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Constraints on the non-minimal Higgs sector

Three generations of fermions appear in nature, with each generation

possessing the same quantum numbers under the SU(3)×SU(2)×U(1)Y

gauge group. So, why should the scalar sector be of minimal form?

For an arbitrary Higgs sector, the tree-level ρ-parameter is given by

ρ0 ≡
m2

W

m2
Z cos2 θW

=

∑
T,Y [4T (T + 1)− Y 2]|VT,Y |2cT,Y∑

T,Y 2Y 2|VT,Y |2
,

where VT,Y ≡ 〈φ(T, Y )〉 defines the vacuum expectation values (vevs) of

each neutral Higgs field, and T and Y specify the total SU(2) isospin and

the hypercharge of the Higgs representation to which it belongs. Y is

normalized such that the electric charge of the scalar field is Q = T3+Y/2,

and

cT,Y =

⎧⎨⎩1, (T, Y ) ∈ complex representation,

1
2, (T, Y = 0) ∈ real representation.



For the complex (c = 1) Higgs doublet of the Standard Model with T = 1/2

and Y = 1, it follows that ρ0 = 1 as strongly suggested by the electroweak

data. The same result follows from a Higgs sector consisting of multiple

complex Higgs doublets (independent of the neutral Higgs vevs). One can

also add Higgs singlets (T = Y = 0) without changing the value of ρ0.

But, one cannot add arbitrary Higgs multiplets in general∗ unless their

corresponding vevs are very small (typically |VT,Y | <∼ 0.05v ∼ 10 GeV).

Thus, we shall consider non-minimal Higgs sectors consisting

of multiple Higgs doublets (and perhaps Higgs singlets), but no

higher Higgs representations, in order to avoid the fine-tuning

of Higgs vevs.

∗To automatically have ρ0 = 1 independently of the Higgs vevs, one must satisfy

(2T + 1)
2 − 3Y

2
= 1

for integer values of (2T, Y ). The smallest nontrivial solution beyond the complex Y = 1 Higgs doublet is

a Higgs multiplet with T = 3 and Y = 4.



The Two-Higgs doublet model (2HDM)

The 2HDM, consists of two-complex hypercharge-one scalar doublets Φ1

and Φ2. Of the eight initial degrees of freedom, three are eaten and provide

masses for the W± and Z, and the remaining five correspond to physical

scalars: a charged Higgs pair, H±, and three neutral scalars h1, h2 and h3.

In contrast to the SM, where the Higgs-sector is CP-conserving, the 2HDM

allows for Higgs-mediated CP-violation.

If CP is conserved, the three scalars can be classified as two CP-even scalars,

h and H (where mh < mH) and a CP-odd scalar A.

Thus, new features of the 2HDM include:

• Charged Higgs bosons

• A CP-odd Higgs boson (if CP is conserved in the Higgs sector)

• Higgs-mediated CP-violation (and neutral Higgs states of indefinite CP)



Start with the most general renormalizable scalar Higgs potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}
,

where m2
12, λ5, λ6 and λ7 are potentially complex parameters. There is

a significant region of the 2HDM parameter space in which the complex

vacuum expectation values (vevs) of the two Higgs fields are:

〈Φ1〉 = 1√
2

(
0

v1

)
, 〈Φ2〉 = 1√

2

(
0

v2

)
,

where v2 ≡ |v1|2 + |v2|2 = (246 GeV)2. The vevs are aligned along the

neutral direction, in which case the SU(2)×U(1) electroweak symmetry is

spontaneously broken to U(1)EM as it is in the Standard Model.



It is convenient to define new Higgs doublet fields:

H1 =

(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
.

It follows that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. This is the Higgs basis, which

is uniquely defined up to an overall rephasing, H2 → eiχH2. In the Higgs

basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5,

Z6 and Z7 are complex and transform under the rephasing of H2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .



Counting the number of parameter degrees of freedom

The scalar potential in the Higgs basis depends on six real parameters, Y1,

Y2, and Z1,2,3,4, and four complex parameters and Y3 and Z5,6,7, for a total

of 14 parameter degrees of freedom. After imposing the scalar potential

minimum conditions:

Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2 ,

removes three degrees of freedom (not counting v = 246 GeV whose value

is fixed). Finally, using the rephasing degree of freedom H2 → eiχH2

removes one more degree of freedom since

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

can be used to establish a convention where, e.g. Z5 is real.

Final verdict: the general 2HDM scalar potential is governed by 10 degrees

of freedom (and the physical (real) vacuum expectation value v).



The Higgs mass-eigenstate basis

The physical charged Higgs boson is the charged component of the Higgs-

basis doublet H2, and its mass is given by m2
H± = Y2 +

1
2Z3v

2.

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing a 3× 3 real symmetric squared-mass matrix that is defined in

the Higgs basis.†

M2 = v2

⎛
⎜⎜⎝

Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2

⎞
⎟⎟⎠ ,

where Z345 ≡ Z3 + Z4 + Re(Z5).The diagonalizing matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23. Under

the rephasing H2 → eiχH2,

θ12 , θ13 are invariant, and θ23 → θ23 − χ .
†For details, see H.E. Haber and D. O’Neil, “Basis-independent methods for the two-Higgs-doublet model.

II: The significance of tanβ,” Phys. Rev. D74, 015018 (2006) [hep-ph/0602242].



It is convenient to define the qk� which are defined in terms of the invariant

angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij.

k qk1 qk2

0 i 0

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

The neutral Goldstone boson (h0) and the physical neutral Higgs states

(h1,2,3) are given by:

hk =
1√
2

{
q∗k1

(
H0

1 − v√
2

)
+ q∗k2H

0
2e

iθ23 + h.c.

}
.

If we also define the physical charged Higgs state by H± = e±iθ23H±
2 , then

all the mass eigenstate fields are invariant under the rephasing H2 → eiχH2.



The gauge boson–Higgs boson interactions

LV V H =

(
gmWW

+
μ W

μ−
+

g

2cW
mZZμZ

μ
)

Re(qk1)hk + emWA
μ
(W

+
μ G

−
+ W

−
μ G

+
)

−gmZs
2
WZ

μ
(W

+
μ G

−
+ W

−
μ G

+
) ,

LV V HH =

⎡
⎣1
4g

2
W

+
μ W

μ−
+

g2

8c2
W

ZμZ
μ

⎤
⎦Re(q

∗
j1qk1 + q

∗
j2qk2) hjhk

+

⎡
⎣1
2g

2
W

+
μ W

μ−
+ e

2
AμA

μ
+

g2

c2
W

(
1
2 − s

2
W

)2
ZμZ

μ
+

2ge

cW

(
1
2 − s

2
W

)
AμZ

μ

⎤
⎦ (G

+
G
−

+ H
+
H

−
)

+

{⎛⎝1
2egA

μ
W

+
μ − g2s2W

2cW
Z
μ
W

+
μ

⎞
⎠ (qk1G

−
+ qk2H

−
)hk + h.c.

}
,

LV HH =
g

4cW
Im(qj1q

∗
k1 + qj2q

∗
k2)Z

μ
hj

↔
∂μ hk − 1

2g

{
iW

+
μ

[
qk1G

−↔
∂ μ hk + qk2H

−↔
∂ μ hk

]
+ h.c.

}

+

[
ieAμ +

ig

cW

(
1
2 − s2W

)
Zμ
]
(G+↔

∂μ G− + H+↔
∂μ H−) ,

where sW ≡ sin θW and cW ≡ cos θW .



The cubic and quartic Higgs couplings

L3h = −1
2v hjhkh�

[
qj1q

∗
k1Re(q�1)Z1 + qj2q

∗
k2 Re(q�1)(Z3 + Z4) + Re(q∗j1qk2q�2Z5 e−2iθ23)

+Re
(
[2qj1 + q

∗
j1]q

∗
k1q�2Z6 e

−iθ23
)
+ Re(q

∗
j2qk2q�2Z7 e

−iθ23)

]

−v hkG
+G−

[
Re(qk1)Z1 + Re(qk2 e−iθ23Z6)

]
+ v hkH

+H−
[
Re(qk1)Z3 + Re(qk2 e−iθ23Z7)

]

−1
2v hk

{
G
−
H

+
[
q
∗
k2Z4 + qk2 e

−2iθ23Z5 + 2Re(qk1)Z6 e
−iθ23

]
+ h.c.

}
,

L4h = −1
8hjhkhlhm

[
qj1qk1q

∗
�1q

∗
m1Z1 + qj2qk2q

∗
�2q

∗
m2Z2 + 2qj1q

∗
k1q�2q

∗
m2(Z3 + Z4)

+2Re(q
∗
j1q

∗
k1q�2qm2Z5 e

−2iθ23) + 4Re(qj1q
∗
k1q

∗
�1qm2Z6 e

−iθ23) + 4Re(q
∗
j1qk2q�2q

∗
m2Z7 e

−iθ23)

]

−1
2hjhkG

+G−
[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2Re(qj1qk2Z6 e−iθ23)

]

−1
2hjhkH

+
H

−
[
qj2q

∗
k2Z2 + qj1q

∗
k1Z3 + 2Re(qj1qk2Z7 e

−iθ23)

]

−1
2hjhk

{
G−H+

[
qj1q

∗
k2Z4 + q∗j1qk2Z5 e−2iθ23 + qj1q

∗
k1Z6 e−iθ23 + qj2q

∗
k2Z7 e−iθ23

]
+ h.c.

}

−1
2Z1G

+G−G+G− − 1
2Z2H

+H−H+H− − (Z3 + Z4)G
+G−H+H−

−1
2(Z5 e−2iθ23H+H+G−G− + h.c.) − G+G−(Z6 e−iθ23H+G− + h.c.) − H+H−(Z7 e−iθ23H+G− + h.c.) .



Higgs-fermion Yukawa couplings in the 2HDM

In the Higgs basis, κU,D and ρU,D, are the 3× 3 Yukawa coupling matrices,

−LY = UL(κ
UH0 †

1 + ρUH0 †
2 )UR −DLK

†(κUH−
1 + ρUH−

2 )UR

+ULK(κD †H+
1 + ρD †H+

2 )DR +DL(κ
D †H0

1 + ρD †H0
2)DR + h.c.,

where U = (u, c, t) and D = (d, s, b) are the physical quark fields and K is

the CKM mixing matrix. (Repeat for the leptons.)

By setting H0
1 = v/

√
2 and H0

2 = 0, one obtains the quark mass terms.

Hence, κU and κD are proportional to the diagonal quark mass matrices

MU and MD, respectively,

MU =
v√
2
κU = diag(mu , mc , mt) , MD =

v√
2
κD † = diag(md , ms , mb) .

Note that ρQ → e−iχρQ under the rephasing H2 → eiχH2, (for Q = U,D).



It follows that the Yukawa couplings of the mass-eigenstate Higgs bosons
and the Goldstone bosons to the quarks are:

−LY =
1

v
D
∑
k

{
MD(qk1PR + q

∗
k1PL) +

v√
2

[
qk2 [e

iθ23ρ
D
]
†
PR + q

∗
k2 e

iθ23ρ
D
PL

]}
Dhk

+
1

v
U
∑
k

{
MU(qk1PL + q

∗
k1PR) +

v√
2

[
q
∗
k2 e

iθ23ρ
U
PR + qk2 [e

iθ23ρ
U
]
†
PL

]}
Uhk

+

{
U
[
K[eiθ23ρD]†PR − [eiθ23ρU ]†KPL

]
DH+ +

√
2

v
U [KMDPR − MUKPL]DG+ + h.c.

}
,

where PL,R = 1
2(1∓ γ5) are left and right-handed projection operators.

• The combinations eiθ23ρU and eiθ23ρU that appear in the interactions

above are invariant under the rephasing of H2.

• Note that no tanβ parameter appears above! This is because tanβ is

an unphysical parameter in the general 2HDM.

• If ρU and ρD are complex non-diagonal 3× 3 matrices, then the 2HDM

exhibits (tree-level) flavor changing neutral currents (FCNCs) mediated

by neutral Higgs exchange and new sources of CP-violation.



How to avoid tree-level Higgs-mediated FCNCs

• Arbitrarily declare ρU and ρD to be diagonal matrices. This is an

unnaturally fine-tuned solution.

• Impose a discrete symmetry or supersymmetry (e.g.“Type-I” or “Type-II”

Higgs-fermion interactions), which selects out a special basis of the

2HDM scalar fields. In this case, ρQ is automatically proportional to MQ

(for Q = U,D,L), and is hence diagonal.

• Impose alignment without a symmetry: ρQ = αQκQ , (Q = U,D,L) ,

where the αQ are complex scalar parameters [e.g. see Pich and Tuzon

(2009)].

• Impose the decoupling limit. Tree-level Higgs-mediated FCNCs will be

suppressed by factors of squared-masses of heavy Higgs states. (How

heavy is sufficient?)



The CP-conserving limit

In the generic 2HDM, new sources of CP-violation arise due to the fact that

• Z5,6,7 are complex, and cannot be made real by rephasing H2 → eiχH2.

• CP-violating neutral Higgs–fermion couplings due to complex ρU and ρD.

Imposing CP-violation in the neutral Higgs sector, the qki are given by:

k qk1 qk2

1 sin(β − α) cos(β − α)

2 − cos(β − α) sin(β − α)

3 0 i

where tanβ ≡ 〈Φ0
2〉/〈Φ0

1〉 and α is the CP-even Higgs mixing angle in the

generic basis. Note that the quantity θ12 ≡ β − α does not depend on the

choice of basis. The other angles are θ13 = θ23 = 0; the latter fixes the

phase of H2.



We shall also take ρU and ρD to be real 3× 3 matrices.

The resulting Higgs-fermion Yukawa couplings are:

−LY =
i

v
DMDγ5DG0 + D

[
MD

v
sin(β − α) +

ρD√
2
cos(β − α)

]
Dh0

+D

[
MD

v
cos(β − α) − ρD√

2
sin(β − α)

]
DH

0
+

i√
2
ρ
D
Dγ5DA

0

− i

v
UMDγ5UG0 + U

[
MU

v
sin(β − α) +

ρU√
2
cos(β − α)

]
Uh0

+U

[
MU

v
cos(β − α) − ρU√

2
sin(β − α)

]
UH0 − i√

2
ρUUγ5UA0

+

{
U
[
Kρ

D
PR − ρ

U
KPL

]
DH

+
+

√
2

v
U [KMDPR − MUKPL]DG

+
+ h.c.

}
,

where h0, H0 are the CP-even neutral Higgs bosons and A0 is the CP-odd

neutral Higgs boson. Of course, tree-level Higgs-mediated FCNCs still

remain.



Type I and II Higgs-fermion Yukawa couplings in the 2HDM

Glashow and Weinberg showed that a sufficient condition for the absence

of tree-level Higgs-mediated FCNCs is to require that at most one neutral

Higgs field couple to fermions of a given electric charge. To avoid FCNCs

in the 2HDM, one can impose a discrete symmetry to appropriately restrict

the structure of the Higgs-fermion interactions in a specific basis for the

Higgs fields. The corresponding 2HDM Yukawa Lagrangian is:

−LY = ULΦ
0 ∗
a hU

a UR−DLK
†Φ−

a h
U
a UR+ULKΦ+

a h
D †
a DR+DLΦ

0
ah

D †
a DR+h.c. ,

where hU,D are 3 × 3 Yukawa coupling matrices, and there is an implicit

sum over a = 1, 2.

Different choices for the discrete symmetry yield:

• Type-I Yukawa couplings: hU
1 = hD

1 = 0,

• Type-II Yukawa couplings: hU
1 = hD

2 = 0.



The parameter tanβ = 〈Φ0
2〉/〈Φ0

1〉 is now meaningful since it refers to

vacuum expectation values with respect to the basis of scalar fields where

the discrete symmetry has been imposed. (Typical discrete symmetries

involve requiring invariance of the Lagrangian under a sign change of one

of the scalar fields and some of the fermion fields.)

Notes:

• By imposing the discrete symmetry (or supersymmetry), one finds that

the neutral Higgs boson sector is CP-conserving.

• Type-II Yukawa couplings arise in the MSSM due to supersymmetry.

• The matrix ρQ is constrained to be diagonal and proportional to MQ.

The proportionality constant depends on tanβ.



The Higgs-fermion couplings in in Type-I and Type-II models

• Type-I Yukawa couplings: hU
1 = hD

1 = 0,

ρD =

√
2Md cotβ

v
, ρU =

√
2Mu cotβ

v
.

Type-I couplings h0 A0 H0

Up-type quarks cosα/ sin β cotβ sinα/ sin β

Down-type quarks and charged leptons cosα/ sin β − cotβ sinα/ sin β

• Type-II Yukawa couplings: hU
1 = hD

2 = 0,

ρD = −
√
2Md tan β

v
, ρU =

√
2Mu cotβ

v
.

Type-II couplings h0 A0 H0

Up-type quarks cosα/ sin β cotβ sinα/ sin β

Down-type quarks and charged leptons − sinα/ cos β tanβ cosα/ cosβ



There are interesting experimental constraints on the Type-II 2HDM. The

GFITTER result below was obtained in 2009, so it should be updated.
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2HDM constraints in the mH⁺  vs. tan β plane, from F. Mahmoudi and O. Stal,    
Flavor constraints on the two-Higgs-doublet model  with general Yukawa  
couplings,  Phys. Rev. D81, 035016 (2010).  



Is tan β a physical observable?

In a generic 2HDM, tan β is meaningless, unless there is some additional

symmetry, which picks out a special basis for the scalar fields. But, if you

do not know the symmetry a priori, how should you proceed?

• You can test for specific models, such as a Type-I or II model.

• You can measure observables that are basis-independent, and determine

whether additional symmetries are present.

Example: For simplicity, ignore the first two generations of quarks and

assume CP conservation. Then, you should measure ρD and ρU .

ρD/ρU = mb/mt , for Type-I couplings ,

ρDρU = −2mtmb/v
2 , for Type-II couplings .

Thus, measuring ρD and ρU would help determine the underlying structure

of the Higgs-fermion interaction.



Other 2HDMs

• The inert 2HDM

In this model, one imposes a symmetry H2 → −H2 in the Higgs basis. As

a result, The Higgs sector is CP-conserving. In the CP-conserving neutral

Higgs-fermion Lagrangian, this model corresponds to sin(β − α) = 1,

cos(β − α) = 0 and ρU = ρD = 0. The CP-even h0 is identical to the SM

Higgs boson, and H0, A0 and H± appear only quadratically in interactions

and so the lightest among these states is absolutely stable.

• Fermiophobic 2HDM

This is a model that purports to invent a Higgs scalar that couples only to

gauge bosons and is decoupled from fermions. This can be realized in a

Type-I 2HDM where cosα = 0. In this case, h0 has no tree-level couplings

to fermions. However, the h0 couplings to W+W− and ZZ are suppressed

by a factor of cosβ.



The decoupling limit of the 2HDM

In the decoupling limit, one of the two Higgs doublets of the 2HDM receives

a very large mass which then decouples from the theory. This is achieved

when Y2 
 v2 and |Zi| <∼ O(1) [for all i]. The effective low energy theory

is a one-Higgs-doublet model, which yields the SM Higgs boson.

We order the neutral scalar masses according to m1 < m2,3 and define the

Higgs mixing angles accordingly. The conditions for the decoupling limit are:

| sin θ12| <∼ O
(
v2

m2
2

)
� 1 , | sin θ13| <∼ O

(
v2

m2
3

)
� 1 ,

Im(Z5 e
−2iθ23) <∼ O

(
v2

m2
3

)
� 1 .

In the decoupling limit, m1 � m2,m3,mH±. In particular, the properties of

h1 coincide with the SM Higgs boson with m2
1 = Z1v

2 up to corrections of

O(v4/m2
2,3), and m2 � m3 � mH± with squared mass splittings of O(v2).



In the exact decoupling limit, where s12 = s13 = Im(Z5 e
−2iθ23) = 0, the

interactions of h1 are precisely those of the SM Higgs boson. In particular,

the interactions of the h1 in the decoupling limit are CP-conserving and

diagonal in quark flavor space.

In the most general 2HDM, CP-violating and neutral Higgs-mediated FCNCs

are suppressed by factors of O(v2/m2
2,3) in the decoupling limit. In contrast,

the interactions of the heavy neutral Higgs bosons (h2 and h3) and the

charged Higgs bosons (H±) in the decoupling limit can exhibit both CP-

violating and quark flavor non-diagonal couplings (proportional to the ρQ).

The decoupling limit is a generic feature of extended Higgs sectors.

• The observation of a SM-like Higgs boson does not rule out the possibility

of an extended Higgs sector in the decoupling regime.



Sources for deviations of the properties of h0
1 from the SM Higgs boson

In the decoupling limit of the 2HDM, we can identify a scale ΛH 
 v which

controls the masses of the heavier Higgs states.

In addition, additional new physics beyond the Standard Model (BSM) may

exist. Denote the energy scale of this new physics by ΛBSM.

• Deviations from SM Higgs behavior can be due to corrections to tree-level

Higgs couplings of O(v2/Λ2
H) arising from non-minimal Higgs physics

[ΛH characterizes the scale of the heavy Higgs states].

• Additional deviations of order O(v2/Λ2
BSM) can arise in loop-induced

Higgs couplings due to BSM particles in the loops. In principle, the

scales ΛH and ΛBSM are unconnected. For example, in the MSSM,

ΛH ∼ mA and ΛBSM ∼ ΛSUSY (the supersymmetry-breaking scale).

Deviations from SM Higgs behavior would provide clues to the structure of

the extended Higgs sector and/or the BSM physics.



Dreams of large departures from SM Higgs behavior

Suppose the γγ excess in the Higgs data persists, whereas the ZZ∗ → 4

leptons signal conforms to Standard Model expectations. Can this be

explained within the 2HDM?

Here is one possible scenario. For simplicity, assume CP conservation.

Suppose that h0 and A0 were approximately degenerate in mass, and the

properties of h0 were close to those of the SM Higgs boson. Then, the A0

could be produced in gluon-gluon fusion, and could subsequently decay into

γγ. However, the A0 does not couple at tree level to ZZ. Thus, the γγ

signal could be enhanced due to simultaneous contributions from both h0

and A0

Pedro Ferreira, Rui Santos, Joao Silva, and I have performed parameter

scans for both the Type-I and Type-II 2HDM, to see whether an enhanced

γγ signal is plausible.



Enhanced final state Higgs channels

We define

RH
f =

σ(pp → H)2HDM × BR(H → f)2HDM

σ(pp → hSM)× BR(hSM → f)
,

where f is the final state of interest, and H is one of the two 125 GeV

mass-degenerate scalars. The observed ratio of f production relative to the

SM expectation is

Rf ≡
∑
H

RH
f .

In obtaining σ(pp → S), we include the two main Higgs production

mechanisms: gg fusion and vector boson (W+W− and ZZ) fusion. The

final states of interest are f = γγ, ZZ∗, WW ∗ and τ+τ−. Note that the

LHC is (eventually) sensitive to the bb̄ final state primarily in associated

V +H production, which is less relevant to our analysis.



An enhanced γγ signal due to mass-degenerate h0 and A0:
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The enhancement occurs in the parameter regime of tanβ <∼ 1.5 and

sin(β − α) near 1.

Indeed, we see that the scenario of a mass-degenerate h0 and A0 (and

more generally any mass-degenerate Higgs pair) that yields an enhanced γγ

signal is incompatible with the MSSM Higgs sector, since such low values

of tan β in the MSSM are ruled out by LEP data.



But an enhanced γγ signal in the mass-degenerate scenario yields two

associated predictions that must be confirmed by experiment if this

framework is to be consistent.

1. The γγ signal produced in vector boson fusion events must be less than

the SM rate in 2HDM-II (but is not as constrained in 2HDM-I).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1

1.5

2

2.5
Model I, h and A degenerate

R
γγ

RVBF
γγ

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

RVBF
γγ

R
γγ

Model II, h and A degenerate

2. The inclusive τ+τ− signal is enhanced with respect to the SM due to

the production of A via gg fusion.
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The Higgs sector of the MSSM

The Higgs sector of the MSSM is a 2HDM, whose Yukawa couplings

and Higgs potential are constrained by SUSY. Instead of employing to

hypercharge-one scalar doublets Φ1,2, it is more convenient to introduce a

Y = −1 doublet Hd ≡ iσ2Φ
∗
1 and a Y = +1 doublet Hu ≡ Φ2:

Hd =

(
H1

d

H2
d

)
=

(
Φ0 ∗

1

−Φ−
1

)
, Hu =

(
H1

u

H2
u

)
=

(
Φ+

2

Φ0
2

)
.

The origin of the notation originates from the Higgs Yukawa Lagrangian:

LYukawa = −hij
u (ū

i
Ru

j
LH

2
u − ūi

Rd
j
LH

1
u)− hij

d (d̄
i
Rd

j
LH

1
d − d̄iRu

j
LH

2
d) + h.c. .

Note that the neutral Higgs field H2
u couples exclusively to up-type quarks

and the neutral Higgs field H1
d couples exclusively to down-type quarks.

This is a Type-II 2HDM.



The Higgs potential of the MSSM is:

V =
(
m

2
d + |μ|2

)
H

i∗
d H

i
d +

(
m

2
u + |μ|2

)
H

i∗
u H

i
u − m

2
ud

(
ε
ij
H

i
dH

j
u + h.c.

)
+1

8

(
g2 + g′ 2) [Hi∗

d Hi
d − Hj∗

u Hj
u

]2
+ 1

2g
2|Hi∗

d Hi
u|2 ,

where ε12 = −ε21 = 1 and ε11 = ε22 = 0, and the sum over repeated indices is

implicit. Above, μ is a supersymmetric Higgsino mass parameter and m2
d, m2

u, m2
ud

are soft-supersymmetry-breaking masses. The quartic Higgs couplings are related to the

SU(2) and U(1)Y gauge couplings as a consequence of SUSY.

Minimizing the Higgs potential, the neutral components of the Higgs fields acquire vevs:

〈H0
d〉 = vd and 〈H0

u〉 = vu, where v2 ≡ v2
d + v2

u = 4m2
W/g2 = (246 GeV)2. The

ratio of the two vevs is
tan β ≡ vu

vd

, 0 ≤ β ≤ 1
2π .

In the Higgs basis, the phase of H2 can be chosen such that Z5, Z6 and Z7 are real:

Z1 = Z2 = 1
4(g

2 + g′ 2) cos2 2β , Z3 = Z5 +
1
4(g

2 − g′ 2) , Z4 = Z5 − 1
2g

2 ,

Z5 =
1
4(g

2
+ g

′ 2
) sin

2
2β , Z7 = −Z6 = 1

4(g
2
+ g

′ 2
) sin 2β cos 2β .



The five physical Higgs particles consist of a charged Higgs pair

H
±
= H

±
d sin β + H

±
u cosβ ,

one CP-odd scalar

A0 =
√
2
(
ImH0

d sin β + ImH0
u cos β

)
,

and two CP-even scalars

h0 = −(
√
2ReH0

d − vd) sinα + (
√
2ReH0

u − vu) cosα ,

H0 = (
√
2ReH0

d − vd) cosα + (
√
2ReH0

u − vu) sinα ,

where we have now labeled the Higgs fields according to their electric charge. The

angle α arises when the CP-even Higgs squared-mass matrix (in the H0
d—H0

u basis) is

diagonalized to obtain the physical CP-even Higgs states.

All Higgs masses and couplings can be expressed in terms of two parameters usually

chosen to be mA and tan β.



Tree-level MSSM Higgs masses

The charged Higgs mass is given by

m
2
H± = m

2
A + m

2
W ,

and the CP-even Higgs bosons h0 and H0 are eigenstates of the squared-mass matrix

M2
0 =

(
m2

A sin2 β + m2
Z cos2 β −(m2

A + m2
Z) sin β cos β

−(m2
A + m2

Z) sin β cos β m2
A cos2 β + m2

Z sin2 β

)
.

The eigenvalues of M2
0 are the squared-masses of the two CP-even Higgs scalars

m
2
H,h = 1

2

(
m

2
A + m

2
Z ±

√
(m2

A + m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
,

and α is the angle that diagonalizes the CP-even Higgs squared-mass matrix. It follows

that

mh ≤ mZ| cos 2β| ≤ mZ .

Note the contrast with the SM where the Higgs mass is a free parameter, m2
h = 1

2λv
2.

In the MSSM, all Higgs self-coupling parameters of the MSSM are related to the squares

of the electroweak gauge couplings.



Tree-level MSSM Higgs couplings

1. Higgs couplings to gauge boson pairs (V = W or Z)

gh0V V = gVmV sin(β − α) , gH0V V = gVmV cos(β − α) ,

where gV ≡ 2mV /v. There are no tree-level couplings of A0 or H± to V V .

2. Higgs couplings to a single gauge boson

The couplings of V to two neutral Higgs bosons (which must have opposite

CP-quantum numbers) is denoted by gφA0Z(pφ− p0A), where φ = h0 or H0

and the momenta pφ and p0A point into the vertex, and

gh0A0Z =
g cos(β − α)

2 cos θW
, gH0A0Z =

−g sin(β − α)

2 cos θW
.



3. Summary of Higgs boson–vector boson couplings

The properties of the three-point and four-point Higgs boson-vector boson

couplings are conveniently summarized by listing the couplings that are

proportional to either sin(β − α) or cos(β − α) or are angle-independent.

As a reminder, cos(β − α) → 0 in the decoupling limit.

cos(β − α) sin(β − α) angle-independent

H0W+W− h0W+W− —

H0ZZ h0ZZ —

ZA0h0 ZA0H0 ZH+H− , γH+H−

W±H∓h0 W±H∓H0 W±H∓A0

ZW±H∓h0 ZW±H∓H0 ZW±H∓A0

γW±H∓h0 γW±H∓H0 γW±H∓A0

— — V V φφ , V V A0A0 , V V H+H−

where φ = h0 or H0 and V V = W+W−, ZZ, Zγ or γγ.



4. Higgs-fermion couplings

Supersymmetry imposes a Type-II structure for the Higgs-fermion Yukawa couplings. Since

the neutral Higgs couplings to fermions are flavor-diagonal, we list only the Higgs coupling

to 3rd generation fermions. The couplings of the neutral Higgs bosons to ff̄ relative to

the Standard Model value, gmf/2mW , are given by

h
0
bb̄ (or h

0
τ
+
τ
−
) : − sinα

cosβ
= sin(β − α) − tan β cos(β − α) ,

h0tt̄ :
cosα

sin β
= sin(β − α) + cot β cos(β − α) ,

H0bb̄ (or H0τ+τ−) :
cosα

cos β
= cos(β − α) + tan β sin(β − α) ,

H
0
tt̄ :

sinα

sin β
= cos(β − α) − cot β sin(β − α) ,

A
0
bb̄ (or A

0
τ
+
τ
−
) : γ5 tan β ,

A0tt̄ : γ5 cot β ,

where the γ5 indicates a pseudoscalar coupling. Note that the h0ff̄ couplings approach

their SM values in the decoupling limit, where cos(β − α) → 0.



Similarly, the charged Higgs boson couplings to fermion pairs, with all

particles pointing into the vertex, are given by‡

gH−tb̄ =
g√
2mW

[
mt cotβ PR +mb tanβ PL

]
,

gH−τ+ν =
g√
2mW

[
mτ tanβ PL

]
.

Especially noteworthy is the possible tanβ-enhancement of certain Higgs-

fermion couplings. The general expectation in MSSM models is that tan β

lies in a range:

1 <∼ tan β <∼
mt

mb
.

Near the upper limit of tanβ, we have roughly identical values for the top

and bottom Yukawa couplings, ht ∼ hb, since

hb =

√
2mb

vd
=

√
2mb

v cosβ
, ht =

√
2mt

vu
=

√
2mt

v sinβ
.

‡Including the full flavor structure, the CKM matrix appears in the charged Higgs couplings in the

standard way for a charged-current interaction.



Aside: the decoupling limit of the MSSM

The decoupling behavior of the MSSM Higgs sector is exhibited in the limit of mA � mZ,

where the corresponding tree-level expressions are given by:

m
2
h 
 m

2
Z cos

2
2β , m

2
H 
 m

2
A + m

2
Z sin

2
2β ,

m
2
H± = m

2
A + m

2
W , cos

2
(β − α) 
 m4

Z sin2 4β

4m4
A

.

Indeed, mA 
 mH 
 mH±, up to corrections of O(m2
Z/mA), and cos(β−α) = 0 up

to corrections of O(m2
Z/m

2
A), as expected. In general, in the limit of cos(β − α) → 0,

all the h0 couplings to SM particles approach their SM limits. In particular, if λV is a

Higgs coupling to vector bosons and λf is a Higgs couplings to fermions, then

λV

[λV ]SM
= sin(β − α) = 1 + O

(
m4

Z/m
4
A

)
,

λf

[λf ]SM
= 1 + O

(
m2

Z/m
2
A

)
.

The behavior of the h0ff coupling is seen from:

h
0
bb̄ (or h

0
τ
+
τ
−
) : − sinα

cos β
= sin(β − α) − tan β cos(β − α) ,

h0tt̄ :
cosα

sin β
= sin(β − α) + cot β cos(β − α) ,

Note the extra tan β enhancement in the deviation of λhbb from [λhbb]SM .
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Saving the MSSM Higgs sector—the

impact of radiative corrections

We have already noted the tree-level relation mh ≤ mZ, which is already

ruled out by LEP data. But, this inequality receives quantum corrections.

The Higgs mass can be shifted due to loops of particles and their

superpartners (an incomplete cancellation, which would have been exact if

supersymmetry were unbroken):

h0 h0 h0 h0t t̃1,2

m2
h
<∼ m2

Z +
3g2m4

t

8π2m2
W

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

where Xt ≡ At − μ cotβ governs stop mixing and M2
S is the average

squared-mass of the top-squarks t̃1 and t̃2 (which are the mass-eigenstate

combinations of the interaction eigenstates, t̃L and t̃R).



The state-of-the-art computation includes the full one-loop result, all the

significant two-loop contributions, some of the leading three-loop terms,

and renormalization-group improvements. The final conclusion is that

mh <∼ 130 GeV [assuming that the top-squark mass is no heavier than

about 2 TeV].

Maximal mixing corresponds to choosing the MSSM Higgs parameters in such a way that

mh is maximized (for a fixed tan β). This occurs for Xt/MS ∼ 2. As tan β varies, mh

reaches is maximal value, (mh)max 
 130 GeV, for tan β � 1 and mA � mZ.



Beyond the MSSM Higgs sector

Why go beyond the MSSM? The observed Higgs mass of 125 GeV is

somewhat uncomfortable for the MSSM, as the mass of h0 is somewhat

close to its maximally allowed value, which requires heavy stop masses and

significant stop mixing. The absence of observed SUSY particles emphasizes

this little hierarchy problem that seems to require at least 1% fine-tuning

of MSSM parameters to explain the magnitude of the EWSB scale.

In the NMSSM, a Higgs singlet superfield Ŝ is added to the MSSM. The

corresponding superpotential terms,

(μ+ λŜ)ĤuĤd +
1
2μSŜ

2 + 1
3κŜ

3 ,

and soft-SUSY-breaking terms BsS
2 + λAλSHuHd add additional

parameters to the model, which can modify the bounds on the lightest

Higgs mass.



For example, Delgado, Kolda, Olson and de la Puente obtain:
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Other authors (e.g. Dermisek and Gunion) have advocated NMSSM models

as a way to partially alleviate the little hierarchy problem. More generally,

there is a large literature (beginning with Haber and Sher in 1987) suggesting

the possibility of relaxing the Higgs mass upper bound in extensions of the

MSSM.
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