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Part 1: The mathematics behind
transcendental tuning

A closer look at Nima's examples—rational approximations of 7«
and In 2.

Reference: H.E. Haber, “Rational approximations of In2,”

http://scipp.ucsc.edu/~haber/



On April 6, 2021, Nima Arkani-Hamed gave a very stimulating
talk at the BSM Pandemic Seminar via zoom! entitled “Some

new thoughts on the hierarchy problem.”

He proposed a mechanism to explain the cancellation of tree
effects (“rational”) against loop effects ( “transcendental”) which

otherwise would look fine-tuned.

A simple example: the decay width of ortho-positronium,

2 (7?2 — 9) mead

o (1+ O(a)).

[(o-Ps = yyy) =

Note that 72 — 9 ~ 0.8696 which is an order of magnitude

smaller than 72 and 9.

LCheck it out here: https://indico.cern.ch/event/1025750/.




Nima provided two mathematical examples of this mechanism:
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Observe that 0 < (=1)"7, < 2719 and 0 < (-1)"Z,, < 27°™.

Hence,

In

lim p, =7, lim r,, =1In2.
n— oo n—oo

Similar results can be obtained for other transcendental numbers
that are periods,> which play a starring role in modern scattering

amplitude methods.

2 “Periods” is a generic term used to designate the numbers arising as integrals of algebraic functions over

domains described by algebraic equations or inequalities with rational coefficients. See, e.g., M. Kontsevich and
D. Zagier, “Periods,” in Mathematics Unlimited—2001 and Beyond, edited by B. Engquist and W. Schmid
(Springer-Verlag, Berlin, 2001) pp. 771-808.



A closed form expression for p,, was given in the literature® (but

| could not find a similar expression for r,,),

n—1
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This formula was derived using a magical identity (no proof of
this identity was given):
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The result for p,, yields an infinite series for ,

o219 543 77 N
"7 7 T 15015 ' 594914320 104187267600

3S.K. Lukas, “Approximations to 7 derived from integrals with nonnegative integrands,” The American
Mathematical Monthly, 162, 166 (2009).



Challenge: prove that

x4n(1 —55)4n 6 5 4 2 — 1—k 4k ( 4)”
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Start with the identity,

(1 — x)? R
=P
1+ 22 (x)_i_l—l—xZ’

for some polynomial P(x) and constant R to be determined.
Considering the residue at the poles, r = =41, yields R = —4.
Then P(x) is determined:

v (1 —2)* +4

Plw) = 1+ 22

— 2% —42® + 52 — 42+ 4.



Now, you can use the identity, *(1 — 2)* = (1 4+ 2?)P(x) — 4,

repeatedly, to derive,

2°(1 —2)° 4 4 4
a2 ¢ (1 —x) [P(:E) — 1+:1:2]
=241 —2)*P(x) — 1 fﬁ (1+2°)P(x) — 4]
= [0 -0 4] P@) + 0

x12(1 B $)12

1+ x2

= [2°(1 —2)® —42*(1 — 2)* + (—4)%| P(x) +
and so on. After n steps we are done!
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k=0




A similar (and much simpler calculation) yields a closed form

expression for r,,. The corresponding magical identity is,

33”(1—@ — 1~k .k k (—2)"
(2 — ) (1— .
14+ x}; ) +1+:1:

Then,

=1In2+ ni(—Q)_l_k /1 h(1 —2)F(2 — 2)dx .
k=0 0

The integrals can be expressed in terms of Beta functions,

B(r,s) =T'(r)['(s)/T(r + s),

ln2—|—z “1=k2B(k+1,k+1) — B(k+ 2,k + 1)].



n Ap—1 Tn numerical value
- 2 3 0.75

2 —i6 L 0.6875

3 160 L 0.69375

4 — i 621 0.69308035714
5 5100 2329 0.69315476190
6 | —1r5m 19519 | 0 69314630682
7 b | 29524631 () 60314728241
8 | —grmegn | 22629549 | (69314716859
9 s | 241567449 | () 603714718108
10 | — 191501410 1823043590357723810 0.69314718039

Hence,

n—1
T'n = E aj .
k=0

Explicitly,

:_Z% 2k+

With ten digit
accuracy,

In2 ~ 0.6931471806




Previously, | had never encountered the expansion,

3 = (—1)F[k!]2
Z( )" [K!]

n2 =" .
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k=0

Here is an independent proof. Start with

1 1
,1,%;z2):—1n( +Z> :
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where o F is the Gauss hypergeometric function. Using the identity
2F1(a7 b7 C; 22) — (1 R 22)_b o b (C — a, b7 c, 22/(22 o 1)) ’
and setting z = % yields,

In2=3,F(1,1;2,—3).

oo

Employing the series representation of 9 F; and making use of the duplication
formula for the gamma function yields the series representation for In 2 given

above.



Part 2: Exceptional regions of the

2HDM parameter space

Based on the following two papers,

1. H.E. Haber and J.P. Silva, “Exceptional regions of the 2HDM
parameter space,” arXiv:2102.07136 [hep-ph], Phys. Rev. D
(2021), in press.

2. P. Draper, A. Ekstedt and H.E. Haber, “A natural
mechanism for approximate Higgs alignment in the 2HDM,”
arXiv:2011.13159 [hep-ph], JHEP (2021), in press.



The Nima challenge

At the KITP in December, 2012, | asked Nima whether he would still advocate
for a fine-tuned electroweak scale due to selection effects* if additional scalar
states of an extended Higgs sector were discovered at LHC. Nima said he
would abandon this proposal because he would not be able to explain the
additional fine-tunings required to accommodate light scalars of the extended
Higgs sector. Taking up Nima's challenge, in 2016 Patrick Draper, Josh
Ruderman and | provided a proof of principle that extended Higgs sectors

with only one fine-tuning were viable.”

Our model employed an exceptional region of the 2HDM parameter space.
Subsequently, | realized that this idea could be repurposed to provide a natural

explanation for approximate Higgs alignment without decoupling.

4Selection effects is a more palatable term that avoids mentioning by name the anthropic principle.
op. Draper, H.E. Haber and J.T. Ruderman, “Partially Natural Two Higgs Doublet Models,” JHEP 06, 124

(2016) [arXiv:1605.03237 [hep-ph]].



Outline

The complex 2HDM (C2HDM) framework

Exceptional Regions of the 2HDM Parameter Space (ERPS and ERPS4)
Reviewing the Higgs basis and the Higgs alignment limit

Reviewing Family and Generalized CP symmetries of the 2HDM

Exceptional features of the ERPS4

— CP-conserving scalar potential when Im(Af[m3,]?) # 0
— Exact Higgs alignment due to a (softly-broken) symmetry
— Custodial symmetric scalar potential with exact Higgs alignment

What about the Yukawa couplings?



\ Why the C2HDM? |

Let us focus on the two-Higgs doublet model (2HDM) as a
prototype for an extended Higgs sector. Consider the 2HDM
scalar potential (in the ®-basis),
V=m} & & 4+ ml,® @, — [m,d]®, 4 hoc] + 1N (2]D)?
+3A2(PIP3)? 4 Aa(@]D1)(P1P2) + Ay (] P,) (P]D1)
n {%/\5(@{@2)2 + (@1 @) + Ar(DlDy)] D, + h.c.} .

The ®; are hypercharge Y = 1 doublets. After minimizing the scalar potential,
(®Y) = veg/V2 and (BY) = vsge®/V/2, where v = 2myy /g = 246 GeV,
sg =sin 8 and cg = cos B, with 0 < 8 < %ﬂ'.

The complex 2HDM (C2HDM) is defined as the 2HDM such that A = A7 =0
and Im(AE[m3,]?) # 0.



Comments

e We have imposed a (softly-broken) Z, symmetry so that
X¢ = Az = 0 (but allow for m%, # 0). This provides a

framework for avoiding tree-level Higgs mediated FCNCs.

e We have allowed A5 and m?, to be complex. This may be
forced on you due to the presence of a CP-violating phase in

the Higgs-quark Yukawa couplings.

See D. Fontes, M. Loschner, J. C. Rom3ao and J. P. Silva, arXiv:2103.05002.

e The number of independent parameters (dofs) that govern the

2HDM scalar potential has been reduced from 11 to 9.



“Well-known" facts about the C2HDM

e Expressions for the m;,

a unitary change of scalar field basis, ®, — V,,Ps.

and the \; look quite different under

e Im(Ai[mi,)?) # 0 implies a CP-violating scalar potential.

e Exact Higgs alignment, corresponding to the existence of a
neutral scalar whose tree-level properties are those of the
SM Higgs boson (without decoupling of heavy scalar states),

requires a fine-tuning of scalar potential parameters.

e Imposing a custodial symmetric scalar potential requires a

CP-odd scalar that is degenerate in mass with H=.



An Exceptional Region of the 2HDM
Parameter Space

ERPS: m¥, = m3,, miy, =0, \{ = X\o, and Ay = —)g (5 dofs)
ERPS4: )\1 — )\2 and )\7 — _)\6 (8 dOfS)
What happened to the condition that A\g = A7 = 07

Theorem: If Ay = Ay and A\ = —)\g, then a basis of scalar fields

exists (which is not unique) such that A\ = A7 = 0 and A5 € R.

The ERPS corresponds to a regime in which the scalar potential
respects a generalized CP-symmetry called GCP2. The ERPS4

corresponds to a softly-broken GCP2-symmetric scalar potential.



Exceptional features of the ERPS4

o If Ay = Ao and \» = — g is satisfied in one scalar field basis,

then it is satisfied in any choice of scalar field basis.

e Im(Ai[mi,)?) # 0 does not necessarily imply a CP-violating

scalar potential.®

e Exact Higgs alignment holds naturally in the ERPS and can
also be achieved in a significant region of the ERPS4.

e The custodial symmetric subregion of the ERPS4 can allow

for a CP-even scalar that is degenerate in mass with H*.

%In the ERPS where m%Q = 0, CP is automatically conserved by the scalar potential and vacuum.



The Higgs basis and the Higgs alignment limit

Define the scalar doublet fields of the Higgs basis,

HT . HT . .
H, = B = CBCI)1+356_7’§<I>2, Ho = % = 6“7(—356%5@1—#05@2),
Hy Hs

such that (H?) = v/v/2 and (H)) = 0. The Higgs basis is
uniquely defined up to an overall rephasing that is parameterized
by the phase angle 7. [See R. Boto, T. V. Fernandes, H.E. Haber, J.C. Rom3o

and J.P. Silva, Phys. Rev. D 101, 055023 (2020)]

The neutral scalar HY is aligned in field space with the vacuum

expectation value v. If ﬂReH? — ¥ were a mass eigenstate,

then its _ would coincide with those of the

SM Higgs boson.



In the Higgs basis, the scalar potential is given by:

Y = YlfH]ile + Y2H£H2 + [Y3€_MH]1LH2 + h-C-] T %Zl (%1%1)2
+5Z2(HiH2)® + Zs(HIH1) (HSH2) + Za(H]Ho) (HiH)
X {%256—%77(%1%2)2 4 [266_7:77(%1%1) 4 Z76—i77(7_[£7_[2)}7-[17—[2 + h.c.} :

Minimize the scalar potential: Y1 = —2Zv? and Y3 = —£Zgv*.

Remark:

Exact Higgs alignment < Zg = 0 (and Y3 = 0 via the scalar

potential minimum conditions), which implies no HY-H mixing.

Only the terms highlighted in red can yield an H—{HQ + h.c.

contribution to the quadratic terms of the scalar potential after

imposing (H{) = v/v/2 and (H$) = 0.



Approximate Higgs alignment in the CP-conserving 2HDM

With respect to Higgs basis states, {v/2Re HY —v,v2Re HJ},

212)2 Z@U2

M3, = : where 75, Zg € R.
H 262)2 mi + Z5U2

The CP-even Higgs bosons are h and H with my; < mpg.

Approximate Higgs alignment arises in two limiting cases:

1. m%4 > (Zy — Zs)v*. This is the decoupling limit, where h is

SM-like and m? ~ m¥; ~ m7,. > mj ~ Z1v°.

2. |Zs| < 1. Then, h is SM-like if m? + (Z5 — Z1)v* > 0;

otherwise, H is SM-like. = Alignment without decoupling.



Achieving exact Higgs alignment in the 2HDM

The inert doublet model (IDM): There is a Zy symmetry in the
Higgs basis such that Hy — —Hs is the only Zs-odd field. Then
Ze = 0, and tree-level alignment is exact. Deviations from SM
behavior can appear at loop level due to the virtual exchange of

the scalar states that reside in Hs.

Approximate Higgs alignment without decoupling : If present,

e is this a result of an accidental choice of model parameters?

e is this a consequence of an approximate (softly-broken)

symmetry? Not possible in the IDM; possible in the ERPS4.



‘ Family and Generalized CP symmetries of the 2HDM I

Higgs family symmetries

ZQ : b, — (I)l, by — — Py
I, : D1 —— Py

U(]-)PQ [Peccei—Quinn]: (I)l — e_ieq)l, (I)Q — ewCIDQ

SO(3): ¢, — Upp®y, UecU2)/U(l)y

Generalized CP (GCP) transformations

GCP1 : O, — D Dy — B3

GCP2 : o, — O, Dy — — P

GCP3: @, — ®lcy+D3sy, Dy — —Pisp+Pjcp, forany 0 <6< im

where ¢y = cosf and sy = sinb.



Possible symmetries of the 2HDM scalar potential

A complete classification of possible Higgs family and generalized CP

symmetries of the scalar potential (in the ®-basis) has been obtained.’

symmetry | m3, mi, A A4 Res ImAs g A7
T 0 0 0
IT, mi, real A1 0 Ao
Zo @Iy | m7, 0 A 0 0 0
U(1) 0 0 0 0 0
U(1)®ITy | m7, 0 A1 0 0 0 0
SO(3) mi 0 Al A — A3 0 0 0 0
GCP1 real 0 real real
GCP2 mi, 0 A1 — X6
GCP3 mi 0 A1 A1 — Az — Ay 0 0 0

Note that Iy <=> Zy symmetry in a different ®’-basis; Zs ® IIs <= GCP2 in a different
basis; U(1)®IIs <= GCP3 in a different basis, where &' = V & for a suitably chosen V.

P lvanov, Phys. Rev. D 77, 015017 (2008) [arXiv:0710.3490]; P.M. Ferreira, H.E. Haber and J.P. Silva,
Phys. Rev. D 79, 116004 (2009) [arXiv:0902.1537].




‘ More family and GCP symmetries of the 2HDM I

Higgs family symmetries

H/Q : b — (I)Q,
U(].)/Z Dy — Dicy + Posy
U(].)//Z Dy — Dicy + 1DPysy

GCP transformations

GCP1: @, — %,

GCP3": & — Picyg—iPisy

by — —Py
Oy — — P59 + Pacy

Dy — 1P159 + Pocy

Dy — P

Dy — iDFsg—Dicp, forany 0 <0 < im



symmetry  m3, mi, A2 Re)s ImA\s A6 A7
1T, m7,  pure imaginary \; 0 —X;

I, @I, mi 0 A1 0 0 0
u(1)’ m7,  pureimaginary A1 A — A3 — A4 0 0 0
u(1)” mi, real Al Az + A — N 0 0 0
U1 ® Zz m?3, 0 A1l AL — A3 — Mg 0 0 0
U1 ®Zy m3, 0 Al A3+ — A 0 0 0
GCP1’ mi, A1 by
GCP3’ mi, 0 A1 A3+ A — 0 0 0

Note that IT; <= Zs symmetry in a different basis; GCP1’ <= GCP1 in a different basis;
GCP3’ <= GCP3 in a different basis. Moreover, the constraints on the scalar potential
parameters due to the Zs ® IIs, GCP3 and GCP3’ symmetries coincide with those of the
1o ® 115, U(1)' ® Zs and U(1)" ® Zs symmetries, respectively.



The ERPS4 with Im (A:[m3,]?) # 0

Outside of the ERPS4, Im(A;[m3,]?) # 0 necessarily implies a CP-violating

scalar potential. However, consider the following two cases:

e softly-broken Z; ® Il with complex m?, and 3 = iﬂ'.

8 Hence,

Softly-broken Z5 ® II; implies that A5 is real and nonzero.
Im(Af[m3,]?) # 0. Nevertheless the scalar potential and vacuum are

CP-conserving. This model possesses an unbroken GCP1’ symmetry,

GCP1’: b, — (I)g, Py — (I)T

which imposes the conditions m$; = m3,, A\; = Ay and A\g = A7, consistent

. . . o 1 . 2 e 2
with the Zo®II; symmetry constraints (since 8 = 77 requires mi; = m3,).
However, no reality condition is imposed on m%, or \5. Moreover, since

(@) = (®Y), the vacuum also respects the GCP1’ symmetry!

8¢ A5 = 0 then the Zo ® I1o symmetry is promoted to a U(1)®IIy symmetry.



e softly-broken GCP3 with complex m?,, for arbitrary tan 3.

Softly broken GCP3 implies that A5 = A\ — A3 — \4 is real and nonzero.’

Hence, Im(Af[m3,]?) # 0. Nevertheless the scalar potential and vacuum
are CP-conserving. One can construct the relevant GCP transformation

that is preserved (its ugly!).

However, it is easier to transform to the scalar field basis where the
U(1)®II; symmetry is manifestly realized. In this basis, m%, is still
complex but A5 = 0. That is, in this basis Im(Af[m3,]?) = 0 and there is

no possibility of spontaneous CP violation.

Remark:

In the ERPS4, an explicit CP-violating scalar potential arises if sag # O,

sin 26 # 0, m¥, # m3,, and Im[m?,]? # 0. If latter condition is replaced by

Im[m3,]? = 0, then spontaneous CP violation arises if 0 < [m?,| < sA5v?s25.

o A5 = 0, the GCP3 symmetry is promoted to an SO(3) symmetry.



‘ Symmetry origin for exact Higgs alighment |

In the ®-basis, (®?Y) = vcg/v/2 and (®Y) = wvsge®/v/2. The
scalar potential parameters in this basis are related to the

corresponding Higgs basis parameters; e.g.,

Y3 = [%(WSQ —mi;)s2p — Re(m%zeig)c% ~ ﬂm(m%ﬁig)]@_ig'

If m7, = m3, and m?%, = 0, then Y3 = 0. The scalar potential
minimum condition (Y3 = —%Z6v2) then yields Zg = 0, i.e. exact
Higgs alignment.

That is, any 2HDM scalar potential that satisfies m%; = m3,

and m%, = 0 due to a symmetry will yield exact Higgs alignment

naturally!



Exact Higgs alignment arises when the following symmetries of
the 2HDM scalar potential are unbroken.

2 2

symmetry  m5, mi, A2 VI A5 A6 A7

Zo @Iy m2 0 X\ real 0 0
GCP2  m?, 0 X\ — X6

U®I, mj, 0 X\ 0 0
GCP3 m3, 0 X\ A1 — Az — Mg (real) 0 0
SO(3) m2, 0 A1 A — X3 0 0

As previously noted, Zs ® Il and U(1)®II5 are not independent symmetries,
since a change of basis can be performed in each case to a new basis in which

the GCP2 and GCP3 symmetries, respectively, are manifestly realized.

However, it is remarkable that in many cases, exact alignment is preserved
even if the above symmetries are softly broken (corresponding to the ERPS4).
In all such cases, exact Higgs alighment is achieved in the inert limit where
Y3 = Zg = Z7 = 0. A complete classification of 2HDM scalar potentials with

Higgs alignment due to a symmetry has been obtained.



Symmetry soft-breaking parameter residual unbroken symmetry of
constraints scalar potential vacuum
Zo none sop = 0 Lo Lo
U(1) none sop =0 U(1) U(1)
ZQ ® H2 m?l # mg2 S2p = 0 ZQ ZQ
ZQ 29 ].__[2 Rem% 75 0 Cop =— Sinf =0 Hg ].__[2
Zo @ Ty Imm?, # 0 cop = cos€ =0 I1, 11,
Z2 29 H2 none S2p = 0 Z2 29 H2 ZQ
Z2 ® H2 none Cop = sin 25 =0 Z2 ® H2 H2
VDRI, | m3, # md, 52 = 0 u(1) u(1)
U(1)®IT; | Re(m?,e®) #0 cop =0 Hg&) Hg&)
U(1)®H2 none S2p = 0 U(1)®H2 U(].)
U(1)®H2 none Cop = 0 U(1)®H2 H2

Part | of the classification of symmetries of the 2HDM scalar potential that yield exact Higgs alignment. Note
that m?; = m3, and Re(m%2ei£) = Im(m%QGif) = 0 unless otherwise indicated. All such basis choices
are consistent with the ERPS4 with A\g = A7 = 0 and real A\5. In cases where the vacuum preserves a U(1)
symmetry, mpy = m 4 # 0. Since GCP3 is equivalent to U(1) ® IT5 when expressed in a different scalar field

basis, there is a one-to-one mapping between the corresponding entries in this Table and the one that follows.



residual unbroken symmetry of

Symmetry soft-breaking parameter
constraints scalar potential vacuum
GCP3 mll + m22, Rem ;é 0 893/Cop/ £ 0,sin¢’ =0 ﬁ;a) ﬁga)
GCP3 mll 75 m S9! = 0 Lo Lo
GCP3 Rem 75 O Cogl = 0, sin¢’ = Iy IIo
GCP3 Imm/3 # 0 copr =0, cos&’ =0 u(1) u(1)’
GCP3 none Sopr =0 U(1) ® Zo Z2
GCP3 none Spg0 # 0, sing’ = 0 U(1) ® Zs )
GCP3 none cygr =0, cos€’ =0 U(1) ® Zs u(1)’
SO(3) m? # mh3, Re(leezE ) # 0 S951Cop1 7# 0 U(1)g U(1)g
0(3) Re(mue@f ) ;A 0 Cogr =0 U(l)g U(l)g
SO(3) mll #+ m), Sopr =0 U(1) U(1)
SO(3) none none SO(3) U(1)y

Part |l of the classification of symmetries of the 2HDM scalar potential that yield exact Higgs alignment. Note

that m

11 —

mb2 and Re(mmez£ ) = Im(mmez£ ) = O unless otherwise indicated, where the primed

parameters correspond to the GCP3 scalar field basis. All such basis choices are consistent with the ERPS4

with )\% = Af7 = 0 and real )\’5. The symmetry group U(1)g refers to a Peccei-Quinn U(1) symmetry that is

manifestly realized in the Higgs basis. In cases where the vacuum preserves a U(1) symmetry, mpy = m 4 # 0

(with the exception of the unbroken SO(3)-symmetric scalar potential where both H and A are massless).




What is natural Higgs alignment?

In P.S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014), “natural”

alignment is defined as Higgs alignment due to a symmetry that is independent
of tan 5. That is, the solution to Y3 = Zg = 0 should not depend on tan (3,

Ze = {—%325 [)xlc% — )\23% — A345C28 — iIm()\562i5)} -+ CBngRe()\Geig)
+sp533Re(Are’®) + ic%lm()\Geig) + is%Im()\ryeig) }e_zf :
where 345 = A3 + Ay + Re(A5e2%).

Application: GCP3-conserving scalar potential with m%, = m3,, mi, =0,
)\1 = )\2 = )\3 + )\4 + Re)\5, and Im)\5 = )\6 = )\7 = O, produces

Ze = 1\5S2psine” zg(cosﬁJrzc%surlf)

The potential minimum conditions yield sa5sin2§ = cap sin2§ = 0, which
implies that sin& = 0 for arbitrary 5 or cosé = 0 for § = 7r Bhupal Dev
and Pilaftsis assumed that sin & = 0, implying Zg = 0 independently of tan 3.



Transforming to the U(1)®II, basis, the corresponding minimum conditions

1 1

of the scalar potential yield spgco5 = 0 <= [ =0, ym or 5m. For these

values, Y3 = Zg = 0. Is this still an example of “natural” alignment?

Likewise, Zg = 0 after applying the minimum conditions for the GCP2 and
Zio ® lls-conserving scalar potentials, which are not viewed by Bhupal Dev

and Pilaftsis as examples of “natural” alignment.

| believe that what Bhupal Dev and Pilaftsis really meant by “natural”
alignment is that Y3 = Zg = 0 independently of the scalar potential
mainimum conditions. With this definition, neither the GCP2 nor GCP3-
conserving scalar potentials exhibit natural alignment. Only the SO(3)-

conserving scalar potential (i.e., GCP3 with A5 = 0) would qualify.

| prefer the term “natural alignment” to imply Higgs alignment as a
consequence of a symmetry (which may be softly broken). That is, naturalness
in the sense of ‘t Hooft, where a symmetry is enlarged when a parameter is

set to zero.



Deviations from exact Higgs alignment in the ERPS4

Scalar potentials with a softly-broken Zs @ Il symmetry

3 sin 2& m%l, m%Q m%Q CP-violation? comment
sog 7 0 # 0 m%l =+ m%Q complex explicit Im[m%Q]Q # 0
sog # 0 #0 m%l + m%Q Im[m%Q]Q =0 spontaneous 0< |m%2| < %)\502525
sap 7 0 # 0 miy # may Im[mf,]” =0 no Imia| > $A50°s23
cog =0 # 0 m%l = m%Q complex no m%Q # 0
sogcag 7# 0 m%l # m%z Im[m%Q]Q =0 no

Scalar potentials with a softly-broken U(1)®II; symmetry (e.g., tree-level MSSM Higgs sector)

3 m%l, m%Q m%Qei5 R comment
sopcag 7# 0 mi; # may >0 R#1
sggcag # 0 m%l % m%z 0 IR| <1 mj%l =0
Scalar potentials with a softly-broken GCP3 symmetry
.-/
g’ ¢ mii mhs | mige’
S9! Cop! #0 sin 26’ # 0 m’ﬁ + mé% complex
893/Cog! #0 cos& =0 m’ﬁ =+ mé% real
Copr = 0 sin 2¢’ # 0 m’ﬁ = m’Q% real (# 0)

R = ()\3 — )\4)/)\1
and A5 = 0.

Primed parameters refer to
the GCP3 basis.




Custodial-symmetric scalar potential with
exact Higgs alignment

references: H.E. Haber and D. O’Neil, Phys. Rev. D 83, 055017 (2011); A. Pilaftsis, Phys.
Lett. B 706, 465 (2012); M. Aiko and S. Kanemura, JHEP 02, 046 (2021).

The scalar potential respects the custodial symmetry if the Higgs basis

parameters satisfy,
Zy=Zse M eR, Yz "=—1Zse "W ER,  Ze "MER.

Hence, one can choose n such that the parameters of the scalar potential in

the Higgs basis are all real. In particular, in a real Higgs basis, either

Zy =25 (if n=0),

or

Zy==%|Z5|, and Y3=Zs=2;=0 (ifn=3m).



The custodial-symmetric potential is CP-conserving. Outside of the inert

limit, Z4 = Z5 implies that my+ = m 4, where A is a CP-odd neutral scalar.

Exact Higgs alignment via a symmetry implies the inert limit where the sign
of Z5 is unphysical.l® In the custodial limit, H* is degenerate in mass with
either H or A. Although H and A are relatively CP-odd, the individual CP

quantum numbers of H and A are not fixed by the bosonic sector.

The CP quantum numbers of H and A may be resolved by the Yukawa

couplings,!! in which case,
ma If Z4 Z5 and ZGZZ7:O,
mg If Z4:—Z5 and Z6:Z7:O,

mg+ =

in a real Higgs basis. Indeed, the transformation Hy — ¢H5 changes the sign
of Z5 while also changing the scalar Yukawa coupling into a pseudoscalar

Yukawa coupling and vice versa.

10Note that in the inert limit, Ho — 1Ho maintains the reality of the Higgs basis.
1n the IDM, the individual CP quantum numbers of H and A remain undefined.



A complete classification of custodial-symmetric 2HDM scalar potentials with

Higgs alignment due to a symmetry has been obtained.

Higgs basis conditions custodial additional scalar
(all cases satisfy symmetry real P-basis Lagrangian
Y3 = Zg = Z7 = 0) conditions constraints symmetry

Zy =425 #0 sog = 0 Lo
Zy=Z5=0 sog =0 U(1)

Z1 = Zo # Z3ys Zy =325 +#0 cogsin2§ =0, A = Agor Ay = A5 Zo ® 1o

Zy = Zy # Z345 Zy =125 #0 sog = 0, Ay = £ A5 Za @ Il

1= Zo = Z3+ 27y Zy = =+7Z5#0 cog =0, A=A3, Ay #0 U(1) ® I

Z1 = Zo = Zg Zy = =+7Z5F#0 cog =0, A F# A3, Ay =0 U(1) ® I,

Z1 = Zo # Z3 Zy=Z5=0 s98 =0, A # A3, Ay =0 U(1) ® II»

Z1 =29 = Zs+ 27, Z4s = Z5 #0 s2ﬂ/sin§’:O, Ny = AL #0 GCP3

Z1 = Zy = Za Z4=—Z5 #0 So4/ sing/ =0, A = —Af{ #0 GCP3

Z1 = Zo #+ Z3 Z4s=25=0 026/26085’20, Ny ==X #0 GCP3

Z1 = Zo = Zg Zy=2Z5=20 A =A5=0 SO(3)

Classification of 2HDM scalar potentials that possess an unbroken custodial symmetry and satisfy the inert
conditions, Y3 = Zg = Z7 = 0, thereby exhibiting exact Higgs alignment. The Higgs basis field Ho has
been rephased such that Zx is real. In the symmetry limit, the scalar Lagrangian symmetry that is manifestly
realized in the ®-basis is shown. Excluding the first two lines of the table, all entries correspond to the ERPS4
regime. The corresponding ERPS symmetry may be softly-broken if m%l =+ m%2 and/or m%Q # 0. The
primed parameters correspond to the GCP3 basis. Since GCP3 is equivalent to U(1) ® ITo when expressed in

a different scalar field basis, there is a one-to-one mapping between their corresponding entries.




‘ What about the Yukawa couplings? |

Unfortunately, none of the Higgs family and GCP symmetries of the ERPS
can be extended to the Yukawa interactions without generating a massless
quark or some other phenomenologically untenable feature.!> That is, the

Yukawa couplings constitute a hard breaking of the ERPS symmetries.
There are two two options:

1. Treat the symmetry conditions as being implemented at a very high energy
scale (e.g. the Planck scale) by some unknown UV physics. Use RG-evolution
to determine the deviation of the parameters at the electroweak scale from
their ERPS symmetry values. Check if the violations of the alignment limit

and the custodial limit are consistent with experimental constraints.

P.S. Bhupal Dev and A. Pilaftsis, JHEP 12, 024 (2014); N. Darvishi and A. Pilaftsis, Phys.

Rev. D 99, 115014 (2019); M. Aiko and S. Kanemura, JHEP 02, 046 (2021).
12p M. Ferreira and J.P. Silva, Eur. Phys. J. C 69, 45 (2010).




2. Extend the Yukawa Lagrangian to include vectorlike quark and lepton
partners. In this case, one can construct a Yukawa Lagrangian that is
consistent with the ERPS4 regime.

Example: Consider a U(1)®II5-symmetric scalar potential, where

m%lzmgw )\E)q:)\g, m%zz)\5:)\6:)\7:0.

To extend this symmetry to the Yukawa sector, we introduce vector-like
fermions U and U. SM two-component fermions are denoted by lower case
letters (e.g. doublet fields ¢ = (u,d) with Y = 1/3 and singlet fields @ with
Y = —4/3); vector-like singlet two-component fermions by upper case letters.
Note that Y; = Y7 = —Yy. Under the U(1)®II, symmetry,'3

symmetry D, D, q u U U
H2 (I)Q (I)l q U U U
U(1) e 0d, Y, q e Yu e U FU

13Down-type fermions and leptons can also be included by introducing the appropriate vector-like fermions.



The Yukawa couplings consistent with the U(1) ® II; symmetry and the
SU(2)xU(1)y gauge symmetry are

Lyvuk D Yt (q<I>21_L + q@lﬁ) + h.c.
The model is not phenomenologically viable due to

e experimental limits on vector-like fermion masses

e existence of a massless scalar if the global U(1) is spontaneously broken

Thus, we introduce SU(2)xU(1)y preserving mass terms,
Frnass D MyUU + M,uU + h.c.

The U(1) symmetry is explicitly broken if My M, # 0. The Ily discrete
symmetry is also explicitly broken if My = M,. The symmetry breaking is
soft, so that corrections to the scalar potential squared-mass parameters are

protected from quadratic sensitivity to the cutoff scale A of the theory.



Effects of the softly-broken symmetries

q q
SO eR
u U
Am* =msy —miy ~ k(Mg — M) — Byf(]\i%r; M) In(A/M) ,

where M = (MZ + M2?)'/2. The above result includes a finite threshold

corrections proportional to k. Note that when My = M, the IIs symmetry

is unbroken and hence the relation m?%; = m3, is protected. Likewise,

A2

m2, ~ k1o My M, + In(A/M),

which includes a finite threshold corrections proportional to ki2. In our
numerical scans we chose In(A/M) = 3 and examined two benchmark points,
v = 0.1 and v = 0.3, where tany = M,,/My.



Regions of approximate alignment without decoupling

In addition to a SM-like Higgs boson (consistent with LHC data), we have

also imposed:

e Non-SM Higgs bosons in the parameter regime of Higgs alignment without

decoupling should have so far evaded LHC detection.

e Constraints on the charged Higgs mass from flavor constraints in the
Type-1 2HDM.

e Vectorlike top quark mass bounds [we chose My = 1.5 TeV].

e Constraints on mixing between the top quark and its vectorlike fermion

partner (the mixing is governed by the parameters v, 3, m; and Mr).}

e Avoid excessive fine-tuning while keeping small the size of the effects due
to the soft breaking of the U(1)®IIy symmetry.

14See, e.g., A. Arhrib et al., Phys. Rev. D 97, 095015 (2018).
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Regions allowed by experimental bounds and tuning constraints for different values of R = (A3 + A4) /A, with
an m%Q and Am? tuning of at most 5% [assuming that In(A/M) = 3]. Each panel shows three different
R curves; the white regions of the parameter space are ruled out. The ruled out areas expand somewhat as
R decreases, with the borders of the allowed shaded regions indicated by the corresponding contours. For
R = —0.5, the area enclosed by the closed dashed blue contour in panel (a) is also ruled out. Type-1 Yukawa
couplings are employed and, two choices for v are shown. Taken from P. Draper, A. Ekstedt and H.E. Haber,
arXiv:2011.13159 [hep-ph].

Note: The shrinking of the allowed parameter space as 7y increases is due primarily to the

behavior of the measure of fine-tuning of the parameter m?,.



‘ Summary of Part 2 I

e The Exceptional Region of the 2HDM Parameter Space

— ERPS: m7; = m3,, miy, = 0, \1 = A2, Ay = —\g (with A5 .7 generically
complex), corresponding to a GCP2-symmetric scalar potential.
— ERPS4: Ay = Xy and A; = —)g, corresponding to a softly-broken

GCP2-symmetric scalar potential.

e Exceptional features of the ERPS4

— constrained C2HDM; however CP violation is not necessarily guaranteed
by Im (A:[mi,]?) # 0.

— (softly-broken) symmetry governing the Higgs alignment limit can
provide a viable framework for the observed SM-like Higgs boson.

— implications of imposing an additional custodial symmetry constraint.

e Challenges of the Yukawa sector



Backup slides



Equivalence of Zy ® II; and GCP2 symmetries of the 2HDM

The 2HDM scalar potential in the ®-basis can be written as,
V(®) = Yop(PL®p) + 2 Zuc pa(PL®p) (DL Dy).

Define a three-vector whose components Pp (for B = 1,2, 3) are given by

Pp =

N

(ZaveatZanea)deatly = (Re(hg + A7) —Im(g+ A1) (4 = o).
and a 3 X 3 real symmetric matrix whose elements D 45 are given by

. - A B _ 1 VA AB
Dap = Z(Zab,cd + Zab,cd)acaadb - E(Zab,ab + Zab,ab)5

—3A 4+ ReXs —Im A5 Re (Ag — A7)
— —Im )\5 —%A — Re )\5 _Im ()\6_)\7) )
Re ()\6—)\7) —Im ()\6—)\7) %A

where A = ()\1 + )\2) — )\3 — )\4 and 7ab,cd = Zba,cd = Zab,dc-

N



Under a change of scalar field basis, ® — ®' = V& (where V is unitary),

Pp — Py =RppPp, Dap — Dyg =RacRepDcp = (RDR") a5,
after employing the identity VoAV = R apc?, where R is a real orthogonal
matrix that is explicitly given by Rag = %TT(VTO'AVO'B).

Theorem: If \{ = Ao and A7y = —)\g in the ®-basis, then there exists a
®’-basis, defined by ® = U®, in which \] = X} and ImA; = A\ = A, = 0.

If Ay = A2 and Ay = —)g in the ®-basis [GCP2 symmetry| then it follows
that P = 0. Moreover, D is a real traceless symmetric matrix, which can
always be transformed into a real diagonal matrix via an orthogonal similarity

transformation. Thus, there exists a real orthogonal matrix R such that
PP=RP=0 and D' =RDR'is diagonal.

Noting the explicit forms of P and D previously given, it follows that \} = A}
and ImA; = A\ = A% = 0 in the ®’-basis [Zs ® [1; symmetry].



Translation between the U(1)®II, basis and the GCP3 basis

Consider the following unitary basis transformation, ® — & = V® | where

V= e - : where e'? = Cﬁ—'_iséeﬂg .
V2 \ —i 1 (1 + sg5sin&)1l/2

Starting from the U(1)®Ils-basis,

N =X =X=\1+R),
Ay = A3+ 3A(1— R),
AZ:M—F%)\O—R),
A= —IN1-R),
A=\, =0,

where R = (A3 + A\g)/A.  In particular, \i = X — A5 — A} is real and
Ag = A7 = 0, corresponding to the GCP3 basis.



The corresponding soft-breaking squared mass parameters are,
12 1y, 2 2 2
mi1 = 5(mi; +ma,) + Immi,,

12 1,2 2 9
Moy = (M7, + may) — Imm7,,
m3 = Rem?, + 2i(m3, — mi,)

5= 12 29 11) -

The vevs, v] = vcg and vh = vsg are real and positive,

1 1
Cpr = ﬁ<1 + S28 Sin§)1/2, Spr = 75(1 — 528 Sin§)1/27

which yields, 325, =1- 826 sin?€. Likewise, the relative phase angle, ¢ is

given by
L —Cap ) S92 COS &
siné’ = : cos& = ‘ :
PR e R P e
Finally, if 8 = —7r and sin¢ = +1, then one of the vevs vanishes. [t then

follows that sopr = 0, in which case ¢’ is indeterminate if sg = 0 and &=0

If CB/ = 0.



Small corrections to the ERPS4 conditions

Integrating out the vector-like fermions below the scale M, one generates a
small splitting between Ay and Ay and nonzero values of A5 ¢ 7. For example,

above the scale M, the diagrams

(I)Q U (I)Q (1)1 U (I)l
g a vyq g i vy (q
P oa O ©, U O

contribute equally to Ao(®1®5)2 and A (PId;)2, respectively. Below the
scale M, the diagrams with internal U lines decouple, which then yields
3y; (M?f - M,

AA= = el ~ s \Brg v ar

) log(Mms) ~ O(0.1)

for M ~ O(1 TeV). This is a small correction, which in first approximation
can be neglected in our analysis. Likewise, explicit breaking of the U(1)

symmetry will generate small nonzero values of A5, A\g and Ar.



Top quark—vectorlike quark mixing

After electroweak symmetry breaking, the fermion mass eigenstates are obtain
by Takagi-diagonalization of the following 4 x 4 mass matrix.

[ 0 0 Ys5 Yes) (“\

o o M M U
—Lnass = 2w U @ U) v + h.c.,
Ysg M, O 0

\Yes My 0 0 ) \U}

where Y = 3,v//2. States with the same electric charge, i.e. {u,U} and
{1, U}, can separately mix (with mixing angles 7, and 0y, respectively). This
yields two Dirac fermions—the top quark ¢ and its vector-like top partner 7',

with corresponding masses and mixing angles (assuming m; < Mr),

Y ’mf 2
my —Y|SB_'Y| 1—MCB_,7 . MT_ M 1—|—2M2 cot (/B—’Y) ;
0, ~ 1 cot (8 — )| 0 £ o8 — )
~ ——|co — : ~ —— CO — :



The Higgs sector of the softly-broken U(1)®IIy-symmetric 2HDM

The important parameters of the scalar potential are:

2 2 )\3“—)\4 2

2 2
)\ 9 m12 9

172 2 __ _
m :§(m11+m22), Am = Moo — M7y, R =

with A=A =Xy and A\ = A\¢g = A\ = 0. We impose A >0 and R > —1
to ensure that the vacuum is bounded from below. Solving for the potential

minimum Yyields,
2m? = m* — s\ (1 + R), Am? = e (m* +iz*(1 - R)) ,
where m? = 2m?,/sin 23 and

1 —
tanﬁz%:\/ 6, where € = cos2.
V1 1—|—€

The positivity of v and v3 requires || < 1.




Approximate alignment without decoupling

The relevant Higgs basis parameters are given by,
Zi=3iIA[14+ R+ (1 - R)],
mi + Zsv® = 2m” + Av° 11— %62(1 — R)],

Zs = 3A(R — 1)en/1 — €2,

Approximate alignment without decoupling requires that |Zs| < 1 and m? ~ O(v?).

To avoid tan B very large or very small, we consider two limiting cases: |e| < 1 and
IR — 1] <K 1.

In the limit of |e| < 1,

B A?(1 — R)e
- 4m2 4+ \2(1 — R)’

mi = %)\1)2(1 + R), qu = 2m? 4+ \? : Ch—a

In the limit of |R — 1] < 1,
2 2 . )\'U2(1 — R)e\/ 1 — 62

mi = \v y My = 2m2 + )\’UQ, C—a =— A2




