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Introduction–a folk theorem

In quantum field theory, generic tree-level parameter relations

are not stable under renormalization group (RG) running.

If a tree-level parameter relation is the result of an unbroken

symmetry, then the corresponding relation is RG-stable.

In the case of a softly-broken symmetry, the tree-level relations

satisfied by dimensionless couplings are RG stable, although they

receive finite radiative corrections.

Is the converse of the above statements true?

Folk theorem: the presence of an RG-stable parameter relation

implies the existence of a symmetry.



A recent result, obtained by Ferreira, Grzadkowski, Ogreid, and

Osland in the context of two-Higgs doublet model (2HDM),

appears to violate this folk theorem.1

These authors attempted to resurrect the folk theorem by

proposing a rather bizarre symmetry. But, is this a legitimate

way to save the folk theorem?

Spoiler alert: the answer is no! Nevertheless, there is some truth

to the folk theorem as I shall demonstrate in this talk.

1P.M. Ferreira, B. Grzadkowski, O.M. Ogreid and P. Osland, Eur. Phys. J. C 84 (2024) 234, arXiv:2306.02410
[hep-ph].



Symmetries of the 2HDM scalar potential

Consider the bosonic sector of the 2HDM:

L = LKE − V(Φ1,Φ2) ,

where LKE ≡ (DµΦa)
†DµΦa (summed implicitly over a = 1, 2)

is written in terms of the SU(2)×U(1)Y covariant derivative Dµ,

and the scalar potential is given by:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.]

+1
2λ1(Φ

†
1Φ1)

2 + 1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[

λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)

]

Φ†
1Φ2 + h.c.

}

,

where m2
11, m

2
22, and λ1, · · · , λ4 are real and m2

12, λ5, λ6 and

λ7 are potentially complex parameters.



Parameter relations of the scalar potential can be the result of

a symmetry that preserves the form of LKE. Two classes of

symmetries are possible:

(1) Higgs flavor (HF) symmetries: Φa→ SabΦb.

(2) generalized CP symmetries (GCP): Φa→ XabΦ
∗
b.

All possible inequivalent symmetries of the 2HDM scalar

potential have been classified and the corresponding parameter

relations elucidated.2 We do not distinguish between different

symmetries that yield the same parameter relations.

2I.P. Ivanov, Phys. Lett. B 632 (2006) 360, hep-ph/0507132; Phys. Rev. D 75 (2007) 035001, hep-

ph/0609018; P.M. Ferreira, H.E. Haber, and J.P. Silva, Phys. Rev. D 79 (2009) 116004, arXiv:0902.1537
[hep-ph]; P.M. Ferreira et al., Int. J. Mod. Phys. A 26 (2011) 769, arXiv:1010.0935 [hep-ph].



(1) HF symmetries [subgroups of U(2)]

Z2 : Φ1 → Φ1 , Φ2 → −Φ2 ,

U(1) : Φ1 → Φ1 , Φ2 → eiθΦ2 , 0 < θ < 2π ,

U(2)/U(1)Y : Φa → SabΦb , with S ∈ U(2)/U(1)Y .

(2) GCP symmetries

GCP1 : Φ1 → Φ∗
1 , Φ2 → Φ∗

2 ,

GCP2 : Φ1 → Φ∗
2 , Φ2 → −Φ∗

1 ,

GCP3 :







Φ1 → Φ∗
1 cos θ +Φ∗

2 sin θ

Φ2 → Φ∗
2 cos θ − Φ∗

1 sin θ
, 0 < θ < 1

2π .

In the case of GCP3, any choice of 0 < θ < 1
2π imposes the same conditions

on the scalar potential parameters.



If we now impose the symmetries listed above in the scalar field

basis {Φ1,Φ2}, we obtain the parameter relations listed below.

symmetry m2
22 m2

12 λ2 λ4 Reλ5 Imλ5 λ6 λ7

Z2 0 0 0

U(1) 0 0 0 0 0

U(2)/U(1)Y m2
11 0 λ1 λ1 − λ3 0 0 0 0

GCP1 real 0 real real

GCP2 m2
11 0 λ1 −λ6

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 0 0 0

Empty entries above correspond to a lack of constraints on the corresponding parameters.

What about other possible symmetries? For example,

Π2 : Φ1 ←→ Φ2 ,

Π′
2 : Φ1 → Φ2 , Φ2 → −Φ1 ,

GCP1′ : Φ1 → Φ∗
2 , Φ2 → Φ∗

1 ,



symmetry m2
22 m2

12 λ2 Reλ5 Imλ5 λ6 λ7

Π2 m2
11 real λ1 0 λ∗

6

Z2 ⊗ Π2 m2
11 0 λ1 0 0 0

U(1)⊗Π2 m2
11 0 λ1 0 0 0 0

Π′
2 m2

11 pure imaginary λ1 0 − λ∗
6

U(1)′ m2
11 pure imaginary λ1 λ1 − λ3 − λ4 0 0 0

U(1)′′ m2
11 real λ1 λ3 + λ4 − λ1 0 0 0

GCP1′ m2
11 λ1 λ6

GCP3′ m2
11 0 λ1 λ3 + λ4 − λ1 0 0 0

Taken from H.E. Haber and J.P. Silva, Phys. Rev. D 103 (2021) 115012, arXiv:2102.07136 [hep-ph].

By a change of the scalar field basis, Φa → UabΦb,
3 each of the

symmetries above is equivalent to one of the six symmetries of

the previous table (with its corresponding parameter relations).

For example, GCP1′ is equivalent to GCP1 in another basis even though

GCP1′ (unlike GCP1) does not enforce reality conditions on the potentially

complex parameters m2
12, λ5, λ6, and λ7.

3Here, U ∈ U(2) is the most general transformation that preserves the gauge-kinetic energy terms.



RG-stable parameter relations due to a symmetry

Consider the following one-loop beta functions (neglecting the
contributions of the gauge and Yukawa couplings):

16π2βm2
11
= 3λ1m

2
11 + (2λ3 + λ4)m

2
22 − 3

(

λ∗
6m

2
12 + λ6m

2 ∗
12

)

,

16π2βm2
22
= (2λ3 + λ4)m

2
11 + 3λ2m

2
22 − 3

(

λ∗
7m

2
12 + λ7m

2 ∗
12

)

,

16π2βm2
12
= −3

(

λ6m
2
11 + λ7m

2
22

)

+ (λ3 + 2λ4)m
2
12 + 3λ5m

2 ∗
12 ,

16π2βλ1 = 6λ2
1 + 2λ2

3 + 2λ3λ4 + λ2
4 + |λ5|2 + 12 |λ6|2 ,

16π2βλ2 = 6λ2
2 + 2λ2

3 + 2λ3λ4 + λ2
4 + |λ5|2 + 12 |λ7|2 ,

16π2βλ5 = (λ1 + λ2 + 4λ3 + 6λ4)λ5 + 5
(

λ2
6 + λ2

7

)

+ 2λ6λ7 ,

16π2βλ6 = (6λ1 + 3λ3 + 4λ4)λ6 + (3λ3 + 2λ4)λ7 + 5λ5λ
∗
6 + λ5λ

∗
7 ,

16π2βλ7 = (6λ2 + 3λ3 + 4λ4)λ7 + (3λ3 + 2λ4)λ6 + 5λ5λ
∗
7 + λ5λ

∗
6 .



Example 1:

Parameter relations: m2
11 = m2

22; m
2
12 = 0; λ1 = λ2; λ6 = −λ7

These relations are a consequence of a GCP2 symmetry. One

can check that4

βm2
11−m2

22

∣

∣

sym
≡

[

βm2
11
− βm2

22

]∣

∣

sym
= 0 ,

βm2
12

∣

∣

sym
= 0 ,

βλ1−λ2

∣

∣

sym
≡

[

βλ1 − βλ2

]∣

∣

sym
= 0 ,

βλ6+λ7

∣

∣

sym
≡

[

βλ6 + βλ7

]∣

∣

sym
= 0 ,

Indeed, the parameter relations given above are RG-stable to all

orders in perturbation theory.

4The notation “sym” indicates that the parameter relations were used when evaluating the beta functions.



The GCP2 symmetry guarantees that the RG-stability persists

when the gauge interactions are included.5

Moreover, the RG-stability of the tree-level parameter relations

persists to all orders of perturbation theory.

Example 2:6

Parameter relations: m2
11 = −m2

22; λ1 = λ2; λ6 = −λ7

βm2
11+m2

22

∣

∣

sym
≡

[

βm2
11
+ βm2

22

]∣

∣

sym
= 0 ,

βλ1−λ2

∣

∣

sym
≡

[

βλ1 − βλ2

]∣

∣

sym
= 0 ,

βλ6+λ7

∣

∣

sym
≡

[

βλ6 + βλ7

]∣

∣

sym
= 0 .

5If the GCP2 symmetry could be extended to the Yukawa sector, then the RG-stability would also persist

when the Yukawa interactions are included.
6First considered by P.M. Ferreira, B. Grzadkowski, O.M. Ogreid, and P. Osland, Eur. Phys. J. C 84 (2024)

234, arXiv:2306.02410 [hep-ph].



The parameter relations, λ1 = λ2; λ6 = −λ7, are RG-stable to

all orders in perturbation theory since the GCP2 symmetry is

softly broken by the squared-mass terms of the scalar potential.

The parameter relation, m2
11 = −m2

22 is RG-stable at one-loop

order, and persists at two-loop order (and beyond).7

However, no basis change exists such that m2
11 = −m2

22 is

transformed into one of the six symmetry parameter relations

previously classified.

Has a possible symmetry of the 2HDM scalar potential been

overlooked?
7As shown by P.M. Ferreira et al., op. cit., the RG-stability holds to all orders in perturbation theory in

the quartic scalar couplings and the gauge couplings. It has also been shown to hold at two-loop order in the
Yukawa couplings (but no corresponding all-orders result has yet been obtained).



GOOFy symmetry?

Reference: B. Grzadkowski, O.M. Ogreid, P. Osland, and P.M. Ferreira, op. cit.

Consider the following scalar field transformations:

Φ1→ −Φ∗
2 , Φ∗

1 → Φ2 , Φ2→ Φ∗
1 , Φ∗

2 → −Φ1 .

This is peculiar since Φ∗
1 does not transform into the complex

conjugate of the transformed Φ1 (and similarly for Φ2).

Equivalently,

Φ†
1Φ1→ −Φ†

2Φ2 , Φ†
2Φ2→ −Φ†

1Φ1,

whereas Φ†
1Φ2 and Φ†

2Φ1 are invariant. Imposing this “GOOFy

symmetry” on the scalar potential yields the parameter relations,

m2
11 = −m2

22; λ1 = λ2; λ6 = −λ7.



Unfortunately, LKE changes sign under Φ†
1Φ1 → −Φ†

2Φ2 and

Φ†
2Φ2→ −Φ†

1Φ1.

In order to restore the sign of LKE, the authors of the

GOOFy paper advanced the radical proposal where the spacetime

coordinates themselves also transform under the GOOFy

symmetry via xµ→ ixµ.
8

My personal conclusion is that the GOOFy symmetry is not a

legitimate symmetry. In particular, it seems that there is no

valid symmetry explanation for the RG-stable parameter relation

m2
11 = −m2

22.

8Equivalently, the covariant derivative must also transform as Dµ → iDµ (which implies that the gauge

fields themselves must also similarly transform) in order that the kinetic energy terms of the scalar fields remain
invariant.



A toy model with one complex scalar field

Consider a theory of one complex scalar field Φ with Lagrangian,

L = ∂µΦ∂
µΦ∗ −m2

1Φ
∗Φ−m2

2Φ
2 −m2∗

2 Φ∗2 − λ1(Φ
∗Φ)2

−λ2Φ
4 − λ∗

2Φ
∗4 −

(

λ3Φ
2 + λ∗

3Φ
∗2
)

Φ∗Φ ,

after imposing a discrete symmetry Φ → −Φ to remove terms

linear and cubic in the scalar fields. Next, impose the relations:

m2
1 = λ3 = 0 .

These parameter relations are RG-stable to all orders in

perturbative theory:

βm2
1

∣

∣

sym
= 0 , βλ3

∣

∣

sym
= 0 ,

where “sym” means that the β’s are evaluated at m2
1 = λ3 = 0.



The symmetry transformation Φ→ iΦ would set m2
2 = λ3 = 0.

This symmetry is softly broken, which explains why the relation

λ3 = 0 is RG-stable. But why is m2
1 = 0 RG-stable?

A GOOFy-like symmetry?

The “symmetry” transformation Φ → Φ ; Φ∗ → −Φ∗, removes

the terms m2
1Φ

∗Φ+
(

λ3Φ
2+λ∗

3Φ
∗2
)

Φ∗Φ. That is, m2
1 = λ3 = 0.

Once again, the complex conjugate of the Φ transformation is

not equal to the Φ∗ transformation. Moreover, one must again

restore the sign of the kinetic energy term LKE = ∂µΦ∂
µΦ∗ by

transforming xµ→ ixµ. That is, there seems to be no legitimate

symmetry explanation for the RG-stability of m2
1 = 0.



Realification of a complex scalar field theory

One can always “realify” a complex scalar field theory by writing

Φ = (ϕ1 + iϕ2)/
√
2. After imposing the GOOFy-like symmetry,

V = 1
2m

2
11

(

ϕ2
1 − ϕ2

2

)

+m2
12ϕ1ϕ2 +

1
24λ1111

(

ϕ4
1 + ϕ4

2

)

+1
4λ1122 (ϕ1ϕ2)

2 + 1
6λ1112

(

ϕ2
1 − ϕ2

2

)

ϕ1ϕ2 .

In particular, there are three parameter relations:9

m2
22 = −m2

11 λ1111 = λ2222 , λ1112 = −λ1222 ,

which are equivalent to the previous relations, m2
1 = λ3 = 0.

9The notation corresponds to V = 1
2m

2
ijϕiϕj + 1

24λijkℓϕiϕjϕkϕℓ, with an implicit sum over repeated

indices. The specific model above was first proposed in a talk by B. Grzadkowski at the at the 2024 Workshop
on Multi-Higgs Models in Lisbon, Portugal.



The symmetry transformations ϕ1 → ϕ2; ϕ2 → −ϕ1 would set

m2
11 = m2

22; m2
12 = 0; λ1111 = λ2222; λ1112 = −λ1222. This

symmetry is softly broken, so that the quartic coupling relations

are RG-stable. But why is m2
11 = −m2

22 RG-stable?

The corresponding GOOFy-like “symmetry” transformations that

yield m2
11 = −m2

22;λ1111 = λ2222; λ1112 = −λ1222 are:10

ϕ1→ iϕ2 , ϕ2→ −iϕ1 .

This is not a legitimate symmetry of a real scalar field theory.11

But, the parameter relation m2
22 = −m2

11 is RG-stable to all

orders of perturbation theory. Indeed,

βm2
11+m2

22

∣

∣

sym
= βm2

11
+ βm2

22

∣

∣

sym
= 0 ,

10These relations are similar to the 2HDM parameter relations imposed by the GOOFy symmetry.
11Moreover, this “symmetry” transformation flips the sign of the kinetic energy terms.



Some technical details

The formulae for the one-loop and two-loop beta functions, β ≡ βI + βII, of

a real scalar field theory are:

βI
m2

ij
= m2

mnλijmn ,

βI
λijkℓ

=
1

8

∑

perm

λijmnλmnkℓ = λijmnλmnkℓ + λikmnλmnjℓ + λiℓmnλmnjk ,

with an implicit sum over the repeated indices, where
∑

perm denotes a sum

over the permutations of the uncontracted indices, i, j, k, and ℓ, and

βII
m2

ij
=

1

12

(

λikℓmλnkℓmm2
nj + λjkℓmλnkℓmm2

ni

)

− 2m2
kℓλikmnλjℓmn ,

βII
λijkℓ

=
1

72

∑

perm

λinpqλmnpqλmjkℓ −
1

4

∑

perm

λijmnλkmpqλℓnpq .

The βII above each consist of the sum of two linearly independent

combinations of tensor quantities. Each individual combination separately

vanishes when the parameter relations (indicated by “sym”) are applied.



Explaining the mysterious RG-stability: Complexification

The illegitimate symmetry

ϕ1→ iϕ2 , ϕ2→ −iϕ1 .

would have been a legitimate symmetry if the ϕi had been

complex scalar fields.

Our proposal is to promote the two real fields ϕ1 and ϕ2 to

complex fields Φ1 and Φ2, and then impose the (now legitimate)

symmetry transformations

Φ1→ iΦ2 , Φ2→ −iΦ1 .

We will additionally impose a CP symmetry, Φi→ Φ∗
i , to impose

reality conditions on the parameters of the scalar potential.



The resulting parameter relations of the complexified theory are

RG-stable due to these symmetries.

Moreover, we will show that the corresponding β-function

relations of the complexified theory can be related to β-function

relations obtained in the original real scalar field theory.

That is, the RG-stability of the parameter relations of the original

theory can be attributed to symmetries of the complexified

theory, thereby restoring the folk theorem.



The complexification recipe

• Promote the real scalar fields ϕi to complex fields Φi.

• The complexified model is defined to employ a canonically
normalized kinetic energy term,

LKE = ∂µΦ∗
ā∂µΦa ,

• Impose the appropriate Z2 symmetry to eliminate terms with
an odd number of fields.

• Promote the GOOFy-like symmetries of the real scalar field
theory to legitimate symmetries of the complexified theory.

• Impose a CP symmetry so that the scalar potential parameters
are real.



Complex index notation

The kinetic energy term, LKE = ∂µΦ∗
ā∂µΦa, is invariant under

a U(2) basis transformation,12

Φa → Uab̄Φb , Φ∗
ā→ Φ∗

b̄
U †
bā ,

where U †
bāUac̄ = δbc̄. In the notation introduced above, the

indices a, b, c ∈ {1, 2} and ā, b̄, c̄ ∈ {1̄, 2̄} run over the complex

two dimensional flavor space of the scalar fields. The use of the

unbarred/barred index notation is accompanied by the rule that

there is an implicit sum over unbarred/barred index pairs.

12In a different (and perhaps more common) index convention, unbarred indices are lower indices and barred

indices are upper indices, with the rule that one sums over upper/lower index pairs. For notational reasons, we
preferred the unbarred/barred index notation in this work.



Scalar potential of the complexified model

After removing terms with an odd number of fields, the most general

renormalizable scalar potential is:

VC = M2
ab̄
Φ∗

āΦb +M2
āb̄
ΦaΦb +M2

abΦ
∗
āΦ

∗
b̄
+ Λabc̄d̄Φ

∗
āΦ

∗
b̄
ΦcΦd

+Λāb̄c̄d̄ΦaΦbΦcΦd + Λab̄c̄d̄Φ
∗
āΦbΦcΦd + Λabcd̄Φ

∗
āΦ

∗
b̄
Φ∗

c̄Φd + ΛabcdΦ
∗
āΦ

∗
b̄
Φ∗

c̄Φ
∗
d̄
.

In this notation, M2
ab and M2

ab̄
are independent tensors (despite the use of

the same symbol M2). Likewise, Λabcd, Λabcd̄, and Λabc̄d̄ are independent

tensors (despite the use of the same symbol Λ).

Hermiticity and permutation symmetry imply

M2
āb̄

= M2
b̄ā
, M2

ab = M2
ba , Λabc̄d̄ = Λbac̄d̄ = Λabd̄c̄ = Λbad̄c̄ ,

M2
ab̄

=
[

M2
bā

]∗
, Λabc̄d̄ =

[

Λcdāb̄

]∗
,

M2
āb̄

=
[

M2
ab

]∗
, Λāb̄c̄d̄ =

[

Λabcd

]∗
, Λdāb̄c̄ =

[

Λabcd̄

]∗
.

In particular, M2
11̄, M

2
22̄, Λ111̄1̄, Λ222̄2̄, and Λ121̄2̄ = Λ212̄1̄ are real parameters.



Imposing the symmetry on the

complexified model

If VC is invariant under Φ1 → iΦ2 and Φ2 → −iΦ1, then the

following parameter relations are obtained:

M2
11̄ = M2

22̄ M12̄ = 0 , M2
11 = −M2

22 ,

Λ1111 = Λ2222 , Λ1112 = −Λ1222 ,

Λ1111̄ = −Λ2222̄ , Λ1121̄ = Λ1222̄ , Λ1122̄ = −Λ1221̄ , Λ1112̄ = Λ2221̄ ,

Λ111̄1̄ = Λ222̄2̄ , Λ111̄2̄ = −Λ∗
122̄2̄ , Λ112̄2̄ = Λ∗

112̄2̄ ,

After imposing a CP symmetry, which renders all scalar potential

parameters real, were are left with three real squared mass terms

and eleven real quartic couplings.



The resulting scalar potential is depends on three real squared mass terms

and eleven real quartic couplings:

M2
ab = M2

āb̄
∋ {M̄2,M2

12} ,

M2
ab̄

= M2
bā ∋ {M2} ,

Λabc̄d̄ = Λcdāb̄ ∋ {Λ1,Λ2,Λ3,Λ4} ,

Λabcd = Λāb̄c̄d̄ ∋ {Λ5,Λ6,Λ7} ,

Λabcd̄ = Λab̄c̄d̄ ∋ {Λ8,Λ9,Λ10,Λ11} ,

where

M2 ≡M2
11̄ = M2

22̄ , M̄2 ≡M2
11 = −M2

22 ,

Λ1 ≡ Λ1111 = Λ2222 , Λ2 ≡ Λ121̄2̄ , Λ3 ≡ Λ112̄2̄ ,

Λ4 ≡ Λ111̄2̄ = −Λ122̄2̄ , Λ5 ≡ Λ1122 , Λ6 ≡ Λ1111 = Λ2222 ,

Λ7 ≡ Λ1112 = −Λ1222 , Λ8 ≡ Λ1121̄ = Λ1222̄ , Λ9 ≡ Λ1111̄ = −Λ2222̄ ,

Λ10 ≡ Λ1122̄ = −Λ1221̄ , Λ11 ≡ Λ1112̄ = Λ2221̄ .



Realification and Complexification summarized

These terms are inspired by their usage in Lie algebra theory.

as applied to scalar field theory Lie algebra example

theory of one complex scalar Φ sl(2,C)


y realify


y realify

theory of two real scalars ϕ1, ϕ2 sl(2,C)R ∼= so(3, 1)


y complexify


y complexify

theory of two complex scalars Φ1, Φ2 sl(2,C)⊕ sl(2,C) ∼= so(4,C)

Note: The Lie algebra sl(2,C) is defined to be the set of complex traceless 2× 2 matrices.

Any element of sl(2,C) is given by complex linear combination of the three generators,
{

( 0 1
0 0 ) , ( 0 0

1 0 ) ,
(

1 0
0 −1

)}

. The realified version, denoted by sl(2,C)R, consists of real linear

combinations of the six generators,
{

( 0 1
0 0 ) , ( 0 0

1 0 ) ,
(

1 0
0 −1

)

, ( 0 i
0 0 ) , ( 0 0

i 0 ) ,
(

i 0
0 −i

)}

. The

realified version is equivalent to the original complex version written in a different way.



β functions of the complexified theory

To use the formulae previously given for a real scalar field theory,

we could carry out the realification procedure one more time by

defining Φ1 = (ϕ1+iϕ2)/
√
2 and Φ2 = (ϕ3+iϕ4)/

√
2. From the

resulting β functions, we have derived the corresponding formulae

expressed in terms of the complex parameters of V(Φ1,Φ2). At

one-loop, we find:

βM2
āb̄
= 4M2

c̄d̄
Λcdāb̄ + 24M2

cdΛāb̄c̄d̄ + 6M2
ed̄
Λdāb̄ē ,

βM2
ab̄
= 12M2

cdΛab̄c̄d̄ + 12M2
c̄d̄
Λacdb̄ + 8M2

dēΛaeb̄d̄ .

Apart from the numerical coefficients, the form of these equations

is fixed by the index structure of the various terms.



Given that a symmetry of the complexified model imposes the

condition M2
11 = −M2

22, we can write the parameter relation

abstractly as

cabM
2
āb̄

= 0 , where c11 = c22 = 1 and c12 = c21 = 0.

The symmetry guarantees that

cabβM2
āb̄

∣

∣

sym
= cab

[

4M2
c̄d̄
Λcdāb̄+24M2

cdΛāb̄c̄d̄+6M2
ed̄
Λdāb̄ē

]∣

∣

sym
= 0 ,

where “sym” indicates that the parameter relations of the

complexified theory have been applied. But the three quantities

in the middle expression above are linearly independent tensors.

Thus, each of these quantities must separately vanish.



We conclude that

cabM
2
c̄d̄
Λcdāb̄

∣

∣

sym
= 0 ,

cabM
2
cdΛāb̄c̄d̄

∣

∣

sym
= 0 ,

cabM
2
ed̄
Λdāb̄ē

∣

∣

sym
= 0 .

Compare the result in red font to the vanishing of the one-loop

beta function of the original toy model of two real scalar fields:

βcijm
2
ij

∣

∣

sym
= cijm

2
kℓλijkℓ

∣

∣

sym
= 0 ,

with c11 = c22 = 1 and c12 = c21 = 0 and “sym” indicates that

the parameter relations of the real theory have been applied.

Since Λabcd and Λāb̄c̄d̄ are numerically equal (due to CP

symmetry), the two equations in red are algebraically identical.



What happens at two-loop order? Recall that

βII
m2

ij
=

1

12

(

λikℓmλnkℓmm2
nj+λjkℓmλnkℓmm2

ni

)

−2m2
kℓλikmnλjℓmn .

In the original real scalar theory, if the parameter relation cijm
2
ij

is RG-stable, then

cij
(

λikℓmλnkℓmm2
nj + λjkℓmλnkℓmm2

ni

)∣

∣

sym
= 0 ,

cijm
2
kℓλikmnλjℓmn

∣

∣

sym
= 0 .

The corresponding equations for βII
M2

āb̄

and βII
M2

ab̄

are more

complicated, but the index structure fixes the possible terms

that can appear. As before, the terms with different index

structures must separately vanish.



Due to the symmetry imposed parameter relation cabM
2
āb̄

= 0,

we find that among the relations obtained from βII
M2

āb̄

,

cab
(

Λād̄ēf̄ΛcdefM
2
c̄b̄
+ Λb̄d̄ēf̄ΛcdefM

2
c̄ā

)∣

∣

sym
= 0 ,

cabM
2
cdΛāc̄ēf̄Λefd̄ b̄

∣

∣

sym
= 0 .

CP symmetry yields Λāb̄c̄d̄ = Λabcd and M2
āb̄

= M2
ab. The two

displayed equations above hold for any choice of Λabcd and Λabc̄d̄,

subject to the parameter relations of the complexified theory:

Λ1111 = Λ2222 , Λ1112 = −Λ1222 ,

Λ111̄1̄ = Λ222̄2̄ , Λ111̄2̄ = −Λ∗
122̄2̄ , Λ112̄2̄ = Λ∗

112̄2̄ ,



cab
(

Λād̄ēf̄ΛcdefM
2
c̄b̄
+ Λb̄d̄ēf̄ΛcdefM

2
c̄ā

)∣

∣

sym
= 0 ,

cabM
2
cdΛāc̄ēf̄Λefd̄ b̄

∣

∣

sym
= 0 .

Since Λāb̄c̄d̄ and Λabc̄d̄ are independent tensors (with compatible

relations imposed by the symmetries), the above equations must

hold if we numerically set Λabc̄d̄ = Λāb̄c̄d̄. With this choice, the

equations above are algebraically equivalent to the corresponding

equations of the original real scalar field theory!

Moreover, the same argument extends to arbitrary order in

perturbation theory.



The origin of RG-stable parameter relations

Schematically, βcabM
2
āb̄
= cab

∑

k fk(M
2,Λ)āb̄.

Each term in the sum contains one factor of M2 and n factors

of Λ at order n, where M2 can have index structure cd, c̄d̄, or

cd̄, and Λ can have index structure cdef , cdef̄ , cdēf̄ , cd̄ēf̄ , or

c̄d̄ēf̄ . The indices must combine (including Kronecker deltas)

such that the index structure of the fk is āb̄. Then,

βcabM
2
āb̄

∣

∣

sym
= 0 =⇒ cabfk(M

2,Λ)āb̄
∣

∣

sym
= 0 ,

for each k separately.



There will always be at least one value of k where fk(M
2,Λ)

depends on tensors with an even number of unbarred and barred

indices, respectively. Since Λāb̄c̄d̄ and Λabc̄d̄ are independent, we

can numerically set Λabc̄d̄ = Λāb̄c̄d̄. Thus, for some value of k,

cabfk(M
2,Λ)āb̄

∣

∣

sym
= 0 ,

where the distinction between unbarred and barred indices can

be neglected.13 This equation will be algebraically equivalent to

the corresponding equation of the original real scalar field theory.

That is, the RG-stability of the parameter relations of

the original real scalar field theory is inherited from the

symmetry of the corresponding complexified theory.

13Having imposed CP symmetry, all scalar potential parameters are real.



Future directions

1. A recipe to create real scalar field theories with RG-stable

parameter relations in absence of a symmetry:

• Start with a theory of n complex scalars Φa with RG-stable

parameter relations due to some HF symmetry [which is a

subgroup of U(n), the symmetry group of LKE].

• Impose CP to ensure the reality of all scalar potential

parameters.

• Retain only the terms of the scalar potential that are

holomorphic in the complex fields, i.e., of the form

M2
āb̄
ΦaΦb + Λāb̄c̄d̄ΦaΦbΦcΦd.



• Construct the corresponding theory of n real scalars with the

following recipe.

– Replace the Φa with n real scalar fields ϕa.

– Replace LKE with a canonically normalized kinetic energy

term for the real scalar theory [with symmetry group O(n)].

• If the HF symmetry of the complex scalar field theory cannot

be embedded in O(n), then this HF symmetry will not survive

as a legitimate symmetry of the real scalar field theory.

However, the symmetry-imposed parameter relations satisfied by

Māb̄ and Λāb̄c̄d̄ are now parameter relations of the same form in

the resulting real scalar field theory. These parameter relations

are RG-stable due to the symmetries of the complexified theory.



2. Applying the results of this talk to the GOOFy symmetries of

the 2HDM.

• Starting from the 2HDM Lagrangian written in terms of

complex doublets, perform the realification procedure to

rewrite the theory in terms of eight real scalar fields.

Φ1 =
1√
2





ϕ1 + iϕ2

ϕ3 + iϕ4



 , Φ2 =
1√
2





ϕ5 + iϕ6

ϕ7 + iϕ8



 ,

• The GOOFy symmetries take the form

ϕ1→ iϕ6 , ϕ2→ iϕ5 , ϕ3→ iϕ8 , ϕ4→ iϕ7 ,

ϕ5→ −iϕ2 , ϕ6→ −iϕ1 , ϕ7→ −iϕ4 , ϕ8→ −iϕ3 .



• Complexify the theory by promoting the ϕi to eight complex

scalar fields Φa.

• Impose CP symmetry to ensure that all scalar potential

parameters are real.

• Verify that the RG-stability of the 2HDM with m2
11 = −m2

22;

λ1 = λ2; λ6 = −λ7 can be explained by the symmetries of the

complexified theory. This step will require an extension of the

techniques of this work to the gauge and Yukawa sectors.

3. Are there more sophisticated ideas that can be applied to

provide a deeper understanding of the phenomena explored in

this work? (Outer automorphisms? Generalized symmetries?)14

14See, e.g., Andreas Trautner, Goofy is the new Normal, arXiv:2505.00099 [hep-ph].
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