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Abstract

In these notes, we provide a practical introduction to generalized functions (often
called distributions) that are particularly useful in many mathematical physics applica-
tions. We focus primarily on identifying the most common generalized functions em-
ployed in physics and methods for manipulating them. Proofs of the Riemann-Lebesgue
Lemma and the Poisson sum formula are also provided.

1 Examples of Generalized Functions

The examples of generalized functions discussed in this section are based on the treatments
given in Refs. [1–8].

1.1 The Heavyside step function and the Dirac delta function

The Heavyside step function is defined as,

Θ(k) =

{
1 , if k > 0 ,

0 , if k < 0 .
(1)

Although the value of Θ(k) is not defined at k = 0, we shall nevertheless demand that1

Θ(k) + Θ(−k) = 1 , (2)

should be satisfied for all real values of k, including the origin, k = 0. The Heavyside step
function is related to the Dirac delta function by differentiation,

δ(k) =
dΘ(k)

dk
. (3)

The delta function δ(x) is not a function at all; instead it is a generalized function that only
makes formal sense when first multiplied by a function f(x) that is smooth and non-singular
in a neighborhood of the origin, and then integrated over a range of x that may or may not

1In eq. (2), we allow for the possibility that Θ(0+) 6= Θ(0−), which is equivalent to the statement that
limǫ→0

[
Θ(ǫ) − Θ(−ǫ)

]
6= 0, in which case, Θ(0) remains undetermined. Thus, it is more precise to rewrite

eq. (2) as limǫ→0+

[
Θ(k + ǫ) + Θ(−k − ǫ)

]
= 1. Indeed, when Θ(z) is regarded as a generalized function, the

specification of the value of Θ(z) at the origin has no significance (e.g., see p. 63 of Ref. [2]).
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include the origin. We shall also assume that f(x) → 0 sufficiently fast as x → ±∞ in order
that integrals evaluated over the entire real line are convergent. It then follows that surface
terms at x = ±∞, which arise when integrating by parts, vanish. The allowed set of functions
f(x) forms the space of test functions. In the case of the delta function, we have
∫ ∞

−∞

δ(x)f(x) dx =

∫ ∞

−∞

dΘ

dx
f(x) dx = f(x)Θ(x)

∣∣∣∣
∞

−∞

−
∫ ∞

−∞

Θ(x)
df

dx
dx = −f(x)

∣∣∣∣
∞

0

= f(0) .

(4)
By a similar computation, one can verify that the generalized function, xδ(x) = 0.

The integral representation of the Heavyside step function can be derived by considering
the integral

I(k, ε) ≡ 1

2πi

∫ +∞

−∞

dx
eikx

x− iε
,

where ǫ is a real positive infinitesimal quantity. This integral can be evaluated by considering
a semicircular contour in the complex z plane. Two cases will now be treated.

Case 1: k > 0. Then it follows that

Re z

Im z

C

iε

I(k, ε) =
1

2πi

∫

C

dz
eikz

z − iε

where C is the closed contour shown above, and the radius of the contour is taken to infinity.
Note that because k > 0, the integrand is exponentially damped along the semicircular part
of the contour C and thus the contribution to the integral along the semicircular arc goes to
zero as the radius of the semicircle is taken to infinity.

Inside the counterclockwise contour C there exists a simple pole at z = iε (since by
assumption, ε > 0). Thus, by the residue theorem of complex analysis,

I(k, ε) = 2πi
1

2πi
Res

(
eikz

z − iε

)
= e−kε ,

where Resf(z) = limz→z0(z − z0)f(z) is the residue due to a simple pole at z = z0.

Case 2: k < 0. Then it follows that

Re z

Im z

C

iε

I(k, ε) =
1

2πi

∫

C

dz
eikz

z − iε

where the contour C is now closed in the lower half plane. Since in this case k < 0, the
integrand is again exponentially damped along the semicircular part of the contour C and
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thus the contribution to the integral along the semicircular arc goes to zero as the radius of
the semicircle is taken to infinity. But, now the pole lies outside the closed contour C. Hence,
by Cauchy’s Theorem of complex analysis, it follows that I(k, ε) = 0 for k < 0.

Taking the limit as ε → 0, we conclude that

lim
ε→0

I(k, ε) = lim
ε→0

1

2πi

∫ +∞

−∞

dx
eikx

x− iε
=

{
1 , if k > 0,

0 , if k < 0.

In light of eq. (1), we have verified the integral representation of the Heavyside step function:

Θ(k) = lim
ε→0

1

2πi

∫ +∞

−∞

dx
eikx

x− iε
. (5)

A more explicit derivation of eq. (5) is given in Appendix A.
The integral representation of the Dirac delta function is given by,

δ(x) =
1

2π

∫ ∞

−∞

eikx dk . (6)

Strictly speaking, the above integral does not converge since the integrand oscillates at infinity
with a constant amplitude. Nevertheless, this integral can be interpreted in the sense of

distributions.2 There are two different ways to provide meaning to the integral representation
of the delta function. First, one can insert a convergence factor, e−ǫk2, to render the integral
convergent. Then,

δ(x) = lim
ǫ→0+

1

2π

∫ ∞

−∞

eikx−ǫk2 dk = lim
ǫ→0+

1

2π
e−x2/(4ǫ)

∫ ∞

−∞

exp

[
−ǫ

(
k − ix

2ǫ

)2
]
dk

= lim
ǫ→0+

1

2
√
πǫ

e−x2/(4ǫ) , (7)

which has the property that δ(x) is an even function of x that satisfies δ(x) = 0 for any x 6= 0,
and the area under the delta function is unity,

∫ ∞

−∞

δ(x) dx = lim
ǫ→0+

1

2
√
πǫ

∫ ∞

−∞

e−x2/(4ǫ) dx = 1 . (8)

Moreover one can use eq. (7) to rederive the result previously obtained in eq. (4). In
particular, under the assumption that f(x) is well-behaved at x = 0 (equivalently, assuming
that f(x) can be expanded in a Taylor series around the origin),

∫ ∞

−∞

f(x)δ(x) dx = lim
ǫ→0+

1

2
√
πǫ

∫ ∞

−∞

f(x)e−x2/(4ǫ) dx

= lim
ǫ→0+

1

2
√
πǫ

∞∑

n=0

f (n)(0)

∫ ∞

−∞

xne−x2/(4ǫ) dx ,

= f(0) + lim
ǫ→0+

1

2
√
πǫ

∞∑

n=1

f (n)(0)

∫ ∞

−∞

xne−x2/(4ǫ) dx , (9)

2Here, the term distributions is being employed as a synonym for generalized functions.
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where f (n)(0) ≡ (dnf/dxn)x=0, and the Taylor series of f(x) has been employed. For odd n,
the integrand in eq. (9) is an odd function of x and thus the corresponding integral vanishes.
For even n, the integrand is an even function of x and thus the integral is can be evaluated by
taking the limits of integration from 0 to∞ and multiplying by 2. After defining y ≡ x/(

√
2 ǫ),

we are left with the task of evaluating

In ≡
∫ ∞

0

yne−y2 dy , for n = 0, 2, 4, . . . (10)

An integration by parts yields the recursion relation In = 1
2
(n−1)In−2. Using the well-known

result, I0 =
1
2

√
π, one easily derives a closed form expression for In. The end result is:

1

2
√
πǫ

∫ ∞

−∞

xne−x2/(4ǫ) dx =

{
(2ǫ)n/2(n− 1)!! , for n = 0, 2, 4, . . .,

0 , for n = 1, 3, 5, . . .,
(11)

where (n−1)!! = (n−1)(n−3) · · · 5·3·1 for positive even integers n. By convention, (−1)!! ≡ 1.
Taking the ǫ → 0 limit, it follows that the second term on the right hand side of eq. (9)
vanishes, which establishes the result obtained in eq. (4).

One can also employ an alternative method to identify the integral representation of the
delta function as follows. Consider the generalized function,

J (x) =
1

2π

∫ ∞

−∞

eikx dk =
1

2π

∫ 0

−∞

eikx dk +
1

2π

∫ ∞

0

eikx dk =
1

π

∫ ∞

0

cos(kx) dk , (12)

after performing a variable change, k → −k, in the second integral above. As expected, the in-
tegral of cos(kx) is not convergent. Nevertheless, one can employ the well known conditionally
convergent integral,3 ∫ ∞

0

sin(kx)

k
dk = 1

2
π sgn(x) , (13)

where sgn(x) is the sign of the real number x,4

sgn(x) = Θ(x)−Θ(−x) =

{
+1 , for x > 0,

−1 , for x < 0,
(14)

which satisfies
d

dx
sgn(x) =

d

dx

[
Θ(x)−Θ(−x)

]
= 2 δ(x) , (15)

in light of eq. (3). As a result, we can identify J (x) given by eq. (12) as the derivative of a
conditionally convergent integral,

J (x) =
1

π

∫ ∞

0

∂

∂x

{
sin(kx)

k

}
dk =

d

dx

{
1

π

∫ ∞

0

sin(kx)

k
dk

}
=

1

2

d

dx
sgn(x) = δ(x) , (16)

in agreement with the integral representation of the delta function [cf. eqs. (6) and (12)].
The delta function arises in many applications in physics. In Appendix B, we discuss two

important identities involving the delta function that arise in the study of electromagnetism.

3Eq. (13) is well-known and is often obtained using the residue theorem of complex analysis by integrating
eikx/k over a suitably chosen closed contour. Eq. (13) is also a consequence of eq. (A.37) [since the integrand
is an even function of k], which is derived in Appendix A.

4Some books define sgn(0) = 0, in which case, eq. (13) would be valid at x = 0. However, when sgn(x) is
regarded as a generalized function, the specification of the value at the origin has no significance (cf. footnote 1).
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1.2 Additional examples of generalized functions

The generalized function, P(1/x), can be defined by the following equation,

P

∫ ∞

−∞

f(x)

x
dx =

∫ ∞

0

f(x)− f(−x)

x
dx , (17)

where f(x) is regular in a neighborhood of the real axis and vanishes as |x| → ∞. It is shown
in Appendix C that eq. (17) is equivalent to the definition of the Cauchy principal value,

P

∫ ∞

−∞

f(x) dx

x
≡ lim

δ→0+

{∫ −δ

−∞

f(x) dx

x
+

∫ ∞

δ

f(x) dx

x

}
. (18)

where δ → 0+ indicates that the limit is taken for positive values of δ.
There is an alternate definition of P(1/x) that is also quite useful. Noting that

d

dx
ln |x| = 1

x
, for x 6= 0 , (19)

one can extend this result to x = 0 by treating d ln |x|/dx as a generalized function. For any
well-behaved test function f(x) that vanishes sufficiently fast as x → ±∞, it follows from an
integration by parts that

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = −

∫ ∞

−∞

ln |x|f ′(x) dx = − lim
δ→0+

∫

|x|≥δ

ln |x|f ′(x) dx . (20)

where f ′(x) ≡ df/dx, and the boundary terms vanish due to the behavior of f(x) at ±∞.
Note that the limiting process above is smooth, since the integral above exists for all values
of δ ≥ 0. To complete the calculation, we integrate by parts once more to obtain,

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = lim

δ→0+

[∫

|x|≥δ

f(x)

x
dx−

[
f(δ)− f(−δ)

]
ln δ

]
. (21)

However,
[
f(δ)− f(−δ)

]
ln δ = O(δ ln δ) which vanishes as δ → 0. Thus, we end up with

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = lim

δ→0+

∫

|x|≥δ

f(x)

x
dx = P

∫ ∞

−∞

f(x)

x
dx , (22)

in light of eq. (18). Hence, we can identify the generalized function,

P
1

x
=

d

dx
ln |x| , (23)

which now attains meaning at x = 0 via eq. (22). An alternative derivation of eq. (23) is given
in Appendix C. Note that P(1/x) is an odd function of x.

In Ref. [4], two additional functions, x−1
+ and x−1

− are defined via

x−1
+ = Θ(x)

1

x
=

{
x−1 , for x > 0 ,

0 , for x < 0 .
(24)

x−1
− = −Θ(−x)

1

x
=

{
0 , for x > 0 ,

|x|−1 , for x < 0 .
(25)
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As in the case of P(1/x), we would like to extend the definition of x−1
+ and x−1

− such
that they yield finite results when integrated against a test function over the real axis. The
corresponding generalized functions are defined by5

1

x+
≡ lim

µ→0

{
Θ(x)

1

x1−µ
− 1

µ
δ(x)

}
, (26)

1

x−

≡ lim
µ→0

{
Θ(−x)

1

(−x)1−µ
− 1

µ
δ(x)

}
, (27)

where µ is a real and positive infinitesimal. It then follows that
∫ ∞

−∞

f(x)

x+

dx = lim
µ→0

{∫ ∞

0

f(x)

x1−µ
dx− 1

µ

∫ ∞

−∞

δ(x)f(x) dx

}

= lim
µ→0

{∫ 1

0

f(x)

x1−µ
dx− 1

µ
f(0)

}
+

∫ ∞

1

f(x)

x
dx

=

∫ 1

0

f(x)− f(0)

x
dx+

∫ ∞

1

f(x)

x
dx+ lim

µ→0

{
f(0)

∫ 1

0

dx

x1−µ
dx− 1

µ
f(0)

}
. (28)

In the last step above, we wrote f(x) = f(x) − f(0) + f(0) and took the µ → 0 limit in the
first term, which is allowed since the corresponding integral converges for any smooth function
f(x) that vanishes sufficiently fast as x → ±∞. Finally, the last two terms in eq. (28) cancel
exactly, and we end up with a well-defined and finite result,
∫ ∞

−∞

f(x)

x+
dx =

∫ ∞

0

f(x)− f(0)Θ(1− x)

x
dx =

∫ 1

0

f(x)− f(0)

x
dx+

∫ ∞

1

f(x)

x
dx . (29)

A similar computation yields,
∫ ∞

−∞

f(x)

x−
dx =

∫ ∞

0

f(−x)− f(0)Θ(1− x)

x
dx =

∫ 1

0

f(−x)− f(0)

x
dx+

∫ ∞

1

f(−x)

x
dx . (30)

It is easy to verify that the generalized functions 1/x± satisfy,

P
1

x
=

1

x+
− 1

x−
. (31)

Note that eq. (31) is true for x 6= 0 in light of the definitions of x± given by eqs. (24) and
(25). In addition, one can check that subtracting eq. (30) from eq. (29) yields eq. (17). One
can also use eq. (31) to obtain another definition of P(1/x) by employing eqs. (26) and (27),

P
1

x
= lim

µ→0

{
Θ(x)

1

x1−µ
−Θ(−x)

1

(−x)1−µ

}
. (32)

5The conditions, xx−1
+ = Θ(x) and xx−1

− = −Θ(−x), do not yield unique generalized functions. For

example, x
[
x−1
+ + Cδ(x)

]
= Θ(x) for any constant C. The definitions given in eqs. (26) and (27) are taken

from Ref. [2] and are motivated by the desire that the integrals given in eqs. (29) and (30) should be well-
defined and finite. Some books write Pf(1/x±) in eqs. (26) and (27) to distinguish these generalized functions
from the functions defined in eqs. (24) and (25), where Pf stands for pseudofunction [3, 5, 6]. However, we
choose to follow Refs. [2, 4] in omitting the symbol Pf when employing the generalized functions x−1

± in these
notes.
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In light of |x| = −x for x < 0, it follows that

Θ(x)
1

x1−µ
−Θ(−x)

1

(−x)1−µ
=
[
Θ(x)−Θ(−x)

] 1

|x|1−µ
=

sgn(x)

|x|1−µ
, (33)

where sgn(x) is the sign function defined in eq. (14). Hence, eq. (32) yields

P
1

x
= lim

µ→0

sgn(x)

|x|1−µ
. (34)

It is a simple exercise to verify that multiplying the right hand side of eq. (34) by f(x) and
integrating over the real line yields eq. (17),

P

∫
f(x)

x
dx = lim

µ→0

∫ ∞

−∞

f(x)

|x|1−µ
sgn(x) dx = lim

µ→0

{∫ ∞

0

f(x)

x1−µ
dx−

∫ 0

−∞

f(x)

x1−µ
dx

}

= lim
µ→0

∫ ∞

0

f(x)− f(−x)

x1−µ
dx =

∫ ∞

0

f(x)− f(−x)

x
dx , (35)

after changing the integration variable x → −x in the second integral in the penultimate step
above. In the final step, we can set µ = 0 since the resulting integral is well-defined and finite,
under the assumption that f(x) is a smooth function that vanishes as x → ±∞.

Next, we consider the function,

1

|x| =
[
Θ(x)−Θ(−x)

]1
x
=

{
x−1 , for x > 0 ,

−x−1 , for x < 0 .
(36)

We again propose to extend the definition of |x|−1 such that it yields a finite result when
integrated against a test function over the real axis. The corresponding generalized function,
denoted by Pf(1/|x|), is defined by,6

Pf
1

|x| = lim
µ→0

{
1

|x|1−µ
− 2

µ
δ(x)

}
. (37)

In order to see the relation between Pf(1/|x|) and the generalized functions x−1
± , we employ

eq. (2) to obtain the identity,

1

|x|1−µ
=

1

|x|1−µ

[
Θ(x) + Θ(−x)

]
= Θ(x)

1

x1−µ
+Θ(−x)

1

(−x)1−µ
. (38)

Hence, one can re-express eq. (37) as,

Pf
1

|x| = lim
µ→0

{
Θ(x)

1

x1−µ
+Θ(−x)

1

(−x)1−µ
− 2

µ
δ(x)

}
. (39)

6A generalized function that coincides with 1/|x| for x 6= 0 not unique; see footnote 5. However, all
possible choices for defining such a generalized function have the property that they are even functions of x.
One particularly convenient choice is Pf(1/|x|), which in the notation of Refs. [2, 4] is denoted as 1/|x|. In
contrast to footnote 5, we prefer to keep the Pf (pseudofunction) symbol in this case [3, 5, 6].
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Comparing with eqs. (26) and (27), we see that

Pf
1

|x| =
1

x+

+
1

x−

. (40)

Note that eq. (40) is clearly true for x 6= 0 in light of the initial definitions of x−1
± and |x|−1

given by eqs. (24), (25) and (36).
It is convenient to rewrite eq. (30) by changing the integration variable x → −x and

writing |x| = −x for x < 0, which yields

∫ ∞

−∞

f(x)

x−
dx = −

∫ 0

−∞

f(x)− f(0)Θ(1 + x)

x
dx =

∫ −1

−∞

f(x)

|x| dx+

∫ 0

−1

f(x)− f(0)

|x| dx . (41)

Using eqs. (29) and (41), it then follows that

∫ ∞

−∞

f(x) Pf
1

|x| dx ≡
∫ −1

−∞

f(x)

|x| dx+

∫ 1

−1

f(x)− f(0)

|x| dk +

∫ ∞

1

f(x)

|x| dx , (42)

which is a well-defined and finite result, assuming f(x) is smooth and vanishes sufficiently fast
as x → ±∞.

A few more generalized functions are of interest. First, limε→0 1/(x± iε) is related to other
known generalized functions via the Sokhotski-Plemelj formula (which is derived in Section 2),

lim
ε→0

1

x± iε
= P

1

x
∓ iπδ(x) , (43)

where ε > 0 is an infinitesimal real quantity. Note that eq. (43) is actually two separate
formulae, where the two choices of signs on the left hand and right hand sides of eq. (43) are
correlated. Adding these two formulae yields another representation of P (1/x),

P
1

x
= lim

ǫ→0

x

x2 + ǫ2
. (44)

Likewise, subtracting the two formulae given by eq. (43) yields a representation of the delta
function,

δ(x) =
1

π
lim
ǫ→0

ǫ

x2 + ǫ2
. (45)

The expressions given by eqs. (44) and (45) should be understood to mean that one first
integrates over the corresponding generalized function multiplied by a smooth test function
before taking the limit of ǫ → 0 [e.g., see eqs. (C.10)–(C.15) in Appendix C].

Perhaps less well known is the formula for the generalized function (x± iε)−1 ln(x± iε),7

lim
ε→0

1

x± iε
ln(x± iε) = P

1

x
ln |x| ∓ iπ

1

x−

+ 1
2
π2δ(x) , (46)

7The symbol for the generalized function, (x ± iε)−1 ln(x ± iε), should be considered as a single (unified)
symbol. In particular, one should not split up this symbol into the product of two separate generalized
functions. That is, one cannot derive eq. (46) by simply multiplying eqs. (43) and (47).
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which, as in eq. (43), consists of two separate equations—one where the upper signs are
employed and one where the lower signs are employed. In eq. (46), x is a real variable and
the complex logarithm is given by its principal value,

lim
ε→0

ln(x± iε) = ln |x| ± iπΘ(−x) , (47)

on the cut complex plane, where the branch cut runs along the negative real axis.
To derive eq. (46), we first take the square of eq. (47),

lim
ε→0

ln2(x± iε) = ln2 |x| − π2Θ(−x)± 2πiΘ(−x) ln |x| , (48)

where we have used the fact that [Θ(−x)]2 = Θ(−x). In order to derive eq. (46), we shall
take the derivative of eq. (48) and divide by two. The derivative of the first term on the right
hand side of eq. (48) is

d

dx
ln2 |x| = 2 ln |x| d

dx
ln |x| = 2 ln |x|P1

x
, (49)

where we have used eq. (23) The derivative of the second term on the right hand side of
eq. (48) is easily obtained after noting that

d

dx
Θ(−x) = − d

dx
Θ(x) = −δ(x) .

The derivative of the third term on the right hand side of eq. (48) requires a little more effort.
Under the assumption that the test function f(x) is smooth and vanishes sufficiently fast as
x → ±∞, we evaluate (with the help of integration by parts),

∫ ∞

−∞

f(x)
d

dx

[
Θ(−x) ln |x|

]
dx = −

∫ 0

−∞

df

dx
ln(−x) dx = − lim

δ→0

∫ −δ

−∞

df

dx
ln(−x) dx

= − lim
δ→0

{
ln(−x)f(x)

∣∣∣∣
−δ

−∞

−
∫ −δ

−∞

f(x)

x
dx

}

= − lim
δ→0

{
ln δ f(−δ)−

∫ −δ

−∞

f(x)

x
dx

}

= − lim
δ→0

{
f(0)

∫ −δ

−1

dx

x
−
∫ −δ

−∞

f(x)

x
dx

}

=

∫ 0

−∞

f(x)− f(0)Θ(1 + x)

x
dx

= −
∫ ∞

−∞

f(x)

x−
dx . (50)
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In the derivation above, we noted that f(−δ) = f(0) − δf ′(0) + O(δ2) and made use of
limδ→0 δ ln δ = 0. In the final step, we employed eq. (41). It then follows that

d

dx

[
Θ(−x) ln |x|

]
= − 1

x−
. (51)

A similar analysis (see, e.g., p. 25 of Ref. [4]) yields,

d

dx

[
Θ(x) ln |x|

]
=

1

x+
. (52)

We now add eqs. (51) and (52) and employ eq. (31) and Θ(x) + Θ(−x) = 1 to obtain,

d

dx
ln |x| = P

1

x
, (53)

in agreement with eq. (23). Likewise, if we subtract eq. (51) from eq. (52) and employ eqs. (14)
and (40), we obtain,

d

dx

[
sgn(x) ln |x|

]
= Pf

1

|x| . (54)

In some books, eqs. (51)–(54) are employed as the definitions of the corresponding generalized
functions, x−1

− , x−1
+ , P(1/x), and Pf(1/|x|), respectively.

Finally, taking the derivative of eq. (48) and dividing by two, we end up with

lim
ε→0

1

x± iε
ln(x± iε) = P

1

x
ln |x|+ 1

2
π2δ(x)∓ πi

1

x−
. (55)

Thus, eq. (46) has been established.8

As application of eqs. (43) and (46), consider the Fourier transform of ln |x|, which has
been obtained in Ref. [4],9

∫ ∞

−∞

ln |x| eikx dx = i

{
[
−γ + 1

2
iπ − ln(k + iε)

] 1

k + iε
+
[
γ + 1

2
iπ + ln(k + iε)

] 1

k − iε

}
, (56)

where γ is the Euler-Mascheroni constant. In eq. (56) and in what follows, we shall always
assume the ε → 0 limit without explicitly indicating the limit symbol.

We can simplify eq. (56) as follows. First, we write

∫ ∞

−∞

ln |x| eikx dx = −iγ

(
1

k + iε
− 1

k − iε

)
− π

2

(
1

k + iε
+

1

k − iε

)

−i

{
1

k + iε
ln(k + iε)− 1

k − iε
ln(k − iε)

}
. (57)

8An alternative proof of eq. (46) can be found on pp. 96–98 of Ref. [4].
9Eq. (56) is also derived on pp. 160–161 of Ref. [3]. However, one must correct a typographical error that

appears in eq. (6.4.57) of this work, where −i(u− i0)−1 should be replaced by +i(u− i0)−1. On pp. 153–154
of Ref. [3], one can also find a derivation of eq. (60) below, although again one must correct a typographical
error in eq. (6.4.33d) of this work, where 1/u should be replaced by 1/|u|.
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Using eqs. (43) and (46), we end up with

∫ ∞

−∞

ln |x| eikx dx = −2πγδ(k)− π

(
P
1

k
+ 2

1

k−

)
. (58)

Finally, employing eqs. (31) and (40) yields

P
1

k
+ 2

1

k−
= Pf

1

|k| . (59)

Inserting eq. (59) into eq. (58), we end up with

∫ ∞

−∞

ln |x| eikx dx = −π

[
Pf

1

|k| + 2γδ(k)

]
, (60)

which reproduces the result quoted below in eq. (83).

2 The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj formula is a relation between the following generalized functions,

lim
ε→0

1

x± iǫ
= P

1

x
∓ iπδ(x) , (61)

where ǫ > 0 is an infinitesimal real quantity. This identity formally makes sense only when
first multiplied by a function f(x) that is smooth and non-singular in a neighborhood of the
origin and vanish sufficiently fast as x → ±∞ to ensure convergence when integrated along
the real line. Moreover, all surface terms at ±∞ that arise when integrating by parts are
assumed to vanish.

To establish eq. (61), we shall prove that

lim
ε→0

∫ ∞

−∞

f(x) dx

x± iǫ
= P

∫ ∞

−∞

f(x) dx

x
∓ iπf(0) , (62)

where the Cauchy principal value integral is defined in eq. (18), under the assumption that
f(x) is regular in a neighborhood of the real axis and vanishes as |x| → ∞.

In this section, I will provide three different derivations of eq. (62). The first derivation is
a mathematically non-rigorous proof of eq. (62), which should at least provide some insight
into the origin of this result. A more rigorous derivation starts with a contour integral in the
complex plane, ∫

C

f(z) dz

z
.

By defining C appropriately, we will obtain two different expressions for this integral. Setting
the two resulting expressions equal yields eq. (62) with the upper sign. Complex conjugating
this result yields eq. (62) with the lower sign. Finally, an elegant third proof makes direct use
of the theory of distributions. Finally, a useful check is to consider the Fourier transform of
eq. (61), which is presented in Section 3.
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Eq. (61) can be generalized as follows,

lim
ε→0

1

x− x0 ± iε
= P

1

x− x0

∓ iπδ(x− x0) , (63)

where

P

∫ ∞

−∞

f(x) dx

x− x0
≡ lim

δ→0+

{∫ x0−δ

−∞

f(x) dx

x− x0
+

∫ ∞

x0+δ

f(x) dx

x− x0

}
. (64)

Note that eq. (62) and its generalization via eqs. (63) and (64) involve integration along the
real axis. These ideas generalize further to the so-called Cauchy type integrals as shown in
Appendix D, and yield the Plemelj formulae of complex variables theory.

Finally, we note that by adding the two equations exhibited by eq. (63), one obtains an
equivalent definition of the Cauchy principal value integral:

P

∫ ∞

−∞

f(x) dx

x− x0
= lim

ǫ→0

1

2

{∫ ∞

−∞

f(x) dx

x− x0 + iǫ
+

∫ ∞

−∞

f(x) dx

x− x0 − iǫ

}
. (65)

In some cases, the integrals on the right hand side of eq. (65) can be evaluated by closing the
contour in the upper or lower half complex plane with a semicircular arc of radius R → ∞
and using Cauchy’s residue theorem.

2.1 A non-rigorous derivation of the Sokhotski-Plemelj formula

We begin with the identity,
1

x± iǫ
=

x∓ iǫ

x2 + ǫ2
,

where ǫ is a positive infinitesimal quantity. Thus, for any smooth function that is non-singular
in a neighborhood of the origin,

∫ ∞

−∞

f(x) dx

x± iǫ
=

∫ ∞

−∞

xf(x) dx

x2 + ǫ2
∓ iǫ

∫ ∞

−∞

f(x) dx

x2 + ǫ2
. (66)

The first integral on the right had side of eq. (66),

∫ ∞

−∞

xf(x) dx

x2 + ǫ2
=

∫ −δ

−∞

xf(x) dx

x2 + ǫ2
+

∫ ∞

δ

xf(x) dx

x2 + ǫ2
+

∫ δ

−δ

xf(x) dx

x2 + ǫ2
. (67)

In the first two integrals on the right hand side of eq. (67), it is safe to take the limit ǫ → 0.
In the third integral on the right hand side of eq. (67), if δ is small enough, then we can
approximate f(x) ≃ f(0) for values of |x| < δ. Hence, eq. (67) yields,

∫ ∞

−∞

xf(x) dx

x2 + ǫ2
= lim

δ→0

{∫ −δ

−∞

f(x) dx

x
+

∫ ∞

δ

f(x) dx

x

}
+ f(0)

∫ δ

−δ

x dx

x2 + ǫ2
. (68)

However, ∫ δ

−δ

x dx

x2 + ǫ2
= 0 ,
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since the integrand is an odd function of x that is being integrated symmetrically about the
origin. Hence, eq. (68) yields

∫ ∞

−∞

xf(x) dx

x2 + ǫ2
= P

∫ ∞

−∞

f(x) dx

x
, (69)

where P denotes the Cauchy principal value prescription [cf. eq. (18)].
Next, we consider the second integral on the right hand side of eq. (66). Since ǫ is an

infinitesimal quantity, the only significant contribution from

ǫ

∫ ∞

−∞

f(x) dx

x2 + ǫ2

can come from the integration region where x ≃ 0, where the integrand behaves like ǫ−2.
Thus, we can again approximate f(x) ≃ f(0), in which case we obtain

ǫ

∫ ∞

−∞

f(x) dx

x2 + ǫ2
≃ ǫf(0)

∫ ∞

−∞

dx

x2 + ǫ2
= πf(0) , (70)

where we have made use of
∫ ∞

−∞

dx

x2 + ǫ2
=

1

ǫ
tan−1(x/ǫ)

∣∣∣∣
∞

−∞

=
π

ǫ
.

Using the results of eqs. (69) and (70), we see that eq. (66) yields,

lim
ε→0

∫ ∞

−∞

f(x) dx

x± iǫ
= P

∫ ∞

−∞

f(x) dx

x
∓ iπf(0) , (71)

which establishes eq. (62).

2.2 A more rigorous derivation of the Sokhotski-Plemelj formula

Consider a path of integration in the complex plane, denoted by C (and exhibited below),
which is a contour along the real axis from −∞ to −δ, followed by a semicircular path Cδ

(of radius δ), followed by a contour along the real axis from δ to ∞, where the infinitesimal
quantity δ is a real positive quantity.

Re z

Im z

−δ δ

Cδ

Integrating the function f(x)/x along the path C yields:
∫

C

f(x)

x
dx = P

∫ ∞

−∞

f(x)

x
+

∫

Cδ

f(x)

x
dx , (72)
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where the principal value integral is defined in eq. (18). In the limit of δ → 0, we can
approximate f(x) ≃ f(0) in the last integral on the right hand side of eq. (72). Noting that
the contour Cδ can be parametrized as x = δeiθ for 0 ≤ θ ≤ π, we end up with

lim
δ→0

∫

Cδ

f(x)

x
dx = f(0) lim

δ→0

∫ 0

π

iδeiθ

δeiθ
dθ = −iπf(0) .

Hence, ∫

C

f(x)

x
dx = P

∫ ∞

−∞

f(x)

x
− iπf(0) . (73)

We can also evaluate the left hand side of eq. (73) by deforming the contour C to a contour
C ′ that consists of a straight line that runs from −∞ + iε to ∞ + iε, where ε is a positive
infinitesimal (of the same order of magnitude as δ). Assuming that f(x) has no singularities
in an infinitesimal neighborhood around the real axis, we are free to deform the contour C
into C ′ without changing the value of the integral. It follows that

∫

C

f(x)

x
dx =

∫ ∞+iε

−∞+iε

f(x)

x
dx =

∫ ∞

−∞

f(y + iε)

y + iε
dy , (74)

where in the last step we have made a change of the integration variable.
Since ε is infinitesimal, we can approximate f(y+ iε) ≃ f(y).10 Thus, after relabeling the

integration variable y as x, eq. (74) yields

∫

C

f(x)

x
dx =

∫ ∞

−∞

f(x)

x+ iε
dx . (75)

Inserting this result back into eq. (73) yields

lim
ε→0

∫ ∞

−∞

f(x)

x+ iε
dx = P

∫ ∞

−∞

f(x)

x
− iπf(0) . (76)

Eq. (76) is also valid if f(x) is replaced by f ∗(x). We can then take the complex conjugate of
the resulting equation. The end result is11

lim
ε→0

∫ ∞

−∞

f(x)

x± iε
dx = P

∫ ∞

−∞

f(x)

x
∓ iπf(0) ,

in agreement with eq. (71).

10More precisely, we can expand f(y+ iε) in a Taylor series about ε = 0 to obtain f(y+ iε) = f(y) +O(ε).
At the end of the calculation, we may take ε → 0, in which case the O(ε) terms vanish.

11Alternatively, we can repeat the above derivation where the contour Cδ is replaced by a semicircle of
radius δ in the lower half complex plane, which yields eq. (73) with −i replaced by i. Finally, after deforming
the contour of integration to a new contour that consists of a straight line that runs from −∞− iε to ∞− iε,
one obtains eq. (75) with i replaced by −i.
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2.3 An elegant derivation of the Sokhotski-Plemelj formula

We can employ P(1/x) = d ln |x|/dx obtained in eq. (23) to provide a very elegant derivation
of eq. (61). We begin with the definition of the principal value of the complex logarithm,

ln z = ln|z|+ i arg z ,

where arg z is the principal value of the argument (or phase) of the complex number z, with
the convention that −π < arg z ≤ π. In particular, for real x and a positive infinitesimal ǫ,

lim
ǫ→0

ln(x± iǫ) = ln |x| ± iπΘ(−x) , (77)

as previously noted in eq. (47).
Differentiating eq. (77) with respect to x and employing eqs. (3) and (23) immediately

yields the Sokhotski-Plemelj formula,

lim
ε→0

1

x± iǫ
= P

1

x
∓ iπδ(x) . (78)

In this derivation, we have made use of the fact that the derivative of the principal value of
the complex logarithm is d ln z/dz = 1/z for all complex values of z that do not lie on the
branch cut along the negative real axis.

3 Fourier transforms of generalized functions

The generalized functions specified in eqs. (23) and (61), which we repeat below,

d

dx
ln |x| = P

1

x
, (79)

lim
ε→0

1

x± iε
= P

1

x
∓ iπδ(x) , (80)

are only meaningful when multiplied by a test function f(x) and integrated over a region of
the real line that may or may not include the origin. Here, we shall require that the test
functions are infinitely differentiable and vanish at ±∞ faster than any inverse power of x.12

Clearly, eikx does not satisfy this requirement for a test function. Nevertheless, one can define
Fourier transforms of generalized functions by using the well known property of the Fourier
transform, ∫ ∞

−∞

f̃(k)g(k) dk =

∫ ∞

−∞

f(k)g̃(k) dx , (81)

where

f̃(k) ≡
∫ ∞

−∞

f(x)eikx dx .

If f(x) is a generalized function and g(x) is a test function, then if follows that g̃(x) exists
and is well defined. The Fourier transform of g(x), denoted by g̃(k), is defined via eq. (81).

12Generalized functions that are defined by employing test functions with these characteristics are called
tempered distributions.

15



One can now check the validity of eqs. (79) and (80) by computing their Fourier trans-
forms. To compute the Fourier transform of eq. (79), we make use of the property of Fourier
transforms that ∫ ∞

−∞

df(x)

dx
eikx dx = −ikf̃ (k) .

Hence, ∫ ∞

−∞

d

dx
ln |x| eikx dx = −ik

∫ ∞

−∞

ln |x| eikx dx . (82)

The calculation of the right-hand side of eq. (82) is rather involved, since it only exists in the
sense of distributions. One can show that13

∫ ∞

−∞

ln |x| eikx dx = −π

[
Pf

1

|k| + 2γδ(k)

]
, (83)

where γ is the Euler-Mascheroni constant, and the generalized function Pf(1/|k|) was defined
in eq. (37) [see also eq. (42)].

Inserting the result of eq. (56) into eq. (82) and using kδ(k) = 0 and14

k

(
Pf

1

|k|

)
=

k

|k| = sgn(k) , (84)

the end result is given by,
∫ ∞

−∞

d

dx
ln |x| eikx dx = iπ sgn(k) . (85)

Next, we consider

P

∫ ∞

−∞

eikx

x
dx = P

∫ ∞

−∞

cos(kx)

x
dx+ iP

∫ ∞

−∞

sin(kx)

x
dx . (86)

Since cos(kx)/x is an odd function of x (i.e., it changes sign under x → −x), it immediately
follows from the definition of the Cauchy principle value that

P

∫ ∞

−∞

cos(kx)

x
dx = 0 . (87)

Moreover, we observe that limx→0 sin(kx)/x = k; that is, sin(kx)/x is regular at x = 0. Thus,

P

∫ ∞

−∞

sin(kx)

x
dx =

∫ ∞

−∞

sin(kx)

x
dx = sgn(k)

∫ ∞

−∞

sin y

y
dy = π sgn(k) . (88)

Note that the P symbol has no effect on the integral given by eq. (88), since the integrand is
regular at x = 0. The factor of sgn(k) arises after changing the integration variable, y = kx.

13For example, see pp. 153–154 and pp. 160–161 of Ref. [3]. There are two typographical errors on these
pages. In eq. (6.4.33d), 1/u should be 1/|u| and in the last term in eq. (6.4.57), −i(u − i0)−1 should be
+i(u− i0)−1. Eq. (56) is a consequence of the corrected eq. (6.4.57).

14When we multiply Pf(1/|k|) by k, the singularity at k = 0 is canceled and the prescription indicated by
eq. (42) is no longer required. Noting that k/|k| is equal to sign of k for k 6= 0, we end up with eq. (84).
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When k < 0, the integration limits must be reversed, which then leads to the extra minus
sign. Inserting eqs. (87) and (88) into eq. (86) then yields,

P

∫ ∞

−∞

eikx

x
dx = iπ sgn(k) . (89)

In light of eqs. (85) and (89), we have verified that the Fourier transform of eq. (79) is satisfied.
To verify that the Fourier transform of eq. (80) is satisfied, one can employ

lim
ε→0

∫ ∞

−∞

eikx

x± iε
dx = ∓2πiΘ(∓k) , (90)

which follows from the results of Section 1.1 (see also Appendix A). Then, using eqs. (2), (14)
and (89), it follows that the Fourier transform of eq. (80) is

∓2πiΘ(∓k) = iπ
[
Θ(k)−Θ(−k)

]
∓ iπ

[
Θ(k) + Θ(−k)

]
. (91)

It is a simple matter to verify that eq. (91) is satisfied for either choice of sign.
Since the Fourier transform of a generalized function and its inverse Fourier transform are

unique, one can conclude that if the Fourier transforms of eqs. (79) and (80) are satisfied,
then eqs. (79) and (80) are valid identities. Thus, the validity of eq. (91) provides a fourth
independent derivation of the Sokhotski-Plemelj formula.

Finally, we note the following Fourier transforms of the generalized functions x−1
± [defined

in eqs. (26) and (27)], which are obtained in Corollary 4.6 of Ref. [2],
∫ ∞

−∞

1

x±
eikx dx = −γ − ln |k| ± 1

2
iπ sgn(k) , (92)

where γ is the Euler-Mascheroni constant. Subtracting or adding the two equations given by
eq. (92) yields

∫ ∞

−∞

eikx P
1

x
dx = iπ sgn(k) , (93)

∫ ∞

−∞

eikx Pf
1

|x| dx = −2
[
γ + ln |k|

]
, (94)

after making use of eqs. (31) and (40). Note that eq. (93) is equivalent to eq. (89).
Taking the real part of eq. (94) yields an integral with an integrand that is an even function

of x. Hence, we may conclude that
∫ ∞

0

Pf
1

|x| cos(kx) dx = −γ − ln |k| . (95)

Note that one cannot replace Pf(1/|x|) with |x|−1 in eq. (95), as these two functions differ at
x = 0 due to the delta function contribution in eq. (39). However, since cos(kx) is an even
function of x, one can use eq. (42) to rewrite eq. (95) in a more useful form:

∫ 1

0

cos(kx)− 1

x
dx+

∫ ∞

1

cos(kx)

x
dx = −γ − ln |k| , (96)
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which reproduces a result that is easily derived from formula 3.782 number 1 on p. 451 of
Ref. [9]. Taking the imaginary part of eq. (94) yields an integral with an integrand that is odd
function of x. Moreover, Pf(1/|x|) sin(kx) = |x|−1 sin(kx), since the latter has a finite limit as
x → 0. It then follows that ∫ ∞

−∞

sin(kx)

|x| dx = 0 , (97)

as one would expect.

4 The Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma is one of the most important results of Fourier analysis and
asymptotic analysis. It has many physics applications, especially in studies of wave phenom-
ena. In this short note, I will provide a simple proof of the Riemann-Lebesgue lemma which
will be adequate for most cases that arise in physical applications.

The simplest form of the Riemann-Lebesgue lemma states that for a function f(x) for
which the integral ∫ b

a

|f(x)| dx < ∞ , (98)

where a and b are real numbers, we have

lim
k→∞

∫ b

a

f(x) eikx dx = 0 . (99)

Sometimes, the result of eq. (99) appears in the form,

lim
k→∞

eikx = 0 . (100)

Of course eq. (100) makes no sense when interpreted as a standard limit in mathematical
analysis. However, if one interprets the limit of eq. (100) in the sense of distributions, i.e. by
treating eikx as a generalized function, then eq. (100) can be assigned a useful meaning [8].

If we further assume that f(x) has certain “nice” properties [e.g., a sufficient (but not
necessary) condition is that f(x) is continuously differentiable for a ≤ x ≤ b], then it follows
that ∫ b

a

f(x) eikx dx = O
(
1

k

)
, as k → ∞. (101)

Moreover, eqs. (99) and (101) continue to hold if a → −∞ and/or b → ∞, assuming that
eq. (98) holds over the infinite interval.

We will present a proof of eq. (99) under the assumption that f(x) is continuous over the
closed interval a ≤ x ≤ b. The origin of eq. (99) in this case is not too difficult to understand.
In the limit of k → ∞, the factor eikx oscillates faster and faster such that f(x) eikx averages
out to zero over any finite region of x inside the interval.

If we can assume that f(x) is N -times differentiable in the region a ≤ x ≤ b, one can
derive eq. (101) simply by a repeated integration by parts. Namely,
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∫ b

a

f(x) eikx dx =
f(x)

ik
eikx
∣∣∣∣
b

a

− 1

ik

∫ b

a

f ′(x) eikx dx

=
eikbf(b)− eikaf(a)

ik
− f ′(x)

(ik)2
eikx
∣∣∣∣
b

a

+
1

(ik)2

∫ b

a

f ′′(x) eikx dx

=

N−1∑

n=0

(−1)n
eikbf (n)(b)− eikaf (n)(a)

(ik)n+1
+O

(
1

kN+1

)
, (102)

where f (0)(x) ≡ f(x) and f (n)(x) ≡ dnf/dxn. For example f ′(b) is equal to the first derivative
of f(x) evaluated at x = b, etc. Taking N = 1 in eq. (102), we see that the leading term that
survives is of O(1/k) as asserted by eq. (101).

More generally, we can prove eq. (99) without the assumption f(x) is differentiable in the
interval. We do this by writing the integral

I(k) =
∫ b

a

f(x) eikx dx ,

in two different but equivalent ways:15

I(k) =
∫ a+π/k

a

f(x) eikx dx+

∫ b

a+π/k

f(x) eikx dx (103)

and

I(k) =
∫ b−π/k

a

f(x) eikx dx+

∫ b

b−π/k

f(x) eikx dx . (104)

By a change of variables, x′ = x− π/k, it is straightforward to verify that

∫ b

a+π/k

f(x) eikx dx = −
∫ b−π/k

a

f
(
x+

π

k

)
eikx dx , (105)

after using e−iπ = −1 and dropping the primes from the x in the second integral. Thus,
writing I as one half the sum of eqs. (103) and (104), and employing eq. (105), it follows that

I(k) = 1
2

∫ a+π/k

a

f(x) eikx dx + 1
2

∫ b

b−π/k

f(x) eikx dx

+ 1
2

∫ b−π/k

a

[
f(x)− f

(
x+

π

k

)]
eikx dx . (106)

We now take the limit of k → ∞. The mean value theorem of for integrals states that if
f(x) is continuous and bounded over a closed interval, a ≤ x ≤ b, then

∫ b

a

f(x) dx = f(c)(b− a) ,

15This proof is taken from pp. 39–40 of Ref. [10].
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for some real number c that lies in the interval a ≤ c ≤ b. Applying this to the first two
integrals in eq. (106), we immediately conclude that

∫ a+π/k

a

f(t) eikx dx = O
(
1

k

)
,

∫ b

b−π/k

f(k) eikx dx = O
(
1

k

)
,

which vanish in the limit of k → ∞.
Finally, under the assumption that f(x) is continuous at all points in the closed interval

a ≤ x ≤ b, it follows that

lim
k→∞

∫ b−π/tk

a

[
f(x)− f

(
x+

π

k

)]
eikx dx = 0 . (107)

This is true because a function that is continuous at all points in a closed, bounded interval
is uniformly continuous over the interval.16 Hence, one can make the integrand in eq. (107)
arbitrarily small by choosing k sufficiently large. The limit of eq. (107) is thus established,
and the proof of Riemann-Lebesgue lemma stated in eq. (99) is complete.

Note that the argument above does not necessarily imply that

∫ b−π/k

a

[
f(x)− f

(
x+

π

k

)]
eikx = O

(
1

k

)
, (108)

as k → ∞. However, if the function f(x) is continuously differentiable in the interval, then
we can employ the mean value theorem for differentiable functions, which states that

f(b)− f(a) = f ′(c)(b− a) , for some c between a and b .

It follows that
f(x)− f

(
x+

π

k

)
= −π

k
f ′(x+ c) , for 0 ≤ c ≤ π

k
.

Hence, in this case eq. (108) does hold, in which case eq. (101) is satisfied.17

The extension to cases where a → −∞ and/or b → ∞ is straightforward. For example,
suppose that ∫ ∞

a

|f(x)|dx < ∞ . (109)

Then, noting that one can write

∫ ∞

a

f(x)eikx dx =

∫ b

a

f(x)eikx dx+ ǫ ,

16For further details, see e.g. pp. 228–229 of Ref. [11].
17We also obtain eq. (108) under slightly weaker conditions in which the function f(x) satisfies the so-called

Lipschitz condition, |f(x)− f(y)| ≤ M |x− y| for all x and y in the interval for some positive finite bound M .
Indeed a Lipschitz continuous function is uniformly continuous (although the converse is not necessarily true).
A Lipschitz continuous function need not be differentiable. On the other hand a differentiable function whose
derivative is bounded on the interval satisfies the Lipschitz condition. Thus, to establish eq. (108) it is sufficient
to require that f(k) is Lipschitz continuous in the interval.
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where ǫ <
∫∞

b
|f(x)|dx , it follows [in light of eq. (109)] that it is always possible to make ǫ

arbitrarily small by a suitable (finite) choice of b. Hence, we can use eq. (99) to conclude that

lim
k→∞

∫ ∞

a

f(x) eikx dx = 0 . (110)

Finally, it should be noted that taking the real and imaginary parts of eq. (99) under the
assumption that f(x) is a real valued function yields:

lim
k→∞

∫ b

a

f(x) sin(kx) dx = 0 , (111)

lim
k→∞

∫ b

a

f(x) cos(kx) dx = 0 , (112)

with a similar extension to cases where a → −∞ and/or b → ∞. That is,

lim
k→∞

cos(kx) = lim
k→∞

sin(kx) = 0 , (113)

where the limits are interpreted in the sense of distributions [cf. discussion below eq. (100)].
If we further assume that f(x) has certain “nice” properties [cf. comments above eq. (101)],
then the two integrals given in eqs. (111) and (112) behave as O(1/k) as k → ∞.

By consulting a table of Fourier transforms [12], one can see many examples of functions
that satisfy eq. (98). In all cases, you will find that the corresponding Fourier transform
satisfies eq. (99). It is interesting to look for cases that satisfy eq. (99) and not eq. (101). For
example, ∫ ∞

0

xν−1 e−ax eikx dx =
Γ(ν)

(a− ik)ν
, for a > 0 and Re ν > 0 .

Indeed, eqs. (98) and (99) are satisfied for all Re ν > 0, whereas eq. (101) is only satisfied
when Re ν ≥ 1.

Finally, we provide some examples that contradicts eq. (111). For f(x) = 1/x, one obtains
the well known integral [cf. eq. (13)]:

∫ ∞

0

sin(kx)

x
dx = 1

2
π sgn k , (114)

which does not vanish as k → ∞. This is not surprising since
∫∞

0
x−1dx diverges and hence

eq. (109) is not satisfied. Similarly, for f(x) = sin(x2), we employ the following result given
in formula 3.691 number 5 on p. 419 of Ref. [9],

∫ ∞

0

sin(x2) sin(kx) dx = 1
2

√
π cos

(
k2 + π

4

)
,

which also does not vanish as k → ∞. Again, this is not surprising since eq. (109) [with a = 0]
is not satisfied. Indeed, even though

∫ ∞

0

sin(x2) dx =
1

2

√
π

2
,
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is finite, one can check that ∫ ∞

0

| sin(x2)|dx

diverges. In both examples presented above, one of the key assumptions underlying the
Riemann-Lebesgue lemma is not satisfied.

5 The Poisson Sum Formula

The Poisson sum formula takes on a number of different forms in the literature. Here is one
useful version:

1

2π

∞∑

n=−∞

einx =

∞∑

m=−∞

δ(x− 2πm) . (115)

To prove this formula, consider the following periodic function, defined by:

f(x) = f(x+ 2π) , where f(x) =
1

2
− x

2π
for 0 ≤ x ≤ 2π. (116)

Noting that f(x) is discontinuous at x = 2πm, where m ∈ Z, it follows that one can expand
f(x) in a Fourier series:

f(x) =
∞∑

n=−∞

cne
inx , (117)

where

cn =
1

2π

∫ 2π

0

e−inxf(x) dx . (118)

Evaluating eq. (118) using f(x) given in eq. (116), one easily obtains:

c0 = 0 , cn =
−i

2πn
, (n 6= 0) . (119)

That is,

f(x) = − i

2π

∞∑

n=−∞
n 6=0

einx

n
. (120)

Consider the derivative of f(x), which we denote by f ′(x). Using the definition of f(x)
given in eq. (116), it follows that f ′(x) = −1/(2π) for x 6= 2πm (for integer values of m ∈ Z).
At x = 2πm, the discontinuity of f(x) can be described by the step function Θ(x). Specifically,
in the vicinity of x = 2πm,

f(x) = −1
2
+Θ(x− 2πm) , for x ≃ 2πm . (121)

That is, f(x) = −1/2 for x = 2πm − ǫ and f(x) = 1/2 for x = 2πm + ǫ, where ǫ > 0 is an
infinitesimal quantity. Taking the derivative of eq. (121) yields:

f ′(x) = δ(x− 2πm) , for x ≃ 2πm .
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We conclude that:

f ′(x) = − 1

2π
+

∞∑

m=−∞

δ(x− 2πm) . (122)

We can also compute f ′(x) by differentiating the Fourier series of f(x) term-by-term. Using
eq. (120), we obtain:

f ′(x) =
1

2π

∞∑

n=−∞
n 6=0

einx =
1

2π

[
−1 +

∞∑

n=−∞

einx

]
. (123)

Equating eqs. (122) and (123) yields the desired result announced in eq. (115).
The most common form for the Poisson sum formula arises in the study of Fourier analysis.

Given a function f(t) and its Fourier transform,

F (ω) ≡
∫ ∞

−∞

eiωtf(t)dt , (124)

then the Poisson sum formula is given by:18

∞∑

m=−∞

f(αm) =
1

|α|

∞∑

n=−∞

F

(
2πn

α

)
, for real α 6= 0. (125)

One can derive the above result by inserting the integral expression for F on the right-hand
side of eq. (125), which yields

1

|α|

∞∑

n=−∞

F

(
2πn

α

)
=

1

|α|

∞∑

n=−∞

∫ ∞

−∞

e2πint/α f(t) dt =
1

|α|

∫ ∞

−∞

∞∑

n=−∞

e2πint/α f(t) dt

=
2π

|α|

∫ ∞

−∞

f(t)

∞∑

m=−∞

δ

(
2πt

α
− 2πm

)
dt

=

∫ ∞

−∞

f(t)

∞∑

m=−∞

δ(t− αm) dt

=
∞∑

m=−∞

∫ ∞

−∞

f(t)δ(t− αm) dt

=
∞∑

m=−∞

f(αm) , (126)

after employing eq. (116) and making use of the well-known identity

δ
(
α(x− x′)

)
=

1

|α|δ(x− x′) . (127)

Thus, eq. (125) is established. For further details, see for example pp 67–71 of Ref. [1],
pp. 155–159 of Ref. [2], or pp. 168–171 of Refs. [3].

18Note that the corresponding formula in Ref. [1] incorrectly omits the absolute value sign that appears on
the right hand side of eq. (125). The corresponding formula in Ref. [2] specifies that α > 0, and hence no
absolute value sign appears. The absolute value sign appears correctly in Ref. [3].
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Appendix A: An explicit derivation of the Fourier trans-

formation of the Heavyside step function

The goal of this Appendix is to express the step function as a Fourier transform,

Θ(k) =
1

2π

∫ ∞

−∞

eikxf(x) dx , (A.1)

where the function f(x) is to be determined.19

The function f(x) is determined by the inverse Fourier transform,

f(x) =

∫ ∞

−∞

e−ikx Θ(k) dk . (A.2)

The integral exhibited in eq. (A.2) is not well defined. However it can be reinterpreted
in the sense of distributions. What this phrase really means is that quantities are treated
as generalized functions (also called distributions), which make sense only when integrated
against test functions that are smooth, regular, and vanish sufficiently fast at ±∞.

We can evaluate f(x) using the following trick. Note that

1 =

∫ ∞

−∞

e−ikx δ(k) dk =

∫ ∞

−∞

e−ikx dΘ(k)

dk
dk . (A.3)

We now integrate by parts. We can set the surface term to zero by employing

lim
k→±∞

e−ikx = 0 , (A.4)

where the limit is interpreted in the sense of distributions [cf. eq. (100)]. It then follows that

1 = −
∫ ∞

−∞

Θ(k)
d

dk
e−ikx dk = ix

∫ ∞

−∞

Θ(k)e−ikx dk = ixf(x) . (A.5)

To solve eq. (A.5), let us define h(x) ≡ if(x) and consider the equation

xh(x) = 1 . (A.6)

The solution to this equation for x 6= 0 is clearly h(x) = 1/x. But, how should we deal with
x = 0? The answer is again to appeal to generalized functions. In particular, eq. (A.6) should
be interpreted as ∫ ∞

−∞

xh(x)g(x) dx =

∫ ∞

−∞

g(x) dx , (A.7)

for any smooth regular test function g(x) that vanishes sufficiently fast at ±∞.
The most general solution to the inhomogeneous equation, xh(x) = 1, must be of the form,

h(x) = hp(x) + hh(x) , (A.8)

19This Appendix is based on a derivation given on p. 151 of Ref. [3].
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where hp(x) is a particular solution that satisfies xhp(x) = 1 and hh(x) is the solution to the
homogeneous equation, xhh(x) = 0. I claim that one choice for the particular solution to
eq. (A.6) is,

hp(x) = P
1

x
, (A.9)

where P indicates the Cauchy principal value prescription defined in eq. (18) [see also Ap-
pendix C].

Let us check that h(x) = hp(x) given by eq. (A.9) provides a solution to eq. (A.7). It is
sufficient to observe that,

P

∫ ∞

−∞

x
1

x
g(x) dx =

∫ ∞

−∞

g(x) dx , (A.10)

where the P symbol can be dropped on the right hand side of eq. (A.10) since the corresponding
integral is now well defined. Hence, it follows that (in the sense of distributions),

xP
1

x
= 1 , (A.11)

and eq. (A.9) is verified.
We now turn to the most general solution to the homogeneous equation,

xhh(x) = 0 . (A.12)

We shall solve eq. (A.12) using a Fourier transform technique. We first write

hh(x) =
1

2π

∫ ∞

−∞

eikxq(k) dk . (A.13)

Inverting the Fourier transform yields

q(k) =

∫ ∞

−∞

e−ikxhh(x) dx . (A.14)

We now take the derivative of q(k) with respect to k to obtain,

dq

dk
= −i

∫ ∞

−∞

e−ikxxhh(x) dx = 0 . (A.15)

where we have used eq. (A.12) in the final step.
The most general solution to the differential equation dq/dk = 0 is q(k) = C, where C is

an arbitrary constant.20 Inserting this solution back into eq. (A.13), we end up with

hh(x) =
C

2π

∫ ∞

−∞

eikx dk = C δ(x) , (A.16)

after employing the integral representation of the delta function [cf. eq. (6)].

20This statement is trivial if solutions are restricted to the space of ordinary functions. Nevertheless,
q(k) = C is still the unique solution of dq/dk = 0 even if the solution space is expanded to included generalized
functions. A proof of this assertion can be found on pp. 39–41 of Ref. [4].
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It is simple to check the validity of eq. (A.16). In particular, in light of eq. (4),

∫ ∞

−∞

xδ(x)g(x) dx = xg(x)

∣∣∣∣
x=0

= 0 , (A.17)

where again we have used the fact that g(x) is a smooth regular function. It then follows that

xδ(x) = 0 , (A.18)

in the sense of distributions. Hence, xhh(x) = Cxδ(x) = 0 as required. Combining the results
of eqs. (A.9) and (A.16), one obtains the most general solution of eq. (A.6),

h(x) = hp(x) + hh(x) = P
1

x
+ Cδ(x) . (A.19)

Note that eq. (A.19) implies that P(1/x) is the unique choice for h(x) that is an odd function
of x [i.e., it satisfies h(−x) = −h(x)]. Other possible choices for h(x) treated in Section 1.2
such as 1/x± and 1/(x± iε) are neither even nor odd functions of x.

Returning to eq. (A.5), it follows in light of eq. (A.19) that

h(x) = if(x) = i

∫ ∞

−∞

Θ(k)e−ikx dk = P
1

x
+ Cδ(x) , (A.20)

where the constant C is still yet to be determined. To fix the constant C we proceed as
follows. Replacing x → −x in eq. (A.20) yields,

−P
1

x
+ Cδ(x) = i

∫ ∞

−∞

Θ(k)eikx dk = i

∫ ∞

−∞

Θ(−k)e−ikx dk , (A.21)

after noting that δ(−x) = δ(x) and changing the integration variable from k to −k. Adding
eqs. (A.20) and (A.21) and using eq. (2), we end up with

2Cδ(x) = i

∫ ∞

−∞

[
Θ(k) + Θ(−k)

]
e−ikx dk = i

∫ ∞

−∞

e−ikx dk . (A.22)

Finally, using the integral representation of the delta function [cf. eq. (6)], we conclude that
C = iπ. We now insert this value of C into eq. (A.20) and employ the Sokhotski-Plemelj
formula [cf. eq. (43)],

lim
ε→0

1

x− iǫ
= P

1

x
+ iπδ(x) . (A.23)

The end result is

if(x) = i

∫ ∞

−∞

Θ(k)e−ikx dk = lim
ε→0

1

x− iε
. (A.24)

Returning to eq. (A.1), we conclude that

Θ(k) =
1

2πi
lim
ε→0

∫ ∞

−∞

eikx

x− iε
dx , (A.25)

which reconfirms the result exhibited in eq. (5).
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It is instructive to revisit eq. (A.20) with C = iπ, which yields the noteworthy result,

i

∫ ∞

−∞

Θ(k)e−ikx dk = P
1

x
+ iπδ(x) . (A.26)

In particular, in light of eq. (1), the complex conjugate of eq. (A.26) yields,

∫ ∞

0

eikx dk = iP
1

x
+ πδ(x) . (A.27)

Equivalently, we can employ eq. (A.23) and rewrite eq. (A.27) in the form,

∫ ∞

0

eikx dk = lim
ε→0

i

x+ iε
. (A.28)

Eqs. (A.27) and (A.28) must be interpreted in the sense of distributions (since the integrals
do not converge in the usual sense21). Moreover, taking real and imaginary parts of eq. (A.27)
yield,

∫ ∞

0

cos(kx) dk = πδ(x) , (A.29)

∫ ∞

0

sin(kx) dk = P
1

x
. (A.30)

Once again, the integrals of eqs. (A.29) and (A.30) must be interpreted in the sense of dis-
tributions. For example, we have already obtained eq. (A.29) in light of eqs. (12) and (16).
Moreover eq. (A.30) provides yet another representation of P(1/x). Interpreting the improper
integral in the standard way,

P
1

x
= lim

R→∞

∫ R

0

sin(kx) dk = lim
R→∞

{
−1

x
cos(kx)

}∣∣∣∣
R

0

= lim
R→∞

1− cos(Rx)

x
. (A.31)

One additional consequence of eq. (A.26) can be extracted if we invert the Fourier trans-
form,

1

2π

∫ ∞

−∞

eikx
[
P
1

x
+ iπδ(x)

]
dx = iΘ(k) . (A.32)

Using the Cauchy principal value prescription and integrating over the delta function yields

1

2π
P

∫ ∞

−∞

eikx

x
dx = i

[
Θ(k)− 1

2

]
. (A.33)

Using eq. (2), it follows that

Θ(k)− 1
2
= Θ(k)− 1

2

[
Θ(k) + Θ(−k)

]
= 1

2

[
Θ(k)−Θ(−k)

]
= 1

2
sgn(k) . (A.34)

21Compare this with the integral in eq. (6), which does not converge in the usual sense, but nevertheless
provides an integral representation of the delta function in the sense of distributions.
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Inserting this result into eq. (A.33) yields,

P

∫ ∞

−∞

eikx

x
dx = iπ sgn(k) . (A.35)

Taking the real and imaginary parts of eq. (A.35) yields,

P

∫ ∞

−∞

cos(kx)

x
dx = 0 , (A.36)

∫ ∞

−∞

sin(kx)

x
dx = π sgn(k) . (A.37)

Note that the vanishing of the integral in eq. (A.36) is due to the fact that the integrand is
an odd function of x, which integrates to zero due to the Cauchy principal value prescription.
The P symbol is not needed in eq. (A.37) since the corresponding integrand has a finite limit
as k → 0.

As one final check, let us take the derivative of eq. (A.35) with respect to k and employ
eq. (15). This yields (once again) the integral representation of the delta function (where the
P symbol can be dropped as the resulting integrand is not singular at x = 0).

Appendix B: The delta function and Electrostatics

In the theory of electrostatics, a point charge q located at the origin has a charge density
given by (e.g., see Ref. [13]):

ρ(~x) = q δ3(~x) , (B.1)

where δ3(~x) ≡ δ(x)δ(y)δ(z). Indeed, by taking the volume integral over all space and using
∫

V

δ3(~x) d3x =

∫ ∞

−∞

δ(x) dx

∫ ∞

−∞

δ(y) dy

∫ ∞

−∞

δ(z) dz = 1 , (B.2)

one obtains the expected result, ∫

V

ρ(~x) d3x = q . (B.3)

The electrostatic field ~E(~x) can be expressed in terms of the electrostatic potential Φ(~x)

via ~E(~x) = −~∇Φ(~x). Using Coulomb’s law, the electrostatic potential due to a point charge
q located at the origin is given (in gaussian units) by

Φ(~x) =
q

r
, (B.4)

where r ≡ |~x|. Using one of Maxwell’s equations, ~∇· ~E = 4πρ, one immediately obtains the
Poisson equation,

~∇2Φ = −4πρ . (B.5)

It then follows from eqs. (B.1) and (B.4) that

~∇2

(
1

r

)
= −4πδ3(~x) . (B.6)
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To mathematically prove eq. (B.6), we first observe that an explicit calculation yields

~∇2

(
1

r

)
= 0 , for r 6= 0. (B.7)

To pick up the delta function contribution at the origin, we shall integrate eq. (B.20) over a
volume V , which we take to be a solid sphere of radius R centered at the origin. Using the
divergence theorem (also known as Gauss’ theorem) of vector calculus,

∫

V

~∇2

(
1

r

)
d3x =

∫

V

~∇· ~∇
(
1

r

)
d3x =

∮

S

n̂· ~∇
(
1

r

)
da (B.8)

where n̂ ≡ ~x/r is a unit vector that is (outwardly) normal to the surface S of the sphere of
radius R that caps the closed spherical volume V , and da is is the infinitesimal area element
on S. Next we make use of

∇j

(
1

r

)
=

∂

∂xj

(
x2
1 + x2

2 + x2
3

)−1/2
= −xj

r3
= −nj

r2
, (B.9)

where we are now employing the notation ~x = (x1, x2, x3) and r ≡ (x2
1 + x2

2 + x2
3)

1/2. In light
of eq. (B.8), and noting that n̂·n̂ = 1 and da = R2dΩ, it follows that

∫

V

~∇2

(
1

r

)
d3x = −

∮

S

dΩ = −4π , (B.10)

That is ~∇2(r−1) is a “function” that vanishes everywhere except for the origin, and its integral

over all space is −4π. Consequently, we can identify ~∇2(r−1) = −4πδ3(~x) in agreement with
eq. (B.6).

It is instructive to generalize the result obtained in eq. (B.6). Here, we shall establish the
following identity (e.g., see Ref. [14]),

∇i∇j

(
1

r

)
=

3xixj − r2δij
r5

− 4π

3
δij δ

3(~x) . (B.11)

We shall prove eq. (B.11) using the covariance under rotations of Cartesian tensors.22 First,
consider the case of r 6= 0. Because ∇i∇j(r

−1) is a second rank symmetric Cartesian tensor
that depends on the vector ~x, it immediately follows that

∇i∇j

(
1

r

)
= Aδij +Bninj , (B.12)

where ni ≡ xi/r and A and B are constants to be determined, since Aδij +Bninj is the most
general second rank symmetric Cartesian tensor that can be constructed out of ~x (as there
are no other vectors in this problem). We now multiply eq. (B.12) by δij and sum over i and j.
This yields,

~∇2

(
1

r

)
= 3A+B , (B.13)

after noting that n̂ is a unit vector. in light of eq. (B.7), it then follows that

B = −3A . (B.14)

22All Cartesian tensors of the same rank possess the same transformation law under rotations. This property
is called covariance under rotations.
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Next, we multiply eq. (B.12) by ninj and sum over i and j. This yields,

(n̂· ~∇)2
(
1

r

)
= A+B . (B.15)

Note that,

n̂· ~∇

(
1

r

)
=

1

r
~x· ~∇

(
1

r

)
(B.16)

=
1

r

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(
1√

x2 + y2 + z2

)
= −x2 + y2 + z2

r4
= − 1

r2
.

Applying n̂· ~∇ for a second time, we end up with,

(n̂· ~∇)2
(
1

r

)
= −n̂· ~∇

(
1

r2

)
= −1

r
~x· ~∇

(
1

r2

)

= −1

r

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(
1

x2 + y2 + z2

)
=

2(x2 + y2 + z2)

r5
=

2

r3
. (B.17)

Inserting this result back into eq. (B.15) yields,

A +B =
2

r3
. (B.18)

Combining this equation with eq. (B.14), we conclude that,

A = − 1

r3
, B =

3

r3
. (B.19)

Plugging these results back into eq. (B.12) and writing ni = xi/r, we end up with

∇i∇j

(
1

r

)
=

3xixj − r2δij
r5

, for r 6= 0. (B.20)

To pick up the delta function contribution at r = 0, we shall integrate eq. (B.20) over a
volume V , where V is a solid sphere of radius R centered at the origin. Using the divergence
theorem of vector calculus,

∫

V

∇i∇j

(
1

r

)
d3x =

∮

S

∇j

(
1

r

)
ni da , (B.21)

where S is the surface of the sphere of radius R, so that da = R2dΩ. Using eq. (B.9), it follows
that ∫

V

∇i∇j

(
1

r

)
d3x = −

∮

S

ninj dΩ . (B.22)

Since the volume V and surface S are spherically symmetric, it follows that both sides
of eq. (B.22) are second rank symmetric tensors that transform as Cartesian tensors under
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rotations. Moreover, these tensors do not depend on ~x after performing the integrations.
Thus, both sides of eq. (B.22) must be proportional to δij . In particular,

∮

S

ninj dΩ = Cδij , (B.23)

for some constant C. Multiplying both sides of eq. (B.23) by δij and summing over i and j
yields,

4π = 3C . (B.24)

Hence, eqs. (B.22)–(B.24) yield,

∫

V

∇i∇j

(
1

r

)
d3x = −4π

3
δij . (B.25)

Consider now integrating eq. (B.20) over the volume V , which is a solid sphere of radius R
centered at the origin, but with the origin omitted (to avoid a potential singularity at r = 0).
The result must be a second rank symmetric Cartesian tensor. Hence, applying the same
reasoning as above, it follows that

∫

V

3ninj − δij
r3

d3x = C ′δij , (B.26)

where C ′ is a constant to be determined. Once again, we multiply both sides by δij and sum
over i and j. But notice that

3∑

i=1

3∑

j=1

δij(3ninj − δij) = 0 . (B.27)

It then follows that C ′ = 0, which implies that
∫

V

3ninj − δij
r3

d3x = 0 . (B.28)

Therefore, if we wish to extend eq. (B.20) to include the point r = 0, we must write

∇i∇j

(
1

r

)
=

3xixj − r2δij
r5

+ c δ3(~x) . (B.29)

To determine c, we integrate over the volume V , which is a solid sphere of radius R centered
at the origin. In light of eq. (B.28), it follows that

∫

V

∇i∇j

(
1

r

)
d3x = c

∫

V

δ3(~x) d3x = c . (B.30)

Comparing with eq. (B.25), it follows that

c = −4π

3
δij . (B.31)

Hence, we conclude that

∇i∇j

(
1

r

)
=

3xixj − r2δij
r5

− 4π

3
δij δ

3(~x) , (B.32)
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which confirms the result quoted in eq. (B.11). Moreover, by setting i = j and summing
over i, we recover eq. (B.6).

In deriving eq. (B.11), we made use of eq. (B.28) under the assumption that V is a solid
sphere of radius R centered at the origin, with the origin included in V . Is this a valid
conclusion? Let us examine this integral more carefully. Using spherical coordinates,

∫

V

3ninj − δij
r3

d3x =

∫ R

0

r2 dr

∫
dΩ

3ninj − δij
r3

=

∫ R

0

dr

r

∫
dΩ (3ninj − δij) . (B.33)

Once again, we can conclude that
∫

dΩ (3ninj − δij) = 0 , (B.34)

using the same analysis previously employed in deriving eq. (B.28), which makes use of
eq. (B.27). However, ∫ R

0

dr

r
, (B.35)

is logarithmically divergent! So, it looks like eq. (B.33) is equal to ∞× 0, which is indeter-
minate. Thus, in order to conclude that eq. (B.11) holds true, we must adopt one of two
possible interpretations. One possibility is to interpret the first term on the right hand side
of eq. (B.11) as having meaning only for r 6= 0, and demand that the r = 0 behavior is
completely contained in the delta function of the origin. A second possibility is to define
∫

V

3ninj − δij
r3

d3x = lim
ǫ→0

∫ R

ǫ

r2 dr

∫
dΩ

3ninj − δij
r3

= lim
ǫ→0

ln(R/ǫ)

∫
dΩ

3ninj − δij
r3

= 0 ,

(B.36)

since the integration over angles vanishes. That is, we take the ǫ → 0 limit only at the very
end after evaluating the integral over angles. For a further discussion of the caveats associated
with eq. (B.11), see Ref. [15].

Eq. (B.11) has significant implications for the study of electromagnetism. The electrostatic
potential of a point electric dipole ~p located at the origin (in gaussian units) is given by

Φ(~x) = −~p· ~∇
(
1

r

)
=

~p·~x

r3
, (B.37)

after making use of eq. (B.9). It then follows that the components of the electric field of a
point electric dipole located at the origin are given by

Ei = −∇iΦ =
3∑

j=1

pj∇i∇j

(
1

r

)
. (B.38)

Using eq. (B.11) to evaluate ∇i∇j(r
−1), we end up with

~E(~x) = −~∇Φ(~x) =
3n̂(~p·n̂)− ~p

r3
− 4π

3
~p δ3(~x) , (B.39)

where n̂ ≡ ~x/r is a unit vector pointing in the radial direction from the origin to the point ~x.
Some of the physical implications of the delta function contribution in eq. (B.39) can be found
in Ref. [16].
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Appendix C: The Cauchy Principle Value

In this Appendix, we verify that the definitions of the Cauchy principal value given in eqs. (17),
(18), (23), and (44) are all equivalent. We begin with eq. (17), which we repeat here for the
convenience of the reader,

P

∫ ∞

−∞

f(x)

x
dx =

∫ ∞

0

f(x)− f(−x)

x
dx . (C.1)

For any positive real number δ, the following equation is an identity,

∫ ∞

0

f(x)− f(−x)

x
dx =

∫ δ

0

f(x)− f(−x)

x
dx+

∫ ∞

δ

f(x)

x
dx+

∫ −δ

−∞

f(x)

x
dx , (C.2)

where the last integral on the right hand side of eq. (C.2) has been obtained after changing
the integration variable, x → −x. Since δ is an arbitrary positive number, we can take the
limit as δ → 0 (from the positive side), which yields

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0+

{∫ −δ

−∞

f(x) dx

x
+

∫ ∞

δ

f(x) dx

x
+

∫ δ

0

f(x)− f(−x)

x
dx

}
. (C.3)

By assumption, the test function f(x) is smooth and vanishes as x → ±∞. Hence, one
can Taylor expand f(x) around the origin to obtain f(x) = f(0) + xf ′(0) +O(x2). It follows
that for δ ≪ 1, ∫ δ

0

f(x)− f(−x)

x
dx = 2f ′(0)δ +O(δ3) , (C.4)

which vanishes as δ → 0. Hence, eq. (C.3) yields,

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0+

{∫ −δ

−∞

f(x) dx

x
+

∫ ∞

δ

f(x) dx

x

}
, (C.5)

which establishes the equivalence of eqs. (17) and (18).
Next, we start from the definition of the Cauchy principal value given in eq. (C.5) and

integrate by parts to obtain

∫ −δ

−∞

f(x)

x
dx = f(x) ln |x|

∣∣∣∣
−δ

−∞

−
∫ −δ

−∞

f ′(x) ln |x| dx = f(−ǫ) ln ǫ−
∫ −δ

−∞

f ′(x) ln |x| dx ,

∫ ∞

δ

f(x)

x
dx = f(x) ln |x|

∣∣∣∣
−δ

−∞

−
∫ ∞

δ

f ′(x) ln |x| dx = −f(ǫ) ln ǫ−
∫ ∞

δ

f ′(x) ln |x| dx ,

where f ′(x) ≡ df/dx and we have assumed that f(x) → 0 sufficiently fast as x → ±∞ so that
the surface terms at ±∞ vanish. Hence,

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0+

{[
f(−δ)− f(δ)

]
ln δ −

∫ −δ

−∞

f ′(x) ln |x| dx−
∫ ∞

δ

f ′(x) ln |x| dx
}

.

(C.6)
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Since f(x) is differentiable and well behaved, we can define

g(x) ≡
∫ 1

0

f ′(xt)dt =
f(x)− f(0)

x
,

which implies that g(x) is smooth and non-singular and

f(x) = f(0) + xg(x) . (C.7)

Inserting eq. (C.7) back into eq. (C.6) then yields

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0+

{[
−2g(x)δ ln δ −

∫ −δ

−∞

f ′(x) ln |x| dx−
∫ ∞

δ

f ′(x) ln |x| dx
}

= −
∫ ∞

−∞

f ′(x) ln |x| dx .

Note that ln |x| is integrable at x = 0, so that the last integral is well-defined. Finally,
we integrate by parts and drop the surface terms at ±∞ (under the usual assumption that
f ′(x) → 0 sufficiently fast as x → ∞). The end result is

P

∫ ∞

−∞

f(x) dx

x
=

∫ ∞

−∞

f(x)
d

dx
ln |x| dx . (C.8)

That is, we have rederived the generalized function identity previously obtained in eqs. (22)
and (23),

d

dx
ln |x| = P

1

x
. (C.9)

In particular, eq. (C.8) provides a definition of the Cauchy principal value prescription that
is equivalent to the definitions provided by eqs. (C.1) and (C.5).

Finally, in light of eq. (44), for any smooth test function that vanishes sufficiently fast as
x → ±∞,

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0

∫ ∞

−∞

x

x2 + δ2
f(x) dx

= lim
δ→0

{∫ −δ

−∞

x

x2 + δ2
f(x) dx+

∫ ∞

δ

x

x2 + δ2
f(x) dx+

∫ δ

−δ

x

x2 + δ2
f(x) dx

}
.

(C.10)

To evaluate the last integral in eq. (C.10), we expand f(x) in a Taylor series around x = 0 to
obtain:

lim
δ→0

∫ δ

−δ

x

x2 + δ2
f(x) dx = lim

δ→0

∫ δ

−δ

x

x2 + δ2
[
f(0) + xf ′(0) + · · ·

]
dx = 0 . (C.11)

To verify the result of eq. (C.11), note that the first term of the Taylor expansion yields

f(0) lim
δ→0

∫ δ

−δ

x

x2 + δ2
dx = 0 , (C.12)
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since the integrand of the last integral in eq. (C.12) is an odd function. The second term of
the Taylor expansion yields

f ′(0) lim
δ→0

∫ δ

−δ

x2

x2 + δ2
dx = f ′(0) lim

δ→0

[
x− δ tan−1

(x
δ

)] ∣∣∣∣
δ

−δ

= lim
δ→0

2δ
(
1− 1

4
π
)
= 0 . (C.13)

It is straightforward to verify that the contributions from all terms in the Taylor expansion
in eq. (C.11) vanish in the δ → 0 limit.

Consequently, eq. (C.10) yields

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0

{∫ −δ

−∞

x

x2 + δ2
f(x) dx+

∫ ∞

δ

x

x2 + δ2
f(x) dx

}
. (C.14)

One can now Taylor expand (x2 + δ2)−1 around δ = 0. Only the leading term survives, and
we end up with

P

∫ ∞

−∞

f(x) dx

x
= lim

δ→0

{∫ −δ

−∞

f(x)

x
dx+

∫ ∞

δ

f(x)

x
dx

}
, (C.15)

in agreement with eq. (C.1).

Appendix D: The Plemelj Formulae of the Theory of Com-

plex Variables

The Sokhotski-Plemelj formula derived in these notes is in fact a special case of a more general
result of the theory of complex variables, which is often referred to as the Plemelj formulae
(and less often as the Sokhotski formulae). In this Appendix, I shall simply state the relevant
results. Further details can be found in Refs. [17–25].

Consider the Cauchy type integral,

F (z) =
1

2πi

∫

C

f(t)

t− z
dt , (D.1)

where z and t are complex variables, C is a smooth curve (which may be an open or a closed
contour, but does not contain a corner or cusp) and f(t) is a function defined on C that
satisfies,

|f(t2)− f(t1) < A|t2 − t1|λ , (D.2)

for any two points t1 and t2 located on the contour C, where A and λ are positive numbers.
Eq. (D.2) is called the Hölder condition.23

For values of z 6∈ C, F (z) is an analytic function, whereas F (z) is not well defined for
values of z on the contour C due to the singularity encountered in the integration along C.
Nevertheless, F (z) does have unique value that depends on how z approaches C. Indeed, there
are two different possible boundary values of F (z) depending on whether the contour C is
approached from the left or right. We therefore introduce F+(z) and F−(z) where the former
is the limit as z approaches C from the left and the latter is the limit as z approaches from the

23If λ > 1, then it follows that the derivative f ′(t) must vanish on C, in which case f(t) is a constant. Thus,
one typically assumes that 0 < λ ≤ 1.
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right, where left and right are defined with respect to the positive direction of the contour C.24

The explicit results for F±(z) are given by the Plemelj formulae,

F±(z) = ±1
2
f(z) +

1

2πi
P

∫

C

f(t)

t− z
dt , for z ∈ C̃ , (D.3)

and C̃ consists of all points of C excluding its endpoints (in the case of a closed contour, there
are no endpoints to exclude). In eq. (D.3), the Cauchy principal value prescription is used to
treat the singularity in the integrand. In this context, the principal value is a generalization
of eq. (18),

P

∫

C

f(t)

t− z
dt = lim

δ→0

∫

C−Cδ

f(t)

t− z
dt , (D.4)

where the contour Cδ consists of the part of C with length 2δ centered symmetrically around z,
and C − Cδ is the contour C with the part Cδ removed.

If f(t) is analytic on C, then the proof of eq. (D.3) is a straightforward generalization of
the proof given in Section 2. However, the Plemelj formulae are more general and apply to any
function f(t) that satisfies the Hölder condition on the contour C. In this case, the derivation
of eq. (D.3) is more complicated. We have also sidestepped the case where z in eq. (D.3) is
one of the endpoints of C (which is relevant if the contour C is open). The reader is referred
to the references below for further details.

One can recast eq. (D.3) into another form that commonly appears in the literature,

F+(z)− F−(z) = f(z) , (D.5)

F+(z) + F−(z) =
1

πi
P

∫

C

f(t)

t− z
dt , (D.6)

for values of z located on all points of the contour C not coinciding with its endpoints. In
particular, eq. (D.5) indicates that the function F (z) defined in eq. (D.1), which is analytic for
all complex values of z 6∈ C, has a discontinuous jump as z crosses the contour C. Moreover,
the average of the two boundary values of F (z) on C is given by eq. (D.1), where the singularity
of the integrand is treated by the Cauchy principal value prescription.

Using the Plemelj formulae of complex variables theory, one can recover the results of
Section 2 as follows. If C is a contour that runs along the real axis in the positive direction,
then eq. (D.1) yields the boundary values, F±(z), of F (z) as z approaches the real axis from
above (i.e., from the left) or below (i.e., from the right), respectively,

F±(z) = lim
ǫ→0

F (z ± iǫ) = lim
ǫ→0

1

2πi

∫ ∞

−∞

f(t)

t− z ∓ iǫ
dt , (D.7)

where ǫ > 0 is an infinitesimal real quantity. Hence, eqs. (D.3) and (D.7) yield

lim
ε→0

∫ ∞

−∞

f(t)

t− z ∓ iǫ
dt = P

∫ ∞

−∞

f(t)

t− z
dt± iπf(z) . (D.8)

Eq. (D.8) is equivalent to the identity involving generalized functions given in eq. (63). As
expected, setting z = 0 in eq. (D.8) reproduces eq. (62).

24For example, for a closed counterclockwise contour C, F+(z) is given by the limit of F (z) as z approaches
C from the interior of the region bounded by C and F−(z) is given by the limit of F (z) as z approaches C
from the exterior of the region bounded by C.
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