\/)Vpp] s (F79)
A

y
YL+ 5) v(=5, X) = 2X [=mg08yn + p"Shy — pShy — i€ P (San )wpy) - (F.80)

N

Using eq. (F.10), we see that egs. (F.79) and (F.80) reproduce exactly the results of eqs. (F.64)
and (F.65), respectively.

Finally, we note that if the two fermions do not have the same mass, then the method
presented above is not applicable. However, generalizations of the above method exist in the
literature that can be employed to evaluate helicity amplitudes of the form of eq. (F.75) for

unequal mass fermions; see, e.g., ref. [137].

Appendix G: The helicity amplitude techinique

In this appendix, we discuss how to apply our formalism to the helicity amplitude technique.
The latter is very useful when computing scattering cross sections for multi-particle final states,
which is typically done numerically. We shall review the formalism of Hagiwara and Zeppenfeld
(HZ) [63] and show how our formalism can be connected to theirs. In particular, we present a
translation between the two in Table 2.

After factoring the propagators an arbitrary tree amplitude with external fermions can be

expressed in terms of a “fermion string”

1 PR g .. . dnt)a, (G.1)

where v; denote the four-component spinor wave functions
Vi = u(pi, Ni) or  v(pi,\i), (G.2)

and Pp = (1 £ ~5)/2 are the standard projection operators [cf. eq. (E.5)] in the chiral rep-
resentation. Furthermore, a; stands for an arbitrary Lorentz four vector, which can be a four-
v, Pk

momentum (p!'), a vector boson wave-function (e (p;, A;)) an axial vector (€l,xp! p;pj) or another

fermion string with uncontracted Lorentz indices, e.g. 137"14.
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Our Formalism | HZ Formalism
Ta(p, A) u(p, A) -
z(p, A) —v*(p, A+
z%(p, A) —u(p, A+
Ta(p, A) u*(p,A)-
Ya(p, N) —v(p,A)-
y*(p, A) u*(p, A)+
y*(p, \) u(p, \) +
e (P, N) —v*(p, A)-

p-o P+
PG P
ot aff_
loias o

Table 2: Translation between our notation and Hagiwara and Zeppenfeld (HZ) [63].

In order to rewrite the fermion string, eq. (G.1), in terms of two-component spinors, we

need the HZ decomposition of the spinors (G.2)
, , )
Vi = supi M) = s v(pn i) = . (G3)

The corresponding expressions in our notation are given in Table 2. Note the additional sign for
the vy spinors. This is because HZ take v(p,\) = Cu’ (p,\) with C = iy?4°% = —iv%42, which
differs by a sign from our convention. In deriving the correspondence between the notations it

is helpful to note that

E+4+m—2X\p]

VP-oXx = w XA = wi(P)xa, (G-4)
— E + m+ 2)\|p] B
P-oXx m =w_(P)xa (G.5)

where we have used eq. (3.13) (labels) and, as in HZ, wy (p) = /E % |p]. Note that we use our
notation: A = :l:%. In HZ \ = +1.
After employing the Fierz identieties given by egs. (2.55)—(2.57) to get rid of Lorentz in-

dices which are contracted between different fermion strings, the general fermion string can be
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expressed as (in the notation of HZ)

FS = (1/’1)3[@17 ag, ... 7an]a(¢2)5na7 (GG)

with the 2-component spinor index o = +, and §,, = (—1)"*!. Furthermore

[al, ag, ... ,an]a = (Qil)a(¢2)—a . (ﬁn)&na (G7)

where
(h)+ = a0l . (G.8)
In our notation ¢ = o# and o = ", (¢f. Table 2). Using the formalism developed in
this paper and employing the Fierz identities given by eqgs. (2.55)—(2.57), it is straightforward
to express any tree amplitude involving external two component fermions in terms of fermion
strings in the form (G.6). This is the immediate link between our work and HZ.
In order to see how to numerically compute amplitudes, we express FS in terms of the

relevant momenta. In the following, we use our sign convention for the spinors vy. We first
rewrite F'S as [63]

FS = CiCjwaan,) (Pi)wa(an) (P1)S(pis a1, az, ..., an, pj)X,5, » (G.9)
where

1 for  (¢Yn)r = u(pr, A\p)r , 1
O = =41, )\:i§ (G.10)

(2Ar)7 for  (Yr)r = v(prs — M)~

The function S can be expressed as

T(pi,a1)@2xym T (a1, a2) 7 my

n
S(pi,aq,&g,...,an,pj)())fi)\j = [H Z (ak)—aém

k=1Tr=%

v T<an—17 an)Tn717'7LT(an7pj)Tn(2>\j) (Gll)
where the functions T' [58,63] an be expressed entirely in terms of the relevant momenta.
vr = N[+ @) (8] + b2) + (g — i) (bs + iby)|

oo = N[0+ ) (b = iby) + (0 — day)(B] + D))
—+ = —T(a,b)%_
-— = T(CL, b)*++

with the normalization factor given by

Ny = \/lal([al + a:) 5|5 +2) (G.16)
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Two-component

fermion fields SU(3) SU(2)L Y T3 Q=T5+1Y

U triplet 1 1 2

doublet 0 2 s

d triplet % —% —%

u anti-triplet singlet — % 0 — %

d° anti-triplet singlet % 0 %

v singlet — % % 0
doublet

e singlet - % — % -1

e singlet singlet 1 0 1

Table 3: Fermions of the Standard Model and their SU(3)xSU(2) 1, xU(1)y quantum numbers.

Appendix H: Standard Model fermion interaction vertices

In the Standard Model, one generation of quarks and leptons is described by the two-component
fermion fields listed in Table 3, where Y is the weak hypercharge, T3 is the third component of
the weak isospin, and @ = T3 + Y is the electric charge. After SU(2);xU(1)y breaking, the
quark and lepton fields gain mass in such a way that the above two-component fields combine

to make up four-component Dirac fermions:

U d e
U= , D= , E=

u® de e

, (H.1)

while the neutrino remains massless. (The extension of the Standard Model to include neutrino
mass will be treated elsewhere.)

Here, we follow the convention for particle symbols established in Table 1. Note that u and
d are two-component fields, whereas the usual four-component quark and charged lepton fields
are denoted by capital letters U, D and E. Consider a generic four-component field expressed

in terms of the corresponding two-component fields:
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Figure 66: Fermionic Feynman rules for QCD that involve the gluon, with ¢ = u,d, ¢, s,t,b.

Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental) representation

of SU(3).. For each rule, a corresponding one with lowered spinor indices is obtained by cT,Ojﬁ —

~Oupa-

The electroweak quantum numbers of f are denoted by Tgf , Yy and @y, whereas the corre-
sponding quantum numbers for f¢ are T. ?{ =0 and Qe = Ype = —Qy. Thus we have the

correspondence to our general notation [eq. (E.4)]
fe—x. [f—n. (H.3)

We can then immediately translate the couplings given in the general case in Fig. 9 to the
Standard Model.
The QCD color interactions of the quarks are governed by the following interaction La-
grangian:
Low = =g ALT" T (T) i (H.4)

summed over the generations i, where ¢ is a (mass-eigenstate) quark field, j and k are SU(3) color
labels and T'* are the color generators in the triplet representation of SU(3). The corresponding
Feynman rules are given in Fig. 66.

Next, we write out the Feynman rules for the electroweak interactions of quarks and leptons.

Consider the charged current interactions of the quarks:
Lok = _% wetd; W,k + Eiﬁ“aiWu_] : (H.5)

where the hatted symbols indicate interaction eigenstates and ¢ labels the generations. Following
the discussion of Appendix E, we convert to mass eigenstates for the quarks. That is, we

introduce four unitary matrices, L., L4, R, and Ry, [cf. eq. (3.80)] such that
i = (Ly)iuj,  di = (La)dd;, 0% = (R,)'ju”, and d=(Ry)';d?,  (H.6)

where the unhatted fields u, d, u¢ and d° are the corresponding mass eigenstates. It then follows
that ﬁiﬁ“czi =K, ﬂiﬁ“dj, where

K= LiL, (H.7)
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Figure 67: Feynman rules for the two-component fermion interactions with electroweak gauge
bosons in the Standard Model. For the W bosons, the charge indicated is flowing into the
vertex. The electric charge is denoted by Qf, with Q. = —1 for the electron, and T?f is 1/2
for up-type quarks and neutrinos and is —1/2 for down-type quarks and charged leptons. The
CKM mixing matrix is denoted K, and sy = sinfy, cy = cosfhy and e = gsinfy. For each
rule, a corresponding one with lowered spinor indices is obtained by Ez‘ﬁ — —0u864-

is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix.%* The charged current interactions
take the form

__ 49 i + i T - i + . si= -
Lt = _ﬁ [K,-Ju a“djWH + (KT)ﬂd a“ujW“ 4+ v a“e,-W“ +e O'“I/Z'WH , (H.8)
where

(K" = K7, = (K;)*. (H.9)

We have also included the leptons, which do not mix. (Note that the Standard Model does not

have W¥ interactions with u¢ and d®.) The corresponding Feynman rules are given in Fig. 67.

64The CKM matrix elements Vi; as defined in ref. [144] are related by, for example, V;, = K32 and Vs = K12,
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Figure 68: Feynman rules for the Standard Model Higgs boson interactions with fermions.

The corresponding interaction of the fermions with the neutral gauge bosons are also given
in Fig. 67. The neutral current interactions are flavor-conserving. For each of the rules of Fig. 67,
we have chosen to employ Ez‘ﬁ . If the indices are lowered one should take Egﬁ — —0u84-

The Yukawa interactions of the fermions with the Higgs field are given by:
— P = (Y)Y |8%a,09 — <1>+ch°7'] + (Y)Y [@—aidcj + &% d;d | + c.c. (H.10)

The Higgs fields can be written in terms of the physical Higgs scalar hgy and Nambu-Goldstone
bosons G°, G* as

L(hsM + iGO) (H.11)
V2
Pt =Gt = (®@7) = (G7)*. (H.12)

0 =+

where v = v/2myy /g ~ 175 GeV. In the unitary gauge appropriate for tree-level calculations,
the Nambu-Goldstone bosons become infinitely heavy and decouple. After diagonalization of

the quark mass matrices,
(M) =v(Yu)y,  (Ma)j=v(Ya), (H.13)

one obtains L} MR, = diag(my,me,m¢) and LI MyRq = diag(mga,ms,mp). The resulting
Higgs-fermion interactions are diagonal as shown in Fig. 68. Here, the diagonalized Higgs-

fermion Yukawa coupling matrices appear:

diag(Yy1, Yuz, Yuz) = diag(Yy, Ye,Y;) = LTY LR, (H.14)
diag(Yyy, Yo, Yys) = diag(Yy, Y, V) = LYY 4Ry. (H.15)

Likewise, we define
Yel = Ye, }[52 = Y/“ }[53 = Y‘r (H16)

for the (unmixed) leptons. Note that bold-faced symbols are used for the non-diagonal Yukawa
matrices, while non-bold-faced symbols are used for the diagonalized Yukawa couplings. The
latter are related to the corresponding fermion masses by Yy; = my; /v, where i labels the fermion
generation. The corresponding interaction Lagrangian is

1

Lt = ﬁhSM [Ymuiu“ + Ydididd + Yeieied] -+ c.c. (H.17)
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Figure 69: Feynman rules for the Standard Model Nambu-Goldstone boson interactions with

quarks and leptons.



In the case of more general covariant gauge-fixing, including Feynman gauge or Landau
gauge, the Goldstone bosons appear explicitly in internal lines of Feynman diagrams. The
Feynman rules for G'-fermion interactions are flavor diagonal, whereas the corresponding rules
for G* have a flavor-changing component that depends on the CKM matrix elements. The
relevant interaction Lagrangian for quarks follows from egs. (H.10) and (H.15):

i
V2

The resulting diagrammatic Feynman rules are shown in Fig. 69, together with the corresponding

Znt = [Ydldlda — Ym’LLZ’LLCZ] GO + Yui[K]ijdquiG+ — Ydi [KT]ijUijiG_ + c.c. (H.18)

ones for the leptons.
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Appendix I: MSSM Fermion Interaction Vertices
1.1 Higgs-fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two-Higgs-doublet model containing eight real scalar degrees of
freedom: one complex Y = —1/2 doublet, Hy = (HJ, H; ') and one complex Y = +1/2 doublet,
H, = (H}, HY). The notation reflects the form of the MSSM Higgs sector coupling to fermions:
HY [HY] couples exclusively to down-type [up-type] fermion pairs. In the supersymmetric model,
both hypercharge Y = —1/2 and Y = +1/2 complex Higgs doublets are required in order that
the theory (which now contains the corresponding higgsino superpartners) remain anomaly-free.
The supersymmetric structure of the theory also requires (at least) these two Higgs doublets to
generate mass for both “up”-type and “down”-type quarks and charged leptons.

To find the couplings of the Higgs fields, we expand them around vacuum expectation values
vg and v,. Depending on the application, these may be chosen to be the minimum of the tree-
level potential, or of the full loop-corrected effective potential, or just left arbitrary. The phases
of the Higgs fields are chosen such that v, and vg are real and positive. That is, the tree-level
MSSM Higgs sector conserves CP, which implies that the neutral Higgs mass eigenstates have
definite CP quantum numbers. Spontaneous electroweak symmetry breaking results in three CP-
odd Goldstone bosons G*, G°, which are absorbed and become the longitudinal components
of the W* and Z. The remaining five physical Higgs particles consist of a charged Higgs pair
H?*, one CP-odd scalar A%, and and two CP-even scalars h® and H°. One can parameterize the

mixing angles between Higgs gauge eigenstates and mass eigenstates by writing:

1
HY =w, +—=) kysoo, I.1
\/5 %: ¢O(Z50 ( )
1
Hg =Vq+ —= Z kqgo Po, (1.2)
V245
Hi—Ll— = Z ku¢+¢+7 (13)
¢+
H;" = Z kag+ 4, (1.4)
¢+
where, for ¢° = (h?, HY, GV, AY),
kyug0 = (cosa, sina, isinfy, icos o) (I.5)
kg0 = (—sina, cosa, —icos o, isinfy) (1.6)
and for ¢ = (GT, HT),
Kyt = (sin Bx, cosf), (I.7)
kgp+ = (—cos By, sinfi). (1.8)
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Here the normalization is such that, if one chooses v,, v4 to be near the true minimum of the
Higgs effective potential, then v? = v2 + v2 = 2m3,/g? ~ (175 GeV)?. Note that in the special
case that v, and vy are the minimum of the tree-level potential, the mixing angles G+ in the

charged Higgs sector and 3y in the pseudo-scalar Higgs sectors coincide exactly with
B = arctan(vy /vg). (1.9)

However, if one expands around a more general choice of v,,v4, including for example the
minimum of the full effective potential, then the tree-level mixing angles 8y and G+ are distinct
from each other and from . (Depending on the choice of renormalization scale for a particular
calculation, the tree-level potential in the MSSM may have a very different minimum from
the true minimum of the full effective potential, or may not have a proper minimum at all.)
Therefore, we do not assume anything specific about v, and vy except that they are real and
positive.

The Higgs-quark Yukawa couplings in the gauge-interaction basis are given by:
— % = (Y)Y |09 HS - chCJHﬂ +(Ya)i; [didcjﬂg — 4 dHy | + c.c. (1.10)

Let us change to the mass-eigenstate basis by using eq. (H.6) and (I.1)-(I.4). After diagonal-
ization of the fermion mass matrices, (M,)"; = v,(Y,); and (My)'; = va(Y4)'; one ob-
tains L] M, R, = diag(my, me, m;) and L:ierRd = diag(mg, ms, mp). The resulting neutral

Higgs-fermion interactions are diagonal. Here, the diagonalized Higgs-fermion Yukawa coupling

matrices appear:5°
diag(Yu1, Yuz, Yus) = diag(Ya, Yo, ¥i) = Ly Yo Ru, (L11)
diag(Yy1, Yaz, Yus) = diag(Yy, Y5, Yy) = L)Y 4Ry, (1.12)
and, for the leptons,
Yo=Y, Yo =Y, Y3 =Y. (I.13)

The diagonalized Yukawa couplings are related to the corresponding fermion masses by
Yai = ma, /va, Yei = me, /va, Yui = My, [y - (I.14)

The interactions of the neutral Higgs scalars ¢° = (h?, H?, GY, A®) with Standard Model

fermions are given in Fig. 70. Note that the last two rules involve k440 and k,40, while the first

55We have used the same symbol for the Yukawa couplings in the MSSM as we did for the Standard Model
Yukawa couplings in Appendix H. However, it is important to note that they are normalized differently because
of the presence of two Higgs VEVs. If we use a superscript SM to distinguish the Standard Model Yukawa
couplings of Appendix H, then the MSSM Yukawa couplings defined here are related by Yy = Y. SM /sin 8 and
Yu = Y$M/cos 8 and Yo; = YSM/ cos 3.
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Figure 70: Feynman rules for the interactions of neutral Higgs bosons ¢° = (hY, HY, G°, A%)
with fermion-antifermion pairs in the MSSM. The repeated index j is not summed.

two rules involve their complex conjugates. This means that for A and H?, starting with the
rule with undotted fermion indices, one obtains the corresponding rule with dotted indices (with
the direction of the arrows reversed) by taking §,° — 6% 2 The situation for the pseudoscalar A°
(and G°) is different because k, 40 and kg40 (and ko and kyqo) are purely imaginary. Starting
with the rules for pseudoscalar interactions with fermions with undotted fermion indices, one
obtains the corresponding rule with dotted indices (with the direction of the arrows reversed)
by taking §,° — —55“5. The minus sign in the last operation is a signal that A% and G° are
CP-odd scalars.%

The couplings of the charged Higgs boson to quark-antiquark pairs are not flavor diagonal
and involve the CKM matrix K. Starting with eq. (I.10), and changing to the mass-eigenstate

basis as before, one obtains
Lot = (LYY 4Ry jdiu HT cos B+ (LYY 4Rq)' juid“ H™ sin 3 + h.c., (1.15)

and the corresponding G interactions by taking sin/3 — —cos3 and cos 3 — sin(3. Using
eqs. (H.7) and (I.12), one obtains (L)Y ,R,); = [K];Y,; and (L]Y 4Rq)'; = [K'];1Yy;, with

no sum on repeated indices. The resulting charged-scalar Feynman rules are given in Fig. 71.

66Because the Feynman rules for A° and G° arise from a term in %y, proportional to ¢ Im H°, the latter ¢ flips
sign when the rule is conjugated resulting in the extra minus sign noted above. As an additional consequence,
noting that the Feynman rules are obtained from i.%ns, the overall A° and G° rules are real.
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Figure 71: Feynman rules for the interactions of charged Higgs bosons ¢* = (GT, H*) with
fermion-antifermion pairs in the MSSM.
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1.2 Gauge interaction vertices for neutralinos and charginos

Following eqgs. (C83) and (C88) of ref. [48], we define:

O = =5 NiaVjy + NaVjy (1.16)
Ojf = %N%Uﬂ + NiUja (1.17)
Ojf = =VaVji = 3VaVia + dijsiy (1.18)
O = ~UhUj — 5UUj2 + 8ijsiy (1.19)
Off = =0 = §(NuNj; — NigNj3). (I.20)
Here U and V' are the unitary matrices that diagonalize the chargino mass matrix:
U*ijEV_1 = diag(ma,m@), (I.21)
with
M2 gy
My = : (1.22)
gua W
Also, N is a unitary matrix that diagonalizes the neutralino mass matrix,
N*]\4¢0N_1 = diag(mﬁl,mNQ,mﬁg,mﬁ4), (1.23)

with

M, 0 —g'va/V2  gvu/V?2
0 M, gua/V2  —guy/V?2

Myo = . (1.24)

—gvg/V2  gua/V?2 0 —p

gou/V2  —gu/V2 - 0

We now list the gauge boson interactions with the neutralinos and charginos. The Feynman

rules for Z and 7 interactions with charginos and neutralinos are given in Fig. 72 and the
corresponding rules for W* interactions are given in Fig. 73. For each of these rules, one
has a version with lowered spinor indices by replacing Efjﬁ — —0,84- We label fermion lines
with the symbols of the two-component fermion fields as given in Table 1.  Note that the
ZN;N ; interaction vertex also subsumes the Og’jR interaction found in four-component Majorana
Feynman rules as in ref. [48], due to the result of eq. (E.50) and the relation O%R = —O;’ZL of
eq. (1.20).
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Figure 72: Feynman rules for the chargino and neutralino interactions with neutral gauge
bosons. The coupling matrices are defined in egs. (I.18)-(1.20). For each rule, a corresponding
one with lowered spinor indices is obtained by Eﬁﬁ — —0.8a-

ig OiLjEﬁﬁ

ig OiLj*Egﬁ

g

Figure 73: Feynman rules for the chargino and neutralino interactions with W ¥ gauge bosons.
The charge indicated on the W boson is flowing into the vertex in each case. The coupling
matrices are defined in egs. (I.16) and (I.17). For each rule, a corresponding one with lowered

spinor indices is obtained by E,Ojﬁ — =084
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Figure 74: Feynman rules for the interactions of Higgs bosons ¢° = (h?, H?, G A%) and
ot = (Gi, H i) with chargino-neutralino pairs. For each rule, there is a corresponding one with
all arrows reversed, undotted indices changed to dotted indices with the opposite height, and
the Y coupling (without the explicit i) replaced by its complex conjugate.

1.3 Higgs interactions with charginos and neutralinos

The couplings of chargino and neutralino mass eigenstates to the Higgs mass eigenstates can be
written, in terms of the Higgs mixing parameters of egs. (I.5) and (I.6) and the neutralino and

chargino mixing matrices of the previous subsection, as:

0,0,0 1 . " " . . * . .

YOXN = §(kd¢0 i3 ku¢0Ni4)(9 j2 = g 1)+ (i< ), (L.25)
o :r T g * * T Tk * * T Tk

Y X XJ — ﬁ(k’ud)o‘/;QU]l +kdd)0‘/;1 ]2) (126)
+40y * 7Tk 1 * 7Tk g, * 7Tk

YO = kg [g(NBUS — iz j2) — Nl 2] (L.27)
¢7Xox+ * * 1 * * g/ * *

YO X = ke [g(INA V) + —= NV + Z=NA V). (L.28)

V2 V2

We list the Higgs boson interactions with the neutralinos and charginos in Fig. 74. For each
of the Feynman rules in Fig. 74, one can reverse all arrows by taking 6,7 — §¢ 4 and complex

conjugating the corresponding coupling (but not the overall factor of ).
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1.4 Chargino and neutralino interactions with fermions and sfermions

In the MSSM, scalar partners of the two-component fields ¢ and ¢¢ are the squarks, denoted by
qr, and gg, respectively. In our notation, ¢; and ¢ denote both the complex conjugate fields
and the names of the corresponding anti-squarks. Thus u, uy and ug all have electric charges
+2/3, whereas u®, uj and uj, all have electric charges —2/3. Likewise, the scalar partners of
the two-component fields ¢ and ¢¢ are the charged sleptons, denoted by /, 1 and /, R, respectively,
with £ = e, u, 7. The sneutrino, v is the superpartner of the neutrino. There is no g, since
there is no v in the theory.

The Feynman rules for the chargino-quark-squark interactions are given in Fig. 75, and
the rules for the neutralino-quark-squark interactions are given in Fig. 76. (Note that chargino
interaction vertices involving u®dp and d°Up do not occur in the MSSM.) Here we have taken
the quark and lepton two-component fields to be in a mass-eigenstate basis, and the squark and
slepton field basis consists of the superpartners of these fields, as described above. Therefore,
in practical applications, one must include unitary rotation matrix elements relating the the
squarks and sleptons as given to the mass eigenstates, which can be different.

In principle, all sfermions with a given electric charge can mix with each other. However,
there is a popular, and perhaps phenomenologically and theoretically favored, approximation in
which only the sfermions of the third family have significant mixing. For f = t,b, 7, one can

then write the relationship between the gauge eigenstates fr, fr and the mass eigenstates fi,

fg as
fNR = X; Jil (1.29)
/L P
where
R; R;
Xp=| 10 (1.30)
Lfl sz
is a 2 X 2 unitary matrix. Then one can choose R i= L’}-Q =cj, and L i= —R’j“;2 =55 with
|C];|2 + |5f|2 =1. (1.31)

If there is no CP violation, then ¢ 7 and s 7 can be taken real, and they are the cosine and sine
of a sfermion mixing angle.®” For the other charged sfermions (f = u,d,c,s,e, ), one can use
the same notation, and approximate L = R = 1and L i= R 7= 0. The resulting Feynman
rules for squarks and sleptons that mix within each generation are shown in Figs. 77 and 78.

570ur convention for the sfermion mixing has the property that for zero mixing angle, )?1 = )?R and )?2 = fL.
The conventions most commonly found in the literature unfortunately do not have this nice property.
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Figure 75: Feynman rules for the interactions of charginos with fermion/sfermion pairs in
the MSSM. The fermions are taken to be in a mass-eigenstate basis, and the sfermions are in
a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. 77.
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Figure 76: Feynman rules for the interactions of neutralinos with fermion/sfermion pairs in
the MSSM. The fermions are taken to be in a mass-eigenstate basis, and the sfermions are in
a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. 78.
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Figure 77: Feynman rules for the interactions of charginos with third-family fermion /sfermion
pairs in the MSSM. The fermions are taken to be in a mass-eigenstate basis. CKM mixing is
neglected, and the sfermions are assumed to only mix within the third family. The corresponding
rules for the first and second families with the approximation of no mixing and vanishing fermion
masses can be obtained from these by setting Yy = 0 and L H= R 7= 1and L A= R 7= 0 (so

that fl = fR and fvg = fL) For each rule, there is a corresponding one with all arrows reversed,
undotted indices changed to dotted indices with the opposite height, and the coupling (without
the explicit i) replaced by its complex conjugate.
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Figure 78: Feynman rules for the interactions of neutralinos with third-family fermion /sfermion
pairs in the MSSM. The same comments apply as for Fig. 77.
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For each of the Feynman rules in figs. 75-78, one can reverse all arrows by taking 0,% — 6% 3
and taking the complex conjugate of the corresponding rule (but leaving the explicit factor of i

intact).
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Figure 79: Fermionic Feynman rules for SUSY QCD that involve the gluon, with ¢ =
u,d,c,s,t,b. Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental)
representation of SU(3).. For each rule, a corresponding one with lowered spinor indices is
obtained by Egﬁ — —0.Ba-

1.5 SUSY QCD Feynman Rules

In two component notation, the Lagrangian governing the gluon’s interactions with fermions,

which come from the covariant derivatives in the kinetic terms, is

L = ig f™ (G, )AL — 9T [@Fa — (@©)iTu(q°)] A (1.32)
q
Here g; is the strong coupling constant, a,b,d = 1,2,...,8 are SU(3). adjoint representation
indices, and f®¢ are the SU(3) structure constants. Raised (lowered) indices j,k = 1,2,3 are
color indices in the fundamental (anti-fundamental) representation. We have denoted the 2-
component gluino field by g, as in Table 1 and the gluon field by A%. The sum g 1s over the
six flavors ¢ = u, d, s, ¢, b,t (in either the mass-eigenstate or electroweak gauge-eigenstate basis).
The corresponding Feynman rules are shown in Fig. 79. The gluino-squark-quark Lagrangian is
L=—V2gT* ) [gaqk a7 + 9.0 vk — §a(4°) R — a(@©)r 47 | (.33)
q

where the squark fields are taken to be in the same basis as the quarks. The Feynman rules

resulting from these Lagrangian terms are shown in Fig. 80.
For practical applications, one typically takes the quark fields as the familiar mass eigen-
states, and then does a unitary rotation on the squarks in the corresponding basis to obtain
their mass eigenstate basis. In the approximation described above, in the paragraph containing

egs. (1.29)-(1.31), one obtains the Feynman rules of Fig. 81, as an alternative to those of Fig. 80.

179



qk aj
o —iv/2g, T 547 . —iv/2g Tk 5%
qL;j = drk ~
Ga Ga
p 3
(qC)] a (qc)k o))
Rl e V29T 6.” - iv/2gsT* 6%
ar ~ G ~
R Ja R Ja
p 3

Figure 80: Fermionic Feynman rules for SUSY QCD that involve the squarks, in a basis corre-
sponding to the quark mass eigenstates ¢ = u, d, ¢, s,t,b. Lowered (raised) indices j, k correspond
to the fundamental (anti-fundamental) representation of SU(3)., and the index a labels the ad-
joint representation carried by the gluino. The spinor index heights can be exchanged in each
case, by replacing 6,° — 6% or % 5 6P4. For an alternative set of rules, incorporating LR
mixing, see Fig. 81.
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Figure 81: Fermionic Feynman rules for SUSY QCD that involve the squarks in the mass
eigenstate basis labeled by x = 1,2 and ¢ = u,d, ¢, s,t,b, in the approximation that mixing is
allowed only within a given flavor (typically, for the third family only), as in eq. (I1.29). Lowered
(raised) indices j, k correspond to the fundamental (anti-fundamental) representation of SU(3).,
and the index a labels the adjoint representation carried by the gluino. The spinor index heights
can be exchanged in each case, by replacing §,° — dg® or 5‘5‘5 — 88,
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Appendix J: Trilinear R-Parity Violating Fermion Interaction
Vertices

In the case of R-parity violation [145], the MSSM superpotential is extended by the following
terms [146]:

Wg, = %)\ijkeabL?L?Ek + )\;jkeabL?Q?Ek + %/\gjkeq@cgﬁflﬁ?ﬁ? + mieabL?HZ. (J.1)

P

Here \;jk, A, ik )\;’J i are dimensionless coupling constants and i, j, k are generation indices. a,b =
1,2 and ¢q, ¢9, c3 = 1,2,3 are SU(2) and SU(3) indices, respectively. L;, Q; are the lepton and
quark SU(2)-doublet left-chiral superfields. E;, U;, D; are the charged lepton and quark SU(2)-
singlet left-chiral superfields. k; is a mass-dimension one parameter, which leads to mixing
between the sleptons and Higgs fields, as well as between the leptons and Higgsinos. This
modifies the Feynman rules of Appendix I through additional mixing matrices, which we do not
include here [99]. Recently, the two-component fermion Feynman rules for the neutral fermions
have been given in [147]. The intractions in eq. (J.1) can significantly alter the phenomenology
at colliders (see for example [102,105]), in particular, since the LSP is no longer stable. See the
computations in Sects. 6.19, and 6.20.

The tri-linear terms in eq. (J.1) lead to additional Yukawa couplings as follows:

Loim =~ Nk [Z*Rkyigj + il + Ll — (i j)] +e.c., (J.2)
ELQE = _)‘éjk (J*Rszd] + ;zd]dz + EZVLjszi — J*ngzuj — ﬁLjdz& — ZL,ujdz> +c.c., (J3)
Lopp = — N jpereses T35 2 + dFTue die® + digruf s | + e, (J.4)

where repeated indices are summed over. The extra factors of % are convenient due to the

anti-symmetry in the corresponding couplings: Aijx = —Ajik, Ajj, = —Ajj;. Using eq. (4.9),
and Fig. 8 we can now directly determine the corresponding Feynman rules. These are given
in Figs. 82, 83, and 84. The same Lagrangian for the Yukawa interactions is given in terms of

4-component fermions in [103,104], for example.
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Figure 82: Feynman rules for the Yukawa couplings of two-component fermions due to the su-
persymmetric, R-parity violating superpotential terms LLFE. For each diagram, there is another
with all arrows reversed and A;;, — )\;‘jk.
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Figure 83: Feynman rules for the Yukawa couplings of two-component fermions for the super-
symmetric, R-parity violating superpotential term LQD. For each diagram, there is another
with all arrows reversed and Ajj; — A%
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Figure 84: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity violating superpotential terms UDD. For each diagram, there is

another with all arrows reversed and )\;’]k — )\;-’fk.
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