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A SM-like Higgs boson



Taken from ATLAS collabora1on, ATLAS-CONF-2021-053 
(2 November 2021).

Cross sec1ons 1mes branching frac1on for ggF, vector boson 
fusion (VBF), VH and &̄H+tH produc1on in each relevant decay 
mode, normalized to their Standard Model (SM) predic1ons. 
The values are obtained from a simultaneous fit to all 
channels.  The black error bars, blue boxes and yellow boxes 
show the total, systema1c, and sta1s1cal uncertain1es in the 
measurements, respec1vely. The gray bands show the theory 
uncertain1es on the predic1ons. The level of compa1bility 
between the measurement and the SM predic1on 
corresponds to a p-value of pSM=79%, computed using the 
procedure outlined in the text with 21 degrees of freedom. 

Nine years after the discovery of 
the Higgs boson, the data from 
Runs 1 and 2 of the LHC are well 
described by the Standard Model.



Taken from CMS Collaboration, 
JHEP 01 (2021) 148.

The best fit estimates for the 
reduced coupling modifiers 
extracted for fermions and 
weak bosons from the resolved 
κ-framework compared to 
their corresponding prediction 
from the SM. The error bars 
represent 68% CL intervals for 
the measured parameters. In 
the lower panel, the ratios of 
the measured coupling 
modifiers values to their SM 
predictions are shown. 



Nevertheless, given the current precision of the Higgs data,  the 
possibility that the Higgs sector contains more that one physical 
scalar cannot be excluded.

Indeed, the structure of the Standard Model (SM) is far from 
being of minimal form.   For example, there are three generations 
of quarks and leptons whereas one generation would have been 
sufficient (“Who ordered that?”). So why shouldn’t the scalar 
sector be non-minimal as well?



Non-minimal 
(extended) Higgs sectors



Motivations for Extended Higgs Sectors
ØExtended Higgs sectors can modify the electroweak phase 

transition and facilitate baryogenesis.

ØExtended Higgs sectors can enhance vacuum stability.

ØExtended Higgs sectors can provide a dark matter candidate.

ØExtended Higgs sectors can be employed to provide a solution to 
the strong CP problem (⟹ axion)

ØModels of new physics beyond the SM often require additional 
scalar Higgs states. E.g., two Higgs doublets are required in the 
minimal supersymmetric extension of the SM (MSSM).



A neutral scalar dark matter candidate—the inert doublet model (IDM)

The IDM is a 2HDM in which the 
scalar poten5al in a basis where 
<H1>=v/       and <H2>=0 exhibits 
an exact Z2 discrete symmetry.   
All fields of the IDM—gauge 
bosons, fermions and the Higgs 
doublet field H1 are even under 
Z2 . Only the Higgs doublet field 
H2 is Z2-odd.  Hence, there is no 
mixing between H1  and H2.  In 
par5cular, the SM Higgs boson h
resides in H1. The lightest Z2-odd 
par5cle (LOP) residing in H2 is a 
candidate for the dark maQer.

Note: deviations of h from SM Higgs properties can arise at one-loop (e.g., H± loop corrections to h ➝ 𝛾𝛾).



Extended Higgs Sectors are Highly Constrained
ØThe electroweak 𝜌 parameter is very close to 1.  

ØOne neutral Higgs scalar of the extended Higgs sector must be SM-like (and 
identified with the Higgs boson at mass 125 GeV).

ØAt present, only one Higgs scalar has been discovered.

ØHiggs-mediated flavor-changing neutral currents (FCNCs) are suppressed.

ØHiggs-mediated CP-violation has not yet been observed (with implications 
for electric dipole moments).

ØCharged Higgs exchange at tree level (e.g. in                             ) and at one-
loop (e.g. in                ) can significantly constrain the charged Higgs mass and 
the Yukawa couplings.





Why is the observed Higgs boson SM-like?

ØThere is no extended Higgs sector.

ØAll other scalars (apart from the SM-like Higgs boson) are very heavy
§ This is the decoupling limit.

ØA neutral scalar field with the tree-level properties of the SM Higgs boson is 
an approximate mass eigenstate (due to suppressed mixing with other 
neutral scalar fields of the extended Higgs sector).
§ This is the Higgs field alignment limit.
§ The other physical scalars of the model may or may not be significantly 

heavier than the SM Higgs boson.  That is, the decoupling limit is a 
special case of the Higgs field alignment limit.







A natural SM-like Higgs boson in an extended Higgs sector

ØThe naturalness of the SM-like Higgs boson mass will not be addressed here.

ØThe decoupling limit explanation of the SM-like Higgs boson is natural to the 
extent that the low-energy effective theory simply reduces to the SM.

ØThe central question of this talk is whether there is a natural mechanism that 
can produce approximate Higgs alignment without decoupling.  The low energy 
effective theory will then contain the SM-like Higgs boson along with additional 
scalar states whose masses are not significantly larger than a few hundred GeV.

Naturalness à la ‘t HooZ: guaranteed by a symmetry that is either exact or is 
broken by soZ symmetry breaking terms of posi\ve mass dimension (i.e., by 
terms of dimension 3 or less in the Lagrangian).



How to achieve Higgs field    
alignment in the two Higgs 

doublet model (2HDM)













Regions excluded by fits to the measured rates of the productions and decay of the Higgs 
boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed best-fit values 
for cos(β - α) are -0.006 for the Type-I 2HDM and 0.002 for the Type-II 2HDM.  Taken 
from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).





Classification of global 
symmetries of the 
2HDM bosonic sector

















Higgs alignment without 
decoupling due to a 
(soDly-broken) symmetry









Has natural approximate Higgs alignment been successfully achieved?

Only if the softly-broken symmetry can be extended to the entire model Lagrangian.

§ The scalar gauge covariant kinetic energy term conserves CP and is U(2)-invariant, 
which contains all the family symmetries previously considered.

§ The Yukawa interactions do not respect the GCP2 and GCP3 symmetries. 
§ An attempt to extend softly-broken GCP2 and GCP3 symmetries to the Yukawa interactions 

(with three quark generations) in P.M. Ferreira and J.P. Silva,  Eur. Phys. J. C 69, 45 (2010) 
yielded  phenomenologically unacceptable results.

§ To extend the GCP2 and GCP3 symmetries to the Yukawa sector, we shall add 
vector-like top (and bottom) quark partners to the Standard Model.  These 
symmetries will be broken softly by vector-like top mass parameters, which also 
provides a mechanism for generating                                                .  



Extending the ERPS 
(and ERPS4) to the   

Yukawa sector 













Conclusions



Take home messages
Ø If an extended Higgs sector with additional “light” scalars exits, then one 

needs to understand why the observed Higgs boson is SM-like.

ØEvidence for the additional Higgs scalars will first emerge either through their 
direct discovery or via the detection of deviations of the h couplings from 
their SM predictions.

Ø In the case of the IDM, the deviations of the h couplings from their  SM 
predictions are radiatively induced and thus will be quite small.

Ø If additional Higgs scalars are found and deviations of h from its SM behavior 
are confirmed (which are too large to be compatible with the IDM), then a 
symmetry-based explanation for why the Higgs boson is SM-like would 
suggest the presence of new physics in the Yukawa sector that involves top 
quark fermionic partners (and perhaps partners to other quarks and leptons).
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Equivalence of Z2 ⊗ Π2 and GCP2 symmetries of the 2HDM

The 2HDM scalar potential in the Φ-basis can be written as,

V(Φ) = Yab(Φ
†
aΦb) +

1
2Zac,bd(Φ

†
aΦb)(Φ

†
cΦd).

Define a three-vector whose components PB (for B = 1, 2, 3) are given by

PB = 1
4(Zab,cd+Zab,cd)δcaσ

B
db =

(

Re(λ6 + λ7) −Im(λ6 + λ7)
1
2(λ1 − λ2)

)

,

and a 3× 3 real symmetric matrix whose elements DAB are given by

DAB = 1
4(Zab,cd + Zab,cd)σ

A
caσ

B
db − 1

12(Zab,ab + Zab,ab)δ
AB

=









−1
3∆+Reλ5 −Imλ5 Re (λ6 − λ7)

−Imλ5 −1
3∆− Reλ5 −Im (λ6−λ7)

Re (λ6−λ7) −Im (λ6−λ7)
2
3∆









,

where ∆ ≡ 1
2(λ1 + λ2)− λ3 − λ4 and Zab,cd ≡ Zba,cd = Zab,dc.



Under a change of scalar field basis, Φ→ Φ′ = V Φ (where V is unitary),

PB → P ′
B = RBDPD , DAB → D′

AB = RACRBDDCD = (RDRT)AB ,

after employing the identity V †σAV = RABσ
B, where R is a real orthogonal

matrix that is explicitly given by RAB = 1
2 Tr(V

†σAV σB).

Theorem: If λ1 = λ2 and λ7 = −λ6 in the Φ-basis, then there exists a

Φ′-basis, defined by Φ′ = UΦ, in which λ′
1 = λ′

2 and Imλ′
5 = λ′

6 = λ′
7 = 0.

If λ1 = λ2 and λ7 = −λ6 in the Φ-basis [GCP2 symmetry] then it follows

that P = 0. Moreover, D is a real traceless symmetric matrix, which can

always be transformed into a real diagonal matrix via an orthogonal similarity

transformation. Thus, there exists a real orthogonal matrix R such that

P ′ = RP = 0 and D′ = RDRT is diagonal.

Noting the explicit forms of P and D previously given, it follows that λ′
1 = λ′

2

and Imλ′
5 = λ′

6 = λ′
7 = 0 in the Φ′-basis [Z2 ⊗Π2 symmetry].



Translation between the U(1)⊗Π2 basis and the GCP3 basis

Consider the following unitary basis transformation, Φ→ Φ′ = V Φ , where

V =
eiφ√
2

(

1 −i
−i 1

)

, where eiφ =
cβ + isβe

−iξ

(1 + s2β sin ξ)1/2
.

Starting from the U(1)⊗Π2-basis,

λ′ = λ′
1 = λ′

2 =
1
2λ(1 + R) ,

λ′
3 = λ3 +

1
2λ(1−R) ,

λ′
4 = λ4 +

1
2λ(1−R) ,

λ′
5 = −1

2λ(1−R) ,

λ′
6 = −λ′

7 = 0 ,

where R ≡ (λ3 + λ4)/λ. In particular, λ′
5 = λ′ − λ′

3 − λ′
4 is real and

λ′
6 = λ′

7 = 0, corresponding to the GCP3 basis.



The corresponding soft-breaking squared mass parameters are,

m′ 2
11 =

1
2(m

2
11 +m2

22) + Imm2
12 ,

m′ 2
22 =

1
2(m

2
11 +m2

22)− Imm2
12 ,

m′ 2
12 = Rem2

12 +
1
2i(m

2
22 −m2

11) .

The vevs, v′1 ≡ vcβ′ and v′2 ≡ vsβ′ are real and positive,

cβ′ =
1√
2

(

1 + s2β sin ξ
)1/2

, sβ′ =
1√
2

(

1− s2β sin ξ
)1/2

,

which yields, s22β′ = 1− s22β sin
2 ξ. Likewise, the relative phase angle, ξ′ is

given by

sin ξ′ =
−c2β

(1− s22β sin
2 ξ)1/2

, cos ξ′ =
s2β cos ξ

(1− s22β sin
2 ξ)1/2

.

Finally, if β = 1
4π and sin ξ = ±1, then one of the vevs vanishes. It then

follows that s2β′ = 0, in which case ξ′ is indeterminate if sβ′ = 0 and ξ′ = 0

if cβ′ = 0.



Small corrections to the ERPS4 conditions

Integrating out the vector-like fermions below the scale M , one generates a

small splitting between λ1 and λ2 and nonzero values of λ5,6,7. For example,

above the scale M , the diagrams

Φ2

Φ2

ū

ū

q q

Φ2

Φ2

Φ1

Φ1

U

U

q q

Φ1

Φ1

contribute equally to λ2(Φ
†
2Φ2)

2 and λ1(Φ
†
1Φ1)

2, respectively. Below the

scale M , the diagrams with internal U lines decouple, which then yields

∆λ ≡ |λ1 − λ2| ∼
3y4t
4π2

(

M2
U −M2

u

M2
U +M2

u

)

log(M/mt) ∼ O(0.1) ,

for M ∼ O(1 TeV). This is a small correction, which in first approximation

can be neglected in our analysis. Likewise, explicit breaking of the U(1)

symmetry will generate small nonzero values of λ5, λ6 and λ7.



Top quark–vectorlike quark mixing

After electroweak symmetry breaking, the fermion mass eigenstates are obtain

by Takagi-diagonalization of the following 4× 4 mass matrix.

−Lmass =
1
2(u U ū U)















0 0 Y sβ Y cβ

0 0 Mu MU

Y sβ Mu 0 0

Y cβ MU 0 0





























u

U

ū

U















+ h.c. ,

where Y ≡ ytv/
√
2. States with the same electric charge, i.e. {u,U} and

{ū, U}, can separately mix (with mixing angles θL and θR, respectively). This

yields two Dirac fermions—the top quark t and its vector-like top partner T ,

with corresponding masses and mixing angles (assuming mt ≪MT ),

mt ≃ Y |sβ−γ|
(

1 − Y

M
cβ−γ

)

, MT ≃ M

[

1 +
m2

t

2M2
cot2(β − γ)

]

,

θL ≃ mt

MT

| cot(β − γ)| , θR ≃ γ +
m2

t

M2
T

cot(β − γ) .



The Higgs sector of the softly-broken U(1)⊗Π2-symmetric 2HDM

The important parameters of the scalar potential are:

m2 ≡ 1
2(m

2
11 +m2

22) , ∆m2 ≡ m2
22 −m2

11 , R ≡ λ3 + λ4

λ
, m2

12 ,

with λ ≡ λ1 = λ2 and λ5 = λ6 = λ7 = 0. We impose λ > 0 and R > −1
to ensure that the vacuum is bounded from below. Solving for the potential

minimum yields,

2m2 = m̄2 − 1
2λv

2(1 + R) , ∆m2 = ǫ
(

m̄2 + 1
2λv

2(1−R)
)

,

where m̄2 ≡ 2m2
12/sin 2β and

tan β ≡ v2
v1

=

√

1− ǫ

1 + ǫ
, where ǫ ≡ cos 2β .

The positivity of v21 and v22 requires |ǫ| < 1.



Approximate alignment without decoupling

The relevant Higgs basis parameters are given by,

Z1 =
1
2λ

[

1 + R + ǫ2(1 − R)
]

,

m
2
A + Z5v

2
= 2m

2
+ λv

2[
1 − 1

2ǫ
2
(1 − R)

]

,

Z6 =
1
2λ(R − 1)ǫ

√

1 − ǫ2 ,

Approximate alignment without decoupling requires that |Z6| ≪ 1 and m2 ∼ O(v2).

To avoid tan β very large or very small, we consider two limiting cases: |ǫ| ≪ 1 and

|R − 1| ≪ 1.

In the limit of |ǫ| ≪ 1,

m2
h = 1

2λv
2(1 + R) , m2

H = 2m2 + λv2 , cβ−α =
λv2(1 − R)ǫ

4m2 + λv2(1 − R)
.

In the limit of |R − 1| ≪ 1,

m2
h = λv2 , m2

H = 2m2 + λv2 , cβ−α =
λv2(1 − R)ǫ

√
1 − ǫ2

4m2
.


