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Abstract

In these notes, we express the quantum Hamiltonian of a free Majorana fermion field
in 3+1 spacetime dimensions as a sum over Fourier modes. The full details of the calcu-
lation are provided. The computation is presented first using the four-component spinor
formalism. The computation is then repeated using the two-component spinor formalism.

1 The Hamiltonian derived using four-component spinors

In four-component spinor notation, the Lagrangian density for a free Majorana field is given by

L = 1
2
iΨMγµ∂µΨM −

1
2
mΨMΨM , (1)

where ΨM = ΨC
M ≡ CΨ

T

M and C is the charge conjugation matrix.1 The Majorana field ΨM(x)
and its Dirac conjugate field ΨM(x) satisfy the free-field Dirac equation and its conjugate,

(iγµ∂µ −m)ΨM(x) = 0 , ΨM(x)(iγµ←
∂µ +m) = 0 . (2)

To obtain the Hamiltonian, we first compute

ΠM =
∂L

∂(∂0ΨM)
= 1

2
iΨMγ0 . (3)

Then, the Hamiltonian density is given by

H = ΠM∂0ΨM −L = 1
2
iΨMγ0∂0ΨM −

1
2
iΨMγµ∂µΨM + 1

2
mΨMΨM

= −1
2
iΨM~γ · ~∇ΨM + 1

2
mΨMΨM . (4)

Finally, the Hamiltonian of the free Majorana field is given by

H =
1

2

∫

d3x
[

−iΨM(x)~γ · ~∇ΨM(x) +mΨM(x)ΨM(x)
]

. (5)

1For example, C = iγ0γ2 is the charge in the chiral representation of the gamma matrices (where γ
5
is

diagonal). However, all computations in these notes are independent of the representation chosen for the gamma
matrices and the spinor wave functions.
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Next, we expand the Majorana field in Fourier modes which involve the creation and anni-
hilation operators,

ΨM(x) =
∑

λ

∫

d3~p

(2π)3/2(2Ep)1/2
[

u(~p, λ)a(~p, λ)e−ip ·x + v(~p, λ)a†(~p, λ)eip ·x
]

, (6)

where pµ = (Ep ; ~p) with Ep ≡
(

|~p|2 +m2
)1/2

and the sum over helicities runs over λ = −1
2
, 1

2
.

Under the assumption that ΨM(x) satisfies the free field equations [eq. (2)], the spinor wave
functions u(~p, λ) and v(~p, λ) satisfy the momentum space Dirac equations,

(/p−m) u(~p, s) = (/p+m) v(~p, s) = 0 , (7)

u(~p, s) (/p−m) = v(~p, s) (/p+m) = 0 , (8)

Using the fact that a Majorana fermion field satisfies ΨM = CΨ
T

M , eq. (6) implies that the u

and v spinor wave functions are related as follows:2

v(~p, s) = Cu(~p, s)T , u(~p, s) = Cv(~p, s)T , (9)

v(~p, s) = −u(~p, s)TC−1 , u(~p, s) = −v(~p, s)TC−1 . (10)

The creation and annihilation operators a† and a satisfy anticommutation relations:

{a(~p, λ), a†(~p ′, λ′)} = δ3(~p− ~p ′)δλλ′ , (11)

with all other anticommutation relations vanishing. We have employed covariant normalization
of the one-particle states given by

|~p, λ〉 = (2π)3/2(2Ep)
1/2a†(p, λ)|0〉 . (12)

Using eq. (6),

ΨM(x) =
∑

λ

∫

d3~p

(2π)3/2(2Ep)1/2
[

u(~p, λ)a†(~p, λ)eip ·x + v(~p, λ)a(~p, λ)e−ip ·x
]

, (13)

and

−i~∇ΨM(x) =
∑

λ

∫

~p d3~p

(2π)3/2(2Ep)1/2
[

u(~p, λ)a(~p, λ)e−ip ·x − v(~p, λ)a†(~p, λ)eip ·x
]

. (14)

2Since a theory of a Dirac fermion is equivalent to a theory of two mass-degenerate Majorana fermions, eqs. (9)
and (10) also are valid for the u and v spinor wave functions employed in the Fourier mode decomposition of a
Dirac fermion.
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Inserting eqs. (6), (13), and (14) into eq. (5), we obtain

∫

d3x
[

−iΨM(x)~γ · ~∇ΨM(x) +mΨM(x)ΨM(x)
]

=

∫

d3x

∫

d3~p d3~p ′

(2π)3(2Ep)1/2(2Ep′)1/2

×
∑

λ,λ′

{

u(~p, λ)
(

~γ ·~p ′ +m
)

u(~p ′, λ′)a†(~p, λ)a(~p ′, λ′)ei(E~p −E
~p ′ )t e−i(~p−~p ′)·~x

+v(~p, λ)
(

~γ ·~p ′ +m
)

u(~p ′, λ′)a(~p, λ)a(~p ′, λ′)e−i(E~p +E
~p ′)t ei(~p+~p ′)·~x

−u(~p, λ)
(

~γ ·~p ′ −m
)

v(~p ′, λ′)a†(~p, λ)a†(~p ′, λ′)ei(E~p +E
~p ′ )t e−i(~p+~p ′)·~x

−v(~p, λ)
(

~γ ·~p ′ −m) v(~p ′, λ′)a(~p, λ)a†(~p ′, λ′)e−i(E~p −E
~p ′ )t ei(~p−~p ′)·~x

}

. (15)

We can now integrate over ~x using

1

(2π)3

∫

d3~x ei(~p−~p ′)·~x = δ3(~p− ~p ′) , (16)

and then use the delta function to integrate over ~p ′. This procedure yields

∫

d3x
[

iΨM(x)~γ · ~∇ΨM(x) +mΨM(x)ΨM(x)
]

=

∫

d3~p

2Ep

∑

λ,λ′

{

u(~p, λ)
(

~γ ·~p+m
)

u(~p, λ′)a†(~p, λ)a(~p, λ′)

−v(~p, λ)
(

~γ ·~p−m
)

u(−~p, λ′)a(~p, λ)a(−~p, λ′)e−2iE~pt

+u(~p, λ)
(

~γ ·~p+m
)

v(−~p, λ′)a†(~p, λ)a†(−~p, λ′)e2iE~pt

−v(~p, λ)
(

~γ ·~p−m) v(~p, λ′)a(~p, λ)a†(~p, λ′)

}

. (17)

Next, we make use of the momentum space Dirac equations [eqs. (7) and (8)], which can be
rewritten as

(

~γ ·~p+m
)

u(~p, λ′) = γ0E~p u(~p, λ
′) ,

(

~γ ·~p−m
)

v(~p, λ′) = γ0E~p v(~p, λ
′) . (18)

u(~p, λ)
(

~γ ·~p+m
)

= E~p u(~p, λ)γ
0 , v(~p, λ)

(

~γ ·~p−m
)

= E~p v(~p, λ)γ
0 . (19)

It then follows that
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v(~p, λ)
(

~γ ·~p−m
)

u(−~p, λ′) = 1
2

[

v(~p, λ)
(

~γ ·~p−m
)]

u(−~p, λ′) + 1
2
v(~p, λ)

[(

~γ ·~p−m
)

u(−~p, λ′)
]

= 1
2
v(~p, λ)

[

E~p γ
0 − γ0E~p

]

u(−~p, λ′) = 0 . (20)

u(~p, λ)
(

~γ ·~p+m
)

v(−~p, λ′) = 1
2

[

u(~p, λ)
(

~γ ·~p+m
)]

v(−~p, λ′) + 1
2
u(~p, λ)

[(

~γ ·~p+m
)

v(−~p, λ′)
]

= 1
2
u(~p, λ)

[

E~p γ
0 − γ0E~p

]

v(−~p, λ′) = 0 . (21)

Inserting the results of eqs. (18)–(21) back into eq. (17) yields
∫

d3x
[

iΨM(x)~γ · ~∇ΨM(x) +mΨM(x)ΨM(x)
]

=
1

2

∫

d3~p
∑

λ,λ′

{

u(~p, λ)γ0u(~p, λ′)a†(~p, λ)a(~p, λ′)− v(~p, λ)γ0v(~p, λ′)a(~p, λ)a†(~p, λ′)

}

. (22)

To evaluate the remaining spinor products, we make use of the Bouchiat-Michel formulae
given in eqs. (E.194) and (E.195) of Ref. 1 and convert the corresponding expressions into traces,

u(~p, λ) Γ u(~p, λ′) = 1
2
Tr
[

Γ(δλλ′ + γ5γµS
µ
λλ′)(/p+m)

]

, (23)

v(~p, λ) Γ u(~p, λ′) = 1
2
Tr
[

Γ(δλ′λ + γ5γµS
µ
λ′λ)(/p−m)

]

, (24)

where Γ is any product of gamma matrices and

S
µ
λλ′ = Saµτaλλ′ , (25)

with an implied sum over the repeated index a ∈ {1, 2, 3}. In eq. (25), the τa are the Pauli
matrices and the spin vectors Saµ satisfy p·Sa = 0 [for further details, see Section E.4 of Ref. 1].

We now can evaluate the following expressions:

u(~p, λ)γ0u(~p, λ′) = 1
2
Tr
[

γ0(δλλ′ + γ5γµS
µ
λλ′)(/p+m)

]

= 2E~p δλλ′ , (26)

v(~p, λ)γ0v(~p, λ′) = 1
2
Tr
[

γ0(δλ′λ + γ5γµS
µ
λ′λ)(/p−m)

]

= 2E~p δλ′λ . (27)

Note that these results have been obtained without specifying any particular representations for
the gamma functions and spinor wave functions. Inserting the above results into eq. (22) yields

H =
1

2

∫

d3x
[

iΨM(x)~γ · ~∇ΨM(x) +mΨM(x)ΨM(x)
]

=
1

2

∑

λ

∫

d3~p E~p

[

a†(~p, λ)a(~p, λ)− a(~p, λ)a†(~p, λ)
]

, (28)

after using the δλλ′ factors to perform the sum over λ′. Finally, we redefine the Hamiltonian to
be the normal ordering of the above expression to eliminate the infinite zero point energy. In
light of eq. (11),

:a(~p, λ)a†(~p, λ) := −a†(~p, λ)a(~p, λ) . (29)
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Hence, we end up with

H =
∑

λ

∫

d3~p E~p a
†(~p, λ)a(~p, λ) , (30)

as expected.

Added note:

Suppose we had not made use of the trick employed in eqs. (20) and (21) to prove that the
corresponding spinor products vanished. Instead, we might have used the results of eq. (18)
alone to obtain

v(~p, λ)
(

~γ ·~p−m
)

u(−~p, λ′) = −E~p v(~p, λ)γ
0u(−~p, λ′) , (31)

u(~p, λ)
(

~γ ·~p+m
)

v(−~p, λ′) = −E~p u(~p, λ)γ
0v(−~p, λ′) . (32)

Of course, we could have also have used the results of eq. (19) alone to obtain

v(~p, λ)
(

~γ ·~p−m
)

u(−~p, λ′) = E~p v(~p, λ)γ
0u(−~p, λ′) , (33)

u(~p, λ)
(

~γ ·~p+m
)

v(−~p, λ′) = E~p u(~p, λ)γ
0v(−~p, λ′) . (34)

Combining these two results then implies that

v(~p, λ)
(

~γ ·~p−m
)

u(−~p, λ′) = 0 , (35)

u(~p, λ)
(

~γ ·~p+m
)

v(−~p, λ′) = 0 . (36)

However, we can actually prove the stronger result,

v(~p, λ)γ0u(−~p, λ′) = u(~p, λ)γ0v(−~p, λ′) = 0 , (37)

as follows. Using eqs. (E.203) and (E.204) of Ref. 1,

u(~p, λ) Γ v(−~p, λ′) = −iλ′ Tr
[

Γγ5γ
0(δλλ′ + γ5γµS

µ
λλ′)(/p+m)

]

, (38)

v(~p, λ) Γ u(−~p, λ′) = iλ′ Tr
[

Γγ5γ
0(δλ′λ + γ5γµS

µ
λ′λ)(/p−m)

]

. (39)

We now evaluate the following expressions:

v(~p, λ)γ0u(−~p, λ′) = iλ′ Tr
[

γ0γ5γ
0(δλ′λ + γ5γµS

µ
λ′λ)(/p−m)

]

= −iλ′ Tr
[

γµS
µ
λ′λ(/p−m)

]

= −4iλ′pµS
µ
λ′λ = 0 ,

u(~p, λ)γ0v(−~p, λ′) = −iλ′ Tr
[

γ0γ5γ
0(δλλ′ + γ5γµS

µ
λλ′)(/p+m)

]

= iλ′ Tr
[

γµS
µ
λλ′(/p+m)

]

= 4iλ′pµS
µ
λλ′ = 0 , (40)

after using pµS
µ
λλ′ = (p·Sa)τaλλ′ = 0, which confirms the result of eq. (37).
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2 The Hamiltonian derived using two-component spinors

We can repeat the computation of Section 1 using two-component spinor formalism. Note that
the four-component Majorana fermion field can be written in following form,

ΨM(x) ≡

(

ξα(x)

ξ†α̇(x)

)

. (41)

This form ensures that ΨM = CΨ
T

M in the chiral representation of the gamma matrices (cf. foot-
note 1). Moreover, the four-component spinor wave functions u and v can be expressed in terms
of corresponding two-component spinor wave functions x and y as shown in Ref. 1,

u(~p, s) =

(

xα(~p, s)

y†α̇(~p, s)

)

, u(~p, s) = (yα(~p, s), x†
α̇(~p, s)) , (42)

v(~p, s) =

(

yα(~p, s)

x†α̇(~p, s)

)

, v(~p, s) = (xα(~p, s), y†α̇(~p, s)) . (43)

However the calculations of this section will not make any reference to eqs. (41)–(43).
We begin with the Lagrangian density for a two-component fermion field ξα(x),

L = iξ† σµ∂µξ −
1
2
m(ξξ + ξ† ξ†) , (44)

where σµ = (I2×2 ; −~σ) and ξ†σµ∂µξ ≡ ξ
†
α̇σ

µα̇α∂µξα. We also define

ξξ ≡ ξαξα = ǫαβξβξα , ξ†ξ† ≡ ξ
†
α̇ξ

† α̇ = ǫα̇β̇ξ
† β̇ξ† α̇ , (45)

where the nonzero components of the epsilon symbols are ǫ12 = −ǫ21 = ǫ2̇1̇ = −ǫ1̇2̇ = 1. The
two-component fermion fields ξ(x) and ξ†(x) satisfy the field equations,

iσµα̇β∂µξβ(x) = mξ†α̇(x) . (46)

Then,

Π =
∂L

∂(∂0ξ)
= iξ†σ0 , (47)

and the Hamiltonian density is given by

H = Π ∂0ξ −L = iξ†σ0∂0ξ − iξ† σµ∂µξ +
1
2
m(ξξ + ξ† ξ†)

= iξ†~σ · ~∇ξ + 1
2
m(ξξ + ξ† ξ†) . (48)

The Hamiltonian is given by

H =

∫

d3x
{

iξ†(x)~σ · ~∇ξ(x) + 1
2
m[ξ(x)ξ(x) + ξ†(x) ξ†(x)]

}

. (49)
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Next, we expand the two-component fermion field in Fourier modes which involve the creation
and annihilation operators,

ξα(x) =
∑

λ

∫

d3p

(2π)3/2(2Ep)1/2
[

xα(~p, λ)a(~p, λ)e
−ip ·x + yα(~p, λ)a

†(~p, λ)eip ·x
]

, (50)

ξ
†
α̇(x) =

∑

λ

∫

d3p

(2π)3/2(2Ep)1/2

[

x
†
α̇(~p, λ)a

†(~p, λ)eip ·x + y
†
α̇(~p, λ)a(~p, λ)e

−ip ·x
]

, (51)

where pµ = (Ep ; ~p) with Ep ≡
(

|~p|2 +m2
)1/2

, and the sum over helicities runs over λ = −1
2
, 1

2
.

Under the assumption that the fields ξ and ξ† satisfy the field equations [eq. (46)], the x and y

spinors satisfy the momentum space Dirac equations:

(p·σ)α̇βxβ = my†α̇ , (p·σ)αβ̇y
†β̇ = mxα , (52)

(p·σ)αβ̇x
†β̇ = −myα , (p·σ)α̇βyβ = −mx†α̇ , (53)

xα(p·σ)αβ̇ = −my
†

β̇
, y

†
α̇(p·σ)

α̇β = −mxβ , (54)

x
†
α̇(p·σ)

α̇β = myβ , yα(p·σ)αβ̇ = mx
†

β̇
. (55)

Taking the derivative of eq. (50) yields

i ~∇ξα(x) =
∑

λ

∫

~p d3p

(2π)3/2(2Ep)1/2
[

−xα(~p, λ)a(~p, λ)e
−iE~p t+i~p ·~x + yα(~p, λ)a

†(~p, λ)eiE~p t−i~p ·~x
]

.

(56)
Inserting eqs. (50) and (56) into eq. (49), we obtain

∫

d3x
{

iξ†(x)~σ · ~∇ξ(x) + 1
2
m[ξ(x)ξ(x) + ξ†(x) ξ†(x)]

}

=

∫

d3x

∫

d3~p d3~p ′

(2π)3(2Ep)1/2(2Ep′)1/2

×
∑

λ,λ′

{

[

1
2
m
(

y(~p, λ)x(~p ′, λ′) + x†(~p, λ)y†(~p ′, λ′)
)

− x†(~p, λ)~σ·~p ′ x(~p ′, λ′)
]

×a†(~p, λ)a(~p ′, λ′)ei(E~p −E
~p ′ )t e−i(~p−~p ′)·~x

+
[

1
2
m
(

x(~p, λ)x(~p ′, λ′) + +y†(~p, λ)y†(~p ′, λ′)
)

− y†(~p, λ)~σ ·~p ′ x(~p ′, λ′)
]

×a(~p, λ)a(~p ′, λ′)e−i(E~p +E
~p ′)t ei(~p+~p ′)·~x

+
[

1
2
m
(

y(~p, λ)y(~p ′, λ′) + x†(~p, λ)x†(~p ′, λ′)
)

+ x†(~p, λ)~σ·~p ′ y(~p ′, λ′)a†(~p, λ)
]

×a†(~p ′, λ′)ei(E~p +E
~p ′)t e−i(~p+~p ′)·~x

+
[

1
2
m
(

x(~p, λ)y(~p ′, λ′) + y†(~p, λ)x†(~p ′, λ′)
)

+ y†(~p, λ)~σ·~p ′ y(~p ′, λ′)
]

×a(~p, λ)a†(~p ′, λ′)e−i(E~p −E
~p ′ )t ei(~p−~p ′)·~x

}

. (57)
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Integrating over ~x using eq. (16) and making use of the delta function to integrate over ~p ′ yields
∫

d3x
{

iξ†(x)~σ · ~∇ξ(x) + 1
2
m[ξ(x)ξ(x) + ξ†(x) ξ†(x)]

}

=

∫

d3~p

2Ep

∑

λ,λ′

×

{

[

1
2
m
(

y(~p, λ)x(~p, λ′) + x†(~p, λ)y†(~p, λ′)
)

− x†(~p, λ)~σ ·~p x(~p, λ′)
]

a†(~p, λ)a(~p, λ′)

+
[

1
2
m
(

x(~p, λ)x(−~p, λ′) + y†(~p, λ)y†(−~p, λ′)
)

+ y†(~p, λ)~σ·~px(−~p, λ′)
]

a(~p, λ)a(−~p, λ′)e−2iE~p t

+
[

1
2
m
(

y(~p, λ)y(−~p, λ′) + x†(~p, λ)x†(−~p, λ′)
)

− x†(~p, λ)~σ·~p y(−~p, λ′)
]

a†(~p, λ)a†(−~p, λ′)e2iE~p t

+
[

1
2
m
(

x(~p, λ)y(~p, λ′) + y†(~p, λ)x†(~p, λ′)
)

+ y†(~p, λ)~σ·~p y(~p, λ′)
]

a(~p, λ)a†(~p, λ′)

}

. (58)

We now use the momentum space Dirac equations [eqs. (52)–(55)], which can be rewritten as

(~σ ·~p)α̇βxβ = my†α̇ −E~p(σ
0x)α̇ , (~σ ·~p)αβ̇y

†β̇ = E~p(σ
0y†)α −mxα , (59)

(~σ ·~p)αβ̇x
†β̇ = E~p(σ

0x†)α +myα , (~σ ·~p)α̇βyβ = −E~p(σ
0y)α̇ −mx†α̇ , (60)

xα(~σ ·~p)αβ̇ = E~p(xσ
0)β̇ +my

†

β̇
, y

†
α̇(~σ ·~p)

α̇β = −E~p(y
†σ0)β −mxβ , (61)

x
†
α̇(~σ ·~p)

α̇β = −E~p(x
†σ0)β +myβ , yα(~σ ·~p)αβ̇ = E~p(yσ

0)β̇ −mx
†

β̇
. (62)

We can make use of eqs. (59)–(62) to simplify the expressions in eq. (58) as follows:

1
2
m
(

y(~p, λ)x(~p, λ′) + x†(~p, λ)y†(~p ′, λ′)
)

− x†(~p, λ)~σ·~px(~p, λ′)

= 1
2

{

m
[

y(~p, λ)− x†(~p, λ)~σ ·~p
]

x(~p, λ′) + x†(~p, λ)
[

my†(~p ′, λ′)− ~σ ·~px(~p, λ′)
]

}

= E~p x
†(~p, λ)σ0x(~p, λ′) , (63)

1
2
m
(

x(~p, λ)y(~p, λ′) + y†(~p, λ)x†(~p, λ′)
)

+ y†(~p, λ)~σ·~p y(~p, λ′)
]

= 1
2

{

m
[

x(~p, λ) + y†(~p, λ)~σ·~p
]

y(~p, λ′) + y†(~p, λ)
[

mx†(~p, λ′) + ~σ ·~p y(~p, λ′)
]

}

= −E~p y
†(~p, λ)σ0y(~p, λ′) , (64)

1
2
m
(

x(~p, λ)x(−~p, λ′) + y†(~p, λ)y†(−~p, λ′)
)

+ y†(~p, λ)~σ·~px(−~p, λ′)
]

= 1
2

{

m
[

x(~p, λ) + y†(~p, λ)~σ·~p
]

x(−~p, λ′) + y†(~p, λ)
[

my†(−~p, λ′) + ~σ ·~p x(−~p, λ′)
]

}

= 0,

(65)
1
2
m
(

y(~p, λ)y(−~p, λ′) + x†(~p, λ)x†(−~p, λ′)
)

− x†(~p, λ)~σ·~p y(−~p, λ′)

= 1
2

{

m
[

y(~p, λ)− x†(~p, λ)~σ ·~p
]

y(−~p, λ′) + x†(~p, λ)
[

mx†(−~p, λ′)− ~σ ·~p y(−~p, λ′)
]

}

= 0.

(66)
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Hence, eq. (58) reduces to
∫

d3x
{

iξ†(x)~σ · ~∇ξ(x) + 1
2
m[ξ(x)ξ(x) + ξ†(x) ξ†(x)]

}

=
1

2

∫

d3p
∑

λ,λ′

[

x†(~p, λ)σ0x(~p, λ′)a†(~p, λ)a(~p, λ′)− y†(~p, λ)σ0y(~p, λ′)a(~p, λ)a†(~p, λ′)
]

. (67)

To evaluate the remaining spinor products, we make use of the Bouchiat-Michel formulae
given in eqs. (E.133) and (E.138) of Ref. 1 and convert the corresponding expressions into traces,

x
†
α̇(~p, λ)Γ

α̇βxβ(~p, λ
′) = 1

2
Tr
[

Γ
(

p·σδλλ′ −mσµS
µ
λλ′

)]

, (68)

y
†
α̇(~p, λ)Γ

α̇βyβ(~p, λ
′) = 1

2
Tr
[

Γ
(

p·σδλλ′ +mσµS
µ
λλ′

)]

, (69)

where Γ is any product of sigma matrices and S
µ
λλ′ is defined in eq. (25). Using Γ = σ0 in the

above formulae, it follows that

x†(~p, λ)σ0x(~p, λ′) = Tr
[

σ0
(

p·σδλλ′ −mσµS
µ
λλ′

)]

,

y†(~p, λ)σ0y(~p, λ′) = Tr
[

σ0
(

p·σδλλ′ +mσµS
µ
λλ′

)]

.

Employing Tr(σµσν) = 2gµν and pµS
µ
λλ′ = (p·Sa)τaλλ′ = 0, it follows that

x†(~p, λ)σ0x(~p, λ′) = y†(~p, λ)σ0y(~p, λ′) = 2E~p δλλ′ . (70)

Inserting this result back into eq. (67), we finally obtain

H =

∫

d3x
{

iξ†(x)~σ · ~∇ξ(x) + 1
2
m[ξ(x)ξ(x) + ξ†(x) ξ†(x)]

}

=
1

2

∑

λ

∫

d3~p E~p

[

a†(~p, λ)a(~p, λ)− a(~p, λ)a†(~p, λ)
]

, (71)

after using the δλλ′ factors to perform the sum over λ′.
Finally, we redefine the Hamiltonian to be the normal ordering of the above expression to

eliminate the infinite zero point energy. Using eq. (29), we end up with

H =
∑

λ

∫

d3~p E~p a
†(~p, λ)a(~p, λ) , (72)

thereby reproducing the result obtained in eq. (30) using the four-component spinor formalism.
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