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Abstract

We examine a sequence of rational numbers {rn} that yield approximations of ln 2

that become more precise as n increases. The approximation improves in accuracy by

roughly an order of magnitude as n increases by one unit.

1. Introduction

There are many ways to obtain rational approximations of irrational numbers. In this
short note, I will exploit a very clever method that is based on examining a sequence of
integrals that is suitably chosen. The method is probably best known in association with
obtaining rational approximations of π [1]. Indeed, the famous approximation that we all
learned in high school, π ≈ 22/7, is naturally obtained as the first of a sequence of ever
improving approximations derived from examining the sequence of integrals introduced be-
low. After a lightning review of the method for approximating π, I then apply the method,
following Ref. [2], to obtain rational approximations of ln 2.

Rational approximations of π can be obtained by considering the following sequence of
integrals,

Jn ≡ 4(−1)n
∫

1

0

dx

1 + x2

(

x2(1− x)2

2

)2n

. (1)

As shown in Ref. [1],
Jn = π − pn , (2)

where pn is a positive rational number for positive integer values of n. Since 0 ≤ x(1−x) ≤ 1

4

for 0 ≤ x ≤ 1, it follows that

0 < (−1)nJn <
1

1024n
=⇒ lim

n→∞

pn = π . (3)

Hence for finite values of n, the sequence of rational numbers {pn} provides rational approx-
imations of π with improving accuracy as n increases. Indeed, eq. (3) guarantees that the
accuracy improves by more than three orders of magnitude as n is increased by one unit.

Remarkably, a closed form expression is given for pn in Ref. [1],

pn =

n−1
∑

k=0

(−1)k
24−2k(4k)!(4k + 3)!

(8k + 7)!

(

820k3 + 1533k2 + 902k + 165
)

. (4)
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This result is derived by employing an identity given in Ref. [3] with no proof,

x4n(1− x)4n

1 + x2
=

(

x6 − 4x5 + 5x4 − 4x2 + 4
)

n−1
∑

k=0

(−4)n−1−kx4k(1− x)4k +
(−4)n

1 + x2
. (5)

It is not very difficult to provide a derivation of eq. (5). We begin with the identity,

x4(1− x)4

1 + x2
= P (x) +

R

1 + x2
, (6)

for some polynomial P (x) and constant R to be determined. To obtain R, we extend the
function x4(1 − x)n/(1 + x2) into the complex plane. We then demand that the residue at
the poles ±i are the same on both sides of eq. (6). This yields R = −4. It then follows that

P (x) =
x4(1− x)4 + 4

1 + x2
. (7)

We can then use Mathematica to factor the numerator of P (x),

x4(1− x)4 + 4 = (1 + x2)(4− 4x2 + 5x4 − 4x5 + x6) . (8)

Hence,
P (x) = x6 − 4x5 + 5x4 − 4x2 + 4 . (9)

Next, we multiply both sides of eq. (6) by x4(1−x)4. When carrying out the multiplication on
the last term on the right hand side of eq. (6), we shall employ x4(1−x)4 = (1+x2)P (x)−4.
The end result is

x8(1− x)8

1 + x2
=

[

x4(1− x)4 − 4
]

P (x) +
(−4)2

1 + x2
. (10)

We again multiply both sides of eq. (10) by x4(1−x)4 and follow the same strategy as before
to obtain,

x12(1− x)12

1 + x2
=

[

x8(1− x)8 − 4x4(1− x)4 + (−4)2
]

P (x) +
(−4)3

1 + x2
. (11)

Continuing the process, it should be clear that after n steps we arrive at

x4n(1− x)4n

1 + x2
= P (x)

n−1
∑

k=0

(−4)n−1−kx4k(1− x)4k +
(−4)n

1 + x2
. (12)

Having identified P (x) in eq. (9), we have indeed established the result quoted in eq. (5).
The evaluation of Jn is now straightforward, as the expression for pn is expressed as the

sum of integrals, each of which is recognized as the integral representation of a Beta function.
In light of limn→∞ Jn = 0, it follows that a rational approximation to π that monotonically
improves in accuracy as n increases is given by π ≃ pn, where pn consists of the sum of the
first n terms of the series given in eq. (4),

π =
22

7
− 19

15015
+

543

594914320
− 77

104187267600
+ · · · . (13)

In the next section, we shall use a similar technique to obtain rational approximations of
ln 2.
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2. Rational approximations of ln 2

Consider the following sequence of integrals [2],

In ≡ (−1)n
∫

1

0

dx

1 + x

(

x(1− x)

2

)n

. (14)

We will demonstrate below that
In = ln 2− rn , (15)

where rn is a positive rational number for positive integer values of n. Since 0 ≤ x(1−x) ≤ 1

4

for 0 ≤ x ≤ 1, it follows that

0 < (−1)nIn <
1

8n
=⇒ lim

n→∞

rn = ln 2 . (16)

Hence for finite values of n, the sequence of rational numbers {rn} provides rational approx-
imations of ln 2 with improving accuracy as n increases. Indeed, eq. (16) guarantees that
the accuracy improves by roughly an order of magnitude as n is increased by one unit.

The relevant identity analogous to eq. (5) is derived using the same technique employed
in Section 1. We first note that

x(1− x)

1 + x
= 2− x− 2

1 + x
. (17)

Multiplying both sides of this equation by x(1− x) and using x(1− x) = (2− x)(1 + x)− 2
when multiplying the last term on the right hand side of eq. (17) yields,

x2(1− x)2

1 + x
=

[

x(1− x)− 2
]

(2− x) +
(−2)2

1 + x
. (18)

We again multiply by x(1− x) and use x(1− x) = (2− x)(1 + x)− 2 when multiplying the
last term on the right hand side of eq. (17) to obtain

x3(1− x)3

1 + x
=

[

x2(1− x)2 − 2x(1− x) + (−2)2
]

(2− x) +
(−2)3

1 + x
. (19)

Is should now be clear that after n steps, the end result is given by

xn(1− x)n

1 + x
= (2− x)

n−1
∑

k=0

(−2)n−1−kxk(1− x)k +
(−2)n

1 + x
. (20)

Hence, it follows that

In = ln 2 +
n−1
∑

k=0

(−2)−1−k

∫

1

0

xk(1− x)k(2− x) dx . (21)

Using the integral expression of the Beta function,

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
=

(r − 1)!(s− 1)!

(r + s− 1)!
=

∫

1

0

xr−1(1− x)s−1 dx , (22)

it follows that

In = ln 2 +
n−1
∑

k=0

(−2)−1−k [2B(k + 1, k + 1)−B(k + 2, k + 1)] , (23)
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which can be simplified to obtain our final result,

In = ln 2− 3

4

n−1
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
(24)

Taking the limit as n → ∞ and making use of limn→∞ In = 0, we arrive at an interesting
series expansion for ln 2 (see the Appendix for an independent derivation),

ln 2 =
3

4

∞
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
=

3

4
− 1

16
+

1

160
− 3

4480
+

1

13440
− 1

118272
+ · · · . (25)

It then follows that a good approximation to ln 2 is given by the first n terms of eq. (25).
That is, in eq. (15) rn is given by,

rn =
3

4

n−1
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
. (26)

In Table 1 we list the individual terms, ak, that appear in eq. (25) and the corresponding
values of rn ≡

∑

n−1

k=0
ak for positive integer values of n ≤ 11. Ten digit accuracy is obtained

for n = 11. Note that the accuracy of the approximation to ln 2 improves by roughly an
order of magnitude with each increase of n by one unit, as anticipated.

n an−1 rn numerical value

1 3

4

3

4
0.75

2 − 1

16

11

16
0.6875

3 1

160

111

160
0.69375

4 − 3

4480

621

896
0.69308035714

5 1

13440

2329

3360
0.69315476190

6 − 1

118272

19519

28160
0.69314630682

7 1

1025024

3552463

5125120
0.69314728241

8 − 1

8785920

42629549

61501440
0.69314716859

9 1

74680320

241567449

348508160
0.69314718198

10 − 3

1891901440

834505731

1203937280
0.69314718039

11 1

5297324032

18359126087

26486620160
0.69314718058

Table 1: Rational approximations, rn =
∑

n−1

k=0
ak, of ln 2 obtained using Mathematica. The

approximations become more accurate as n increases. With eleven digit accuracy, ln 2 ≃
0.69314718056.
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APPENDIX

In this Appendix, an independent derivation of eq. (25) is provided [4]. We first employ
eq. (16) on p. 102 of Ref. [5],

2F1(
1

2
, 1, 3

2
; z2) =

1

2z
ln

(

1 + z

1− z

)

, (27)

where 2F1 is the Gauss hypergeometric function. We next use eq. (4) on p. 105 of Ref. [5],

2F1(a, b; c; z) = (1− z)−b
2F1

(

c− a, b; c, z/(z − 1)
)

, (28)

to obtain,

ln

(

1 + z

1− z

)

=
2z

1− z2
2F1

(

1, 1; 3
2
, z2/(z2 − 1)

)

. (29)

Setting z = 1

3
yields,

ln 2 = 3

4 2F1

(

1, 1; 3
2
,−1

8
) . (30)

Using the series representation of the Gauss hypergeometric function given by eqs. (1) and (2)
on p. 101 of Ref. [5],

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
zk , (31)

it follows that

ln 2 = 3

4
Γ
(

3

2

)

∞
∑

k=0

k!

23kΓ
(

3

2
+ k

) . (32)

Finally, using Γ
(

3

2

)

= 1

2

√
π and making use of the duplication formula (see, e.g., eq. (1.2.3)

of Ref. [6]),

Γ(n+ 1

2
) =

√
π Γ(2n+ 1)

22n Γ(n + 1)
=

√
π(2n)!

22n n!
, (33)

we arrive at our final result,

ln 2 =
3

4

∞
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
, (34)

in agreement with eq. (25).
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