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Part 1: The mathematics behind

transcendental tuning

A closer look at Nima’s examples—rational approximations of π

and ln 2.

Reference: H.E. Haber, “Rational approximations of ln 2,”

http://scipp.ucsc.edu/~haber/



On April 6, 2021, Nima Arkani-Hamed gave a very stimulating

talk at the BSM Pandemic Seminar via zoom1 entitled “Some

new thoughts on the hierarchy problem.”

He proposed a mechanism to explain the cancellation of tree

effects (“rational”) against loop effects (“transcendental”) which

otherwise would look fine-tuned.

A simple example: the decay width of ortho-positronium,

Γ(o–Ps→ γγγ) =
2
(

π2 − 9
)

meα
6

9π
(1 +O(α)).

Note that π2 − 9 ≃ 0.8696 which is an order of magnitude

smaller than π2 and 9.
1Check it out here: https://indico.cern.ch/event/1025750/.



Nima provided two mathematical examples of this mechanism:

Jn ≡ 4(−1)n
∫ 1

0

dx

1 + x2

(

x2(1− x)2

2

)2n

= π − pn ,

In ≡ (−1)n
∫ 1

0

dx

1 + x

(

x(1− x)

2

)n

= ln 2− rn .

Observe that 0 < (−1)nJn < 2−10n and 0 < (−1)nIn < 2−3n.

Hence, lim
n→∞

pn = π , lim
n→∞

rn = ln 2 .

Similar results can be obtained for other transcendental numbers

that are periods,2 which play a starring role in modern scattering

amplitude methods.
2“Periods” is a generic term used to designate the numbers arising as integrals of algebraic functions over

domains described by algebraic equations or inequalities with rational coefficients. See, e.g., M. Kontsevich and

D. Zagier, “Periods,” in Mathematics Unlimited—2001 and Beyond, edited by B. Engquist and W. Schmid

(Springer-Verlag, Berlin, 2001) pp. 771–808.



A closed form expression for pn was given in the literature3 (but

I could not find a similar expression for rn),

pn =
n−1
∑

k=0

(−1)k2
4−2k(4k)!(4k + 3)!

(8k + 7)!

(

820k3 + 1533k2 + 902k + 165
)

This formula was derived using a magical identity (no proof of
this identity was given):

x4n(1 − x)4n

1 + x2
=

(

x
6 − 4x

5
+ 5x

4 − 4x
2
+ 4

)
n−1
∑

k=0

(−4)
n−1−k

x
4k
(1−x)

4k
+

(−4)n

1 + x2
.

The result for pn yields an infinite series for π,

π =
22

7
− 19

15015
+

543

594914320
− 77

104187267600
+ · · ·

3S.K. Lukas, “Approximations to π derived from integrals with nonnegative integrands,” The American

Mathematical Monthly, 162, 166 (2009).



Challenge: prove that

x4n(1 − x)4n

1 + x2
=

(

x
6 − 4x

5
+ 5x

4 − 4x
2
+ 4

)
n−1
∑

k=0

(−4)
n−1−k

x
4k
(1−x)

4k
+

(−4)n

1 + x2
.

Start with the identity,

x4(1− x)4

1 + x2
= P (x) +

R

1 + x2
,

for some polynomial P (x) and constant R to be determined.

Considering the residue at the poles, x = ±i, yields R = −4.
Then P (x) is determined:

P (x) =
x4(1− x)4 + 4

1 + x2

= x6 − 4x5 + 5x4 − 4x2 + 4 .



Now, you can use the identity, x4(1 − x)4 = (1 + x2)P (x) − 4,

repeatedly, to derive,

x8(1− x)8

1 + x2
= x4(1− x)4

[

P (x)− 4

1 + x2

]

= x4(1− x)4P (x)− 4

1 + x2

[

(1 + x2)P (x)− 4
]

=
[

x4(1− x)4 − 4
]

P (x) +
(−4)2
1 + x2

,

x12(1− x)12

1 + x2
=
[

x8(1− x)8 − 4x4(1− x)4 + (−4)2
]

P (x) +
(−4)3
1 + x2

,

and so on. After n steps we are done!

x4n(1− x)4n

1 + x2
= P (x)

n−1
∑

k=0

(−4)n−1−kx4k(1− x)4k +
(−4)n
1 + x2

.



A similar (and much simpler calculation) yields a closed form

expression for rn. The corresponding magical identity is,

xn(1− x)n

1 + x
= (2− x)

n−1
∑

k=0

(−2)n−1−kxk(1− x)k +
(−2)n
1 + x

.

Then,

In = ln 2 +
n−1
∑

k=0

(−2)−1−k

∫ 1

0

xk(1− x)k(2− x) dx .

The integrals can be expressed in terms of Beta functions,

B(r, s) ≡ Γ(r)Γ(s)/Γ(r + s),

In = ln 2+
n−1
∑

k=0

(−2)−1−k [2B(k + 1, k + 1)−B(k + 2, k + 1)] .



n an−1 rn numerical value

1 3
4

3
4 0.75

2 − 1
16

11
16 0.6875

3 1
160

111
160 0.69375

4 − 3
4480

621
896 0.69308035714

5 1
13440

2329
3360 0.69315476190

6 − 1
118272

19519
28160 0.69314630682

7 1
1025024

3552463
5125120 0.69314728241

8 − 1
8785920

42629549
61501440 0.69314716859

9 1
74680320

241567449
348508160 0.69314718198

10 − 3
1891901440

834505731
1203937280 0.69314718039

Hence,

rn =
n−1
∑

k=0

ak.

Explicitly,

rn =
3

4

n−1
∑

k=0

(−1)k[k!]2
2k(2k + 1)!

With ten digit

accuracy,

ln 2 ≃ 0.6931471806



Previously, I had never encountered the expansion,

ln 2 =
3

4

∞
∑

k=0

(−1)k[k!]2
2k(2k + 1)!

.

Here is an independent proof. Start with

2F1(
1
2, 1,

3
2; z

2) =
1

2z
ln

(

1 + z

1− z

)

,

where 2F1 is the Gauss hypergeometric function. Using the identity

2F1(a, b; c; z
2) = (1− z2)−b

2F1

(

c− a, b; c, z2/(z2 − 1)
)

,

and setting z = 1
3 yields,

ln 2 = 3
4 2F1

(

1, 1; 32,−1
8) .

Employing the series representation of 2F1 and making use of the duplication

formula for the gamma function yields the series representation for ln 2 given

above.



Part 2: Exceptional regions of the

2HDM parameter space

Based on the following two papers,

1. H.E. Haber and J.P. Silva, “Exceptional regions of the 2HDM

parameter space,” arXiv:2102.07136 [hep-ph], Phys. Rev. D

(2021), in press.

2. P. Draper, A. Ekstedt and H.E. Haber, “A natural

mechanism for approximate Higgs alignment in the 2HDM,”

arXiv:2011.13159 [hep-ph], JHEP (2021), in press.



The Nima challenge

At the KITP in December, 2012, I asked Nima whether he would still advocate

for a fine-tuned electroweak scale due to selection effects4 if additional scalar

states of an extended Higgs sector were discovered at LHC. Nima said he

would abandon this proposal because he would not be able to explain the

additional fine-tunings required to accommodate light scalars of the extended

Higgs sector. Taking up Nima’s challenge, in 2016 Patrick Draper, Josh

Ruderman and I provided a proof of principle that extended Higgs sectors

with only one fine-tuning were viable.5

Our model employed an exceptional region of the 2HDM parameter space.

Subsequently, I realized that this idea could be repurposed to provide a natural

explanation for approximate Higgs alignment without decoupling.

4Selection effects is a more palatable term that avoids mentioning by name the anthropic principle.
5P. Draper, H.E. Haber and J.T. Ruderman,“Partially Natural Two Higgs Doublet Models,” JHEP 06, 124

(2016) [arXiv:1605.03237 [hep-ph]].



Outline

• The complex 2HDM (C2HDM) framework

• Exceptional Regions of the 2HDM Parameter Space (ERPS and ERPS4)

• Reviewing the Higgs basis and the Higgs alignment limit

• Reviewing Family and Generalized CP symmetries of the 2HDM

• Exceptional features of the ERPS4

– CP-conserving scalar potential when Im
(

λ∗
5[m

2
12]

2) 6= 0

– Exact Higgs alignment due to a (softly-broken) symmetry

– Custodial symmetric scalar potential with exact Higgs alignment

• What about the Yukawa couplings?



Why the C2HDM?

Let us focus on the two-Higgs doublet model (2HDM) as a

prototype for an extended Higgs sector. Consider the 2HDM

scalar potential (in the Φ-basis),

V = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2
+

[

λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)

]

Φ
†
1Φ2 + h.c.

}

.

The Φi are hypercharge Y = 1 doublets. After minimizing the scalar potential,

〈Φ0
1〉 = vcβ/

√
2 and 〈Φ0

2〉 = vsβe
iξ/
√
2, where v ≡ 2mW/g = 246 GeV,

sβ ≡ sinβ and cβ ≡ cosβ, with 0 ≤ β ≤ 1
2π.

The complex 2HDM (C2HDM) is defined as the 2HDM such that λ6 = λ7 = 0

and Im
(

λ∗
5[m

2
12]

2) 6= 0.



Comments

• We have imposed a (softly-broken) Z2 symmetry so that

λ6 = λ7 = 0 (but allow for m2
12 6= 0). This provides a

framework for avoiding tree-level Higgs mediated FCNCs.

• We have allowed λ5 and m2
12 to be complex. This may be

forced on you due to the presence of a CP-violating phase in

the Higgs-quark Yukawa couplings.

See D. Fontes, M. Löschner, J. C. Romão and J. P. Silva, arXiv:2103.05002.

• The number of independent parameters (dofs) that govern the

2HDM scalar potential has been reduced from 11 to 9.



“Well-known” facts about the C2HDM

• Expressions for the m2
ij and the λi look quite different under

a unitary change of scalar field basis, Φa→ VabΦb.

• Im
(

λ∗
5[m

2
12]

2) 6= 0 implies a CP-violating scalar potential.

• Exact Higgs alignment, corresponding to the existence of a

neutral scalar whose tree-level properties are those of the

SM Higgs boson (without decoupling of heavy scalar states),

requires a fine-tuning of scalar potential parameters.

• Imposing a custodial symmetric scalar potential requires a

CP-odd scalar that is degenerate in mass with H±.



An Exceptional Region of the 2HDM

Parameter Space

ERPS: m2
11 = m2

22, m
2
12 = 0, λ1 = λ2, and λ7 = −λ6 (5 dofs)

ERPS4: λ1 = λ2 and λ7 = −λ6 (8 dofs)

What happened to the condition that λ6 = λ7 = 0?

Theorem: If λ1 = λ2 and λ7 = −λ6, then a basis of scalar fields

exists (which is not unique) such that λ6 = λ7 = 0 and λ5 ∈ R.

The ERPS corresponds to a regime in which the scalar potential

respects a generalized CP-symmetry called GCP2. The ERPS4

corresponds to a softly-broken GCP2-symmetric scalar potential.



Exceptional features of the ERPS4

• If λ1 = λ2 and λ7 = −λ6 is satisfied in one scalar field basis,

then it is satisfied in any choice of scalar field basis.

• Im
(

λ∗
5[m

2
12]

2) 6= 0 does not necessarily imply a CP-violating

scalar potential.6

• Exact Higgs alignment holds naturally in the ERPS and can

also be achieved in a significant region of the ERPS4.

• The custodial symmetric subregion of the ERPS4 can allow

for a CP-even scalar that is degenerate in mass with H±.

6In the ERPS where m2
12 = 0, CP is automatically conserved by the scalar potential and vacuum.



The Higgs basis and the Higgs alignment limit

Define the scalar doublet fields of the Higgs basis,

H1 =

(

H+
1

H0
1

)

≡ cβΦ1+sβe
−iξΦ2 , H2 =

(

H+
2

H0
2

)

≡ eiη
(

−sβeiξΦ1+cβΦ2

)

,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is

uniquely defined up to an overall rephasing that is parameterized

by the phase angle η. [See R. Boto, T. V. Fernandes, H.E. Haber, J.C. Romão

and J.P. Silva, Phys. Rev. D 101, 055023 (2020)]

The neutral scalar H0
1 is aligned in field space with the vacuum

expectation value v. If
√
2ReH0

1 − v were a mass eigenstate,

then its tree-level properties would coincide with those of the

SM Higgs boson.



In the Higgs basis, the scalar potential is given by:

V = Y1H†
1H1 + Y2H†

2H2 + [Y3e
−iηH†

1H2 + h.c.] + 1
2Z1(H†

1H1)
2

+1
2Z2(H†

2H2)
2 + Z3(H†

1H1)(H†
2H2) + Z4(H†

1H2)(H†
2H1)

+
{

1
2Z5e

−2iη(H†
1H2)

2 +
[

Z6e
−iη(H†

1H1) + Z7e
−iη(H†

2H2)
]

H†
1H2 + h.c.

}

.

Minimize the scalar potential: Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remark:

Exact Higgs alignment ⇐⇒ Z6 = 0 (and Y3 = 0 via the scalar

potential minimum conditions), which implies no H0
1–H0

2 mixing.

Only the terms highlighted in red can yield an H†
1H2 + h.c.

contribution to the quadratic terms of the scalar potential after

imposing 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0.



Approximate Higgs alignment in the CP-conserving 2HDM

With respect to Higgs basis states, {
√
2Re H0

1 −v ,
√
2Re H0

2},

M2
H =





Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2



 , where Z5, Z6 ∈ R .

The CP-even Higgs bosons are h and H with mh ≤ mH.

Approximate Higgs alignment arises in two limiting cases:

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit , where h is

SM-like and m2
A ∼ m2

H ∼ m2
H± ≫ m2

h ≃ Z1v
2.

2. |Z6| ≪ 1. Then, h is SM-like if m2
A + (Z5 − Z1)v

2 > 0;

otherwise, H is SM-like. =⇒ Alignment without decoupling .



Achieving exact Higgs alignment in the 2HDM

The inert doublet model (IDM): There is a Z2 symmetry in the

Higgs basis such that H2→ −H2 is the only Z2-odd field. Then

Z6 = 0, and tree-level alignment is exact. Deviations from SM

behavior can appear at loop level due to the virtual exchange of

the scalar states that reside in H2.

Approximate Higgs alignment without decoupling : If present,

• is this a result of an accidental choice of model parameters?

• is this a consequence of an approximate (softly-broken)

symmetry? Not possible in the IDM; possible in the ERPS4.



Family and Generalized CP symmetries of the 2HDM

Higgs family symmetries

Z2 : Φ1 → Φ1, Φ2 → −Φ2

Π2 : Φ1 ←→ Φ2

U(1)PQ [Peccei-Quinn]: Φ1 → e−iθΦ1, Φ2 → eiθΦ2

SO(3): Φa → UabΦb , U ∈ U(2)/U(1)Y

Generalized CP (GCP) transformations

GCP1 : Φ1 → Φ∗
1, Φ2 → Φ∗

2

GCP2 : Φ1 → Φ∗
2, Φ2 → −Φ∗

1

GCP3 : Φ1 → Φ∗
1cθ+Φ∗

2sθ, Φ2 → −Φ∗
1sθ+Φ∗

2cθ, for any 0 < θ < 1
2π

where cθ ≡ cos θ and sθ ≡ sin θ.



Possible symmetries of the 2HDM scalar potential

A complete classification of possible Higgs family and generalized CP

symmetries of the scalar potential (in the Φ-basis) has been obtained.7

symmetry m2
22 m2

12 λ2 λ4 Reλ5 Imλ5 λ6 λ7

Z2 0 0 0

Π2 m2
11 real λ1 0 λ∗

6

Z2 ⊗ Π2 m2
11 0 λ1 0 0 0

U(1) 0 0 0 0 0

U(1)⊗Π2 m2
11 0 λ1 0 0 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0 0

GCP1 real 0 real real

GCP2 m2
11 0 λ1 −λ6

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 0 0 0

Note that Π2 ⇐⇒ Z2 symmetry in a different Φ′-basis; Z2 ⊗ Π2 ⇐⇒ GCP2 in a different

basis; U(1)⊗Π2 ⇐⇒ GCP3 in a different basis, where Φ′ = VΦ for a suitably chosen V .

7I.P. Ivanov, Phys. Rev. D 77, 015017 (2008) [arXiv:0710.3490]; P.M. Ferreira, H.E. Haber and J.P. Silva,

Phys. Rev. D 79, 116004 (2009) [arXiv:0902.1537].



More family and GCP symmetries of the 2HDM

Higgs family symmetries

Π′
2 : Φ1 → Φ2, Φ2 → −Φ1

U(1)′: Φ1 → Φ1cθ +Φ2sθ Φ2 → −Φ1sθ +Φ2cθ

U(1)′′: Φ1 → Φ1cθ + iΦ2sθ Φ2 → iΦ1sθ +Φ2cθ

GCP transformations

GCP1′ : Φ1 → Φ∗
2, Φ2 → Φ∗

1

GCP3′ : Φ1 → Φ∗
1cθ−iΦ∗

2sθ Φ2 → iΦ∗
1sθ−Φ∗

2cθ , for any 0 < θ < 1
2π



symmetry m2
22 m2

12 λ2 Reλ5 Imλ5 λ6 λ7

Π′
2 m2

11 pure imaginary λ1 0 −λ∗
6

Π2 ⊗ Π′
2 m2

11 0 λ1 0 0 0

U(1)′ m2
11 pure imaginary λ1 λ1 − λ3 − λ4 0 0 0

U(1)′′ m2
11 real λ1 λ3 + λ4 − λ1 0 0 0

U(1)′ ⊗ Z2 m2
11 0 λ1 λ1 − λ3 − λ4 0 0 0

U(1)′′ ⊗ Z2 m2
11 0 λ1 λ3 + λ4 − λ1 0 0 0

GCP1′ m2
11 λ1 λ6

GCP3′ m2
11 0 λ1 λ3 + λ4 − λ1 0 0 0

Note that Π′
2 ⇐⇒ Z2 symmetry in a different basis; GCP1′ ⇐⇒ GCP1 in a different basis;

GCP3′ ⇐⇒ GCP3 in a different basis. Moreover, the constraints on the scalar potential

parameters due to the Z2 ⊗ Π2, GCP3 and GCP3′ symmetries coincide with those of the

Π2 ⊗ Π′
2, U(1)

′ ⊗ Z2 and U(1)′′ ⊗ Z2 symmetries, respectively.



The ERPS4 with Im
(

λ∗
5[m

2
12]

2) 6= 0

Outside of the ERPS4, Im
(

λ∗
5[m

2
12]

2) 6= 0 necessarily implies a CP-violating

scalar potential. However, consider the following two cases:

• softly-broken Z2 ⊗Π2 with complex m2
12 and β = 1

4π.

Softly-broken Z2 ⊗ Π2 implies that λ5 is real and nonzero.8 Hence,

Im
(

λ∗
5[m

2
12]

2) 6= 0. Nevertheless the scalar potential and vacuum are

CP-conserving. This model possesses an unbroken GCP1′ symmetry,

GCP1′ : Φ1 → Φ∗
2, Φ2 → Φ∗

1

which imposes the conditionsm2
11 = m2

22, λ1 = λ2 and λ6 = λ7, consistent

with the Z2⊗Π2 symmetry constraints (since β = 1
4π requiresm2

11 = m2
22).

However, no reality condition is imposed on m2
12 or λ5. Moreover, since

〈Φ0
1〉 = 〈Φ0

2〉, the vacuum also respects the GCP1′ symmetry!

8If λ5 = 0 then the Z2 ⊗ Π2 symmetry is promoted to a U(1)⊗Π2 symmetry.



• softly-broken GCP3 with complex m2
12, for arbitrary tanβ.

Softly broken GCP3 implies that λ5 = λ1 − λ3 − λ4 is real and nonzero.9

Hence, Im
(

λ∗
5[m

2
12]

2) 6= 0. Nevertheless the scalar potential and vacuum

are CP-conserving. One can construct the relevant GCP transformation

that is preserved (its ugly!).

However, it is easier to transform to the scalar field basis where the

U(1)⊗Π2 symmetry is manifestly realized. In this basis, m2
12 is still

complex but λ5 = 0. That is, in this basis Im
(

λ∗
5[m

2
12]

2) = 0 and there is

no possibility of spontaneous CP violation.

Remark:

In the ERPS4, an explicit CP-violating scalar potential arises if s2β 6= 0,

sin 2ξ 6= 0, m2
11 6= m2

22, and Im[m2
12]

2 6= 0. If latter condition is replaced by

Im[m2
12]

2 = 0, then spontaneous CP violation arises if 0 < |m2
12| < 1

2λ5v
2s2β.

9If λ5 = 0, the GCP3 symmetry is promoted to an SO(3) symmetry.



Symmetry origin for exact Higgs alignment

In the Φ-basis, 〈Φ0
1〉 = vcβ/

√
2 and 〈Φ0

2〉 = vsβe
iξ/
√
2. The

scalar potential parameters in this basis are related to the

corresponding Higgs basis parameters; e.g.,

Y3 =
[

1
2(m

2
22 −m2

11)s2β −Re(m2
12e

iξ)c2β − iIm(m2
12e

iξ)
]

e−iξ .

If m2
11 = m2

22 and m2
12 = 0, then Y3 = 0. The scalar potential

minimum condition (Y3 = −1
2Z6v

2) then yields Z6 = 0, i.e. exact

Higgs alignment.

That is, any 2HDM scalar potential that satisfies m2
11 = m2

22

and m2
12 = 0 due to a symmetry will yield exact Higgs alignment

naturally!



Exact Higgs alignment arises when the following symmetries of
the 2HDM scalar potential are unbroken.

symmetry m2
22 m2

12 λ2 λ4 λ5 λ6 λ7

Z2 ⊗ Π2 m2
11 0 λ1 real 0 0

GCP2 m2
11 0 λ1 −λ6

U(1)⊗Π2 m2
11 0 λ1 0 0 0

GCP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

As previously noted, Z2⊗Π2 and U(1)⊗Π2 are not independent symmetries,

since a change of basis can be performed in each case to a new basis in which

the GCP2 and GCP3 symmetries, respectively, are manifestly realized.

However, it is remarkable that in many cases, exact alignment is preserved

even if the above symmetries are softly broken (corresponding to the ERPS4).

In all such cases, exact Higgs alignment is achieved in the inert limit where

Y3 = Z6 = Z7 = 0. A complete classification of 2HDM scalar potentials with

Higgs alignment due to a symmetry has been obtained.



Symmetry soft-breaking parameter residual unbroken symmetry of

constraints scalar potential vacuum

Z2 none s2β = 0 Z2 Z2

U(1) none s2β = 0 U(1) U(1)

Z2 ⊗ Π2 m2
11 6= m2

22 s2β = 0 Z2 Z2

Z2 ⊗ Π2 Rem2
12 6= 0 c2β = sin ξ = 0 Π2 Π2

Z2 ⊗ Π2 Imm2
12 6= 0 c2β = cos ξ = 0 Π′

2 Π′
2

Z2 ⊗ Π2 none s2β = 0 Z2 ⊗ Π2 Z2

Z2 ⊗ Π2 none c2β = sin 2ξ = 0 Z2 ⊗ Π2 Π2

U(1)⊗Π2 m2
11 6= m2

22 s2β = 0 U(1) U(1)

U(1)⊗Π2 Re(m2
12e

iξ) 6= 0 c2β = 0 Π
(ξ)
2 Π

(ξ)
2

U(1)⊗Π2 none s2β = 0 U(1)⊗Π2 U(1)

U(1)⊗Π2 none c2β = 0 U(1)⊗Π2 Π2

Part I of the classification of symmetries of the 2HDM scalar potential that yield exact Higgs alignment. Note

that m2
11 = m2

22 and Re(m2
12e

iξ) = Im(m2
12e

iξ) = 0 unless otherwise indicated. All such basis choices

are consistent with the ERPS4 with λ6 = λ7 = 0 and real λ5. In cases where the vacuum preserves a U(1)

symmetry, mH = mA 6= 0. Since GCP3 is equivalent to U(1)⊗Π2 when expressed in a different scalar field

basis, there is a one-to-one mapping between the corresponding entries in this Table and the one that follows.



Symmetry soft-breaking parameter residual unbroken symmetry of

constraints scalar potential vacuum

GCP3 m′ 2
11 6= m′ 2

22, Rem′ 2
12 6= 0 s2β′c2β′ 6= 0, sin ξ′ = 0 Π

(α)
2 Π

(α)
2

GCP3 m′ 2
11 6= m′ 2

22 s2β′ = 0 Z2 Z2

GCP3 Rem′ 2
12 6= 0 c2β′ = 0, sin ξ′ = 0 Π2 Π2

GCP3 Imm′ 2
12 6= 0 c2β′ = 0, cos ξ′ = 0 U(1)′ U(1)′

GCP3 none s2β′ = 0 U(1)′ ⊗ Z2 Z2

GCP3 none s2β′ 6= 0, sin ξ′ = 0 U(1)′ ⊗ Z2 Π
(α)
2

GCP3 none c2β′ = 0, cos ξ′ = 0 U(1)′ ⊗ Z2 U(1)′

SO(3) m′ 2
11 6= m′ 2

22, Re(m′ 2
12e

iξ′) 6= 0 s2β′c2β′ 6= 0 U(1)H U(1)H

SO(3) Re(m′ 2
12e

iξ′) 6= 0 c2β′ = 0 U(1)H U(1)H

SO(3) m′ 2
11 6= m′ 2

22 s2β′ = 0 U(1) U(1)

SO(3) none none SO(3) U(1)H

Part II of the classification of symmetries of the 2HDM scalar potential that yield exact Higgs alignment. Note

that m′ 2
11 = m′ 2

22 and Re(m′ 2
12e

iξ′) = Im(m′ 2
12e

iξ′) = 0 unless otherwise indicated, where the primed

parameters correspond to the GCP3 scalar field basis. All such basis choices are consistent with the ERPS4

with λ′
6 = λ′

7 = 0 and real λ′
5. The symmetry group U(1)H refers to a Peccei-Quinn U(1) symmetry that is

manifestly realized in the Higgs basis. In cases where the vacuum preserves a U(1) symmetry, mH = mA 6= 0

(with the exception of the unbroken SO(3)-symmetric scalar potential where both H and A are massless).



What is natural Higgs alignment?

In P.S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014), “natural”

alignment is defined as Higgs alignment due to a symmetry that is independent

of tan β. That is, the solution to Y3 = Z6 = 0 should not depend on tan β,

Z6 =

{

−1
2s2β

[

λ1c
2
β − λ2s

2
β − λ345c2β − iIm(λ5e

2iξ)
]

+ cβc3βRe(λ6e
iξ)

+sβs3βRe(λ7e
iξ) + ic2βIm(λ6e

iξ) + is2βIm(λ7e
iξ)

}

e−iξ ,

where λ345 ≡ λ3 + λ4 +Re(λ5e
2iξ).

Application: GCP3-conserving scalar potential with m2
11 = m2

22, m2
12 = 0,

λ1 = λ2 = λ3 + λ4 + Reλ5, and Imλ5 = λ6 = λ7 = 0, produces

Z6 = iλ5s2β sin ξe
−iξ
(

cos ξ + ic2β sin ξ
)

.

The potential minimum conditions yield s2β sin 2ξ = c2β sin
2 ξ = 0, which

implies that sin ξ = 0 for arbitrary β or cos ξ = 0 for β = 1
4π. Bhupal Dev

and Pilaftsis assumed that sin ξ = 0, implying Z6 = 0 independently of tan β.



Transforming to the U(1)⊗Π2 basis, the corresponding minimum conditions

of the scalar potential yield s2βc2β = 0 ⇐⇒ β = 0, 1
4π or 1

2π. For these

values, Y3 = Z6 = 0. Is this still an example of “natural” alignment?

Likewise, Z6 = 0 after applying the minimum conditions for the GCP2 and

Z2 ⊗ Π2-conserving scalar potentials, which are not viewed by Bhupal Dev

and Pilaftsis as examples of “natural” alignment.

I believe that what Bhupal Dev and Pilaftsis really meant by “natural”

alignment is that Y3 = Z6 = 0 independently of the scalar potential

minimum conditions. With this definition, neither the GCP2 nor GCP3-

conserving scalar potentials exhibit natural alignment. Only the SO(3)-

conserving scalar potential (i.e., GCP3 with λ5 = 0) would qualify.

I prefer the term “natural alignment” to imply Higgs alignment as a

consequence of a symmetry (which may be softly broken). That is, naturalness

in the sense of ‘t Hooft, where a symmetry is enlarged when a parameter is

set to zero.



Deviations from exact Higgs alignment in the ERPS4

Scalar potentials with a softly-broken Z2 ⊗ Π2 symmetry

β sin 2ξ m2
11, m

2
22 m2

12 CP-violation? comment

s2β 6= 0 6= 0 m2
11 6= m2

22 complex explicit Im
[

m2
12

]2 6= 0

s2β 6= 0 6= 0 m2
11 6= m2

22 Im
[

m2
12

]2
= 0 spontaneous 0 < |m2

12| < 1
2λ5v

2s2β

s2β 6= 0 6= 0 m2
11 6= m2

22 Im
[

m2
12

]2
= 0 no |m2

12| > 1
2λ5v

2s2β

c2β = 0 6= 0 m2
11 = m2

22 complex no m2
12 6= 0

s2βc2β 6= 0 0 m2
11 6= m2

22 Im
[

m2
12

]2
= 0 no

Scalar potentials with a softly-broken U(1)⊗Π2 symmetry (e.g., tree-level MSSM Higgs sector)

β m2
11, m

2
22 m2

12e
iξ R comment

s2βc2β 6= 0 m2
11 6= m2

22 > 0 R 6= 1

s2βc2β 6= 0 m2
11 6= m2

22 0 |R| < 1 m2
A = 0

R ≡ (λ3 + λ4)/λ1

and λ5 = 0.

Scalar potentials with a softly-broken GCP3 symmetry

β′ ξ′ m′ 2
11, m

′ 2
22 m′ 2

12e
iξ′

s2β′c2β′ 6= 0 sin 2ξ′ 6= 0 m′ 2
11 6= m′ 2

22 complex

s2β′c2β′ 6= 0 cos ξ′ = 0 m′ 2
11 6= m′ 2

22 real

c2β′ = 0 sin 2ξ′ 6= 0 m′ 2
11 = m′ 2

22 real (6= 0)

Primed parameters refer to
the GCP3 basis.



Custodial-symmetric scalar potential with

exact Higgs alignment

references: H.E. Haber and D. O’Neil, Phys. Rev. D 83, 055017 (2011); A. Pilaftsis, Phys.

Lett. B 706, 465 (2012); M. Aiko and S. Kanemura, JHEP 02, 046 (2021).

The scalar potential respects the custodial symmetry if the Higgs basis

parameters satisfy,

Z4 = Z5e
−2iη ∈ R , Y3e

−iη = −1
2Z6e

−iηv2 ∈ R , Z7e
−iη ∈ R .

Hence, one can choose η such that the parameters of the scalar potential in

the Higgs basis are all real. In particular, in a real Higgs basis, either

Z4 =Z5 (if η = 0) ,

or

Z4 = ±|Z5| , and Y3 = Z6 = Z7 = 0 (if η = 1
2π) .



The custodial-symmetric potential is CP-conserving. Outside of the inert

limit, Z4 = Z5 implies that mH± = mA, where A is a CP-odd neutral scalar.

Exact Higgs alignment via a symmetry implies the inert limit where the sign

of Z5 is unphysical.10 In the custodial limit, H± is degenerate in mass with

either H or A. Although H and A are relatively CP-odd, the individual CP

quantum numbers of H and A are not fixed by the bosonic sector.

The CP quantum numbers of H and A may be resolved by the Yukawa

couplings,11 in which case,

mH± =







mA if Z4 = Z5 and Z6 = Z7 = 0 ,

mH if Z4 = −Z5 and Z6 = Z7 = 0 ,

in a real Higgs basis. Indeed, the transformation H2 → iH2 changes the sign

of Z5 while also changing the scalar Yukawa coupling into a pseudoscalar

Yukawa coupling and vice versa.

10Note that in the inert limit, H2 → iH2 maintains the reality of the Higgs basis.
11In the IDM, the individual CP quantum numbers of H and A remain undefined.



A complete classification of custodial-symmetric 2HDM scalar potentials with

Higgs alignment due to a symmetry has been obtained.

Higgs basis conditions custodial additional scalar
(all cases satisfy symmetry real Φ-basis Lagrangian
Y3 = Z6 = Z7 = 0) conditions constraints symmetry

Z4 = ±Z5 6= 0 s2β = 0 Z2

Z4 = Z5 = 0 s2β = 0 U(1)

Z1 = Z2 6= Z345 Z4 = ±Z5 6= 0 c2β sin 2ξ = 0, λ = λ3 or λ4 = ±λ5 Z2 ⊗ Π2

Z1 = Z2 6= Z345 Z4 = ±Z5 6= 0 s2β = 0, λ4 = ±λ5 Z2 ⊗ Π2

Z1 = Z2 = Z3 + 2Z4 Z4 = ±Z5 6= 0 c2β = 0, λ = λ3, λ4 6= 0 U(1) ⊗ Π2

Z1 = Z2 = Z3 Z4 = ±Z5 6= 0 c2β = 0, λ 6= λ3, λ4 = 0 U(1) ⊗ Π2

Z1 = Z2 6= Z3 Z4 = Z5 = 0 s2β = 0, λ 6= λ3, λ4 = 0 U(1) ⊗ Π2

Z1 = Z2 = Z3 + 2Z4 Z4 = Z5 6= 0 s2β′ sin ξ′ = 0, λ′
4 = λ′

5 6= 0 GCP3

Z1 = Z2 = Z3 Z4 = −Z5 6= 0 s2β′ sin ξ′ = 0, λ′
4 = −λ′

5 6= 0 GCP3

Z1 = Z2 6= Z3 Z4 = Z5 = 0 c2β′ = cos ξ′ = 0, λ′
4 = −λ′

5 6= 0 GCP3

Z1 = Z2 = Z3 Z4 = Z5 = 0 λ4 = λ5 = 0 SO(3)

Classification of 2HDM scalar potentials that possess an unbroken custodial symmetry and satisfy the inert
conditions, Y3 = Z6 = Z7 = 0, thereby exhibiting exact Higgs alignment. The Higgs basis field H2 has
been rephased such that Z5 is real. In the symmetry limit, the scalar Lagrangian symmetry that is manifestly
realized in the Φ-basis is shown. Excluding the first two lines of the table, all entries correspond to the ERPS4
regime. The corresponding ERPS symmetry may be softly-broken if m2

11 6= m2
22 and/or m2

12 6= 0. The
primed parameters correspond to the GCP3 basis. Since GCP3 is equivalent to U(1)⊗ Π2 when expressed in
a different scalar field basis, there is a one-to-one mapping between their corresponding entries.



What about the Yukawa couplings?

Unfortunately, none of the Higgs family and GCP symmetries of the ERPS

can be extended to the Yukawa interactions without generating a massless

quark or some other phenomenologically untenable feature.12 That is, the

Yukawa couplings constitute a hard breaking of the ERPS symmetries.

There are two two options:

1. Treat the symmetry conditions as being implemented at a very high energy

scale (e.g. the Planck scale) by some unknown UV physics. Use RG-evolution

to determine the deviation of the parameters at the electroweak scale from

their ERPS symmetry values. Check if the violations of the alignment limit

and the custodial limit are consistent with experimental constraints.

P.S. Bhupal Dev and A. Pilaftsis, JHEP 12, 024 (2014); N. Darvishi and A. Pilaftsis, Phys.

Rev. D 99, 115014 (2019); M. Aiko and S. Kanemura, JHEP 02, 046 (2021).
12P.M. Ferreira and J.P. Silva, Eur. Phys. J. C 69, 45 (2010).



2. Extend the Yukawa Lagrangian to include vectorlike quark and lepton

partners. In this case, one can construct a Yukawa Lagrangian that is

consistent with the ERPS4 regime.

Example: Consider a U(1)⊗Π2-symmetric scalar potential, where

m2
11 = m2

22 , λ ≡ λ1 = λ2 , m2
12 = λ5 = λ6 = λ7 = 0 .

To extend this symmetry to the Yukawa sector, we introduce vector-like

fermions U and U . SM two-component fermions are denoted by lower case

letters (e.g. doublet fields q = (u, d) with Y = 1/3 and singlet fields ū with

Y = −4/3); vector-like singlet two-component fermions by upper case letters.

Note that Yū = YŪ = −YU . Under the U(1)⊗Π2 symmetry,13

symmetry Φ1 Φ2 q ū U U

Π2 Φ2 Φ1 q U ū U

U(1) e−iθΦ1 eiθΦ2 q e−iθū e−iθU e±iθU

13Down-type fermions and leptons can also be included by introducing the appropriate vector-like fermions.



The Yukawa couplings consistent with the U(1) ⊗ Π2 symmetry and the

SU(2)×U(1)Y gauge symmetry are

LYuk ⊃ yt
(

qΦ2ū+ qΦ1U
)

+ h.c.

The model is not phenomenologically viable due to

• experimental limits on vector-like fermion masses

• existence of a massless scalar if the global U(1) is spontaneously broken

Thus, we introduce SU(2)×U(1)Y preserving mass terms,

Lmass ⊃MUUU +MuūU + h.c.

The U(1) symmetry is explicitly broken if MUMu 6= 0. The Π2 discrete

symmetry is also explicitly broken if MU 6= Mu. The symmetry breaking is

soft, so that corrections to the scalar potential squared-mass parameters are

protected from quadratic sensitivity to the cutoff scale Λ of the theory.



Effects of the softly-broken symmetries

Φ2 Φ2

q

ū

Φ1 Φ1

q

U

∆m2 ≡ m2
22 −m2

11 ∼ κ(M2
U −M2

u)−
3y2t (M

2
U −M2

u)

4π2
ln(Λ/M) ,

where M ≡ (M2
U +M2

u)
1/2. The above result includes a finite threshold

corrections proportional to κ. Note that when MU = Mu, the Π2 symmetry

is unbroken and hence the relation m2
11 = m2

22 is protected. Likewise,

m2
12 ∼ κ12MUMu +

3y2tMUMu

4π2
ln(Λ/M) ,

which includes a finite threshold corrections proportional to κ12. In our

numerical scans we chose ln(Λ/M) = 3 and examined two benchmark points,

γ = 0.1 and γ = 0.3, where tan γ ≡Mu/MU .



Regions of approximate alignment without decoupling

In addition to a SM-like Higgs boson (consistent with LHC data), we have

also imposed:

• Non-SM Higgs bosons in the parameter regime of Higgs alignment without

decoupling should have so far evaded LHC detection.

• Constraints on the charged Higgs mass from flavor constraints in the

Type-I 2HDM.

• Vectorlike top quark mass bounds [we chose MT >∼ 1.5 TeV].

• Constraints on mixing between the top quark and its vectorlike fermion

partner (the mixing is governed by the parameters γ, β, mt and MT ).
14

• Avoid excessive fine-tuning while keeping small the size of the effects due

to the soft breaking of the U(1)⊗Π2 symmetry.

14See, e.g., A. Arhrib et al., Phys. Rev. D 97, 095015 (2018).



Regions allowed by experimental bounds and tuning constraints for different values of R ≡ (λ3+λ4)/λ, with

an m2
12 and ∆m2 tuning of at most 5% [assuming that ln(Λ/M) = 3]. Each panel shows three different

R curves; the white regions of the parameter space are ruled out. The ruled out areas expand somewhat as

R decreases, with the borders of the allowed shaded regions indicated by the corresponding contours. For

R = −0.5, the area enclosed by the closed dashed blue contour in panel (a) is also ruled out. Type-I Yukawa

couplings are employed and, two choices for γ are shown. Taken from P. Draper, A. Ekstedt and H.E. Haber,

arXiv:2011.13159 [hep-ph].

Note: The shrinking of the allowed parameter space as γ increases is due primarily to the

behavior of the measure of fine-tuning of the parameter m2
12.



Summary of Part 2

• The Exceptional Region of the 2HDM Parameter Space

– ERPS:m2
11 = m2

22, m
2
12 = 0, λ1 = λ2, λ7 = −λ6 (with λ5,6,7 generically

complex), corresponding to a GCP2-symmetric scalar potential.

– ERPS4: λ1 = λ2 and λ7 = −λ6, corresponding to a softly-broken

GCP2-symmetric scalar potential.

• Exceptional features of the ERPS4

– constrained C2HDM; however CP violation is not necessarily guaranteed

by Im
(

λ∗
5[m

2
12]

2
)

6= 0.

– (softly-broken) symmetry governing the Higgs alignment limit can

provide a viable framework for the observed SM-like Higgs boson.

– implications of imposing an additional custodial symmetry constraint.

• Challenges of the Yukawa sector



Backup slides



Equivalence of Z2 ⊗ Π2 and GCP2 symmetries of the 2HDM

The 2HDM scalar potential in the Φ-basis can be written as,

V(Φ) = Yab(Φ
†
aΦb) +

1
2Zac,bd(Φ

†
aΦb)(Φ

†
cΦd).

Define a three-vector whose components PB (for B = 1, 2, 3) are given by

PB = 1
4(Zab,cd+Zab,cd)δcaσ

B
db =

(

Re(λ6 + λ7) −Im(λ6 + λ7)
1
2(λ1 − λ2)

)

,

and a 3× 3 real symmetric matrix whose elements DAB are given by

DAB = 1
4(Zab,cd + Zab,cd)σ

A
caσ

B
db − 1

12(Zab,ab + Zab,ab)δ
AB

=









−1
3∆+Reλ5 −Imλ5 Re (λ6 − λ7)

−Imλ5 −1
3∆− Reλ5 −Im (λ6−λ7)

Re (λ6−λ7) −Im (λ6−λ7)
2
3∆









,

where ∆ ≡ 1
2(λ1 + λ2)− λ3 − λ4 and Zab,cd ≡ Zba,cd = Zab,dc.



Under a change of scalar field basis, Φ→ Φ′ = V Φ (where V is unitary),

PB → P ′
B = RBDPD , DAB → D′

AB = RACRBDDCD = (RDRT)AB ,

after employing the identity V †σAV = RABσ
B, where R is a real orthogonal

matrix that is explicitly given by RAB = 1
2 Tr(V

†σAV σB).

Theorem: If λ1 = λ2 and λ7 = −λ6 in the Φ-basis, then there exists a

Φ′-basis, defined by Φ′ = UΦ, in which λ′
1 = λ′

2 and Imλ′
5 = λ′

6 = λ′
7 = 0.

If λ1 = λ2 and λ7 = −λ6 in the Φ-basis [GCP2 symmetry] then it follows

that P = 0. Moreover, D is a real traceless symmetric matrix, which can

always be transformed into a real diagonal matrix via an orthogonal similarity

transformation. Thus, there exists a real orthogonal matrix R such that

P ′ = RP = 0 and D′ = RDRT is diagonal.

Noting the explicit forms of P and D previously given, it follows that λ′
1 = λ′

2

and Imλ′
5 = λ′

6 = λ′
7 = 0 in the Φ′-basis [Z2 ⊗Π2 symmetry].



Translation between the U(1)⊗Π2 basis and the GCP3 basis

Consider the following unitary basis transformation, Φ→ Φ′ = V Φ , where

V =
eiφ√
2

(

1 −i
−i 1

)

, where eiφ =
cβ + isβe

−iξ

(1 + s2β sin ξ)1/2
.

Starting from the U(1)⊗Π2-basis,

λ′ = λ′
1 = λ′

2 =
1
2λ(1 + R) ,

λ′
3 = λ3 +

1
2λ(1−R) ,

λ′
4 = λ4 +

1
2λ(1−R) ,

λ′
5 = −1

2λ(1−R) ,

λ′
6 = −λ′

7 = 0 ,

where R ≡ (λ3 + λ4)/λ. In particular, λ′
5 = λ′ − λ′

3 − λ′
4 is real and

λ′
6 = λ′

7 = 0, corresponding to the GCP3 basis.



The corresponding soft-breaking squared mass parameters are,

m′ 2
11 =

1
2(m

2
11 +m2

22) + Imm2
12 ,

m′ 2
22 =

1
2(m

2
11 +m2

22)− Imm2
12 ,

m′ 2
12 = Rem2

12 +
1
2i(m

2
22 −m2

11) .

The vevs, v′1 ≡ vcβ′ and v′2 ≡ vsβ′ are real and positive,

cβ′ =
1√
2

(

1 + s2β sin ξ
)1/2

, sβ′ =
1√
2

(

1− s2β sin ξ
)1/2

,

which yields, s22β′ = 1− s22β sin
2 ξ. Likewise, the relative phase angle, ξ′ is

given by

sin ξ′ =
−c2β

(1− s22β sin
2 ξ)1/2

, cos ξ′ =
s2β cos ξ

(1− s22β sin
2 ξ)1/2

.

Finally, if β = 1
4π and sin ξ = ±1, then one of the vevs vanishes. It then

follows that s2β′ = 0, in which case ξ′ is indeterminate if sβ′ = 0 and ξ′ = 0

if cβ′ = 0.



Small corrections to the ERPS4 conditions

Integrating out the vector-like fermions below the scale M , one generates a

small splitting between λ1 and λ2 and nonzero values of λ5,6,7. For example,

above the scale M , the diagrams

Φ2

Φ2

ū

ū

q q

Φ2

Φ2

Φ1

Φ1

U

U

q q

Φ1

Φ1

contribute equally to λ2(Φ
†
2Φ2)

2 and λ1(Φ
†
1Φ1)

2, respectively. Below the

scale M , the diagrams with internal U lines decouple, which then yields

∆λ ≡ |λ1 − λ2| ∼
3y4t
4π2

(

M2
U −M2

u

M2
U +M2

u

)

log(M/mt) ∼ O(0.1) ,

for M ∼ O(1 TeV). This is a small correction, which in first approximation

can be neglected in our analysis. Likewise, explicit breaking of the U(1)

symmetry will generate small nonzero values of λ5, λ6 and λ7.



Top quark–vectorlike quark mixing

After electroweak symmetry breaking, the fermion mass eigenstates are obtain

by Takagi-diagonalization of the following 4× 4 mass matrix.

−Lmass =
1
2(u U ū U)















0 0 Y sβ Y cβ

0 0 Mu MU

Y sβ Mu 0 0

Y cβ MU 0 0





























u

U

ū

U















+ h.c. ,

where Y ≡ ytv/
√
2. States with the same electric charge, i.e. {u,U} and

{ū, U}, can separately mix (with mixing angles θL and θR, respectively). This

yields two Dirac fermions—the top quark t and its vector-like top partner T ,

with corresponding masses and mixing angles (assuming mt ≪MT ),

mt ≃ Y |sβ−γ|
(

1 − Y

M
cβ−γ

)

, MT ≃ M

[

1 +
m2

t

2M2
cot2(β − γ)

]

,

θL ≃ mt

MT

| cot(β − γ)| , θR ≃ γ +
m2

t

M2
T

cot(β − γ) .



The Higgs sector of the softly-broken U(1)⊗Π2-symmetric 2HDM

The important parameters of the scalar potential are:

m2 ≡ 1
2(m

2
11 +m2

22) , ∆m2 ≡ m2
22 −m2

11 , R ≡ λ3 + λ4

λ
, m2

12 ,

with λ ≡ λ1 = λ2 and λ5 = λ6 = λ7 = 0. We impose λ > 0 and R > −1
to ensure that the vacuum is bounded from below. Solving for the potential

minimum yields,

2m2 = m̄2 − 1
2λv

2(1 + R) , ∆m2 = ǫ
(

m̄2 + 1
2λv

2(1−R)
)

,

where m̄2 ≡ 2m2
12/sin 2β and

tan β ≡ v2
v1

=

√

1− ǫ

1 + ǫ
, where ǫ ≡ cos 2β .

The positivity of v21 and v22 requires |ǫ| < 1.



Approximate alignment without decoupling

The relevant Higgs basis parameters are given by,

Z1 =
1
2λ

[

1 + R + ǫ2(1 − R)
]

,

m
2
A + Z5v

2
= 2m

2
+ λv

2[
1 − 1

2ǫ
2
(1 − R)

]

,

Z6 =
1
2λ(R − 1)ǫ

√

1 − ǫ2 ,

Approximate alignment without decoupling requires that |Z6| ≪ 1 and m2 ∼ O(v2).

To avoid tan β very large or very small, we consider two limiting cases: |ǫ| ≪ 1 and

|R − 1| ≪ 1.

In the limit of |ǫ| ≪ 1,

m2
h = 1

2λv
2(1 + R) , m2

H = 2m2 + λv2 , cβ−α =
λv2(1 − R)ǫ

4m2 + λv2(1 − R)
.

In the limit of |R − 1| ≪ 1,

m2
h = λv2 , m2

H = 2m2 + λv2 , cβ−α =
λv2(1 − R)ǫ

√
1 − ǫ2

4m2
.


