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Abstract

In these notes, we provide an explicit calculation of some integrals that arises in
the computation of the Barr-Zee Feynman diagrams [1] that contribute to the dipole
moment operator.

Section 1: The function g(z)

Consider the integral [1, 2],

g(z) = 1

2
z

∫

1

0

dx

x(1 − x)− z
ln

[

x(1− x)

z

]

, for real z > 0. (1)

First we note that
x(1− x)− z = −(x− x+)(x− x−) , (2)

where
x± = 1

2

[

1±
√
1− 4z

]

. (3)

It follows that
x+ + x− = 1 , x+x− = z . (4)

Noting that for z 6= 1

4
,

1

(x− x+)(x− x−)
=

1

x+ − x−

[

1

x− x+
− 1

x− x−

]

, (5)

eq. (1) can be rewritten as:

g(z) = − z

2
√
1− 4z

{
∫

1

0

dx

x− x+
ln

[

x(1 − x)

z

]

−
∫

1

0

dx

x− x−
ln

[

x(1− x)

z

]}

. (6)

We first analyze the case of 0 < z < 1

4
, in which case, 0 < x− < x+ < 1. We shall employ

the following result [3]:

G(y1; b, c) =

∫

1

0

dy

y − y1
ln

(

y2 + by + c− iǫ

y21 + by1 + c

)

= Li2

( −y1
y+ − y1

)

+ Li2

( −y1
y− − y1

)

− Li2

(

1− y1
y+ − y1

)

− Li2

(

1− y1
y− − y1

)

. (7)

where y1, b and c are real parameters, y± = 1

2

[

−b ±
√
b2 − 4c

]

, under the assumption that
0 ≤ y± ≤ 1 and b2 > 4c, and the dilogarithm Li2(z) is defined in the Appendix. Then,

g(z) = −1

2
z
[

G(x+,−1, 0)−G(x−,−1, 0)
]

, (8)

after noting that x2± − x± = x±(x± − 1) = −x±x∓ = −z.
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We now make use of eq. (7) with b = −1, c = 0, and y1 = x±, which yields y+ = 1 and
y0 = 0. It follows that

G(x±,−1, 0) = Li2

( −x±
1− x±

)

− Li2

(

1− x±
−x±

)

. (9)

It is convenient to employ the identity [4]:

= Li2

( −x
1− x

)

= −Li2 (x)− 1

2
ln2(1− x) , for x < 1. (10)

Letting x→ 1− x yields a second identity:

Li2

(

1− x

−x

)

= −Li2 (1− x)− 1

2
ln2 x , for x > 0. (11)

Hence,
G(x±,−1, 0) = −Li2 (x±) + Li2 (x∓)− 1

2
ln2 x∓ + 1

2
ln2 x± , (12)

after using x∓ = 1− x±. In particular,

G(x−,−1, 0) = −G(x+,−1, 0) . (13)

We therefore end up with

g(z) =
z√

1− 4z

{

Li2
(

1

2

[

1 +
√
1− 4z

])

− Li2
(

1

2

[

1−
√
1− 4z

])

+ 1

2
ln2

(

1

2

[

1−
√
1− 4z

])

− 1

2
ln2

(

1

2

[

1 +
√
1− 4z

])

}

, for 0 < z < 1

4
. (14)

One further simplification can be made by employing the identity [4]:

Li2(y) + Li2(1− y) = 1

6
π2 − ln y ln(1− y) . (15)

After making use of eqs. (4) and (15), we can rewrite eq. (14) in two equivalent forms:

g(z) =
z√

1− 4z

{

2 Li2
(

1

2

[

1 +
√
1− 4z

])

− ln2
(

1

2

[

1 +
√
1− 4z

])

+ 1

2
ln2 z − 1

6
π2

}

=
z√

1− 4z

{

−2 Li2
(

1

2

[

1−
√
1− 4z

])

+ ln2
(

1

2

[

1−
√
1− 4z

])

− 1

2
ln2 z + 1

6
π2

}

,

for 0 < z < 1

4
. (16)

It is instructive to evaluate the limit of z ≪ 1. One can approximate
√
1− 4z ≃ 1 − 2z

in the second form of g(z) given in eq. (16) to obtain

g(z) ≃ z
[

1

6
π2 − 2 Li2(z) +

1

2
ln2 z

]

= 1

2
z
[

ln2 z + 1

3
π2
]

+O(z2) . (17)

Next, we check the result for z = 1

4
. In this case, Mathematica yields:

g(z) = ln 2 + 2

3

(

4 ln 2− 1
)(

z − 1

4

)

+O
(

(z − 1

4
)2
)

. (18)
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One can verify the leading term of eq. (18) by evaluating eq. (1) for z = 1

4
. An explicit

computation yields:

g
(

1

4

)

= −1

2

∫

1

0

dx

(2x− 1)2
ln[4x(1− x)] = −1

4

∫

1

−1

dy

y2
ln(1− y2) = ln 2 . (19)

Next, we analyze the case of z > 1

4
. First, we can rewrite eq. (14) as

g(z) =
z√

1− 4z

{

Li2
(

1

2

[

1 +
√
1− 4z

])

− Li2
(

1

2

[

1−
√
1− 4z

])

− 1

2
ln z ln

(

1 +
√
1− 4z

1−
√
1− 4z

)}

,

for 0 < z < 1

4
, (20)

after noting that ln2 x− − ln2 x+ = ln(x−x+) ln(x−/x+) = ln z ln(x−/x+). Moreover, eq. (20)
remains valid for z > 1

4
if we put

√
1− 4z = i

√
4z − 1. In light of Li2(z

∗) = [Li2(z)]
∗, it

follows that:

g(z) =
2z√
4z − 1

Im
{

Li2
(

1

2

[

1 + i
√
4z − 1

]

}

− z

2i
√
4z − 1

ln z ln

(

1 + i
√
4z − 1

1− i
√
4z − 1

)

=
2z√
4z − 1

[

Im
{

Li2
(

1

2

[

1 + i
√
4z − 1

]

}

− 1

2
ln z tan−1

√
4z − 1

]

, for z > 1

4
. (21)

Using Ref. [4], one can express the imaginary part of the dilogarithm of a complex argu-
ment in terms of the Clausen function (which is defined in the Appendix):

ImLi2(re
iθ) = ω ln r + 1

2
Cl2(2ω)− 1

2
Cl2(2ω + 2θ) + 1

2
Cl2(2θ) , (22)

where

ω ≡ tan−1

(

r sin θ

1− r cos θ

)

. (23)

Note that if reiθ = 1

2

[

1 + i
√
4z − 1

]

, then

r =
√
z , sin θ =

√

1− 1

4z
, cos θ =

1

2
√
z
. (24)

Hence,
θ = ω = tan−1

√
4z − 1 , (25)

where the principal value of the arctangent is used (i.e., 0 ≤ tan−1
√
4z − 1 ≤ 1

2
π). It then

follows that

Im
{

Li2
(

1

2

[

1 + i
√
4z − 1

]

}

− 1

2
ln z tan−1

√
4z − 1

= Cl2
(

2 tan−1
√
4z − 1

)

− 1

2
Cl2

(

4 tan−1
√
4z − 1

)

= Cl2
(

π − 2 tan−1
√
4z − 1

)

, (26)

after employing the identity 1

2
Cl2(4θ) = Cl2(2θ)− Cl2(π − 2θ) given in Ref. [4]. Thus,

g(z) =
2z√
4z − 1

Cl2
(

π − 2 tan−1
√
4z − 1

)

, for z > 1

4
. (27)
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Finally, in light of eqs. (24) and (25),

θ = tan−1
√
4z − 1 = cos−1

1

2
√
z
=
π

2
− sin−1

1

2
√
z
, (28)

where we have made use of the identity, sin−1 y+cos−1 y = 1

2
π, in the last step above. Hence,

it follows that:

π − 2 tan−1
√
4z − 1 = 2 sin−1

1

2
√
z
. (29)

Consequently, eq. (27) can be rewritten as:

g(z) =
2z√
4z − 1

Cl2

(

2 sin−1
1

2
√
z

)

, for z > 1

4
. (30)

It is instructive to compute g
(

1

4

)

. For this calculation, we shall employ an equivalent form
[cf. eq. (26)]:

g(z) =
2z√
4z − 1

[

Cl2
(

2 tan−1
√
4z − 1

)

− 1

2
Cl2

(

4 tan−1
√
4z − 1

)

]

. (31)

Using the expansion (see eq. (4.28) of Ref. [4]),

Cl2(θ) = θ(1− ln |θ|) + 1

72
θ3 +O(θ5) , (32)

and approximating tan−1
√
4z − 1 ≃

√
4z − 1, it follows that

g
(

1

4

)

= ln
(

4 tan−1
√
4z − 1

)

− ln
(

2 tan−1
√
4z − 1

)

= ln 2 , (33)

in agreement with eq. (19).
As a second check, consider the limit where z ≫ 1. Then,

2 sin−1
1

2
√
z
=

1√
z

[

1 +
1

24z
+O

(

z−2
)

]

. (34)

Using eq. (32), we end up with

g(z) = 1 + 1

2
ln z +

5 + 3 ln z

36z
+O(z−2) . (35)

One can verify eq. (35) by taking the limit of eq. (1) for z ≫ 1,

g(z) = 1

2
ln z −

∫

1

0

ln x dx− 1

z

∫

1

0

x(1− x) log x+
ln z

2z

∫

1

0

x(1− x)dx+O(z−2)

=

(

1

2
+

1

12z

)

ln z + 1 +
5

36z
+O(z−2) . (36)

It is noteworthy that the value g(1) can be expressed in terms of polygamma functions.
Mathematica yields:

g(1) = 1

36

[

ψ1

(

1

6

)

+ ψ1

(

1

3

)

− ψ1

(

2

3

)

− ψ1

(

5

6

)

]

≃ 1.17195 , (37)

where

ψ1(z) ≡
d2

dz2
ln Γ(z) = n!

∞
∑

k=0

1

(z + k)2
. (38)
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Section 2: The function f(z)

Consider the integral [1, 2],

f(z) = 1

2
z

∫

1

0

1− 2x(1− x)

x(1− x)− z
ln

[

x(1 − x)

z

]

dx , for real z > 0. (39)

We can rewrite eq. (39) as

f(z) = (1− 2z)g(z)− z

∫

1

0

ln

[

x(1− x)

z

]

dx = z(2 + ln z) + (1− 2z)g(z) . (40)

For z ≪ 1, we see that f(z) ≃ g(z) ≃ 1

2
z ln2 z. Using eqs. (19) and (40), it follows that

f
(

1

4

)

= 1

2
. For z = 1, we have f(1) = 2− g(1) = 0.828046. Finally, the leading contributions

to f(z) as z → ∞ are obtained by employing eq. (35):

f(z) = z(2 + ln z) + (1− 2z)
[

1 + 1

2
ln z +

5 + 3 ln z

36z
+O(z−2)

]

= 13

18
+ 1

3
ln z +O(z−1) . (41)

Section 3: The function h(z)

Consider the integral [2],

h(z) = −1

2
z

∫

1

0

dx

x(1− x)− z

{

1− z

x(1 − x)− z
ln

[

x(1 − x)

z

]}

, for real z > 0. (42)

To evaluate h(z), we first compute

d

dz

(

2g(z)

z

)

=
∂

∂z

∫

1

0

dx

x(1− x)− z
ln

[

x(1 − x)

z

]

=

∫

1

0

dx
[

x(1− x)− z
]2

ln

[

x(1 − x)

z

]

− 1

z

∫

1

0

dx

x(1− x)− z

=
2h(z)

z2
. (43)

Hence, it follows that

h(z) = z2
d

dz

(

g(z)

z

)

. (44)

We now use the results of Section 1. The following derivatives will be needed:

dx±
dz

= ∓ (1− 4z)−1/2 , (45)

d

dy
Li2(y) = − ln(1− y)

y
, (46)

d

dθ
Cl2(θ) = − ln

[

2 sin
(

1

2
θ
)]

. (47)
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Using eq. (14), it follows that

d

dz

(

g(z)

z

)

=
2g(z)

z(1− 4z)
+

1

1− 4z

{

[

ln x+ + ln x−
]

(

1

x+
+

1

x−

)}

=
2g(z) + ln z

z(1− 4z)
, for 0 < z < 1

4
. (48)

Likewise, using eq. (30), it follows that

d

dz

(

g(z)

z

)

= − 2g(z)

z(4z − 1)
− 4√

4z − 1
ln
[

2 sin
(

sin−1
1

2
√
z

)] d

dz
sin−1

(

1

2
√
z

)

= − 2g(z)

z(4z − 1)
+

2 ln z√
4z − 1

1
√

1− 1/(4z)

(

−1

4
z−3/2

)

. (49)

Hence, we end up with:

d

dz

(

g(z)

z

)

=
2g(z) + ln z

z(1 − 4z)
, for z > 1

4
. (50)

Not surprisingly, the results obtained in eqs. (48) and (50) coincide (and thus are valid for
all real values of z > 0).

In light of eq. (44), it follows that

h(z) =
z
[

2g(z) + ln z
]

1− 4z
. (51)

Finally, we can check some limiting cases. Using eq. (17), it follows that for z ≪ 1,

h(z) = z ln z + z2
[

ln2 z + 4 ln z + 1

3
π2
]

+O(z3) . (52)

Using eqs. (37) and (51), h(1) = −0.781302. For z ≫ 1, eq. (35) yields:

h(z) = −1

2

(

1 + ln z
)

− 7 + 6 ln z

36z
+O(z−2) . (53)

Using Mathematica, one can check eq. (53) by integrating the leading terms of h(z) in the
limit of z ≫ 1. One can also verify either by explicit integration or by employing eqs. (18)
and (51) that h

(

1

4

)

= −1

6
(1+2 ln 2). Note that the first order correction to this result requires

a more accurate version of eq. (18):

g(z) = ln 2 + 1

6
(1− 4z)(1− 4 ln 2)− 1

60
(1− 4z)2(1 + 8 ln 2) +O

(

(1− 4z)3
)

. (54)

Then,

2zg(z) = 1

2
ln 2 + 1

12
(1− 10 ln 2)(1− 4z)− 1

120
(11− 32 ln 2)(1− 4z)2 +O

(

(1− 4z)3
)

,

z ln z = −1

2
ln 2− 1

4
(1− 2 ln 2)(1− 4z) + 1

8
(1− 4z)2 +O

(

(1− 4z)3
)

. (55)

Hence, eq. (51) yields

h(z) = −1

6
(1 + 2 ln 2) + 1

30
(1 + 8 ln 2)(1− 4z) +O

(

(1− 4z)2
)

. (56)
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Section 4: Summary of results

We define three integrals for real positive values of z [1, 2]:

g(z) = 1

2
z

∫

1

0

dx

x(1− x)− z
ln

[

x(1− x)

z

]

, (57)

f(z) = 1

2
z

∫

1

0

1− 2x(1− x)

x(1− x)− z
ln

[

x(1− x)

z

]

dx , (58)

h(z) = −1

2
z

∫

1

0

dx

x(1− x)− z

{

1− z

x(1− x)− z
ln

[

x(1− x)

z

]}

. (59)

Then, one can derive the following expressions for f(z) and h(z) in terms of g(z):

f(z) = z(2 + ln z) + (1− 2z)g(z) , (60)

h(z) =
z
[

2g(z) + ln z
]

1− 4z
. (61)

An explicit expression for g(z) is given by:

g(z) =



















z√
1− 4z

{

Li2(x+)− Li2(x−)− 1

2
ln z ln

(

x+
x−

)}

, for 0 < z ≤ 1

4
,

2z√
4z − 1

Cl2

(

2 sin−1
1

2
√
z

)

, for z > 1

4
,

(62)

where x± ≡ 1

2

[

1 ±
√
1− 4z

]

and 0 ≤ sin−1[1/(2
√
z)] ≤ 1

2
π (for z ≥ 1

4
). In Fig. 1, we have

employed Mathematica (Version 14.0) to produce plots of the functions g(z), f(z) and −h(z)
for 0.01 ≤ z ≤ 100. This figure reproduces the results first shown in Fig. 3 of Ref. [2].

g(z)

f(z)

-h(z)

0.01 0.10 1 10 100
0.01

0.05

0.10

0.50

1

5

10

Figure 1: Plots of g(z) given by eq. (62), f(z) given by eq. (60), and h(z) given by eq. (61) as a function of
the variable z for 0.01 ≤ z ≤ 100. These plots were produced using Version 14.0 of Mathematica.
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Alternative expressions for g(z) for 0 < z < 1

4
that involve only one dilogarithm can be

found in eqs. (16) and (20). Note that the function g(z) is continuous at z = 1

4
with a value

given by g
(

1

4

)

= ln 2. Likewise, the function of h(z) is also continuous (and finite) at z = 1

4

with a value given by h
(

1

4

)

= −1

6
(1+2 ln 2). For z ≪ 1, the leading behavior of the functions

f(z), g(z), and h(z) are given by: f(z) ≃ g(z) ≃ 1

2
z ln2 z and h(z) ≃ z ln z. For z ≫ 1,

the leading behavior of the functions are given by: g(z) ≃ 1 + 1

2
ln z, f(z) ≃ 13

18
+ 1

3
ln z,

and h(z) ≃ −1

2
(1 + ln z). More accurate approximations for g(z) and h(z) are provided in

Sections 1 and 3, respectively.

Appendix: Definitions of the dilogarithm and the Clausen function

In these notes, we follow the definitions given by Lewin in Ref. [4]. The dilogarithm is
defined as

Li2(z) = −
∫ z

0

ln(1− w)

w
dw , (A.1)

where z = x+ iy is any complex number excluding z = x ∈ R for 1 < x <∞. By expanding
ln(1 − w) in a power series around w = 0 and integrating term by term, one can derive a
convergent series representation of the dilogarithm:

Li2(z) =

∞
∑

n=1

zn

n2
, for |z| ≤ 1. (A.2)

It is conventional to define a single-valued dilogarithm function on the cut complex plane,
where the branch cut is located on the real axis for 1 ≤ x ≤ ∞. Although z = x = 1 is a
branch point, the integral in eq. (A.1) is well defined there1 and yields Li2(1) =

1

6
π2. Lewin

chooses to define ln(−x) = limε→0 ln(−x+ iε) for real x > 0 and Li2(x) = limε→0 Li2(x− iε)
for real x > 1, in which case ImLi2(x) = −π ln(x)Θ(x−1) for real x > 1, where the Heavyside
step function is defined such that Θ(x− 1) = 1 for x > 1 and Θ(x− 1) = 0 for x < 1.2

The Clausen function is defined as

Cl2(θ) = −
∫ θ

0

ln
∣

∣2 sin
(

1

2
φ
)
∣

∣ dφ , (A.3)

for θ ∈ R. A useful convergent series representation of the Clausen function is

Cl2(θ) =
∞
∑

n=1

sin(nθ)

n2
. (A.4)

The Clausen function is an odd function of θ that satisfies the following periodic properties:

Cl2(2nπ ± θ) = Cl2(±θ) = ±Cl2(θ) , for all integer values of n, (A.5)

and Cl2(π + θ) = −Cl2(π − θ). Note that Cl2(nπ) = 0 for any integer n, and Cl2(
1

2
π) = G,

where G is Catalan’s constant,

G =

∞
∑

n=0

(−1)n

(2n+ 1)2
≃ 0.91596559 . (A.6)

1In light of eq. (A.2), Li2(1) = ζ(2) = 1

6
π2.

2It is now more common in the literature to define Li2(x) = limε→0 Li2(x + iε) for real x > 1, although
this choice of conventions affects none of the results presented in these notes.
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