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Abstract

We provide a complete set of Feynman rules for fermions using two-component spinor
notation. These rules are suitable for practical calculations of cross-sections, decay rates, and
radiative corrections in the Standard Model and its extensions, including supersymmetry.
A unified treatment applies for massless Weyl fermions and massive Dirac and Majorana
fermions. Numerous examples are given.
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6.15 Ñi → ÑjÑkÑ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.16 Three-body slepton decays ˜̀−R → `−τ± τ̃∓1 for ` = e, µ . . . . . . . . . . . . . . . 84

6.17 Neutralino decay to photon and Goldstino: Ñi → γG̃ . . . . . . . . . . . . . . . . 86
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion

quantum numbers and interactions. According to the modern understanding of the electroweak

symmetry, the fundamental degrees of freedom for quarks and leptons are two-component Weyl-

van der Waerden fermions, i.e. 2-component spinors under the Lorentz group, that transform

as irreducible representations under the gauge group SU(2)L × U(1)Y . Furthermore, within

the context of supersymmetric field theories, two-component spinors enter naturally, due to the

spinor-nature of the symmetry generators themselves, as well as through the holomorphic nature

of the superpotential. Despite this, most pedagogical treatments and practical calculations in

high-energy physics continue to use the four-component Dirac notation, which combines distinct

irreducible representations of the symmetry groups. Parity-conserving theories such as QED and

QCD are well-suited to the four-component fermion methods. There is also a certain perceived

advantage to familiarity. However, as we progress to phenomena at and above the scale of
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electroweak symmetry breaking, it seems increasingly natural to employ two-component fermion

notation, in harmony with the irreducible transformation properties dictated by the physics.

One occasionally encounters the misconception that two-component fermion notations are

somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a

lack of examples of calculations using two-component language in the pedagogical literature.

In this paper, we seek to dispel this idea by presenting Feynman rules for fermions using two-

component spinor notation, intended for practical calculations of cross-sections, decays, and

radiative corrections. This formalism employs a unified framework that applies equally well to

Dirac fermions like the Standard Model quarks and leptons, and to Majorana fermions such as

the light neutrinos that appear in the seesaw extension of the Standard Model1 or the neutralinos

of the minimal supersymmetric extension of the Standard Model (MSSM) [47–49].

Spinors were introduced by E. Cartan in 1913 as projective representations of the rota-

tion group [1]. They entered into physics via the Dirac equation in 1928 [3]. In the same year,

H. Weyl discussed the representations of the Lorentz group, including the two-component spinor

representations, in terms of stereographic projective coordinates [4]. The extension of the tensor

calculus (or tensor analysis) to spinor calculus (spinor analysis) was given by B. L. van der Waer-

den [5], upon instigation of P. Ehrenfest. It is in this paper also that v. d. Waerden (not Weyl

as often claimed in the literature) first introduces the notation of dotted and undotted indices

for the irreducible ( 1
2 ,0) and (0, 12 ) representations of the Lorentz group. Both Weyl and van

der Waerden independently consider the decomposition of the Dirac equation into two coupled

differential equations for two-component spinors. Early, more pedagogical discussions of two-

component spinors are given in [6–8]. See also [9]. Ref. [6], is also the first English paper to

employ the dotted and undotted index notation. Very nice early reviews on spinor techniques

were written by Bade and Jehle in 1953 [10] and in German by Cap in 1954 [11].

Two component spinors have also been discussed in many non-supersymmetric textbooks,

see for example [4,12–31]. Among the early books, we would like to draw attention to [12], which

has an extensive discussion and the appendix of [19]. Scheck [21] includes a short discussion of

the field theory of two-component spinors, including the propagator. The most extensive field

theoretic discussion is given by Ticciati [24]. This includes a complete set of Feynman rules for

a Yukawa theory as well as three example calculations. recently, Srednicki [31] has written an

introduction into quantum field theory with a dsicussion of two-component fermions, including

their quantization.

[I have not checked the books [18, 26–28, 30] since they are not in our library.]

All text books on supersymmetry [32–45] include a discussion of two-component spinors

on some level. This also typically includes a discussion of dotted and undotted indices as well

1In the limit of zero mass, neutrinos can be described by either Majorana or Weyl fermions. Both are naturally
described in the two-component fermion formalism.
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as a collection of identities involving the sigma matrices. Particularly extensive and useful sets

of identities can be found in [32, 37, 38, 42, 43]. Terning [43] also includes some field theoretic

details.

[This part is about the previous work on van der Waerden spinors in particle physics pa-

pers.] The standard technique for computing scattering cross sections with initial and final

state fermions involves squaring the amplitudes, summing over the spin states and then com-

puting the traces of products of gamma matrices, or in the two-component case, over products

of sigma matrices. We employ this latter technique throughout this paper. However, the com-

putational effort rises with the square of the number of interfering diagrams. This typically

becomes impractical with four or more particles in the final state. One approach to make such

extensive calculations manageable, is the helicity amplitude technique. Here the scattering pro-

cess is decomposed into the scattering of helicity eigenstates. Then the individual amplitudes

are computed analytically in terms of Lorentz scalar invariants, i.e. a complex number, which

can be readily computed. It is then a simple numerical task to sum the amplitudes and square

them. This was first explored in refs [51–54], using four-component spinors, see also refs [55–59].

For spinor techniques in th helicity formalism see also [60]. The natural spinor formalism for

the helicity amplitude techniques are in fact the 2-component Weyl-van der Waerden spinors,

which we discuss in detail in this paper. They were implemented in the helicity amplitude

technique in refs. [61–66]. Recently the two-component formalism has been implemented in a

computer program for the numerical computation of amplitudes and cross sections for event

generators multi-particle processes refs [133, 134]. In order to to see how to apply our work to

the case of multi-particle final states, we present in Appendix G the translation between our

notation and that of the widely used Hagiwara and Zeppenfeld (HZ) formalism ref. [63]. It is

then straightforward to implement amplitudes as computed here into a numerical cross section

computation.

[Something like this is still missing, I just sketched it.] This report is outlined as follows.

In Sect. 2, we present our conventions and notation. In Sect. 3 we derive the basic properties

of the quantized two-component fermion fields. In Sect. 4 we derive the Feynman rules for

two-component spinors and describe how to write down amplitudes in our formalism. In Sect. 5

we give our convention for fermion and anti-fermion names and fields. This is important for

consistently writing down the amplitudes for a given physical process and also for comparing

with previous 4-component computations. In Sect. 6 we then compute an extensive number of

examples using our formalism. This is the central part of our paper.
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2 Essential conventions and notations

We begin with a discussion of necessary conventions. The metric tensor is taken2 to be:

gµν = diag(+1,−1,−1,−1) , (2.1)

where µ, ν, ρ . . . = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors (e.g. posi-

tions and momenta) are defined with indices raised, and covariant four-vectors (e.g. derivatives)

with lowered indices:

xµ = (t , ~x), (2.2)

pµ = (E , ~p), (2.3)

∂µ ≡
∂

∂xµ
= (∂/∂t , ~∇) , (2.4)

in units with c = 1. The totally antisymmetric pseudo-tensor εµνρσ is defined such that

ε0123 = −ε0123 = +1 . (2.5)

The irreducible building blocks for spin-1/2 fermions are fields that transform either under

the left-handed ( 1
2 , 0) or the right-handed (0, 1

2 ) representation of the Lorentz group. Hermitian

conjugation interchanges these two representations. A massive Majorana fermion field can be

constructed from either representation; this is the spin-1/2 analog of a real scalar field. The

Dirac field combines two equal mass two-component fields into a reducible representation of the

form (1
2 , 0) ⊕ (0, 1

2); this is the spin-1/2 analog of a complex scalar field. It is also possible to

use four-component notation to describe Majorana fermions by imposing a reality condition on

the spinor in order to reduce the number of degrees of freedom in half. However, in this paper,

we shall focus primarily on two-component spinor notation for all fermions. In the following,

(1
2 , 0) spinors carry undotted indices α, β, . . . = 1, 2, and (0, 1

2) spinors carry dotted indices

α̇, β̇, . . . = 1, 2.

We begin by briefly considering the representations of the Lorentz group. Under a Lorentz

transformation, a contravariant four-vector xµ transforms as

xµ → x′µ = Λµνx
ν , (2.6)

2The published version of this paper uses the (+,−,−,−) metric. An otherwise identical version, using the
(−, +, +,+) metric favored by one of the authors, may be found at http://zippy.physics.niu.edu/rules.html.
It can also be constructed by changing a single macro within the LATEX source file, in an obvious way. You can
tell which version you are presently reading from equation (2.1). In general, the relative minus sign needed to
switch between one metric signature and the other is given by:

(−1)(Nσ+Nm+Nd)

where Nσ is the total number of σ and σ̄ matrices, Nm is the number of metric tensors appearing either explicitly
or implicitly through contracted upper and lower indices, and Nd is the number of spacetime derivatives. This
applies to any relativistically covariant term appearing additively in a valid equation.
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where Λ satisfies ΛµνgµρΛ
ρ
λ = gλν . It then follows that the transformation of the corresponding

covariant four-vector xµ ≡ gµνxµ satisfies:

xν = x′µΛ
µ
ν . (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected

to the identity), corresponding to a rotation by an angle θ about an axis n̂ [~θ ≡ θn̂] and a boost

vector ~ζ ≡ v̂ tanh−1 β [where v̂ ≡ ~v/|~v| and β ≡ |~v|], is a 4× 4 matrix given by:

Λ = exp
(
− i

2θ
ρσsρσ

)
= exp

(
−i~θ ·~s− i~ζ ·~k

)
, (2.8)

where θi ≡ 1
2ε
ijkθjk, ζ

i ≡ θi0 = −θ0i, si ≡ 1
2ε
ijksjk, k

i ≡ s0i = −si0 and

(sρσ)
µ
ν = i(gρ

µ gσν − gσµ gρν) . (2.9)

Here, the indices i, j, k = 1, 2, 3 and ε123 = +1.

It follows from eqs. (2.8) and (2.9) that an infinitesimal orthochronous Lorentz transforma-

tion is given by Λµν ' δµν + θµν (after noting that θµν = −θνµ). Moreover, the infinitesimal

boost parameter is ~ζ ≡ v̂ tanh−1 β ' βv̂ ≡ ~β, since β � 1 for an infinitesimal boost. Hence,

the actions of the infinitesimal boosts and rotations on the spacetime coordinates are

Rotations:

{
~x→ ~x′ ' ~x + (~θ × ~x)

t→ t′ ' t
(2.10)

Boosts:

{
~x→ ~x′ ' ~x + ~βt

t→ t′ ' t+ ~β·~x ,
(2.11)

with exactly analogous transformations for any contravariant four-vector.

With respect to the Lorentz transformation Λ, a general n-component field Φ transforms

as Φ(xµ)→ MR(Λ)Φ′(x′µ), where MR(Λ) is a (finite) n-dimensional matrix representation, R,

of the Lorentz group. Equivalently, the functional form of the transformed field Φ obeys

Φ′(xµ) = MR(Λ)Φ([Λ−1]µνx
ν). (2.12)

For proper orthochronous Lorentz transformations,

MR = exp

(
− i

2
θµνJ

µν

)
' I − i~θ · ~J − i~ζ · ~K , (2.13)

where θµν parameterizes the Lorentz transformation Λ [eq. (2.8)], and J µν is a matrix-valued

antisymmetric tensor corresponding to the representation R. For infinitesimal Lorentz trans-

formations, we identify ~J and ~K as the generators of rotations parameterized by ~θ and boosts

parameterized by ~ζ, respectively. These three-vector generators are related to J µν by

J i ≡ 1
2ε
ijkJjk , Ki ≡ J0i . (2.14)
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Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra.

These are the two-dimensional (inequivalent) representations: ( 1
2 , 0) and (0, 1

2). In the ( 1
2 , 0)

representation, ~J = ~σ/2 and ~K = −i~σ/2 in eq. (2.13), where ~σ are the Pauli matrices. This

yields

M
(
1
2 ,0)
≡M ' I − i~θ ·~σ/2− ~ζ ·~σ/2 . (2.15)

By definition M carries undotted spinor indices, as indicated by Mα
β. A two-component ( 1

2 , 0)

spinor is denoted by ψα and transforms as ψα → Mα
βψβ, omitting the coordinate arguments

of the fields, which are as in eq. (2.12). Note that in our conventions for the location of the

spinor indices, one sums over a repeated index pair in which one index is lowered and one index

is raised.

In the (0, 1
2) representation, ~J = −~σ∗/2 and ~K = −i~σ∗/2 in eq. (2.13), so that its repre-

sentation matrix is M ∗, the complex conjugate of eq. (2.15). By definition, the indices carried

by M∗ are dotted, as indicated by (M ∗)α̇β̇ . A two-component (0, 1
2) spinor is denoted by ψ̄α̇ and

transforms as ψ̄α̇ → (M∗)α̇β̇ψ̄β̇ , again suppressing the coordinate arguments of the fields, which

are as in eq. (2.12). The reason for distinguishing between the undotted and dotted spinor index

types is that they cannot be directly contracted with each other to form a Lorentz invariant

quantity.

It follows that the (0, 1
2 ) and (1

2 , 0) representations can be related by complex conjugation.

That is, if ψ̄α̇ is a (0, 1
2 ) fermion, then (ψ̄α̇)∗ transforms as a ( 1

2 , 0) fermion. This means that

we can, and will, describe all fermion degrees of freedom using only fields defined as left-handed

(1
2 , 0) fermions ψα, and their conjugates. We can combine spinors to make Lorentz tensors, so

it is useful to regard ψ̄α̇ as a row vector, and ψα as a column vector, with:

ψ̄α̇ ≡ (ψα)†. (2.16)

A check of the Lorentz transformation property of ψ̄α̇ then follows from (ψα)† → (ψβ)
†(M †)β̇ α̇,

where (M †)β̇ α̇ = (M∗)α̇β̇ reflects the definition of the hermitian adjoint matrix as the complex

conjugate transpose of the matrix. Again the coordinate arguments of the fields have been

suppressed, and are as in eq. (2.12). We will use the dotted-index notation in association

with the bar over the symbol as a synonym for hermitian conjugation, as above. [Many other

references write ψ†
α̇ to mean the same thing as eq. (2.16).]

There are two additional spin-1/2 irreducible representations of the Lorentz group, (M −1)T

and (M−1)†, but these are equivalent representations to the ( 1
2 , 0) and the (0, 1

2) representations,

respectively. The spinors that transform under these representations have raised spinor indices,

e.g., ψα and ψ̄α̇, respectively. The spinor indices are raised and lowered with the two-index

antisymmetric symbol with components ε12 = −ε21 = ε21 = −ε12 = 1, and the same set of sign

conventions for the corresponding dotted spinor indices. Thus

ψα = εαβψ
β , ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄

β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ . (2.17)
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The ε symbol satisfies:3

εαβε
γδ = −δγαδδβ + δδαδ

γ
β , εα̇β̇ε

γ̇δ̇ = −δγ̇α̇δδ̇β̇ + δδ̇α̇δ
γ̇

β̇
, (2.18)

from which it follows that:

εαβε
βγ = εγβεβα = δγα, εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇ . (2.19)

εαβ (εαβ) is also called the “spinor metric tensor” since it raises (lowers) spinor indices. It was

first introduced in this context in [5], but see also [6, 7, 10, 50] for related early work.

To construct Lorentz invariant Lagrangians and observables, one needs to first combine

products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz

vectors are obtained by introducing the sigma matrices σµαβ̇ and σα̇βµ defined by [4, 5, 7, 8]

σ0 = σ0 =

(
1 0

0 1

)
, σ1 = −σ1 =

(
0 1

1 0

)
,

σ2 = −σ2 =

(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0

0 −1

)
. (2.20)

The σ-matrices above have been defined with a lower (covariant) index. We also define the

corresponding quantities with upper (contravariant) indices:

σµ = gµνσν = (I2 ; ~σ) , σµ = gµνσν = (I2 ; −~σ) , (2.21)

where I2 is the 2× 2 identity matrix. The relations between σµ and σµ are

σµαα̇ = εαβεα̇β̇σ
µ β̇β , σµ α̇α = εαβεα̇β̇σµ

ββ̇
, (2.22)

εαβσµβα̇ = εα̇β̇σ
µβ̇α , εα̇β̇σµ

αβ̇
= εαβσ

µα̇β . (2.23)

In general, just like tensors, we can have spinor objects with more than one spinor index:

Sα1α2...αnβ̇1β̇2...β̇n
, where each α-index transforms separately according to Mα′

i

αi in eq. (2.15)

and each β̇-index transforms according to (M ∗)β̇′
i

β̇i . Using the above σβ̇αµ there is a one-to-one

correspondence between each bi-spinor Vαβ̇ and a corresponding Lorentz four-vector V µ

V µ ≡ σβ̇αµ Vαβ̇ (2.24)

3Various subsets of the subsequent identities in this section involving commuting and non-commuting two-
component spinors, as well as the ε and σ-matrices appear in many books, and papers, e.g. the books [8, 32–45],
and the papers [61–66]
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When constructing Lorentz tensors from fermion fields, the heights of spinor indices must

be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, indices contracted like

α
α and α̇

α̇ , (2.25)

can be suppressed. In all spinor products given in this paper, contracted indices always have

heights that conform to eq. (2.25). For example,

ξη ≡ ξαηα, (2.26)

ξ̄η̄ ≡ ξ̄α̇η̄α̇, (2.27)

ξ̄σµη ≡ ξ̄α̇σµα̇βηβ , (2.28)

ξσµη̄ ≡ ξασµ
αβ̇
η̄β̇. (2.29)

As previously noted, it is convenient to regard ηα as a column vector and ξ̄α̇ as a row vector.

Consequently, if we also regard ξα as a row vector and η̄α̇ as a column vector then all the

spinor-index contraced products above have natural interpretations as products of matrices and

vectors.

The behavior of the spinor products under hermitian conjugation (for quantum field oper-

ators) or complex conjugation (for classical fields) is as follows:

(ξη)† = η̄ξ̄, (2.30)

(ξσµη̄)† = ησµξ̄, (2.31)

(ξ̄σµη)† = η̄σµξ, (2.32)

(ξσµσνη)† = η̄σνσµξ̄ . (2.33)

More generally,

(ξΣη)† = η̄Σrξ̄ , (2.34)

(ξΣη̄)† = ηΣr ξ̄ , (2.35)

where in each case Σ stands for any sequence of alternating σ and σ matrices, and Σr is obtained

from Σ by reversing the order of all of the σ and σ matrices. Note that eqs. (2.30)–(2.35) are

applicable both to anti-commuting and to commuting spinors.

The following identities can be used to systematically simplify expressions involving prod-
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ucts of σ and σ matrices:

σµαα̇σ
β̇β
µ = 2δβαδ

β̇
α̇ , (2.36)

σµαα̇σµββ̇ = 2εαβεα̇β̇ , (2.37)

σµα̇ασβ̇βµ = 2εαβεα̇β̇ , (2.38)

[σµσν + σνσµ]α
β = 2gµνδβα , (2.39)

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇
β̇
, (2.40)

σµσνσρ = gµνσρ − gµρσν + gνρσµ + iεµνρκσκ , (2.41)

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iεµνρκσκ . (2.42)

Computations of cross sections and decay rates generally require traces of alternating products

of σ and σ matrices (see for example [62]):

Tr[σµσν ] = Tr[σµσν ] = 2gµν , (2.43)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) , (2.44)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ) . (2.45)

Traces involving a larger even number of σ and σ matrices can be systematically obtained from

eqs. (2.43)–(2.45) by repeated use of eqs. (2.39) and (2.40) and the cyclic property of the trace.

Traces involving an odd number of σ and σ matrices cannot arise, since there is no way to

connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion fields, we of-

ten must deal with products of commuting spinor wave functions that arise when evaluating

the Feynman rules. In the following expressions we denote the generic spinor by zi. In the

various identities listed below, an extra minus sign arises when manipulating a product of anti-

commuting fermion fields. Thus, we employ the notation:

(−1)A ≡
{

+1 , commuting spinors,

−1 , anticommuting spinors.
(2.46)

The following identities hold for the zi:

z1z2 = −(−1)Az2z1 (2.47)

z̄1z̄2 = −(−1)Az̄2z̄1 (2.48)

z1σ
µz̄2 = (−1)Az̄2σ

µz1 (2.49)

z1σ
µσνz2 = −(−1)Az2σ

νσµz1 (2.50)

z̄1σ
µσν z̄2 = −(−1)Az̄2σ

νσµz̄1 (2.51)

z̄1σ
µσρσνz2 = (−1)Az2σ

νσρσµz̄1 , (2.52)
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and so on.

Two-component spinor products can often be simplified by using Fierz identities. The

antisymmetry of the suppressed two-component ε symbol [eq. (2.18)] implies the identities:

(z1z2)(z3z4) = −(z1z3)(z4z2)− (z1z4)(z2z3) , (2.53)

(z̄1z̄2)(z̄3z̄4) = −(z̄1z̄3)(z̄4z̄2)− (z̄1z̄4)(z̄2z̄3) , (2.54)

where we have used eqs. (2.47) and (2.48) to cancel out any residual factors of (−1)A. Similarly,

eq. (2.36) can be used to derive

(z1σ
µz̄2)(z̄3σµz4) = −2(z1z4)(z̄2z̄3) , (2.55)

(z̄1σ
µz2)(z̄3σµz4) = 2(z̄1z̄3)(z4z2) , (2.56)

(z1σ
µz̄2)(z3σµz̄4) = 2(z1z3)(z̄4z̄2) . (2.57)

Eqs. (2.53)–(2.57) hold for both commuting and anticommuting spinors. Other Fierz identities

for spinors can be constructed trivially from these by appropriate choices of z1, z2, z3, and z4.

From the sigma matrices, one can construct the antisymmetrized products:

(σµν)α
β ≡ i

4

(
σµαγ̇σ

νγ̇β − σναγ̇σµγ̇β
)
, (2.58)

(σµν)α̇β̇ ≡
i

4

(
σµα̇γσνγβ̇ − σνα̇γσµγβ̇

)
. (2.59)

The matrices σµν and σµν satisfy self-duality relations

σµν = −1
2 iε

µνρκσρκ , σµν = 1
2 iε

µνρκσρκ . (2.60)

In addition, eq. (2.18) implies that

εβρε
ατσµνα

β = σµνρ
τ , εβ̇ρ̇εα̇τ̇σ

µνα̇
β̇ = σµν ρ̇τ̇ , (2.61)

εατσµνα
β = ερβσµνρ

τ , εα̇τ̇σ
µνα̇

β̇ = ερ̇β̇σ
µν ρ̇

τ̇ , (2.62)

where we have used Tr(σµν) = Tr(σµν) = 0.

The σµν and σµν can be identified as the generators Jµν [see eq. (2.13)] of the Lorentz

group in the ( 1
2 , 0) and (0, 1

2 ) representations, respectively. That is, for the ( 1
2 , 0) representation

with a lowered undotted index (e.g. ψα), J
µν = σµν , while for the (0, 1

2) representation with a

raised dotted index (e.g. ψ̄α̇), Jµν = σµν . In particular, the infinitesimal forms for the 4 × 4

Lorentz transformation matrix Λ and the corresponding matrices M and (M−1)† that transform

the (1
2 , 0) and (0, 1

2) spinors, respectively, are given by:

M ' I2 −
i

2
θµνσ

µν , (2.63)

(M−1)† ' I2 −
i

2
θµνσ

µν , (2.64)

Λµν ' δµν + 1
2

(
θανg

αµ − θνβgβµ
)
. (2.65)
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The inverses of these quantities are obtained (to first order in θ) by replacing θ → −θ in the

above formulae. Using these infinitesimal forms [with the assistance of eqs. (A.18)–(A.21)], one

can establish the following two results:

M †σµM = Λµν σ
ν , (2.66)

M−1σµ(M−1)† = Λµν σ
ν . (2.67)

Eqs. (2.66) and (2.67) can be used to prove the covariance properties (with respect to Lorentz

transformations) of the transformation law for the two-component undotted and dotted spinor

fields, respectively.

As an example, consider a pure boost from the rest frame to a frame where pµ = (Ep , ~p),

which corresponds to θij = 0 and ζ i = θi0 = −θ0i. The matrices Mα
β and [(M−1)†]α̇β̇ that

govern the Lorentz transformations of spinor fields with a lowered undotted index and spinor

fields with a raised dotted index, respectively, are given by:

exp

(
− i

2
θµνJ

µν

)
=





M = exp
(
−1

2
~ζ · ~σ

)
=

√
p·σ
m

, for (1
2 , 0) ,

(M−1)† = exp
(

1
2
~ζ · ~σ

)
=

√
p·σ
m

, for (0, 1
2 ) ,

(2.68)

where4

√
p·σ ≡ Ep +m− ~σ ·~p√

2(Ep +m)
, (2.69)

√
p·σ ≡ Ep +m+ ~σ ·~p√

2(Ep +m)
. (2.70)

These matrix square roots are defined under the assumption that p0 = E~p ≡ (|~p|2 +m2)1/2, and

are chosen to be the unique hermitian matrices with non-negative eigenvalues whose squares are

equal to p·σ and p·σ, respectively.

Consider an arbitrary four-vector Sµ [defined in a referecne frame where pµ = (E ; ~p)],

whose rest frame value is SµR, i.e.

Sµ = ΛµνS
ν
R , with Λ =



E/m pj/m

pi/m δij +
pipj

m(E +m)


 . (2.71)

Then, using eqs. (2.7), (2.67) and (2.68), it follows that:

√
p·σ S ·σ√p·σ = mSR ·σ , (2.72)

√
p·σ S ·σ

√
p·σ = mSR ·σ . (2.73)

4One can check the validity of eqs. (2.69) and (2.70) by squaring both sides of the respective equations.
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The generalization of the spinor results of this section to d 6= 4, useful for dimensional con-

tinuation regularization schemes, is discussed in Appendix A. In particular, the Fierz identities

of eqs. (2.36)–(2.37) and eqs. (2.55)–(2.57) and the identities (2.41), (2.42), (2.44) and (2.45)

involving the 4-dimensional ε tensor are not valid unless µ is a Lorentz vector index in exactly

4 dimensions. In d 6= 4 dimensions, as used for loop amplitudes in dimensional regularization

and dimensional reduction schemes, the necessary modifications are given in Appendix A. We

also direct the reader’s attention to Appendix E, which gives a detailed correspondence between

two-component spinor and four-component spinor notations.

3 Properties of fermion fields

3.1 A single two-component fermion field

We begin by describing the properties of a free neutral massive anti-commuting spin-1/2 field,

denoted ξα(x), which transforms as ( 1
2 , 0) under the Lorentz group. The field ξα therefore

describes a Majorana fermion. The free-field Lagrangian density is [5–7]:

L = iξ̄σµ∂µξ − 1
2m(ξξ + ξ̄ξ̄) . (3.1)

On-shell, ξ satisfies the free-field Dirac equation [4, 5],

iσµα̇β∂µξβ = mξ̄α̇ . (3.2)

Consequently after quantization, ξα can be expanded in a Fourier series [46]:

ξα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e

−ip·x + yα(~p, s)a
†(~p, s)eip·x

]
, (3.3)

where Ep ≡ (|~p|2 + m2)1/2, and the creation and annihilation operators a† and a satisfy anti-

commutation relations:

{a(~p, s), a†(~p ′, s′)} = δ3(~p− ~p ′)δss′ , (3.4)

and all other anticommutators vanish. It follows that

ξ̄α̇(x) ≡ (ξα)
† =

∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
x̄α̇(~p, s)a†(~p, s)eip·x + ȳα̇(~p, s)a(~p, s)e

−ip·x
]
. (3.5)

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention

|~p, s〉 ≡ (2π)3/2(2Ep)1/2a†(~p, s) |0〉 , (3.6)

so that
〈
~p, s|~p ′, s′

〉
= (2π)3(2Ep)δ3(~p− ~p ′)δss′ . Therefore,

〈0| ξα(x) |~p, s〉 = xα(~p, s)e
−ip·x , 〈0| ξ̄α̇(x) |~p, s〉 = ȳα̇(~p, s)e

−ip·x , (3.7)

〈~p, s| ξα(x) |0〉 = yα(~p, s)e
ip·x , 〈~p, s| ξ̄α̇(x) |0〉 = x̄α̇(~p, s)eip·x . (3.8)
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It should be emphasized that ξα(x) is an anticommuting spinor field, whereas xα and yα are

commuting two-component spinor wave functions. The anticommuting properties of the fields

are carried by the creation and annihilation operators.

Applying eq. (3.2) to eq. (3.3), we find that the xα and yα satisfy momentum space Dirac

equations. These conditions can be written down in a number of equivalent ways:

(p·σ)α̇βxβ = mȳα̇ , (p·σ)αβ̇ ȳ
β̇ = mxα , (3.9)

(p·σ)αβ̇ x̄
β̇ = −myα , (p·σ)α̇βyβ = −mx̄α̇ , (3.10)

xα(p·σ)αβ̇ = −mȳβ̇ , ȳα̇(p·σ)α̇β = −mxβ , (3.11)

x̄α̇(p·σ)α̇β = myβ , yα(p·σ)αβ̇ = mx̄β̇ . (3.12)

Using the identities [(p·σ)(p·σ)]α
β = p2 δα

β and [(p·σ)(p·σ)]α̇β̇ = p2 δα̇β̇, one can quickly check

that both xα and yα must satisfy the mass-shell condition, p2 = m2 (or equivalently, p0 = Ep).

We will later see that eqs. (3.9)–(3.12) are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall consider

two approaches for constructing the spin-1/2 states. In the first approach, we consider the

particle in its rest frame and quantize the spin along a fixed axis specified by the unit vector

ŝ ≡ (sin θ cosφ , sin θ sinφ , cos θ) with polar angle θ and azimuthal angle φ with respect to a

fixed z-axis.5 The corresponding spin states will be called fixed-axis spin states. The relevant

basis of two-component spinors χs are eigenstates of 1
2~σ ·ŝ, i.e.,

1
2~σ ·ŝχs = sχs , s = ±1

2 . (3.13)

Explicit forms for the two-component spinors χs and their properties are given in Appendix B.

The fixed-axis spin states described above are not very convenient for particles in relativistic

motion. Moreover, these states cannot be empoyed for massless particles since no rest frame

exists. Thus, a second approach is to consider helicity states and the corresponding basis of

two-component helicity spinors χλ that are eigenstates of 1
2~σ ·p̂, i.e.,

1
2~σ ·p̂χλ = λχλ, λ = ±1

2 . (3.14)

Here p̂ is the unit vector in the direction of the three-momentum, with polar angle θ and

azimuthal angle φ with respect to a fixed z-axis. That is, the two-component helicity spinors

can be obtained from the fixed-axis spinors by replacing ŝ by p̂ and identifying θ and φ as the

polar and azimuthal angles of p̂.

For fermions of mass m 6= 0, it is possible to define the spin four-vector Sµ, which is specified

in the rest frame by (0; ŝ). The unit three-vector ŝ corresponds to the axis of spin quantization

5In the literature, it is a common practice to choose ŝ = ẑ. However in order to be somewhat more general,
we shall not assume this convention here.
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in the case of fixed-axis spin states. In an arbitrary reference frame, the spin four-vector satisfies

S ·p = 0 and S ·S = −1. After boosting from the rest frame to a frame in which pµ = (E , ~p)

[cf. eq. (2.71)], one finds:

Sµ =

(
~p·ŝ

m
; ŝ +

(~p·ŝ) ~p

m(E +m)

)
. (3.15)

If necessary, we shall write Sµ(ŝ) to emphasize the dependence of Sµ on ŝ.

The spin four-vector for helicity states is defined by taking ŝ = p̂. Eq. (3.15) then reduces to

Sµ =
1

m
(|~p| ; Ep̂) . (3.16)

In the non-relativistic limit, the spin four-vector for helicity states is Sµ ≈ (0 ; p̂), as expected.6

In the high energy limit (E � m), Sµ = pµ/m + O(m/E). For a massless fermion, the spin

four-vector does not exist (as there is no rest frame). Nevertheless, one can obtain consistent

results by working with massive helicity states and taking the m → 0 limit at the end of the

computation. In this case, one can simply use Sµ = pµ/m+O(m/E); in practical computations

the final result will be well-defined in the zero mass limit. In contrast, for massive fermions at

rest, the helicity state does not exist without reference to some particular boost direction as

noted in footnote 6.

Using eqs. (2.72) and (2.73), with SµR = (0 ; ŝ), the following two important formulae are

obtained:

√
p·σ S ·σ√p·σ = m~σ ·ŝ , (3.17)

√
p·σ S ·σ

√
p·σ = −m~σ ·ŝ . (3.18)

These results can also be derived directly by employing the explicit form for the spin vector Sµ

[eq. (3.15)] and the results of eqs. (2.69) and (2.70).

The two-component spinor wave functions x and y can now be given explicitly in terms

of the χs defined in eq. (B.6). First, we note that eq. (3.9) when evaluated in the rest frame

yields x1 = y1 and x2 = y2. That is, as column vectors, xα(~p = 0) = yα̇(~p = 0) can be

expressed in general as some linear combination of the χs (s = ±1
2). Hence, we may choose

xα(~p = 0, s) = yα̇(~p = 0, s) =
√
mχs, where the factor of

√
m reflects the standard relativistic

normalization of the rest-frame spin states. These wave functions can be boosted to an arbitrary

frame using eq. (2.68). The resulting undotted spinor wave functions are given by (see [62]) for

related expressions

xα(~p, s) =
√
p·σ χs , xα(~p, s) = −2sχ†

−s
√
p·σ , (3.19)

yα(~p, s) = 2s
√
p·σ χ−s , yα(~p, s) = χ†

s

√
p·σ , (3.20)

6Strictly speaking, p̂ is not defined in the rest frame. In practice, helicity states are defined in some moving
frame with momentum ~p. The rest frame is achieved by boosting in the direction of −~p.
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and the dotted spinor wave functions are given by

x̄α̇(~p, s) = −2s
√
p·σ χ−s , x̄α̇(~p, s) = χ†

s

√
p·σ , (3.21)

ȳα̇(~p, s) =
√
p·σ χs , ȳα̇(~p, s) = 2sχ†

−s
√
p·σ , (3.22)

where
√
p·σ and

√
p·σ are defined in eqs. (2.69) and (2.70).

The phase choices in eqs. (3.19)–(3.22) are consistent with those employed for four-component

spinor wave functions [see Appendix E]. We again emphasize that in eqs. (3.19)–(3.22), one may

either choose χs to be an eigenstate of ~σ ·ŝ, where the spin is measured in the rest frame along

the quantization axis ŝ, or choose χs to be an eigenstate of ~σ ·p̂ (in this case we write s = λ),

which yields the helicity spinor wave functions.

The following equations can now be derived:

(S ·σ)α̇βxβ(~p, s) = 2sȳα̇(~p, s) , (S ·σ)αβ̇ ȳ
β̇(~p, s) = −2sxα(~p, s) , (3.23)

(S ·σ)αβ̇ x̄
β̇(~p, s) = −2syα(~p, s) , (S ·σ)α̇βyβ(~p, s) = 2sx̄α̇(~p, s) , (3.24)

xα(~p, s)(S ·σ)αβ̇ = −2sȳβ̇(~p, s) , ȳα̇(~p, s)(S ·σ)α̇β = 2sxβ(~p, s) , (3.25)

x̄α̇(~p, s)(S ·σ)α̇β = 2syβ(~p, s) , yα(~p, s)(S ·σ)αβ̇ = −2sx̄β̇(~p, s) . (3.26)

For example, using eqs. (3.17) and (3.18) and the definitions above for xα(~p, s) and ȳα̇(~p, s), we

find (suppressing spinor indices),

√
p·σ S ·σ x(~p, s) =

√
p·σ S ·σ√p·σ χs = m~σ ·ŝχs = 2smχs . (3.27)

Multiplying both sides of eq. (3.27) by
√
p·σ and noting that

√
p·σ√p·σ = m, we end up with

S ·σ x(~p, s) = 2s
√
p·σ χs = 2sȳ(~p, s) . (3.28)

All the results of eqs. (3.23)–(3.26) can be derived in this manner.

The consistency of eqs. (3.23)–(3.26) can also be checked as follows. First, each of these

equations yields

(S ·σ)αα̇(S ·σ)α̇β = −δβα , (S ·σ)α̇α(S ·σ)αβ̇ = −δα̇
β̇
. (3.29)

after noting that 4s2 = 1 (for s = ± 1
2). From eqs. (2.39) and (2.40) it follows that S ·S = −1,

as required. Second, if one applies

(p·σ S ·σ + S ·σ p·σ)α
β = 2p·S δαβ , (p·σ S ·σ + S ·σ p·σ)α̇β̇ = 2p·S δα̇β̇ , (3.30)

to eqs. (3.9)–(3.12) and eqs. (3.23)–(3.26), it follows that p·S = 0.

It is useful to combine the results of eqs. (3.9)–(3.12) and eqs. (3.23)–(3.26) as follows:

(pµ − 2smSµ)σα̇βµ xβ(~p, s) = 0 , (pµ − 2smSµ)σ
µ

αβ̇
x̄β̇(~p, s) = 0 , (3.31)

(pµ + 2smSµ)σα̇βµ yβ(~p, s) = 0 , (pµ + 2smSµ)σ
µ

αβ̇
ȳβ̇(~p, s) = 0 , (3.32)

xα(~p, s)σµ
αβ̇

(pµ − 2smSµ) = 0 , x̄α̇(~p, s)σ
α̇β
µ (pµ − 2smSµ) = 0 , (3.33)

yα(~p, s)σµ
αβ̇

(pµ + 2smSµ) = 0 , ȳα̇(~p, s)σ
α̇β
µ (pµ + 2smSµ) = 0 . (3.34)
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Eqs. (3.23)–(3.26) and eqs. (3.31)–(3.34) also apply to the helicity wave functions x(~p, λ) and

y(~p, λ) simply by replacing s with λ and Sµ(ŝ) [eq. (3.15)] with Sµ(p̂) [eq. (3.16)].

The above results are applicable only for massive fermions (where the spin four-vector Sµ

exists). We may treat the case of massless fermions directly by employing helicity spinors in

eqs. (3.19)–(3.22). Putting E = |~p| and m = 0, we easily obtain:

xα(~p, λ) =
√

2E (1
2 − λ)χλ , xα(~p, λ) =

√
2E (1

2 − λ)χ†
−λ , (3.35)

yα(~p, λ) =
√

2E (1
2 + λ)χ−λ , yα(~p, λ) =

√
2E (1

2 + λ)χ†
λ , (3.36)

or equivalently

x̄α̇(~p, λ) =
√

2E (1
2 − λ)χ−λ , x̄α̇(~p, λ) =

√
2E (1

2 − λ)χ†
λ , (3.37)

ȳα̇(~p, λ) =
√

2E (1
2 + λ)χλ , ȳα̇(~p, λ) =

√
2E (1

2 + λ)χ†
−λ . (3.38)

It follows that:

(
1
2 + λ

)
x(~p, λ) = 0 ,

(
1
2 + λ

)
x̄(~p, λ) = 0 , (3.39)

(
1
2 − λ

)
y(~p, λ) = 0 ,

(
1
2 − λ

)
ȳ(~p, λ) = 0 , (3.40)

The significance of eqs. (3.39) and (3.40) is clear; for massless fermions, only one helicity com-

ponent of x and y is non-zero. Applying this result to neutrinos, we find that massless neutrinos

are left-handed (λ = −1/2), while anti-neutrinos are right-handed (λ = +1/2).

Eqs. (3.39) and (3.40) can also be derived by carefully taking the m→ 0 limit of eqs. (3.31)

and (3.32) applied to the helicity wave functions x(~p, λ) and y(~p, λ) [i.e., replacing s with λ].

We then replace mSµ with pµ, which is the leading term in the limit of E � m. Using the

results of eqs. (3.9) and (3.10) and dividing out by an overall factor or m (before finally taking

the m→ 0 limit) reproduces eqs. (3.39) and (3.40).

Having defined explicit forms for the two-component spinor wave functions, we can now

write down the spin projection matrices. Noting that 1
2 (1+2s~σ ·ŝ)χs′ = 1

2(1+4ss′)χs′ = δss′χs′

(since s, s′ = ±1
2), one can write:

χsχ
†
s

= 1
2 (1 + 2s~σ ·ŝ)

∑

s′

χs′χ
†
s′
. (3.41)

Using the completeness relation given in eq. (B.8), and eq. (3.17) for ~σ ·ŝ, it follows that

χsχ
†
s

= 1
2

(
1 +

2s

m

√
p·σ S ·σ√p·σ

)
, (3.42)
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Hence, with both spinor indices in the lowered position,

x(~p, s)x̄(~p, s) =
√
p·σ χsχ†

s

√
p·σ

= 1
2

√
p·σ

[
1 +

2s

m

√
p·σS ·σ√p·σ

]√
p·σ

= 1
2

[
p·σ +

2s

m
p·σS ·σp·σ

]

= 1
2 [p·σ − 2smS ·σ] . (3.43)

In the final step above, we simplified the product of three dot-products by noting that p·S = 0

implies that S ·σ p·σ = −p·σ S ·σ. The other spin projection formulae for massive fermions can

be similarly derived. The complete set of such formulae is given below: (see also [62])

xα(~p, s)x̄β̇(~p, s) = 1
2(pµ − 2smSµ)σ

µ

αβ̇
, (3.44)

ȳα̇(~p, s)yβ(~p, s) = 1
2(pµ + 2smSµ)σα̇βµ , (3.45)

xα(~p, s)y
β(~p, s) = 1

2

(
mδα

β − 2s[S ·σ p·σ]α
β
)
, (3.46)

ȳα̇(~p, s)x̄β̇(~p, s) = 1
2

(
mδα̇β̇ + 2s[S ·σ p·σ]α̇β̇

)
, (3.47)

or equivalently,

x̄α̇(~p, s)xβ(~p, s) = 1
2 (pµ − 2smSµ)σα̇βµ , (3.48)

yα(~p, s)ȳβ̇(~p, s) = 1
2 (pµ + 2smSµ)σ

µ

αβ̇
, (3.49)

yα(~p, s)x
β(~p, s) = − 1

2

(
mδα

β + 2s[S ·σ p·σ]α
β
)
, (3.50)

x̄α̇(~p, s)ȳβ̇(~p, s) = − 1
2

(
mδα̇β̇ − 2s[S ·σ p·σ]α̇β̇

)
. (3.51)

For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The

corresponding massless projection operators can be obtained directly from the explicit forms for

the two-component spinor wave functions given in eqs. (3.35)–(3.38):

xα(~p, λ)x̄β̇(~p, λ) = ( 1
2 − λ)p·σαβ̇ , x̄α̇(~p, λ)xβ(~p, λ) = ( 1

2 − λ)p·σα̇β , (3.52)

ȳα̇(~p, λ)yβ(~p, λ) = ( 1
2 + λ)p·σα̇β , yα(~p, λ)ȳβ̇(~p, λ) = ( 1

2 + λ)p·σαβ̇ , (3.53)

xα(~p, λ)yβ(~p, λ) = 0 , yα(~p, λ)xβ(~p, λ) = 0 , (3.54)

ȳα̇(~p, λ)x̄β̇(~p, λ) = 0 , x̄α̇(~p, λ)ȳβ̇(~p, λ) = 0 . (3.55)

As a check, one can verify that the above results follow from eqs. (3.44)–(3.51), by replacing s

with λ, setting mSµ = pµ, and taking the m→ 0 limit at the end of the computation.

Having listed the projection operators for definite spin projection or helicity, we may now

sum over spins to derive the spin-sum identities. These arise when computing squared matrix

elements for unpolarized scattering and decay. There are only four basic identities, but for
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convenience we list each of them with the two index height permutations that can occur in

squared amplitudes by following the rules given in this paper. The results can be derived by

inspection of the spin projection operators, since summing over s = ± 1
2 simply removes all terms

linear in the spin four-vector Sµ.

∑

s

xα(~p, s)x̄β̇(~p, s) = p·σαβ̇ ,
∑

s

x̄α̇(~p, s)xβ(~p, s) = p·σα̇β , (3.56)

∑

s

ȳα̇(~p, s)yβ(~p, s) = p·σα̇β ,
∑

s

yα(~p, s)ȳβ̇(~p, s) = p·σαβ̇ , (3.57)

∑

s

xα(~p, s)yβ(~p, s) = mδα
β ,

∑

s

yα(~p, s)x
β(~p, s) = −mδαβ , (3.58)

∑

s

ȳα̇(~p, s)x̄β̇(~p, s) = mδα̇β̇ ,
∑

s

x̄α̇(~p, s)ȳβ̇(~p, s) = −mδα̇β̇ . (3.59)

These results are applicable both to spin-sums and helicity-sums, and hold for both massive and

massless spin-1/2 fermions.

One can also work out generalizations of the massive and massive projection operators.

These are products of two-component spinor wave functions, where the spin or helicity of each

spinor may be different. These are the Bouchiat-Michel formulae [135], which are derived in

Appendix F.

3.2 Fermion mass diagonalization and external wave functions in a general
theory

Consider a collection of free anti-commuting two-component spin-1/2 fields, ξ̂αi(x), which trans-

form as ( 1
2 , 0) fields under the Lorentz group. Here, α is the spinor index, and i labels the

distinct fields of the collection. The free-field Lagrangian is given by (see for example [67] for a

discussion of this Lagrangian)

L = i
¯̂
ξ iσµ∂µξ̂i − 1

2M
ij ξ̂iξ̂j − 1

2Mij
¯̂
ξ i

¯̂
ξ j , (3.60)

where

Mij ≡ (M ij)∗. (3.61)

Note thatM ij is a complex symmetric matrix, since the product of anticommuting two-component

fields satisfies ξ̂iξ̂j = ξ̂j ξ̂i [with the spinor contraction rule according to eq. (2.25)].

In eq. (3.60), we have used the following convention concerning the “flavor” labels i and j.

Each left-handed ( 1
2 , 0) fermion always has an index with the opposite height of the corresponding

right-handed (0, 1
2 ) fermion. Raised indices can only be contracted with lowered indices and vice

versa. Flipping the heights of all flavor indices of an object corresponds to complex conjugation,
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as in eq. (3.61).7

We can diagonalize the mass matrix and rewrite the Lagrangian in terms of mass eigenstates

ξαi , which have corresponding real non-negative masses mi. To do this, we introduce a unitary

matrix Ω

ξ̂i = Ωi
kξk (3.62)

and demand that M ijΩi
kΩj

` = mkδ
k` (no sum over k), where the mk are real and non-negative.

Equivalently, in matrix notation with suppressed indices,8

ΩTM Ω = m = diag(m1,m2, . . .). (3.63)

This is the so-called Takagi diagonalization [69, 70] of an arbitrary complex symmetric matrix,

which is discussed in more detail in Appendix D. To compute the values of the diagonal elements

of m, note that

ΩM †MΩ† = m2 . (3.64)

Indeed M †M is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the

elements of the diagonal matrix m are the non-negative square roots of the corresponding

eigenvalues of M †M . However, in cases where M †M has degenerate eigenvalues, eq. (3.64)

cannot be employed to determine the unitary matrix Ω that satisfies eq. (3.63). A more general

technique for determining Ω that works in all cases is given in Appendix D.

In terms of the mass eigenstates,

L = iξ̄iσµ∂µξi − 1
2mi(ξiξi + ξ̄iξ̄i) . (3.65)

Each ξαi can now be expanded in a Fourier series, exactly as in the previous subsection:

ξαi(x) =
∑

s

∫
d3~p

(2π)3/2(2Eip)1/2

[
xαi(~p, s)ai(~p, s)e

−ip·x + yαi(~p, s)a
†
i (~p, s)e

ip·x
]
, (3.66)

where Eip ≡ (|~p|2 + m2
i )

1/2, and the creation and annihilation operators, a†i and ai satisfy

anticommutation relations:

{ai(~p, s), a†j(~p ′, s′)} = δ3(~p− ~p ′)δss′δij . (3.67)

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention

|~p, s〉 ≡ (2π)3/2(2Eip)1/2a†i (~p, s) |0〉 , (3.68)

7In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor
indices, which implies that all of the right-handed fermions have raised flavor indices. However, in cases where a
subset of left-handed fermions transform according to some representation R of a (global) symmetry whereas a
different subset of left-handed fermions transform according to the conjugate representation R∗, it is often more
convenient to employ a raised flavor index for the latter subset of left-handed fields.

8In general, the mi are not the eigenvalues of M . Rather, they are the singular values of the matrix M , which
are defined to be the positive square roots of the eigenvalues of M †M . See Appendix D for further details.
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so that
〈
~p|~p ′〉 = (2π)3(2Eip)δ3(~p− ~p ′).

There is a useful modification to the mass diagonalization procedure above that is convenient

when there are massive Dirac fermions carrying a conserved charge. The key observation is that

one only needs a diagonal squared-mass matrix to ensure that the denominators of propagators

are diagonal. If χα is a charged massive field, then there must be an associated independent

two-component spinor field ηα of equal mass with the opposite charge. They appear in the

free-field Lagrangian as [6]:

L = iχ̄σµ∂µχ+ iη̄σµ∂µη −m(χη + χ̄η̄) . (3.69)

Together, χ and η̄ constitute a single Dirac fermion. We can then write:

χα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e

−ip·x + yα(~p, s)b†(~p, s)eip·x
]
, (3.70)

ηα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)b(~p, s)e

−ip·x + yα(~p, s)a
†(~p, s)eip·x

]
, (3.71)

where Ep ≡ (|~p|2 + m2)1/2, the creation and annihilation operators, a†, b†, a and b satisfy

anticommutation relations:

{a(~p, s), a†(~p ′, s′)} = {b(~p, s), b†(~p ′, s′)} = δ3(~p− ~p ′)δs,s′ , (3.72)

and all other anticommutators vanish. We now must distinguish between two types of one

particle states, which we can call fermion (F ) and anti-fermion (A):

|~p, s;F 〉 ≡ (2π)3/2(2Ep)1/2a†(~p, s) |0〉 , (3.73)

|~p, s;A〉 ≡ (2π)3/2(2Ep)1/2b†(~p, s) |0〉 . (3.74)

Note that both η(x) and χ̄(x) can create |~p, s;F 〉 from the vacuum, while η̄(x) and χ(x) can

create |~p, s;A〉. The one-particle wave functions are given by:

〈0|χα(x) |~p, s;F 〉 = xα(~p, s)e−ip·x , 〈0| η̄α̇(x) |~p, s;F 〉 = ȳα̇(~p, s)e
−ip·x , (3.75)

〈F ; ~p, s| ηα(x) |0〉 = yα(~p, s)eip·x , 〈F ; ~p, s| χ̄α̇(x) |0〉 = x̄α̇(~p, s)e
ip·x , (3.76)

〈0| ηα(x) |~p, s;A〉 = xα(~p, s)e−ip·x , 〈0| χ̄α̇(x) |~p, s;A〉 = ȳα̇(~p, s)e
−ip·x , (3.77)

〈A; ~p, s|χα(x) |0〉 = yα(~p, s)eip·x , 〈A; ~p, s| η̄α̇(x) |0〉 = x̄α̇(~p, s)eip·x , (3.78)

and the eight other single-particle matrix elements vanish.

More generally, consider a collection of such free anti-commuting charged massive spin-

1/2 fields, which can be represented by pairs of two-component fields χ̂αi(x), η̂
i
α(x). These

fields transform in (possibly reducible) representations of the unbroken symmetry group that
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are complex conjugates of each other. (This is the reason for the difference in the flavor index

height i.) The free-field Lagrangian is given by

L = i ¯̂χ iσµ∂µχ̂i + i ¯̂η iσ
µ∂µη̂

i −M i
jχ̂iη̂

j −Mi
j ¯̂χ i ¯̂η j , (3.79)

where M i
j is an arbitrary complex matrix, and Mi

j ≡ (M i
j)

∗ as before. We diagonalize the

mass matrix by introducing eigenstates χi and ηi and unitary matrices L and R,

χ̂i = Li
kχk , η̂i = Rikη

k , (3.80)

and demand that M i
jLi

kRj` = mkδ
k
` (no sum over k). In matrix form, this is written as (see

footnote 8):

LTMR = M = diag(M1,M2, . . .), (3.81)

with the mi real and non-negative. The singular-value decomposition of linear algebra, discussed

more fully in Appendix D, states that for any complex matrix M , unitary matrices L and R

exist such that eq. (3.81) is satisfied. It follows that:9

LT(MM †)L∗ = R†(M †M)R = M 2. (3.82)

That is, since MM † andM †M are both hermitian (with the same real non-negative eigenvalues),

they can be diagonalized by unitary matrices. The diagonal elements of M are therefore the

non-negative square roots of the corresponding eigenvalues of MM † (or M †M).

Thus, in terms of the mass eigenstates,

L = iχ̄iσµ∂µχi + iη̄iσ
µ∂µη

i −mi(χiη
i + χ̄iη̄i) . (3.83)

The mass matrix now consists of 2 × 2 blocks
(

0 mi
mi 0

)
along the diagonal. More importantly,

the squared-mass matrix is diagonal with doubly degenerate entries m2
i that will appear in the

denominators of the propagators of the theory. It describes a collection of Dirac fermions.10

Therefore, the result of the mass diagonalization procedure in a general theory always

consists of a collection of Majorana fermions as in equation (3.65), plus a collection of Dirac

fermions as in equation (3.83). This is the basis of the Feynman rules to be presented in the

next section.

For completeness, we review the squared-mass matrix diagonalization procedure for scalar

fields. First, consider a collection of free commuting real spin-0 fields, ϕ̂i(x), where the flavor

9Consistency of notation requires that (M †)ij = Mj
i = (M j

i)
∗ [and likewise (M†)i

j = M j
i = (Mj

i)∗]. This
permits the multiplication of MM † and M†M in a U(N)-covariant fashion.

10Of course, one could always choose instead to treat the Dirac fermions in a basis with a fully diagonalized
mass matrix, as in equation (3.65), by defining ξ2i−1 = (χi+ηi)/

√
2 and ξ2i = i(χi−ηi)/

√
2. These fermion fields

do not carry well-defined charges, and are analogous to writing a charged scalar field φ and its oppositely-charged
conjugate φ∗ in terms of their real and imaginary parts. However, it is rarely, if ever, convenient to do so; practical
calculations only require that the squared-mass matrix is diagonal, and it is of course more pleasant to employ
fields that carry well-defined charges.
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index i again labels the distinct scalar fields of the collection. The free-field Lagrangian is given

by

L = 1
2∂µϕ̂i∂

µϕ̂i − 1
2M

2
ijϕ̂iϕ̂j , (3.84)

where M 2
ij is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by

introducing mass-eigenstates ϕi and the orthogonal matrix Q such that ϕ̂i = Qijϕj, with

M2
ijQikQj` = m2

kδk` (no sum over k). In matrix form, the latter reads

QTM2Q = m2 = diag(m2
1,m

2
2, . . .) . (3.85)

This is the standard diagonalization problem for a real symmetric matrix. The eigenvalues m2
k

are real.11

Second, consider a collection of free commuting complex spin-0 fields, Φ̂i(x). For complex

fields, we follow the convention for flavor indices enunciated below eq. (3.61) [e.g., Φ̂i = (Φ̂i)
∗].

The free-field Lagrangian is given by

L = ∂µΦ̂
i∂µΦ̂i − (M2)ijΦ̂iΦ̂

j , (3.86)

where (M 2)ij is an hermitian matrix [which satisfies (M 2)ij = (M2)j
i (see footnote 9)].

We diagonalize the scalar squared-mass matrix by introducing mass-egienstates Φi and the

unitary matrix W such that Φ̂i = Wi
kΦk (and Φ̂i = W i

kΦ
k), with (M 2)ijWi

kW j
` = M2

k δ
k
` (no

sum over k). In matrix form, the latter reads

W †M2W = M2 = diag(M 2
1 ,M

2
2 , . . .) . (3.87)

This is the standard diagonalization problem for an hermitian matrix. The eigenvalues m2
k are

real (see footnote 11).

4 Feynman rules with two-component spinors

In order to systematically perform perturbative calculations using two-component spinors, we

here present the basic Feynman rules. The Feynman rules for some specific models are given

in the Appendices E, F and G. Two-component Feynman rules have also been discussed in

[24, 64–66]

4.1 External fermion rules

Let us consider a general theory, for which we may assume that the mass matrix for fermions has

been diagonalized as discussed in the previous section. The rules for assigning two-component

external state spinors are then as follows.12

11Negative eigenvalues of M2 imply that the naive vacuum is unstable. One should shift the scalar fields by
their vacuum expectation values and check that the resulting scalar squared-matrix possesses only non-negative
eigenvalues.

12We will often suppress the momentum and spin arguments of the spinor wave functions.
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• For an initial-state left-handed ( 1
2 , 0) fermion: x.

• For an initial-state right-handed (0, 1
2 ) fermion: ȳ.

• For a final-state left-handed ( 1
2 , 0) fermion: x̄.

• For a final-state right-handed (0, 1
2) fermion: y.

Note that, in general, the two-component external state fermion wave functions are distinguished

by their Lorentz group transformation properties, rather than by their particle or antiparticle

status as in four-component Feynman rules. This helps to explain why two-component notation

is especially convenient for (i) theories with Majorana particles, in which there is no fundamental

distinction between particles and antiparticles, and (ii) theories like the Standard Model and

MSSM in which the left and right-handed fermions transform under different representations of

the gauge group and (iii) problems with polarized particle beams. These rules are summarized

in the mnemonic diagram of Figure 1.

x x̄

ȳ y

L (1
2 , 0) fermion

R (0, 1
2) fermion

Initial State Final State

Figure 1: The external wave-function spinors should be assigned as indicated here, for initial-
state and final-state left-handed ( 1

2 , 0) and right-handed (0, 1
2) fermions.

In contrast to four-component Feynman rules, the direction of the arrows do not correspond

to the flow of charge or fermion number. These rules simply correspond to the formulae for the

one-particle wave functions given in eqs. (3.7) and (3.8) [with the convention that |~p, s〉 is an

initial-state fermion and 〈~p, s| is a final-state fermion]. In particular, the arrows indicate the

spinor index structure, with fields of undotted indices flowing into any vertex and fields of dotted

indices flowing out of any vertex.

The rules above apply to any mass eigenstate two-component fermion external wave func-

tions. It is noteworthy that the same rules apply for the two-component fermions governed by

the Lagrangians of eq. (3.65) [Majorana] and eq. (3.83) [Dirac].
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4.2 Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of

the two-component fermion propagators using path integral techniques is given in Appendix C.

Here, we will follow the more elementary approach typically given in an initial textbook treat-

ment of quantum field theory.

Fermion propagators are the Fourier transforms of the free-field vacuum expectation values

of time-ordered products of two fermion fields. They are obtained by inserting the free-field

expansion of the two-component fermion field and evaluating the spin sums using the formulas

given in eqs. (3.56) and (3.59). For the case of a single neutral two-component fermion field ξ

of mass m [see eqs. (3.65)-(3.68)] [24, 46, 64–66, 68],

〈0| Tξα(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

∑

s

xα(~p, s)x̄β̇(~p, s) =
i

p2 −m2 + iε
p·σαβ̇ , (4.1)

〈0| T ξ̄α̇(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑

s

ȳα̇(~p, s)yβ(~p, s) =
i

p2 −m2 + iε
p·σα̇β , (4.2)

〈0| T ξ̄α̇(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

∑

s

ȳα̇(~p, s)x̄β̇(~p, s) =
i

p2 −m2 + iε
mδα̇β̇ , (4.3)

〈0| Tξα(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑

s

xα(~p, s)y
β(~p, s) =

i

p2 −m2 + iε
mδα

β , (4.4)

where FT indicates the Fourier transform from position to momentum space.13 These results

have an obvious diagrammatic representation, as shown in Fig. 2.

(a) (b)

p

αβ̇

p

β α̇

ip·σαβ̇
p2 −m2

ip·σα̇β
p2 −m2

(c) (d)
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα
β

Figure 2: Feynman rules for propagator lines of a neutral two-component fermion with mass m.
(The +iε terms in the denominators have been omitted here and from now on, for simplicity.)

13The Fourier transform of a translationally invariant function f(x, y) ≡ f(x − y) is given by

f(x, y) =

Z
d4p

(2π)4
bf (p) e−ip·(x−y) .

In the notation of the text above, f(x, y)FT ≡ bf(p).
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β̇ α

p ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

Figure 3: This rule summarizes the results of both figs. 2(a) and (b) for a neutral two-
component fermion with mass m.

Note that the direction of the momentum flow pµ here is determined by the creation operator

that appears in the evaluation of the free-field propagator. Arrows on fermion lines always run

away from dotted indices at a vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction of

arrows, so it has one dotted and one undotted index. For this type of propagator, it is convenient

to establish a convention where pµ in the diagram is defined to be the momentum flowing in the

direction of the arrow on the fermion propagator. With this convention, the two rules above for

propagators of the first type can be summarized by one rule, as shown in Fig. 3. Here the choice

of the σ or the σ version of the rule is uniquely determined by the height of the indices on the

vertex to which the propagator is connected.14 These heights should always be chosen so that

they are contracted as in eq. (2.25). It should be noted that in diagrams (a) and (b) of Fig. 2

as drawn, the indices on the σ and σ read from right to left. This means that the most efficient

way to use the propagator rules of diagrams (a) and (b) [or equivalently, the propagator rule of

Fig. 3] in a Feynman diagram computation is to traverse the propagator lines in the direction

antiparallel [parallel] to the arrowed line segment for the σ [σ] version of the rule.

The second type of propagator shown in diagrams (c) and (d) of Fig. 2 does not preserve the

direction of arrows, and corresponds to an odd number of mass insertions. The indices on δ α̇β̇

and δα
β are staggered as shown to indicate that α̇ or α are to be contracted with an expression

to the left, while β̇ or β are to be contracted with an expression to the right, in accord with

eq. (2.25).15

Starting with massless fermion propagators, one can derive the massive fermion propagators

by employing mass insertions as interaction vertices, as shown in Fig. 4. By summing up an

infinite chain of such mass insertions between massless fermion propagators, one can reproduce

the massive fermion propagators of both types.

It is convenient to treat separately the case of charged massive fermions. Consider a charged

Dirac fermion of massm, which is described by a pair of two-component fields χ and η [eq. (3.69)].

Using the free field expansions given by eqs. (3.70) and (3.71), and the appropriate spin-sums

14The second form of the rule in Fig. 3 arises when when one flips diagram (b) of Fig. 2 around by a 180◦

rotation (about an axis perpendicular to the plane of the diagram), and then relabels p → −p, α̇ → β̇ and β → α.
15As in Fig. 3, alternative versions of the rules corresponding to diagrams (c) and (d) of Fig. 2 can be given

for which the indices on the Kronicker deltas are staggered as δβ̇ α̇ and δβ
α. These versions correspond to flipping

the two respective diagrams by 180◦ and relabeling the indices α̇ → β̇ and β → α.
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β α
× ×

α̇β̇

−imδαβ −imδα̇β̇

Figure 4: Fermion mass insertions (indicated by the crosses) can be treated as a type of
interaction vertex, using the Feynman rules shown here.

[eqs. (3.56)–(3.59)], the two-component free-field propagators are obtained:

〈0| Tχα(x)χ̄β̇(y) |0〉FT = 〈0| Tηα(x)η̄β̇(y) |0〉FT =
i

p2 −m2
p·σαβ̇ , (4.5)

〈0| T χ̄α̇(x)χβ(y) |0〉FT = 〈0|T η̄α̇(x)ηβ(y) |0〉FT =
i

p2 −m2
p·σα̇β , (4.6)

〈0| Tχα(x)ηβ(y) |0〉FT = 〈0| Tηα(x)χβ(y) |0〉FT =
i

p2 −m2
mδα

β , (4.7)

〈0| T χ̄α̇(x)η̄β̇(y) |0〉FT = 〈0| T η̄α̇(x)χ̄β̇(y) |0〉FT =
i

p2 −m2
mδα̇β̇ . (4.8)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.

These results again have a simple diagrammatic representation, as shown in Fig. 5.

(a) (b)χ χ ηη

p

αβ̇ β̇ α

p

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

χ η ηχ(c) (d)
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα
β

Figure 5: Feynman rules for propagator lines of a pair of charged two-component fermions with
a Dirac mass m. As in Fig. 3, the direction of the momentum is taken to flow from the dotted
to the undotted index in diagrams (a) and (b).

Note that for Dirac fermions, the propagators with opposing arrows (proportional to a mass)

necessarily change the identity (χ or η) of the two-component fermion, while the single-arrow

propagators are diagonal in the fields. In processes involving such a charged fermion, one must

of course distinguish between the χ and η fields.

For completeness, we provide the propagators for scalar and vector bosons in Fig. 6.
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i

p2 −m2

µ ν

−i
p2 −m2

[
gµν + (ξ − 1)

pµpν

p2 − ξm2

]

Figure 6: The Feynman rules for propagators of scalar bosons, and vector bosons in Rξ gauge,
carrying momentum pµ in each case. Here ξ = 1 is Feynman gauge, and ξ = 0 is Landau gauge.

4.3 Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-

invariant interactions involving fermions must consist of bilinears in the fermion fields, which

transform as a Lorentz scalar or vector, coupled to the appropriate bosonic scalar or vector field

to make an overall Lorentz scalar quantity.

Let us write all of the two-component left-handed fermions of the theory as ψ̂j, where j

runs over all of the gauge group representation and flavor degrees of freedom. The most general

set of interactions with the scalars of the theory φ̂I are then given by:

Lint = −1
2 Ŷ

Ijkφ̂I ψ̂jψ̂k − 1
2 ŶIjkφ̂

I ¯̂
ψ j ¯̂
ψ k , (4.9)

where ŶIjk = (Ŷ Ijk)∗ and φ̂I = (φ̂I)
∗. We have suppressed the spinor indices here; the product

of two component spinors is always performed according to the index convention indicated in

eq. (2.25). The flavor index I runs over a collection of real scalar fields ϕ̂i and pairs of complex

scalar fields Φ̂j and (Φ̂j)
∗.16 The Yukawa couplings Ŷ Ijk are symmetric under interchange of j

and k. The hatted fields are the so-called interaction-eigenstate fields.

However, in general the mass-eigenstates can be different, as discussed in subsection 3.2.

The computation of matrix elements for physical processes is more conveniently done in terms

of the propagating mass-eigenstate fields. In general, the interaction-eigenstate ( 1
2 , 0)-fermion

fields ψ̂i consist of Majorana fermions ξ̂i, and Dirac fermion pairs χ̂i and η̂i after mass terms

(both explicit and coming from spontaneous symmetry breaking) are taken into account. The

mass-eigenstate basis ψ is related to the interaction-eigenstate basis ψ̂ by a unitary rotation Ui
j

on the flavor indices. In matrix form:

ψ̂ ≡



ξ̂
χ̂
η̂


 = Uψ ≡




Ω 0 0
0 L 0
0 0 R





ξ
χ
η


 , (4.10)

where Ω, L, and R are constructed as described previously in Section 3.2 [see eqs. (3.63) and

(3.81)]. Likewise, the interaction-eigenstate scalar fields φ̂I generally consist of real scalar fields

16For example, in a theory with one complex scalar field Φ̂, we would take φ̂1 = Φ̂ and φ̂2 = Φ̂∗.
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I

k, β

j, α

−iY Ijkδα
β or − iY Ijkδβ

α(a)

I

k, β̇

j, α̇

−iYIjkδα̇β̇ or − iYIjkδβ̇ α̇(b)

Figure 7: Feynman rules for Yukawa couplings of scalars to two-component fermions in a
general field theory. The choice of which rule to use depends on how the vertex connects to
the rest of the amplitude. When indices are suppressed, the spinor index part is always just
proportional to the identity matrix.

ϕ̂i and complex scalar fields Φ̂i. The mass eigenstate basis φ is related to the interaction

eigenstate basis φ̂ by a unitary rotation VI
J on the flavor indices. In matrix form:

φ̂ ≡
(
ϕ̂

Φ̂

)
= V φ ≡

(
Q 0
0 W

)(
ϕ
Φ

)
, (4.11)

where Q and W are constructed according to eqs. (3.85) and (3.87).

Thus, we may rewrite eq. (4.9) in terms of mass-eigenstate fields:

Lint = −1
2Y

IjkφIψjψk − 1
2YIjkφ

I ψ̄ jψ̄ k , (4.12)

where

Y Ijk = VL
IUm

jUn
kŶ Lmn . (4.13)

The corresponding Feynman rules are shown in Fig. 7. Note that if the scalar φI is complex,

then one can associate an arrow with the flow of analyticity,17 which would point into the vertex

in (a) and would point out of the vertex in (b).

The renormalizable interactions of vector bosons with fermions and scalars arise from gauge

interactions. These interaction terms of the Lagrangian derive from the respective kinetic energy

terms of the fermions and scalars when the derivative is promoted to the covariant derivative:

(Dµ)i
j ≡ δij∂µ + igaA

a
µ(T

a)i
j , (4.14)

where the index a labels the (real or complex) vector bosons Aµ
a and is summed over. The index

17As in the case of the fermions, the arrow on the dashed line representing the scalar field does not represent
the flow of a conserved charge. It simply keeps track of the height of the scalar flavor index entering or leaving a
given vertex.
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a runs over the adjoint representation of the gauge group,18 and the (T a)i
j are hermitian rep-

resentation matrices19 of the Lie algebra of the gauge group acting on the left-handed fermions.

There is a separate coupling ga for each simple group or U(1) factor of the gauge group G.20

In the gauge-interaction basis for the left-handed two-component fermions the corresponding

interaction Lagrangian is given by

Lint = −gaAµa
¯̂
ψ i σµ(T

a)i
jψ̂j . (4.15)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson

squared mass matrix. The form of eq. (4.15) still applies where Aa
µ are gauge boson fields of

definite mass, although in this case for a fixed value of a, gaT
a [which multiplies Aaµ in eq. (4.15)]

is some linear combination of the original gaT
a of the unbroken theory.21 Henceforth, we assume

that that the Aaµ are the gauge boson mass-eigenstate fields.

To obtain the desired Feynman rule, we must rewrite eq. (4.15) in terms of mass-eigenstate

fermion fields. The resulting interaction Lagrangian takes the form

Lint = −Aµa ψ̄i σµ(Ga)ijψj , (4.17)

where

(Ga)i
j = gaU

k
i(T

a)k
mUm

j , (4.18)

or in matrix form, Ga = gaU
†T aU (no sum over a). Note that Ga is an hermitian matrix. The

corresponding Feynman rule is shown in Fig. 8.

The above treatment of gauge interactions of (two-component) fermions is general, but it

is useful to consider separately the special case of gauge interactions of charged Dirac fermions.

Consider pairs of left-handed ( 1
2 , 0) interaction-eigenstate fermions χ̂i and η̂i that transform as

conjugate representations of the gauge group (hence the difference in the flavor index heights).

The fermion mass matrix couples χ and η type fields as in eq. (3.79). The Lagrangian for the

gauge interactions of Dirac fermions can be written in the form:

Lint = −gaAµa ¯̂χ i σµ(T
a)i

jχ̂j + gaA
µ
a
¯̂η i σµ(T

a)j
iη̂j , (4.19)

18Since the adjoint representation is a real representation, the height of the adjoint index a is not significant.
The choice of a subscript or superscript adjoint index is based solely on typographical considerations.

19For a U(1) gauge group, the T a are replaced by real numbers corresponding to the U(1) charges of the
left-handed ( 1

2
, 0) fermions.

20That is, the generators T a separate out into distinct classes, each of which is associated with a simple group
or one of the U(1) factors contained in the direct product that defines G. In particular, ga = gb if T a and T b are
in the same class. If G is simple, then ga = g for all a.

21For example, in the electroweak Standard Model, G=SU(2)×U(1) and T a = ( 1
2
τa , 1

2
Y ), where the τa are

the usual Pauli matrices. Then, after diagonalizing the gauge boson squared-mass matrix, one finds:

1
2
gW a

µτa + 1
2
g′BµY =

g

2
√

2
(W+

µ τ+ + W−
µ τ−) +

g

2 cos θW

`
τ 3 + 2Q sin2 θW

´
Zµ + eQAµ , (4.16)

where τ± ≡ τ 1 ± iτ 2, Q = 1
2
(τ 3 + Y ), and e = g sin θW = g′ cos θW . Here {W a

µ , Bµ} are the gauge fields of the
unbroken theory and W±, Z and A are the gauge boson mass-eigenstates of the broken theory.
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a, µ
j, β

i, α̇

−i(Ga)ij σα̇βµ or i(Ga)i
j σµβα̇

Figure 8: The Feynman rules for two-component fermion interactions with vector bosons. The
choice of which rule to use depends on how the vertex connects to the rest of the amplitude. Ga

is defined in eq. (4.18).

where the Aaµ are gauge boson mass-eigenstate fields. Here we have used the fact that if (T a)i
j

are the representation matrices for the χ̂i, then the η̂i transform in the complex conjugate

representation with generator matrices −(T a)∗ = −(T a)T, where we have used the hermiticity

of the generator matrices. Again we rewrite eq. (4.19) in terms of mass-eigenstate fermion fields.

The resulting interaction Lagrangian is given by:

Lint = −Aµa χ̄ i σµ(GaL)i
jχj +Aµa η̄ i σµ(G

a
R)j

iηj , (4.20)

where

(GaL)i
j = gaL

k
i(T

a)k
mLm

j , (4.21)

(GaR)j
i = gaR

m
j(T

a)m
kRk

i . (4.22)

In matrix form, eqs. (4.21) and (4.22) read: Ga
L = gaL

†T aL and GaR = gaR
†T aR (no sum

over a); GaL and GaR are hermitian matrices. The corresponding Feynman rules for the gauge

interactions of Dirac fermions are shown in Fig. 9.

a, µ
β

α̇

−i(GaL)i
j σα̇βµ or ig(GaL)i

j σµβα̇

χi

χj

a, µ
β

α̇

i(GaR)j
i σα̇βµ or −ig(GaR)j

i σµβα̇

ηi

ηj

Figure 9: The Feynman rules for two-component fermion interactions with vector bosons, in
the case that χi and ηi form a Dirac fermion. The matrices Ga

L and GaR are related to the group
generators for the representation carried by the χi according to eqs. (4.21) and (4.22). The
two-component field labels conform to the conventions of Section 5.

In Figs. 7–9, two versions are given for each of the boson-fermion-fermion Feynman rules.

The correct version to use depends in a unique way on the heights of indices used to connect
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each fermion line to the rest of the diagram. For example, the way of writing the vector-fermion-

fermion interaction rule depends on whether we used ψ̄iσµψj , or its equivalent form −ψjσµψ̄i,
from eq. (4.15). Note the different heights of the undotted and dotted spinor indices that adorn

σµ and σµ. The choice of which rule to use is thus dictated by the height of the indices on

the lines that connect to the vertex. These heights should always be chosen so that they are

contracted as in eq. (2.25). Similarly, for the scalar-fermion-fermion vertices, one should choose

the rule which correctly matches the indices with the rest of the diagram. However, when all

spinor indices are suppressed, the scalar-fermion-fermion rules will have an identical appearance

for both cases, since they are just proportional to the identity matrix on the 2×2 spinor space.)

These above comments will be clarified by examples in Section 4.5. Numerous examples

and applications of the results of this subsection can be found in Appendices D and E.

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that

conform with the rules given above for external wavefunctions, propagators, and interactions.

Starting from any external wave function spinor, or from any vertex on a fermion loop, factors

corresponding to each propagator and vertex should be written down from left to right, following

the line until it ends at another external state wave function or at the original point on the

fermion loop. If one starts a fermion line at an x or y external state spinor, it should have

a raised undotted index in accord with eq. (2.25). Or, if one starts with an x̄ or ȳ, it should

have a lowered dotted spinor index. Then, all spinor indices should always be contracted as in

eq. (2.25). If one ends with an x or y external state spinor, it will have a lowered undotted index,

while if one ends with an x̄ or ȳ spinor, it will have a raised dotted index. For arrow-preserving

fermion propagators and gauge vertices, the preceding determines whether the σ or σ rule should

be used. With only a little practice, one can write down amplitudes immediately with all spinor

indices suppressed.

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:

• Each closed fermion loop gets a factor of −1.

• A relative minus sign is imposed between terms contributing to a given amplitude whenever

the ordering of external state spinors (written left-to-right) differs by an odd permutation.

Amplitudes generated according to these rules will contain objects of the form:

a = z1Σz2 (4.23)

where z1 and z2 are each commuting external spinor wave functions x, x̄, y, or ȳ, and Σ is a
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sequence of alternating σ and σ matrices. The complex conjugate of this quantity is given by

a∗ = z̄2Σrz̄1 (4.24)

where Σr is obtained from Σ by reversing the order of all the σ and σ matrices, and using the

same rule for suppressed spinor indices. (Notice that this rule for taking complex conjugates

has the same form as for anticommuting spinors.) We emphasize that in principle, it does not

matter in what direction a diagram is traversed while applying the rules. However, for each

diagram one must include a sign that depends on the ordering of the external fermions. This

sign can be fixed by first choosing some canonical ordering of the external fermions. Then for any

graph that contributes to the process of interest, the corresponding sign is positive (negative)

if the ordering of external fermions is an even (odd) permutation with respect to the canonical

ordering. If one chooses a different canonical ordering, then the resulting amplitude changes

by an overall sign (is unchanged) if this ordering is an odd (even) permutation of the original

canonical ordering.22 This is consistent with the fact that the amplitude is only defined up to

an overall sign, which is not physically observable.

Note that different graphs contributing to the same process will often have different external

state wave function spinors, with different arrow directions, for the same external fermion.

Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in

some four-component Feynman rules for Majorana fermions. Instead, one must add together all

Feynman graphs that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

A few simple examples will help clarify these rules. (A larger number of examples, drawn from

practical calculations, are given in section 6.) Let us first consider a theory with a single,

uncharged, massive ( 1
2 , 0) fermion ξ, and a real scalar φ, with interaction

Lint = −1
2

(
λξξ + λ∗ξ̄ξ̄

)
φ. (4.25)

Consider the decay φ → ξ(~p1, s1)ξ(~p2, s2), where by ξ we mean the one particle state given by

eq. (3.6). Two diagrams contribute to this process, as shown in Figure 10.

The matrix element is then given by

iM = y(~p1, s1)
α(−iλδαβ)y(~p2, s2)β + x̄(~p1, s1)α̇(−iλ∗δα̇β̇)x̄(~p2, s2)

β̇

= −iλy(~p1, s1)y(~p2, s2)− iλ∗x̄(~p1, s1)x̄(~p2, s2). (4.26)

22For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. However, if there are four or more
external fermions, it may happen that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen
according to the relative sign of the permutation of the corresponding external fermion spinors. This guarantees
that the total amplitude is antisymmetric under the interchange of any pair of external fermions.
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φ

ξ(p1, s1)

ξ(p2, s2)

φ

ξ(p1, s1)

ξ(p2, s2)

Figure 10: The two tree-level Feynman diagrams contributing to the decay of a scalar into a
Majorana fermion pair.

The second line could be written down directly by recalling that the sum over suppressed spinor

indices is taken according to eq. (2.25). Note that if we reverse the ordering for the external

fermions, the overall sign of the amplitude changes sign. This is easily checked, since for the

commuting spinor wave functions (x and y), the spinor products in eq. (4.26) change sign when

the order is reversed [see eqs. (2.47) and (2.48)]. This overall sign is not significant and depends

on the order used in constructing the two particle state. One could even make the choice of

starting the first diagram from fermion 1, and the second diagram from fermion 2:

iM = −iλy(~p1, s1)y(~p2, s2)− (−1)iλ∗x̄(~p2, s2)x̄(~p1, s1) . (4.27)

Here the first term establishes the canonical ordering of fermions (12), and the contribution from

the second diagram therefore includes the relative minus sign in parentheses. Indeed, eqs. (4.26)

and (4.27) are equal. The computation of the total decay rate is straightforward. Of course,

one must multiply the integral over the total phase space by 1/2 to account for the identical

particles.

Consider next the decay of a massive neutral vector Aµ into a Majorana fermion pair

Aµ → ξ(~p1, s1)ξ(~p2, s2), following from the interaction

Lint = −GAµξ̄σµξ , (4.28)

where G is a real coupling parameter. The two diagrams shown in Figure 11 contribute.

Aµ

ξ(p2, s2)

ξ(p1, s1)

Aµ

ξ(p2, s2)

ξ(p1, s1)

Figure 11: The two tree-level Feynman diagrams contributing to the decay of a massive vector
boson Aµ into a pair of Majorana fermions ξ.

We start from the fermion with momentum p1 and spin vector s1 and end at the fermion

with momentum p2 and spin vector s2, using the rules of Fig. 8. The resulting amplitude for
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the decay is

iM = εµ [−iGx̄(~p1, s1)σµy(~p2, s2) + iGy(~p1, s1)σµx̄(~p2, s2)] (4.29)

where εµ is the vector boson polarization vector. We have used the σ-version of the vector-

fermion-fermion rule [see Fig. 8] for the first diagram of Fig. 11 and the σ-version for the

second diagram of Fig. 11, as dictated by the implicit spinor indices, which we have suppressed.

However, we could have chosen to evaluate the second diagram of Fig. 11 using the σ-version of

the vector-fermion-fermion rule by starting from the fermion with momentum p2. In that case,

the factor +iGy(~p1, s1)σµx̄(~p2, s2) in eq. (4.29) is replaced by

(−1)[−iGx̄(~p2, s2)σµy(~p1, s1)] . (4.30)

In eq. (4.30), the factor of −iG arises from the use of the σ-version of the vector-fermion-fermion

rule, and the overall factor of −1 appears because the order of the fermion wave functions has

been reversed; i.e. (21) is an odd permutation of (12). This is in accord with the ordering rule

stated at the end of Section 4.4. Thus, the resulting amplitude for the decay of the vector boson

into the pair of Majorana fermions now takes the form:

iM = εµ [−iGx̄(~p1, s1)σµy(~p2, s2) + iGx̄(~p2, s2)σµy(~p1, s1)] . (4.31)

By using yσµx̄ = x̄σµy, which follows from eq. (2.49) with commuting spinors, one sees that

eqs. (4.29) and (4.31) are identical. The form given in eq. (4.31) explicitly exhibits the fact that

the amplitude is antisymmetric under the interchange of the two external identical fermions.

Again, the absolute sign of the total amplitude is not significant and depends on the choice of

ordering of the outgoing states.

Next, we consider the decay of a massive neutral vector boson into a charged fermion-

antifermion pair. Suppose that we identify χ and η as left-handed fields with charges Q = 1 and

Q = −1, respectively. The corresponding interaction is given by:

Lint = −Aµ[GL χ̄ σµχ−GR η̄ σµη ]. (4.32)

There are two contributing graphs, as shown in Figure 12.

Aµ

χ(p2, s2)

χ(p1, s1)

Aµ

η(p2, s2)

η(p1, s1)

Figure 12: The two tree-level Feynman diagrams contributing to the decay of a massive neutral
vector boson Aµ into a Dirac fermion-antifermion pair.

To evaluate the amplitude, we start from the charge Q = +1 fermion (with momentum

p1 and spin vector s1), and end at the charge Q = −1 fermion (with momentum p2 and spin
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vector s2). In particular, for the final state fermion lines, the outgoing χ with arrow pointing

outward from the vertex and the outgoing η with arrow pointing inward to the vertex both

correspond to outgoing Q = +1 states. The amplitude for the decay is

iM = εµ [−iGLx̄(~p1, s1)σµy(~p2, s2)− iGRy(~p1, s1)σµx̄(~p2, s2)]

= εµ [−iGLx̄(~p1, s1)σµy(~p2, s2)− iGRx̄(~p2, s2)σµy(~p1, s1)] . (4.33)

As in the case of the decay to a pair of Majorana fermions, we have exhibited two forms for the

amplitude in eq. (4.33) that depend on whether the σ-version or the σ-version of the Feynman

rule has been employed. Of course, the resulting amplitude is the same in each method (up to

an overall sign of the total amplitude which is not determined).

The next level of complexity consists of diagrams that involve fermion propagators. For our

first example of this type, consider the tree-level matrix element for the scattering of a neutral

scalar and a two-component neutral massive fermion (φξ → φξ), with the interaction Lagrangian

given above in eq. (4.25). Using the corresponding Feynman rules, there are eight contributing

diagrams. Four are depicted in Fig. 13; there are another four diagrams (not shown) where the

initial and final state scalars are crossed (i.e., the initial state scalar is attached to the same

vertex as the final state fermion).

k k

Figure 13: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a neutral two-component fermion. There are four more diagrams, obtained from
these by crossing the initial and final scalar lines.

We shall write down the amplitudes for the four diagrams shown, starting with the final

state fermion line and moving toward the initial state fermion line. Then,

iM =
−i

k2 −m2
ξ

{
|λ|2 [x̄(~p2, s2)σ ·k x(~p1, s1) + y(~p2, s2)σ ·k ȳ(~p1, s1)]

+mξ

[
λ2y(~p2, s2)x(~p1, s1) + (λ∗)2x̄(~p2, s2)ȳ(~p1, s1)

]}
+ (crossed) . (4.34)
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k k

Figure 14: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a neutral two-component fermion. There are four more diagrams, obtained
from these by crossing the initial and final scalar lines.

where kµ is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) are the momentum

and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing fermion.

(We will not write down the “crossed” terms, which have the the initial and final scalars inter-

changed.) Note that we could have evaluated the diagrams above by starting with the initial

vertex and moving toward the final vertex. It is easy to check that the resulting amplitude is

the negative of the one obtained in eq. (4.34); the overall sign change simply corresponds to

swapping the order of the two fermions and has no physical consequence. The overall minus

sign is a consequence of eqs. (2.47)–(2.49) and the minus sign difference between the two ways

of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a vector boson and a

neutral massive two-component fermion ξ with the interaction Lagrangian of eq. (4.28). Again

there are eight diagrams: the four diagrams depicted in Fig. 14 plus another four (not shown)

where the initial and final state vector bosons are crossed. Starting with the final state fermion

line and moving toward the initial state, we obtain

iM =
−iG2

k2 −m2
ξ

{
x̄(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1 x(~p1, s1) + y(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1ȳ (~p1, s1)

−mξ

[
y(~p2, s2)σ ·ε∗2 σ ·ε1 x(~p1, s1) + x̄(~p2, s2)σ ·ε∗2 σ ·ε1 ȳ(~p1, s1)

]}
+ (crossed) , (4.35)

where ε1 and ε2 are the initial and final vector boson polarization four-vectors, respectively.

As before, kµ is the sum of the two incoming (or outgoing) four-momenta, and (p1, s1) are the

momentum and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing

fermion. (We again omit the “crossed” terms, which have the the initial and final vector bosons

interchanged.) If one evaluates the diagrams above by starting with the initial vertex and moving

toward the final vertex, the resulting amplitude is the negative of the one obtained in eq. (4.35),
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Figure 15: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

as expected.

As our next example, we consider the scattering of a charged Dirac fermion with a neutral

scalar. The left-handed fields χ and η have opposite charges Q = +1 and −1 respectively, and

interact with the scalar φ according to

Lint = −φ[κχη + κ∗χ̄η̄] , (4.36)

where κ is a coupling parameter. Then, for the elastic scattering of a Q = +1 fermion and a

scalar, the diagrams of Fig. 15 contribute at tree-level plus another four diagrams (not shown)

where the initial and final state scalars are crossed. Now, these diagrams match precisely those

of Fig. 13. Thus, applying the Feynman rules yields the same matrix element, eq. (4.34),

previously obtained for the scattering of a neutral scalar and neutral two-component fermion,

with the replacement of λ with κ.

Consider next the scattering of a charged Dirac fermion and a charged scalar, where both

the scalar and fermion have the same absolute value of the charge. As above, we denote the

charged Q = ±1 fermion by the pair of two-component fermions χ and η and the (intermediate

state) neutral two-component fermion by ξ. The charged Q = ±1 scalar is represented by the

scalar field φ and its complex conjugate. The interaction Lagrangian takes the form:

Lint = −φ∗[κ1χξ + κ∗2η̄ξ̄]− φ[κ∗1χ̄ξ̄ + κ2ηξ] . (4.37)

Consider the scattering of an initial boson-fermion state into its charge-conjugated final state

via the exchange of a neutral fermion. The relevant diagrams are shown in Fig. 16 plus the

corresponding diagrams with the initial and final scalars crossed. We define the four-momentum

k to be the sum of the two initial state four-momenta as shown in Fig. 16. The derivation of
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Figure 16: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the
initial and final scalar lines.

the amplitude is similar to the ones given previously, and we end up with

iM =
−i

k2 −m2
ξ

{
κ1κ

∗
2[x̄(~p2, s2)σ ·k x(~p1, s1) + y(~p2, s2)σ ·k ȳ(~p1, s1)]

+mξ

[
κ2

1y(~p2, s2)x(~p1, s1) + (κ∗2)
2x̄(~p2, s2)ȳ(~p1, s1)

]}
+ (crossed) . (4.38)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly

treated. For example, consider the amplitude for the elastic scattering of a charged fermion

and a neutral vector boson. Again taking the interactions as given in eq. (4.32), the relevant

diagrams are those shown in Fig. 17, plus four diagrams (not shown) obtained from these by

crossing the initial and final state vectors.

k

χ

χ

χ

k

η

η

η

χ

χ η

η η

η χ

χ

Figure 17: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a charged Dirac fermion. There are four more diagrams, obtained from these
by crossing the initial and final vector lines.
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Applying the Feynman rules following from eq. (4.28) as before, one obtains the following

matrix element

iM =
−i

k2 −m2
ξ

{
G2
Lx̄(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1 x(~p1, s1) +G2

Ry(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1ȳ (~p1, s1)

−mGLGR
[
y(~p2, s2)σ ·ε∗2 σ ·ε1 x(~p1, s1) + x̄(~p2, s2)σ ·ε∗2 σ ·ε1 ȳ(~p1, s1)

]}
+ (crossed) (4.39)

and the assignments of momenta and spins are as before.

The computation of the amplitude for the scattering of a charged fermion and a charged

vector boson is straightforward and will not be given explicitly here.

Finally, let us work out an example with four external-state fermions. Consider the case of

elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the

interaction of eq. (4.25). The diagrams for scattering initial fermions labeled 1, 2 into final state

fermions labeled 3, 4 are shown in Fig. 18. The resulting matrix element is:

iM =
−i

s−m2
φ

{
λ2(x1x2)(y3y4) + (λ∗)2(ȳ1ȳ2)(x̄3x̄4) + |λ|2 [(x1x2)(x̄3x̄4) + (ȳ1ȳ2)(y3y4)]

}

+(−1)
−i

t−m2
φ

{
λ2(y3x1)(y4x2) + (λ∗)2(x̄3ȳ1)(x̄4ȳ2) + |λ|2 [(x̄3ȳ1)(y4x2) + (y3x1)(x̄4ȳ2)]

}

+
−i

u−m2
φ

{
λ2(y4x1)(y3x2) + (λ∗)2(x̄4ȳ1)(x̄3ȳ2) + |λ|2 [(x̄4ȳ1)(y3x2) + (y4x1)(x̄3ȳ2)]

}
,

(4.40)
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Figure 18: Tree-level Feynman diagrams contributing to the elastic scattering of identical
neutral Majorana fermions via scalar exchange in the s-channel (top row), t-channel (middle
row), and u-channel (bottom row).
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where xi ≡ x(~pi, si), yi ≡ y(~pi, si), mφ is the mass of the exchanged scalar, s = (p1 + p2)
2,

t = (p1 − p3)
2 and u = (p1 − p4)

2. The relative minus sign (in parentheses) between the t-

channel diagram and the s and u-channel diagrams is obtained by observing that 3142 is an odd

permutation and 4132 is an even permutation of 1234.23

Eq. (4.40) can be factorized with respect to the scalar line:

iM =
−i

s−m2
φ

(λx1x2 + λ∗ȳ1ȳ2)(λy3y4 + λ∗x̄3x̄4) +
i

t−m2
φ

(λy3x1 + λ∗x̄3ȳ1)(λy4x2 + λ∗x̄4ȳ2)

+
−i

u−m2
φ

(λy4x1 + λ∗x̄4ȳ1)(λy3x2 + λ∗x̄3ȳ2). (4.41)

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates

the typical feature that, compared to the four-component formalism, two-component fermion

Feynman rules yield more diagrams, although the contribution of each of the diagrams is simpler.

4.6 Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation,

taking into account the possibilities of loop-induced mixing and absorptive parts corresponding

to decays to intermediate states. This formalism is useful in the computation of loop-corrected

physical pole masses.

Consider a theory with left-handed fermion degrees of freedom ψ̂i labeled by an index

i = 1, 2, . . . , N . Associated which each ψ̂i is a right-handed fermion
¯̂
ψi, where the flavor labels

are treated as described below eq. (3.61). The theory is assumed to contain arbitrary interactions,

which we will not need to refer to explicitly. As discussed in Section 3.2, we diagonalize the

fermion mass matrix and identify the fermion mass-eigenstates ψi as indicated in eq. (4.10).

In general, the mass-eigenstates consist of neutral Majorana fermions ξk (k = 1, . . . N − 2n)

and Dirac fermion pairs χ` and η` (` = 1, . . . , n).24 With respect to this basis, the symmetric

N×N tree-level fermion mass matrix, mij, is made up of diagonal elements mk and 2×2 blocks
( 0 m`
m` 0

)
along the diagonal, where the mk and m` are real and non-negative. Since mij is real,

the height of the flavor indices is not significant. Nevertheless, it is useful to define mij ≡mij in

order to maintain the convention that two repeated flavor indices are summed when one index

is raised and the other is lowered.25 Note that mikm
kj = mikmkj = m2

i δ
j
i is a diagonal matrix.

The full, loop-corrected Feynman propagators with four-momentum pµ are defined by the

Fourier transforms of vacuum expectation values of time-ordered products of bilinears of the

23Note that we would have obtained the same sign for the u-channel diagram had we crossed the initial state
fermion lines instead of the final state fermion lines.

24In order to have a unified description, we shall take the flavor index of all left-handed fields (including ηk) in
the lowered position in this subsection, in contrast to the convention adopted in subsections 3.2 and 4.3.

25We will soon be suppressing the indices, so the reason for the bar on mij is merely to distinguish the lowered-
index mass matrix.
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β̇α

ji
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ip·σαβ̇ Ci
j

α̇ β
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p

ip·σα̇β (CT)ij

α̇ β̇

i j

iδα̇β̇ Dij

α β

i j

iδα
β Dij

Figure 19: The full, loop-corrected propagators for two-component fermions are associated
with functions C(p2)i

j [and its matrix transpose], D(p2)ij , and D(p2)ij , as shown. The shaded
boxes represent the sum of all connected Feynman diagrams, with external legs included. The
four-momentum p flows from right to left.

fully interacting two-component fermion fields [cf. footnotefnft]. Following eqs. (4.1)–(4.4), we

define:

〈0| Tψαi(x)ψ̄jβ̇(y) |0〉FT = ip·σαβ̇ Ci
j(p2) , (4.42)

〈0| T ψ̄α̇i(x)ψβj (y) |0〉FT = ip·σα̇β (CT) ij(p
2) , (4.43)

〈0| T ψ̄α̇i(x)ψ̄j
β̇
(y) |0〉FT = iδα̇β̇ Dij(p2) , (4.44)

〈0| Tψαi(x)ψβj (y) |0〉FT = iδα
β Dij(p

2) , (4.45)

where

(CT)ij ≡ Cj
i . (4.46)

One can derive eq. (4.43) from eq. (4.42) by first writing

ψ̄α̇i(x)ψβj (y) = −εβα εα̇β̇ψαj(y)ψ̄iβ̇(x) , (4.47)

where the minus sign arises due to the anticommutativity of the fields, and then using eq. (2.22);

the interchange of x and y (after FT) simply changes pµ to −pµ.
In general, D and D are complex symmetric matrices, and D = D?. The matrix C

satisfies the hermiticity condition [CT]? = C. Here, we have introduced the star symbol to

mean that a quantity Q? is obtained from Q by taking the complex conjugate of all Lagrangian

parameters appearing in its calculation, but not taking the complex conjugates of Euclideanized

loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths

to multi-particle intermediate states. That is, the dispersive part of C is hermitian and the

absorptive part of C is anti-hermitian.

The diagrammatic representations of the full propagators are displayed in Fig. 19, where

Ci
j, Dij , and Dij defined above are each N×N matrix functions. Note that the second diagram

of Fig. 19, when flipped by 180◦ about the vertical axis, is equivalent to the first diagram of

Fig. 19 (with p→ −p, α→ β, β̇ → α̇ and i↔ j). In analogy with Fig. 3, one could replace the

first two diagrammatic rules of Fig. 19 with a single rule:
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β̇α

ji

p

ip·σαβ̇ Ci
j or −ip·σβ̇α (CT)j i

where we have used eq. (4.46) to rewrite the second version of the rule in terms of CT. Indeed,

by using the second version of the above rule and flipping the corresponding diagram by 180◦

as described above, one reproduces the rule of the second diagram of Fig. 19.

In what follows, we prefer to keep the first two rules of Fig. 19 as separate entities. This

will permit us to conveniently assemble the four diagrams of Fig. 19 into a 2 × 2 block matrix

of two-component propagators [c.f. eq. (E.58)]. In addition, by choosing the momentum flow in

the two-component propagators from right to left, the left-to-right orderings of the spinor labels

of the diagrams coincide with the ordering of spinor indices that occurs in the corresponding

algebraic representations. Thus, we can multiply diagrams together and interpret them as the

product of the respective algebraic quantities taken from left to right in the normal fashion.

Starting at tree-level and comparing with Fig. 2, the full propagator functions are given by:

Ci
j = δi

j/(p2 −m2
i ) + . . . (4.48)

Dij = mij/(p2 −m2
i ) + . . . (4.49)

Dij = mij/(p
2 −m2

i ) + . . . , (4.50)

with no sum on i in each case. They are functions of the external momentum invariant p2

and of the masses and couplings of the theory. Inserting the leading terms [eqs. (4.48)–(4.50)]

into Fig. 19 and organizing the result in a 2 × 2 block matrix of two-component propagators

reproduces the usual four-component fermion tree-level propagator given in eq. (E.58).

The computation of the full propagators can be organized, as usual in quantum field theory,

in terms of one-particle irreducible (1PI) self-energy functions. These are formally defined to be

the sum of all Feynman diagrams (excluding the tree-level) that contribute to the 1PI two-point

Green function. Diagrammatically, the 1PI self-energy functions are defined in Fig. 20.

p

βα̇

i j

−ip·σα̇βΞi
j

p

β̇α

i j

−ip·σαβ̇(ΞT)ij

α β

i j

−iδαβΩij

α̇ β̇

i j

−iδα̇β̇Ωij

Figure 20: The self-energy functions for two-component fermions are associated with functions
Ξ(p2)i

j [and its matrix transpose], Ω(p2)ij , and Ω(p2)ij , as shown. The shaded circles represent
the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs are
amputated. The four-momentum p flows from right to left.
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As in the case of the full loop-corrected propagators, [ΞT]? = Ξ and Ω = Ω?, where the star

symbol was defined in the paragraph following eq. (4.47), and (ΞT)ij ≡ Ξj
i.

We illustrate the computation of the full propagator by considering first the following dia-

grammatic identity (with momentum p flowing from right to left):

β̇α

ji
=

β̇α

ji

γ̇α

ki

δ

`

β̇

j

γ̇α

ki

δ̇

`

β̇

j

γα

ki

δ

`

β̇

j

γα

ki

δ̇

`

β̇

j

=

+ +

+ +

(4.51)

Similar diagrammmatic identities can be constructed for the three other full loop-corrected

propagators of Fig. 19. The resulting four equations can be neatly summarized by the following

matrix diagrammatic identity:





 =













1 0

0 1


+
















(4.52)

We have chosen the labeling and momentum flow in Figs. 19 and 20 such that the spinor

and flavor labels of the diagrams appear in the appropriate left-to-right order to permit the

interpretation of eq. (4.52) as a matrix equation. The algebraic representation of eq. (4.52) can

be written as F = T + TSF , where F is the matrix of full loop-corrected propagators, T is the

matrix of tree-level propagators and S is the matrix of self-energy functions. Multiplying26 on

the left by T−1 and on the right by F−1 yields T−1 = F−1 + S. Thus, F = [T−1 − S]−1. In

pictures:





 =










−1

−










−1

. (4.53)

26Alternatively, one can solve eq. (4.52) by iteration. This yields:

F = T + TS(T + TS(T + TS(· · · ))) = T + TST + TSTST + . . . = T [1 + ST + (ST )2 + . . .] = T [1 − ST ]−1 ,

where in the last step, we have summed the geometric series. Taking the inverse of F = T [1−ST ]−1, multiplying
out the resulting expression and then taking the inverse of both sides yields eq. (4.53).
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We evaluate the tree-level propagator matrix and its inverse using eqs. (4.48)–(4.50), keeping

in mind that the direction of momentum flow is from right to left:





 =

1

p2 −m2
i

(
imij δα

β ip·σαβ̇ δij

ip·σα̇β δij imij δα̇β̇

)
, (4.54)







−1

=

(
imij δα

β −ip·σαβ̇ δij
−ip·σα̇β δij imij δ

α̇
β̇

)
, (4.55)

where we follow the index structure defined in Figs. 19 and 20. Inserting eq. (4.55) into eq. (4.53),

one obtains a 4N × 4N matrix equation for the full propagator functions:

(
iD ip·σC

ip·σCT iD

)
=

(
i(m + Ω) −ip·σ (1−ΞT)

−ip·σ (1−Ξ) i(m + Ω)

)−1

, (4.56)

where 1 is the N × N identity matrix. The right hand side of eq. (4.56) can be evaluated by

employing the following identity for the inverse of a block-partitioned matrix [71]:

(
P Q
R S

)−1

=

(
(P −QS−1R)−1 (R− SQ−1P )−1

(Q− PR−1S)−1 (S −RP−1Q)−1

)
, (4.57)

under the assumption that all inverses appearing in eq. (4.57) exist. Applying this result to

eq. (4.56), we obtain

C−1 = p2(1−Ξ)− (m + Ω)(1 −ΞT)−1(m + Ω) , (4.58)

D−1 = p2(1−Ξ)(m + Ω)−1(1−ΞT)− (m + Ω) , (4.59)

D
−1

= p2(1−ΞT)(m + Ω)−1(1−Ξ)− (m + Ω) . (4.60)

Note that eq. (4.60) is consistent with eq. (4.59) as Ξ? = ΞT.

The pole mass can be found most easily by considering the rest frame of the (off-shell)

fermion, in which the space components of pµ vanish. This reduces the spinor-index dependence

to a triviality. Setting pµ = (
√
s ; 0), we search for values of s where the inverse of the full

propagator has a zero eigenvalue. This is equivalent to setting the determinant of the inverse of

the full propagator to zero. Here we shall use the well-known formula for the determinant of a

block-partitioned matrix [71]:

det

(
P Q

R S

)
= det P det (S −RP−1Q) . (4.61)

The end result is that the poles of the full propagator (which are in general complex),

spole,j ≡M2
j − iΓjMj , (4.62)
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are formally the solutions to the non-linear equation27

det
[
s1− (1−ΞT)−1(m + Ω)(1−Ξ)−1(m + Ω)

]
= 0 , (4.63)

with s ≡ p2.

Some care is required in using eq. (4.63), since the pole squared mass always has a non-

positive imaginary part, while the loop integrals used to find the self-energy functions are complex

functions of a real variable s that is given an infinitesimal positive imaginary part. Therefore,

eq. (4.63) should be solved iteratively by first expanding the self-energy function matrices Ξ,

Ω and Ω in a series in s about either m2
j + iε or M 2

j + iε. The complex pole mass quantities

spole,j are renormalization-group and gauge invariant physical observables. Examples are given

in subsections 6.23 and 6.24.

The results of this section can be applied to an arbitrary collection of fermions (both

Majorana or Dirac). However, it is convenient to treat separately the case where all fermions

are Dirac fermions (consisting of pairs of two-component fields χi and ηi). As discussed in

Section 3.2, the Dirac fermion mass-eigenstates are defined in eq. (3.80) and are determined by

the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass

basis, we denote the diagonal Dirac fermion mass matrix by M ij . The elements of this matrix

are real and non-negative. Nevertheless, it will be convenient as before to define M ij ≡M ij to

maintain covariance when manipulating tensors with flavor indices.

At tree-level, there are four propagators for each pair of χ and η fields as shown in Fig. 5.

The corresponding full, loop-corrected propagators are shown in Fig. 21.

χ χ
β̇α

ji

p

ip·σαβ̇ SR i
j

η η
α̇ β

i j

p

ip·σα̇β (ST

L)ij

η χ
α̇ β̇

i j

iδα̇β̇ SD
ij

χ η
α β

i j

iδα
β (S T

D)ij

Figure 21: The full, loop-corrected propagators for Dirac fermions, represented by pairs of
two-component (oppositely charged) fermion fields χi and ηi, are associated with functions
SR(p2)i

j , ST

L(p2)ij, SD(p2)ij , and S T

D(p2)ij , as shown. The shaded boxes represent the sum of
all connected Feynman diagrams, with external legs included. The four-momentum p and the
charge of χ flow from right to left.

The naming and sign conventions employed for the full, loop-corrected Dirac fermion propagator

functions in Fig. 21 derives from the correponding functions used in the more traditional four-

component treatment presented in Appendix E [c.f. eq. (E.79)].

27The determinant of the inverse of the full propagator [the inverse of eq. (4.56)] is equal to eq. (4.63) multiplied
by det [−(1 − Ξ)(1 − Ξ

T)]. We assume that the latter does not vanish. This must be true perturbatively since
the eigenvalues of Ξ are one-loop (or higher) quantities, which one assumes cannot be as large as 1.
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In general, the complex matrices SR and SL satisfy hermiticity conditions [ST

R]? = SR and

[ST

L]? = SL, whereas the complex matrices SD and SD are related by SD = S ?
D, where the

star symbol is defined in the paragraph below eq. (4.47). In contrast to the general case treated

earlier, SR and SL are unrelated and SD is a complex matrix (not necessarily symmetric).

Instead of working in a χ–η basis for the two-component Dirac fermion fields, one can

Takagi-digonalize the fermion mass matrix. In the new ψ-basis, the loop-corrected propagators

of Fig. 19 are applicable. It is easy to check that the number of independent functions is the

same in both methods for treating Dirac fermions. In particular, the loop-corrected propagator

functions in the ψ-basis are given in terms of the corresponding functions in the χ–η basis by:28

C =

(
SR 0
0 SL

)
, D =

(
0 ST

D

SD 0

)
, D =

(
0 S

T

D

SD 0

)
. (4.64)

We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the

χ–η basis, where the corresponding self-energy functions are defined in Fig. 22.

p

χ χ
βα̇

i j

−ip·σα̇βΣL i
j

η η

p

β̇α

i j

−ip·σαβ̇(ΣT

R)ij

η χ
α β

i j

−iδαβΣD
ij

χ η
α̇ β̇

i j

−iδα̇β̇(ΣT

D)ij

Figure 22: The self-energy functions for two-component Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields χi and ηi, are associated with functions
ΣL(p2)i

j , ΣT

R(p2)ij, ΣD(p2)ij, and ΣT

D(p2)ij , as shown. The shaded circles represent the sum of
all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated.
The four-momentum p flows from right to left.

As before, the naming and sign conventions employed for the Dirac fermion self-energy functions

above derives from the correponding functions used in the more traditional four-component

treatment of Appendix E [c.f. eq. (E.80)].

Once again, the complex matrices ΣL and ΣR satisfy hermiticity conditions [ΣT

L]? = ΣL

and [ΣT

R]? = ΣR, whereas the complex matrices ΣD and ΣD are related by ΣD = Σ?
D, where

the star symbol is defined in the paragraph below eq. (4.47). Likewise, ΣL and ΣR are unrelated

and ΣD is a complex matrix (not necessarily symmetric). The self-energy functions in the ψ-

basis are given in terms of the corresponding functions in the χ–η basis by:28

Ξ =

(
ΣL 0
0 ΣR

)
, Ω =

(
0 ΣT

D

ΣD 0

)
, Ω =

(
0 Σ

T

D

ΣD 0

)
. (4.65)

28The simple forms of C in eq. (4.64) and Ξ in eq. (4.65) motivate our definitions of SL and ΣR with the
transpose as indicated in Figs. 21 and 22, respectively.
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In the case of Dirac fermions fields, eq. (4.53) still holds in the χ–η basis, which yields:

(
iS T

D ip·σSR

ip·σ ST

L iSD

)
=

(
i(M + ΣD) −ip·σ (1−ΣT

R)

−ip·σ (1−ΣL) i(M + ΣT

D)

)−1

, (4.66)

Using eq. (4.57), it follows that:

SL
−1 = p2(1−ΣR)− (M + ΣD)(1−ΣT

L)−1(M + ΣT

D) , (4.67)

SR
−1 = p2(1−ΣL)− (M + Σ

T

D)(1−ΣT

R)−1(M + ΣD) , (4.68)

SD
−1 = p2(1−ΣL)(M + ΣD)−1(1−ΣT

R)− (M + Σ
T

D) , (4.69)

SD

−1
= p2(1−ΣT

L)(M + ΣD)−1(1−ΣR)− (M + ΣT

D) . (4.70)

Note that eq. (4.70) is consistent with eq. (4.69) as Σ?
L,R = ΣT

L,R.

The pole mass is now easily computed using the technique previously outlined. In particular,

eq. (4.63) is replaced by:

det
[
s1− (1−ΣT

R)−1(M + ΣD)(1−ΣL)−1(M + ΣT

D)
]

= 0 , (4.71)

which determines the complex pole squared masses spole of the corresponding Dirac fermions.

Again, the self-energy functions should be expanded in a series in s about a point with an

infinitesimal positive imaginary part.

Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac

fermions (such as QED or QCD). In this case, the following relations hold among the loop-

corrected propagator functions and self-energy functions, respectively:29

SRi
j = (ST

L)ij , SD
ij = (S T

D)ij , (4.72)

ΣLi
j = (ΣT

R)ij , ΣD
ij = (ΣT

D)ij . (4.73)

By imposing eq. (4.73) on eqs. (4.67)–(4.70) and recalling that M ij = M ij, it is straightforward

to verify that eq. (4.72) is satisfied.

5 Conventions for fermion and anti-fermion names and fields

In this section, we discuss conventions for labeling Feynman diagrams that contain two-component

fermion fields of the Standard Model (SM) and its minimal supersymmetric extension (MSSM).

In the case of Majorana fermions, there is a one-to-one correspondence between the par-

ticle names and the unbarred ( 1
2 , 0) [left-handed] fields. In contrast, for Dirac fermions there

are always two distinct two-component fields that correspond to each particle name. This is

illustrated in Table 1, which lists the SM and MSSM fermion particle names together with the

29These relations are derived using four-component spinor methods in Appendix E [cf. eqs. (E.87) and (E.88)].
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Table 1: Fermion and anti-fermion names and two-component fields in the Standard Model and
the MSSM. In the listing of two-component fields, the first is an unbarred ( 1

2 , 0) [left-handed]
field and the second is a barred (0, 1

2) [right-handed] field. (In this table, neutrinos are considered
to be exactly massless and the left-handed antineutrino ν c is absent from the spectrum).

Fermion name Two-component fields

`− (lepton) ` , `c

`+ (anti-lepton) `c , `

ν (neutrino) ν , −

ν̄ (antineutrino) − , ν

q (quark) q , qc

q̄ (anti-quark) qc , q

f (quark or lepton) f , f c

f̄ (anti-quark or anti-lepton) f c , f

Ñi (neutralino) χ0
i , χ

0
i

C̃+
i (chargino) χ+

i , χ
−
i

C̃−
i (anti-chargino) χ−

i , χ
+
i

g̃ (gluino) g̃ , g̃

corresponding two-component fields. For each particle, we list the two-component field with the

same quantum numbers, i.e., the field that contains a creation operator for that one-particle

state when acting to the right on the vacuum state |0〉.
There is an option of labeling fermion lines in Feynman diagrams by particle names or by

field names; each choice has advantages and disadvantages.30 In all of the examples that follow,

we have chosen to eliminate the possibility of ambiguity as follows. We always label fermion lines

with two-component fields (rather than particle names), and adopt the following conventions:

• In the Feynman rules for interaction vertices, the external lines are always labeled by the

unbarred ( 1
2 , 0) [left-handed] field, regardless of whether the corresponding arrow is pointed in

or out of the vertex. Two-component fermion lines with arrows pointing away from the vertex

correspond to dotted indices, and two-component fermion lines with arrows pointing toward the

vertex always correspond to undotted indices. This also applies to Feynman diagrams where

the initial state and the final state roles are ambiguous (such as self-energy diagrams).

30Unfortunately, the notation for fermion names can be ambiguous because some of the symbols used also
appear as names for one of the two-component fermion fields. In practice, it should be clear from the context
which set of names are being employed.
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• Internal fermion lines in Feynman diagrams are also always labeled by the unbarred ( 1
2 , 0)

[left-handed] field(s). Internal fermion lines containing a propagator with opposing arrows can

carry two labels (see e.g. Fig. 15).

• Initial-state external fermion lines (which always have physical four-momenta pointing

into the vertex) in Feynman diagrams are labeled by the corresponding unbarred ( 1
2 , 0) [left-

handed] field if the arrow is into the vertex, and by the barred (0, 1
2) [right-handed] field if the

arrow is away from the vertex.

• Final-state external fermion lines in complete Feynman diagrams (which always have

physical four-momenta pointing out of the vertex) are labeled by the corresponding barred

(0, 1
2) [right-handed] field if the arrow is into the vertex, and by the unbarred ( 1

2 , 0) [left-handed]

field if the arrow is away from the vertex.

In particular, the field labels used for external fermion lines always correspond to the same

conserved quantities (charges, lepton numbers, baryon numbers) as the corresponding physical

particle. As an example, for either initial or final states, the two-component fields e and ec

both represent the negatively charged electron, conventionally denoted by e−, whereas both ec

and e represent the positively charged positron, conventionally denoted by e+ (as indicated in

Table 1). The rules for using these states as external particles are summarized in Fig. 23.

Initial-state e−:
e ec

Initial-state e+:
ec e

Final-state e−:
e ec

Final-state e+:
ec e

Figure 23: The two-component field labeling conventions for external fermion lines in a Feyn-
man diagram for a physical process. The top row corresponds to an initial-state electron, the
second row to an initial-state positron, the third row to a final-state electron, and the fourth
row to a final-state positron. The labels above each line are the two-component field names.
The corresponding conventions for a massless neutrino are obtained by deleting the diagrams
with ec or ec, and of course changing e and e to ν and ν.
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Initial-state Ñi:
χ0
i χ0

i

Final-state Ñi:
χ0
i χ0

i

Figure 24: The two-component field labeling conventions for external neutralino lines in a
Feynman diagram for a physical process. The top row corresponds to an initial-state neutralino,
and the second row to a final-state neutralino. The labels above each line are the two-component
field names. (The neutralino is its own antiparticle.)

The applicaiton of our naming conventions to processes involving Majorana fermions is

completely straightforward. For example, the conventions for employing the neutralino states

as external particles are summarized in Fig. 24.

As a simple example, consider Bhabha scattering (e−e+ → e−e+) [72]. We require the

the two-component Feynman rules for the QED coupling of electrons and positrons to the

photon, which are exhibited in Fig. 25. Consider the s-channel tree-level Feynman diagrams

that contribute to the invariant amplitude for e−e+ → e−e+. If we were to label the external

fermion lines according to the corresponding particle names (which does not conform to the

conventions introduced above), the result is shown in Fig. 26. One can find the identity of the

external two-component fermion fields by carefully observing the direction of the arrow of each

γ

α̇

β

ieσα̇βµ or −ieσµβα̇

e

e

(a)

γ
β

α̇

−ieσα̇βµ or ieσµβα̇

ec

ec

(b)

Figure 25: The two-component Feynman rules for the QED vertex. Following the conventions
outlined in this Section, we label these rules with the ( 1

2 , 0) [left-handed] fields e and ec, which
comprise the Dirac electron. Note that e > 0 and Qe = −1 [cf. Fig. 67].
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fermion line. For contrast, the same diagrams, relabeled with two-component fields following

the conventions established in this section (c.f. Fig. 23), are shown in Fig. 27. An explicit

computation of the invariant amplitude is given in Section 6.3.

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

Figure 26: Tree-level s-channel Feynman diagrams for e−e+ → e−e+, with the external lines
labeled according to the particle names. The initial state is on the left, and the final state is on
the right. Thus, the physical momentum flow of the external particles, as well as the flow of the
labeled charges, are indicated by the arrows adjacent to the corresponding fermion lines in the
upper left diagram.

e

e

ec

ec

ec

ec

ec

ec

e

e

e

e

ec

ec

e

e

Figure 27: Tree-level s-channel Feynman diagrams for e+e− → e+e−. These diagrams are the
same as in Fig. 26, but with the external lines relabeled by the two-component fermion fields
according to our conventions.
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6 Practical examples from the Standard Model and supersym-
metry

In this section we will present some examples to illustrate the use of the rules presented in this

paper. These examples are chosen from the Standard Model [73] and the MSSM [47–49], in

order to provide an unambiguous point of reference. In all cases, the fermion lines in Feynman

diagrams are labeled by two-component field names, rather than the particle names, as explained

in Section 5.

6.1 Top quark decay: t→ bW +

We begin by calculating the decay width of a top quark into a bottom quark and W + vector

boson. For simplicity, we treat this as a one-generation problem and ignore Cabibbo-Kobayashi-

Maskawa (CKM) [74] mixing among the three quark generations [see eq. (H.7) and the sur-

rounding text]. Let the four-momenta and helicities of these particle be (pt, λt), (kb, λb) and

(kW , λW ), respectively. Then p2
t = m2

t , k
2
b = m2

b and k2
W

= m2
W

and

2pt ·kW = m2
t −m2

b +m2
W , (6.1)

2pt ·kb = m2
t +m2

b −m2
W , (6.2)

2kW ·kb = m2
t −m2

b −m2
W . (6.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for

t → bW+ is the one shown in Fig. 28. The corresponding amplitude can be read off of the

Feynman rule of Fig. 67 in Appendix H. Here the initial-state top quark is a two-component

field t going into the vertex and the final-state bottom quark is created by a two-component

field b̄. Therefore the amplitude is given by:

iM = −i g√
2
ε∗µx̄bσ

µxt , (6.4)

where ε∗µ ≡ ε∗µ(kW , λW ) is the polarization vector of the W+, and x̄b ≡ x̄(~kb, λb) and xt ≡
x(~pt, λt) are the external-state wavefunction factors for the bottom and top quark. Squaring

this amplitude yields:

|M|2 =
g2

2
ε∗µεν(x̄bσ

µxt) (x̄tσ
νxb) , (6.5)

t(pt, λt)

W+(kW , λW )

b(kb, λb)

Figure 28: The Feynman diagram for t→ bW+ at tree level.
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where we have used equation (2.32). Next, we can average over the top quark spin polarizations

using eq. (3.56):
1

2

∑

λt

|M|2 =
g2

4
ε∗µεν x̄bσ

µ pt ·σ σνxb . (6.6)

Summing over the bottom quark spin polarizations in the same way yields a trace over spinor

indices:

1

2

∑

λt,λb

|M|2 =
g2

4
ε∗µεν Tr[σµpt ·σ σνkb ·σ] =

g2

2
ε∗µεν

(
pµt k

ν
b + kµb p

ν
t − gµνpt ·kb

)
, (6.7)

where we have used eq. (2.45). Finally we can sum over the W + polarizations according to:

∑

λW

ε∗µεν = −gµν + (kW )µ(kW )ν/m
2
W
. (6.8)

The result is:

1

2

∑

spins

|M|2 =
g2

2

[
pt ·kb + 2(pt ·kW )(kb ·kW )/m2

W

]
. (6.9)

After performing the phase space integration, one obtains:

Γ(t→ bW+) =
1

16πm3
t

λ1/2(m2
t ,m

2
W
,m2

b)


1

2

∑

spins

|M|2

 (6.10)

=
g2

64πm2
Wm

3
t

λ1/2(m2
t ,m

2
W
,m2

b)
[
(m2

t + 2m2
W )(m2

t −m2
W ) +m2

b(m
2
W − 2m2

t ) +m4
b

]
, (6.11)

where

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (6.12)

In the approximation mb � mW ,mt, one ends up with the well-known result [75]

Γ(t→ bW+) =
g2mt

64π

(
2 +

m2
t

m2
W

)(
1−

m2
W

m2
t

)2

, (6.13)

which exhibits the Nambu-Goldstone enhancement factor (m2
t /m

2
W

) for the longitudinal W

contribution compared to the two transverse W contributions [75].

6.2 Z0 vector boson decay: Z0 → f f̄

Consider the partial decay width of the Z0 boson into Standard Model fermion-antifermion final

states. There are two Feynman diagrams (as in the generic example of Fig. 12), shown in Fig. 29.

In the first diagram, the fermion particle f in the final state is created by a two-component field

f in the Feynman rule, and the anti-fermion particle f̄ by a two-component field f̄ . In the

second diagram, the fermion particle f in the final state is created by a two-component field
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Z0(p, λZ)

f(kf , λf )

f(kf , λf )

Z0(p, εµ)

f c(kf , λf )

f c(kf , λf )
(a) (b)

Figure 29: The Feynman diagrams for Z0 decay into a fermion-antifermion pair. Fermion lines
are labeled according to the two-component fermion field labeling convention (see Section 5).

f c, and the anti-fermion particle f̄ by a two-component field f c. Let us call the initial Z0 four-

momentum and helicity (p, λZ) and the final state fermion (f) and anti-fermion (f̄) momentum

and helicities (kf , λf ) and (kf , λf ), respectively. Then, k2
f = k2

f
= m2

f and p2 = m2
Z
, and

kf ·kf =
1

2
m2
Z
−m2

f , (6.14)

p·kf = p·kf = 1
2m

2
Z
. (6.15)

According to the rules of Fig. 67, the matrix elements for the two Feynman graphs are:

iMa = −i g
cW

(T f3 −Qfs2W ) εµx̄fσ
µyf , (6.16)

iMb = igQf

s2
W

cW
εµyfσ

µx̄f , (6.17)

where xi ≡ x(~ki, λi) and yi ≡ y(~ki, λi), for i = f, f , and εµ ≡ εµ(p, λZ).

Using the Bouchiat-Michel formulae developed in Appendix F, one can explicitly evaluate

Ma andMb as a function of the final state fermion helicities. The result of this computation is

given in eqs. (F.64) and (F.65). If the final state helicities are not measured, then it is simpler

to square the amplitude and sum over the final state spins.

It is convenient to define:

af ≡ T f3 −Qfs2W ; bf ≡ −Qfs
2
W
. (6.18)

Then the squared matrix element for the decay is, using eqs. (2.31) and (2.32),

|M|2 =
g2

c2
W

εµε
∗
ν

(
af x̄fσ

µyf + bfyfσ
µx̄f

)(
af ȳfσ

νxf + bfxfσ
ν ȳf

)
. (6.19)

Summing over the anti-fermion helicity using eqs. (3.56)–(3.59) gives:

∑

λf

|M|2 =
g2

c2
W

εµε
∗
ν

(
a2
f x̄fσ

µkf ·σσνxf + b2fyfσ
µkf ·σσν ȳf

−mfafbf x̄fσ
µσν ȳf −mfaf bfyfσ

µσνxf

)
. (6.20)
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Next, we sum over the fermion helicity:

∑

λf ,λf

|M|2 =
g2

c2
W

εµε
∗
ν

(
a2
fTr[σµkf ·σσνkf ·σ] + b2fTr[σµkf ·σσνkf ·σ]

−m2
fafbfTr[σµσν ]−m2

faf bfTr[σµσν ]
)
. (6.21)

Averaging over the Z0 polarization using

1

3

∑

λZ

εµεν∗ =
1

3

(
−gµν + pµpν/m

2
Z

)
(6.22)

and applying eqs. (2.43)–(2.45), one gets:

1

3

∑

spins

|M|2 =
g2

3c2
W

[
(a2
f + b2f )

(
2kf ·kf + 4 kf ·p kf ·p/m2

Z

)
+ 12af bfm

2
f

]
(6.23)

=
2g2

3c2
W

[
(a2
f + b2f )(m

2
Z
−m2

f ) + 6af bfm
2
f

]
, (6.24)

where we have used eqs. (6.14) and (6.15). After the standard phase-space integration, we obtain

the well-known result for the partial width of the Z 0:

Γ(Z0 → f f̄) =
Nf
c

16πmZ

(
1−

4m2
f

m2
Z

)1/2

1

3

∑

spins

|M|2

 (6.25)

=
Nf
c g2mZ

24πc2
W

(
1−

4m2
f

m2
Z

)1/2 [
(a2
f + b2f )

(
1−

m2
f

m2
Z

)
+ 6af bf

m2
f

m2
Z

]
. (6.26)

Here we have also included a factor of N f
c (equal to 1 for leptons and 3 for quarks) for the sum

over colors. (Since the Z0 is a color singlet, the color factor is simply equal to the dimension of

the color representation of the outgoing fermions.)

6.3 Bhabha scattering: e−e+ → e−e+

In our next example, we consider the computation of Bhabha scattering in QED (that is, we

we consider photon exchange but neglect Z0-exchange) [72]. Bhabha scattering has also been

computed using two-component spinors in [62]. We denote the initial state electron and positron

momenta and helicities by (p1, λ1) and (p2, λ2) and the final state electron and positron momenta

and helicities by (p3, λ3) and (p4, λ4), respectively. Neglecting the electron mass, we have in

terms of the usual Mandelstam variables s, t, u:

p1 ·p2 = p3 ·p4 ≡ 1
2s , (6.27)

p1 ·p3 = p2 ·p4 ≡ −1
2 t , (6.28)

p1 ·p4 = p2 ·p3 ≡ −1
2u , (6.29)
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ec

e

ec

e

e

e

e

e

ec

ec

ec

ec

e

ec

e

ec

Figure 30: Tree-level t-channel Feynman diagrams for e−e+ → e−e+, with the external lines
labeled according to the two-component field names. The momentum flow of the external
particles is from left to right.

and p2
i = 0 for i = 1, . . . , 4. There are eight distinct Feynman diagrams. First, there are four

s-channel diagrams, as shown in Fig. 27 with amplitudes that follow from the Feynman rules of

Fig. 25 (more generally, see Fig. 67 in Appendix H):

iMs =

(−igµν
s

)[
(−ie x1σµȳ2)(ie y3σν x̄4) + (−ie ȳ1σµx2)(ie y3σν x̄4)

+(−ie x1σµȳ2)(ie x̄3σνy4) + (−ie ȳ1σµx2)(ie x̄3σνy4)
]
, (6.30)

where xi ≡ x(~pi, λi) and yi ≡ y(~pi, λi), for i = 1, 4. The photon propagator in Feynman gauge

is −igµν/(p1 + p2)
2 = −igµν/s. Here, we have chosen to follow the fermion lines in the order

1, 2, 3, 4. This dictates in each term the use of either the σ or σ forms of the Feynman rules of

Fig. 25. One can group the terms of eq. (6.30) together more compactly:

iMs = e2
(−igµν

s

)
(x1σµȳ2 + ȳ1σµx2) (y3σν x̄4 + x̄3σνy4) . (6.31)

There are also four t-channel diagrams, as shown in Fig. 30. The corresponding amplitudes

for these four diagrams can be written:

iMt = (−1)e2
(−igµν

t

)
(x1σµx̄3 + ȳ1σµy3) (x2σν x̄4 + ȳ2σνy4) . (6.32)

Here, the overall factor of (−1) comes from Fermi-Dirac statistics, since the external fermion

wave functions are written in an odd permutation (1, 3, 2, 4) of the original order (1, 2, 3, 4)

established by the first term in eq. (6.30).

Fierzing each term using eqs. (2.55)–(2.57), and using eqs. (2.47) and (2.48), the total
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amplitude can be written as:

M =Ms +Mt = 2e2
[
1

s
(x1y3)(ȳ2x̄4) +

1

s
(ȳ1x̄3)(x2y4) +

(
1

s
+

1

t

)
(ȳ1x̄4)(x2y3)

+

(
1

s
+

1

t

)
(x1y4)(ȳ2x̄3)−

1

t
(x1x2)(x̄3x̄4) −

1

t
(ȳ1ȳ2)(y3y4)

]
. (6.33)

Squaring this amplitude and summing over spins, all of the cross-terms will vanish in the me → 0

limit. This is because each cross term will have an x or an x̄ for some electron or positron

combined with a y or a ȳ for the same particle, and the corresponding spin sum is proportional

tome [see eqs. (3.58) and (3.59)]. Hence, summing over final state spins and averaging over initial

state spins, the end result contains only the sum of the squares of the six terms in eq. (6.33):

1

4

∑

spins

|M|2 = e4
∑

λ1,λ2,λ3,λ4

{
1

s2
[(x1y3)(ȳ3x̄1)(ȳ2x̄4)(x4y2) + (ȳ1x̄3)(x3y1)(x2y4)(ȳ4x̄2)]

+

(
1

s
+

1

t

)2

[(ȳ1x̄4)(x4y1)(x2y3)(ȳ3x̄2) + (x1y4)(ȳ4x̄1)(ȳ2x̄3)(x3y2)]

+
1

t2
[(x1x2)(x̄2x̄1)(x̄3x̄4)(x4x3) + (ȳ1ȳ2)(y2y1)(y3y4)(ȳ4ȳ3)]

}
. (6.34)

Here we have used eq. (2.30) to get the complex square of the fermion bilinears. Performing

these spin sums using eqs. (3.56) and (3.57) and using the trace identities eq. (A.3):

1

4

∑

spins

|M|2 = 8e4
[
p2 ·p4 p1 ·p3

s2
+
p1 ·p2 p3 ·p4

t2
+

(
1

s
+

1

t

)2

p1 ·p4 p2 ·p3

]

= 2e4
[
t2

s2
+
s2

t2
+
(u
s

+
u

t

)2
]
. (6.35)

Thus, the differential cross section for Bhabha scattering is given by:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 =

2πα2

s2

[
t2

s2
+
s2

t2
+
(u
s

+
u

t

)2
]
. (6.36)

This agrees with the result of, for example, problem 5.2 of ref. [76].

6.4 Polarized Muon Decay

So far we have only treated cases where the initial state fermion spins are averaged and the final

state spins are summed. In the case of the polarized decay of a particle or polarized scattering

we must project out the appropriate polarization of the particles in the spin sums. This is

achieved by replacing the spin sums given in eqs. (3.56)-(3.59) by the corresponding polarized

spin projections eqs. (3.31)-(3.34). As an example, we consider the decay of a polarized muon.

Polarized muon decay has also been computed using two-component spinors in [62], however

with an effective four-fermion interaction.
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Figure 31: Feynman diagram for electroweak muon decay.

In Fig. 31, we show the single leading order Feynman diagram for muon decay, including

the definition of the momenta. We denote the mass of the muon by mµ, and neglect the electron

mass. We shall assume the muon is polarized with a (contravariant) spin four-vector31

sρ = (0; 0, 0, 1) , (6.37)

along the z-axis in the muon rest frame. The amplitude is then given by

iM =

(−ig√
2

)2 (
x̄νµσρxµ

)
(x̄eστyν̄e)

(−igρτ
DW

)
, (6.38)

where DW = (p − kνµ)
2 − M2

W is the denominator of the W -boson propagator. Here xµ ≡
x(~p, s) for the spin-polarized initial state muon, and x̄νµ ≡ x(~kνµ , λνµ), x̄e ≡ x̄(~ke, λe), and

yν̄e ≡ y(~kν̄e , λν̄e). Squaring the amplitude using eq. (2.32), we obtain

|M|2 =
g4

4D2
W

(
x̄νµσ

ρxµ
) (
x̄µσ

τxνµ
)
(x̄eσρyν̄e) (ȳν̄eστxe) (6.39)

Summing over the neutrino and electron spins using eqs. (3.56)-(3.57), and using eq. (3.44) for

the muon spin yields:

∑

λνµλeλν̄e

|M|2 =
g4

8D2
W

Tr[kνµ ·σ σρ(p·σ −mµs·σ)στ ] Tr[ke ·σ σρkν̄e ·σ στ ] , (6.40)

=
2g4

D2
W

ke ·kνµ kν̄e ·(p−mµs). (6.41)

To obtain the second line we have used the trace identity eq. (2.44) twice; note that the resulting

terms linear in the antisymmetric tensor do not contribute, but the term quadratic in the

antisymmetric tensor does.

The differential decay amplitude is now given by

dΓ =
1

2mµ
|M|2 d3~ke

(2π)32Ee

d3~kν̄e
(2π)32Eν̄e

d3~kνµ

(2π)32Eνµ
(2π)4δ4(p− ke − kν̄e − kνµ) , (6.42)

31Throughout this subsection µ and ν are particle labels and not Lorentz vector indices. Instead we use ρ, τ .
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f̄ (p1, λ1)
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φ0
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Figure 32: The Feynman diagrams for the decays φ0 → f f̄ , where φ0 = h0,H0, A0 are the
neutral Higgs scalar bosons of minimal supersymmetry, and f is a Standard Model quark or
lepton, and f is the corresponding antiparticle. We have labeled the external fermions according
to the two-component field names.

where Ei, i = e, ν̄e, νµ are the energies of the final state particles in the muon rest frame. In

the following we shall neglect both the electron mass and the momentum in the W -propagator

compared to the W -boson mass, so DW → −M2
W . We can now use the following identity to

integrate over the neutrino momenta [77]

∫
d3~kν̄e

(2π)32Eν̄e

d3~kνµ

(2π)32Eνµ
(2π)4δ4(q − kν̄e − kνµ)kρν̄ekτνµ =

1

96π
(q2gρτ + 2qρqτ ) , (6.43)

where q = p− ke. It follows that

dΓ =
g4

1536π4mµM4
W

[
q2 ke ·(p−mµs) + 2q ·ke q ·(p−mµs)

] d3~ke

Ee
(6.44)

In the muon rest frame ke = Ee(1; cos φ sin θ, sinφ sin θ, cos θ), so that q2 = m2
µ − 2Eemµ and

ke ·(p−mµs) = mµEe(1 + cos θ) and q ·ke = mµEe and q ·(p−mµs) = mµ(mµ −Ee −Ee cos θ).

Noting that the maximum energy of the electron is mµ/2 (when the neutrino and antineutrino

both recoil in the opposite direction), we obtain

dΓ

d(cos θ)
=

g4m2
µ

768π3M4
W

∫ mµ/2

0
dEeE

2
e

[
3− 4Ee

mµ
+

(
1− 4Ee

mµ

)
cos θ

]
(6.45)

=
g4m5

µ

12288π3M4
W

(
1− 1

3
cos θ

)
(6.46)

in agreement with ref. [77].

6.5 Neutral Higgs boson decays φ0 → ff , for φ0
= h0, H0, A0 in supersymmetry

In this subsection, we consider the decays of the neutral Higgs scalar bosons φ0 = h0, H0, and A0

of minimal supersymmetry into Standard Model fermion-antifermion pairs. The relevant tree-

level Feynman diagrams are shown in Fig. 32. The final state fermion is assigned four-momentum

p1 and polarization λ1, and the antifermion is assigned four-momentum p2 and polarization λ2.

We will first work out the case that f is a charge −1/3 quark or a charged lepton, and later

61



note the simple change needed for charge +2/3 quarks. Then the Feynman rules of Figure 70

of Appendix I tell us that the resulting amplitudes are:

iMa =
i√
2
Yf k

∗
dφ0 y1y2 , (6.47)

iMb =
i√
2
Yf kdφ0 x̄1x̄2 . (6.48)

Here Yf is the Yukawa coupling of the fermion, kdφ0 is the Higgs mixing parameter from eq. (I.6),

and the external wave functions are denoted x1 ≡ x(~p1, λ1), y1 ≡ y(~p1, λ1) for the fermion

and x2 ≡ x(~p2, λ2), y2 ≡ y(~p2, λ2) for the antifermion. Squaring the total amplitude iM =

iMa + iMb using eq. (2.30) results in:

|M|2 =
1

2
|Yf |2

[
|kdφ0 |2(y1y2 ȳ2ȳ1 + x̄1x̄2 x2x1) + (kdφ0)2x̄1x̄2 ȳ2ȳ1 + (k∗dφ0)

2y1y2 x2x1

]
. (6.49)

Summing over the final-state antifermion spin using eqs. (3.56)-(3.59) gives:

∑

λ2

|M|2 =
1

2
|Yf |2

[
|kdφ0 |2(y1p2 ·σȳ1 + x̄1p2 ·σx1)− (kdφ0)2mf x̄1ȳ1 − (k∗dφ0)

2mfy1x1

]
. (6.50)

Summing over the fermion spins in the same way yields:

∑

λ1,λ2

|M|2 =
1

2
|Yf |2

{
|kdφ0 |2(Tr[p2 ·σp1 ·σ] + Tr[p2 ·σp1 ·σ])− 2(kdφ0)2m2

f − 2(k∗dφ0)
2m2

f

}
(6.51)

= |Yf |2
{
2|kdφ0 |2p1 ·p2 − 2Re[(kdφ0)2]m2

f

}
(6.52)

= |Yf |2
{
|kdφ0 |2(m2

φ0 − 2m2
f )− 2Re[(kdφ0)2]m2

f

}
, (6.53)

where we have used the trace identity eq. (2.43) to obtain the second equality. The corresponding

expression for charge +2/3 quarks can be obtained by simply replacing kdφ0 with kuφ0 . The total

decay rates now follow from integration over phase space [78]

Γ(φ0 → ff) =
Nf
c

16πmφ0

(
1− 4m2

f/m
2
φ0

)1/2 ∑

λ1,λ2

|M|2. (6.54)

The factor of N f
c = 3 for quarks and 1 for leptons comes from the sum over colors.

Results for special cases are obtained by putting in the relevant values for the couplings

and the mixing parameters including eqs. (I.5) and (I.6). In particular, for the CP-even Higgs

bosons h0 and H0, kdφ0 and kuφ0 are real, so one obtains:

Γ(h0 → bb̄) =
3

16π
Y 2
b sin2 αmh0

(
1− 4m2

b/m
2
h0

)3/2
, (6.55)

Γ(h0 → cc̄) =
3

16π
Y 2
c cos2 αmh0

(
1− 4m2

c/m
2
h0

)3/2
, (6.56)

Γ(h0 → τ+τ−) =
1

16π
Y 2
τ sin2 αmh0

(
1− 4m2

τ/m
2
h0

)3/2
, (6.57)

Γ(H0 → tt̄) =
3

16π
Y 2
t sin2 αmH0

(
1− 4m2

t /m
2
H0

)3/2
, (6.58)

Γ(H0 → bb̄) =
3

16π
Y 2
b cos2 αmH0

(
1− 4m2

b/m
2
H0

)3/2
, (6.59)
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Figure 33: The Feynman diagram for ν̃e → C̃+
i e

− in the MSSM.

etc., which check with the expressions in Appendix B of ref. [79]. For the pseudo-scalar Higgs

boson A0, the mixing parameters kuA0 = i cos β0 and kdA0 = i sin β0 are purely imaginary, so

Γ(A0 → tt̄) =
3

16π
Y 2
t cos2 β0mA0

(
1− 4m2

t /m
2
A0

)1/2
, (6.60)

Γ(A0 → bb̄) =
3

16π
Y 2
b sin2 β0mA0

(
1− 4m2

b/m
2
A0

)1/2
, (6.61)

Γ(A0 → τ+τ−) =
1

16π
Y 2
τ sin2 β0mA0

(
1− 4m2

τ/m
2
A0

)1/2
. (6.62)

Note that the differing kinematic factors for the pseudo-scalar decays came about because

of the different relative sign between the two Feynman diagrams. For example, in the case of

h0 → bb, the matrix element is

iM =
i√
2
Yb sinα(y1y2 + x̄1x̄2), (6.63)

while for A0 → bb, it is

iM =
1√
2
Yb sinβ0(y1y2 − x̄1x̄2). (6.64)

The differing sign follows from the imaginary pseudo-scalar Lagrangian coupling, which is com-

plex conjugated in the second diagram.

6.6 Sneutrino decay ν̃e → C̃+
i e−

Next we consider the process of sneutrino decay ν̃e → C̃+
i e

− in minimal supersymmetry. Be-

cause only the left-handed electron can couple to the chargino and sneutrino (with the excellent

approximation that the electron Yukawa coupling is 0), there is just one Feynman diagram,

shown in Fig. 33. The external wave functions of the electron and chargino are denoted as

xe ≡ x(~ke, λe), and xC̃ ≡ x(~kC̃ , λC̃), respectively. From the corresponding Feynman rule given

in Fig. 75 of Appendix I, the amplitude is:

iM = −igVi1 x̄C̃ x̄e, (6.65)

where Vij is one of the two matrices used to diagonalize the chargino masses [cf. eq. (I.21].

Squaring this using eq. (2.30) yields:

|M|2 = g2|Vi1|2 (x̄C̃ x̄e)(xexC̃) . (6.66)
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Figure 34: The Feynman diagram for C̃+
i → ν̃ee

+ in the MSSM.

Now summing over the electron and chargino spin polarizations using eq. (3.56) yields

∑

λe,λC̃

|M|2 = g2|Vi1|2Tr[ke ·σ kC̃ ·σ] = 2g2|Vi1|2 ke ·kC̃ = g2|Vi1|2(m2
ν̃e −m2

C̃i
) , (6.67)

where we have used 2ke ·kC̃ = m2
ν̃e
−m2

C̃i
, neglecting the electron mass. Therefore, after inte-

grating over phase space in the standard way, the decay width is:

Γ(ν̃e → C̃+
i e

−) =
1

16πmν̃e

(
1−

m2
C̃i

m2
ν̃e

)

∑

λe,λC̃

|M|2

 =

g2

16π
|Vi1|2mν̃e

(
1−

m2
C̃i

m2
ν̃e

)2

, (6.68)

which agrees with ref. [80] and eq. (3.8) in ref. [48].

6.7 Chargino Decay C̃+
i → ν̃ee

+

Here again, there is just one Feynman diagram (neglecting the electron mass in the Yukawa

coupling) shown in Fig. 34. The external wave functions for the chargino and the positron

are denoted by xC̃ ≡ x(~pC̃ , λC̃) and ye ≡ y(~ke, λe), respectively. The fermion momenta and

helicities are denoted as in Fig. 34. As in the previous example, the amplitude can be directly

determined using the Feynman rule given in Fig. 75 in Appendix I:

M = −igV ∗
i1 xC̃ ye . (6.69)

Squaring this using eq. (2.30) yields:

|M|2 = g2|Vi1|2 (xC̃ye) (ȳex̄C̃) . (6.70)

Summing over the electron helicity and averaging over the chargino helicity using eqs. (3.56)

and (3.57) we obtain:

1
2

∑

λe,λC̃

|M|2 = 1
2g

2|Vi1|2Tr[ke ·σ pC̃ ·σ] = g2|Vi1|2ke ·pC̃ =
g2

2
|Vi1|2(m2

C̃i
−m2

ν̃e) . (6.71)

So the decay width is, neglecting the electron mass:

Γ(C̃+
i → ν̃e+) =

1

16πmC̃i

(
1−

m2
ν̃e

m2
C̃i

)
1

2

∑

λe,λC̃

|M|2

 =

g2

32π
|Vi1|2mC̃i

(
1−

m2
ν̃e

m2
C̃i

)2

, (6.72)

which agrees with ref. [80].
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Figure 35: The Feynman diagrams for Ñi → Ñjφ
0 in the MSSM.

6.8 Neutralino Decays Ñi → φ0Ñj, for φ0
= h0, H0, A0

Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs scalar

boson φ0 = h0, H0, or A0. The two tree-level Feynman graphs are shown in Fig. 35, where we

have also labeled the momenta and helicities. We denote the masses for the neutralinos and the

Higgs boson as m eNi
, m eNj

, and mφ0 . Using the Feynman rules of Fig. 74, the amplitudes are

respectively given by

iM1 = −iY xiyj , (6.73)

iM2 = −iY ∗ ȳix̄j , (6.74)

where the coupling Y ≡ Y φ0χ0
iχ

0
j is defined in eq. (I.25), and the external wave functions are

xi ≡ x(~pi, λi), ȳi ≡ ȳ(~pi, λi), yj ≡ y(~kj, λj), and x̄j ≡ x̄(~kj , λj).
Taking the square of the total matrix element using eq. (2.30) gives:

|M|2 = |Y |2(xiyj ȳjx̄i + ȳix̄jxjyi) + Y 2xiyjxjyi + Y ∗2ȳix̄j ȳjx̄i. (6.75)

Now summing over the final-state neutralino spins using eqs. (3.56)-(3.59) yields

∑

λj

|M|2 = |Y |2(xikj ·σx̄i + ȳikj ·σyi)− Y 2m eNj
xiyi − Y ∗2m eNj

ȳix̄i. (6.76)

Averaging over the initial-state neutralino spins in the same way gives

1

2

∑

λi,λj

|M|2 =
1

2
|Y |2(Tr[kj ·σpi ·σ] + Tr[kj ·σpi ·σ]) + Re[Y 2]m eNi

m eNj
Tr[1] (6.77)

= 2|Y |2pi ·kj + 2Re[Y 2]m eNi
m eNj

(6.78)

= |Y |2(m2
eNi

+m2
eNj
−m2

φ0) + 2Re[Y 2]m eNi
m eNj

, (6.79)

where we have used eq. (2.43) to obtain the second equality. The total decay rate is therefore

Γ(Ñi → φ0Ñj) =
1

16πm3
eNi

λ1/2(m2
eNi
,m2

φ0 ,m
2
eNj

)


1

2

∑

λi,λj

|M|2

 (6.80)

=
m eNi

16π
λ1/2(1, rφ, rj)

[
|Y φ0χ0

iχ
0
j |2(1 + rj − rφ) + 2Re

[(
Y φ0χ0

iχ
0
j
)2]√

rj

]
, (6.81)
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Figure 36: The Feynman diagrams for Ñi → ÑjZ
0 in the MSSM.

where rj ≡ m2
eNj
/m2

eNi
and rφ ≡ m2

φ0/m
2
eNi

. The results for φ0 = h0,H0, A0 can now be obtained

by using eqs. (I.5) and (I.6) in eq. (I.25). In comparing eq. (6.81) with the original calculation

in [81], it is helpful to employ eqs. (4.51) and (4.53) of [82]. The results agree.

6.9 Ñi → Z0Ñj

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. 36 with the

definitions of the helicities and the momenta. The two amplitudes are given by32

iM1 = −i g
cW
O′′L
ji xiσ

µx̄jε
∗
µ (6.82)

iM2 = i
g

cW
O′′L
ij ȳiσ

µyjε
∗
µ (6.83)

where the external wave functions are xi = x(~pi, λi), ȳi = ȳ(~pi, λi), x̄j = x̄(~kj, λj), yj =

y(~kj, λj), and ε∗µ = ε∗µ(~kZ , λZ). Noting that O′′L
ji = O′′L∗

ij [see eq. (I.20)], and applying eqs. (2.31)

and (2.32), we find that the matrix element squared is:

|M|2 =
g2

c2W
ε∗µεν

[
|O′′L

ij |2(xiσµx̄jxjσν x̄i + ȳiσ
µyj ȳjσ

νyi) (6.84)

−
(
O′′L
ij

)2
ȳiσ

µyjxjσ
ν x̄i −

(
O′′L∗
ij

)2
xiσ

µx̄j ȳjσ
νyi

]
(6.85)

Now summing over the final-state neutralino spin using eqs. (3.56)-(3.59) yields:

∑

λj

|M|2 =
g2

c2W
ε∗µεν

[
|O′′L

ij |2(xiσµkj ·σσν x̄i + ȳiσ
µkj ·σσνyi) (6.86)

+
(
O′′L
ij

)2
m eNj

ȳiσ
µσν x̄i +

(
O′′L∗
ij

)2
m eNj

xiσ
µσνyi

]
. (6.87)

Averaging over the initial-state neutralino spins in the same way gives

1

2

∑

λi,λj

|M|2 =
g2

2c2W
ε∗µεν

[
|O′′L

ij |2
(
Tr[σµkj ·σσνpi ·σ] + Tr[σµkj ·σσνpi ·σ]

)
(6.88)

−
(
O′′L
ij

)2
m eNi

m eNj
Tr[σµσν ]−

(
O′′L∗
ij

)2
m eNi

m eNj
Tr[σµσν ]

]
(6.89)

=
2g2

c2W
ε∗µεν

{
|O′′L

ij |2
(
kµj p

ν
i + pµi k

ν
j − pi ·kjgµν

)
−Re

[(
O′′L
ij

)2]
m eNi

m eNj
gµν
}
, (6.90)

32When comparing with the 4-component Feynman rule in ref. [48] note that O′′L
ij = −O′′R∗

ij , c.f. eq. (I.20).
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Figure 37: Feynman diagrams for e−e− → ẽ−L ẽ
−
R.

where in the last equality we have applied eqs. (2.43)-(2.45). Now using

∑

λZ

εµ∗εν = −gµν + kµZk
ν
Z/m

2
Z , (6.91)

we obtain

1

2

∑

λi,λj ,λZ

|M|2 =
2g2

c2W

{
|O′′L

ij |2
(
−pi ·kj + 2pi ·kZkj ·kZ/m2

Z

)
+ 3m eNi

m eNj
Re
[(
O′′L
ij

)2]
}

(6.92)

and, noting that and 2kj ·kZ = m2
eNi
− m2

eNj
− m2

Z , 2pi ·kj = m2
eNi

+ m2
eNj
− m2

Z , and 2pi ·kZ =

m2
eNi
−m2

eNj
+m2

Z , we get the total decay width

Γ(Ñi → Z0Ñj) =
1

16πm3
eNi

λ1/2
(
m2

eNi
,m2

Z
,m2

eNj

)

1

2

∑

λi,λj ,λZ

|M|2

 (6.93)

=
g2m eNi

16πc2W
λ1/2(1, rZ , rj)

[
|O′′L

ij |2
(
1 + rj − 2rZ + (1− rj)2/rZ

)
+ 6Re

[(
O′′L
ij

)2]√
rj

]
, (6.94)

where

rj ≡ m2
eNj
/m2

eNi
, and rZ ≡ m2

Z/m
2
eNi
, (6.95)

and the triangle kinematic function was defined in eq. (6.12). The result eq. (6.94) agrees with

the original calculation in [81].

6.10 Selectron pair production in electron-electron collisions

6.10.1 e−e− → ẽ−L ẽ
−
R

Here there are two Feynman graphs (neglecting the electron mass and Yukawa couplings), shown

in Fig. 37. Note that these two graphs are related by interchange of the identical initial state

electrons. Let the electrons have momenta p1 and p2 and the selectrons have momenta keeL and

keeR , so that p2
1 = p2

2 = 0; k2
1 = m2

ẽL
; k2

2 = m2
ẽR

; s = (p1 + p2)
2 = (k1 + k2)

2; t = (k1 − p1)
2 =

(k2−p2)
2; u = (k1−p2)

2 = (k2−p1)
2. The matrix element for the first graph, for each neutralino

Ñi exchanged in the t channel, is:

iMt =

[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√

2g
sW
cW

Ni1

]
x1

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
Ñi

]
ȳ2 . (6.96)
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Here we have used the Feynman rules from Fig. 76. We employ the notation for the external

wave functions xi = (~pi, λi), i = 1, 2 and analogously for yi, x̄i, ȳi. The matrix elements for the

second (u-channel) graph are the same with the two incoming electrons exchanged, e1 ↔ e2:

iMu = (−1)

[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√

2g
sW
cW

Ni1

]
x2

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
Ñi

]
ȳ1 . (6.97)

Note that since we have written the fermion wave function spinors in the opposite order inM2

compared toM1, there is a factor (−1) for Fermi-Dirac statistics. Alternatively, starting at the

electron with momentum p1 and using the Feynman rules as above, we can directly write:

iMu =

[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√

2g
sW
cW

Ni1

]
ȳ1

[
−i(k1 − p2)·σ

(k1 − p2)2 −m2
Ñi

]
x2 . (6.98)

This has no Fermi-Dirac factor (−1) because the wave function spinors are written in the same

order as inMt. However, now the Feynman rule for the propagator has an extra minus sign, as

can be seen in Fig. 3. We can also obtain eq. (6.98) from eq. (6.97) by using eq. (2.49). So we

can write for the total amplitude:

M =Mt +Mu = x1a·σȳ2 + ȳ1b·σx2 , (6.99)

where

aµ ≡ g2sW
cW

(kµ1 − p
µ
1 )

4∑

i=1

Ni1(N
∗
i2 +

sW
cW

N∗
i1)

1

t−m2
Ñi

, (6.100)

bµ ≡ −g
2sW
cW

(kµ1 − p
µ
2 )

4∑

i=1

Ni1(N
∗
i2 +

sW
cW

N∗
i1)

1

u−m2
Ñi

. (6.101)

So, using eqs. (2.31) and (2.32):

|M|2 = (x1a·σȳ2) (y2a
∗ ·σx̄1) + (ȳ1b·σx2) (x̄2b

∗ ·σy1) + (x1a·σȳ2) (x̄2b
∗ ·σy1)

+ (ȳ1b·σx2) (y2a
∗ ·σx̄1) . (6.102)

Averaging over the initial state electron spins using eqs. (3.56)-(3.59), the a, b∗ and a∗, b cross

terms are proportional to me and can thus be neglected in our approximation. We get:

1

4

∑

λ1,λ2

|M|2 =
1

4
Tr[a·σ p2 ·σ a∗ ·σ p1 ·σ] +

1

4
Tr[b·σ p2 ·σ b∗ ·σ p1 ·σ] . (6.103)

These terms can be simplified using the identities:

Tr[(k1 − p1)·σ p2 ·σ (k1 − p1)·σ p1 ·σ] = Tr[(k1 − p2)·σ p2 ·σ (k1 − p2)·σ p1 ·σ] (6.104)

= tu−m2
ẽLm

2
ẽR , (6.105)
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Figure 38: The two Feynman diagrams for e−e− → ẽ−R ẽ
−
R in the limit where me → 0.

which follow from eq. (2.44) and (2.45), resulting in:

1

4

∑

λ1,λ2

|M|2 =
g4s2W
4c2W

(tu−m2
ẽLm

2
ẽR)

4∑

i,j=1

Nj1N
∗
i1(N

∗
j2 +

sW
cW

N∗
j1)(Ni2 +

sW
cW

Ni1)

[
1

(t−m2
Ñi

)(t−m2
Ñj

)
+

1

(u−m2
Ñi

)(u−m2
Ñj

)

]
. (6.106)

To get the differential cross-section dσ/dt, multiply this by 1/(16πs2):

dσ

dt
=

πα2

4s2W c
2
W

(
tu−m2

eeL
m2

eeR

s2

)
4∑

i,j=1

Nj1N
∗
i1(N

∗
j2 +

sW
cW

N∗
j1)(Ni2 +

sW
cW

Ni1)

[
1

(t−m2
Ñi

)(t−m2
Ñj

)
+

1

(u−m2
Ñi

)(u−m2
Ñj

)

]
. (6.107)

To compare with the original calculation in [83] and with eq. E26, p. 244 in ref. [48], note that

for a pure photino exchange, Ni1 → cW δi1 and Ni2 → sW δi1, so that

1

4s2W c
2
W

|Ni1|2|Ni2 +
sW
cW

Ni1|2 → 1 . (6.108)

Also note that in [83] polarized electron beams are assumed. The result checks.

6.10.2 e−e− → ẽ−Rẽ
−
R

For this process, there are again two Feynman graphs, which are related by the exchange of

identical electrons in the initial state or equivalently by exchange of the identical selectrons in

the final state, as shown in Fig. 38. (We again neglect the electron mass and thus the Higgsino

coupling to the electron.) Let the electrons have momenta p1 and p2 and the selectrons have

momenta k1 and k2, so that p2
1 = p2

2 = 0; k2
1 = k2

2 = m2
eeR

; s = (p1 + p2)
2; t = (k1 − p1)

2;

u = (k1 − p2)
2. Using the Feynman rules of Fig. 76, the amplitude for the first graph is:

iMt =

(
−i
√

2g
sW
cW

Ni1

)2
[

im eNi

(k1 − p1)2 −m2
eNi

]
ȳ1ȳ2 (6.109)
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for each exchanged neutralino. The amplitudes for the second graph are the same, but with the

electrons interchanged:

iMu =

(
−i
√

2g
sW
cW

Ni1

)2
[

im eNi

(k1 − p2)2 −m2
eNi

]
ȳ1ȳ2 . (6.110)

Since we have chosen to write the external state wave function spinors in the same order inMt

andMu, there is no factor of (−1) for Fermi-Dirac statistics. So, applying eq. (2.30), the total

amplitude squared is:

|M|2 =
4g4s4W
c4W

(ȳ1ȳ2)(y2y1)

4∑

i,j=1

(Ni1)
2(N∗

j1)
2m eNi

m eNj

(
1

t−m2
eNi

+
1

u−m2
eNi

)
 1

t−m2
eNj

+
1

u−m2
eNj


 (6.111)

The sum over the electron spins is obtained from

∑

λ1,λ2

(ȳ1ȳ2)(y2y1) = Tr[p2 ·σp1 ·σ] = 2p2 ·p1 = s . (6.112)

So, using eq. (3.57), the spin-averaged differential cross-section is:

dσ

dt
=

(
1

2

)
1

16πs2


1

4

∑

λ1,λ2

|M|2

 (6.113)

=
πα2

2c4W

4∑

i,j=1

(Ni1)
2(N∗

j1)
2
m eNi

m eNj

s

(
1

t−m2
eNi

+
1

u−m2
eNi

)
 1

t−m2
eNj

+
1

u−m2
eNj


 .(6.114)

The first factor of (1/2) in eq. (6.113) comes from the fact that there are identical sleptons in

the final state and thus the phase space is degenerate.

To compare with [83] and also with eq. E27, p. 245 in ref. [48], note that for a pure photino

exchange, Ni1 → cW δi1, so it checks.

6.10.3 e−e− → ẽ−L ẽ
−
L

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related

by the exchange of identical electrons in the initial state or equivalently by exchange of the

identical selectrons in the final state. As shown in Fig. 39, they are exactly like the previous

example, but with all arrows reversed. Using the Feynman rules of Fig. 76, the amplitude for

the first graph is:

Mt =

(
i
g√
2
[N∗

i2 +
sW
cW

N∗
i1]

)2
[

im eNi

(p1 − k1)2 −m2
eNi

]
x1x2 (6.115)
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Figure 39: The two Feynman diagrams for e−e− → ẽ−L ẽ
−
L in the limit of vanishing electron

mass.

for each exchanged neutralino. The amplitudes for the second graph are the same, but with

p1 ↔ p2:

Mu =

(
i
g√
2
[N∗

i2 +
sW
cW

N∗
i1]

)2
[

im eNi

(p2 − k1)2 −m2
eNi

]
x1x2 (6.116)

Since we have chosen to write the external state wave function spinors in the same order inM1

andM2, there is no factor of (−1) for Fermi-Dirac statistics. The total amplitude squared is:

|M|2 =
g4

4
(x1x2)(x̄2x̄1)

4∑

i,j=1

(N∗
i2 +

sW
cW

N∗
i1)

2(Nj2 +
sW
cW

Nj1)
2m eNi

m eNj

(
1

t−m2
eNi

+
1

u−m2
eNi

)
 1

t−m2
eNj

+
1

u−m2
eNj


 . (6.117)

The average over the electron spins follows from eq. (3.56):

∑

λ1,λ2

(x1x2)(x̄2x̄1) = Tr[p2 ·σp1 ·σ] = 2p2 ·p1 = s . (6.118)

So the spin-averaged differential cross-section is:

dσ

dt
=

(
1

2

)
1

16πs2


1

4

∑

λ1,λ2

|M|2

 (6.119)

=
πα2

32s4W

4∑

i,j=1

(N∗
i2 +

sW
cW

N∗
i1)

2(Nj2 +
sW
cW

Nj1)
2
m eNi

m eNj

s
(

1

t−m2
eNi

+
1

u−m2
eNi

)
 1

t−m2
eNj

+
1

u−m2
eNj


 (6.120)

where the first factor of (1/2) in eq. (6.119) comes from the fact that there are identical sleptons

in the final state. To compare with [83] and also with eq. (E27), p. 245 in ref. [48], note that for

a pure photino exchange, Ni1 → cW δi1 and Ni2 → sW δi1, so it checks.
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Figure 40: The Feynman diagrams for e−e+ → ν̃ν̃∗.

6.11 e−e+ → ν̃ν̃∗

Consider now the pair-production of sneutrinos in electron-positron collisions. There are two

graphs featuring the s-channel exchange of the Z 0. We will neglect the electron mass and Yukawa

coupling, so there is only one graph involving the t-channel exchange of the charginos. These

three Feynman diagrams are shown in in Fig. 40, where we have also defined the helicities and

momenta of the particles. The Mandelstam variables can be expressed in terms of the external

momenta and the sneutrino mass:

2p1 ·p2 = s ; 2k1 ·k2 = s− 2m2
ν̃ ; (6.121)

2p1 ·k1 = 2p2 ·k2 = m2
ν̃ − t ; (6.122)

2p1 ·k2 = 2p2 ·k1 = m2
ν̃ − u . (6.123)

Using the Feynman rules of Fig. 67, the amplitudes for the two s-channel Z boson exchange

diagrams are:

iM1 =

[
−i g

2cW
(k1 − k2)µ

] [ −igµν
(p1 + p2)2 −m2

Z + iΓZmZ

] [
i
g

cW
(s2W − 1/2)

]
x1σν ȳ2 (6.124)

iM2 =

[
−i g

2cW
(k1 − k2)µ

] [ −igµν
(p1 + p2)2 −m2

Z + iΓZmZ

] [
i
gs2W
cW

]
ȳ1σνx2 (6.125)

where the first factor in each case is the Feynman rule from the Z boson coupling to the sneutrinos

(see Fig. 72c, ref. [48]). The t-channel diagram due to each chargino gives a contribution

iM3 = (−igV ∗
i1) (−igVi1) x1

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
C̃i

]
ȳ2, (6.126)
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using the rules of Fig. 75. Therefore, the total amplitude can be rewritten as:

M = c1x1(k1 − k2)·σȳ2 + c2ȳ1(k1 − k2)·σx2 + c3x1(k1 − p1)·σȳ2 (6.127)

where

c1 ≡
g2(1− 2s2W )

4c2WDZ
, c2 ≡ −

g2s2W
2c2WDZ

, c3 ≡ g2
2∑

i=1

|Vi1|2/(m2
C̃j
− t). (6.128)

and DZ ≡ s−m2
Z + iΓZmZ is the denominator of the Z boson propagator.

We will now square the amplitude and sum over the electron and positron spins. In doing

so, the interference terms involving c2 will vanish for me = 0, because of eqs. (3.58) and (3.59).

Therefore, we have

∑

λ1,λ2

|M|2 =
∑

λ1,λ2

{
|c1|2 x1(k1 − k2)·σȳ2 y2(k1 − k2)·σx̄1

+|c2|2 ȳ1(k1 − k2)·σx2 x̄2(k1 − k2)·σy1

+c23 x1(k1 − p1)·σȳ2 y2(k1 − p1)·σx̄1

+2Re[c1c3 x1(k1 − k2)·σȳ2 y2(k1 − p1)·σx̄1]

}
(6.129)

= |c1|2 Tr[(k1 − k2)·σp2 ·σ(k1 − k2)·σp1 ·σ]

+|c2|2 Tr[(k1 − k2)·σp2 ·σ(k1 − k2)·σp1 ·σ]

+c23 Tr[(k1 − p1)·σp2 ·σ(k1 − p1)·σp1 ·σ]

+2Re[c1]c3 Tr[(k1 − k2)·σp2 ·σ(k1 − p1)·σp1 ·σ], (6.130)

where we have used eqs. (3.56) and (3.57) to do the spin sums to obtain the second equality. Now,

applying the trace identities (2.44) and (2.45) and reducing the results using eqs. (6.121)-(6.123)

and u = 2m2
ν̃ − s− t, we get

∑

λ1,λ2

|M|2 = −[st+ (t−m2
ν̃)

2]
(
4|c1|2 + 4|c2|2 + c23 + 4Re[c1]c3

)
. (6.131)

When mC̃1
= mC̃2

, this agrees with eqs. (E46)-(E48) of ref. [48]33 and with [84]. The differential

cross-section follows in the standard way by averaging over the initial-state spins:

dσ

dt
=

1

16πs2

(
1

4

∑

λ1,λ2

|M|2
)
. (6.132)

Note that

t = m2
ν̃ − (1− β cos θ)s/2; β ≡ (1− 4m2

ν̃/s)
1/2, (6.133)

33There is a typo in eq. (E48) of [48]; the right-hand side should be multiplied by 1/cos2 θw.
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where θ is the angle between the initial-state electron and the final-state sneutrino in the center-

of-momentum frame. The upper and lower limits t+ and t− are obtained by inserting cos θ = ±1

above, respectively.

Doing the integration over t to obtain the total cross-section, one obtains

σ =

∫ t+

t−

dσ

dt
dt =

g4

64πs

(
SZ +

2∑

i,j=1

Sij +

2∑

i=1

SZi

)
, (6.134)

where

SZ =
β3

24c4W
(8s4W − 4s2W + 1)

s2

|DZ |2
, (6.135)

Sii = |Vi1|4 [(1− 2γi)Li − 2β] , (6.136)

S12 = S21 = |V11V12|2
{
[(m2

C̃2
+ sγ2

2)L2 − (m2
C̃1

+ sγ2
1)L1]/(m

2
C̃2
−m2

C̃1
)− β

}
, (6.137)

SZi =
(2s2W − 1)

c2W
|Vi1|2

[
(m2

C̃i
+ sγ2

i )Li + sβ(γi − 1/2)
] (s−m2

Z)

|DZ |2
, (6.138)

with

γi ≡ (m2
ν̃ −m2

C̃i
)/s, Li ≡ ln

(m2
C̃i
− t−

m2
C̃i
− t+

)
. (6.139)

This agrees with eqs. (E49)-(E52) of ref. [48] in the limit of degenerate charginos, or of a single

wino chargino with |V11| = 1 and V12 = 0 and with [84].

6.12 e−e+ → ÑiÑj

Next we consider the pair production of neutralinos via e−e+ annihilation. There are four

Feynman graphs for s-channel Z0 exchange, shown in Figure 41, and four for t-channel selectron

exchange, shown in Figure 42. The momenta and polarizations are as labeled in the graphs.

We denote the neutralino masses as m eNi
,m eNj

and the selectron masses as mẽL and mẽR . The

electron mass will again be neglected. The kinematic variables are then given by

s = 2p1 ·p2 = m2
eNi

+m2
eNj

+ 2ki ·kj , (6.140)

t = m2
eNi
− 2p1 ·ki = m2

eNj
− 2p2 ·kj , (6.141)

u = m2
eNi
− 2p2 ·ki = m2

eNj
− 2p1 ·kj . (6.142)

By applying the Feynman rules of figs. 67 and 72, we obtain for the sum of the s-channel

diagrams in Fig. 41,

iMZ =
−igµν
s−m2

Z

[
ig(s2W − 1

2)

cW
x1σµȳ2 +

igs2W
cW

ȳ1σµx2

][
ig

cW
O′′L
ij x̄iσνyj −

ig

cW
O′′L
ji yiσν x̄j

]
, (6.143)

where O′′
ij is given in eq. (I.20). The fermion spinors are denoted by x1 ≡ x(~p1, λ1), ȳ2 ≡

ȳ(~p2, λ2), x̄i ≡ x̄(~ki, λi), yj ≡ y(~kj , λj), etc. Note that we have combined the matrix elements
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of the four diagrams by factorizing with respect to the common boson propagator. For the four

t and u channel diagrams, we obtain, by applying the rules of Fig. 76:

iM(t)
ẽL

= (−1)

[
i

t−m2
ẽL

][ ig√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][ ig√
2

(
Nj2 +

sW
cW

Nj2

)]
x1yiȳ2x̄j , (6.144)

iM(u)
ẽL

=

[
i

u−m2
ẽL

][ ig√
2

(
N∗
j2 +

sW
cW

N∗
j1

)][ ig√
2

(
Ni2 +

sW
cW

Ni2

)]
x1yj ȳ2x̄i, (6.145)

iM(t)
ẽR

= (−1)

[
i

t−m2
ẽR

](
−i
√

2g
sW
cW

Ni1

)(
−i
√

2g
sW
cW

N∗
j1

)
ȳ1x̄ix2yj , (6.146)

iM(u)
ẽR

=

[
i

u−m2
ẽR

](
−i
√

2g
sW
cW

Nj1

)(
−i
√

2g
sW
cW

N∗
i1

)
ȳ1x̄jx2yi. (6.147)

The first factors of (−1) in each of eqs. (6.144) and (6.146) are present because the order of the

spinors in each case is an odd permutation of the ordering (1, 2, i, j) established by the s-channel

contribution. The other contributions have spinors in an even permutation of that ordering.

The s-channel diagram contribution of eq. (6.143) can be profitably rearranged using the

Fierz identities of eqs. (2.55)-(2.56). Then, combining the result with the t-channel and s-channel

contributions, we have for the total:

M = c1x1yj ȳ2x̄i + c2x1yiȳ2x̄j + c3ȳ1x̄ix2yj + c4ȳ1x̄jx2yi, (6.148)
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Figure 41: The four Feynman diagrams for e−e+ → ÑiÑj via s-channel Z0 exchange.
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Figure 42: The four Feynman diagrams for e−e+ → ÑiÑj via t-channel selectron exchange.

where

c1 =
g2

c2W

[
(1− 2s2W )O′′L

ij /(s−m2
Z)− (cWNi2 + sWNi1)(cWN

∗
j2 + sWN

∗
j1)/2(u −m2

ẽL
)
]
, (6.149)

c2 =
g2

c2W

[
(2s2W − 1)O′′L

ji /(s−m2
Z) + (cWN

∗
i2 + sWN

∗
i1)(cWNj2 + sWNj1)/2(t−m2

ẽL)
]
, (6.150)

c3 =
2g2s2W
c2W

[
−O′′L

ij /(s−m2
Z) +Ni1N

∗
j1/(t−m2

ẽR)
]
, (6.151)

c4 =
2g2s2W
c2W

[
O′′L
ji /(s−m2

Z)−N∗
i1Nj1/(u−m2

ẽR)
]
. (6.152)

Now, when we square the amplitude and average over the initial-state fermion spins, the only

terms that will survive in the massless electron limit are the ones that involve x1x̄1 or y1ȳ1, and

x2x̄2 or y2ȳ2. This follows immediately from eqs. (3.58) and (3.59).

∑

λ1,λ2

|M|2 =
∑

λ1,λ2

(
|c1|2ȳjx̄1x1yjxiy2ȳ2x̄i + |c2|2ȳix̄1x1yixjy2ȳ2x̄j

+|c3|2xiy1ȳ1x̄iȳj x̄2x2yj + |c4|2xjy1ȳ1x̄j ȳix̄2x2yi

+2Re
[
c1c

∗
2ȳix̄1x1yjxjy2ȳ2x̄i

]
+ 2Re

[
c3c

∗
4xjy1ȳ1x̄iȳix̄2x2yj

])
(6.153)

= |c1|2ȳjp1 ·σyj xip2 ·σx̄i + |c2|2ȳip1 ·σyi xjp2 ·σx̄j
+|c3|2xip1 ·σx̄i ȳjp2 ·σyj + |c4|2xjp1 ·σx̄j ȳip2 ·σyi
+2Re

[
c1c

∗
2ȳip1 ·σyj xjp2 ·σx̄i

]
+ 2Re

[
c3c

∗
4xjp1 ·σx̄i ȳip2 ·σyj

]
(6.154)

where eqs. (3.56) and (3.57) have been used to do the spin sums to obtain the second equality.
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Now we do the remaining spin sums using eqs. (3.56)-(3.59) again, obtaining:

∑

λ1,λ2,λi,λj

|M|2 = |c1|2Tr[p1 ·σkj ·σ]Tr[p2 ·σki ·σ] + |c2|2Tr[p1 ·σki ·σ]Tr[p2 ·σkj ·σ]

+|c3|2Tr[p1 ·σki ·σ]Tr[p2 ·σkj ·σ] + |c4|2Tr[p1 ·σkj ·σ]Tr[p2 ·σki ·σ]

+2Re[c1c
∗
2]m eNi

m eNj
Tr[p2 ·σp1 ·σ] + 2Re[c3c

∗
4]m eNi

m eNj
Tr[p1 ·σp2 ·σ]. (6.155)

Applying the trace identity of eq. (2.43) to this yields

∑

spins

|M|2 = (|c1|2 + |c4|2)4p1 ·kj p2 ·ki + (|c2|2 + |c3|2)4p1 ·ki p2 ·kj
+4Re[c1c

∗
2 + c3c

∗
4]m eNi

m eNj
p1 ·p2 (6.156)

= (|c1|2 + |c4|2)(u−m2
eNi

)(u−m2
eNj

) + (|c2|2 + |c3|2)(t−m2
eNi

)(t−m2
eNj

)

+2Re[c1c
∗
2 + c3c

∗
4]m eNi

m eNj
s. (6.157)

The differential cross-section then follows:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 . (6.158)

This agrees with the first complete calculation presented in [85]. For the case of pure photino

pair production, i.e. Ni1 → cW δi1 and Ni2 → sW δi1 and for degenerate selectron masses this also

agrees with eq. (E9) of the erratum of [48]. Other earlier calculations with some simplifications

are given in [86, 87].

Defining cos θ = p̂1 ·k̂i (the cosine of the angle between the initial-state electron and one of

the neutralinos in the center-of-momentum frame), the Mandelstam variables t, u can be written

as

t =
1

2

[
m2

eNi
+m2

eNj
− s+ λ1/2(s,m2

eNi
,m2

eNj
) cos θ

]
, (6.159)

u =
1

2

[
m2

eNi
+m2

eNj
− s− λ1/2(s,m2

eNi
,m2

eNj
) cos θ

]
. (6.160)

Taking into account the identical fermions in the final state, the total cross section is

σ =
1

2

∫ t+

t−

dσ

dt
dt , (6.161)

where t− and t+ are obtained by inserting cos θ = ∓1 in eq. (6.159), respectively.

6.13 e−e+ → C̃−
i C̃+

j

Next we consider the pair production of charginos in electron-positron collisions. The s-channel

Feynman diagrams are shown in Fig. 43, where we have also introduced the notation for the
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χ−
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χ−
j (kj , λj)

γ, Z0

e (p1, λ1)

e (p2, λ2)

χ+
i (ki, λi)

χ+
j (kj , λj)

γ, Z0

ec (p1, λ1)

ec (p2, λ2)

χ+
i (ki, λi)

χ+
j (kj , λj)

γ, Z0

Figure 43: Feynman diagrams for e−e+ → C̃−
i C̃

+
j via s-channel γ and Z0 exchange.

e (p1, λ1)

ē (p2, λ2)

χ+
i (ki, λi)

χ−
j (kj , λj)

ν̃e

Figure 44: The Feynman diagram for e−e+ → C̃−
i C̃

+
j via the t-channel exchange of a sneutrino.

fermion momenta and polarizations. The Mandelstam variables are given by

s = 2p1 ·p2 = m2
eCi

+m2
eCj

+ 2ki ·kj , (6.162)

t = m2
eCi
− 2p1 ·ki = m2

eCj
− 2p2 ·kj , (6.163)

u = m2
eCi
− 2p2 ·ki = m2

eCj
− 2p1 ·kj . (6.164)

Note that the negatively charged chargino carries momentum and polarization (ki, λi), while the

positively charged one carries (kj , λj). Using the Feynman rules of Figs. 67 and 72, the sum of

the photon-exchange diagrams is:

iMγ =
−igµν
s

(−ie x1σµȳ2 − ie ȳ1σµx2) (ie δijyiσν x̄j + ie δij x̄iσνyj) (6.165)

while the result from the Z-exchange diagrams is:

iMZ =
−igµν
s−m2

Z

[ ig
cW

(s2W − 1
2)x1σµȳ2 +

igs2W
cW

ȳ1σµx2

][
− ig

cW
O′L
ji yiσν x̄j −

ig

cW
O′R
ji x̄iσνyj

]
.(6.166)
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The t-channel Feynman diagram via sneutrino exchange is shown in Fig. 44. Applying the rules

of Fig. 75, we find:

iMν̃e = (−1)
i

t−m2
ν̃e

(−igV ∗
i1x1yi) (−igVj1ȳ2x̄j) . (6.167)

The Fermi-Dirac factor (−1) in this equation arises because the spinors appear an order which

is an odd permutation of the order used in all of the s-channel diagram results.

One can now apply the Fierz transformation identities (2.55)-(2.57) to eqs. (6.165) and

(6.166) to remove the σ and σ matrices. The result can be combined with the t-channel contri-

bution to obtain a total matrix element M with exactly the same form as eq. (6.148), but now

with:

c1 = 2e2δij/s−
g2

c2W
(1 − 2s2W )O′R

ji /(s−m2
Z), (6.168)

c2 = 2e2δij/s−
g2

c2W
(1 − 2s2W )O′L

ji /(s−m2
Z) + g2V ∗

i1Vj1/(t−m2
ν̃e), (6.169)

c3 = 2e2δij/s+
2g2s2W
c2W

O′R
ji /(s−m2

Z), (6.170)

c4 = 2e2δij/s+
2g2s2W
c2W

O′L
ji /(s−m2

Z). (6.171)

The rest of this calculation is identical in form to eqs. (6.148)-(6.157), so that the result is:
∑

spins

|M|2 = (|c1|2 + |c4|2)(u−m2
eCi

)(u−m2
eCj

) + (|c2|2 + |c3|2)(t−m2
eCi

)(t−m2
eCj

)

+2Re[c1c
∗
2 + c3c

∗
4]m eCi

m eCj
s. (6.172)

The differential cross-section then follows:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 . (6.173)

Defining cos θ = p̂1 ·k̂i (the cosine of the angle between the initial-state electron and C̃−
i in the

center-of-momentum frame), the Mandelstam variables t, u can be written as

t =
1

2

[
m2

eCi
+m2

eCj
− s+ λ1/2(s,m2

eCi
,m2

eCj
) cos θ

]
, (6.174)

u =
1

2

[
m2

eCi
+m2

eCj
− s− λ1/2(s,m2

eCi
,m2

eCj
) cos θ

]
. (6.175)

The total cross section can now be computed as

σ =

∫ t+

t−

dσ

dt
dt (6.176)

where t− and t+ are obtained with cos θ = −1 and +1 in eq. (6.174), respectively. Our results

agree with the original first complete calculation in [88]. Earlier work with simplifying assump-

tions is given in [89]. An extended calculation for the production of polarized charginos is given

in [90].
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χ+
i (ki, λi)

χ0
j (kj , λj)

ũL

Figure 45: The four tree-level Feynman diagrams for ud→ C̃+
i Ñj .

6.14 ud→ C̃+
i Ñj

Next we consider the associated production of a chargino and a neutralino in quark, anti-quark

collisions. The leading order Feynman diagrams are shown in Fig. 45, where we have also defined

the momenta and the helicities. The corresponding Mandelstam variables are

s = 2p1 ·p2 = m2
eCi

+m2
eNj

+ 2ki ·kj, (6.177)

t = m2
eCi
− 2p1 ·ki = m2

eNj
− 2p2 ·kj, (6.178)

u = m2
eCi
− 2p2 ·ki = m2

eNj
− 2p1 ·kj. (6.179)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman

rules of figs. 67 and 73:

iMs =
−igµν
s−m2

W

(
ig√
2
x1σµȳ2

)(
igOL∗

ji x̄iσνyj + igOR∗
ji yiσν x̄j

)
. (6.180)

The external spinors are denoted by x1 ≡ x(~p1, λ1), ȳ2 ≡ ȳ(~p2, λ2), x̄i ≡ x̄(~ki, λi), yj ≡ y(~kj, λj),
etc. The matrix elements for the t and u channel graphs follow from the rules of figs. 75 and 76:

iMt = (−1)
i

t−m2
d̃L

(−igU∗
i1)
( ig√

2

[
Nj2 −

sW
3cW

Nj1

])
x1yiȳ2x̄j (6.181)

iMu =
i

u−m2
ũL

(−igVi1)
( ig√

2

[
−N∗

j2 −
sW
3cW

N∗
j1

])
x1yj ȳ2x̄i (6.182)

The first factor of (−1) in eq. (6.181) is required because the order of the spinors (1, i, 2, j) is in

an odd permutation of the order (1, 2, i, j) used in the s-channel and u-channel results.
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Now we can use the Fierz relations eqs. (2.55) and (2.57) to rewrite the s-channel amplitude

in a form without σ or σ matrices. Combining the result with the t-channel and u-channel

contributions yields a total M with exactly the same form as eq. (6.148), but now with

c1 = −
√

2g2

[
OL∗ji /(s−m2

W ) + Vi1

(1

2
N∗
j2 +

sW
6cW

N∗
j1)/(u−mũL

)]
, (6.183)

c2 = −
√

2g2

[
OR∗ji /(s−m2

W ) + U∗
i1

(1

2
N∗
j2 −

sW
6cW

N∗
j1)/(t−md̃L

)]
, (6.184)

c3 = c4 = 0. (6.185)

The rest of this calculation is identical in form to that of eqs. (6.148)-(6.157), leading to:

∑

spins

|M|2 = |c1|2(u−m2
eCi

)(u−m2
eNj

) + |c2|2(t−m2
eCi

)(t−m2
eNj

) + 2Re[c1c
∗
2]m eCi

m eNj
s. (6.186)

From this, one can obtain:

dσ

dt
=

1

16πs2


 1

3 · 4
∑

spins

|M|2

 , (6.187)

where we have included a factor of 1/3 from the color average for the incoming quarks. Eq. (6.187)

can be expressed in terms of the angle between the u quark and the chargino in the center-of-

momentum frame, using

t =
1

2

[
m2

eCi
+m2

eNj
− s+ λ1/2(s,m2

eCi
,m2

eNj
) cos θ

]
, (6.188)

u =
1

2

[
m2

eCi
+m2

eNj
− s− λ1/2(s,m2

eCi
,m2

eNj
) cos θ

]
. (6.189)

This process occurs in proton-antiproton and proton-proton collisions, where
√
s is not fixed,

and the angle θ is different than the lab frame angle. The usable cross-section depends crucially

on experimental cuts. Our result in Eq. (6.187) agrees with the complete computation in [91].

Earlier calculations in special supersymmetric scenarios, e.g. with photino mass eigenstates are

given in [87, 92]

6.15 Ñi → ÑjÑkÑ`

Next we consider the decay of a neutralino Ñi to three lighter neutralinos: Ñj, Ñk, Ñ`. This

decay is not likely to be phenomenologically relevant, because a variety of two-body decay modes

will always be available. Furthermore, the calculation itself is quite complicated because of the

large number of Feynman diagrams involved. Therefore, we consider this only as a matter-

of-principle example of a process with four external-state Majorana fermions, and will restrict

ourselves to writing down the contributing matrix element amplitudes.

At tree-level, the decay can proceed via a virtual Z 0 boson; the Feynman graphs are shown

in Fig. 46. In addition, it can proceed via the exchange of any of the neutral scalar Higgs bosons
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Figure 46: Four Feynman diagrams for Ñi → ÑjÑkÑ` in the MSSM via Z0 exchange. There

are four more where Ñj ↔ Ñk and another four where Ñj ↔ Ñ`.

χ0
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χ0
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χ0
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χ0
i

χ0
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`

χ0
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h0,H0, A0

χ0
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χ0
`

χ0
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χ0
i χ0

k

χ0
`

χ0
j

h0,H0, A0

Figure 47: Four Feynman diagrams for Ñi → ÑjÑkÑ` in the MSSM via φ0 = h0, H0, A0

exchange. There are four more where Ñj ↔ Ñk and another four where Ñj ↔ Ñ`.

of the MSSM, φ0 = h0,H0, A0, as shown in Fig. 47. Since any of the final state neutralinos can

directly couple to the initial state neutralino there are two more diagrams for each one shown

in Figs. 46 and 47, for a total of 48 tree-level diagrams (counting each intermediate Higgs boson

state as distinct). In all cases, the four-momenta of the neutralinos Ñi, Ñj , Ñk, Ñ` are denoted

pi, kj , kk, k` respectively.
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For the sum of the four diagrams in Fig. 46, we obtain by implementing the rules of Fig. 72,

and using the Feynman gauge:

iM(1)
Z =

−ig2/c2W
(pi − kj)2 −m2

Z

(
O′′L
ji xiσµx̄j −O′′L

ij ȳiσµyj

)(
O′′L
`k x̄kσ

µy` −O′′L
k` ykσ

µx̄`

)
, (6.190)

[The external wave functions are xi ≡ x(~pi, λi), xj,k,` ≡ x(~kj,k,`, λj,k,`), and analogously for

x̄i,j,k,`, and yi,j,k,` and ȳi,j,k,`.] Note that we have factorized the sum of diagrams, taking advan-

tage of the common virtual boson line propagator. The contributions from the diagrams related

to these by permutations can now be obtained from the appropriate substitutions (j ↔ k) and

(j ↔ `):

iM(2)
Z = (−1)

−ig2/c2W
(pi − kk)2 −m2

Z

(
O′′L
ki xiσµx̄k −O′′L

ik ȳiσµyk

)(
O′′L
`j x̄jσ

µy` −O′′L
j` yjσ

µx̄`

)
, (6.191)

iM(3)
Z = (−1)

−ig2/c2W
(pi − k`)2 −m2

Z

(
O′′L
`i xiσµx̄` −O′′L

i` ȳiσµy`

)(
O′′L
jk x̄kσ

µyj −O′′L
kj ykσ

µx̄j

)
. (6.192)

The first factors of (−1) in iM(2)
Z and iM(3)

Z are present because the order of the spinors in each

case appear in an odd permutation of the canonical order set by iM(1)
Z . Note that if we were

to proceed to a computation of the decay rate, the very first step would be to apply the Fierz

relations of eqs. (2.55)-(2.57) to eliminate all of the σ and σ matrices in the above amplitudes.

The diagrams in Fig. (47) combine to give a contribution:

iM(1)
φ0 =

−i
(pi − kj)2 −m2

φ0

(Y ijxiyj + Yij ȳix̄j)(Y
k`yky` + Yk`x̄kx̄`) (6.193)

where we have adopted the shorthand notation Y ij = (Yij)
∗ = Y φ0χ0

iχ
0
j . Again we have factored

the amplitude using the common virtual boson propagator. As in the Z-exchange diagrams, the

other contributions can be obtained by the appropriate substitutions:

iM(2)
φ0 = (−1)

−i
(pi − kk)2 −m2

φ0

(Y ikxiyk + Yikȳix̄k)(Y
j`yjy` + Yj`x̄j x̄`) (6.194)

iM(3)
φ0 = (−1)

−i
(pi − k`)2 −m2

φ0

(Y i`xiy` + Yi`ȳix̄`)(Y
kjykyj + Ykjx̄kx̄j) (6.195)

The first factors of (−1) in iM(2)
φ0 and iM(3)

φ0 are needed because the spinors in each case are in

an odd permutation of the canonical order established earlier.

Now the total matrix element is obtained by:

M =
3∑

n=1

M(n)
Z +

∑

φ0

3∑

n=1

M(n)
φ0 (6.196)

as given above. When computing the total decay rate, additional attention must be paid to

the case where two or more final state indices are equal, since the phase space is then reduced

by the corresponding factor to avoid over-counting of identical final states. To the best of our

knowledge this process has not been computed in the literature.
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Figure 48: Feynman diagrams for the three-body slepton decays ˜̀−R → `−τ+τ̃−1 (top row) and
˜̀−
R → `−τ−τ̃+

1 (bottom row) in the MSSM.

6.16 Three-body slepton decays ˜̀−R → `−τ± τ̃∓
1 for ` = e, µ

In this subsection, we consider the three-body decays of sleptons through a virtual neutralino.

The usual assumption in supersymmetric phenomenology is that these decays will have a very

small branching fraction, because a two-body decay to a lighter neutralino and lepton is al-

ways open. However, in Gauge Mediated Supersymmetry Breaking models with a non-minimal

messenger sector, the sleptons can be lighter than the lightest neutralino [93, 94]. In that case,

the mostly right-handed smuon and selectron, µ̃R and ẽR, will decay by ˜̀−R → `−τ±τ̃∓1 . The

lightest stau mass eigenstate, τ̃±1 , is a mixture of the weak eigenstates τ̃±L and τ̃±R , as described

in Appendix I.4:

τ̃−1 = c∗τ̃ τ̃
−
R + s∗τ̃ τ̃

−
L , (6.197)

and τ̃+
1 = (τ̃−1 )∗, while the µ̃R and ẽR are taken to be unmixed.

First consider the decay ˜̀−R → `−τ+τ̃−1 , which proceed by the diagrams in the first row

of Fig. 48. The momenta and polarizations of the particles are also indicated on the diagram.

Using the Feynman rules of Fig. 78, we find that the amplitudes of these two diagrams, for each

neutralino Ñj exchanged, are:

iM1 = (−ia ˜̀
j)(−iaτ̃∗j ) y1

[ −i(p− k1)·σ
(p− k1)2 −m2

Ñj

]
x̄2, (6.198)

iM2 = (−ia ˜̀
j)(−ibτ̃j ) y1

[ imÑj

(p− k1)2 −m2
Ñj

]
y2. (6.199)
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where

a
˜̀
j =
√

2g′N∗
j1, (6.200)

aτ̃j = YτN
∗
j3sτ̃ +

√
2g′N∗

j1cτ̃ , (6.201)

bτ̃j = YτN
∗
j3c

∗
τ̃ −

1√
2
(gN∗

j2 + g′N∗
j1)s

∗
τ̃ . (6.202)

The spinor wavefunction factors are y1 = y(~k1, λ1), y2 = y(~k2, λ2), and x̄2 = x̄(~k2, λ2).

In the following, we will use the kinematic variables

z` ≡ 2p·k1/m
2
˜̀
R

= 2E`/m˜̀
R
, zτ ≡ 2p·k2/m

2
˜̀
R

= 2Eτ/m˜̀
R
, (6.203)

rÑj ≡ mÑj
/m˜̀

R
, rτ̃ ≡ mτ̃1/m˜̀

R
, (6.204)

rτ ≡ mτ/m˜̀
R
, r` ≡ m`/m˜̀

R
. (6.205)

The total amplitude then can be written as

M =

4∑

j=1

[cjy1(p− k1)·σx̄2 + djy1y2] (6.206)

where

cj = −a ˜̀
ja
τ̃∗
j /[m

2
`R

(r2
Ñj
− 1 + z`)], (6.207)

dj = a
˜̀
jb
τ̃
jmÑj

/[m2
`R

(r2
Ñj
− 1 + z`)]. (6.208)

We consistently neglect the electron and muon Yukawa couplings (so r` = 0) in the matrix

elements, but not below in the kinematic integration over phase space, where the muon mass

can be important.

Now using eqs. (2.30) and (2.31), we find

|M|2 =
∑

j,k

[
cjc

∗
k y1(p− k1)·σx̄2 x2(p− k1)·σȳ1 + djd

∗
ky1y2 ȳ2ȳ1

+cjd
∗
ky1(p− k1)·σx̄2 ȳ2ȳ1 + c∗jdkx2(p− k1)·σȳ1 y1y2

]
. (6.209)

Now summing over the lepton spins using eqs. (3.56)-(3.59),

∑

λ1,λ2

|M|2 =
∑

j,k

[
cjc

∗
kTr[(p− k1)·σk2 ·σ(p− k1)·σk1 ·σ] + djd

∗
kTr[k2 ·σk1 ·σ]

−cjd∗kmτTr[(p− k1)·σk1 ·σ]− c∗jdkmτTr[(p− k1)·σk1 ·σ
]
. (6.210)
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Taking the traces using eqs. (2.43) and (2.44) yields

∑

spins

|M|2 =
∑

j,k

{
cjc

∗
k[4k1 ·(p− k1)k2 ·(p− k1)− 2k1 ·k2(p− k1)

2] + 2djd
∗
kk1 ·k2

−4Re[cjd
∗
k]mτk1 ·(p− k1)

}
(6.211)

=
∑

j,k

{
cjc

∗
km

4
˜̀
R
[(1− z`)(1 − zτ )− r2

τ̃ + r2τ ]

+djd
∗
km

2
˜̀
R
(z` + zτ − 1 + r2

τ̃ − r2τ )− 2Re[cjd
∗
k]mτm

2
˜̀
R
z`

}
(6.212)

The differential decay rate for ˜̀−R → `−τ+τ̃−1 then follows:

d2Γ

dz`dzτ
=

m˜̀
R

256π3

(∑

spins

|M|2
)

(6.213)

The total decay rate in that channel can be found by integrating over z`, zτ , with the limits (see

for example ref. [75]):

2r` < z` < 1 + r2
` − (rτ + rτ̃ )

2, (6.214)

zτ <
>

1

2(1− z` + r2` )

[
(2− z`)(1 + r2

` + r2τ − r2τ̃ − z`)± (z2
` − 4r2

` )
1/2λ1/2(1 + r2

` − z`, r2τ , r2τ̃ )
]
.

(6.215)

Now we turn to the competing decay ˜̀−R → `−τ−τ̃+
1 , with diagrams appearing in the second

row of Fig. 48. By appealing again to the Feynman rules of Fig. 77, we find that the amplitude

has exactly the same form as in eqs. (6.198) and (6.199), except now with a τ̃j ↔ bτ̃j . Therefore,

the entire previous calculation goes through precisely as before, but now with

cj = −a ˜̀
jb
τ̃∗
j /[m

2
`R

(r2
Ñj
− 1 + z`)], (6.216)

dj = a
˜̀
ja
τ̃
jmÑj

/[m2
`R

(r2
Ñj
− 1 + z`)]. (6.217)

The differential decay widths found above can be integrated to find the total decay widths. The

results agree with ref. [95], except that the signs of the coefficient c
(3)
ij and c

(4)
ij in that paper are

incorrect and should be flipped. (Also, the notations for the sfermion mixing angle are different

in that paper.) If m ˜̀
R
−mτ̃1 −mτ is not too large, the resulting decays can have a macroscopic

length in a detector, and the ratio of the two decay modes can provide an interesting probe of

the supersymmetric Lagrangian.

6.17 Neutralino decay to photon and Goldstino: Ñi → γG̃

The Goldstino G̃ is a Weyl fermion that couples to the neutralino and photon fields according

to the non-renormalizable Lagrangian term [96]:

L = −ai
2

(χ0
i σµσρσν∂

µG̃) (∂νAρ − ∂ρAν) + c.c. (6.218)

86



χ0
i (p, λÑ )

G̃ (kG̃, λG̃)

γ (kγ , λγ)

χ0
i (p, λÑ )

G̃ (kG̃, λG̃)

γ (kγ , λγ)

Figure 49: The two Feynman diagrams for Ñi → γG̃ in supersymmetric models with a light
Goldstino.

Here χ0
i is the left-handed two-component fermion field that corresponds to the neutralino Ñi

particle, G̃ is the two-component fermion field corresponding to the (nearly) massless Goldstino,

and the effective coupling is

ai ≡
1√

2〈F 〉
(N∗

i1 cos θW +N∗
i2 sin θW ), (6.219)

whereNij the mixing matrix for the neutralinos [see eq. (I.23)], and 〈F 〉 is the F -term expectation

value associated with supersymmetry breaking. Therefore Ñi can decay to γ plus G̃ through

the diagrams shown in Fig. 49, with amplitudes:

iM1 = i
ai
2
xÑkG̃ ·σ (ε∗ ·σ kγ ·σ − kγ ·σ ε∗ ·σ) x̄G̃ , (6.220)

iM2 = −ia
∗
i

2
ȳÑkG̃ ·σ (ε∗ ·σ kγ ·σ − kγ ·σ ε∗ ·σ) yG̃ . (6.221)

Here xÑ ≡ x(~p, λÑ ), ȳÑ ≡ ȳ(~p, λÑ ), and x̄G̃ ≡ x̄(~kG̃, λG̃), yG̃ ≡ y(~kG̃, λG̃), and ε∗ = ε∗(~kγ , λγ)

are the external wavefunction factors for the neutralino, Goldstino, and photon, respectively. Us-

ing the on-shell condition kγ ·ε∗ = 0, we have kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ and kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ
from eqs. (2.39) and (2.40). So we can rewrite the total amplitude as

M =M1 +M2 = xÑAx̄G̃ + ȳÑByG̃ (6.222)

where

A = ai kG̃ ·σ ε∗ ·σ kγ ·σ, (6.223)

B = −a∗i kG̃ ·σ ε∗ ·σ kγ ·σ. (6.224)

The complex square of the matrix element is therefore

|M|2 = xÑAx̄G̃xG̃Âx̄Ñ + ȳÑByG̃ȳG̃B̂yÑ + xÑAx̄G̃ȳG̃B̂yÑ + ȳÑByG̃xG̃Âx̄Ñ , (6.225)

where Â and B̂ are obtained from A and B by reversing the order of the σ and σ matrices

and taking the complex conjugates of ai and ε. [See the discussion surrounding eqs. (4.23) and

(4.24).]
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Summing over the Goldstino spins using eqs. (3.56)-(3.59) now yields:

∑

λG̃

|M|2 = xÑAkG̃ ·σÂx̄Ñ + ȳÑBkG̃ ·σB̂yÑ . (6.226)

(The A, B̂ and Â, B cross terms vanish because of mG̃ = 0.) Now averaging over the neutralino

spins using eqs. (3.56) and (3.57), we find

1

2

∑

λÑ ,λG̃

|M|2 =
1

2
Tr[AkG̃ ·σÂp·σ] +

1

2
Tr[BkG̃ ·σB̂p·σ]. (6.227)

=
1

2
|ai|2Tr[ε∗ ·σ kγ ·σ kG̃ ·σ kγ ·σ ε·σ kG̃ ·σ p·σ kG̃ ·σ] + (σ ↔ σ). (6.228)

Now use

kγ ·σ kG̃ ·σ kγ ·σ = 2kG̃ ·kγ kγ ·σ, (6.229)

kG̃ ·σ p·σ kG̃ ·σ = 2kG̃ ·p kG̃ ·σ, (6.230)

which follow from eq. (2.41), and the corresponding identities with σ ↔ σ, to obtain:

1

2

∑

λÑ ,λG̃

|M|2 = 2|ai|2(kG̃ ·kγ)(kG̃ ·p)Tr[ε∗ ·σ kγ ·σ ε·σ kG̃ ·σ] + (σ ↔ σ). (6.231)

Applying the photon spin sum identity

∑

λγ

εµεν∗ = −gµν (6.232)

and the trace identities eq. (2.44) and (2.45), we get

1

2

∑

λγ ,λÑ ,λG̃

|M|2 = 16|ai|2(kG̃ ·kγ)2(kG̃ ·p) = 2|ai|2m6
Ñi
. (6.233)

So, the decay rate is [97]:

Γ(Ñi → γG̃) =
1

16πm eNi


1

2

∑

λγ ,λÑ ,λG̃

|M|2

 = |Ni1 cos θW +Ni2 sin θW |2

m5
eNi

16π|〈F 〉|2 . (6.234)

6.18 Gluino pair production from gluon fusion: gg → g̃g̃

In this subsection we will compute the cross-section for the process gg → g̃g̃. The relevant

Feynman diagrams are shown in Figure 50. The initial state gluons have SU(3)c adjoint rep-

resentation indices a and b, with momenta p1 and p2 and polarization vectors εµ1 = εµ(~p1, λ1)

and εµ2 = εµ(~p2, λ2) respectively. The final state gluinos carry adjoint representation indices c

and d, with momenta k1 and k2 and wavefunction spinors x̄1 = x̄(~k1, λ
′
1) or y1 = y(~k1, λ

′
1) and

x̄2 = x̄(~k2, λ
′
2) or y2 = y(~k2, λ

′
2), respectively.
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ga (p1, λ1)

gb (p2, λ2)

g̃c (k1, λ
′
1)

g̃d (k2, λ
′
2)

ge

ga

gb

g̃c

g̃d

ge

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

ga

gb

g̃c

g̃d

g̃e

Figure 50: The ten Feynman diagrams for gg → g̃g̃. The momentum and spin polarization
assignments are indicated on the first diagram.
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The Feynman rules for the gluino couplings in SUSYQCD are given in Fig. 79. For the two

s-channel amplitudes, we obtain:

iMs =
(
−gsfabe[gµν(p1 − p2)ρ + gνρ(p1 + 2p2)µ − gµρ(2p1 + p2)ν ]

)(−igρκ
s

)

εµ1ε
ν
2

[
(−gsf cde) x̄1σκy2 + (gsf

dce) y1σκx̄2

]
. (6.235)

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and

the second factor is the gluon propagator. The next four (t-channel) diagrams have a total

amplitude:

iMt =
(
−gsf ceaεµ1

)(
−gsf edbεν2

)
x̄1σµ

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
g̃

]
σνy2

+
(
gsf

ecaεµ1
)(
gsf

debεν2
)
y1σµ

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
g̃

]
σν x̄2

+
(
−gsf ceaεµ1

)(
gsf

debεν2
)
x̄1σµ

[
img̃

(k1 − p1)2 −m2
g̃

]
σν x̄2

+
(
gsf

ecaεµ1
)(
−gsf edbεν2

)
y1σµ

[
img̃

(k1 − p1)2 −m2
g̃

]
σνy2. (6.236)

Finally, the u-channel Feynman diagrams result in:

iMu =
(
−gsf edaεµ1

)(
−gsf cebεν2

)
x̄1σν

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
g̃

]
σµy2

+
(
gsf

deaεµ1
)(
gsf

ecbεν2
)
y1σν

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
g̃

]
σµx̄2

+
(
gsf

deaεµ1
)(
−gsf cebεν2

)
x̄1σν

[
img̃

(k1 − p2)2 −m2
g̃

]
σµx̄2

+
(
−gsf edaεµ1

)(
gsf

ecbεν2
)
y1σν

[
img̃

(k1 − p2)2 −m2
g̃

]
σµy2. (6.237)

We choose to work with real polarization vectors ε1, ε2. Since they must both be orthogonal to

the initial-state collision axis in the center of momentum frame, we have:

ε1 ·ε1 = ε2 ·ε2 = −1 (6.238)

ε1 ·p1 = ε2 ·p1 = ε1 ·p2 = ε2 ·p2 = 0, (6.239)

ε1 ·k2 = −ε1 ·k1, ε2 ·k2 = −ε2 ·k1, (6.240)

and the sums over gluon polarizations will be accomplished by:

∑

λ1

εµ1ε
ν
1 =

∑

λ2

εµ2ε
ν
2 = gµν + 2 (pµ1p

ν
2 + pµ2p

ν
1) /s. (6.241)
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Before taking the complex square of the amplitude, it is convenient to rewrite the last two

terms in each of eqs. (6.236) and (6.237) by using the identities [see eq. (3.12)]:

mg̃x̄1 = y1σ ·k1, mg̃y1 = x̄1σ ·k1. (6.242)

Using eqs. (2.41) and (2.42), the resulting total matrix element is then reduced to a sum of

terms that each contain exactly one σ or σ matrix. We define convenient factors:

Gs ≡ g2
sf

abef cde/s, (6.243)

Gt ≡ g2
sf

acef bde/(t−m2
g̃), (6.244)

Gu ≡ g2
sf

adef bce/(u−m2
g̃). (6.245)

where the usual Mandelstam variables are:

s = (p1 + p2)
2 = (k1 + k2)

2, (6.246)

t = (k1 − p1)
2 = (k2 − p2)

2, (6.247)

u = (k1 − p2)
2 = (k2 − p1)

2. (6.248)

Then the total amplitude is (noting that the gluon polarizations were chosen real):

M =Ms +Mt +Mu = x̄1a·σy2 + y1a
∗ ·σx̄2, (6.249)

where

aµ ≡ −(Gt +Gs)ε1 ·ε2 pµ1 − (Gu −Gs)ε1 ·ε2 pµ2 − 2Gtk1 ·ε1 εµ2 − 2Guk1 ·ε2 εµ1
−iεµνρκε1νε2ρ(Gtp1 −Gup2)κ. (6.250)

Squaring the amplitude using eqs. (2.31) and (2.32), we get:

|M|2 = x̄1a·σy2ȳ2a
∗ ·σx1 + y1a

∗ ·σx̄2x2a·σȳ1 + x̄1a·σy2x2a·σȳ1 + y1a
∗ ·σx̄2ȳ2a

∗ ·σx1. (6.251)

Now summing over the gluino spins using eqs. (3.56)-(3.59), we find:

∑

λ′1,λ
′
2

|M|2 = Tr[a·σk2 ·σa∗ ·σk1 ·σ] + Tr[a∗ ·σk2 ·σa·σk1 ·σ]

−m2
g̃Tr[a·σa·σ]−m2

g̃Tr[a∗ ·σa∗ ·σ]. (6.252)

Taking the traces with eqs. (2.43)-(2.45) yields:

∑

λ′1,λ
′
2

|M|2 = 8Re[a·k1a
∗ ·k2]− 4a·a∗ k1 ·k2 − 4iεµνρκk1µk2νaρa

∗
κ − 4m2

g̃Re[a2]. (6.253)

Now plugging in eqs. (6.250), we obtain:

∑

λ′1,λ
′
2

|M|2 = 2(t−m2
g̃)(u−m2

g̃)[(Gt +Gu)
2 + 4(Gs +Gt)(Gs −Gu)(ε1 ·ε2)2]

+16(Gt +Gu)[Gs(t− u) +Gt(t−m2
g̃) +Gu(u−m2

g̃)](ε1 ·ε2)(k1 ·ε1)(k1 ·ε2)

−32(Gt +Gu)
2(k1 ·ε1)2(k1 ·ε2)2. (6.254)
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The sums over gluon polarizations can be done using eq. (6.241), which implies:

∑

λ1,λ2

1 = 4,
∑

λ1,λ2

(ε1 ·ε2)2 = 2, (6.255)

∑

λ1,λ2

(ε1 ·ε2)(k1 ·ε1)(k1 ·ε2) = m2
g̃ − (t−m2

g̃)(u−m2
g̃)/s (6.256)

∑

λ1,λ2

(k1 ·ε1)2(k1 ·ε2)2 =
(
m2
g̃ − (t−m2

g̃)(u−m2
g̃)/s

)2
. (6.257)

Also, we can sum over colors using f abef cdefabe
′
f cde

′
= 2fabef cdeface

′
f bde

′
= N2

c (N
2
c − 1) = 72,

so:

∑

colors

G2
s =

72g4
s

s2
,

∑

colors

G2
t =

72g4
s

(t−m2
g̃)

2
, (6.258)

∑

colors

G2
u =

72g4
s

(u−m2
g̃)

2
,

∑

colors

GsGt =
36g4

s

s(t−m2
g̃)
, (6.259)

∑

colors

GsGu = − 36g4
s

s(u−m2
g̃)
,

∑

colors

GtGu =
36g4

s

(t−m2
g̃)(u−m2

g̃)
. (6.260)

Putting the factors together, and averaging over the initial state colors and spins, we have:

dσ

dt
=

1

16πs2

(
1

64

∑

colors

1

4

∑

spins

|M|2
)

(6.261)

=
9πα2

s

4s4

[
2(t−m2

g̃)(u−m2
g̃)− 3s2 − 4m2

g̃s+
s2(s+ 2m2

g̃)
2

(t−m2
g̃)(u−m2

g̃)

−
4m4

g̃s
4

(t−m2
g̃)

2(u−m2
g̃)

2

]
, (6.262)

which agrees with the result of [87, 98] (after some rearrangment). Note that in the center-of-

momentum frame, the Mandelstam variable t is related to the scattering angle θ between an

initial-state gluon and a final-state gluino by:

t = m2
g̃ +

(
cos θ

√
1− 4m2

g̃/s− 1
)
s/2. (6.263)

Since the final state has identical particles, the total cross-section can now be obtained by:

σ =
1

2

∫ t+

t−

dσ

dt
dt (6.264)

where t± are obtained by inserting cos θ = ±1 into eq. (6.263)..

6.19 R-parity violating stau decay: τ̃+
R → e+ν̄µ

Next we consider the decay of a right-handed scalar tau via an R-parity violating LLĒ coupling.

This is particularly relevant for a scalar tau LSP [99,100] and resonant slepton production [101].
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τ̃+
R

e(ke, λe)

νµ(kν̄µ , λν̄µ)

Figure 51: Feynman diagram for the R-parity violating decay τ̃+
R → e+ν̄µ

The Feynman diagram is shown in Fig. 6.19, where we have also defined the momenta and the

helicities of the fermions. The amplitude is given by

iM = −iλyeyν̄µ , (6.265)

where we have denoted the external wave functions as ye ≡ y(~ke, λe), and yν̄µ ≡ y(~kν̄µ , λν̄µ),

respectively. We have also written the R-parity-violating Yukawa coupling as λ ≡ λ123 (see

Appendix J). Using eq. (2.30), the amplitude squared is

|M|2 = |λ|2yeyν̄µ ȳν̄µ ȳe. (6.266)

Summing over the fermion spins using eqs. (3.57) gives:

∑

λe,λν̄µ

|M|2 = |λ|2Tr[ke ·σ kν̄µ ·σ] = |λ|2m2
τ̃R
, (6.267)

where in the last step we have used the trace formula eq. (2.43), and neglected the mass of the

electron and the neutrino. The total decay rate is then given by

Γ =
1

16πmτ̃R

( ∑

λe,λν̄µ

|M|2
)

=
|λ|2
16π

mτ̃R , (6.268)

which agrees with the computation in [102–104]. Completely analogously we can obtain the

total rate for the decays ν̃µ → τ−e+ and ẽ−L → τ−ν̄µ, which proceed via the same operator, by

replacing mτ̃R → (mẽL ,mν̃µ), respectively.

In general the two-body decay rate of a sfermion f̃ via the LQD̄ or ŪD̄D̄ interaction is

given by

Γ(f̃ → f1f2) =
C|λ|2
16π

mf̃ , (6.269)

where we have neglected the masses m1,2 of the final state fermions. The factor C denotes the

color factor. For the slepton decays via LQD̄ which are summed over the final-state quark colors,

C = Nc = 3. For the squark decays via LQD̄ where the initial state color is averaged over and

the final-state color is summed, C = 1. For the squark decays via ŪD̄D̄, C = (Nc − 1)! = 2. In

realistic cases, one must also include the effects of mixing for the third-family sfermions, which

we have omitted here for simplicity.
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χ0
i (pi, λi) u (ku, λu)

dc (kd, λd)

µ (kµ, λµ)

µ̃L

χ0
i (pi, λi) µ (kµ, λµ)

u (ku, λu)

dc (kd, λd)

d̃R

χ0
i (pi, λi) µ (kµ, λµ)

dc (kd, λd)

u (ku, λu)

ũL

Figure 52: Feynman diagrams for the R-parity violating decay Ñi → µ−ud̄.

6.20 R-parity violating neutralino decay: Ñi → µ−ud̄

Next we consider the R-parity violating three-body decay of a neutralino Ñi → µ−ud̄, which

arises via the superpotential term λ′211LµQ1D̄1. This is of particular interest when the neutralino

is the LSP, since it determines the final-state signatures [105,106]. The three Feynman diagrams

are shown in Fig. 52, including the definitions of the momenta and helicities. We have neglected

sfermion mixing, i.e. we assume µ̃L, ũL, and d̃R are mass eigenstates. Using the Feynman rules

given in Figs. 76 (or 78) and 83, we obtain the amplitudes

iM1 =
(
iλ′∗
) [ i√

2
(gNi2 + g′Ni1)

] [
i

(pi − kµ)2 −m2
µ̃L

]
ȳix̄µx̄ux̄d (6.270)

iM2 =
(
iλ′∗
)
[
− i
√

2

3
g′Ni1

][
i

(pi − kd)2 −m2
d̃R

]
ȳix̄dx̄µx̄u (6.271)

iM3 =
(
iλ′∗
) [
− i√

2
(gNi2 + g′Ni1/3)

] [
i

(pi − ku)2 −m2
ũL

]
ȳix̄ux̄dx̄µ (6.272)

Here we have denoted the external wave functions as ȳi ≡ ȳ(~pi, λi), x̄µ ≡ x̄(~kµ, λµ), x̄u ≡
x̄(~ku, λu), x̄d ≡ x̄(~kd, λd), and written λ′ ≡ λ′211 . In the following, we will neglect all of the
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final-state fermion masses. The results will be expressed in terms of the kinematic variables

zµ ≡ 2pi ·kµ/m2
Ñi

= 2Eµ/mÑi
, (6.273)

zd ≡ 2pi ·kd/m2
Ñi

= 2Ed/mÑi
, (6.274)

zu ≡ 2pi ·ku/m2
Ñi

= 2Eu/mÑi
(6.275)

which satisfy zµ + zd + zu = 2. Then we can rewrite the total matrix element as:

M = c1ȳix̄µx̄ux̄d + c2ȳix̄dx̄µx̄u + c3ȳix̄ux̄dx̄µ (6.276)

where

c1 ≡
1√
2
λ′∗(gNi2 + g′Ni1)/[m

2
µ̃L −m

2
Ñi

(1− zµ)], (6.277)

c2 ≡ −
√

2

3
λ′∗g′Ni1/[m

2
d̃R
−m2

Ñi
(1− zd)], (6.278)

c3 ≡ −
1√
2
λ′∗(gNi2 + g′Ni1/3)/[m

2
ũL
−m2

Ñi
(1− zu)]. (6.279)

Before squaring the amplitude, it is convenient to use the Fierz identity (2.54) to reduce the

number of terms:

M = (c1 − c3)ȳix̄µx̄ux̄d + (c2 − c3)ȳix̄dx̄µx̄u. (6.280)

Now, using eq. (2.30), we obtain

|M|2 = |c1 − c3|2ȳix̄µxµyix̄ux̄dxdxu + |c2 − c3|2ȳix̄dxdyix̄µx̄uxuxµ
−2Re[(c1 − c3)(c∗2 − c∗3)ȳix̄µxµxux̄ux̄dxdyi] , (6.281)

where eq. (2.47) was used on the last term. Now summing over the fermion spins using

eqs. (3.56)-(3.59), we obtain:

∑

spins

|M|2 = |c1 − c3|2Tr[kµ ·σpi ·σ]Tr[kd ·σku ·σ] + |c2 − c3|2Tr[kd ·σpi ·σ]Tr[ku ·σkµ ·σ]

−2Re
[
(c1 − c3)(c∗2 − c∗3)Tr[kµ ·σku ·σkd ·σpi ·σ]

]
. (6.282)

Applying the trace formulas (2.43) and (2.45), we obtain

∑

spins

|M|2 = 4|c1 − c3|2pi ·kµ kd ·ku + 4|c2 − c3|2pi ·kd kµ ·ku

−4Re
[
(c1 − c3)(c∗2 − c∗3)](kµ ·ku pi ·kd + pi ·kµ kd ·ku − kµ ·kd pi ·ku) (6.283)

= m4
Ñi

[
|c1|2zµ(1− zµ) + |c2|2zd(1− zd) + |c3|2zu(1− zu)

−2Re[c1c
∗
2](1− zµ)(1− zd)− 2Re[c1c

∗
3](1− zµ)(1− zu)

−2Re[c2c
∗
3](1− zd)(1− zu)

]
(6.284)
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where in the last equality we have used eqs. (6.273)-(6.275) and

2kµ ·kd = (1− zu)m2
Ñi
, 2kµ ·ku = (1− zd)m2

Ñi
, 2kd ·ku = (1− zµ)m2

Ñi
. (6.285)

The differential decay rate follows:

d2Γ

dzµdzd
=
NcmÑi

256π3

(
1

2

∑

spins

|M|2
)
, (6.286)

where a factor of Nc = 3 has been included for the sum over colors, a factor of 1/2 to average

over the neutralino spin, and the kinematic limits are

0 < zµ < 1, (6.287)

1− zµ < zd < 1. (6.288)

In the limit of heavy sfermions, the integrations over zd and then zµ are simple, with the result

for the total decay width:

Γ =
Ncm

5
Ñi

6144π3

(
|c′1|2 + |c′2|2 + |c′3|2 −Re[c′1c

′∗
2 + c′1c

′∗
3 + c′2c

′∗
3 ]
)
, (6.289)

where the c′i are obtained from ci of eqs. (6.277)-(6.279) by neglecting m2
Ñi

in the denominators.

Our results agree with the complete computation given in [103,104,107], where also the complete

mixing was included. Earlier calculations with some simplifications are given in [106, 108].

6.21 Top-quark condensation from a Nambu-Jona-Lasinio model gap equa-
tion

The previous examples have involved renormalizable field theories. However, there are cases in

which it is preferable to use effective four-fermion interactions. The obvious historical example

is the use of the four-fermion Fermi theory of weak decays. This has been superseded by a

more complete and accurate theory of the weak interactions, but is still useful for leading-order

calculations of low-energy processes. Another case of some interest is the use of strong coupling

four-fermion interactions to drive symmetry breaking via a Nambu-Jona-Lasinio model [109], as

in the top-quark condensate approach [110]- [113] to electroweak symmetry breaking.

Consider an effective four-fermion Lagrangian involving the top quark [111], written in

two-component fermion form as:

L = it̄σµ∂µt+ it̄cσµ∂µt
c +

G

Λ2
(ttc)(t̄t̄c). (6.290)

Here the Standard Model gauge interactions have been suppressed; the quantities within paren-

theses are color singlets. Note also that there is no top quark Yukawa coupling to a Higgs scalar

boson, nor a top quark mass term, which would normally appear in the form −mt(tt
c + t̄t̄c).
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t, i, α

tc, j, β

t, k, α̇

tc, n, β̇

i
G

Λ2
δji δ

k
nδ
β
αδ

β̇
α̇

Figure 53: Feynman rule for the four-fermion interaction in the top-quark condensate model.
The indices i, j, k, n = 1, 2, 3 are for color in the fundamental representation of SU(3), and the
indices α, β, α̇, β̇ are two-component spinor indices.

=

Figure 54: The Nambu-Jona-Lasinio gap equation for a possible dynamically generated top-
quark mass mt.

Instead, the effective top quark mass is supposed to be driven by a non-perturbatively large and

positive dimensionless coupling G, with Λ the cutoff scale at which G arises from some more

fundamental physics such as topcolor [113].

The Feynman rule for the four-fermion interaction can be derived from the mode expansion

results of section 3, and is given in Fig. 53. The resulting gap equation for the dynamically

generated top quark mass is shown in Fig. 54. Evaluating this using the Feynman rules of figs. 4

and 5, one finds:

−imtδ
j
i δ
β
α = (−1)

∫ Λ d4k

(2π)4

(
i
G

Λ2
δji δ

k
nδ
β
αδ

β̇
α̇

) (
δnk δ

α̇
β̇

imt

k2 −m2
t + iε

)
. (6.291)

Here i, j, k, n are color indices of the fundamental representation of SU(3), and α, β, α̇, β̇ are

two-component spinor indices. The factor of (−1) on the right-hand side is due to the presence

of a fermion loop.

Euclideanizing the loop integration over kµ by k2 → −k2
E and

∫
d4k → i

∫
d4kE , and then

rewriting the integration in terms of x = k2
E , this amounts to [111]:

mt =
2NcGmt

16π2Λ2

∫ Λ2

0
dx/(1 +m2

t /x) (6.292)

=
3Gmt

8π2
[1− (m2

t /Λ
2) ln(Λ2/m2

t ) + . . .], (6.293)

where Nc = 3 is the number of colors, and a factor of two arose from the sum over dotted spinor

indices of δβ̇α̇δ
α̇
β̇
.

For small or negative G, only the trivial solution mt = 0 is possible. However, for G ≥
Gcritical = 8π2/3 ≈ 26, there is always a positive solution for m2

t /Λ
2 [111]. It is now known
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that this minimal version of the model cannot explain the top quark mass and the observed

features of electroweak symmetry breaking, but extensions of it may be viable [114].

6.22 Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard

Model electroweak vector bosons coming from quark and lepton loops. (For a derivation of

equivalent results in the four-component fermion formalism, see for example section 21.3 of [76].)

The independent self-energies are given by ΠWW
µν , ΠZZ

µν , ΠγZ
µν = ΠZγ

µν , and Πγγ
µν , as shown in figs. 55

and 56. In each case, iΠµν is equal to the sum of Feynman diagrams for two-point functions

with amputated external legs, and is implicitly a function of the external momentum pµ.

First consider the self-energy function for the W boson, shown in Fig. 55. The W boson

only couples to left-handed fermions, so there is only one Feynman diagram for each Standard

model weak isodoublet. Taking the external momentum flowing from left to right to be p, and

the loop momentum flowing counterclockwise in the upper fermion line (f) to be k, we have

from the Feynman rules of Fig. 67:

iΠWW
µν = (−1)µ2ε

∫
ddk

(2π)d

∑

(f,f ′)

Nf
c Tr

[(
−i g√

2
σµ

)( ik ·σ
k2 −m2

f

)(
−i g√

2
σν

)( i(k + p)·σ
(k + p)2 −m2

f ′

)]
.

(6.294)

Here µ is a regularization scale for dimensional regularization in d ≡ 4 − 2ε dimensions. The

sum in eq. (6.294) is over the six isodoublet pairs (f, f ′) = (e, νe), (µ, νµ), (τ, ντ ), (d, u), (s, c),

iΠWW
µν (p) = W+ W+

f

f ′

p p

µ ν

Figure 55: Contributions to the self-energy function for the W boson in the Standard Model,
from loops involving the left-handed quark and lepton pairs (f, f ′) = (e, νe), (µ, νµ), (τ, ντ ),
(d, u), (s, c), and (b, t). The momentum of the positively charged W + flows from left to right.

iΠV V ′

µν =

f

f

µ ν

V V ′

+

f c

f c
µ ν

V V ′

+

f

f

f c

f c
µ ν

V V ′

+

f c

f c

f

f
µ ν

V V ′

Figure 56: Contributions to the diagonal and off-diagonal self-energy functions for the neutral
vector bosons V, V ′ = γ, Z in the Standard Model, from loops involving the three generations
of leptons and quarks: f = e, νe, µ, νµ, τ, ντ , d, u, s, c, b, t.
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and (b, t) with CKM mixing neglected, and

Nf
c =

{
3 , f = quarks ,

1 , f = leptons .
(6.295)

The first factor of (−1) in eq. (6.294) is due to the presence of a closed fermion loop. The trace

is taken over the two-component dotted spinor indices. Using eq. (A.25), it follows that

ΠWW
µν =

g2

32π2

∑

f

Nf
c Iµν(m

2
f ,m

2
f ′) , (6.296)

where we have defined

Iµν(x, y) = i(16π2)µ2ε

∫
ddk

(2π)d
4kµkν + 2kµpν + 2kνpµ − 2k ·(k + p) gµν

(k2 − x)[(k + p)2 − y] . (6.297)

This integral can be evaluated by the standard dimensional regularization methods [76, 115],

with the result:

Iµν(x, y) = (p2gµν − pµpν)I1(p2;x, y) + gµνI2(p
2;x, y), (6.298)

where, after neglecting terms that vanish as ε→ 0,

I1(s;x, y) = − 2

3ε
+

2

3s2

{
(2x− 2y − s)A(x) + (2y − 2x− s)A(y)

+
[
2(x− y)2 − s(x+ y)− s2

]
B(s;x, y)− s(x+ y) + s2/3

}
, (6.299)

I2(s;x, y) =
x+ y

ε
− 1

s

{
(x− y)

[
A(x)−A(y)

]
+
[
(x− y)2 − s(x+ y)

]
B(s;x, y)

}
. (6.300)

The functions

A(x) ≡ x ln(x/Q2)− x, (6.301)

B(s;x, y) ≡ −
∫ 1

0
dt ln

(
tx+ (1− t)y − t(1− t)s− iε

Q2

)
, (6.302)

are the finite parts of one-loop Passarino-Veltman functions, with the renormalization scale Q

related to the regularization scale µ by the modified minimal subtraction relation

µ2 = Q2eγ/4π, (6.303)

where γ = 0.577216 . . . is Euler’s constant.

The photon and Z boson have mixed self-energy functions, defined in Fig. 56. Applying
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the pertinent Feynman rules from Fig. 67, we obtain:

iΠV V ′

µν = (−1)µ2ε

∫
ddk

(2π)d

∑

f

Nf
c Tr

{
(
−iGfV σµ

)( ik ·σ
k2 −m2

f

)(
−iGfV ′σν

)( i(k + p)·σ
(k + p)2 −m2

f

)

+
(
−iGfcV σµ

)( ik ·σ
k2 −m2

f

)(
−iGfcV ′σν

)( i(k + p)·σ
(k + p)2 −m2

f

)

+
(
−iGfV σµ

)( imf

k2 −m2
f

)(
iGf

c

V ′σν

)( imf

(k + p)2 −m2
f

)

+
(
−iGfcV σµ

)( imf

k2 −m2
f

)(
iGfV ′σν

)( imf

(k + p)2 −m2
f

)}
, (6.304)

where V and V ′ can each be either γ or Z, and
∑

f is taken over the 12 Standard Model fermions.

The corresponding V ff and V f cf c couplings are:34

Gfγ = −Gfcγ = eQf , (6.305)

GfZ =
g

cW
(T f3 − s2WQf ), Gf

c

Z =
g

cW
s2WQf . (6.306)

The four terms in eq. (6.304) correspond to the four diagrams in Fig. 56, in the same order.

The first two terms in eq. (6.304) are computed exactly as for ΠWW
µν , while in the last two

terms we use eq. (A.3) to compute the trace. It follows that the neutral electroweak vector

boson self-energy function matrix, after dropping terms that vanish as ε→ 0, is given by

ΠV V ′

µν =
1

16π2

∑

f

Nf
c

[
(GfVG

f
V ′ +Gf

c

V G
fc

V ′)Iµν(m
2
f ,m

2
f )

+gµν(G
f
VG

fc

V ′ +Gf
c

V G
f
V ′)m

2
fI3(m

2
f ,m

2
f )
]
, (6.307)

where Iµν(x, y) was defined in eqs. (6.298)-(6.300), and we have defined the function

I3(x, y) = −i(16π2) µ2ε

∫
ddk

(2π)d
2

(k2 − x)[(k + p)2 − y] =
2

ε
+ 2B(p2;x, y). (6.308)

The photon self-energy function is a simple special case of eq. (6.307):

Πγγ
µν =

1

16π2

∑

f

2Nf
c (eQf )

2
[
Iµν(m

2
f ,m

2
f )− gµνm2

fI3(m
2
f ,m

2
f )
]

(6.309)

=
α

3π

∑

f

Nf
c Q

2
f

(
p2gµν − pµpν

){
− 1

ε
+

1

3
− 2

p2

[
A(m2

f ) +m2
f

]

−
(

1 +
2m2

f

p2

)
B(p2;m2

f ,m
2
f )

}
, (6.310)

in agreement with the result given in, for example, eq. (7.90) of [76]. This formula satisfies

pµΠγγ
µν = pνΠγγ

µν = 0 as required by the Ward identity of QED, and is regular in the limit

p2 → 0.

34Note that there is no contribution from νce , νcµ, νcτ , which do not exist in the Standard Model.
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In each of eqs. (6.296), (6.307), and (6.310), there are 1/ε poles, contained in the loop integral

functions. In the MS renormalization scheme, these poles are simply removed by counterterms,

which have no other effect.

In eqs. (6.294) and (6.304), we chose to write a σµ for the left vertex in the Feynman

diagram in each case. This is an arbitrary choice; we could also have chosen to use instead −σµ
for the left vertex in any given diagram, as mentioned in the caption for Fig. 67. This would

have dictated the replacements σ ↔ −σ throughout the expression for the diagram, including

for the fermion propagators, as was indicated in Fig. 5. It is not hard to check that the result

after computing the spinor index traces is unaffected. Note that the contribution proportional

to εµνρκ from eq. (A.24) or eq. (A.25) vanishes; this is clear because the self-energy function is

symmetric under interchange of vector indices, and there is only one independent momentum in

the problem.

6.23 Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark in

the Standard Model, including the effects of the gauge interactions and the top and bottom quark

Yukawa couplings. As in Section 6.1, we treat this as a one-generation problem, neglecting CKM

mixing. Consequently, the corresponding Yukawa couplings Yt and Yb are real and positive (by a

suitable phase redefinition of the Higgs field35). Using the formalism of subsection 4.6 for Dirac

fermions, the independent 1PI self-energy functions are given by36 ΣLt, ΣRt and ΣDt (defined

in Fig. 22) as shown in Fig. 57. Note that in these diagrams, the physical top quark moves

from right to left, carrying momentum pµ. Then according to the general formula obtained in

eq. (4.71), the top-quark pole squared mass will be given by:

M2
t − iΓtMt =

(mt + ΣDt)
2

(1− ΣLT )(1− ΣRt)
, (6.311)

where mt is the tree-level mass. Working consistently to one-loop order, this yields

M2
t − iΓtMt =

[
m2
t (1 + ΣLT + ΣRt) + 2mtΣDt

] ∣∣∣
s=m2

t+iε
. (6.312)

(It would be just as valid to substitute in s = M 2
t + iε here, as two-loop order effects are

neglected.)

It remains to calculate the self-energy functions ΣLt, ΣRt and ΣDt. Two regularization pro-

cedures will be used simultaneously—the MS scheme based on dimensional regularization [116]

35As shown in Section 3.2, after the fermion-mass matrix diagonalization procedure, the tree-level fermion
masses are real and non-negative. If CKM mixing is neglected, it follows from eq. (H.13) that the corresponding
diagonal Yukawa couplings are real and positive if the phase of the Higgs field is chosen such that the neutral
Higgs vacuum expectation value v > 0.

36Since the Yukawa couplings can be chosen real (in the one-generation model), ΣLt = ΣLt. Note that after
suppressing the color degrees of freedom, ΣLt, ΣRt and ΣDt are one-dimensional matrices, so we do not employ
boldface letters in this case.
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p

−ip·σΣLt

=

t t t

g, γ, Z

+

t b t

W+

+

t tc t

hSM, G
0

+

t bc t

G+

p

−ip·σΣRt

=

tc tc tc

g, γ, Z

+

tc t tc

hSM, G
0

+

tc b tc

G+

p

−iΣDt

=

tc tc t t

g, γ, Z

+

tc t tc t

hSM, G
0

+

tc b bc t

G+

+

tc t

hSM

Figure 57: One-loop contributions to the 1PI self-energy functions for the top quark in the
Standard Model. The external momentum of the physical top quark, pµ, flows from the right to
the left. The loop momentum kµ in the text is taken to flow clockwise. Spinor and color indices
are suppressed. The external legs are amputated. The last diagram contains one-loop tadpole
contributions.

and the DR scheme based on dimensional reduction [117]. This is accomplished by integrating

over the loop momentum in

d ≡ 4− 2ε (6.313)

dimensions, but with the vector bosons possessing

D ≡ 4− 2εδMS (6.314)

components, where

δMS ≡
{

1 for MS

0 for DR.
(6.315)

In other words, the metric gµν appearing explicitly in the vector propagator is treated as four-

dimensional in DR, but as d-dimensional in MS. The renormalization scale Q is related to the

regularization scale µ in both cases by the modified minimal subtraction relation of eq. (6.303).

The calculation of the non-tadpole contributions to the self-energy functions will be per-

formed below in a general Rξ gauge, with a vector boson propagator as in fig. 6. There are

different ways to treat the tadpole contributions, corresponding to different choices for the Higgs

VEV around which the tree-level Lagrangian is expanded. If one chooses to expand around the

minimum of the tree-level Higgs potential, then there are no tree-level tadpoles, but there will

be non-zero contributions from the last diagram shown in fig. 57. (This corresponds to the

treatment given, for example, in ref. [118].) Alternatively, one can choose to expand around the
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hSM + hSM = 0

Figure 58: The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, provided
that one expands around a Higgs VEV that minimizes the one-loop effective potential (rather
than the tree-level Higgs potential, which would yield no tree-level tadpole).

Higgs VEV v that minimizes the one-loop Landau gauge37 effective potential. In that case, the

one-loop tadpole contribution is precisely cancelled by the tree-level Higgs tadpole, as shown

in fig. 58. Here, we have in mind the latter prescription; the calculation for the pole mass is

therefore complete without tadpole contributions provided that the tree-level top-quark mass is

taken to be

mt = Ytv, (6.316)

where Yt is the MS or DR Yukawa coupling, and v is the Higgs VEV at the minimum of the

one-loop effective potential in Landau gauge. To be consistent with this choice, ξ = 0 should

be taken in all formulas below that involve electroweak gauge bosons or Goldstone bosons.

(The gluon contribution is naturally independent of ξ because the gauge symmetry is unbroken,

providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality we will

keep the dependence on ξ in the computation of the individual non-tadpole self-energy diagrams

below.

Consider the one-loop calculation of the self-energy ΣLt, which is the sum of individual

diagram contributions ΣLt = [ΣLt]g+[ΣLt]γ+[ΣLt]Z+[ΣLt]W+[ΣLt]hSM
+[ΣLt]G0+[ΣLt]G+ . First,

consider the diagrams involving exchanges of the scalars φ = hSM, G
0, G±. These contributions

all have the same form

−ip·σ [ΣLt]φ = µ2ε

∫
ddk

(2π)d
(−iY ∗)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iY )

(
i

k2 −m2
φ

)
, (6.317)

where the loop momentum kµ flows clockwise, and the couplings and propagator masses are,

using the Feynman rules of figs. 68 and 69,

for φ = hSM : Y = Yt/
√

2; mf = mt; m2
φ = m2

hSM
, (6.318)

for φ = G0 : Y = iYt/
√

2; mf = mt; m2
φ = ξm2

Z , (6.319)

for φ = G± : Y = Yb; mf = mb; m2
φ = ξm2

W . (6.320)

37This procedure is considerably more involved outside of Landau gauge, because the propagators mix the
longitudinal components of the vector boson with the Nambu-Goldstone bosons for ξ 6= 0 if one expands around
a Higgs VEV that does not minimize the tree-level potential. This is the same reason the effective potential is
traditionally calculated specifically in Landau gauge.
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Multiplying both sides by p·σ and taking the trace over spinor indices using eq. (A.3), one finds

[ΣLt]φ = i|Y |2µ
2ε

p2

∫
ddk

(2π)d
p·(k + p)

[(k + p)2 −m2
f ][k

2 −m2
φ]
. (6.321)

Performing the loop momentum integration in the standard way [76, 115], and expanding in ε

up to constant terms, one finds that in each case

[ΣLt]φ = − 1

16π2
|Y |2 IFS(s;m2

f ,m
2
φ). (6.322)

Here we have introduced some notation for the loop integral:

IFS(s;x, y) ≡ 1

2ε
+ [(s+ x− y)B(s;x, y) +A(x) −A(y)]/2s , (6.323)

where the Passarino-Veltman functions A(x) and B(s;x, y) were defined in eqs. (6.301) and

(6.302). These functions depend on the renormalization scale Q, which is related to µ via

eq. (6.303). It can be checked that IFS(s;x, y) has a smooth limit as s→ 0.

Next, let us consider the contributions to ΣLt involving the vector bosons V = g, γ, Z,W .

These have the common form:

−ip·σ[ΣLt]V = µ2ε

∫
ddk

(2π)d
(−iGσµ)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iGσν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.324)

where again the loop momentum k flows clockwise, and, using the rules of figs. 67 and 79:

for V = g : G = gsT
a; mf = mt, (6.325)

for V = γ : G = eQt; mf = mt, (6.326)

for V = Z : G = g(T t3 − s2WQt)/cW ; mf = mt, (6.327)

for V = W : G = g/
√

2; mf = mb. (6.328)

In the case of gluon exchange (V = g), the T a are the SU(3)C generators (with color in-

dices suppressed). The adjoint representation index a is summed over, producing a factor of

the Casimir invariant (T aT a)ij = CF δij = 4
3δij . We now use σµ σρ σν g

µν = (2 − D)σρ [see

eq. (A.11)]; note that this introduces a difference between the MS and DR schemes. Also, we

use k ·σ(k + p)·σk ·σ = (k2 + 2k ·p)k ·σ − k2p·σ, which follows from eq. (2.42). One therefore

obtains, after multiplying by p·σ and taking the trace over spinor indices:

[ΣLt]V = −iG2µ
2ε

p2

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
V ]

[
(2−D)p·(k + p)

+
(
k2k ·p+ 2(k ·p)2 − k2p2

) (ξ − 1)

k2 − ξm2
V

]
. (6.329)
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Performing the loop momentum integration, one finds in each case that

[ΣLt]V = − 1

16π2
G2IFV (s;m2

f ,m
2
V ), (6.330)

where we have introduced the notation

IFV (s;x, y) =
ξ

ε
+ [(s+ x− y)B(s;x, y) +A(x)−A(y)]/s− δMS +

{
(s− x)[A(y)−A(ξy)]

+[(s− x)2 − y(s+ x)]B(s;x, y)− [(s− x)2 − ξy(s+ x)]B(s;x, ξy)
}
/2ys, (6.331)

after dropping terms that vanish as ε→ 0. Combining the results of eqs. (6.322) and (6.330):

ΣLt = − 1

16π2

[(
g2
sCF + e2Q2

t

)
IFV (m2

t ;m
2
t , 0) + [g(T t3 − s2WQt)/cW ]2IFV (m2

t ;m
2
t ,m

2
Z)

+
1

2
g2IFV (m2

t ;m
2
b ,m

2
W ) +

1

2
Y 2
t IFS(m2

t ;m
2
t ,m

2
hSM

)

+
1

2
Y 2
t IFS(m2

t ;m
2
t , ξm

2
Z) + Y 2

b IFS(m2
t ;m

2
b , ξm

2
W )
]
, (6.332)

where we have now substituted s = m2
t . It is useful to note that for massless gauge bosons,

IFV (x;x, 0) = ξ

[
1

ε
− ln(x/Q2) + 2

]
+ 1− δMS. (6.333)

The contributions to ΣRt = [ΣRt]g + [ΣRt]γ + [ΣRt]Z + [ΣRt]hSM
+ [ΣRt]G0 + [ΣRt]G± are

obtained similarly. [Note that there is no W boson contribution, since the right-handed top

quark is an SU(2)L singlet.] For the scalar exchange diagrams with φ = hSM, G
0, G±, the

general form is:

−ip·σ[ΣRt]φ = µ2ε

∫
ddk

(2π)d
(−iY )

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iY ∗)

(
i

k2 −m2
φ

)
. (6.334)

and so

[ΣRt]φ = − 1

16π2
|Y |2 IFS(s;m2

f ,m
2
φ). (6.335)

Here the couplings and propagator masses for hSM and G0 are the same as in eqs. (6.318),

(6.319), but now, instead of eq. (6.320),

for φ = G± : Y = −Yt; mf = mb; m2
φ = ξm2

W (6.336)

from fig. 69. For the contributions due to exchanges of vectors v = g, γ, Z, the general form is

−ip·σ[ΣRt]V = µ2ε

∫
ddk

(2π)d
(iGσµ)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(iGσν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.337)
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where, using the rules of figs. 67 and 79:

for V = g : G = −gsT a; (6.338)

for V = γ : G = −eQt; (6.339)

for V = Z : G = gs2WQt/cW , (6.340)

with mf = mt in each case. Using σµ σρ σν g
µν = (2 − D)σρ [see eq. (A.10)] and k ·σ(k +

p)·σk ·σ = (k2 + 2k ·p)k ·σ − k2p·σ [from eq. (2.41)], then multiplying by p·σ and taking the

trace over spinor indices [using eq. (A.3)], we obtain

[ΣRt]V = − 1

16π2
G2IFV (s;m2

t ,m
2
V ) (6.341)

in terms of the same function appearing in eqs. (6.331) and (6.333). Adding up these contribu-

tions and taking s = m2
t yields

ΣRt = − 1

16π2

[(
g2
sCF + e2Q2

t

)
IFV (m2

t ;m
2
t , 0) + (g2Q2

t s
4
W/c

2
W )IFV (m2

t ;m
2
t ,m

2
Z)

+
1

2
Y 2
t IFS(m2

t ;m
2
t ,m

2
hSM

) +
1

2
Y 2
t IFS(m2

t ;m
2
t , ξm

2
Z) + Y 2

t IFS(m2
t ;m

2
b , ξm

2
W )
]
. (6.342)

Next, consider the contributions to ΣDt = [ΣDt]g + [ΣDt]γ + [ΣDt]Z + [ΣDt]hSM
+ [ΣDt]G0 +

[ΣDt]G± , ignoring the tadpole contribution for now. The diagrams involving the exchange of

scalars φ = hSM, G
0, G± have the form:

−i[ΣDt]φ = µ2ε

∫
ddk

(2π)d
(−iY1)

(
imf

(k + p)2 −m2
f

)
(−iY2)

(
i

k2 −m2
φ

)
, (6.343)

so that

[ΣDt]φ = imfY1Y2µ
2ε

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
φ]

(6.344)

=
1

16π2
mfY1Y2IFS(s;m2

f ,m
2
φ) (6.345)

where we have introduced the notation:

IFS(s;x, y) ≡ −1

ε
−B(s;x, y), (6.346)

after dropping terms that vanish as ε→ 0. The relevant couplings and masses are, from figs. 68

and 69:

for φ = hSM : Y1 = Y2 = Yt/
√

2; mf = mt; m2
φ = m2

hSM
, (6.347)

for φ = G0 : Y1 = Y2 = iYt/
√

2; ; mf = mt; m2
φ = ξm2

Z , (6.348)

for φ = G± : Y1 = Yb; Y2 = −Yt; mf = mb; m2
φ = ξm2

W . (6.349)
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The contributions from vector boson exchanges are of the form

−i[ΣDt]V = µ2ε

∫
ddk

(2π)d
(iG1σµ)

(
imf

(k + p)2 −m2
f

)
(−iG2σν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.350)

Using σµσνg
µν = D [see eq. (A.8)] and k ·σk ·σ = k2 [from eq. (2.39)] yields

[ΣDt]V = imfG1G2µ
2ε

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
V ]

[
D +

(ξ − 1)k2

k2 − ξm2
V

]
(6.351)

=
1

16π2
mfG1G2IFV (s;m2

f ,m
2
V ) (6.352)

where

IFV (s;x, y) ≡ −3 + ξ

ε
− 3B(s;x, y)− ξB(s;x, ξy) + 2δMS, (6.353)

after dropping terms that vanish as ε→ 0. It is useful to note that for massless gauge bosons

IFV (x;x, 0) ≡ −3 + ξ

ε
+ (3 + ξ)[ln(x/Q2)− 2] + 2δMS. (6.354)

The relevant couplings are obtained from the rules of figs. 67 and 79:

for V = g : G1 = −G2 = gsT
a; (6.355)

for V = γ : G1 = −G2 = eQt; (6.356)

for V = Z : G1 = g(T t3 − s2WQt)/cW ; G2 = gs2WQt/cW ; (6.357)

and mf = mt in each case. Adding up these contributions and taking s = m2
t , we have:

ΣDt =
mt

16π2

{
g2
[
(T t3 − s2WQt)s2WQt/c2W

]
IFV (m2

t ;m
2
t ,m

2
Z)− (g2

sCF + e2Q2
t )IFV (m2

t ;m
2
t , 0)

+
1

2
Y 2
t IFS(m2

t ;m
2
t ,m

2
hSM

)− 1

2
Y 2
t IFS(m2

t ;m
2
t , ξm

2
Z)− Y 2

b IFS(m2
t ;m

2
b , ξm

2
W )

}
. (6.358)

In each of the self-energy functions above, there are poles in 1/ε, contained within the

functions IFV , IFS , IFV and IFS . In the MS or DR schemes, these poles are simply canceled

by counterterms, which have no other effect at one-loop order. The one-loop top-quark pole

mass can now be obtained by plugging eqs. (6.332), (6.342), and (6.358) into eq. (6.312) with

ξ = 0, as discussed earlier. It is not hard to check that the terms from the vector exchange

diagrams that depend on ξm2
W and ξm2

Z then just cancel against contributions from massless

Nambu-Goldstone bosons.

As a simple example, consider the one-loop pole mass with only QCD effects included.

Then the result of eq. (6.312) has no imaginary part. Taking the square root (and dropping a
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two-loop order part) yields the well-known result [119]:

Mt,pole = mt(1 + 1
2ΣLt + 1

2ΣRt) + ΣDt (6.359)

= mt

(
1− CF g

2
s

16π2

[
IFV (m2

t ;m
2
t , 0) + IFV (m2

t ;m
2
t , 0)

])
(6.360)

= mt

(
1 +

αs
4π
CF

[
5− δMS − 3 ln(m2

t /Q
2)
])
. (6.361)

As another check, consider the imaginary part of the pole squared mass. Equation (6.312)

implies, at leading order:

Γt = −Im[mt(ΣLt + ΣRt) + 2ΣDt] (6.362)

=
mt

16π2
Im
[g2

2
IFV (m2

t ;m
2
b ,m

2
W ) + (Y 2

t + Y 2
b )IFS(m2

t ;m
2
b , ξm

2
W )

+2Y 2
b IFS(m2

t ;m
2
b , ξm

2
W )
]
. (6.363)

=
1

32π2mt

{
(g2 + Y 2

t + Y 2
b )(m2

t +m2
b −m2

W )− 4Y 2
b m

2
t

}
Im[B(m2

t ;m
2
b ,m

2
W )]. (6.364)

The fact that the ξ dependence cancelled here is a successful check of gauge-fixing invariance,

since the tadpole diagram in fig. 57 does not contribute to the absorptive part of the self-energy.

Now, using

Im[B(s;x, y)] =

{
0 for s ≤ (

√
x+
√
y)2,

πλ1/2(s, x, y)/s for s > (
√
x+
√
y)2.

(6.365)

in eq. (6.364) reproduces the result of eq. (6.11) for the top-quark width at leading order.

6.24 Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. 59. Since the gluino is a

Majorana fermion, we can use the general formalism of subsection 4.6. We will compute the self-

energy functions Ξg̃ ≡ Ξg̃
g̃ and Ωg̃ ≡ Ωg̃g̃ defined in Fig. 20, and infer Ωg̃ ≡ Ωg̃g̃ from the latter

by replacing all Lagrangian parameters by their complex conjugates.38 From the general result

of eq. (4.63), it follows that the gluino complex pole squared mass is related to the tree-level

mass mg̃ by

M2
g̃ − iMg̃Γg̃ =

[
m2
g̃(1 + 2Ξg̃) +mg̃(Ωg̃ + Ωg̃)

] ∣∣∣
s=m2

g̃+iε
(6.366)

at one-loop order.

It is convenient to split the self-energy functions into gluon/gluino loop and squark/gluino

loop contributions, as

Ξg̃ = [Ξg̃]g +
∑

q

∑

x=1,2

[Ξg̃]q̃x , and Ωg̃ = [Ωg̃]g +
∑

q

∑

x=1,2

[Ωg̃]q̃x , (6.367)

38Suppressing the color degrees of freedom, Ξ, Ω and Ω are one-dimensional matrices, so we do not employ
boldface letters in this case.
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p

−ip·σ Ξg̃

=

g̃ g̃ g̃

g

+

g̃ q g̃

q̃x
+

g̃ qc g̃

q̃x

p

−iΩg̃

=

g̃ g̃ g̃

g

+

g̃ q qc g̃

q̃x
+

g̃ qc q g̃

q̃x

Figure 59: Self-energy functions for the gluino in supersymmetry. The external momentum pµ

flows from the right to the left. The loop momentum kµ in the text is taken to flow clockwise.
Spinor and color indices are suppressed. The index x = 1, 2 labels the two squark mass eigen-
states of a given flavor q = u, d, s, c, b, t. Both x and q must be summed over. The external legs
are amputated.

where the sum over q runs over the six squark flavors u, d, s, c, b, t, and x = 1, 2 corresponds to

the two squark mass eigenstates [i.e., the two appropriate linear combinations (for fixed squark

flavor) of q̃L and q̃R]. The gluon exchange contributions, following from the Feynman rules of

Fig. 79, are:

−ip·σ [Ξg̃]g δ
ab = µ2ε

∫
ddk

(2π)d
(−gsfaecσµ)

(
i(k + p)·σ

(k + p)2 −m2
g̃

)(
−gsf ebcσν

)

(−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
, (6.368)

−i [Ωg̃]g δ
ab = µ2ε

∫
ddk

(2π)d
(gsf

eacσµ)

(
img̃

(k + p)2 −m2
g̃

)(
−gsf ebcσν

)

(−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
. (6.369)

The internal gluon and gluino lines carry SU(3)c adjoint representation index indices c and e

respectively, while the external gluinos on the left and right carry indices a and b respectively.

The gluino external momentum pµ flows from right to left, and the loop momentum kµ flows

clockwise. Comparing with the derivations of eqs. (6.330) and (6.352) in the previous subsection,

and using −faecf ebc = f eacf ebc = δabCA [with CA = 3 for SU(3)c], we can immediately conclude

that

[Ξg̃]g = −αs
4π
CAIFV (s;m2

g̃, 0), (6.370)

[Ωg̃]g = −αs
4π
CAmg̃IFV (s;m2

g̃, 0), (6.371)

where the loop integral functions IFV and IFV were defined in eqs. (6.331) and (6.353).

Next consider the virtual squark-exchange diagrams contributing to Ξ g̃. Labeling the quark
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and squark with color indices j, k respectively, we have for each squark mass eigenstate:

−ip·σ [Ξg̃]q̃x δ
ab = µ2ε

∫
ddk

(2π)d
(
−i
√

2gsT
ak
j Lq̃x

)( i(k + p)·σ
(k + p)2 −m2

q

)(
−i
√

2gsT
bj
k L

∗
q̃x

)( i

k2 −m2
q̃x

)

+µ2ε

∫
ddk

(2π)d

(
i
√

2gsT
aj
k R∗

q̃x

)( i(k + p)·σ
(k + p)2 −m2

q

)(
i
√

2gsT
bk
j Rq̃x

)( i

k2 −m2
q̃x

)
. (6.372)

This uses the Feynman rules shown in fig. 81, given in terms of the squark mixing parameters

Lq̃x and Rq̃x defined in eqs. (I.29) and (I.30). Using Tr[T aT b] = 1
2δ
ab and |Lq̃x|2 + |Rq̃x |2 = 1,

and comparing to the derivation of eq. (6.322) of the previous subsection, we obtain:

[Ξg̃]q̃x = −αs
4π
IFS(s;m2

q ,m
2
q̃x). (6.373)

Similarly, for the last two diagrams of Fig. 59, we obtain:

−i[Ωg̃]q̃x δ
ab = µ2ε

∫
ddk

(2π)d

(
−i
√

2gsT
aj
k L∗

q̃x

)( imq

(k + p)2 −m2
q

)(
i
√

2gsT
bk
j Rq̃x

)( i

k2 −m2
q̃x

)

+µ2ε

∫
ddk

(2π)d

(
i
√

2gsT
ak
j Rq̃x

)( imq

(k + p)2 −m2
q

)(
−i
√

2gsT
bj
k L

∗
q̃x

)( i

k2 −m2
q̃x

)
, (6.374)

again using the Feynman rules shown in fig. 81. As before, j and k are the color indices for the

quark and the squark, respectively. Comparing to the derivation of eq. (6.345) of the previous

subsection, we obtain:

[Ωg̃]q̃x = −αs
2π
L∗
q̃xRq̃xmqIFS(s;m2

q ,m
2
q̃x) . (6.375)

Summing up the results obtained above, and taking s = m2
g̃, we have:

Ξg̃ = −αs
4π

[
CAIFV (m2

g̃;m
2
g̃, 0) +

∑

q

∑

x=1,2

IFS(m2
g̃;m

2
q ,m

2
q̃x)

]
, (6.376)

Ωg̃ = −αs
4π

[
CAmg̃IFV (m2

g̃;m
2
g̃, 0) + 2

∑

q

∑

x=1,2

L∗
q̃xRq̃xmqIFS(m2

g̃;m
2
q ,m

2
q̃x)

]
. (6.377)

As previously noted, we can now write down Ωg̃ by replacing the Lagrangian parameters of

eq. (6.377) by their complex conjugates:

Ωg̃ = −αs
4π

[
CAmg̃IFV (m2

g̃;m
2
g̃, 0) + 2

∑

q

∑

x=1,2

Lq̃xR
∗
q̃xmqIFS(m2

g̃;m
2
q ,m

2
q̃x)

]
. (6.378)

Inserting the results of eqs. (6.376)–(6.378) into eq. (6.366), one obtains the result [120, 121]:

M2
g̃ − iMg̃Γg̃ = m2

g̃

[
1 +

αs
2π

{
CA
[
5− δMS − 3 ln

(
m2
g̃/Q

2
)]

−
∑

q

∑

x=1,2

[
IFS(m2

g̃;m
2
q ,m

2
q̃x) + 2Re[L∗

q̃xRq̃x ]
mq

mg̃
IFS(m2

g̃;m
2
q,m

2
q̃x)
]}]

, (6.379)

with δMS defined in eq. (6.315).
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6.25 Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from

the triangle diagram involving three currents carrying vector indices.39 Since the anomaly is

independent of the fermion masses, we simplify the computation by setting all fermion masses

to zero. In four-component notation, the treatment of the anomaly requires care because of

the difficulty in defining a consistent and unambiguous γ5 and the epsilon tensor in dimensional

regularization. The same subtleties arise in two-component language, of course, but in a slightly

different form since γ5 does not appear explicitly.

We shall assemble all the ( 1
2 , 0) [left-handed] two-component fermion fields of the theory

into a (generally reducible) multiplet ψj . For example, the fermions of the Standard Model are:

ψj = (`k , `
c
k , νk , qi` , q

c
i`), where k = 1, 2, 3 and i = 1, 2, . . . , 6 are flavor labels and ` = 1, 2, 3

are color labels [see Table 1]. The two-component spinor indices are suppressed here. Let the

symmetry generators be given by Hermitian matrices T a, so that the ψj transform as:

δψj = iθa(T a)j
kψk, (6.380)

for infinitesimal parameters θa. The matrices T a form a reducible representation of a Lie algebra

of the symmetry group. In particular, the T a have a block-diagonal structure, where each block

separately transforms the corresponding field of ψj according to its symmetry transformation

properties. Some or all of these symmetries may be gauged. The Feynman rule for the cor-

responding currents is the same as for external gauge bosons, (as in Fig. 8), and is shown in

Fig. 60.

µ, a

k

j

−i(T a)j
k σµ or i(T a)j

k σµ

Figure 60: Feynman rule for the coupling of a current carrying vector index µ and correspond-
ing to the symmetry generator T a acting on ( 1

2 , 0) [left-handed] fermions. Spinor indices are
suppressed.

Figure 61 shows the two Feynman diagrams that contribute at one-loop to the three-point

function of the symmetry currents. Applying the Feynman rules of Fig. 2 (with m = 0) for the

propagators and Fig. 60 for the currents, the sum of these diagrams is given by:

39The discussion here parallels that given in ref. [122], section 22.3.
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µ, a

ν, bρ, c k +A

k − p+Ak + q +A

p+ q

pq

µ, a

ν, bρ, c k +B

k + p+Bk − q +B

p+ q

pq

Figure 61: Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion spinor
and flavor indices are suppressed. The fermion momenta as labeled flow in the arrow directions.

iΓabcµνρ = (−1)

∫
d4k

(2π)4
Tr

{
(−iσµT a)

i(k − p+A)·σ
(k − p+A)2

(−iσνT b)
i(k +A)·σ
(k +A)2

(−iσρT c)
i(k + q +A)·σ
(k + q +A)2

+(−iσµT ) i(k − q +B)·σ
(k − q +B)2

(−iσρT c)
i(k +B)·σ
(k +B)2

(−iσνT b)
i(k + p+B)·σ
(k + p+B)2

}
, (6.381)

where the overall factor of (−1) is due to the presence of a closed fermion loop. The trace is

taken over fermion flavor/group and spinor indices, both of which are suppressed. Writing

Tr({T aT b}T c) = dabc +
i

4
fabc , (6.382)

where **********

Although the symmetrized three-point function is ultraviolet finite, the individual loop mo-

mentum integrals are divergent, and must be defined with care. We do not regularize them by

the usual procedure of continuing to d = 4− 2ε dimensions, because the trace over sigma matri-

ces crucially involves the antisymmetric tensor with four indices, brought in by eqs. (A.24) and

(A.25), for which there is no consistent and unambiguous generalization outside of four dimen-

sions. (This is related to the difficulty of defining γ5 in the four-component spinor notation.)

Because the individual integrals are linearly divergent, we must allow for arbitrary constant

four-vectors Aµ and Bµ as offsets for the loop momentum when defining the loop integrations

for the two diagrams [123]. The existence of these vectors corresponds to an ambiguity in the

regulation procedure, which can be fixed to preserve some of the symmetries, as we will see

below.

The persistence of the symmetry in the quantum theory for the currents labeled by µ, a and

ν, b and ρ, c implies the conservation equations

(p+ q)µΓabcµνρ = 0 , −pνΓabcµνρ = 0 , and − qρΓabcµνρ = 0 , (6.383)
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respectively. Here we are interested in the potentially anomalous part obtained by symmetrizing

over the indices a, b, c:

Aabcµνρ = 1
6 iΓ

abc
µνρ + [five permutations of a, b, c]. (6.384)

Then the contribution of both diagrams involves the same group theory factor, the anomaly

coefficient

dabc = 1
2Tr[{T a, T b}T c]. (6.385)

First, consider the result for (p+ q)µAabcµνρ. This can be simplified by rewriting

(p+ q)µ = (k + q +A)µ − (k − p+A)µ, (6.386)

(p+ q)µ = (k + p+B)µ − (k − q +B)µ (6.387)

in the first and second diagram terms, respectively, and then applying the formulas

v ·σ v ·σ = v2, (6.388)

v ·σ v ·σ = v2, (6.389)

which follow from eqs. (A.1), (A.2). After rearranging the terms using the cyclic property of the

trace, we obtain:

(p+ q)µAabcµνρ = dabc Tr[σκσνσλσρ]X
κλ, (6.390)

where the integral is given by:

Xκλ =

∫
d4k

(2π)4

[
(k − p+A)κ

(k − p+A)2
(k +A)λ

(k +A)2
− (k + q +A)κ

(k + q +A)2
(k +A)λ

(k +A)2

+
(k +B)κ

(k +B)2
(k − q +B)λ

(k − q +B)2
− (k +B)κ

(k +B)2
(k + p+B)λ

(k + p+B)2

]
. (6.391)

Naively, this integral appears to vanish, because the first term is equal to the negative of the

fourth term after a momentum shift k → k − p + A − B, and the second term is equal to the

negative of the third term after k → k+q+A−B. However, these momentum shifts are not valid

for the individually divergent integrals. Instead, Xκλ can be evaluated by a Wick rotation to

Euclidean space, followed by isolating the terms that contribute for large k2 and are responsible

for the integral not vanishing, and then use of the divergence theorem in four dimensions to

rewrite the integral as one over a three-sphere with radius tending to infinity. The result is:

Xκλ =
i

96π2

[
gκλ(p+ q)·(A+B) + (A− 2B)κ(p+ q)λ + (p+ q)κ(B − 2A)λ

]
. (6.392)
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Applying eq. (A.24), we get the result for the anomaly in the current labeled by µ, a:

(p+ q)µAabcµνρ =
i

48π2
dabc

[
(p+ q)ν(A+B)ρ + (A+B)ν(p+ q)ρ − gνρ(p+ q)·(A+B)

+3iενρκλ(p+ q)κ(A−B)λ
]
. (6.393)

Repeating all of the steps starting with eq. (6.386), we similarly obtain:

−pνAabcµνρ = − i

48π2
dabc

[
pρ(A+B)µ + pµ(A+B)ρ − gµρp·(A+B) + 3iερµκλp

κ(A−B + 2q)λ
]
,

(6.394)

−qρAabcµνρ = − i

48π2
dabc

[
qµ(A+B)ν + qν(A+B)µ − gµνq ·(A+B) + 3iεµνκλq

κ(A−B − 2p)λ
]
.

(6.395)

[Alternatively, one can simply note that eq. (6.394) follows from eq. (6.393) by making the

replacements µ → ν, ν → ρ, ρ → µ, A → A + q, B → B − q, p → q, and q → −p − q,

while eq. (6.395) follows from eq. (6.393) by making the replacements µ → ρ, ν → µ, ρ → ν,

A→ A− p, B → B + p, p→ −p− q, and q → p.]

From eqs. (6.393)–(6.395), it is clear that unless A + B = 0, all three symmetries will

definitely be anomalous unless dabc = 0. To avoid this, we choose B = −A, with the result:

(p+ q)µAabcµνρ = − 1

8π2
dabcενρκλ(p+ q)κAλ, (6.396)

−pνAabcµνρ =
1

8π2
dabcερµκλp

κ(A+ q)λ, (6.397)

−qρAabcµνρ =
1

8π2
dabcεµνκλq

κ(A− p)λ. (6.398)

It is still not possible to avoid an anomaly in all three symmetries if dabc 6= 0. If one wants an

anomaly to arise only in the current labeled by µ, a (for example, if the symmetries labeled by

b, c are gauged), one must now choose A = p− q. The standard result follows:

(p+ q)µAabcµνρ =
1

4π2
dabcενρκλp

κqλ, (6.399)

−pνAabcµνρ = 0, (6.400)

−qρAabcµνρ = 0. (6.401)

In particular, one cannot gauge all three symmetries a, b, c unless dabc = 0.

In writing down eq. (6.381), we chose to use the rules with σ matrices for the current vertices

and σ matrices for the massless fermion propagators. If we had chosen the opposite prescription,

the net effect would have been to obtain the same results as above, but with the opposite sign for

all terms involving the epsilon tensor, due to the sign difference in eqs. (A.24) and (A.25). This

leads to an overall sign ambiguity in the anomaly amplitude for the antisymmetric combination
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of vector indices. Since the phase of the amplitude is not observable, this does not lead to

a problem. However, when combining the two diagrams, or when including higher loop order

diagrams, a consistent choice must be made. Note that the evaluation of the anomaly above

relied on combining diagrams with a common spinor trace structure in eq. (6.390).

Appendix A: Two-component spinor identities in d 6= 4

When considering a theory regularized by dimensional continuation, one must be careful in

treating cases with contracted spacetime vector indices µ, ν, ρ, . . .. Instead of taking on 4 possible

values, these vector indices formally run over d values, where d is infinitesimally different from

4. This means that some identities that would hold in unregularized 4-dimensional theories are

inconsistent and must not be used; other identities remain valid if d replaces 4 in the appropriate

spots; and still other identities hold without modification.

Two important identities that do hold in d 6= 4 dimensions are:

[σµσν + σνσµ]α
β = 2gµνδβα , (A.1)

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇
β̇
. (A.2)

The trace identities:

Tr[σµσν ] = Tr[σµσν ] = 2gµν (A.3)

then follow. We also note that the spinor index trace identity

Tr[1] = δαα = δα̇α̇ = 2 (A.4)

continues to hold in dimensional continuation regularization methods.

In contrast, the Fierz identity (written here in three equivalent forms):

σµαα̇σ
β̇β
µ = 2δα

βδβ̇ α̇ (A.5)

σµαα̇σµββ̇ = 2εαβεα̇β̇ (A.6)

σµα̇ασβ̇βµ = 2εαβεα̇β̇ (A.7)

does not have a consistent, unambiguous meaning outside of 4 dimensions. (See for example

refs. [124–126] and references therein.) However, the following identities that are implied by the
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Fierz identity do consistently generalize to d 6= 4 spacetime dimensions:

[σµσµ]α
β = dδβα (A.8)

[σµσµ]
α̇
β̇ = dδα̇

β̇
(A.9)

[σµσνσµ]αβ̇ = (2− d)σν
αβ̇

(A.10)

[σµσνσµ]
α̇β = (2− d)σα̇βν (A.11)

[σµσνσρσµ]α
β = 4gνρδβα − (4− d)[σνσρ]αβ (A.12)

[σµσνσρσµ]
α̇
β̇ = 4gνρδα̇

β̇
− (4− d)[σνσρ]α̇β̇ , (A.13)

[σµσνσρσκσµ]αβ̇ = −2[σκσρσν ]αβ̇ + (4− d)[σνσρσκ]αβ̇ (A.14)

[σµσνσρσκσµ]
α̇β = −2[σκσρσν ]α̇β + (4− d)[σνσρσκ]α̇β . (A.15)

Eq. (A.5) is the basis for other Fierz identities that hold in 4 dimensions, which are given in

detail in Appendix A of ref. [38] as well as [37, 42, 43].

Identities that involve the (explicitly and inextricably 4-dimensional) εµνρκ symbol,

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iεµνρκσκ , (A.16)

σµσνσρ = gµνσρ − gµρσν + gνρσµ + iεµνρκσκ , (A.17)

σµνσρ = i
2(gνρσµ − gµρσν + iεµνρκσκ) , (A.18)

σµνσρ = i
2(gνρσµ − gµρσν − iεµνρκσκ) , (A.19)

σµσνρ = i
2(gµνσρ − gµρσν − iεµνρκσκ) , (A.20)

σµσνρ = i
2(gµνσρ − gµρσν + iεµνρκσκ) , (A.21)

σµνσρκ = −1
4(gνρgµκ − gµρgνκ + iεµνρκ) (A.22)

+ i
2(gνρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) ,

σµνσρκ = −1
4(gνρgµκ − gµρgνκ − iεµνρκ) (A.23)

+ i
2(gνρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) .

are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from them.40 For example,

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) , (A.24)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ) . (A.25)

This could lead to ambiguities in loop computations where it is necessary to perform the com-

putation in d 6= 4 dimensions (until the end of the calculation where the limit d→ 4 is taken).

40This is analogous to the statement that Tr (γ5γµγνγργκ) = −4iεµνρκ [in our convention where ε0123 = +1]
is only meaningful in d = 4 dimensions. In two-component notation, the equivalent result is Tr[σµσνσρσκ −
σµσνσρσκ] = 4iεµνρκ. In the literature various schemes have been proposed for defining the properties of γ5 in
d 6= 4 dimensions [126]. In two-component notation, this would translate into a procedure for dealing with general
traces involving four or more σ and σ matrices.
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However, in practice one typically finds that the above expressions appear multiplied by the met-

ric and/or other external tensors (such as four-momenta appropriate to the problem at hand).

In almost all such cases, two of the indices appearing in eqs. (A.24) and (A.25) are symmetrized

which eliminates the εµνρκ term, rendering the resulting expressions unambiguous. Similarly, the

sum of the above trace identities can be assigned an unambiguous meaning in d 6= 4 dimensions:

Tr[σµσνσρσκ] + Tr[σµσνσρσκ] = 4 (gµνgρκ − gµρgνκ + gµκgνρ) . (A.26)

By repeatedly applying the identities given in eqs. (A.1)–(A.3) to eqs. (A.24) and (A.25) in

4 dimensions and eq. (A.26) in d dimensions, and using the cyclic property of the trace, one can

recursively derive trace formulas for products of 6 or more σ and σ matrices.

Appendix B: Explicit forms for the two-component spinor wave

functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator 1
2~σ ·ŝ,

and we examine their properties.

Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis

specified by the unit vector

ŝ ≡ (sin θ cosφ , sin θ sinφ , cos θ) , (B.1)

with polar angle θ and azimuthal angle φ with respect to a fixed z-axis. The corresponding spin

states will be called fixed-axis spin states. The relevant basis of two-component spinors χs are

eigenstates of 1
2~σ ·ŝ, i.e.,

1
2~σ ·ŝχs = sχs , s = ±1

2 . (B.2)

In order to construct the eigenstates of 1
2~σ ·ŝ, we first consider the case where ŝ = ẑ. In

this case, we define the eignestates of 1
2σ

3 to be:

χ1/2(ẑ) =




1

0


 , χ−1/2(ẑ) =




0

1


 . (B.3)

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of

eq. (B.3) to unity. We then determine χs(ŝ) from χs(ẑ) by employing the spin-1/2 rotation

operator that corresponds to a rotation from ẑ to ŝ. However, this rotation operator is not

unique. In the convention adopted here, we first perform a rotation by an angle φ about the z-

axis [the corresponding rotation operator is denoted by R(ẑ , φ)]. This has no effect, of course, on

the unit vector ẑ. However, it does result in the modification of χs(ẑ) by an s-dependent phase

factor. We then rotate by an angle θ about an axis n̂ = (− sinφ, cos φ, 0) [the corresponding
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rotation operator is denoted by R(n̂ , θ)]. As a result of the product of these two rotations [an

explicit expression for R is given in eq. (B.19)], ẑ is rotated into ŝ. Explicitly, ŝ = Rẑ, where41

R = R(n̂ , θ)R(ẑ , φ) =




cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ



. (B.4)

Employing the spin-1/2 rotation operator corresponding to R, we can compute χs(ŝ),

χs(ŝ) = exp (−iθn̂·~σ/2) exp
(
−iφσ3/2

)
χs(ẑ) , n̂ = (− sinφ , cosφ , 0) . (B.5)

Eq. (B.5) yields explicit forms42 for the eigenstates of 1
2~σ ·ŝ:

χ1/2(ŝ) =



e−iφ/2 cos

θ

2

eiφ/2 sin
θ

2


 , χ−1/2(ŝ) =



−e−iφ/2 sin

θ

2

eiφ/2 cos
θ

2


 . (B.6)

These spinors are normalized such that

χ†
s(ŝ)χs′(ŝ) = δss′ , (B.7)

and satisfy the following completeness relation:

∑

s

χs(ŝ)χ†
s
(ŝ) =


 1 0

0 1


 . (B.8)

The spinors χs(ŝ) and χ−s(ŝ) are connected by the following relation:

χ−s(ŝ) = −2s


 0 1

−1 0


χ∗

s
(ŝ) . (B.9)

Consider a spin-1/2 fermion with four-momentum pµ = (E , ~p), with E = (|~p|2 + m2)1/2, and

the direction of ~p given by

p̂ = (sin θp cosφp , sin θp sinφp , cos θp) . (B.10)

Using eqs. (2.69), (2.70) and (B.6), one can employ eqs. (3.19)–(3.22) to obtain explicit expres-

sions for the two-component spinor wave functions x(~p, s), y(~p, s), x̄(~p, s) and ȳ(~p, s).

41In the more common convention in the literature, the factor of R(ẑ , φ) is absent in the definition of R.
However, our choice for R is motivated by the simplicity of the explicit form given in eq. (B.4).

42Note that for φ → φ + 2π, χs(ŝ) → −χs(ŝ), which simply reflects that double-valueness of SU(2) transfor-
mations. However, as the overall phase of the spinor wave function is arbitrary, we shall restrict 0 ≤ φ < 2π and
0 ≤ θ ≤ π in our definition of χs(ŝ).
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Additional properties of the χs can be derived by introducing an orthonormal set of unit

three-vectors ŝa that provide a basis for a right-handed coordinate system. Explicitly,

ŝa
·ŝb = δab , (B.11)

ŝa
× ŝb = εabcŝc . (B.12)

We shall identify:

ŝ = ŝ3 (B.13)

as the quantization axis ŝ used in defining the third component of the spin of the fermion in

its rest frame. The unit vectors ŝ1 and ŝ2 are then chosen such that eqs. (B.11) and (B.12)

are satisfied. To explicitly construct the ŝa, we begin with the orthonormal set {x̂ , ŷ , ẑ}, and

rotate each unit vector with the rotation matrix R given in eq. (B.4), so that ŝa = R(x̂ , ŷ , ẑ).

That is,

s1µ = (cos θ cosφ, cos θ sinφ, − sin θ) ,

s2µ = (− sinφ, cosφ, 0) ,

s3µ = (sin θ cosφ, sin θ sinφ, cos θ) . (B.14)

We can use the sa to extend the defining equation of χs [eq. (B.2)]:

1
2 ~σ ·ŝaχs′ = 1

2τ
a
ss′χs , (B.15)

where the τass′ are the matrix elements of the Pauli matrices.43 That is, 1
2~σ ·(s1 ± is2) serve

as ladder operators that connect the spinor wave functions χ1/2 and χ−1/2. Using eq. (B.7), it

follows that eq. (B.15) is equivalent to:

χ†
s ~σ ·ŝaχs′ = τass′ . (B.16)

To prove eq. (B.16), we use eq. (B.5) to obtain:

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ) eiφσ
3/2 eiθn̂·~σ/2 ~σ ·ŝa e−iθn̂·~σ/2 e−iφσ

3/2 χs′(ẑ) . (B.17)

The above result can be simplified by using the following identity:

e−iθn̂·~σ/2 σj eiθn̂·~σ/2 = Rij(n̂ , θ)σi , (B.18)

where

Rij(n̂ , θ) = ninj + (δij − ninj) cos θ − εijknk sin θ . (B.19)

43We use the symbol τ rather than σ to emphasize that the indices of the Pauli matrices τ a are spin labels s, s′

and not spinor indices α, α̇. The first (second) row and column of the τ -matrices correspond to s = 1/2 (−1/2).
For example, τ 3

ss′ = 2sδss′ (no sum over s).
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Thus,

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ)~σ · [R(ẑ , −φ)R(n̂ , −θ)ŝa] χs′(ẑ) . (B.20)

Since

R−1 = R(ẑ , −φ)R(n̂ , −θ) , (B.21)

where R is the rotation matrix given in eq. (B.4), and R−1ŝa = (x̂ , ŷ , ẑ), it follows that

~σ · [R(ẑ , −φ)R(n̂ , −θ)ŝa] = σa . (B.22)

Consequently, we end up with

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ)σaχs′(ẑ) ≡ τass′ , (B.23)

which defines the matrix elements of the Pauli matrices, and our proof of eq. (B.16) is complete.

All the results of this Appendix also apply to the helicity spinors χλ, which are defined to

be eigenstates of 1
2~σ ·p̂, i.e.,

1
2~σ ·p̂χλ(p̂) = λχλ(p̂) , λ = ± 1

2 , (B.24)

where p̂ is given by eq. (B.10). Eqs. (B.3)–(B.9) also apply to the two-component helicity spinors

after taking ŝ = p̂ (i.e., identifying θ = θp and φ = φp). In addition, in analogy with the ŝa, we

can introduce an orthonormal set of unit three-vectors p̂a such that

p1µ = (cos θp cosφp, cos θp sinφp, − sin θp) ,

p2µ = (− sinφp, cosφp, 0) ,

p3µ = p̂µ = (sin θp cosφp, sin θ sinφp, cos θp) . (B.25)

In particular, eqs. (B.11)–(B.16) apply as well to the two-component helicity spinors after taking

ŝa = p̂a.

The overall phase of the helicity spinor wave function of a fermion is conventional. However,

an ambiguity arises in the case of a pair of fermions in its two-particle rest frame, in which the

corresponding fermion three-momenta are ~p and −~p, respectively. The helicity spinor wave

function of the second fermion depends on the definition of χλ(−p̂). In the convention of

ref. [17], χλ(−p̂) is obtained from χλ(ẑ) via a rotation by a polar angle π− θp and an azimuthal

angle φp + π with respect to the ẑ-direction. Using this convention with our definition of the

spinor wave function [eq. (B.5)] yields χλ(−p̂) = iχ−λ(p̂). An alternative convention advocated

by Jacob and Wick [127] is to define χλ(−p̂) by starting with χ−λ(ẑ) and then rotating the

spinor by polar angle θp and azimuthal angle φp. In this case,

χλ(−p̂) = χ−λ(p̂) , (B.26)
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and the extra phase factor is absent. We shall adopt the convention of eq. (B.26) in constructing

helicity amplitudes of processes involving fermions.

Suppose that the two fermions considered above have equal mass. In the center-of-mass

frame, if the four-momentum of one of the fermions is pµ = (E , ~p), then the four-momentum of

the other fermion is

p̄µ ≡ (E , −~p) . (B.27)

The following numerical identities are then satisfied: σ ·p̄ = σ ·p and σ ·p̄ = σ ·p. However, in

order to maintain covariance with respect to the undotted and dotted spinor indices, we shall

write these identities as:

σαβ̇ ·p̄ = σ0
αα̇(σα̇β ·p)σ0

ββ̇
, (B.28)

σα̇β ·p̄ = σ0α̇α(σαβ̇ ·p)σ
0β̇β . (B.29)

Taking the matrix square root of both sides of eqs. (B.28) and (B.29) removes one of the factors

of σ0 and σ0, respectively. Hence,

xα(−~p,−λ) =
√
p̄·σχ−λ(−p̂) = σ0

√
p·σχλ(~p) = σ0

αβ̇
ȳβ̇(~p, λ) , (B.30)

where we have used eqs. (3.19) and (B.26). In this way, we can derive the eight possible relations

for the helicity spinor wave functions:

xα(−~p,−λ) = σ0
αβ̇
ȳβ̇(~p, λ) , xα(−~p,−λ) = ȳβ̇(~p, λ)σ0 β̇α , (B.31)

yα(−~p,−λ) = σ0
αβ̇
x̄β̇(~p, λ) , yα(−~p,−λ) = x̄β̇(~p, λ)σ0 β̇α , (B.32)

x̄α̇(−~p,−λ) = σ0 α̇β yβ(~p, λ) , x̄α̇(−~p,−λ) = yβ(~p, λ)σ0
βα̇ , (B.33)

ȳα̇(−~p,−λ) = σ0 α̇β xβ(~p, λ) , ȳα̇(−~p,−λ) = xβ(~p, λ)σ0
βα̇ . (B.34)

Appendix C: Path integral treatment of two-component fermion

propagators

In Section 4.2 we derived the two-component fermion propagators in momentum space, which

are the Fourier transforms of the free field expectation values of time-ordered products of two

two-component fermion fields

〈0|Tξα(x)ξ̄β̇(y) |0〉FT ≡
∫
d4w 〈0| Tξα(x)ξ̄β̇(y) |0〉 eip·w , w ≡ x− y , (C.1)

where the (translationally invariant) expectation values 〈0| Tξα(x)ξ̄β̇(y) |0〉 are functions of the

coordinate difference w ≡ x− y. In Section 4.2, the Fourier transforms of these quantities were

computed by using the free-field expansion obtained from the canonical quantization procedure,

and then evaluating the resulting spin sums. In this Appendix, we provide a derivation of the
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same result by employing path integral techniques. We follow the analysis given in Appendix C

of ref. [148] (with a few minor changes in notation). For a similar textbook treatment of two-

component fermion propagators see for example ref. [115]. For the analogous treatment of the

four-component fermion propagator, see for example ref. [76].

We first consider the action for a single massive neutral two-component fermion ξα(x),

coupled to an anticommuting two-component fermionic source term Jα(x) [cf. eq. (3.1)]:

S =

∫
d4x (L + Jξ + ξ̄ J̄) =

∫
d4x

{
1
2

[
iξ̄σµ∂µξ + iξσµ∂µξ̄ −m(ξξ + ξ̄ξ̄)

]
+ Jξ + ξ̄ J̄

}
, (C.2)

where we have split the kinetic energy term symmetrically into two terms. The generating

functional is given by

W [J, J̄ ] = N

∫
DξDξ̄ eiS[ξ, ξ̄, J, J̄ ] , (C.3)

where N is a normalization factor chosen such that W [0, 0] = 1 and DξD ξ̄ is the integration

measure. It is convenient to Fourier-transform the fields ξ(x), ξ̄(x) and sources J(x), J̄(x) in

eq. (C.3), and rewrite the action in terms of the corresponding Fourier coefficients ξ̂(p), ̂̄ξ(p) , Ĵ (p)

and ̂̄J(p):

ξα(x) =

∫
d4p

(2π)4
e−ip·xξ̂α(p) , ξ̄α̇(x) =

∫
d4p

(2π)4
eip·x̂̄ξα̇(p) , (C.4)

Jα(x) =

∫
d4p

(2π)4
e−ip·xĴα(p) , J̄α̇(x) =

∫
d4p

(2π)4
eip·x ̂̄J α̇(p) . (C.5)

Furthermore, we introduce the integral representation of the delta function

δ(4)(x− x′) =

∫
d4p

(2π)4
e−ip·(x−x

′) . (C.6)

In order to rewrite eq. (C.3) in a more convenient matrix form, we introduce the following

definitions:

Ω(p) ≡



̂̄ξα̇(−p)

ξ̂α(p)


 , X(p) ≡




Ĵα(p)

̂̄J α̇(−p)


 , M(p) ≡




p · σαβ̇ −mδα
β

−mδα̇β̇ p · σα̇β


 .

(C.7)

Note thatM is a Hermitian matrix. We can then rewrite the action [eq. (C.2)] in the following

matrix form [after using eqs. (2.47) and (2.48) to write the product of the spinor field and the

source in a symmetrical fashion]:

S =
1

2

∫
d4p

(2π)4

(
Ω†MΩ + Ω†X +X†Ω

)
. (C.8)

The linear term in the field Ω can be removed by a field redfinition

Ω′ = Ω +M−1X . (C.9)
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In terms of Ω′, the action now takes the convenient form:

S =
1

2

∫
d4p

(2π)4

(
Ω′†MΩ′ −X†M−1X

)
, (C.10)

where the inverse of the matrix M is given by

M−1 =
1

p2 −m2




p · σα̇β mδα̇β̇

mδα
β p · σαβ̇


 . (C.11)

The Jacobian of the field transformation given in eq. (C.9) is unity. Hence, one can insert

the new action, eq. (C.10), in the generating functional, eq. (C.3) to obtain (after dropping the

primes on the two-component fermion fields):

W [Ĵ , ̂̄J ] = N

∫
DξDξ̄ exp

{
i

2

∫
d4p

(2π)4

(
Ω†MΩ−X†M−1X

)}
(C.12)

= N

[∫
DξDξ̄ exp

{
i

2
Ω†MΩ

}]
exp

{
− i

2

∫
d4p

(2π)4
X†M−1X

}
(C.13)

= exp

{
− i

2

∫
d4p

(2π)4
X†M−1X

}
, (C.14)

where we have defined the normalization constant N such that W [0, 0] = 1. Inserting the explicit

forms for X andM into eq. (C.14), we obtain

W [Ĵ , ̂̄J ] = exp

{
−1

2

∫
d4p

(2π)4

(
Ĵα(−p)

ip · σαβ̇
p2 −m2

̂̄J β̇(−p) + ̂̄J α̇(p)
ip · σα̇β
p2 −m2

Ĵβ(p)

+Ĵα(−p) imδα
β

p2 −m2
Ĵβ(p) + ̂̄J α̇(p)

imδα̇β̇
p2 −m2

̂̄J β̇(−p)
)}

. (C.15)

Using eq. (2.49), it is convenient to rewrite the first two terms of the integrand on the right-hand

side of eq. (C.15) in two different ways:

1

2

∫
d4p

(2π)4

[
Ĵα(−p)

ip · σαβ̇
p2 −m2

̂̄J β̇(−p) + ̂̄J α̇(p)
ip · σα̇β
p2 −m2

Ĵβ(p)

]

=

∫
d4p

(2π)4
Ĵα(−p)

ip · σαβ̇
p2 −m2

̂̄J β̇(−p) =

∫
d4p

(2π)4
̂̄J α̇(p)

ip · σα̇β
p2 −m2

Ĵβ(p) , (C.16)

where we have changed integration variables from p→ −p in relating the two terms above. The

vacuum expectation value of the time-ordered product of two spinor fields in configuation space

is obtained by taking two functional derivatives of the generating functional with respect to the

sources J and J̄ and then setting J = J̄ = 0 at the end of the computation (see, e.g., ref. [76]).

For example,
(
−i

−→
δ

δJα(x1)

)
W [J, J̄ ]

(
−i

←−
δ

δJ̄ β̇(x2)

)∣∣∣∣∣
J=J̄=0

= N

∫
DξDξ̄ ξα(x1)ξ̄β̇(x2) exp i

∫
d4xL

= 〈0|Tξα(x1)ξ̄β̇(x2)|0〉 , (C.17)
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where the functional derivatives act in the indicated direction (which ensures that no extra

minus signs are generated due to the anticommutativity properties of the sources and their

functional derivatives). To obtain the two-point functions involving the product of two spinor

fields with different combinations of dotted and undotted spinors, it may be more convenient to

write Jξ = ξJ and/or ξ̄ J̄ = J̄ ξ̄ in eq. (C.3). One can then easily verify the following expressions

for the four possible two-point functions:

〈0|Tξα(x1)ξ̄β̇(x2)|0〉 =

(
−i

−→
δ

δJα(x1)

)
W [J, J̄ ]

(
−i

←−
δ

δJ̄ β̇(x2)

)∣∣∣∣∣
J=J̄=0

, (C.18)

〈0|T ξ̄α̇(x1)ξ
β(x2)|0〉 =

(
−i

−→
δ

δJ̄α̇(x1)

)
W [J, J̄ ]

(
−i

←−
δ

δJβ(x2)

)∣∣∣∣∣
J=J̄=0

, (C.19)

〈0|T ξ̄α̇(x1)ξ̄β̇(x2)|0〉 =

(
−i

−→
δ

δJ̄α̇(x1)

)
W [J, J̄ ]

(
−i

←−
δ

δJ̄ β̇(x2)

)∣∣∣∣∣
J=J̄=0

, (C.20)

〈0|Tξα(x1)ξ
β(x2)|0〉 =

(
−i

−→
δ

δJα(x1)

)
W [J, J̄ ]

(
−i

←−
δ

δJβ(x2)

)∣∣∣∣∣
J=J̄=0

. (C.21)

As an example, we provide details for the evaluation of eq. (C.18). Using eqs. (C.15) and

(C.16), we obtain:

〈0|Tξα(x1)ξ̄β̇(x2)|0〉 =

−→
δ

δJα(x1)

(∫
d4p

(2π)4
Ĵα(−p)

ip · σαβ̇
p2 −m2

̂̄J β̇(−p)
) ←−

δ

δJ̄ β̇(x2)
. (C.22)

Using the chain rule for functional differentiation,

δ

δJα(x1)
=

∫
d4p1

δĴβ(−p1)

δJα(x1)

δ

δĴβ(−p1)
=

∫
d4p1 e

−ip1·x1
δ

δĴα(−p1)
, (C.23)

δ

δJ̄ β̇(x2)
=

∫
d4p2

δ ̂̄J α̇(−p2)

δJ̄ β̇(x2)

δ

δ ̂̄J α̇(−p2)
=

∫
d4p2 e

ip2·x2
δ

δ ̂̄J β̇(−p2)
, (C.24)

after using the inverse Fourier transform of eq. (C.5). Applying eqs. (C.23) and (C.24) to

eq. (C.22), we obtain:

〈0|Tξα(x1)ξ̄β̇(x2)|0〉 =

∫
d4p

(2π)4
e−ip·(x1−x2)

ip · σαβ̇
p2 −m2

, (C.25)

which is equivalent to eq. (4.1) of Section 4.2. With the same methods applied to eqs. (C.19)–

(C.21), one can easily reproduce the results of eqs. (4.2)–(4.4).

We next consider the action for a single massive Dirac two-component fermion. We shall

work in a basis of fields where the action, including external anticommuting sources, is given by

S[χ, χ̄, η, η̄, Jχ, J̄χ̄, Jη, J̄η̄ ]=

∫
d4x

[
iχ̄σµ∂µχ+ iη̄σµ∂µη −m(χη + χ̄η̄) + Jχχ+ χ̄J̄χ + Jηη + η̄J̄η

]
.

(C.26)
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The techniques are similar to the ones used above. We introduce Fourier coefficients for all the

fields and sources and define

Ωc(p) ≡



̂̄ηα̇(−p)

χ̂α(p)


 , Xc(p) ≡




Ĵηα(p)

̂̄J α̇χ(−p)


 . (C.27)

The action functional, eq. (C.26), can then rewritten in matrix form as before (but with no

overall factor of 1/2):

S =

∫
d4p

(2π)4

(
Ω†
cMΩc + Ω†

cXc +X†
cΩc

)
, (C.28)

where M is again given by eq. (C.7). The rest of the calculation goes through as before with

few modifications, and yields the Dirac two-component fermion free-field propagators given in

eqs. (4.5)–(4.8).
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Appendix D: Matrix decompositions for mass matrix diagonal-
ization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M 2 is straightfor-

ward. For a theory of n complex scalar fields, M 2 is an hermitian n × n matrix that can be

diagonalized by a unitary matrix W :

W †M2W = m2 = diag(m2
1,m

2
2, . . . ,m

2
n) . (D.1)

For a theory of n real scalar fields, M 2 is a real symmetric n×n matrix that can be diagonalized

by an orthogonal matrix Q:

QTM2Q = m2 = diag(m2
1,m

2
2, . . . ,m

2
n) . (D.2)

In both cases, the eigenvalues, m2
k of M2 are real. This is the standard matrix diagonalization

problem that is treated in all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the diagonalization of the fermion mass matrix, which is

treated in Section 3.2, does not take any of the above forms. In this appendix, we review the

linear algebra theory relevant for the matrix decompositions associated with the charged and

neutral spin-1/2 fermion mass matrix diagonalizations.

D.1 Singular Value Decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value

decomposition of an arbitrary complex matrix M .

Theorem: For any complex n× n matrix M , unitary matrices L and R exist such that

LTMR = MD = diag(m1,m2, . . . ,mn), (D.3)

where the mk are real and non-negative. This is called the singular value decomposition of the

matrix M .

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values

of the general complex matrix M , which are defined to be the non-negative square roots of

the eigenvalues of M †M (or eqivalently of MM †). An equivalent definition of the singular

values can be established as follows. Since M †M is an hermitian non-negative matrix, its

eigenvalues are real and non-negative and its eigenvectors, wk, defined by M †Mwk = m2
kwk,

can be chosen to be orthonormal.44 Consider first the eigenvectors corresponding to the positive

eigenvalues of M †M . Then, we define the vectors vk such that Mwk = mkv
∗
k. It follows that

m2
kwk = M †Mwk = mkM

†v∗k, which yields: M †v∗k = mkwk. Note that these equations also

44We define the inner product of two vectors to be 〈v|w〉 ≡ v†w. Then, v and w are orthonormal if 〈v|w〉 = 0.
The norm of a vector is defined by ‖v ‖ = 〈v|v〉1/2.
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imply that MM †v∗k = m2
kv

∗
k. The orthonormality of the wk implies the orthonormality of the v∗k

(and hence the vk):

δjk = 〈wj |wk〉 =
1

mjmk
〈M †v∗j |M †v∗k〉 =

1

mjmk
〈v∗j |MM †v∗k〉 =

mk

mj
〈v∗j |v∗k〉 , (D.4)

which yields 〈v∗j |v∗k〉 = δjk.

If wi is an eigenvector of M †M with zero eigenvalue, then 0 = w†
iM

†Mwi = 〈Mwi|Mwi〉,
which implies that Mwi = 0. Likewise, if v∗i is an eigenvector of MM † with zero eigenvalue, then

0 = vT

i MM †v∗i = 〈MTvi|MTvi〉∗, which implies that MTvi = 0. Because the eigenvectors of

MM † [M †M ] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues

of M [MT] can be taken to be orthonormal.45 Finally, these eigenvectors are also orthogonal to

the eigenvectors corresponding to the non-zero eigenvalues of MM † [M †M ]. That is,

〈wj |wi〉 =
1

mj
〈M †v∗j |wi〉 =

1

mj
〈v∗j |Mwi〉 = 0 , (D.5)

and similarly 〈vj |vi〉 = 0, where the index i [j] runs over the eigenvectors corresponding to the

zero [non-zero] eigenvalues.

Thus, we can define the singular values of a general complex matrix M to be the simulta-

neous solutions (with real non-negative mk) of:46

Mwk = mkv
∗
k , vT

kM = mkw
†
k . (D.6)

The corresponding vk (wk), normalized to have unit norm, are called the left (right) singular

vectors of M .

Proof of the singular value decomposition theorem: Eqs. (D.4) and (D.5) imply

that the left [right] singular vectors can be chosen to be orthonormal. Consequently, the unitary

matrix L [R] can be constructed such that its kth column is given by the left [right] singular

vector vk [wk]. It then follows from eq. (D.6) that:

vT

kMw` = mkδk` , (no sum over k). (D.7)

In matrix form, eq. (D.7) coincides with eq. (D.3), and the singular value decomposition is

established.

The singular values of a complex matrix M are unique (up to ordering), as they correspond

to the eigenvalues of M †M (or equivalently the eigenvalues of MM †). The unitary matrices L

45In general, the multiplicity of zero eigenvalues of M [MT] is not equal to the multiplicity of zero eigenvalues
of M†M [MM†]. However the latter, which is equal to the number of linearly independent eigenvectors of M †M
[MM†] with zero eigenvalue, coincides with the number of linearly independent eigenvectors of M [MT] with zero
eigenvalue. Moreover, the number of linearly independent wi coincides with the number of linearly independent vi.

46One can always find a solution to eq. (D.6) such that the mk are real and non-negative. Given a solution
where mk is complex, we simply write mk = |mk|eiθ and redefine vk → vke

iθ to remove the phase θ.
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and R are not unique. The matrix R can be determined directly from eq. (D.3) by computing

M †
DMD = M2

D, which yields:

R†M †MR = M2
D . (D.8)

That is, R is the unitary matrix that diagonalizes the non-negative definite matrix M †M .

Since the eigenvectors, wk of M †M are orthonormal, each of the wk corresponding to the

non-degenerate eigenvalues of M †M can be multiplied by an arbitrary phase eiθk . The wk

corresponding to a degenerate eigenvalue of M †M can be replaced by any orthonormal lin-

ear combination of the corresponding wk. It follows that within the subspace spanned by the

eigenvectors of M †M corresponding to non-degenerate eigenvalues, R is uniquely determined

up to multiplication on the right by an arbitrary diagonal unitary matrix. Within the sub-

space spanned by the eigenvectors of M †M corresponding to a given degenerate eigenvalue, R

is determined up to multiplication on the right by an arbitrary unitary matrix.

Once R is fixed, L is determined by eq. (D.3):

L = (MT)−1R∗MD . (D.9)

However, if some of the diagonal elements of MD are zero, then L is not uniquely defined.

Writing MD in 2×2 block form such that the upper left block is a diagonal matrix with positive

diagonal elements and the other three blocks are equal to the zero matrix of the appropriate

dimensions, it follows that, MD = MDW , where

W =




� �

�
W0


 , (D.10)

W0 is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear

in the diagonal elements of of MD, and
�

and
�

are respectively the identity matrix and zero

matrix of the appropriate size. Hence, we can multiply both sides of eq. (D.9) on the right by

W , which means that L is only determined up to multiplication on the right by an arbitrary

unitary matrix whose form is given by eq. (D.10).47

D.2 Takagi Diagonalization

The most general neutral spin-1/2 fermion mass matrix is complex and symmetric. To identify

the physical eigenstates, this matrix must be diagonalized. However, the equation that governs

47Of course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.3) implies
that LTMM†L∗ = M2

D, in which case L is determined up to multiplication on the right by an arbitrary [diagonal]
unitary matrix within the subspace spanned by the eigenvectors corresponding to the degenerate [non-degenerate]
eigenvalues of MM†. Having fixed L, one can obtain R = M−1L∗MD from eq. (D.3). As above, R is only
determined up to multiplication on the right by a unitary matrix whose form is given by eq. (D.10).

128



the identification of the physical fermion states is not the standard unitary similarity transfor-

mation. Instead it is a different diagonalization equation that was discovered by Takagi [69],

and rediscovered many times since [70].48

Theorem: For any complex symmetric n × n matrix M , there exists a unitary matrix Ω

such that:

ΩTM Ω = MD = diag(m1,m2, . . . ,mn) , (D.11)

where the mk are real and non–negative. This is the Takagi diagonalization49 of the complex

symmetric matrix M . For a physics context see for example [67].

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values of

the symmetric matrix M . From eq. (D.11) it follows that:

Ω†M †MΩ = M2
D = diag(m2

1,m
2
2, . . . ,m

2
n) . (D.12)

If all of the singular values mk are non-degenerate, then one can determine Ω from eq. (D.12).

This is no longer true if some of the singular values are degenerate. For example, if M =
(

0 1
1 0

)
,

then the singular value 1 is doubly–degenerate, but eq. (D.12) yields Ω†Ω =
�

2×2, which does

not specify Ω. That is, in the degenerate case, the physical fermion states cannot be determined

by the diagonalization of M †M . Instead, one must make direct use of eq. (D.11). Below, we shall

present a constructive method for determining Ω that is applicable in both the non-degenerate

and the degenerate cases.

Eq. (D.11) can be rewritten as MΩ = Ω∗MD, where the columns of Ω are orthonormal. If

we denote the kth column of Ω by vk, then,

Mvk = mkv
∗
k , (D.13)

where the mk are the singular values and the vectors vk are normalized to have unit norm.

Following Ref. [138], the vk are called the Takagi vectors of the complex symmetric n × n

matrix M . The Takagi vectors corresponding to non–degenerate non–zero [zero] singular values

are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi

vectors corresponding to a set of degenerate non–zero [zero] singular values is also a Takagi

vector corresponding to the same singular value. Using these results, one can determine the

degree of non–uniqueness of the matrix Ω. For definiteness, we fix an ordering of the diagonal

elements of MD.50 If the singular values of M are distinct, then the matrix Ω is uniquely

48Subsequently, it was recognized in Ref. [128] that the Takagi diagonalization was first established for nonsin-
gular complex symmetric matrices by Autonne [129].

49In Ref. [70], eq. (D.11) is called the Takagi factorization of a complex symmetric matrix. We choose to refer
to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of normal
matrices by a unitary similarity transformation. In particular, not all complex symmetric matrices are diagonal-
izable by a similarity transformation, whereas complex symmetric matrices are always Takagi-diagonalizable.

50Permuting the order of the singular values is equivalent to permuting the order of the columns of Ω.
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determined up to multiplication by a diagonal matrix whose entries are either ±1 (i.e., a diagonal

orthogonal matrix). If there are degeneracies corresponding to non–zero singular values, then

within the degenerate subspace, Ω is unique up to multiplication on the right by an arbitrary

orthogonal matrix. Finally, in the subspace corresponding to zero singular values, Ω is unique

up to multiplication on the right by an arbitrary unitary matrix.

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonaliza-

tion of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing the

orthonormal Takagi vectors vk that make up the columns of Ω. This is achieved by rewriting

the n×n complex matrix equation Mv = mv∗ [with m real and non–negative] as a 2n× 2n real

matrix equation [130, 131]:

MR


 Re v

Im v


 ≡


 ReM − ImM

− ImM −ReM




 Re v

Im v


 = m


 Re v

Im v


 , where m ≥ 0 . (D.14)

Since M = MT, the 2n × 2n matrix MR ≡
(

ReM − ImM
− ImM −ReM

)
is a real symmetric matrix.51 In

particular, MR is diagonalizable by a real orthogonal similarity transformation, and its eigen-

values are real. Moreover, if m is an eigenvalue of MR with eigenvector (Re v , Im v), then −m
is an eigenvalue of MR with (orthogonal) eigenvector (− Im v , Re v). This observation implies

that MR has an equal number of positive and negative eigenvalues and an even number of zero

eigenvalues.52 Thus, Eq. (D.13) has been converted into an ordinary eigenvalue problem for

a real symmetric matrix. Since m ≥ 0, we solve the eigenvalue problem MRu = mu for the

eigenvectors corresponding to the non–negative eigenvalues.53 It is straightforward to prove

that the total number of linearly independent Takagi vectors is equal to n. Simply note that the

orthogonality of (Re v1 , Im v1) and (− Im v1 , Re v1) with (Re v2 , Im v2) implies that v†1v2 = 0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vk. If there

are degeneracies, one can always choose the vk in the degenerate subspace to be orthonormal.

The Takagi vectors then make up the columns of the matrix Ω in eq. (D.11). A numerical

package for performing the Takagi diagonalization of a complex symmetric matrix has recently

been presented in ref. [132] (see also refs. [138] and [139] for previous numerical approaches to

Takagi diagonalization).

51The 2n × 2n matrix MR is a real representation of the n × n complex matrix M .
52Note that (− Im v , Re v) corresponds to replacing vk in Eq. (D.13) by ivk. However, for m < 0 these solutions

are not relevant for Takagi diagonalization (where the mk are by definition non–negative). The case of m = 0 is
considered in footnote 53.

53For m = 0, the corresponding vectors (Re v , Im v) and (− Im v , Re v) are two linearly independent eigen-
vectors of MR; but these yield only one independent Takagi vector v (since v and iv are linearly dependent).

130



D.3 Relation between Takagi diagonalization and the singular value decompo-
sition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex

matrix M in eq. (D.3) is symmetric, then the Takagi diagonalization corresponds to Ω = L = R.

In this case, the left singular vectors and the right singular vectors coincide (wk = vk) and are

identified with the Takagi vectors defined in eq. (D.13). Nevertheless, in contrast to the singular

value decomposition, where R can be determined from eq. (D.8) modulo right multiplication

by a [diagonal] unitary matrix in the [non]-degenerate subspace [and L is then determined by

eq. (D.9) modulo multiplication on the right by eq. (D.10)], the matrix Ω cannot be determined

from eq. (D.12) in cases where there is a degeneracy among the singular values, as previously

noted. For example, one possible singular value decomposition of the matrix M =
(

0 1
1 0

)
can be

obtained by choosing R = I2 and L = M , in which case MTMI2 = I2. This, of course, is not

a Takagi diagonalization. Since R is only defined modulo the multiplication on the right by an

arbitrary 2 × 2 unitary matrix O, then at least one singular value decomposition exists that is

also a Takagi diagonalization. For the example under consideration, it is not difficult to deduce

the Takagi diagonalization: ΩTMΩ = I2, where

Ω =
1√
2


1 i

1 −i


O , (D.15)

and O is any 2× 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it

seems plausible that one can prove the former from the latter. This turns out to be correct; for

completeness, we provide the proof below. Our second proof depends on the following lemma:

Lemma: For any symmetric unitary matrix V , there exists a unitary matrix U such that

V = UTU .

Proof of the Lemma: For any n×n unitary matrix V , there exists an hermitian matrix H

such that V = exp (iH) (this is the polar decomposition of V ). If V = V T then H = HT = H∗

(since H is hermitian). But, any real symmetric matrix can be diagonalized by an orthogonal

transformation. It follows that V can also be diagonalized by an orthogonal transformation.

That is, there exists a real orthogonal matrix Q such that54 QTV Q = diag (eiθ1 , eiθ2 , . . . , eiθn).

Thus, the unitary matrix

U = diag (eiθ1/2 , eiθ2/2 , . . . , eiθn/2)QT (D.16)

satisfies V = UTU and the theorem is proven. Note that U is unique modulo multiplication on

the left by an arbitrary real orthogonal matrix.

54The eigenvalues of any unitary matrix are complex numbers of unit norm, i.e. pure phases.
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Second Proof of the Takagi diagonalization. Starting from the singular value de-

composition of M , there exist unitary matrices L and R such that M = L∗MDR
†, where MD

is the diagonal matrix of singular values. Since M = MT = R∗MDL
†, we have two different

singular value decompositions for M . However, as noted below eq. (D.8), R is unique modulo

multiplication on the right by an arbitrary [diagonal] unitary matrix within the [non-]degenerate

subspace. Thus, it follows that a unitary matrix V exists of the latter form such that L = RV .

Moreover, V = V T. This is manifestly true within the non-degenerate subspace where V is

diagonal. Within the degenerate subspace, MD is proportional to the identity matrix so that

L∗R† = R∗L†. Inserting L = RV then yields V T = V . Using the Lemma proved above, there

exists a unitary matrix U such that V = UTU . Hence, in the singular value decomposition of a

symmetric complex matrix, M = L∗MDR
†,

L = RUTU , (D.17)

for some unitary matrix U . Moreover, it is straightforward to show that:

MDU
∗ = U∗MD . (D.18)

Within the degenerate subspace, eq. (D.18) is trivially true since MD is proportional to the

identity matrix. Within the non-degenerate subspace V is diagonal; hence we may choose

U = UT = V 1/2, so that eq. (D.18) is true since diagonal matrices commute. Using eqs. (D.17)

and (D.18), we can write the singular value decomposition of M as follows

M = L∗MDR
† = L∗MD = R∗U †U∗MDR

† = (RUT)∗MDU
∗R† = Ω∗MDΩ† , (D.19)

where Ω ≡ RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an

arbitrary complex symmetric matrix [eq. (D.11)] is once again proven.

Appendix E: Correspondence to four-component spinor notation

E.1 Dirac matrices and four-component spinors

Four-component spinor notation employs four-component Dirac spinor fields and the 4×4 Dirac

gamma matrices, whose defining property is:

{γµ, γν} = 2gµν . (E.1)

The correspondence between the two-component notation of this paper and the four-component

Dirac spinor notation is most easily exhibited in the basis in which γ5 is diagonal (this is called

the chiral representation). In 2×2 blocks, the gamma matrices are given by:

γµ =


 0 σµ

αβ̇

σµα̇β 0


 , γ5 ≡ iγ0γ1γ2γ3 =


−δα

β 0

0 δα̇β̇


 . (E.2)
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In addition, we introduce:55

1
2Σµν ≡ i

4
[γµ, γν ] =


σ

µν
α
β 0

0 σµνα̇β̇


 . (E.3)

A four component Dirac spinor field, Ψ(x), is made up of two mass-degenerate two-component

spinor fields, χα(x) and ηα(x) as follows:

Ψ(x) ≡



χα(x)

η̄α̇(x)


 . (E.4)

We define chiral projections operators PL ≡ 1
2(1− γ5) and PR ≡ 1

2(1 + γ5) so that

ΨL(x) ≡ PLΨ(x) =



χα(x)

0


 , ΨR(x) ≡ PRΨ(x) =




0

η̄α̇(x)


 . (E.5)

The free fields can be expanded in a Fourier series; each mode is multiplied by a commuting

spinor wave function as in eq. (3.66). The Dirac conjugate field Ψ and the charge conjugate field

are respectively given by

Ψ(x) ≡ Ψ†A = (ηα(x), χ̄α̇(x)) , (E.6)

Ψc(x) ≡ CΨ
T
(x) =



ηα(x)

χ̄α̇(x)


 , (E.7)

where the Dirac conjugation matrix A and the charge conjugation matrix C satisfy [140, 141]:

AγµA−1 = γµ† , C−1γµC = −γµT . (E.8)

It is conventional to impose two additional conditions:

Ψ = A−1Ψ
†
, (Ψc)c = Ψ . (E.9)

The first of these conditions together with eq. (E.6) is equivalent to the statement that ΨΨ

is hermitian. The second condition corresponds to the statement that the charge conjugation

operator applied twice is equal to the identity operator. Using eqs. (E.8) and (E.9) and the

defining property of the gamma matrices [eq. (E.1)], one can show (independently of the gamma

matrix representation) that the matrices A and C must satisfy:

A† = A , CT = −C , (AC)−1 = (AC)∗ . (E.10)

55In most textbooks, Σµν is called σµν . Here, we use the former symbol so that there is no confusion with the
two-component definition of σµν given in eq. (2.58).
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For completeness, we also introduce a matrix B that satisfies [140, 141]:

BγµB−1 = γµT . (E.11)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral

representation, A, B and C are explicitly given by

A =


 0 δα̇β̇

δα
β 0


 , B =


ε

αβ 0

0 −εα̇β̇


 , C = −γ5B

−1 =


εαβ 0

0 εα̇β̇


 . (E.12)

Note the numerical equalities, A = γ0, B = γ1γ3 and C = iγ0γ2, although these identifications

do not respect the structure of the undotted and dotted indices specified in eq. (E.12). In

calculations that involve translations between two-component and four-component notation, the

expressions given in eq. (E.12) should be used. In calculations involving only four-component

notation, there is no harm in using the numerical values for the matrices noted above.

Using eqs. (E.8) and (E.11), the following results are easily derived:

AΓA−1 = ηA
Γ

Γ† , ηA
Γ

=

{
+1 , for Γ =

�
, γµ , γµγ5 , Σµν ,

−1 , for Γ = γ5 , Σµνγ5 ,
(E.13)

BΓB−1 = ηB
Γ

ΓT , ηB
Γ

=

{
+1 , for Γ =

�
, γ5 , γ

µ ,

−1 , for Γ = γµγ5 , Σµν , Σµνγ5 ,
(E.14)

C−1ΓC = ηC
Γ

ΓT , ηC
Γ

=

{
+1 , for Γ =

�
, γ5 , γ

µγ5 ,

−1 , for Γ = γµ , Σµν , Σµνγ5 ,
(E.15)

where
�

is the 4× 4 identity matrix.

The external two-component spinor momentum space wave functions are related to the

traditional four-component spinors according to:

u(~p, s) =



xα(~p, s)

ȳα̇(~p, s)


 , ū(~p, s) = (yα(~p, s), x̄α̇(~p, s)) , (E.16)

v(~p, s) =



yα(~p, s)

x̄α̇(~p, s)


 , v̄(~p, s) = (xα(~p, s), ȳα̇(~p, s)) , (E.17)

where v(~p, s) = Cū(~p, s)T. The spin quantum number takes on values s = ± 1
2 , and refers either

to the component of the spin as measured in the rest frame with respect to a fixed axis or to the

helicity (as discussed in Section 3.1). One can check that u and v satisfy the Dirac equations56

(/p−m)u(~p, s) = (/p+m) v(~p, s) = 0 , ū(~p, s) (/p−m) = v̄(~p, s) (/p+m) = 0 , (E.18)

56We use the standard Feynman slash notation: /p ≡ γµpµ and /S ≡ γµS
µ.

134



corresponding to eqs. (3.9)–(3.12), and

(2sγ5/S − 1)u(~p, s) = (2sγ5/S − 1) v(~p, s) = 0 , ū(~p, s) (2sγ5/S − 1) = v̄(~p, s) (2sγ5/S − 1) = 0 ,

(E.19)

corresponding to eqs. (3.23)–(3.26), where the spin vector Sµ is defined in eq. (3.15). For massive

fermions, eqs. (3.44)–(3.47) correspond to

u(~p, s)ū(~p, s) = 1
2 (1 + 2sγ5/S) (/p+m) , (E.20)

v(~p, s)v̄(~p, s) = 1
2(1 + 2sγ5/S) (/p−m) . (E.21)

To apply the above formulas to the massless case we must employ helicity states, where s is

replaced by the helicity quantum number λ, and Sµ is defined by eq. (3.16). In particular, in the

m → 0 limit, Sµ = pµ/m + O(m/E). Inserting this result in eqs. (E.18) and (E.19), it follows

that the massless helicity spinors are eigenstates of γ5

γ5u(~p, λ) = 2λu(~p, λ) , γ5v(~p, λ) = −2λv(~p, λ) . (E.22)

Applying the same limiting procedure to eqs. (E.20) and (E.21) and using the mass-shell con-

dition (/p/p = p2 = m2), one obtains the helicity projection operators for a massless spin-1/2

particle

u(~p, λ)ū(~p, λ) = 1
2(1 + 2λγ5) /p , (E.23)

v(~p, λ)v̄(~p, λ) = 1
2(1− 2λγ5) /p , (E.24)

which correspond to eqs. (3.52)–(3.55). Finally, the spin-sum identities

∑

s

u(~p, s)ū(~p, s) = /p+m, (E.25)

∑

s

v(~p, s)v̄(~p, s) = /p−m, (E.26)

∑

s

u(~p, s)vT(~p, s) = (/p+m)CT , (E.27)

∑

s

ūT(~p, s)v̄(~p, s) = C−1(/p−m) , (E.28)

∑

s

v̄T(~p, s)ū(~p, s) = C−1(/p+m) , (E.29)

∑

s

v(~p, s)uT(~p, s) = (/p−m)CT , (E.30)

correspond to eqs. (3.56)–(3.59).

Bilinear covariants are quantities that are quadratic in the Dirac spinor field which transform

irreducibly as Lorentz tensors. These are constructed from corresponding quantities that are
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quadratic in the two-component fermion fields. To construct a translation table between the

two-component form and the four-component forms for the bilinear covariants, we first introduce

two Dirac spinor fields [cf. eq. (E.4)]:

Ψ1(x) ≡



χ1(x)

η̄1(x)


 , Ψ2(x) ≡



χ2(x)

η̄2(x)


 , (E.31)

where spinor indices have been suppressed on the two-component fields χi(x) and η̄i(x).
57 The

following results are then obtained:58

Ψ1PLΨ2 = η1χ2 , (E.32)

Ψ1PRΨ2 = χ̄1η̄2 , (E.33)

Ψ1γ
µPLΨ2 = χ̄1σ̄

µχ2 , (E.34)

Ψ1γ
µPRΨ2 = η1σ

µη̄2 , (E.35)

Ψ1Σ
µνPLΨ2 = 2 η1σ

µνχ2 , (E.36)

Ψ1Σ
µνPRΨ2 = 2 χ̄1σ̄

µν η̄2 . (E.37)

Note that eqs. (E.32)–(E.37) apply to both commuting and anti-commuting fermion fields. In

particular, the above results imply that the following relations are satisfied by the (commuting)

u and v spinors:

ū(~p1, s1)PLv(~p2, s2) = −ū(~p2, s2)PLv(~p1, s1) , (E.38)

ū(~p1, s1)PRv(~p2, s2) = −ū(~p2, s2)PRv(~p1, s1) , (E.39)

ū(~p1, s1)γ
µPLv(~p2, s2) = ū(~p2, s2)γ

µPRv(~p1, s1) , (E.40)

ū(~p1, s1)γ
µPRv(~p2, s2) = ū(~p2, s2)γ

µPLv(~p1, s1) . (E.41)

If a bilinear combination of the two-component spinors is given that does not conform

to those listed in eqs. (E.32)–(E.37), then the corresponding four-component expression will

necessarily involve a charge-conjugated four-component spinor. For example, Ψ
c
1PLΨ2 = χ1χ2,

etc. In general, if one replaces Ψj with Ψc
j (j = 1 and/or 2) in any of the above results, then in

the corresponding two-component expression one simply interchanges χj ↔ ηj and χ̄j ↔ η̄j .

57Here i is a flavor index. In the convention of Section 3.2, the flavor index of an unbarred two-component field
appears as a lowered index and the flavor index of a barred two-component fermion field appears as a raised index.
If one wanted to introduce both raised and lowered indices for four-component fermion fields, one would demand
that the flavor indices of ΨL ≡ PLΨ and ΨR ≡ ΨPL appear as lowered indices, whereas the flavor indices of
ΨR ≡ PRΨ and ΨL ≡ ΨPR appear as raised indices. We shall follow this convention for chiral theories. However,
such a convention is unwieldy for vector-like interactions. Hence when considering vector-like theories, we shall
depart from this flavor index convention, and employ only lowered flavor indices for the fermion fields.

58It is often useful to apply eq. (2.49) to eqs. (E.35), (E.44) and (E.45) and rewrite η1σ
µη̄2 = −η̄2σ

µη1, where
the minus sign has been employed for anticommuting spinors.
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Using eqs. (E.32)–(E.37), it then follows that:

Ψ1Ψ2 = η1χ2 + χ̄1η̄2 (E.42)

Ψ1γ5Ψ2 = −η1χ2 + χ̄1η̄2 (E.43)

Ψ1γ
µΨ2 = χ̄1σ̄

µχ2 + η1σ
µη̄2 (E.44)

Ψ1γ
µγ5Ψ2 = −χ̄1σ̄

µχ2 + η1σ
µη̄2 (E.45)

Ψ1Σ
µνΨ2 = 2(η1σ

µνχ2 + χ̄1σ̄
µν η̄2) (E.46)

Ψ1Σ
µνγ5Ψ2 = 2(−η1σ

µνχ2 + χ̄1σ̄
µν η̄2) . (E.47)

Note that eqs. (E.44) and (E.45) contain both σµ and σµ [see footnote 58]. In addition, for

anticommuting fermion fields, we may use CT = −C to prove that

Ψ
c
iΓΨc

j = ΨjCΓTC−1Ψi = ηC
Γ

ΨjΓΨi , (E.48)

where the sign ηC
Γ

is given in eq. (E.15).

The results derived above also apply to four-component Majorana fermions, ΨMi, by setting

ηi = χi. However, the extra condition imposed by Ψc
Mi = ΨMi can yield further restrictions.

For example, eqs. (E.44)–(E.47) imply [after employing eqs. (2.49)–(2.51)] that anticommuting

Majorana four-component fermions satisfy:

ΨMiγ
µPLΨMj = −ΨMjγ

µPRΨMi , (E.49)

ΨMiΣ
µνΨMj = −ΨMjΣ

µνΨMi , (E.50)

ΨMiΣ
µνγ5ΨMj = −ΨMjΣ

µνγ5ΨMi . (E.51)

If we set i = j, we learn that ΨMγ
µΨM = ΨMΣµνγΨM = ΨMΣµνγ5ΨM = 0.

E.2 Feynman rules for four-component fermions

We now illustrate some basic applications of the the above formalism. First, we consider neutral

and charged fermions interacting with a neutral scalar φ or neutral gauge boson Aµ
a .59 To obtain

the interactions of the four-component fermion fields, we first identify the neutral two-component

fermion mass-eigenstate neutral fields ξi and the mass-degenerate charged pairs χj and ηj that

combine to form the (mass eigenstate) Dirac fermions. Using eqs. (4.12), (4.17) and (4.20), we

write out the following interaction Lagrangian in two-component form:

Lint = −1
2(λijξiξj + λij ξ̄

iξ̄j)φ− (κijχiηj + κijχ̄
iη̄j)φ

−(Ga)i
j ξ̄iσµξjA

µ
a + [(GaR)i

j η̄iσµηj − (GaL)i
jχ̄iσµχj]A

µ
a , (E.52)

59Here, charged and neutral refer to some global or local U(1), which in general is orthogonal to the gauge
group under which Aµ

a transforms.
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φ
ΨMj

ΨMi

−i(λijPL + λijPR)

φ
Ψj

Ψi

−i(κjiPL + κijPR)

Aaµ ΨMj

ΨMi

−iγµ[(Ga)ijPL − (Ga)j
iPR]

Aaµ Ψj

Ψi

−iγµ[(GaL)i
jPL + (GaR)j

iPR]

Figure 62: Feynman rules for four-component fermion interactions with neutral bosons

where Ga, GaL and GaR are hermitian matrices, λ is a complex symmetric matrix and κ is an

arbitrary complex matrix, with λij ≡ λ∗ij and κij ≡ κ∗ij By assumption, χ and η have the

opposite charges, while all other fields in eq. (E.52) are neutral. It is now simple to convert this

result into four-component notation:

Lint = −1
2(λijΨMiPLΨMj + λijΨMiPRΨMj)φ− (κjiΨiPLΨj + κijΨiPRΨj)φ

−
[
(Ga)i

jΨMiγµPLΨMj + (GaL)i
jΨiγµPLΨj + (GaR)j

iΨiγµPRΨj

]
Aµa , (E.53)

where ΨMj [Ψj ] are a set of Majorana [Dirac] four-component fermions. It is convenient to use

eq. (E.50) to rewrite the term proportional to (Ga)i
j in eq. (E.53) as follows

(Ga)i
jΨMiγ

µPLΨMj = 1
2ΨMiγ

µ
[
(Ga)i

jPL − (Gξ)j
iPR

]
ΨMj . (E.54)

Using standard four-component methods, the Feynman rules for the vertices are easily

obtained and displayed in Fig. 62. Note that the arrows on the Dirac fermion lines depict the

flow of the conserved charge. A Majorana fermion is neutral under all conserved charges (and

thus equal to its own anti-particle). Thus an arrow on a Majorana fermion line simply reflects

the structure of the interaction Lagrangian; i.e., ΨM [ΨM ] is represented by an arrow pointing
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out of [into] the vertex. The arrows are then used for determining the placement of the u and

v spinors in an invariant amplitude.

We next treat the interaction of fermions with charged bosons. Here, we consider a set

of neutral fermion mass-eigenstate fields ξi and a set of charged fermions denoted by pairs of

oppositely charged mass-eigenstate fields χj and ηj. The charged scalar and vector bosons are

complex fields denoted by Φ and W , respectively. We shall only consider the simplest case where

the U(1) charges of Φ, W and χ are assumed to be equal, with η having the opposite charge.

The interaction Lagrangian in two-component form is

Lint = −Φ∗[κij1 χiξj + (κ2)ij η̄
iξ̄j]− Φ[κij2 ηiξj + (κ1)ijχ̄

iξ̄j ]

−Wµ[(G1)i
jχ̄iσµξj + (G2)i

j ξ̄iσ
µηj ]−W ∗

µ [(G1)j
iξ̄jσµχi + (G2)j

iη̄jσµξi] , (E.55)

where G1 and G2 are hermitian matrices and κ1 and κ2 are complex symmetric matrices, with

(κn)ij ≡ (κijn )∗ [n = 1, 2]. We may then rewrite this in four-component notation:

Lint = −
[
(κ2)

ijΨiPLΨMj + (κ1)ijΨiPRΨMj

]
Φ

−
[
(G1)i

jΨiγ
µPLΨMj − (G2)j

iΨiγ
µPRΨMj

]
Wµ + h.c. (E.56)

There is an equivalent form of the interaction given in eq. (E.56) where L is written in

terms of charge-conjugated fields [after using eq. (E.48)]. Noting that Majorana fermions are

self-conjugate, the Feynman rules for the interactions of neutral and charged fermions with

charged bosons can take two possible forms, as shown in Fig. 63. Here, the direction of an arrow

on a Dirac fermion line is meaningful and indicates the direction of charge flow. However, we are

free to choose either a Ψ or Ψc line to represent a Dirac fermion at any place in a given Feynman

graph.60 Moreover, the structure of the interactions above imply that the arrow directions on

fermion lines flow continuously through the diagram. This requirement then determines the

direction of the arrows on Majorana fermion lines.

Virtual Dirac fermion lines can either correspond to Ψ or Ψc. Here, there is no ambiguity

in the propagator Feynman rule, since for free Dirac fermion fields,

〈
0|T (Ψα(x)Ψβ(y))|0

〉
=
〈
0|T (Ψc

α(x)Ψ
c
β(y))|0

〉
, (E.57)

so that the Feynman rule for the propagator of a Ψ and Ψc line, given in Fig. 64, are identical.

Using eq. (E.2), the four-component fermion propagator Feynman rule can be expressed as a

partitioned matrix of 2× 2 blocks,

p

=
α β





 =

i

p2 −m2 + iε



mδα

β p·σαβ̇

p·σα̇β mδα̇β̇


 , (E.58)

60Since the charge of Ψc is opposite to that of Ψ, the corresponding arrow direction of the two lines are also
point in opposite directions.
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Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψc
i

−i(κ2ijPL + κ1ijPR)

Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψc
i

−i(κ1ijPL + κ2ijPR)

W
ΨMj

Ψi

−iγµ(G1i
jPL −G2j

iPR)

W
ΨMj

Ψc
i

iγµ(G1i
jPR −G2j

iPL)

W
ΨMj

Ψi

−iγµ(G1j
iPL −G2i

jPR)

W
ΨMj

Ψc
i

iγµ(G1i
jPR −G2j

iPL)

Figure 63: Feynman rules for four-component fermion interactions with charged bosons. The
arrows on the boson and Dirac fermion lines indicate the direction of charge flow.
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p

αβ

i(/p+m)αβ
p2 −m2 + iε

Figure 64: Feynman rule for propagator of a four-component fermion with mass m. This same
rule applies to a Majorana, Dirac and charge-conjugated Dirac fermion. The four-component
spinor labels are specified.

consisting of two-component fermion propagators defined in Fig. 2, with the undotted and dotted

α [β] indices on the left [right] and with the momentum flowing from right to left.

The derivation of the four-component Dirac fermion propagator is treated in most modern

textbooks of quantum field theory [see, e.g., ref. [76]]. Here, we briefly sketch the path-integral

derivation of the four-component fermion propagator by exploiting the path integral treatment

of the two-component fermion propagators outlined in Appendix C. Consider a single massive

Dirac fermion Ψ(x) coupled to an anticommuting four-component Dirac fermionic source term

Jψ(x) ≡


Jηα(x)

J̄ α̇χ (x)


 . (E.59)

The corresponding action [eq. (C.2)] in four-component notation is given by

S =

∫
d4x (L + JψΨ + ΨJψ) =

∫
d4x

[
Ψ(i/∂ −m)Ψ + JψΨ + Ψ Jψ

]
. (E.60)

Introducing the momentum space Fourier coefficients:

Ψ(x) =

∫
d4p

(2π)4
e−ip·xΨ̂(p) , Jψ(x) =

∫
d4p

(2π)4
e−ip·xĴψ(p) , (E.61)

we can identify the following four-component quantities with matrices of two-component quan-

tities given in eqs. (C.7) and (C.27):

Ψ̂(p) = A−1Ωc(p) , Ĵψ(p) = Xc(p) , /p−m =M(p)A , (E.62)

where A is the Dirac conjugation matrix defined in eqs. (E.6) and (E.8). Using the results of

Appendix C, one easily derives:

〈0|T (Ψ(x1)Ψ(x2))|0〉 =

(
−i

−→
δ

δJψ(x1)

)
W [J, J ]

(
−i

←−
δ

δJψ(x2)

)∣∣∣∣∣
Jψ=Jψ=0

, (E.63)

where

W [Jψ , Jψ] = exp

{
−i
∫

d4p

(2π)4
Ĵψ(p)

/p+m

p2 −m2
Ĵψ(p)

}
. (E.64)

Using the analogs of eqs. (C.23) and (C.24), we end up with the expected result

〈0|T (Ψ(x1)Ψ(x2))|0〉 =

∫
d4p

(2π)4
e−ip·(x1−x2) /p−m

p2 −m2
. (E.65)
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In principle, the analogous computation can be carried out for a single four-component Ma-

jorana fermion field ΨM (x) coupled to a Majorana fermionic source, Jξ(x). The corresponding

action is similar to that of eq. (E.60), with an extra overall factor of 1/2. However, in evaluating

the functional derivative in eq. (E.64), one must take into account that the Majorana fermionic

source Jξ(x) satisfies J cξ ≡ CJ T

ξ = Jξ. Consequently, the functional derivative with respect to

Jξ is related to the corresponding functional derivative with respect to Jξ. As a result, the cal-

culation of eq. (E.64) will yield two equal terms that will cancel the overall factor of 1/2, and the

end result will again be eq. (E.65). Neverthless, this computation is somewhat awkward using

four-component spinor notation, in contrast to the straightforward calculation of Appendix C.

E.3 Applications of four-component spinor Feynman rules

For a given process, there may be a number of distinct choices for the arrow directions on the

Majorana fermion lines, which may depend on whether one represents a given Dirac fermion by

Ψ or Ψc. However, different choices do not lead to independent Feynman diagrams.61 When

computing an invariant amplitude, one first writes down the relevant Feynman diagrams with

no arrows on any Majorana fermion line. The number of distinct graphs contributing to the

process is then determined. Finally, one makes some choice for how to distribute the arrows

on the Majorana fermion lines and how to label Dirac fermion lines (either as the field or its

conjugate) in a manner consistent with the rules of Figs. 62 and 63. The end result for the

invariant amplitude (apart from an overall unobservable phase) does not depend on the choices

made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion wave functions are

the same for Dirac and Majorana fermions:

• u(~p, s): incoming Ψ [or Ψc] with momentum ~p parallel to the arrow direction,

• ū(~p, s): outgoing Ψ [or Ψc] with momentum ~p parallel to the arrow direction,

• v(~p, s): outgoing Ψ [or Ψc] with momentum ~p anti-parallel to the arrow direction,

• v̄(~p, s): incoming Ψ [or Ψc] with momentum ~p anti-parallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana

fermions is straightforward. Simply insert the plane wave expansion of the Majorana field:

ΨM (x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
u(~p, s)a(~p, s)e−ip·x + v(~p, s)a†(~p, s)e+ip·x

]
(E.66)

61In contrast, the two-component Feynman rules developed in Section 3 require that two vertices differing by
the direction of the arrows on the two-component fermion lines must both be included in the calculation of the
matrix element.
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into eq. (E.53), and evaluate matrix elements for, e.g., the decay of a scalar or vector particle

into a pair of Majorana fermions.

We now reconsider the matrix elements for scalar and vector particle decays into fermion

pairs and 2 → 2 elastic scattering of a fermion off a scalar and vector boson, respectively. We

shall compute the matrix elements using the Feynman rules of Fig. 62, and check that the results

agree with the ones obtained by two-component methods in Section 3.

The matrix element for the decay φ→ ΨM (~p1, s1)ΨM (~p2, s2) is given by

iM = −iū(~p1, s1)(λPL + λ∗PR)v(~p2, s2) . (E.67)

One can easily check that this result matches with eq. (4.26), which was derived using two-

component techniques. Note that if one had chosen to switch the two final states (equivalent

to switching the directions of the Majorana fermion arrows), then the resulting matrix element

would simply exhibit an overall sign change [due to the results of eqs. (E.38) and (E.39)].62

Similarly, for φ→ ΨMiΨMj (i 6= j) or for the decay into a pair of Dirac fermions, φ→ ΨΨ, one

again obtains the invariant matrix element given in eq. (E.67).

For the decay Aµ → ΨM (~p1, s1)ΨM (~p2, s2), one obtains:

iM = iGξ ū(~p1, s1)γ
µγ5v(~p2, s2)εµ . (E.68)

One can easily check that this result matches with eq. (4.29). For the decay into non-identical

Majorana fermions, Aµ → ΨMiΨMj (i 6= j), we can use the Feynman rules of Fig. 62 to obtain:

iM = −iū(~pi, si)γµ
[
(Gξ)i

jPL − (Gξ)j
iPR

]
v(~pj , sj)εµ , (E.69)

Again, we note that if one had chosen to switch the two final states (equivalent to switching

the directions of the Majorana fermion arrows), then the resulting matrix element would simply

exhibit an overall sign change [due to the results of eqs. (E.40) and (E.41)]. Finally, for the decay

of the vector particle into a Dirac fermion-antifermion pair, Aµ → ΨΨ, the matrix element is

given by:

iM = −iū(~p1, s1)γ
µ(GLPL −GRPR)v(~p2, s2)εµ , (E.70)

which matches the result of eq. (4.33).

Turning to the elastic scattering of a neutral Majorana fermion and a neutral scalar, we

shall examine two equivalent ways for computing the amplitude. Following the rules previously

stated, there are two possible choices for the direction of arrows on the Majorana fermion lines.

Thus, may evaluate either one of the following two diagrams:

62The overall sign change is a consequence of the Fermi-Dirac statistics, and corresponds to changing which
order one uses to construct the two particle final state.
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p −p

plus a second diagram in each case (not shown) where the initial and final state scalars are

crossed. Evaluating the first diagram above, the matrix element for φΨM → φΨM is given by:

iM =
−i

s−m2
ū(~p2, s2)(λPL + λ∗PR)(/p+m)(λPL + λ∗PR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2)

[
|λ|2/p+

(
λ2PL + (λ∗)2PR

)
m
]
u(~p1, s1) + (crossed) , (E.71)

where m is the Majorana fermion mass, s is the center-of-mass energy squared. Using eqs. (E.2)

and (E.16), one recovers the results of eq. (4.34). Had we chose to evaluate the second diagram

instead, the resulting amplitude would have been given by:

iM =
−i

s−m2
v̄(~p1, s1)

[
−|λ|2/p+

(
λ2PL + (λ∗)2PR

)
m
]
v(~p2, s2) + (crossed) . (E.72)

Using eqs. (E.16) and (E.17) and the results of eqs. (2.47)–(2.49) one can derive the following

results:

v̄(~p1, s1)v(~p2, s2) = −ū(~p2, s2)u(~p1, s1) , v̄(~p1, s1)γ
µv(~p2, s2) = ū(~p2, s2)γ

µu(~p1, s1) .

(E.73)

Consequently, the amplitude computed in eq. (E.72) is just the negative of eq. (E.71). This is

expected, since the order of spinor wave functions (12) in eq. (E.72) is an odd permutation (21)

of the order of spinor wave functions in eq. (E.71). As in the two-component Feynman rules,

the overall sign of the amplitude is arbitrary, but the relative signs of any pair of diagrams is

not ambiguous. This relative sign is positive [negative] if the permutation of the order of spinor

wave functions of one diagram relative to the other diagram is even [odd].

Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again,

we examine two equivalent ways for computing the amplitude. Following the rules previously

stated, there are two possible choices for the direction of arrows on the fermion lines, depending

on whether we represent the fermion by Ψ or Ψc. Thus, we may evaluate either one of the

following two diagrams:

p

Ψ Ψ

−p

Ψc Ψc

plus a second diagram in each case (not shown) where the initial and final state scalars are

crossed. Evaluating the first diagram above, the matrix element for φΨ → φΨ is given by
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eq. (E.71), with λ replaced by κ. Had we chose to evaluate the second diagram instead, the

resulting amplitude would have been given by eq. (E.72), with λ replaced by κ. Thus, the

discussion above in the case of neutral fermion scattering processes also applies to charged

fermion scattering processes.

In processes that only involve vertices with two Dirac fields, it is never necessary to use

charge-conjugated Dirac fermion lines. In contrast, consider the following process that involves

a vertex with one Dirac and one Majorana fermion. Specifically, we examine the scattering of

a charged Dirac fermion and a charged scalar via the exchange of a neutral Majorana fermion,

in which the charge of the outgoing fermion is opposite to that of the incoming fermion. If

one attempts to draw the relevant Feynman diagram employing Dirac fermion lines but with

no charge-conjugated Dirac fermion lines, one finds that there is no possible choice of arrow

direction for the Majorana fermion that is consistent with the the vertex rules of Fig. 63. The

resolution is simple: one can choose the incoming line to be Ψ and the outgoing line to be Ψc

or vice versa. Thus, the two possible choices are given by:

p

Ψ Ψc

−p

Ψc Ψ

plus a second diagram in each case (not shown) in which the initial and final scalars are crossed.

If we evaluate the first diagram, the resulting amplitude is given by:

iM =
−i

s−m2
ū(~p2, s2)(κ1PL + κ∗2PR)(/p+m)(κ1PL + κ∗2PR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2)

[
κ1κ

∗
2/p+

(
κ2

1PL + (κ∗2)
2PR

)
m
]
u(~p1, s1) + (crossed) , (E.74)

where m is the Majorana fermion mass. One can check that this is equivalent to eq. (4.38)

obtained via the two-component methods. Had we evaluated the second diagram, then after

using the relations given in eq. (E.73), one finds that the resulting amplitude is just the negative

of eq. (E.74), as expected. As before, the relative sign between diagrams for the same process

is not ambiguous.

In the literature, there are a number of alternative methods for dealing with scattering

processes involving Majorana particles. For example, one can define a fermion-number violating

propagator for four-component fermions (see, e.g., [48]). These methods involve subtle choices

of signs which often require first-principles computations to verify. The advantage of the method

described above is that there is never any ambiguity in the choice of relative signs.

In the case of elastic scattering of a fermion and a neutral vector boson, the two contributing

diagrams are

145



p

plus a second diagram (not shown) where the initial and final state vector bosons are crossed.

Consider first the scattering of a neutral Majorana fermion of mass m. Using the Feynman rules

of Fig. 62, we see that the Feynman rule for the AµΨMΨM vertex is given by iGξγ
µγ5. Hence,

the corresponding matrix element is given by

iM =
−iG2

ξ

s−m2
ū(~p2, s2) γ ·ε∗2 (/p−m) γ ·ε1u(~p1, s1) + (crossed) , (E.75)

where we have used γνγ5(/p +m)γµγ5 = γν(/p −m)γµ. Using eqs. (E.2) and (E.16), one easily

recovers the results of eq. (4.35).

Next, the invariant matrix element for the scattering of a Dirac fermion is given by

iM =
−i

s−m2
ū(~p2, s2) γ ·ε∗2 (GLPL −GRPR)(/p+m) γ ·ε1 (GLPL −GRPR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2) γ ·ε∗2

[
(G2

LPL +G2
RPR)/p−GLGRm

]
γ ·ε1u(~p1, s1) + (crossed) . (E.76)

One can easily check that this result coincides with that of eq. (4.39).

Finally, we examine the elastic scattering of two identical Majorana fermions via scalar

exchange. The three contributing diagrams are:

and the corresponding matrix element is given by

iM =
−i

s−m2
φ

[v̄1(λPL + λ∗PR)u2 ū3(λPL + λ∗PR)v4]

+ (−1)
−i

t−m2
φ

[ū3(λPL + λ∗PR)u1 ū4(λPL + λ∗PR)u2]

+
−i

u−m2
φ

[ū4(λPL + λ∗PR)u1 ū3(λPL + λ∗PR)u2] , (E.77)

where ui ≡ u(~pi, si), vj ≡ u(~pj, sj) and mφ is the exchanged scalar mass. The relative minus

sign of the t-channel graph relative to the other two is obtained by noting that 3142 [4132] is an
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odd [even] permutation of 1234. Using eqs. (E.2) and (E.16), one easily recovers the results of

eq. (4.40).

subsection*E.4 Self-energy functions and pole masses for four-component fermions

In this section, we examine the self-energy functions and the pole masses for a set of four-

component fermions. We first consider four-component Dirac fermion fields Ψαi, where α is

the four-component spinor index and i is the flavor index. The full, loop-corrected Feynman

propagators with four-momentum pµ are defined by the Fourier transforms [cf. footnote 13] of

vacuum expectation values of time-ordered products of bilinears of the fully interacting four-

component fermion fields:

〈0| TΨαi(x)Ψβj(y) |0〉FT = i(Sαβ)ij(p) , (E.78)

with [149–159]

S(p) ≡ /p
[
PLST

L(p2) + PRSR(p2)
]

+ PLS
T

D(p2) + PRSD(p2) , (E.79)

where the four-component spinor indices α and β and the flavor indices i and j have been

suppressed. As in Section 4.6, we shall organize the computation of the full propagator in terms

of the 1PI self-energy function [152]:63

Σ(p) ≡ /p
[
PLΣL(p2) + PRΣT

R(p2)
]

+ PLΣD(p2) + PRΣ
T

D(p2) . (E.80)

Diagrammatically, iS and −iΣ are shown in Fig. 65.

βα

ji

p

i(Sαβ)ij(p)

p

βα

i j

−i(Σαβ)ij(p)

Figure 65: The full, loop-corrected propagator for four-component Dirac fermions, i(Sαβ)ij(p),
is denoted by the shaded box, which represents the sum of all connected Feynman diagrams,
with external legs included. The self-energy function for four-component Dirac fermions,
−i(Σαβ)ij(p), is denoted by the shaded circle, which represents the sum of all one-particle
irreducible, connected Feynman diagrams with the external legs amputated. In both cases, The
four-momentum p flows from right to left.

The hermiticity of the effective action implies that S and Σ satisfy hermiticity condi-

tions [142, 143]

[ST]? = ASA−1 , [ΣT]? = AΣA−1 , (E.81)

63Our notation in eq. (E.80) differs from that of ref. [152], as we employ Σ
T

R instead of ΣR. Our motivation for
this choice is that in the case of Majorana fermions [cf. eq. (E.92)], we simply have ΣL = ΣR, without an extra
transpose (or conjugation). We have also chosen to employ ST

L in eq. (E.79) for similar reasons.
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where A is the Dirac conjugation matrix (A = γ0 in all common representations) and the star

symbol was defined in the paragraph below eq. (4.47). Applying eq. (E.81) to eqs. (E.79) and

(E.80) then yields the following conditions for the complex matrix functions:

[ST

L]? = SL , [ST

R]? = SR , SD = S ?
D , (E.82)

[ΣT

L]? = ΣL , [ΣT

R]? = ΣR , ΣD = Σ ?
D . (E.83)

Starting at tree-level and comparing with Fig. 64, the full propagator function is given by:

Sij(p) = (/p+m)δij/(p
2 −m2

i ) + . . . , (E.84)

with no sum over i implied. The full loop-corrected propagator can be expressed diagrammati-

cally in terms of the 1PI self-energy function:

βα

ji
=

βα

ji

γα

ki

δ

`

β

j
+

(E.85)

As in Section 4.6, the algebraic representation of eq. (E.85) can be written as

S = T + TΣS = (T −1 −Σ)−1 , (E.86)

where T ij ≡ (/p + m)δij/(p
2 −m2

i ) is the tree-level contribution to S given in eq. (E.84). By

writing the expressions for S and Σ given in eqs. (E.79) and (E.80) and T in block matrix form

using eq. (E.2), one can verify that eq. (E.86) is equivalent to eq. (4.66). Consequently, the

complex pole masses of the corresponding Dirac fermions are again determined from eq. (4.71).

In the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED

or QCD), the pseudoscalar and pseudovector parts of S(p) and Σ(p) must be absent. Thus,

the following relations must hold among the loop-corrected propagator functions and self-energy

functions, respectively:

SR = ST

L , SD = [S T

D]? , (E.87)

ΣL = ΣT

R , ΣD = [ΣT

D]? , (E.88)

in agreement with eqs. (4.72) and (4.73).

In the case of a set of four-component Majorana fermion fields, we can still use the results of

eqs. (E.79)–(E.86). However, one obtains additional constraints on the full propagator and self-

energy matrix functions due to the Majorana condition ΨMi = CΨ
T

Mi. Inserting this result into

eq. (E.78), and making use of the anti-commutativity of the fermion fields, one easily derives:

〈0| TΨMαi(x)ΨMβj(y) |0〉FT = Cαγ 〈0| TΨMδi(x)ΨMγj(y) |0〉FT C
−1
δβ . (E.89)
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Consequently,

CSTC−1 = S , CΣTC−1 = Σ . (E.90)

Inserting the expressions for S and Σ [eqs. (E.79) and (E.80)] and using the result of eq. (E.48),

it follows that:

SL = SR , SD = ST

D , SD = S
T

D , (E.91)

ΣL = ΣR , ΣD = ΣT

D , ΣD = Σ
T

D . (E.92)

As expected, with these constraints the form of eq. (4.66) matches precisely with the form

of eq. (4.56), corresponding to the equation for the full propagator functions for a theory of

generic two-component fermion fields. In the notation of Section 4.6, we can therefore identify:

C ≡ SL = SR , D ≡ SD , Ξ ≡ ΣL = ΣR, and Ω ≡ ΣD.

Appendix F: Covariant spin operators and the Bouchiat-Michel

Formulae

Bouchiat and Michel derived a useful set of formulae [135] that generalize the spin-projection

opertors used in four-component spinor computations. In this Appendix, we establish the two-

component analogues of the Bouchiat-Michel formulae, and demonstrate their equivalence to

the corresponding four-component spinor formulae.

F.1 The covariant spin operators for a spin-1/2 fermion

Consider a massive spin-1/2 fermion of mass m and four-momentum p. We define a set of three

four-vectors Saµ (a = 1, 2, 3) such that the Sa and p/m form an orthonormal set of four-vectors.

In the rest frame of the fermion, where pµ = (m ; ~0), we can define

Saµ ≡ (0 ; ŝa) , a = 1, 2, 3 , (F.1)

where the unit vectors ŝa are a mutually orthonormal set of unit three-vectors that form a basis

for a right-handed coordinate system. Explicit forms for the ŝa are given in eq. (B.14). Using

eq. (2.71), the three four-vectors Saµ in a reference frame in which the four momentum of the

fermion is pµ = (E ; ~p) is given by:

Saµ =

(
~p·ŝa

m
; ŝa +

(~p·ŝa) ~p

m(E +m)

)
. (F.2)

As discussed in Appendix B, we identify ŝ = ŝ3 as the quantization axis used in defining the

third component of the spin of the fermion in its rest frame. It then follows that the spin

four-vector, previously introduced in eq. (3.15) is given by Sµ = S3µ.

149



The orthonormal set of four four-vectors p/m and the Sa satisfy the following Lorentz-

covariant relations:

p·Sa = 0 , (F.3)

Sa ·Sb = −δab , (F.4)

εµνλσpµS
1
νS

2
λS

3
σ = −m, (F.5)

SaµS
b
ν − SaνSbµ = εabcεµνρσ(S

c)ρ
pσ

m
, (F.6)

Saµ S
a
ν = −gµν +

pµpν
m2

, (F.7)

where the sum over the repeated indices is implicitly assumed. It is convenient to define:

Sss′ ≡ Saτass′ , s, s′ = ±1
2 , (F.8)

where τass′ are the matrix elements of the Pauli matrices (see footnote 43). Then, we can rewrite

eqs. (F.4) and (F.6) as:

gµνS
µSν = −3 , (F.9)

SµSν − SνSµ =
i

2m
εµνρσS

ρpσ . (F.10)

The Sµ serve as covariant spin operaotrs for a spin-1/2 fermion. In particular, in the rest frame,

the 1
2S

i satisfy the usual SU(2) commutation relations, with ~S
2 = 3

4 as expected for a spin-1/2

particle.

It is often desirable to work with helicity states. In this case, we choose:

ŝa = p̂a , i.e., θ = θp and φ = φp , (F.11)

where the p̂a are defined in eq. (B.25) [with p̂3 ≡ p̂], in which case eqs. (F.1)–(F.7) also apply

to the two-component helicity spinors. Moreover, since p̂a ·p̂ = 0 for a 6= 3, it follows that

Sa = (0 ; p̂a) for a = 1, 2 in all reference frames obtained from the rest frame by a boost in

the p̂ direction. Hence, in a reference frame where pµ = (E ; ~p), eqs. (B.14) and (F.2) provide

explicit forms for the Sa,

S1µ = (0 ; cos θ cosφ, cos θ sinφ, − sin θ) , (F.12)

S2µ = (0 ; − sinφ, cosφ, 0) , (F.13)

S3µ =

( |~p |
m

;
E

m
p̂

)
, (F.14)

in a coordinate system where p̂ = (sin θ cosφ, sin θ sinφ, cos θ). As expected, S 3µ is the spin

vector for helicity states obtained in eq. (3.16). In the high energy limit (E � m),

mSaµ = pµ δa3 +O(m) . (F.15)
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F.2 Two-component spinor wave function relations

In Section 3.1, we wrote down explicit forms for the undotted spinor wave functions

xα(~p, s) =
√
p·σ χs , xα(~p, s) = −2sχ†

−s
√
p·σ , (F.16)

yα(~p, s) = 2s
√
p·σ χ−s , yα(~p, s) = χ†

s

√
p·σ , (F.17)

and the dotted spinor wave functions

x̄α̇(~p, s) = −2s
√
p·σ χ−s , x̄α̇(~p, s) = χ†

s

√
p·σ , (F.18)

ȳα̇(~p, s) =
√
p·σ χs , ȳα̇(~p, s) = 2sχ†

−s
√
p·σ , (F.19)

where
√
p·σ and

√
p·σ are defined in eqs. (2.69) and (2.70). As shown in Appendix B, the

two-component spinors χs satisfy:

1
2 ~σ ·ŝaχs′ = 1

2τ
a
ss′χs , χ†

s(ŝ)χs′(ŝ) = δss′ , s , s′ = ±1
2 . (F.20)

Next, we use eqs. (2.72) and (2.73) to obtain:

√
p·σ Sa ·σ√p·σ = m~σ ·ŝa , (F.21)

√
p·σ Sa ·σ

√
p·σ = −m~σ ·ŝa , (F.22)

which extends the results of eqs. (3.17) and (3.18). As a result, we obtain a generalization of

eqs. (3.23)–(3.26):

(Sa ·σ)α̇βxβ(~p, s
′) = τa

ss′
ȳα̇(~p, s) , (Sa ·σ)αβ̇ ȳ

β̇(~p, s′) = −τa
ss′
xα(~p, s) , (F.23)

(Sa ·σ)αβ̇ x̄
β̇(~p, s′) = −τa

s′s
yα(~p, s) , (Sa ·σ)α̇βyβ(~p, s

′) = τa
s′s
x̄α̇(~p, s) , (F.24)

xα(~p, s′)(Sa ·σ)αβ̇ = −τa
s′s
ȳβ̇(~p, s) , ȳα̇(~p, s

′)(Sa ·σ)α̇β = τa
s′s
xβ(~p, s) , (F.25)

x̄α̇(~p, s
′)(Sa ·σ)α̇β = τa

ss′
yβ(~p, s) , yα(~p, s′)(Sa ·σ)αβ̇ = −τa

ss′
x̄β̇(~p, s) , (F.26)

where there is an implicit sum over the repeated label s = ± 1
2 . As expected, the case of a = 3

simply reproduces the results of eqs. (3.23)–(3.26) obtained previously. The above equations also

apply to helicity wave functions x(~p, λ) and y(~p, λ) by replacing s, s′ with λ, λ′ and defining

the Sa by eqs. (F.12)–(F.14).

The derivation of eqs. (F.23)–(F.26) for arbitrary a closely follows the corresponding deriva-

tion for a = 3 previously given. For example, using eqs. (F.21) and (F.22) and the definitions

for xα(~p, s) and ȳα̇(~p, s), we find (suppressing spinor indices),

√
p·σ Sa ·σ x(~p, s′) =

√
p·σ Sa ·σ√p·σ χs′ = m~σ ·ŝa χs′ = mτass′ χs , (F.27)

after using eq. (F.20). Multiplying both sides of eq. (F.27) by
√
p·σ, we end up with

S ·σ x(~p, s′) = τass′
√
p·σ χs = τass′ ȳ(~p, s) . (F.28)
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Similarly,

S ·σx̄(~p, s′) = 2s′τa−s,−s′
√
p·σ χ−s = −τas′s y(~p, s) , (F.29)

where we have used:

4ss′τa−s,−s′ = −τas′s , for s, s′ = ±1/2 . (F.30)

All the results of eqs. (F.23)–(F.26) can be derived in this manner.

F.3 Two-component Bouchiat-Michel formulae

To establish the Bouchiat-Michel formulae, we begin with the following identity:

1
2 (δss′ + ~σ ·ŝa τass′)

∑

t=±1/2

χtχ
†
t

= χs′χ
†
s
. (F.31)

To verify eq. (F.31), we use eq. (F.20) to write ~σ ·ŝaχt = τat′tχt′ and evaluated the product of

two Pauli matrices:

τass′τ
a
t′t = 2 δstδs′t′ − δss′δtt′ . (F.32)

Using eq. (F.21) and the completeness relation given in eq. (B.8), we can rewrite eq. (F.31) as:

χs′χ
†
s = 1

2

(
δss′ +

1

m

√
p·σ Sss′ ·σ

√
p·σ
)
, (F.33)

where Sss′ is defined in eq. (F.8). Hence, with both spinor indices in the lowered position,

x(~p, s′)x̄(~p, s) =
√
p·σ χs′χ†

s

√
p·σ

= 1
2

√
p·σ

[
δss′ +

1

m

√
p·σ Sss′ ·σ

√
p·σ
]√

p·σ

= 1
2

[
p·σδss′ +

1

m
p·σ Sss′ ·σ p·σ

]

= 1
2 [p·σδss′ −mSss′ ·σ] . (F.34)

In the final step of eq. (F.34), we simplified the product of three dot-products by noting that

p·Sa = 0 implies that Sa ·σ p·σ = −p·σ Sa ·σ. Eq. (F.34) is the two-component version of one of

the Bouchiat-Michel formulae. We list below a complete set of Bouchiat-Michel formulae, which

can be derived by similar techniques:

xα(~p, s
′)x̄β̇(~p, s) = 1

2(p δss′ −mSss′)·σαβ̇ , (F.35)

ȳα̇(~p, s′)yβ(~p, s) = 1
2 (p δss′ +mSss′)·σα̇β , (F.36)

xα(~p, s
′)yβ(~p, s) = 1

2

(
mδss′δα

β − [(σ ·Sss′) (σ ·p)]αβ
)
, (F.37)

ȳα̇(~p, s′)x̄β̇(~p, s) = 1
2

(
mδss′δ

α̇
β̇ + [(σ ·Sss′) (σ ·p)]α̇β̇

)
. (F.38)

If we set s = s′, we recover eqs. (3.44)–(3.47) as expected.
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An equivalent set of Bouchiat-Michel formulae can be obtained by raising and/or lowering

the appropriate free spinor indices using eqs. (2.22) and (2.61):

x̄α̇(~p, s′)xβ(~p, s) = 1
2(p δs′s −mSs′s)·σα̇β , (F.39)

yα(~p, s
′)ȳβ̇(~p, s) = 1

2(p δs′s +mSs′s)·σαβ̇ , (F.40)

yα(~p, s
′)xβ(~p, s) = − 1

2

(
mδs′sδα

β + [(σ ·Ss′s) (σ ·p)]αβ
)
, (F.41)

x̄α̇(~p, s′)ȳβ̇(~p, s) = − 1
2

(
mδs′sδ

α̇
β̇ − [(σ ·Ss′s) (σ ·p)]α̇β̇

)
. (F.42)

These latter set of formulae can also be verified directly by using the explicit forms for the

two-component spinor wave functions. In this derivation, the spin labels in eqs. (F.39)–(F.42)

are reversed relative to those in eqs. (F.35)–(F.38) due to eq. (F.30).

Other combinations of spinor bilinears are possible. However, eqs. (F.16)–(F.19) imply that

the x and y spinors are related:

y(~p, s) = 2sx(~p,−s) , ȳ(~p, s) = 2sx̄(~p,−s) . (F.43)

Using eq. (F.43), all possible spinor bilinears can be obtained from eqs. (F.35)–(F.42).

Note that eqs. (F.35)–(F.43) also apply to helicity spinor wave functions x(~p, λ) and y(~p, λ)

after replacing s, s′ with λ, λ′ and using the Sa as defined in eqs. (F.12)–(F.14). Strictly speaking,

all results involving the spinor wave functions obtained up to this point apply in the case of a

massive spin-1/2 fermion. If we take the massless limit, then the four-vector S 3 does not exist,

as its definition depends on the existence of a rest frame. (In contrast, the four-vectors S 1 and

S2 do exist in the massless limit.) Nevertheless, massless helicity spinor wave functions are

well-defined; explicit forms can be found in eqs. (3.35)–(3.38). Using these forms, one can derive

the Bouchiat-Michel formulae for a massless spin-1/2 fermion:

xα(~p, λ
′)x̄β̇(~p, λ) = ( 1

2 − λ) δλλ′ p·σαβ̇ , (F.44)

ȳα̇(~p, λ′)yβ(~p, λ) = ( 1
2 + λ) δλλ′ p·σα̇β , (F.45)

xα(~p, λ
′)yβ(~p, λ) = − 1

2(1
2 − λ

′)(1
2 + λ) [(σ ·S12)(σ ·p)]α β , (F.46)

ȳα̇(~p, λ′)x̄β̇(~p, λ) = 1
2 (1

2 + λ′)(1
2 − λ) [(σ ·S21)(σ ·p)]α̇ β̇ , (F.47)

where

S12 ≡ S1
2 ,−

1
2

= S1 − iS2 , S21 ≡ S−1
2 ,

1
2

= S1 + iS2 . (F.48)

An explicit representation is given by:

1
2σ ·S12 =




sin
θ

2
cos

θ

2
e−iφ sin2 θ

2

−eiφ cos2 θ

2
− sin

θ

2
cos

θ

2


 , 1

2σ ·S21 =




sin
θ

2
cos

θ

2
−e−iφ cos2 θ

2

eiφ sin2 θ

2
− sin

θ

2
cos

θ

2


 .

(F.49)
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The equivalent set of Bouchiat-Michel formulae, obtained by raising and/or lowering the appro-

priate free spinor indices, is given by:

x̄α̇(~p, λ′)xβ(~p, λ) = ( 1
2 − λ) δλλ′ p·σα̇β , (F.50)

yα(~p, λ
′)ȳβ̇(~p, λ) = ( 1

2 + λ) δλλ′ p·σαβ̇ , (F.51)

yα(~p, λ
′)xβ(~p, λ) = − 1

2(1
2 + λ′)(1

2 − λ) [(σ ·S12)(σ ·p)]α β , (F.52)

x̄α̇(~p, λ′)ȳβ̇(~p, λ) = 1
2(1

2 − λ′)(1
2 + λ) [(σ ·S21)(σ ·p)]α̇ β̇ . (F.53)

As a check, one can verify that the above results follow from eqs. (F.35)–(F.42) by replacing

s with λ, setting mSaµ = pµ δa3, applying the mass-shell condition (p2 = m2), and taking the

m→ 0 limit at the end of the computation.

We now demonstrate how to use the Bouchiet-Michel formulae to evaluate helicity ampli-

tudes involving two equal-mass spin-1/2 fermions. A typical amplitude involving a fermion-

antifermion pair, evaluated in the center-of-mass frame of the pair has the generic structure:

z(~p, λ) Γ z′(−~p, λ′) , (F.54)

where z is one of the two-component spinor wave functions x, x̄ y or ȳ, and Γ is a 2× 2 matrix

(in spinor space) made up of products of the identity matrix, σ and σ. As an illustration, we

evaluate:

x̄α̇(~p, λ) Γα̇β yβ(−~p, λ′) = 2λ′ Γα̇β xβ(−~p,−λ′)x̄α̇(~p, λ) = 2λ′ Γα̇βσ0
ββ̇
ȳβ̇(~p, λ)x̄α̇(~p, λ) , (F.55)

where we have used eqs. (B.31) and (F.43). We can now employ the Bouchiat-Michel formula

to convert the above result into a trace. By a similar computation, all expressions of the form

of eq. (F.54) can be expressed as a trace:

x̄α̇(~p, λ) Γα̇β yβ(−~p, λ′) = λ′ Tr
[
Γσ0(mδλλ′ + σ ·Sλλ′ σ ·p)

]
, (F.56)

yα(~p, λ) Γαβ̇ x̄
β̇(−~p, λ′) = −λ′ Tr

[
Γσ0(mδλλ′ − σ ·Sλλ′ σ ·p)

]
, (F.57)

yα(~p, λ) Γα
β yβ(−~p, λ′) = λ′ Tr

[
Γσ0(σ ·p δλλ′ +mσ ·Sλλ′)

]
, (F.58)

x̄α̇(~p, λ) Γα̇β̇ x̄
β̇(−~p, λ′) = −λ′ Tr

[
Γσ0(σ ·p δλλ′ −mσ ·Sλλ′)

]
, (F.59)

after making use of eqs. (F.35) and (F.38). Similarly, there are four additional results that make

use of eqs. (F.39) and (F.42):

ȳα̇(~p, λ) Γα̇β xβ(−~p, λ′) = λ′ Tr
[
Γσ0(mδλ′λ − σ ·Sλ′λ σ ·p)

]
, (F.60)

xα(~p, λ) Γαβ̇ ȳ
β̇(−~p, λ′) = −λ′ Tr

[
Γσ0(mδλ′λ + σ ·Sλ′λ σ ·p)

]
, (F.61)

xα(~p, λ) Γα
β xβ(−~p, λ′) = −λ′ Tr

[
Γσ0(σ ·p δλ′λ −mσ ·Sλ′λ)

]
, (F.62)

ȳα̇(~p, λ) Γα̇β̇ ȳ
β̇(−~p, λ′) = λ′ Tr

[
Γσ0(σ ·p δλ′λ +mσ ·Sλ′λ)

]
. (F.63)
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For amplitudes involving equal mass fermions (or equal mass antifermions), other combinations

of spinor bilinears appear in which one x-spinor above is replaced by a y-spinor or vice versa.

These amplitudes can be reduced to one of the eight listed above by using eq. (F.43).

The traces are easily evaluated using the results of Appendix A. Here, we apply the above

results to the amplitude for the decay Z0 → f f̄ [see Section 6.2]. The corresponding center-of-

mass frame helicity amplitude is a linear combination of eqs. (F.56) and (F.57) with Γ = σ and

Γ = σ, respectively. Evaluating the corresponding terms, we find for Γ = σ,

x̄(~p, λ)σµy(−~p, λ′) = 2λ′
[
mgµ0δλλ′ + pµS0

λλ′ − p0Sµλλ′ − 2m(SµS0 − S0Sµ)λλ′
]
, (F.64)

where we have used eq. (F.10) to replace the term with the Levi-Civita tensor. Similarly, we

calculate for Γ = σ,

y(~p, λ)σµx̄(−~p, λ′) = 2λ′
[
−mgµ0δλλ′ + pµS0

λλ′ − p0Sµλλ′ + 2m(SµS0 − S0Sµ)λλ′
]
. (F.65)

Eqs. (F.64) and (F.65) provide explicit forms for the Z 0 → f f̄ decay helicity amplitudes defined

in eqs. (6.16) and (6.17).

The above method is not applicable if the two fermions have unequal mass. In order to

compute the helicity amplitudes of the form given by eq. (F.54) for unequal masses, a gener-

alization of the above techniques is required. Some methods for four-component spinor wave

functions have been proposed in ref. [137]. We leave it as an exercise for the reader to trans-

late these techniques so that they are applicable to helicity amplitudes expressed in terms of

two-component spinor wave functions.

F.4 Four-component Bouchiat-Michel formulae

Using the resuls of Appendix E, the translation of the results of the previous section

into four-component spinor notation is straightforward. First, we consider a massive spin-1/2

fermion. Eqs. (F.23)–(F.26) yield [141]:

γ5/Sa u(~p, s′) = τass′ u(~p, s) , γ5/Sa v(~p, s′) = τas′s v(~p, s) , (F.66)

ū(~p, s′) γ5/Sa = τass′ ū(~p, s) , v̄(~p, s′) γ5/Sa = τas′s v̄(~p, s) . (F.67)

In the case of a = 3, eqs. (F.66) and (F.67) reduce to those of eq. (E.19).

The four-component Bouchiat-Michel formulae [135–137] can be obtained from eqs. (F.35)–

(F.42):

u(~p, s′)ū(~p, s) = 1
2 [δss′ + γ5/Sss′ ] (/p+m) , (F.68)

v(~p, s′)v̄(~p, s) = 1
2 [δs′s + γ5/Ss′s] (/p−m) , (F.69)

where Sss′ ≡ Saτass′. As expected, the above results for s = s′ correspond to the spin projection

operators given in eqs. (E.20) and (E.21). Related formulae involving products of u and v-spinors
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can be obtained by using

v(~p, s) = −2sγ5u(~p,−s) , u(~p, s) = 2sγ5v(~p,−s) , (F.70)

which follow from eq. (F.43).

Eqs. (F.66)–(F.70) also apply to helicity u and v-spinors, after replacing s, s ′ with λ, λ′ and

using the Sa as defined in eq. (F.14). In the convention where the two-component spinor wave

function satisfies eq. (B.26), the four-component versions of eqs. (B.31)–(B.34) yield:

u(−p , −λ) = γ0 u(p , λ) , v(−p , −λ) = γ0 v(p , λ) , (F.71)

ū(−p , −λ) = ū(p , λ) γ0 , v̄(−p , −λ) = v̄(p , λ) γ0 . (F.72)

In order to consider the massless limit, one must employ helicity spinors, as discussed in

Appendix F.3. For a = 1, 2, eqs. (F.66) and (F.67) apply in the m → 0 limit as written. The

corresponding massless limit for the case of a = 3 is smooth and results in eq. (E.22). Similarly,

the massless limit of the Bouchiat-Michel formulae for helicity spinors can be obtained by setting

mSaµ = pµ δa3, applying the mass-shell condition (p2 = m2), and taking the m→ 0 limit at the

end of the computation. The end result is

u(p, λ′)ū(p, λ) = 1
2 (1 + 2λγ5) /p δλλ′ + 1

2γ5[/S
1τ1
λλ′ + /S2τ2

λλ′ ] /p , (F.73)

v(p, λ′)v̄(p, λ) = 1
2 (1− 2λγ5) /p δλ′λ + 1

2γ5[/S
1τ1
λ′λ + /S2τ2

λ′λ] /p . (F.74)

As expected, when λ = λ′, we recover the helicity projection operators for massless spin-1/2

particles given in eqs. (E.23) and (E.24).

As before, we can use the Bouchiat-Michel formulae to evaluate helicity amplitudes involving

two equal-mass spin-1/2 fermions. A typical amplitude involving a fermion-antifermion pair,

evaluated in the center-of-mass frame of the pair, has the generic structure:

w(~p, λ) Γw′(−~p, λ′) , (F.75)

where w is either a u or v spinor, w′ is respectively either a v or u spinor, and Γ is a product of

Dirac gamma matrices. For example,

ū(~p, λ) Γ v(−~p, λ′) = −2λ′ū(~p, λ) Γ γ5 u(−~p,−λ′) = −2λ′ū(~p, λ) Γ γ5 γ
0 u(~p, λ′) , (F.76)

where we have used the results of eqs. (F.70) and (F.71). We can now employ the Bouchiat-

Michel formula to convert the above result into a trace. By a similar computation, all expressions

of the form of eq. (F.75) can be expressed as a trace:

ū(~p, λ) Γ v(−~p, λ′) = −λ′ Tr
[
Γγ5γ

0(δλλ′ + γ5/Sλλ′)(/p+m)
]
, (F.77)

v̄(~p, λ) Γu(−~p, λ′) = λ′ Tr
[
Γγ5γ

0(δλ′λ + γ5/Sλ′λ)(/p−m)
]
. (F.78)
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These results are the four-component analogues of eqs. (F.56)–(F.59) and eqs. (F.60)–(F.63),

respectively. For amplitudes that involve a pair of equal mass fermions [or equal mass an-

tifermions], w and w′ in eq. (F.75) are both u-spinors [or v-spinors]. Using eq. (F.70), these

amplitudes can then be evaluated using the results of eqs. (F.77) and (F.78) above.

As an example, we consider once again the decay Z 0 → f f̄ . The decay amplitude is equal

to eq. (F.77), where Γ is a linear combination of 1
2γ

µ(1 − γ5) and 1
2γ

µ(1 + γ5). Evaluating the

corresponding traces yields:

ū(~p, λ) 1
2γ

µ(1− γ5) v(−~p, λ′) = 2λ′
[
mgµ0δλλ′ + pµS0

λλ′ − p0Sµλλ′ + iε0µνρ(Sλλ′)νpρ
]
, (F.79)

ū(~p, λ) 1
2γ

µ(1 + γ5) v(−~p, λ′) = 2λ′
[
−mgµ0δλλ′ + pµS0

λλ′ − p0Sµλλ′ − iε0µνρ(Sλλ′)νpρ
]
. (F.80)

Using eq. (F.10), we see that eqs. (F.79) and (F.80) reproduce exactly the results of eqs. (F.64)

and (F.65), respectively.

Finally, we note that if the two fermions do not have the same mass, then the method

presented above is not applicable. However, generalizations of the above method exist in the

literature that can be employed to evaluate helicity amplitudes of the form of eq. (F.75) for

unequal mass fermions; see, e.g., ref. [137].

Appendix G: The helicity amplitude techinique

In this appendix, we discuss how to apply our formalism to the helicity amplitude technique.

The latter is very useful when computing scattering cross sections for multi-particle final states,

which is typically done numerically. We shall review the formalism of Hagiwara and Zeppenfeld

(HZ) [63] and show how our formalism can be connected to theirs. In particular, we present a

translation between the two in Table 2.

After factoring the propagators an arbitrary tree amplitude with external fermions can be

expressed in terms of a “fermion string”

ψ1PR,L/a1/a2 . . . /anψ2 , (G.1)

where ψi denote the four -component spinor wave functions

ψi = u(pi, λi) , or v(pi, λi) , (G.2)

and PR,L = (1 ± γ5)/2 are the standard projection operators [cf. eq. (E.5)] in the chiral rep-

resentation. Furthermore, ai stands for an arbitrary Lorentz four vector, which can be a four-

momentum (pµi ), a vector boson wave-function (εµ(pi, λi)) an axial vector (εµνρκpνi p
ρ
jp
κ
k) or another

fermion string with uncontracted Lorentz indices, e.g. ψ3γ
µψ4.
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Our Formalism HZ Formalism

xα(p, λ) u(p, λ)−

xα(p, λ) −v∗(p, λ)+

x̄α̇(p, λ) −v(p, λ)+

x̄α̇(p, λ) u∗(p, λ)−

yα(p, λ) −v(p, λ)−

yα(p, λ) u∗(p, λ)+

ȳα̇(p, λ) u(p, λ)+

ȳα̇(p, λ) −v∗(p, λ)−

p · σ /p+

p · σ /p−

σµ σµ+

σµ σµ−

Table 2: Translation between our notation and Hagiwara and Zeppenfeld (HZ) [63].

In order to rewrite the fermion string, eq. (G.1), in terms of two-component spinors, we

need the HZ decomposition of the spinors (G.2)

ψi ≡


 (ψi)−

(ψi)+


 , u(pi, λi) ≡


 u(pi, λi)−

u(pi, λi)+


 , v(pi, λi) ≡


 v(pi, λi)−

v(pi, λi)+


 . (G.3)

The corresponding expressions in our notation are given in Table 2. Note the additional sign for

the v± spinors. This is because HZ take v(p, λ) = CuT (p, λ) with C = iγ2γ0 = −iγ0γ2, which

differs by a sign from our convention. In deriving the correspondence between the notations it

is helpful to note that

√
p · σ χλ =

E +m− 2λ|~p|√
2(E +m)

χλ = ω+(p)χλ , (G.4)

√
p · σ χλ =

E +m+ 2λ|~p|√
2(E +m)

χλ = ω−(p)χλ (G.5)

where we have used eq. (3.13) (labels) and, as in HZ, ω±(p) ≡
√
E ± |~p|. Note that we use our

notation: λ = ± 1
2 . In HZ λ = ±1.

After employing the Fierz identieties given by eqs. (2.55)–(2.57) to get rid of Lorentz in-

dices which are contracted between different fermion strings, the general fermion string can be
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expressed as (in the notation of HZ)

FS = (ψ1)
†
α[a1, a2, . . . , an]

α(ψ2)δnα, (G.6)

with the 2-component spinor index α = ±, and δn = (−1)n+1. Furthermore

[a1, a2, . . . , an]
α ≡ (/a1)α(/a2)−α . . . (/an)δnα (G.7)

where

(/a)± = aµσ
µ
± . (G.8)

In our notation σµ+ = σµ and σµ− = σµ, (cf. Table 2). Using the formalism developed in

this paper and employing the Fierz identities given by eqs. (2.55)–(2.57), it is straightforward

to express any tree amplitude involving external two component fermions in terms of fermion

strings in the form (G.6). This is the immediate link between our work and HZ.

In order to see how to numerically compute amplitudes, we express FS in terms of the

relevant momenta. In the following, we use our sign convention for the spinors v±. We first

rewrite FS as [63]

FS = CiCjωα(2λi)(pi)ωα(2λj)(pj)S(pi, a1, a2, . . . , an, pj)
α
λiλj , (G.9)

where

Ck =





1 for (ψk)τ = u(pk, λk)τ ,

(2λk)τ for (ψk)τ = v(pk,−λk)τ ,
τ = ±1, λ = ±1

2
(G.10)

The function S can be expressed as

S(pi, a1, a2, . . . , an, pj)
α
λiλj =

[
n∏

k=1

∑

τk=±
(ak)−αδkτk

]
T (pi, a1)(2λi)τ1T (a1, a2)τ1τ2

. . . T (an−1, an)τn−1τnT (an, pj)τn(2λj) (G.11)

where the functions T [58, 63] an be expressed entirely in terms of the relevant momenta.

T (a, b)++ = N−1
ab

[
(|~a|+ az)(|~b|+ bz) + (ax − iay)(bx + iby)

]
(G.12)

T (a, b)+− = N−1
ab

[
−(|~a|+ az)(bx − iby) + (ax − iay)(|~b|+ bz)

]
(G.13)

T (a, b)−+ = −T (a, b)∗+− (G.14)

T (a, b)−− = T (a, b)∗++ (G.15)

with the normalization factor given by

Nab =

√
|~a|(|~a|+ az)|~b|(|~b|+ bz) . (G.16)
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Two-component

fermion fields SU(3) SU(2)L Y T3 Q = T3 + 1
2Y



u

d




triplet

triplet
doublet

1
6

1
6

1
2

−1
2

2
3

−1
3

uc anti-triplet singlet − 2
3 0 −2

3

dc anti-triplet singlet 1
3 0 1

3



ν

e




singlet

singlet
doublet

−1
2

−1
2

1
2

−1
2

0

−1

ec singlet singlet 1 0 1

Table 3: Fermions of the Standard Model and their SU(3)×SU(2)L×U(1)Y quantum numbers.

Appendix H: Standard Model fermion interaction vertices

In the Standard Model, one generation of quarks and leptons is described by the two-component

fermion fields listed in Table 3, where Y is the weak hypercharge, T3 is the third component of

the weak isospin, and Q = T3 + Y is the electric charge. After SU(2)L×U(1)Y breaking, the

quark and lepton fields gain mass in such a way that the above two-component fields combine

to make up four-component Dirac fermions:

U =



u

uc


 , D =



d

dc


 , E =



e

ec


 , (H.1)

while the neutrino remains massless. (The extension of the Standard Model to include neutrino

mass will be treated elsewhere.)

Here, we follow the convention for particle symbols established in Table 1. Note that u and

d are two-component fields, whereas the usual four-component quark and charged lepton fields

are denoted by capital letters U , D and E. Consider a generic four-component field expressed

in terms of the corresponding two-component fields:

F =



f

f c


 . (H.2)
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ga

µ

qk

qj

−igsT akj σα̇βµ

α̇

β

ga

µ

(qc)j

(qc)k

igsT
ak
j σα̇βµ

α̇

β

Figure 66: Fermionic Feynman rules for QCD that involve the gluon, with q = u, d, c, s, t, b.
Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental) representation

of SU(3)c. For each rule, a corresponding one with lowered spinor indices is obtained by σ α̇βµ →
−σµβα̇.

The electroweak quantum numbers of f are denoted by T f3 , Yf and Qf , whereas the corre-

sponding quantum numbers for f c are T f
c

3 = 0 and Qfc = Yfc = −Qf . Thus we have the

correspondence to our general notation [eq. (E.4)]

f ←→ χ, f c ←→ η . (H.3)

We can then immediately translate the couplings given in the general case in Fig. 9 to the

Standard Model.

The QCD color interactions of the quarks are governed by the following interaction La-

grangian:

Lint = −gsAµa q̄ ji σµ(T a)j
kqki , (H.4)

summed over the generations i, where q is a (mass-eigenstate) quark field, j and k are SU(3) color

labels and T a are the color generators in the triplet representation of SU(3). The corresponding

Feynman rules are given in Fig. 66.

Next, we write out the Feynman rules for the electroweak interactions of quarks and leptons.

Consider the charged current interactions of the quarks:

Lint = − g√
2

[
¯̂uiσµd̂iW

+
µ + d̂ iσµûiW

−
µ

]
, (H.5)

where the hatted symbols indicate interaction eigenstates and i labels the generations. Following

the discussion of Appendix E, we convert to mass eigenstates for the quarks. That is, we

introduce four unitary matrices, Lu, Ld, Ru and Rd, [cf. eq. (3.80)] such that

ûi = (Lu)i
juj , d̂i = (Ld)i

jdj , ûci = (Ru)
i
ju
cj , and d̂ci = (Rd)

i
jd
cj , (H.6)

where the unhatted fields u, d, uc and dc are the corresponding mass eigenstates. It then follows

that ¯̂uiσµd̂i = Ki
jūiσµdj , where

K = L†
uLd (H.7)
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Figure 67: Feynman rules for the two-component fermion interactions with electroweak gauge
bosons in the Standard Model. For the W bosons, the charge indicated is flowing into the
vertex. The electric charge is denoted by Qf , with Qe = −1 for the electron, and T f3 is 1/2
for up-type quarks and neutrinos and is −1/2 for down-type quarks and charged leptons. The
CKM mixing matrix is denoted K, and sW ≡ sin θW , cW ≡ cos θW and e ≡ g sin θW . For each
rule, a corresponding one with lowered spinor indices is obtained by σ α̇βµ → −σµβα̇.

is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix.64 The charged current interactions

take the form

Lint = − g√
2

[
Ki

j ūiσµdjW
+
µ + (K†)i

j d̄ iσµujW
−
µ + ν̄iσµeiW

+
µ + ēiσµνiW

−
µ

]
, (H.8)

where

(K†)i
j ≡Kj

i ≡ (Kj
i)∗. (H.9)

We have also included the leptons, which do not mix. (Note that the Standard Model does not

have W± interactions with uc and dc.) The corresponding Feynman rules are given in Fig. 67.

64The CKM matrix elements Vij as defined in ref. [144] are related by, for example, Vtb = K3
3 and Vus = K1

2.
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Figure 68: Feynman rules for the Standard Model Higgs boson interactions with fermions.

The corresponding interaction of the fermions with the neutral gauge bosons are also given

in Fig. 67. The neutral current interactions are flavor-conserving. For each of the rules of Fig. 67,

we have chosen to employ σα̇βµ . If the indices are lowered one should take σα̇βµ → −σµβα̇.

The Yukawa interactions of the fermions with the Higgs field are given by:

−LY = (Y u)
i
j

[
Φ0ûiû

cj − Φ+d̂iû
cj
]

+ (Y d)
i
j

[
Φ−ûid̂

cj + Φ0∗d̂id̂
cj
]

+ c.c. (H.10)

The Higgs fields can be written in terms of the physical Higgs scalar hSM and Nambu-Goldstone

bosons G0, G± as

Φ0 = v +
1√
2
(hSM + iG0) (H.11)

Φ+ = G+ = (Φ−)∗ = (G−)∗. (H.12)

where v =
√

2mW/g ≈ 175 GeV. In the unitary gauge appropriate for tree-level calculations,

the Nambu-Goldstone bosons become infinitely heavy and decouple. After diagonalization of

the quark mass matrices,

(Mu)
i
j = v(Y u)

i
j , (M d)

i
j = v(Y d)

i
j , (H.13)

one obtains LT
uMuRu = diag(mu,mc,mt) and LT

dMdRd = diag(md,ms,mb). The resulting

Higgs-fermion interactions are diagonal as shown in Fig. 68. Here, the diagonalized Higgs-

fermion Yukawa coupling matrices appear:

diag(Yu1, Yu2, Yu3) ≡ diag(Yu, Yc, Yt) = LT

uY uRu (H.14)

diag(Yd1, Yd2, Yd3) ≡ diag(Yd, Ys, Yb) = LT

dY dRd. (H.15)

Likewise, we define

Ye1 ≡ Ye, Ye2 ≡ Yµ, Ye3 ≡ Yτ (H.16)

for the (unmixed) leptons. Note that bold-faced symbols are used for the non-diagonal Yukawa

matrices, while non-bold-faced symbols are used for the diagonalized Yukawa couplings. The

latter are related to the corresponding fermion masses by Yfi = mfi/v, where i labels the fermion

generation. The corresponding interaction Lagrangian is

Lint =
1√
2
hSM

[
Yuiuiu

ci + Ydidid
ci + Yeieie

ci
]
+ c.c. (H.17)
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Figure 69: Feynman rules for the Standard Model Nambu-Goldstone boson interactions with
quarks and leptons.
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In the case of more general covariant gauge-fixing, including Feynman gauge or Landau

gauge, the Goldstone bosons appear explicitly in internal lines of Feynman diagrams. The

Feynman rules for G0-fermion interactions are flavor diagonal, whereas the corresponding rules

for G± have a flavor-changing component that depends on the CKM matrix elements. The

relevant interaction Lagrangian for quarks follows from eqs. (H.10) and (H.15):

Lint =
i√
2

[
Ydidid

ci − Yuiuiuci
]
G0 + Yui[K]i

jdju
ciG+ − Ydi[K†]i

jujd
ciG− + c.c. (H.18)

The resulting diagrammatic Feynman rules are shown in Fig. 69, together with the corresponding

ones for the leptons.
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Appendix I: MSSM Fermion Interaction Vertices

I.1 Higgs-fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two-Higgs-doublet model containing eight real scalar degrees of

freedom: one complex Y = −1/2 doublet, Hd = (H0
d ,H

−
d ) and one complex Y = +1/2 doublet,

Hu = (H+
u ,H

0
u). The notation reflects the form of the MSSM Higgs sector coupling to fermions:

H0
d [H0

u] couples exclusively to down-type [up-type] fermion pairs. In the supersymmetric model,

both hypercharge Y = −1/2 and Y = +1/2 complex Higgs doublets are required in order that

the theory (which now contains the corresponding higgsino superpartners) remain anomaly-free.

The supersymmetric structure of the theory also requires (at least) these two Higgs doublets to

generate mass for both “up”-type and “down”-type quarks and charged leptons.

To find the couplings of the Higgs fields, we expand them around vacuum expectation values

vd and vu. Depending on the application, these may be chosen to be the minimum of the tree-

level potential, or of the full loop-corrected effective potential, or just left arbitrary. The phases

of the Higgs fields are chosen such that vu and vd are real and positive. That is, the tree-level

MSSM Higgs sector conserves CP, which implies that the neutral Higgs mass eigenstates have

definite CP quantum numbers. Spontaneous electroweak symmetry breaking results in three CP-

odd Goldstone bosons G±, G0, which are absorbed and become the longitudinal components

of the W± and Z. The remaining five physical Higgs particles consist of a charged Higgs pair

H±, one CP-odd scalar A0, and and two CP-even scalars h0 and H0. One can parameterize the

mixing angles between Higgs gauge eigenstates and mass eigenstates by writing:

H0
u = vu +

1√
2

∑

φ0

kuφ0φ0, (I.1)

H0
d = vd +

1√
2

∑

φ0

kdφ0φ0, (I.2)

H+
u =

∑

φ+

kuφ+φ+, (I.3)

H−∗
d =

∑

φ+

kdφ+φ+, (I.4)

where, for φ0 = (h0, H0, G0, A0),

kuφ0 = (cosα, sinα, i sinβ0, i cos β0) (I.5)

kdφ0 = (− sinα, cosα, −i cos β0, i sinβ0) (I.6)

and for φ+ = (G+, H+),

kuφ+ = (sinβ±, cosβ±), (I.7)

kdφ+ = (− cos β±, sinβ±). (I.8)
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Here the normalization is such that, if one chooses vu, vd to be near the true minimum of the

Higgs effective potential, then v2 ≡ v2
d + v2

u = 2m2
W /g

2 ≈ (175 GeV)2. Note that in the special

case that vu and vd are the minimum of the tree-level potential, the mixing angles β± in the

charged Higgs sector and β0 in the pseudo-scalar Higgs sectors coincide exactly with

β ≡ arctan(vu/vd). (I.9)

However, if one expands around a more general choice of vu, vd, including for example the

minimum of the full effective potential, then the tree-level mixing angles β0 and β± are distinct

from each other and from β. (Depending on the choice of renormalization scale for a particular

calculation, the tree-level potential in the MSSM may have a very different minimum from

the true minimum of the full effective potential, or may not have a proper minimum at all.)

Therefore, we do not assume anything specific about vu and vd except that they are real and

positive.

The Higgs-quark Yukawa couplings in the gauge-interaction basis are given by:

−L = (Y u)
i
j

[
ûiû

cjH0
u − d̂iûcjH+

u

]
+ (Y d)

i
j

[
d̂id̂

cjH0
d − ûid̂cjH−

d

]
+ c.c. (I.10)

Let us change to the mass-eigenstate basis by using eq. (H.6) and (I.1)-(I.4). After diagonal-

ization of the fermion mass matrices, (M u)
i
j = vu(Y u)

i
j and (Md)

i
j = vd(Y d)

i
j one ob-

tains LT
uMuRu = diag(mu,mc,mt) and LT

dMdRd = diag(md,ms,mb). The resulting neutral

Higgs-fermion interactions are diagonal. Here, the diagonalized Higgs-fermion Yukawa coupling

matrices appear:65

diag(Yu1, Yu2, Yu3) ≡ diag(Yu, Yc, Yt) = LT

uY uRu , (I.11)

diag(Yd1, Yd2, Yd3) ≡ diag(Yd, Ys, Yb) = LT

dY dRd , (I.12)

and, for the leptons,

Ye1 = Ye, Ye2 = Yµ, Ye3 = Yτ . (I.13)

The diagonalized Yukawa couplings are related to the corresponding fermion masses by

Ydi = mdi/vd , Yei = mei/vd , Yui = mui/vu . (I.14)

The interactions of the neutral Higgs scalars φ0 = (h0,H0, G0, A0) with Standard Model

fermions are given in Fig. 70. Note that the last two rules involve kdφ0 and kuφ0 , while the first

65We have used the same symbol for the Yukawa couplings in the MSSM as we did for the Standard Model
Yukawa couplings in Appendix H. However, it is important to note that they are normalized differently because
of the presence of two Higgs VEVs. If we use a superscript SM to distinguish the Standard Model Yukawa
couplings of Appendix H, then the MSSM Yukawa couplings defined here are related by Yui = Y SM

ui / sin β and
Ydi = Y SM

di / cos β and Yei = Y SM
ei / cos β.
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Figure 70: Feynman rules for the interactions of neutral Higgs bosons φ0 = (h0,H0, G0, A0)
with fermion-antifermion pairs in the MSSM. The repeated index j is not summed.

two rules involve their complex conjugates. This means that for h0 and H0, starting with the

rule with undotted fermion indices, one obtains the corresponding rule with dotted indices (with

the direction of the arrows reversed) by taking δα
β → δα̇β̇. The situation for the pseudoscalar A0

(and G0) is different because kuA0 and kdA0 (and kuG0 and kdG0) are purely imaginary. Starting

with the rules for pseudoscalar interactions with fermions with undotted fermion indices, one

obtains the corresponding rule with dotted indices (with the direction of the arrows reversed)

by taking δα
β → −δα̇β̇. The minus sign in the last operation is a signal that A0 and G0 are

CP-odd scalars.66

The couplings of the charged Higgs boson to quark-antiquark pairs are not flavor diagonal

and involve the CKM matrix K. Starting with eq. (I.10), and changing to the mass-eigenstate

basis as before, one obtains

Lint = (LT

dY uRu)
i
jdiu

cjH+ cosβ + (LT

uY dRd)
i
juid

cjH− sinβ + h.c., (I.15)

and the corresponding G± interactions by taking sinβ → − cos β and cosβ → sinβ. Using

eqs. (H.7) and (I.12), one obtains (LT

dY uRu)
i
j = [K]j

iYuj and (LT
uY dRd)

i
j = [K†]j iYdj , with

no sum on repeated indices. The resulting charged-scalar Feynman rules are given in Fig. 71.

66Because the Feynman rules for A0 and G0 arise from a term in Lint proportional to i Im H0, the latter i flips
sign when the rule is conjugated resulting in the extra minus sign noted above. As an additional consequence,
noting that the Feynman rules are obtained from iLint, the overall A0 and G0 rules are real.
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Figure 71: Feynman rules for the interactions of charged Higgs bosons φ± = (G±,H±) with
fermion-antifermion pairs in the MSSM.
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I.2 Gauge interaction vertices for neutralinos and charginos

Following eqs. (C83) and (C88) of ref. [48], we define:

OLij = − 1√
2
Ni4V

∗
j2 +Ni2V

∗
j1 , (I.16)

ORij = 1√
2
N∗
i3Uj2 +N∗

i2Uj1 , (I.17)

O′L
ij = −Vi1V ∗

j1 − 1
2Vi2V

∗
j2 + δijs

2
W , (I.18)

O′R
ij = −U∗

i1Uj1 − 1
2U

∗
i2Uj2 + δijs

2
W , (I.19)

O′′L
ij = −O′′R∗

ij = 1
2 (Ni4N

∗
j4 −Ni3N

∗
j3) . (I.20)

Here U and V are the unitary matrices that diagonalize the chargino mass matrix:

U∗Mψ±V −1 = diag(m eC1
,m eC2

) , (I.21)

with

Mψ± =



M2 gvu

gvd µ


 . (I.22)

Also, N is a unitary matrix that diagonalizes the neutralino mass matrix,

N∗Mψ0N−1 = diag(m eN1
,m eN2

,m eN3
,m eN4

) , (I.23)

with

Mψ0 =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0




. (I.24)

We now list the gauge boson interactions with the neutralinos and charginos. The Feynman

rules for Z and γ interactions with charginos and neutralinos are given in Fig. 72 and the

corresponding rules for W± interactions are given in Fig. 73. For each of these rules, one

has a version with lowered spinor indices by replacing σ α̇βµ → −σµβα̇. We label fermion lines

with the symbols of the two-component fermion fields as given in Table 1. Note that the

ZÑiÑj interaction vertex also subsumes the O ′′R
ij interaction found in four-component Majorana

Feynman rules as in ref. [48], due to the result of eq. (E.50) and the relation O ′′R
ij = −O′′L

ji of

eq. (I.20).
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Figure 72: Feynman rules for the chargino and neutralino interactions with neutral gauge
bosons. The coupling matrices are defined in eqs. (I.18)-(I.20). For each rule, a corresponding

one with lowered spinor indices is obtained by σα̇βµ → −σµβα̇.
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Figure 73: Feynman rules for the chargino and neutralino interactions with W ± gauge bosons.
The charge indicated on the W boson is flowing into the vertex in each case. The coupling
matrices are defined in eqs. (I.16) and (I.17). For each rule, a corresponding one with lowered

spinor indices is obtained by σα̇βµ → −σµβα̇.
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Figure 74: Feynman rules for the interactions of Higgs bosons φ0 = (h0,H0, G0, A0) and
φ± = (G±,H±) with chargino-neutralino pairs. For each rule, there is a corresponding one with
all arrows reversed, undotted indices changed to dotted indices with the opposite height, and
the Y coupling (without the explicit i) replaced by its complex conjugate.

I.3 Higgs interactions with charginos and neutralinos

The couplings of chargino and neutralino mass eigenstates to the Higgs mass eigenstates can be

written, in terms of the Higgs mixing parameters of eqs. (I.5) and (I.6) and the neutralino and

chargino mixing matrices of the previous subsection, as:

Y φ0χ0
iχ

0
j =

1

2
(k∗dφ0N

∗
i3 − k∗uφ0N

∗
i4)(gN

∗
j2 − g′N∗

j1) + (i↔ j), (I.25)

Y φ0χ+
i χ

−
j =

g√
2
(k∗uφ0V

∗
i2U

∗
j1 + k∗dφ0V

∗
i1U

∗
j2) (I.26)

Y φ+χ0
iχ

−
j = kdφ+

[
g(N∗

i3U
∗
j1 −

1√
2
N∗
i2U

∗
j2)−

g′√
2
N∗
i1U

∗
j2

]
(I.27)

Y φ−χ0
iχ

+
j = kuφ+

[
g(N∗

i4V
∗
j1 +

1√
2
N∗
i2V

∗
j2) +

g′√
2
N∗
i1V

∗
j2

]
. (I.28)

We list the Higgs boson interactions with the neutralinos and charginos in Fig. 74. For each

of the Feynman rules in Fig. 74, one can reverse all arrows by taking δα
β → δα̇β̇ and complex

conjugating the corresponding coupling (but not the overall factor of i).

172



I.4 Chargino and neutralino interactions with fermions and sfermions

In the MSSM, scalar partners of the two-component fields q and qc are the squarks, denoted by

q̃L and q̃R, respectively. In our notation, q̃∗L and q̃∗R denote both the complex conjugate fields

and the names of the corresponding anti-squarks. Thus u, ũL and ũR all have electric charges

+2/3, whereas uc, ũ∗L and ũ∗R all have electric charges −2/3. Likewise, the scalar partners of

the two-component fields ` and `c are the charged sleptons, denoted by ˜̀L and ˜̀R, respectively,

with ` = e, µ, τ . The sneutrino, ν̃ is the superpartner of the neutrino. There is no ν̃R, since

there is no νc in the theory.

The Feynman rules for the chargino-quark-squark interactions are given in Fig. 75, and

the rules for the neutralino-quark-squark interactions are given in Fig. 76. (Note that chargino

interaction vertices involving ucd̃R and dcũR do not occur in the MSSM.) Here we have taken

the quark and lepton two-component fields to be in a mass-eigenstate basis, and the squark and

slepton field basis consists of the superpartners of these fields, as described above. Therefore,

in practical applications, one must include unitary rotation matrix elements relating the the

squarks and sleptons as given to the mass eigenstates, which can be different.

In principle, all sfermions with a given electric charge can mix with each other. However,

there is a popular, and perhaps phenomenologically and theoretically favored, approximation in

which only the sfermions of the third family have significant mixing. For f = t, b, τ , one can

then write the relationship between the gauge eigenstates f̃L, f̃R and the mass eigenstates f̃1,

f̃2 as


f̃R
f̃L


 = Xf̃


f̃1

f̃2


 (I.29)

where

Xf̃ =


Rf̃1 Rf̃2
Lf̃1 Lf̃2


 (I.30)

is a 2× 2 unitary matrix. Then one can choose Rf̃1
= L∗

f̃2
= cf̃ , and Lf̃1 = −R∗

f̃2
= sf̃ with

|cf̃ |2 + |sf̃ |2 = 1. (I.31)

If there is no CP violation, then cf̃ and sf̃ can be taken real, and they are the cosine and sine

of a sfermion mixing angle.67 For the other charged sfermions (f = u, d, c, s, e, µ), one can use

the same notation, and approximate Lf̃2 = Rf̃1 = 1 and Lf̃1 = Rf̃2 = 0. The resulting Feynman

rules for squarks and sleptons that mix within each generation are shown in Figs. 77 and 78.

67Our convention for the sfermion mixing has the property that for zero mixing angle, ef1 = efR and ef2 = efL.
The conventions most commonly found in the literature unfortunately do not have this nice property.
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Figure 75: Feynman rules for the interactions of charginos with fermion/sfermion pairs in
the MSSM. The fermions are taken to be in a mass-eigenstate basis, and the sfermions are in
a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. 77.
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Figure 76: Feynman rules for the interactions of neutralinos with fermion/sfermion pairs in
the MSSM. The fermions are taken to be in a mass-eigenstate basis, and the sfermions are in
a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. 78.
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Figure 77: Feynman rules for the interactions of charginos with third-family fermion/sfermion
pairs in the MSSM. The fermions are taken to be in a mass-eigenstate basis. CKM mixing is
neglected, and the sfermions are assumed to only mix within the third family. The corresponding
rules for the first and second families with the approximation of no mixing and vanishing fermion
masses can be obtained from these by setting Yf = 0 and Lf̃2 = Rf̃1 = 1 and Lf̃1 = Rf̃2 = 0 (so

that f̃1 = f̃R and f̃2 = f̃L). For each rule, there is a corresponding one with all arrows reversed,
undotted indices changed to dotted indices with the opposite height, and the coupling (without
the explicit i) replaced by its complex conjugate.
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Figure 78: Feynman rules for the interactions of neutralinos with third-family fermion/sfermion
pairs in the MSSM. The same comments apply as for Fig. 77.
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For each of the Feynman rules in figs. 75-78, one can reverse all arrows by taking δα
β → δα̇β̇

and taking the complex conjugate of the corresponding rule (but leaving the explicit factor of i

intact).
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ga

µ

qk

qj

−igsT akj σα̇βµ

α̇

β

ga

µ

(qc)j

(qc)k

igsT
ak
j σα̇βµ

α̇

β

gd

µ

g̃b

g̃a

−gsfabd σα̇βµ

α̇

β

Figure 79: Fermionic Feynman rules for SUSY QCD that involve the gluon, with q =
u, d, c, s, t, b. Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental)
representation of SU(3)c. For each rule, a corresponding one with lowered spinor indices is

obtained by σα̇βµ → −σµβα̇.

I.5 SUSY QCD Feynman Rules

In two component notation, the Lagrangian governing the gluon’s interactions with fermions,

which come from the covariant derivatives in the kinetic terms, is

L = igsf
abd (g̃a σµ g̃b)A

µ
d − gsT akj

∑

q

[
qjσµqk − (qc)kσµ(q

c)j
]
Aµa . (I.32)

Here gs is the strong coupling constant, a, b, d = 1, 2, . . . , 8 are SU(3)c adjoint representation

indices, and fabd are the SU(3) structure constants. Raised (lowered) indices j, k = 1, 2, 3 are

color indices in the fundamental (anti-fundamental) representation. We have denoted the 2-

component gluino field by g̃a as in Table 1 and the gluon field by Aµa . The sum
∑

q is over the

six flavors q = u, d, s, c, b, t (in either the mass-eigenstate or electroweak gauge-eigenstate basis).

The corresponding Feynman rules are shown in Fig. 79. The gluino-squark-quark Lagrangian is

L = −
√

2gsT
ak
j

∑

q

[
g̃aqk q̃

∗j
L + g̃aq

j q̃Lk − g̃a(qc)j q̃Rk − g̃a(qc)k q̃∗jR
]
, (I.33)

where the squark fields are taken to be in the same basis as the quarks. The Feynman rules

resulting from these Lagrangian terms are shown in Fig. 80.

For practical applications, one typically takes the quark fields as the familiar mass eigen-

states, and then does a unitary rotation on the squarks in the corresponding basis to obtain

their mass eigenstate basis. In the approximation described above, in the paragraph containing

eqs. (I.29)-(I.31), one obtains the Feynman rules of Fig. 81, as an alternative to those of Fig. 80.
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Figure 80: Fermionic Feynman rules for SUSY QCD that involve the squarks, in a basis corre-
sponding to the quark mass eigenstates q = u, d, c, s, t, b. Lowered (raised) indices j, k correspond
to the fundamental (anti-fundamental) representation of SU(3)c, and the index a labels the ad-
joint representation carried by the gluino. The spinor index heights can be exchanged in each
case, by replacing δα

β → δβ
α or δα̇β̇ → δβ̇ α̇. For an alternative set of rules, incorporating LR

mixing, see Fig. 81.
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Figure 81: Fermionic Feynman rules for SUSY QCD that involve the squarks in the mass
eigenstate basis labeled by x = 1, 2 and q = u, d, c, s, t, b, in the approximation that mixing is
allowed only within a given flavor (typically, for the third family only), as in eq. (I.29). Lowered
(raised) indices j, k correspond to the fundamental (anti-fundamental) representation of SU(3)c,
and the index a labels the adjoint representation carried by the gluino. The spinor index heights
can be exchanged in each case, by replacing δα

β → δβ
α or δα̇β̇ → δβ̇ α̇.
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Appendix J: Trilinear R-Parity Violating Fermion Interaction
Vertices

In the case of R-parity violation [145], the MSSM superpotential is extended by the following

terms [146]:

W 6Rp = 1
2λijkεabL

a
iL

b
jEk + λ′ijkεabL

a
iQ

b
jDk + 1

2λ
′′
ijkεc1c2c3U

c1
i D

c2
j D

c3
k + κiεabL

a
iH

b
u . (J.1)

Here λijk, λ
′
ijk, λ

′′
ijk are dimensionless coupling constants and i, j, k are generation indices. a, b =

1, 2 and c1, c2, c3 = 1, 2, 3 are SU(2) and SU(3) indices, respectively. Li, Qi are the lepton and

quark SU(2)-doublet left-chiral superfields. E i, U i, Di are the charged lepton and quark SU(2)-

singlet left-chiral superfields. κi is a mass-dimension one parameter, which leads to mixing

between the sleptons and Higgs fields, as well as between the leptons and Higgsinos. This

modifies the Feynman rules of Appendix I through additional mixing matrices, which we do not

include here [99]. Recently, the two-component fermion Feynman rules for the neutral fermions

have been given in [147]. The intractions in eq. (J.1) can significantly alter the phenomenology

at colliders (see for example [102,105]), in particular, since the LSP is no longer stable. See the

computations in Sects. 6.19, and 6.20.

The tri-linear terms in eq. (J.1) lead to additional Yukawa couplings as follows:

LLLE = −1
2λijk

[
˜̀∗
Rkνi`j + ν̃i`j`

c
k + ˜̀Lj`ckνi − (i↔ j)

]
+ c.c. , (J.2)

LLQD = −λ′ijk
(
d̃∗Rkνidj + ν̃idjd

c
k + d̃Ljd

c
kνi − d̃∗Rk`iuj − ũLjdck`i − ˜̀Liujdck

)
+ c.c. , (J.3)

LUDD = −1
2λ

′′
ijkεc1c2c3

[
ũc1∗Ri d

cc2
j dcc3k + d̃c2∗Rj u

cc1
i dcc3k + d̃c3∗Rku

cc1
i dcc2j

]
+ c.c. , (J.4)

where repeated indices are summed over. The extra factors of 1
2 are convenient due to the

anti-symmetry in the corresponding couplings: λijk = −λjik, λ′′ijk = −λ′′ikj. Using eq. (4.9),

and Fig. 8 we can now directly determine the corresponding Feynman rules. These are given

in Figs. 82, 83, and 84. The same Lagrangian for the Yukawa interactions is given in terms of

4-component fermions in [103, 104], for example.
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Lj

` ck
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−iλijk

Figure 82: Feynman rules for the Yukawa couplings of two-component fermions due to the su-
persymmetric, R-parity violating superpotential terms LLE. For each diagram, there is another
with all arrows reversed and λijk → λ∗ijk.
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Figure 83: Feynman rules for the Yukawa couplings of two-component fermions for the super-
symmetric, R-parity violating superpotential term LQD. For each diagram, there is another
with all arrows reversed and λ′ijk → λ′∗ijk.
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dcc2j

dcc3k

−iεc1c2c3λ′′ijk
d̃c3Rk

ucc1i

dcc2j

−iεc1c2c3λ′′ijk

Figure 84: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity violating superpotential terms UDD. For each diagram, there is
another with all arrows reversed and λ′′ijk → λ′′∗ijk.
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