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Abstract

In order to account for the existence of mass for the W+ and Z gauge
bosons and the quarks and charged leptons, the gauge symmetry of the
electroweak interactions must be spontaneously broken. However, it is
presently unknown how nature chooses to implement the mechanism of
electroweak symmetry breaking. Although the elementary Higgs boson is
the simplest manifestation of this mechanism, future experimental searches
must be prepared for all eventualities. These lectures describe both the-
oretical and phenomenological aspects of electroweak symmetry breaking
and the attempt to uncover its secrets in the next generation of particle
physics experiments.
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Preface

After one year of running at LEP and roughly half a million Z° events accu-
mulated, the Standard Model of particle physics continues to provide a remarkably
detailed and complete description of all observed high energy physics phenomena.
Yet, the final chapter of the story of the Standard Model is not yet written. The
top quark remains to be discovered; present limits from the CDF Collaboration
imply m; > 89 GeV. The t-quark is probably just a mundane detail; its discov-
ery simply requires higher luminosity or higher energy from our collider facilities.
(Nevertheless, the existence of such a heavy t-quark is intriguing and will play an
important role at various times in these lectures.) The final piece of the Standard
Model puzzle which remains to be uncovered is the mechanism for electroweak
symmetry breaking. These lectures will address what we know now and what we
hope to learn about the origins of electroweak symmetry breaking. The central
goal of particle physics in the 1990s and beyond is to uncover and elucidate the
mechanism by which the W and Z (and fermions) get their mass. By conducting
experiments that can probe the energy scale between 100 GeV and 1 TeV, there is
an expectation that the secrets of electroweak symmetry breaking can be uncov-
ered. Moreover, there are a number of theoretical arguments that strongly suggest
that this endeavor will also lead to the first hints of deviations from the Standard
Model. Thus, the exploration of the origins of electroweak symmetry breaking may
reveal new phenomena with far reaching implications for future theories of particle
physics.

These lectures are organized into six parts. In the first lecture, I will provide
an introduction to electroweak symmetry breaking (ESB). The discussion here
will be a little more general and formal than the introductory material given in
most particle physics textbooks. However, the insight obtained in Lecture 1 will
serve us well in future lectures. The simplest model incorporating ESB is the
Standard Model with one weak doublet of elementary scalar (Higgs) fields. Lecture
2 will discuss in detail the theoretical properties of the (minimal) Higgs boson—
its coupling to matter and gauge bosons, and expectations for its mass. Based
on the theoretical properties elucidated in Lecture 2, a detailed description of the
phenomenology of the Higgs boson is given in Lecture 3. There, I will summarize
the present experimental limits on the Higgs boson mass, and discuss the prospects
for discovering the Higgs boson at present and future colliders. Lecture 4 goes
beyond the minimal Higgs model. The theory and phenomenology of a two-Higgs-
doublet model is explored in detail, and some aspects of other non-minimal Higgs
sectors are mentioned briefly. The most compelling argument for the two-Higgs-
doublet model may be in the context of a supersymmetric extension of the Standard
Model. The Higgs sector of the minimal supersymmetric model is examined in



Lecture 5; this provides one example of the possible connection between the origin
of ESB and the necessity for physics beyond the Standard Model. Finally, in
Lecture 6, I discuss an alternative approach to ESB in which the symmetry breaking
is induced by some dynamical mechanism other than the generation of a nonzero
vacuum expectation value for some elementary scalar field. The prospects for a
successful theoretical approach of this kind are considered. The lectures end with
some final thoughts on the implications of the search for the origins of electroweak
symmetry breaking.

Much of the material presented in these lectures is treated in a recently pub-
lished book, The Higgs Hunter’s Guide (Addison-Wesley Publishing Company,
Redwood City, CA, 1990), by John F. Gunion, Howard E. Haber, Gordon Kane
and Sally Dawson. I am grateful to my co-authors for the wisdom that I gained
from them during our collaboration, and I am pleased to be able to share some of
their insights in these lectures. On occasion, I will refer the reader to additional
information contained in this book (henceforth to be called the HHG). The HHG
also contains a comprehensive list of references to the original literature. There-
fore, I will not attempt to provide a complete bibliography here. Instead, at the
end of each lecture, I will simply provide some suggestions for further reading, and
list some of the key sources which treat the subject matter discussed in the lecture.

I would like to thank Paul Langacker for organizing such a stimulating and
enjoyable summer school, and for the hospitality that he and the local TASI or-
ganizing committee provided during my stay in Boulder. I am grateful for helpful
comments on Lecture 5 from Lance Dixon and on Lecture 6 from Tatsu Takeuchi.
Finally, I greatly appreciated the interest and the perceptive questions of the TASI-
90 students, which contributed greatly to my enjoyment in giving these lectures.



1. Electroweak Symmetry Breaking—An Introduction
1.1 Consistent Quantum Field Theories with Massive Vector Bosons

We begin by reviewing the components of the Standard Model. The elemen-
tary fields of this model (which have been observed to date in nature) are: spin
1/2 matter fields (quarks and leptons) and spin 1 gauge fields (gluons, v, W* and
Z). The theoretical structure which combines all these elements is renormalizable
quantum field theory (QFT). At this point, I shall quote a theorem [due to Corn-
wall, Levin, and Tiktopoulos] which states that quantum field theories involving
spin 1 gauge bosons are inconsistent (in perturbation theory) unless they belong
to one of the following classes:

(1) massless U(1) gauge theories (e.g., QED)
(77) massive U(1) vector boson theories
(7i7) non-abelian gauge theories.

or some combination of the above. Since the term m2AZA“a violates gauge in-
variance, (iii) apparently describes a massless theory. Inserting such a mass term
would result in a non-renormalizable, non-unitary theory.

How can I write down a consistent QFT containing the W+ and Z? Indeed, the
absence of m2AZA“a means zero tree-level masses. Perhaps I can generate masses
with quantum mechanical (loop) corrections. Unfortunately, I can (apparently)
prove that vector boson mass generation is impossible. The “proof” goes as follows.
Consider the generic Lagrangian for a non-abelian gauge field theory:

1

ceppee X

(9, A2 — na*aﬂpgbnb : (1.1)

Here, the n and n* fields are Faddeev-Popov ghosts, and £ is the gauge-fixing param-
eter. For simplicity, I have omitted matter (spin 0 and spin-1/2) fields, although
they can be easily included. Although the gauge-fixing term violates the gauge
invariance of the theory, the addition of the Faddeev-Popov term restores a more
general gauge invariance called BRS-invariance. Under the BRS transformation,
the fields of the model transform as follows

dBrs AL (x) = 0D’ ()

Sprsn™(x) = —20g fn'n (1.2)
a*x 9 a
oprsn™*(7) = " oA,



where 6 is an anti-commuting parameter (#> = 0), and D is the covariant derivative
DI = 6909, + g f** A (1.3)

In particular, if we define the action to be

S:/d%c, (1.4)

then the equation of motion for the n* field is

oS
on

= —9"DiP =0, (1.5)

which implies that
oS

ony

BRs (OuAf) = —0
Consider the following Green’s function

(0170, ALy ()10} = N [ DADIDI B A @S, (17)

where

N = (0|0) = / DA, DyDy*e (1.8)

is a field independent normalization factor. It is important to note that the right
hand side of eq. (1.7) constitutes a definition of the T-product. This definition
differs slightly from the conventional definition in that I am free to move the partial
derivative 0, outside the T-product without generating new terms. However, with
this definition one cannot invoke the equations of motion on an operator which
appears inside the T-product. The reason is clear: on the right hand side, we
functionally integrate over all field configurations, and not just those that satisfy
the equations of motion.

Since both the measure and the action S are BRS-invariant, I immediately get

(0] ToBrs [0,AG ()] 15 (y) 10) + (0] TO,AG (2)dBRS M3 (y) [0) = 0. (1.9)
Using eqs. (1.2) and (1.6), it follows that

(0179, 450, 45 (3) 10) = =€ 01T 25 1) )
la (1.10)

= _i£5a654(x - y)

The last line is a consequence of the following result that is obtained by a functional



integration by parts

0=N"" / D@E‘%?) [@(y)e"sl"’}]
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If we define the vector boson two-point function by
Go (x - y) = (0] AL(z)AL(y) 10)
_ f (—% e~ PE= b (p, —p) (112)
then eq. (1.10) implies the following Ward Identity
PPt G (p, —p) = —i66Y. (1.13)

Let us consider the implications of this Ward identity. First, note that this
result is satisfied by the exact two-point function of the theory. (Although we
shall ignore the subtleties of renormalization, one can show that this identity must
also apply to the renormalized Green’s function as well.) Writing Gfﬁ,(p, —p) =
§°*G . (p), and recalling the tree-level vector boson propagator

—1 Pup ippp
G?w(p) = ;f_f (g;w - ,;Qu) - }';; z ) (1.}141)

it follows from eq. (1.13) that

P’ G(p) = PP’ Glulp) = =i (1.15)

Thus, the longitudinal part of the vector-boson propagator is not renormalized.
Moreover, as a consequence of the above analysis (i.e., due to the BRS invariance
and Lorentz invariance of the theory), one can express the one-particle-irreducible
(1PI) vector-boson two-point function in the following form

= ill,,(p) = i{pupr — ng,,_,,)H(pQ) . (1.16)

Diagrammatically, ill,,(p) is the sum of all 1PI Feynman diagrams with two ex-
ternal vector boson legs. The full two-point function can then be obtained by



summing a geometric series, where the nth term of the series contains the 1PI
bubble n times. The result is

B <9W_p§3127y> Epupy
Gl = pETHGA] .17

Observe that the pole at p?> = 0 in the tree-level propagator [eq. (1.14)] is not
shifted in the exact two-point function. Hence, the gauge boson remains massless
even in the presence of interactions. This result is the origin of the (incorrect)
statement which is sometimes made which states that the photon is massless due
to gauge invariance.

The loophole in the above argument was first discovered by Schwinger. Con-
sider II(p?) in the limit of p? — 0. Suppose

(1.18)

Then p?[1 +II(p?)] = p? — g*v?, and we see that the pole of G, (p) is no longer at
p? = 0; it has been shifted to p? = ¢g?v?, which is the mass of the gauge boson! Is
the behavior of II(p?) exhibited in eq. (1.18) possible? Yes! Since iIl,,,(p) is the
sum of all 1PI diagrams, the behavior II(p?) ~ 1/p? means that we can “cut” the
1PI diagram and expose a massless scalar excitation in the sum over intermediate
states. This is the massless Goldstone boson! The mass generation mechanism just
exhibited is called the Higgs mechanism. I shall now illustrate it with two simple
examples.

1.2 Vector Boson Mass Generation

Consider first an abelian gauge theory coupled to a complex elementary scalar
field (sometimes called scalar QED). This model is well treated in the standard
textbooks. The Lagrangian for the model is

2 1

L=-1F,F" +(D,®)"(D'®) — X (|2 — 1v?) %

(0uA72,  (1.19)
where D), = 0, + ieA, and & = \/g(qb + 1x). Note that the classical potential is

minimized when |®| = v/v/2. For definiteness, assume that the potential minimum
in field space points in the direction of ¢. Then, we shift the fields: ¢ — ¢+v, x —



y so that (¢} = {x) = 0. Expanding around the shifted vacuum, the Lagrangian
can be rewritten as

1
£ == dFuF* = @A + 307 + @ +3m38

+ %egvauA“ + evA,8"yx + scalar interactions

where m2 = 2\v?. Note that no mass term for x appears, i.e. My = 0. Consider
the calculation of I, in this model. Normally, one must go to one-loop in order
to obtain the first contribution to I1,,. However, in this case, there is a tree-level
contribution due to the appearance of two new “vertices” in the shifted Lagrangian

ANANAXAAANS  iePvig,,

AN ===~ evp, .
P

Thus, we obtain i, (p?) to order e?

=  AANAXANANANN rvvvv‘———f—wvv\/\/‘ +

il = it (Qw _ E;‘)_f':) , (1.21)

Note that the pole at p? = 0 arises explicitly due to the exchange of the massless
y field. This is the Goldstone boson of the model, It is well known that this
Goldstone boson is not a physical degree of {freedom. It can be eliminated by a
(field-dependent) gauge transformation. Nevertheless, the remnant of the Gold-
stone boson remains as the longitudinal mode of the massive gauge boson. That
the gauge boson is massive is clear from the shifted Lagrangian. Nevertheless, we
can obtain the vector (photon) mass by noting that eq. (1.21) implies that

'—621)2

P2

(%) =

It follows that m, = ev.

For our second example, we consider the Standard Model, but with no scalar
Higgs field. This must be a very bad model of nature, since it predicts that the
W* and Z (and the fermions as well) are all massless. But, these conclusions are
based on a tree-level analysis of the model, so perhaps we are being too hasty.



To see what happens when loop offects are taken into account, I shall consider
for simplicity a one generation model, To see whether loop effects can generate
a vector boson mass, one must analyze corrections to the vector boson two-point
functions. Naively, the theory possesses no massless scalar fields, so we should
not expect a pole to develop in TI(p?) as in the previous example. However, due
to the effects of the strong interactions, diagrams with gluon-exchange cannol be
neglected.

b B

q

If we could sum all such graphs to all orders, we would discover that pseudoscalar
quark-antiquark bound states can be formed. Since our model possesses no quark
mass terms, these pseudoscalars are in fact massless. In the one generation model,
these are the pions: 7%, 7°, and 7n~. In fact, these are Goldstone bosons which
arise because a global SU{2)1 X SU(2)r flavor symmetry is spontaneously broken
down to a diagonal SU(2) L+ R (called isospin). This is a dynamical breaking caused
by the strong QCD forces which results in a non-zero vacuum expectation value
for (PR} = (Pr¥L):

As an exercise, let us compute the mass of the Z. To do this, we look for the
leading contribution to ,.(p) in which a pole at p?=01is generated. Since this
model possesses massless pions, the leading contribution is the tree level process

The Z current can be read off from the Standard Model Lagrangian; it has the
generic form

L=gz2"j7. (1.23)
The current j f can create neutral pions from the vacuum
(0\35(0) |7r0> =i fxPu > (1.24)

where fr = 93 MeV 1s the pion decay constant. Thus, we immediately obtain

itp) = i63 52 (900 = re). (1.25)




A few words of explanation are in order here. Clearly, the p,p,/p® term arises due
to the massless pion exchange in the diagram shown above. It is rather remarkable
that this term is so easy to obtain. In fact, this term depends only on the group-
theoretical properties of the symmetry breaking pattern. Once we assume that
the strong interactions spontaneously break chiral symmetry as indicated above,
Goldstone’s theorem tells us that massless scalars must exist in the spectrum with
a matrix element given by eq. (1.24). The pole at p* = 0 in eq. (1.25) then
immediately follows. In contrast, the g, term is more difficult to obtain. Its
origin is also a result of the strong interaction dynamics, but it cannot be computed
directly without resorting to some nonperturbative analysis. Nevertheless, we are
guaranteed by the gauge invariance of the model that this term must arise with
precisely the coeflicient shown in eq. (1.25), This is a consequence of the Ward
identity obtained above [eq. (1.13)].

From eq. (1.25), we immediately obtain
2 p2
—gz/f
(p*) = —£-%. (1.26)
p
Following the steps outlined earlier, the vector boson mass is

Mz fr
mz =9zl =—, (1.27)

= 35 MeV,

where, for convenience, I have compared the above result to the observed Z mass,
Mz = 91 GeV, and the vacuum expectation value of the Higgs field in the Standard
Model, v = 246 GeV. By a similar computation (which involves the coupling
of the W current to the charged massless pions), we can obtain the W mass.
Remarkably, we find

mw = mg cosfw, (1.28)

where 8y is the usual weak mixing angle. This last result is very well respected by
the experimental data, so perhaps there is a grain of truth in the above analysis.
We will return to a more detailed examination of eq. (1.28) and its derivation in
Lecture 2. For the moment, we must clearly admit to two phenomenologically
disastrous predictions of this model:

1. The n% and 7° are Goldstone bosons, and are therefore “eaten” by the W=
and Z as a consequence of the Higgs mechanism. This results in a massive
W+ and Z, but the pions no longer exist as physical states in the theory.
This is in contradiction to experiment which clearly observes pions as physical
states.



9. The W* and Z masses computed above are too small (compared to exper-
iment)} by a factor of about 2600. Clearly, this is not a realistic model of
nature. However, the above exercise has been particularly instructive, and
we will have a chance to exploit some of its features later.

Two basic lessons can be drawn from the two models we have just examined.
First, vector boson masses can be generated without destroying the consistency of
quantum field theory. The gauge invariance of the theory (and the resulting Ward
identities) have been successfully maintained. Second, we have seen that there are
a number of possible mechanisms for vector boson mass generation. However, all
mechanisms involve the existence of a Goldstone boson, which is required in order
to generate the pole in H(p?), which in turn produces the vector boson mass.

Therefore, we may conclude that with the discovery of the massive W and Z,
we have in fact discovered the Goldstone boson and hence have “verified” the Higgs
mechanism. Moreover, the search for the origin of electroweak symmetry breaking
is equivalent to the search for the physics that generates the Goldstone bosons. On
the other hand, the low energy dynamics of the Goldstone bosons (which should
be interpreted as the longitudinal modes of the massive vector bosonsﬂlfi"f and
Z1) is independent of the dynamics of the physics which generates it, and depends
only on the group-theoretical properties of the symmetry breaking. That is, the
study of “low-energy” (near threshold) behavior of W's and Z’s is not sufficient to
uncover the electroweak symmetry breaking (ESB) mechanism. One must either
detect the W and Zp interactions at energies substantially above threshold, or
detect directly the physics of the ESB sector.

Two basic approaches to electroweak symmetry breaking can be envisioned.
The first approach would be of the type illustrated by our first example above.
The Coldstone bosons arise from a weakly-coupled scalar (Higgs) sector made up
of elementary scalar fields. Often, such models invoke supersymmetry, in order to
provide a “natural” mechanism for generating a scalar vacuum expectation value
many orders of magnitude smaller than the Planck scale (or other possible energy
scales much larger than the electroweak scale). The new physics associated with
the ESB scale would consist of the elementary Higgs scalars, and perhaps families
of supersymmetric partners of the known particles. The second approach would be
of the type illustrated by our second example above. The Goldstone bosons arise
from a strongly-coupled sector. This sector could consist of Higgs scalars with large
self-couplings or could involve new strong forces (such as technicolor) between hy-
pothetical new (techni-) fermions. (More on such possibilities in Lecture 6.) In the
latter case, scalars would arise as bound states of these new fermions. More general
composite models (in which the known fermions and Jor gauge bosons are compos-
ite as well) can also be envisioned. In this second approach, the physics associated




with the ESB scale may involve W+W™, W*Z and ZZ resonances, techni-mesons
and techni-baryons (i.e., bound states of the techni-fermions), pseudo-Goldstone
bosons, excited states of known Standard Mode! particles, ete.  Unfortunately,
one can also envision more pessimistic scenarios where the new physics associated
with the ESB scale is far more subtle.

1.3 The Necessity of Higgs Bosons (or “Equivalent”)—the Unitarity
Argument

We have seen in the previous section that Goldstone bosons are a necessary
ingredient in the generation of vector boson masses. Thus, it is tempting to ask
the following question. Let us imagine that some theory generates the required
Goldstone bosons. They are then “eaten” by the W % and Z. So, who needs the
Higgs boson? More specifically, suppose that some complicated unknown dynam-
ics, which perhaps operates at an energy scale much higher than those we can
currently probe experimentally, is responsible for the generation of vector boson
masses. Why must a Higgs boson exist in the effective low-energy theory (i.e., at
or near the energy scale which characterizes the electroweak interactions)?

I can rephrase this question as follows. Given the known mass spectrum of
Standard Model particles (including the t-quark), but with the Higgs boson omit-
ted, can I tell that the model is sick and must be fixed up not far from the scale
of electroweak physics? In order to address this question, I shall make use of a
fundamental principle of quantum mechanics—partial wave unitarity.

Clonsider the helicity amplitude M(Azhq; Ad1Az) fora 2 — 2 scattering process.
which is computed by evaluating the appropriate tree-level Feynman diagrams.
The partial wave expansion is

8 . =
M(Azha; Aidg) = «(}%\%56% Y (2J + DYMI(s)dia, (0),  (1.29)
! J=J

where p; (py) is the incoming (outgoing) center-of-mass momentum, /8 is the
center-of-mass energy of the scattering process, ) is shorthand for the helicities

{ X3, Ag; A, Az}, and
Jo = max {\i, Af},
A=A — A, (1.30)
)\f = }\3 - /\4 .

We can project out MY from M in eq. (1.29) by using the orthogonality of the



d7(0). Partial wave unitarity requires
MI(s) <1, (1.31)
so that the cross section for the J th partial wave is bounded

4m(2J + 1)
GJ S 2 3
(281 + 1)(2s2 + 1)p;

(1.32)

where s1 and sz are the spins of the initial states. Note that for \/s 3> mi1,ma2, we
can use pr = i—s.

Historically, unitarity arguments were used to prove that the four-fermi theory
of weak interactions had to break down at some scale of O(G}Ilz). Here, I shall
simply focus on the Standard Model. First, consider the process v — WTW™.

&
v w* % w
Z
o
v W m -
The corresponding matrix elements are proportional to ew+-ew-. For a W moving

in the z-direction with four momentum (Fw; 0,0, ]l—:l), the transverse and longitu-
dinal polarization vectors are:

1 —2
ET = (05 :F"_—a"—a()) )
V2 V2 (1.33)

1 —
£ = —— (\H ;U,O,Ew) :
mw
Note that for Iw > mw,
EH
B —. 1.34
e — (1.34)
Tt follows that
L L ky+ - kw- s
Er+  E- = 5 o 1.35
wt T EW miy Qm.%v ’ (1.35)

which can lead to bad high energy behavior, that is, a violation of the unitarity
bound at large s due to a violation of [M7(s)] € 1. However, in this example,
the magic of gauge symmetry results the cancellation of the (potentially) bad high
energy behavior that each Feynman diagram separately exhibits! This magic is
implemented by the precise form of the triple vector boson (W TW~Z) coupling.




Let us next look at ete™ — WTW ™,

ot Wt et w*
ANAAANNAN
Zy
v
— — hANANNY
e W o W

(Gauge symmetry magic is in operation here as well, and the leading bad high energy
behavior [of O(s)] cancels as in the previous example. However, in this example,
the magic falls a little short. The leading behavior of the scattering amplitude for
two longitudinally polarized gauge bosons is

ML, LM ) ~ GpmeByiuy . {1.36)

For A = M, Sy ~ O(/s). Actually, because m, is 50 small, (Gpme)™! =~
2 x 10° TeV is very large. Thus, it is very unlikely that experiment will be able to
probe directly this energy scale in our lifetimes. Nevertheless, it is an interesting
to consider how the gauge theory repairs this unitarity violation. In the Standard
Model, it is the Higgs boson which comes to the rescue and removes the unitarity
violation.

+ +
e W

Due to the form of the H% e~ coupling

grite -
0 - = 1.37
GHoete Oraw ’ ( 3")
the leading behavior of M is
M(L,L;/\',)\) ~ Gpmetyrty [1 + w—-Q—S-——] ) (1.38)
my — 8

For myg > s, we simply recover our previous result [eq. {1.36)]. However, for large

+ T could consider the process tf — W*HW~. By the same arguments as those presented
above, 1 would find that unitarity is violated at V5 ~ OGrmy)™'] ~ 1 TeV, which is
much nearer the energy scale which can he probed at colliders in the near future.



energy (s3> mpy), the term in brackets behaves as m% /s and the bad high energy
behavior is removed!

As a final example, let us examine the process WHW- —» Wi,
wt wt wt w*

Zy

w_ w_. w'_ W'_

As before, the largest potential violation of unitarity occurs in the scattering of
longitudinal gauge bosons. Thus, we examine TfoIfVE — WFW/ . Separately,
each Feynman diagram is proportional to

2
S

EW+ - EW— EW+ "EW- ™~ - (1.39)
iy
After adding up the diagrams above, we find
M(L, L; L, L) ~ V2Gp(s + 1), (1.40)

where ¢ is the four-momentum transfer of the scattering process. Indeed, some
cancellation has occurred (again, due to the magic of gauge symmetry), but not
enough to avoid bad high energy behavior.

Once again, the Higgs boson comes to the rescue and removes the unitarity

violation.

W w* wt W
AN PN

H° '

_____ | H°

H

1
PV, VLV
wo w W W

This occurs due to the form of the H OW+W~ coupling
gpow+w- = gmw - (1.41)

Adding the Higgs contributions to the previous result,

M(L, L; L, L) ~ =/2GrmY (S 4 i ,,), (1.42)

2 t 2
=y —my




and for /3 3> mp, the bad high energy behavior is cancelled.

Note that my cannot be arbitrarily large, since otherwise there would be a
range of /s where unitarity is violated. Thus, we roughly expect G'Fm%{ < O).
That is, the Standard Model as it is currently observed experimentally (é.e., with
the Higgs boson at present undiscovered) must be “repaired” at an energy scale of

order G;llz ~ 300 GeV. This estimate very rough, since I have not paid careful
attention to all the numerical factors which appear in the above equations. A more
careful analysis will be presented near the end of Lecture 2,

I have demonstrated above how a single Higgs scalar of the Standard Model
succeeds in repairing the violation of unitarity in certain 2 — 2 tree-level scattering
processes. Of course, the single physical Higgs boson is not the unique solution
for recovering tree-level unitarity of scattering amplitudes. Nevertheless, the above
analysis implies that a new sector of physics, associated with electroweak symmetry
breaking, must exist at an energy scale of O(G}U?). The condition of tree-level
unitarity is a very strong condition. Consider an arbitrary QFT involving scalars,
fermions and vector bosons, all of which may be massive, and let us impose the
requirement of tree level unitarity on the amplitudes of all 2 - n (tree-level) scat-
tering processes. Such a theory can only be of the following type: a spontaneously
broken non-abelian gauge theory, plus an unbroken gauge theory of massless gauge
bosons, plus a sector which can contain massive U(1) vector bosons.

Suggestions for Further Reading
and a Brief Guide to the Literature

A discussion of the formalism introduced in this lecture can be found in

1. Ta-Pei Cheng and Ling-Fong Li, Gauge Theory of Elementary Particle
Physies, (Oxford University Press, Oxford, 1984).

9. John Collins, Renormalization (Cambridge University Press, Cambridge,
1984).

3. Stefan Pokorski, Gauge Field Theories (Cambridge University Press, Cam-
bridge, 1987).

The calculation of vector boson masses in a model without Higgs bosons is given
in

4. F. Farhj and L. Susskind, Phys. Rep. T4, 277 (1981).



Tree-unitarity of weak interactions and its implications are discussed in

5. C.H. Llewellyn Smith, in Proceedings of the Fifth Hawaii Topical Conference
in Particle Physics, edited by P.N. Dobson, Jr., V.Z. Peterson and S.F. Tuan
(University of Hawaii Press, Honolulu, 1973); Phys. Lett. 46B, 233 (1973).

6. J.M. Cornwall, D.N. Levin and Q. Tiktopoulos, Phys. Rev. Lett. 30, 1268
(1973); Phys. Rev. D10, 1145 (1974).

7. B.W. Lee, C. Quigg and G.B. Thacker, Phys. Rev. Lett. 38, 883 (1977);
Phys. Rev. D16, 1519 (1977).

8. The Higgs Hunter’s Guide, §2.6.

The relevance of the Higgs boson mass as a new energy threshold for weak inter-
actions is described in

9. M. Veltman, Acta Phys. Polon. B8, 475 (1977).




9. Theoretical Properties of the
Standard Model Higgs Boson

The Standard Model with the minimal Higgs structure consisting of one com-
plex doublet of scalars provides the simplest realization of the Higgs mechanism
which generates mass for the W * and Z gauge bosons. In this approach, the Gold-
stone bosons will be generated by the dynamics of elementary scalar fields, and
precisely one neutral Higgs scalar remains in the physical spectrum. In this lecture,
I will discuss the theoretical properties of this minimal Higgs boson. Although this
is indeed the simplest model of electroweak symmetry breaking, strong theoretical
doubts have been raised as to its viability as a consistent theory. These profound
theoretical misgivings are associated with the “naturalness” and gauge hierarchy
problems. In general, scalar field masses in a QFT are driven to the largest mass
scale in the theory. Thus, in the presence of the Planck scale associated with
gravity (Mp =~ 1019 GeV), it is difficult to understand how the Standard Model
can generate a Higgs boson mass on the scale of electroweak physics, without a
very unnatural fine-tuning of parameters in the fundamental Planck scale theory.
In the next three lectures, I will ignore these problems, but [ will return to these
issues in Lectures 5 and 6. Nevertheless, I shall argue that the phenomenology of
the elementary Higgs boson is not simply an academic exercise, but may be quite
relevant to our search for the origin of electroweak symmetry breaking.

2.1 Goldstone Bosons from the Dynamics of Elementary Scalars

Goldstone bosons can arise easily in a scalar field theory. First, consider the
following tree-level analysis. Let ¢; be a multiplet of real scalar fields: (There is
no loss of generality here, since I can always replace a complex field with two real
fields.) The Lagrangian of the scalar fields is given by

£ = 18,:0"¢' — V(). (2.1)

This Lagrangian is assumed to possess a global symmetry. That is, L is invariant
under ¢ -— ¢ + 8¢, where

§¢i = —10°T59; (2.2)

where the generators iT* are real antisymmetric matrices and the §* are real pa-

rameters. The invariance of the Lagrangian under eq. (2.2) restricts the form for

the potential V. That is, 6£ = 0 implies
av av
5V = 2 ¢ = =— T =0, _
k D ¢ d¢i i =0 (2:3)

which must be true for all a. Suppose that the minimum of the potential V(o)



occurs at ¢ = v, i.€.,

av
LA I 2.4
6¢l (i)“:v,- ( )

such that e~ ¥ T v # v. (An equivalent condition, obtained by taking @ infinitesi-
mal, is 7% # 0.) In this case, the vacuum does not respect the symmetry. Choose
o definite vacuum state [i.e., choose a definite direction for ¢; satisfying eq. (2.4)]
and express the Lagrangian in terms of the shifted field

% = (,b -, (25)
Then,
L= %6,,@3.‘3"(;5{ _ %A{%&i&j + interactions, (2.6)

where M? is a non-negative symmetric matrix

av
M= mr : (2.7)
8¢1a¢_j $i=vi
Differentiating eq. (2.3) with respect to $;, and setting @i = vi gives
METEv;=0. (2.8)

That is, ¢:7};v;5 1s an eigenvector of M? with zero eigenvalue. There is one Gold-
stone boson for each broken generator T9v # 0. In general, if we break the global
symmetry group G to a subgroup H, then there are dim G — dim H Goldstone
bosons. The remaining scalars are massive; these are the Higgs bosons.

Suppose we now embed this structure in a non-abelian gauge theory with gauge
group G. That is, the Lagrangian is now

L = Lym+ 3(Dud)' (DM¢) — V(4), (2.9)

where £yu is the standard Yang-Mills Lagrangian, and D is the covariant deriva-
tive

D, =8, +igT" A%, (2.10)
i " i

As before, we use a convention where all scalar fields are real so that the :T% are
real antisymmetric matrices. In addition, we assume that the scalar potential is




minimized at ¢; = vi. When we shift ¢; — ¢ + vi, we generate
(D) (D" ¢) = MEALA* + ... (2.11)

with
M3 = g? T T, (2.12)

For each unbroken generator (i.e., T%v = 0), the corresponding vector boson re-
mains massless. The remaining vector bosons acquire mass and the corresponding
Goldstone bosons are eaten.

The analysis we have just presented is a tree-level analysis and therefore applies
only at the classical level. To incorporate quantum effects, we must go beyond the
tree-level. For example, it is possible that the conclusions as to which symmetries
are spontaneously broken would change when radiative corrections are taken into
account. Thus, we must develop a more general formalism to address the question
of symmetry breaking. To do this, we shall introduce the concept of the effective
potential. Here is a lightning review of the necessary formalism. We start with the
path integral representation of the generating functional for the Green’s functions

of the QFT

W[J) = #Yl = N~} /Dqﬁexpi {S[rﬁ] +/d4mJ(m)¢>(:c)} , (2.13)

where Z[J] generates the connected Green’s functions. S[¢] is the classical action
[see eq. (1.4)]. Next, we define the classical field ¢.(z) by

L~ az17]_ (olé()10)
0 = 5 = o)y

(2.14)

We perform a functional Legendre transformation by defining the effective action

T'[éc]
Ilgd = Z|J] - f 20 (2)poz) . (2.15)

where J(z), which appears on the right-hand side of eq. (2.15) should be re-
expressed in terms of ¢c(«) by inverting eq. (2.14). The origin of the name effective
action derives from the result

P{pe] = Slgc] + O(h). (2.16)

One can show that T[¢.] generates the 1PT Green’s functions of the theory. In a



scalar field theory, the effective action takes the following form

T[¢e] = /d4$ [%Z(¢6)6u¢c3"'¢c — Ve () + higher devivative terms] . (2.17)

Z(6e) =1+ O(h),
Vet (6c) = V(ge) + O(h).
Vo is called the effective potential and it is the quantum generalization of the

classical potential V(¢). To demonstrate this claim, suppose that the scalar field
acquires a vacuum expectation value. That 18,

(2.18)

v = (0] ¢(z) 0) = }1‘1;% de(T), (2.19)

where the last equality follows from eq. (2.14). Using

8T(c)
J(2) = — . 2.20
(@) =~ 53.(2) (2.20)
which follows from eq. (2.15), we can conclude that
81}
2.21
8de(@) | g (2.21)

Since v is a constant, it {ollows from eq. (2.17) that this condition is equivalent to

OVert
9.

=0. (2.22)

pe=v

To summarize, in order to determine whether spontaneous symmetry breaking
occurs, one minimizes the effective potential

Ve (8) = VO(@) + -V () + ... (2.23)

and searches for the existence of a symmetry-breaking global minimum by solving
the equation

d"::ﬁ‘(ﬁé) = 0. (2_24)

d¢ p=v

Suppose we adopt this procedure for constructing a realistic model of electroweak
symmetry breaking. There are a number of possible outcomes.




1. The symmetry is unbroken. Try another model.

2. The symmetry is broken at tree-level. If this is true, we may have a good can-
didate for a model of electroweak symmetry breaking. Although one should
check the effect of radiative corrections, it is usually a good assumption that
the inclusion of higher order effects will not alter the conclusion that the
symmetry is spontaneously broken.

3. The symmetry is not broken at tree-level, but is found to be broken when
radiative corrections [e.g., V(U (¢)] are included. This is a very interesting
mechanism which we will examine in section 2.3.

The most common mode! of electroweak symmetry breaking by elementary
scalars is one in which the symmetry is broken at tree-level. Thus, we first turn to
a detailed discussion of the minimal model of this type.

9.2 The Standard Model with Minimal Higgs Structure

The Standard Model is an SU(2) x U(1) gauge theory with massive W, Z°
gauge bosons and a massless photon. This requires the following symmetry break-
ing pattern

SU(2);, x U(1)y — U(DEM ., (2.23)
where the generator of the electric chargeis a linear combination of the two diagonal
generators of SU(2) x U(1)

Q=Ts+3Y. (2.26)

The physical Z and photon are linear combinations of the SU(2)y neutral gauge
field W3 and the U(1)y gauge field B

Z, = cos By W) — sin b By, 2.9)
e
A,u =sin qufﬁ -+ cos QWB,L( .

Three Goldstone bosons are required to generate mass for the W * and Z. This
can be accomplished in the most economical way by introducing a minimal Higgs
structure consisting of one complex ¥ = 1 doublet

+ v
d = (ZO) with (@%) = 7 (2.28)

The vacuum expectation value (VEV), v = (V2GF)~Y/? = 246 GeV sets the mass
scale for the electroweak interactions. This minimal Higgs structure automatically



guarantees that

H

2
MW (2.29)

p mgz cos? O

at tree level. In models with more complicated Higgs structures, the parameter p
is an independent parameter of the model. In the minimal model, the special value
of p =1 arises due to an extra symmetry in the Higgs potential which is given by

VD) = A (3¥D — L)
(®) = A( 3v°) (2.50)
= —ptote + A(2Te),

where p? = y? and a constant field independent term has been dropped. To
expose the full symmetry of this potential, let us write

1wy + w2
H = — - 2.31

where (H) = v. W = (wy,w3,ws), then ote = H(W? 4+ H?) so that V(@)
clearly possesses an SO(4) =~ SU(2)px SU(2)r global symmetry, which sponta-
neously breaks to SO(3) ~ SU(2)+g. The latter SU(2) is the diagonal subgroup
of SU(2);x SU(2)g. To verify this explicitly, we can rewrite & in matrix form

P —ot
¢ = . 2.32
- o™ ( )

Then, ® transforms under an SU(2)1% SU(2)g transformation as

& = Uy dUY, (2.33)

where Uy, and Ug are SU(2) matrices. 1t is simple to write out the corresponding
transformations of W and H. We can identify the diagonal subgroup SU(2)r+R by
taking Uy = Up = exp(-—iﬁ .&/2). The infinitesimal form of the transformation
under SU(2)z+r is then

§v = 60 x T

2.34
§H =0, (2:34)

which is clearly preserved when H acquires a vacuum expectation value. After
symmetry breaking, the W is the triplet of Goldstone bosons which will get eaten
by WH, W=, Z, and J% = I —v is the physical Higgs particle. It is straightforward




o compute the gauge boson masses by standard textbook techniques. Here, I shall
do the computation making use of the technology introduced in Lecture 1. First,
one identifies the currents which couple to the gauge bosons. We can rewrite the
relevant part of the gauge boson contribution to the Standard Model Lagrangian
as follows

L=gWiTe + 39" B* Yy, (2.35)

where T}, is the left-handed isospin current, and Y} is the hypercharge current.
Using Q = T3 + Y/2, and noting that @ is a vector current, we may decompose £
into vector and axial vector pieces

L=—LgWhits + 14'B#j3. 4+ vector current couplings. 2.36
29WaJus T 2 p5 g
In analogy with eq. (1.24),
(0| 745(0) | wb> = z'vpp(?ab. (2.37)

The 62 is a consequence of the SU(2)r4r symmetry (which is called the custodial
SU(2) symmetry) that remains even after H acquires a vacuum expectation value.
Using eq. (2.37), it is a simple matter to follow the steps outlined in Lecture 1 and

compute the 4x4 vacuum polarization matrix II{p)i;. The resulting vector boson
squared mass matrix is given by

¢ 0 0 0
2bo & 0 0
ki \ (2.38)
410 0 ¢ —g9
0 0 -gg' 4*
Diagonalizing this matrix yields
2 _ 1,272
mw =19 (2.39)

2 2 2
mz = m‘.'[,'/ COs 9[1},

which implies that p = 1.

The symmetry arguments given above were based on the global symmetries
of the scalar sector. In fact, the custodial SU(2) is not an exact symmetry of
the full theory, since when the gauge interactions are turned onm, only U{1)EM
survives as an exact symmetry. In particular, the hypercharge gauge interactions
break the custodial SU(2) symmetry. As a result, the relation p = 1 acquires



a (finite) radiative correction of O(g'?). Other violations of the custodial SU(2)
symmetry can be introduced when new sectors are coupled to the gauge-Higgs
theory. Perhaps the most dramatic violation of the custodial SU(2) symmetry can
arise due to isospin violation in the fermion sector. Specifically, because my # my,
the relation p — 1 = 0 suffers a radiative correction given by

2 Ar Tan? m2
bp = e i i - LU (M;—)] | (2.40)
w t b

where N, = 3 for the contribution of a quark doublet. Note that ép = 0 if
my = my and 8p > 0 otherwise. For my > my, bp grows quadratically with m;.
Thus, accurate experimental measurements of the W and Z masses can impose
nontrivial constraints on the maximum allowed value for the undiscovered top-
quark mass as well as on a possible fourth generation of quarks and leptons.

Fermion Masses via the Higgs mechanism

Until now, we have concentrated our efforts on generating masses for the W
and Z gauge bosons. But in the Standard Model, fr and fp have different SU(2)
x U(1) quantum numbers, so that a bare mass term

myfrfr+hc] (2.41)

would violate gauge invariance. This implies that all quarks and leptons are mass-
less, which contradicts experimental observations. Remarkably, one can make use
of the elementary Higgs field to generate fermion masses in a simple way. Consider
the gauge-invariant interaction of fermions and scalars

9;[7Léfr +hc]. (2.42)

When ¢ acquires a vacuum expectation value, ¢ — é + v/v/2, a fermion mass is
generated:

ggv
This mechanism is easily applied to the Standard Model. For simplicity, we con-
sider one generation of quarks: Qr = G’i), tr,br. The most general Yukawa
interaction between quarks and the scalar Higgs doublet @ which is consistent
with the gauge symmetry is

_LYukawa = gb@L(I)bR + gfaLE)tR + h.c. (244)

where & = igo®*. Note that weak isospin breaking has been put in by hand; t.e.,
gy # g in order that my # my. Nevertheless, this is very elegant: the fermions




acquire mass simultaneously with the vector bosons when the gauge symmetry is
spontaneously broken. (Keep this in mind when we explore technicolor models in
Lecture 6.)

The extension to the full three generation model is straightforward. One finds
that the quark mass eigenstates aeed not be identical to the electroweak interac-
tion eigenstates defined above. After diagonalizing the quark mass matrices, one
finds the well known Cabibbo-Kobayashi-Maskawa structure for the charged weak
currents; however, no tree-level flavor changing neutral currents mediated by the
Z or Higgs boson are generated.

How Does the Charged Pion Decay?

In Lecture 1, we discussed the generation of masses for the W* and Z in
a model with no Higgs bosons. We noted that because SU(2)px SU(2)g flavor
symmetry was spontaneously broken by QCD, the pions would be Goldstone bosons
which were “eaten” by the W and Z. Later, when we introduced the Higgs sector
(or equivalent), we conveniently neglected the pions. If we now consider the fate
of the pions, we seem to Tun into a small mystery.

We now have two triplets of Goldstone bosons: 7% and w®. Then, the total
axial vector current is

i = jg,lngD + vd*w® . (2.45)
so that in addition to eq. (2.37), we have
(0] 342 |=%) = ifrp" 6% (2.46)

In particular, the true Cloldstone bosons which are eaten by the vector bosons are
£ |7} + v |w). Let |G) be the true (normalized) Goldstone boson state

1

= —— | [ | + vlwy| . 247
6) = 7 e ) 010 (247
The physical pion is then identified as the state orthogonal to ey
1
|7T)phys = W [v]7) — fx lw)] - (2.48)
It is then a simple matter to check that
(017851G") = i/ + v*) /7 pu6® (2.49)
(0l 35| Yphys = 0. (2.50)

The following mystery now arises. In particle physics textbooks, one often sees
that the charged pion decays through the following diagram



v

where the m-W vertex is given by (0] j£%|x%). But eq. (2.50) implies that this
matrix element between the vacuum and the physical pion vanishes! So how does
the charged pion decay?

The solution to the 7-decay mystery is as follows. The Yukawa coupling of the
electroweak theory couples leptons to the full Higgs doublet

V2

'C'Yukawa. = anC J_i—:l;L’:,?%R + h.c. (251)
where
v wt
E= = : : 2.52
(f?L)’ ¢ (%(v + HO + zwa)> (2.52)

This leads to a Yukawa interaction between the leptons and the w field
—Lop-pty = Grpmel(l —75)vw™ +hec (2.53)

But, we can express w in terms of the true Coldstone boson, G and the physical
pion field 7pnys

1 -
lw) = W [’U |GY - fx lﬁ)phl,s] : (2.54)

In the unitary gauge, |G} is eaten and disappears. Thus, since v > fr, we obtain

Lrgyetty = frGrme €1 —s)vr™ + huc. (2.55)

-+

phys {Tv given in the text-

which leads to the “standard” matrix element for o
books.

Summary of the Minimal Higgs Sector of the Standard Model

The Standard Model with the minimal Higgs sector can be summarized by
the Feynman rules of fig. 1. The features of this model are briefly summarized as
follows:
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Figure 1 Feynman rules for the Standard Model Higgs boson.



1. The electroweak gauge symmetry is broken because the neutral Higgs field
possesses a NONZEro vacuum expectation value. As a result, the W and Z
gauge bosons acquire mass. In the minimal Higgs model, there is a relation

g2m?
My = My cos by [1—}-(9(9'2)—{-(9( zt)] ; (2.56)
My

due to a custodial SU{2) symmetry of the Higgs potential which is only vio-
lated by hyperchange gauge interactions and unequal fermion doublet masses.

2. Arbitrary Higgs-fermion Yukawa couplings are in one-to-one correspondence
with corresponding fermion mass matrices. In the three-generation model,
this naturally leads to a CKM structure for the charged weak current and an
absence of tree-level flavor changing neutral currents.

3. The coupling strengths of the Higgs interactions with all particles are fixed
and are proportional to the corresponding particle masses. This is summa-
rized by the basic Higgs vertices of the Standard Model shown in fig. 1.

4, The physical Higgs mass is proportional to its self-coupling and hence my is
undetermined. This is evident by rewriting the Higgs potential in terms of
the physical Higgs field H — H +v. Using eqs. (2.30) and (2.31),

V(W,H) =

Mw? 4 HE +2H)
(%2 + 1 + 20H) (2.57)
A

(@2 + H2) 4+ Mol (9% 4 H?) + g 117,

TR T

with m%, = 9 2. The Higgs mass depends on the unknown Higgs self-
coupling parameter A.

2.3 Symmetry Breaking Through Radiative Corrections

In the Standard Model described in the previous section, electroweak symine-
try breaking is generated at tree-Jevel. In this section, we examine the intriguing
possibility that electroweak symmetry breaking can be generated by radiative cor-
rections. In section 2.1 we learned that one must compute the effective potential in
order to determine whether symmetry breaking occurs. Thus, we must now discuss
how to compute Veg(¢) in perturbation theory.




Effective Potential Formalism

The first step is to functionally expand the effective action I'[¢.] about an
arbitrary constant field ®,

¢’c Z n' ]d‘l:cl I‘( )(3;1, ,.’E,,)[qﬁc(xl)_@] v [cbc(:r:n)—‘l’] ) (2.58)

We have used the notation I‘gl) to indicate that these are the Green’s functions
of the shifted theory (i.e., the theory obtained by shifting the scalar field by a
constant: ¢c(z) — ¢c(x) + ®). If we take ¢.(x) = ¢, independent of z, we can
read off Veg by comparing egs. (2.17) and (2.58). The result takes on a particularly
sirple form if we make use of the momentum space Green’s functions

Pfg})(m,---,}?n 277 54(101-{- +pn)

) 2.
/d4£ﬂ1 zp c'PrBittpnzn) Tg')(:l:l, cey ). (2:59)
If we identify (27)*6%(0) with [ d*z, we obtain
©
Var(de) = =3 S Tg0(0)(de — 2", (2.60)
n=1

where fg’")(O) indicates that all external momenta are set to zero. Now, il we take
the derivative with respect to ¢, and then set ¢, = ®, only one term survives,

. D
T0) =+ . . (2.61)

b

dl‘/:eff ( ¢c)
dope

Thus, in order to compute the effective potential, all we need to do is to compute

=0

the tadpole {one-point function) ifg)(ﬂ) of the shifted theory and integrate once
to obtain Veg(¢). Clearly, a constant of integration is of no concern since only
the field dependent terms of V. are relevant. Note that if we take ® = v where
v is the true vacuum expectation value of the theory, then the sum of all tadpoles
must vanish. We then regain the minimum condition for Vg, as expected.

By similar calculation, we find

d? V;efl’(‘f—l’c)

|, ~1$(0). (2.62)

If we take ® = v where v is the true vacuum expectation value, then I‘g)(O) is the
two-point 1PI Green’s function of the shifted theory. Traditionally, one designates



the sum of all Feynman diagrams (one-loop or higher) contributing to the mass
shift by —iZ(k?). That is,

TP (k) = k? —m? — B(k?)

2.63
=k [1- »/(k%)] - m? — (0, (2.65)

where ©/(k) is defined by
$(k) = £(0) + K*T' (k%) (2.64)

Thus, we identify
d*V,

2 efl .
m* + 5{(0) = ——0— , 2.65

where the notation () indicates that the second derivative should be evaluated at
the minimum of V. However, the physical mass (m?%) should be jdentified with
the pole in the propagator (or the zero of the inverse propagator) which requires a
solution of

_ & Vg

¥ =r| - 2 (k)] (2.66)

(¢)
For example, in a one-loop computation, we can expand the right hand side and
drop higher order terms. The result is

d* Vegr
d¢?

+ T(m2) — £(0), (2.67)
(#)

HI.QH =

where myg is the tree-level scalar mass. The corresponding formula at two loops is
more complicated, but can easily be worked out.

Let us now consider the practical question: how does one compute the effec-
tive potential? There are a number of techniques which are well described in the
textbooks. Here I shall focus on an alternative method based on eq. {2.61). [See
Marc Sher’s review for further details.] Here, only the one-loop computation will
be discussed, so I shall write

Ve (¢) = VO(¢) + V(9. (2.68)

Eq. (2.61) instructs us to consider the shifted theory. That is, take the tree-level
action which depends on ¢ and let ¢, — dc+ . (Here, ¢ is any field configuration,




and need not be constant.) The tree-level Feynman rules corresponding to this new
action are easily obtained. For example, noting that

d
V(ge+ ) =V(d) + m—%—c b +.. (2.69)

we see that there is a tree-level contribution to the tadpole due to the Feynman
rule

1 7
where the dashed line represents ¢. and V(¢) is the classical potential of the
unshifted theory expressed as a function of ¢. Comparing with eq. (2.61), we

obtain the expected result V(0(¢) = V(4).

Next, we consider the one-loop contributions to the tadpoles. Here, we shall
exhibit the contribution of the (vector) gauge fields.

L3

i
|
3

At this point, we run into a minor complication since Vg is not gauge invariant,
Although there are a number of subtleties in this regard, I will simply choose a
convenient gauge and argue that any physical quantity must be gauge invariant.
Traditionally, the Landau gauge (£ = 0 in the Re-gauge) is the gauge of choice for
reasons of simplicity. For example, the coupling of the scalars to the Faddeev-Popov
ghost fields vanish for £ = 0. To evaluate the diagram above, we need to determine
the ¢ A5 A** coupling. Starting with the kinetic energy term %(D#qSC)T(D“éc)
and inserting D, = 8, + tgT* A, yields a term %be(gbc)AiA“b, where M2, (¢ =
g2¢TTTb4,. In the shifted Lagrangian {¢. — ¢+ ¢), the vector bosons acquire a
(field-dependent) squared mass matrix M2 (), and the {ollowing trilinear coupling
is generated

 dME

b
5T P AGA" (2.70)
dée |p=s
which results in the Feynman rule
o
au?
““““““ e g

v,b




The simplest way to proceed is to diagonalize the vector boson squared mass ma-

trix. Then,
() 3 dik 1 dM*($)
WO =1 [ Gy m e @ &)

where a factor of % has been inserted for the case of a neutral gauge boson (this
is a symmetry factor of the tadpole graph). Note that the factor of 3 above arises
because we have used the Landau gauge vector boson propagator. In particular,
9" (guw—pupy [p*) = 3 simply counts the number of degrees of freedom of a massive

. : (1)
vector boson. Integrating to get V',

4 1.

V) = -3 [ n (i - M) (272

1 am free to normalize the one-loop effective potential such that v(¢=10)=0.
Then, I claim that the complete result for V{)(4), where arbitrary particles of spin
J are allowed to run around inside the loop, is

W =hgy [ 2, [FZ M)
vi(é) = 5 Snf(mél [k'z—M?(O)] : (2.73)
where

Str {---} = _(-1)** (24 + 1)Ci {3, (2.74)

and C; counts the electric charge and color degrees of freedom of particle ¢ (e.g.,
¢ = 2 for the W gauge boson and € = 6 for a colored quark, since we count both
particle and antiparticle). We can regulate this integral with a momentum cutoff
A. Rotating to Euclidean space and noting that &k = k3dkdQs, with [ dQ3 = 272,
the integrals are straightforward. The final result (ignoring constant terms) is

AZ
322

1 M2
12 Str {Mf(qﬁ) [ln —4[\%@ — %]} : (2.75)

To complete the calculation, one must perform the standard renormalization pro-
cedure and absorb the ultraviolet infinities into coupling constant and mass pa-
rameter redefinitions. One way to do this is to write the renormalized effective
potential as

V($) = o St M{(g) +

Var() = VO () + VID(g) + Ve, (2.76)

where V., has the same form as V(O)(qé). By choosing suitable renormalization
conditions (thereby defining the physical masses and couplings), one ends up with
a finite and renormalized Veg(¢).




In order to illustrate the above formalism, let us examine the famous calculation
of Coleman and E. Weinberg. Consider the tree-level potential in a theory with
a multiplet of scalar fields ¢;. The tree-level potential is assumed to be of the
following form

vO(¢) = Lag?, ¢? = Z o7, (2.77)

i.e., we have arbitrarily set all tree-level dimensionful parameters such as scalar
masses to zero. Classically, this model does not exhibit spontaneous symmetry
breaking.

To perform the one-loop computation of Ve, we must first compute the tree-
Jevel ¢-dependent particle masses in the shifted theory as indicated above. For
example, m¥,(¢) = 19°¢*. [The physical W mass is obtained by taking |¢| = v,
with v = (V2Gp)~"/? = 246 GeV.] Clearly, all gauge bosons and fermion ¢-
dependent masses are proportional to ¢ in the Standard Model. For the scalars,
this would be true as well if there were no tree-level scalar masses as in the Coleman-
Weinberg scenario. However, it is useful to perform a more general computation
which will be of use to us at a later point in these lectures. Consider the scalar
potential for an O(N) symmetric scalar sector which contains tree-level quadratic
terms

VO (g) = 176" + 1Ae". (2.78)

Then, the elements of the (symmetric) squared mass matrix are

ME($) = pu® + Ag? + 2)¢F

o (2.79)
ME(¢) = 22did; (i #]).

The eigenvalues of this squared mass matrix are easily computed: 12 +3X¢* appears
once and p? + A$? appears N — 1 times. This suggests that it would be useful to
compute the contribution to the effective potential of a particle with a ¢-dependent
mass of the form”

M2*(¢) = p* + 2¢%. (2.80)

Adding the appropriate counterterms, I find

1

N ,(12 + /\(;52
64r? ’

2
VO)(g) = A4 B +Cd + ooy (124 A8+ 5 (i 4267 I B

3272 (2.81)

% This is clearly not the most general form for M7{¢). For example, more complicated forms
arise in supersymmetric models for the ¢-dependent masses of the neutralino and charginos.



The counterterms can be fixed by the following renormalization conditions:

(HV My =0 [field independent terms are irrelevant]
vl fives th O
(1) 7 ‘q&—_-()_ [fixes the mass parameter appearing 1n ]
4 (1
(121) ﬁg ——:{P* l¢=0: 0 ([fixes the coupling parameter appearing in v,

Imposing these conditions allows us to solve for A, B, and C. If we insert the
results obtained back into eq. (2.81), the ultraviolet cutoff disappears and we get

2 2
Vg = g [(pz 421 (&%ﬂ) O + -32-,\43)] L 28

This form is not very convenient for the Coleman-Weinberg computation, where
we would like to set 2 = 0. The logarithmic divergence at y = 0 is an infrared
problem which arises in the massless theory due to the on-shell renormalization
condition chosen above. In fact, we can circumvent this problem by imposing the
minimum condition on the full potential

d
E@W(g) + v L:U: 0. (2.83)

If VO(4) = Lag?, then I can solve for a in terms of v

_ 2 b 2

The full effective potential then takes on the following form

1 M? St ME L AZg
V0= s [ (A00) et () - - 5]
(2.85)

where M2(¢) is defined in eq. (2.80) and M? = M?*(v) = p® 4+ M? In the simplest
model containing one Higgs doublet, p = 0 for all particles contributing to the
one-loop effective potential, Setting =0 in eq. (2.85), we obtain

Mipt 2
V(g) = Ei}_;% [h] (%) - %} , (2.86)

v

which is the famous result of Coleman and Weinberg. Thus, whereas the tree-
level potential of the massless theory exhibits no symmetry breaking, the one-
loop effective potential possesses a global minimum at ¢ = v. Thus, we have




demonstrated the possibility of radiatively induced symmetry breaking. The same
conclusion can be reached in the more general case of p # 0. One can easily check
that eq. (2.85) satisfies V(0) = 0 and V(v) < 0 for all choices of A and 4. (We will
discuss shortly whether the conclusion of radiatively induced symmetry breaking
is valid given the nature of the approximations made.)

The Higgs Boson Mass in the Coleman-Weinberg Model

In the Coleman-Weinberg model, the Higgs boson mass is zero at tree-level.
Then, the scalar mass matrix takes the form

42V
doide;

M} = (2.87)

p=v

As above, we take ¢ to be an N-component scalar. For an O(N) symmetric
potential, V depends only on $?, so we can write

d dVv

12 _ Aavears
ALJ = 41?,1)3@ -@5

(2.88)

p=v

This mass matrix possesses N — 1 zero eigenvalues (corresponding to the Goldstone
bosons) and one nonzero eigenvalue which corresponds to a physical Higgs boson
with squared mass

(2.89)

p=v

Inserting the general expression for V obtained in eq. (2.85) yields

Ao? 2 M?
mi = S [1 - Wln ( e )] . (2.90)

This expression is more general than our present needs (although we will make use
of this more general result in Lecture 4). In the Coleman-Weinberg model with a
single Higgs multiplet, p = 0 so that A? = Av? and

M*
mYy = ST (2.91)
The generation of a nonzero scalar mass by radiative corrections indicates that
the scale jnvariance of the classical scalar Lagrangian is violated by quantum me-
chanical effects. Thus, setting the tree-level scalar masses to zero in the Coleman-
Weinberg model is “unnatural” and is just as arbitrary as any other choice for the
tree-level scalar masses.



The analysis above suggests that it is possible to take a gauge theory cou-
pled to a multiplet of scalar fields in which the gauge symmetry is unbroken at
tree-level, but is broken when radiative corrections are taken into account. Since
this conclusion is based on an approximate (i.e., one-loop) computation, one must
check whether the conclusion is reliable. In order to address this question, we
must examine the validity of the perturbation expansion. Consider massless scalar
electrodynamics, in which a massless complex scalar field is coupled to an abelian
U(1) gauge theory. The effective potential can be computed as outlined above,
although as remarked above it is somewhat inconvenient to choose on-shell renor-
malization conditions due to potential infrared problems. Coleman and Weinberg
replaced the third condition below eq. (2.81) with (d4V(1)/d¢4)¢;M = (; the other
two conditions were left unchanged. The resulting eflective potential at one-loop
in scalar electrodynamics is

5/\2 4 2
Vig) = 1o + (g + o) (L)-5]  ew

Note that through the renormalization condition, A depends implicitly on M. This
dependence can be deduced from the requirement that V be independent of M.

The potential in eq. (2.92) exhibits spontaneous symmetry breaking of the U(1)
symmetry. In order to discuss the validity of this conclusion, first suppose that
¢ = 0. Then one must reject the conclusion that the symmetry is spontaneously
broken, since the radiatively induced minimum occurs at values of ¢ such that
An(¢?/M?)/x? ~ O(1), which is outside the region of validity of perturbation
theory. Basically, the O()\?) term in eq. (2.92) must be more important than the
O()) term in order to change the potential minimum from the symmetric (¢ =0)
to the asymmetric (¢ # 0) point. The above analysis can be improved using
renormalization group (RG) techniques. The RG-improved analysis implies that
é = 0 is in fact the true minimum. Thus the one-loop analysis is misleading—the
symmetry is unbroken.

Now consider what happens If e # 0. If we assert that et ~ O()), then we must
drop the @()\?) term in eq, (2.92) for consistency. Nevertheless, the conclusion that
the symmetry is spontaneously broken is trustworthy since higher order corrections
to the effective potential are indeed smalll These conclusions are not altered by
the RG analysis.

Thus, we can now write down Coleman and Weinberg’s “prediction” for the
Higgs boson mass in the Standard Model. According to the last remark, we drop
O()?) terms. This is equivalent to deleting the effects of the scalar ¢ in v 9).




We can immediately conclude from egs. (2.74) and (2.91) that

1
8r2p?

=

S (1) + 1)C; M} (2.93)

where we sum over vector bosons and fermions of mass M; and spin J; (and C}
counts color and electric charge degrees of freedom). Explicitly,

6mi, + 3m?b — 12m? mi
my = mbgy & —% 8«252 L~ (10 GeV)? (1 - 1.09%7;) . (2.94)

This was an interesting prediction in the days when the top quark was thought
to be light (compared to the gauge bosons). If we accept the CDF experimental
limit of m¢ > 89 GeV, this would yield m3; < 0 implying an instability. The origin
of this instability is most easily seen by writing the effective potential in the form
given in eq. (2.86)

V(g)= ——¢i—Str M} [m G}i) — %;} . (2.95)

T fdnZyt 2

For Str M} < 0, the potential is sick since V(¢) — —oc for large ¢, which means
that there is no stable minimum. To repair this instability, one could add new
particles to the model (e.g., scalars) such that Str M} > 0. Otherwise, one must
conclude that the vanishing quadratic term in the tree-level scalar potential is
untenable.

2.4 Lower and Upper Higgs Mass Bounds

A Lower Higgs Mass Bound: The Linde-Weinberg Bound

Let us suspend our belief in the heavy top quark for a moment and assume
that Str M} > 0 so that the Coleman-Weinberg mechanism can work. Consider
what happens if we perturb the picture by adding a small positive mass-squared
term at tree-level

V(g) = Lm?¢? + Lag* + Vi (). (2.96)

If the effect of the m2¢? term on the Higgs mass is of the same order as the Higgs
mass computed from Véﬂ,(qﬁ) then it is consistent to treat m?¢? as a perturbation

without including its effects on the calculation of Vél,};(q.')). Thus, we can simply



repeat the calculations above with minor modifications. When we reach the step
of trading @ for v, we obtain

'—“TTLZ

202

+ag. (2.97)

a =

where ag = a{m = 0) is the expression for a given in eq. (2.84). The final result
for the potential is

2

~

V(¢) = im?¢? (1 _2

202

) + Vow(9), (2.98}

and the Higgs mass is [see eq. (2.90))

Np? ? M? .
miy = —2m? s [1 g In ( e )} . (2.99)

Naively, it appears that one can make m?H arbitrarily small by increasing me,

However, as m? is increased, the value of the potential at its minimum increases as
well. By demanding that V(v) <0 (so that the local minimum at ¢ = v remains a
global minimum), one finds that m? < m2 ,,. Inserting this value into the formula
{or m%f gives szH > m3 .y, where

/\2,”2 2#2 2 J\f“’
2 _ v _ _H
MIW = 1572 {1 o7 [1 ol In (—#2 )]} . (2.100)

This is the Linde-Weinberg bound. In the case where g = 0 (so that M? = \v?),

2 ‘A‘[4 1,..2
Tn‘LW’ = 1611‘21}2 = EHICW" . (2101)

Applying this result to the Standard Model, one obtains

4
n’&ir >miy = %mzcw ~ (7 Ge\/’)2 (l — 1.09%) . (2.102)
¥

As before, this result is valid only when the right hand side above is positive. For
my 2 T8 GeV, other considerations are required to deduce a lower bound for the
Higgs mass.




Renormalization Group (RG) Considerations

In the one-loop corrected potential computed above, we encountered loga-
rithms, such as In(¢?/v?). For small deviations of ¢ from ¢ =~ v, this logarithm
is small and presents no particular problem. However, for values of ¢ far away
from the potential minimum, this logarithm becomes large and our perturbative
calculation becomes suspect.

The RG is precisely what is needed to sum up the large logarithms. Let us
explore this in some detail. As a warm-up exercise, consider a theory of a single real
scalar field with no tree-level scalar mass: V®)($) = $A¢*. Since p = 0, one must
introduce a mass scale M in defining the renormalized coupling. As previously
discussed, a convenient renormalization condition is (d* I/(l)/d¢4)¢=M = 0. The
resulting one-loop effective potential is

2 2 .
Vo) = et + ooyt [ (£2) - 5 - (2103)

The factor of —25/6 above is a minor nuisance and I will drop it from now omn.
This involves no loss of generality, since I can simply absorb it into the definition
of M. Note that since M is an arbitrary parameter, the coupling constant A and
the field ¢ must depend implicitly on M in such a way that V(@) is independent
of M2,

The statement of the M2 independence of V is the renormalization group

equation (RGE): dV/dM? = 0. Using the chain rule,

. 0 ad d
A2 Y VNV (e = 9
where
dA
) =M
/ (2.105)
45 - —Mz d(}s
1= M
It is convenient to introduce the variable ¢ = In(¢/M?). Note that
0 0
2
= —(147)— :

so that the RGFE takes the form

g =0 _ 0 -
(_a + ﬁ?ﬁ - WSBE) V(g) =0, (2.107)



where 8 = 8/(1+ ) and 7 = v/(1 + 7). Since V must be of the form
V($) = A\ )4 (2.108)

we obtain a RGE for the function A{A,1)
g =0
( 3t+ﬁ8,\ 47) A(Xt)=0. (2.109)
The solution is

A1) = A(t)exp {-4]&’7[)\(#)]} , (2.110)
0

where A() is the running coupling constant defined by

d_);(;l =B@)], A0 =) (2.111)

In these lectures, I will never go beyond the one-loop approximation so I can
put B = B and 7 = 4. Furthermore, in the pure scalar field theory considered here,
there is no scalar wave function renormalization at one-loop, so I may set v = 0.
One therefore obtains a very simple result for the RG-improved potential

V($) = IO (2.112)
Comparing with eq. (2.103) [with the —25/6 removed], it follows that

2
BN = 19612 +O(\3). (2.113)

Using this result to determine A(t), we obtain
Y.
9 AN

If we expand out the denominator in eq. (2.114), we see that the leading logarithm
of the one-loop potential [eq. (2.103)] has been correctly reproduced. Note that the
minimum of the one-loop RGE-improved potential is at ¢ = 0 in contrast to the
potential of eq. (2.103) which possesses a minimum at ¢ # 0. The RGE analysis
has extended the range of ¢ over which the expression for V(¢) is valid, and we
can correctly conclude that the symmetry is not spontaneously broken in the pure
scalar theory.

V() (2.114)




By the same technique, we may derive the one-loop RG-improved Higgs po-
tential in the Standard Model. The result is

V(8) = OGO + PG 0t (2,115
with
1
G(t) = exp {—/dt'*y[g,'(t'),k(t')]} , (2.116)
0
L) - 208,000, M)
20— alai(), ) (27
WD — o) A0

The g¢; consist of the gauge couplings and Higgs-fermion Yukawa couplings. To a
good approximation, all fermions apart from the top-quark are massless. Hence,
we can ignore all Yukawa couplings with the exception of the Higgs-top quark
coupling, g1 = V2Zmy/v.

The beta-functjons listed above can be computed by a variety of techniques.
Here T will sketch one method which makes use of the effective potential formalism.
For simplicity, I shall set @? = 0. The one-loop effective potential can then be
expressed in the following form

V(g) = ;]4—,\¢54 + 64171'2 Str M*(¢)1n (Ai;!(j)> . (2.118)

Since V(¢) satisfies the RGE given in eq. (2.104), we obtain (up to one-loop accu-
racy)

9 d 1
(ﬂ,\m - 7‘?55?,5) At = oy Str M4(¢). (2.119)
1t follows that
By = 4\y + 1 g M)/ ¢*. (2.120)

1672
The contributions to Str M*(¢) from the W=, Z, t-quark, and scalar sector are

St M4(9) =(6)39°6%% + B)5(” + g8 + (~12){50i ¢°T
+ BT + (3T

[Note that the contribution of the scalar sector is obtained by using the results

(2.121)



below eq. (2.79) with = 0 and N = 4.] Adding up the various pieces, we obtain
Strﬂ44(¢)/¢4:zf%[?g‘—k(gg4—gm)2]w—3934«12A2. (2.122)

To compute 7, we need to evaluate the wave function renormalization of the scalar
field. The diagrams involved are

v v ¢
_S_ B * _ “S_ ..S_ é’t%/_\’lz ._S_ _S_ _ O _ wS_
v T
and the result is
v = —1— [ﬁgf - 3(392 + g’z)} : (2.123)
Gdm= 2

Combining our results,

By = El;r—g {1202 + 6Ag? — 3¢ — 3A36® + ¢%) + & (2" + (6" + )]} -
(2.124)
The computation of A, is a little more involved, since it requires the evaluation of
scalar wave function renormalization, fermion wave function renormalization, and
&1 f vertex renormalization. This will be left as an exercise for the reader. The
end results of this analysis are the RGE’s for A and gu:

dgi 1 2 .

dt 167 (24} - 4glgi — 39°9t — 59" 91) (2.125)
d’\ 1 9 2 2 4 3 2 12 3 4 2 1252
TR {12237 + 6Mg} — 3g] —3M89" +9°) + 15 [26* + (" + )]} -

(2.126)
These two equations contain information on the allowed domains of the t-quark
and Higgs masses, via the relations

\/2—’?711

v

2
m
gt = , o A=o0, (2.127)

where v = 246 GeV.




An Upper Higgs Mass Bound

If X is large, then I can ignore all but the first term on the right-hand side of
eq. {2.126). The solution to this RGE is then

1 1 3
o)~ Ay = 3 AT, (2.128)

which exhibits the famous Landau pole: M(A) = co at A2 = v? exp[dn?/3\(v)]. If
this behavior were not modified by higher loops, we would say that new physics
must enter at an energy scale near A.

Alternatively, suppose I demand that no new physics appear until a scale A,
Clearly, A < Mp ~ 10! GeV, although it could be much smaller. Assuming that
A > my (so that if we integrate out all new physics above A we would find an
effective theory identical to the Standard Model with a single Higgs boson), what
is the maximum value of my as a function of A7 Since my is related to A via
m¥ = 2Mv)v?, I can derive a bound by setling 1/A(A) = 0. Then,

g o ST 2.129

THHmax = 31 (AZf0?) (2.129)

Thus, my cannot become arbitrarily large without violating the inequality A >

my. The two extreme cases are: A = Mp which yields m g max =~ 150 GeV, and

A = My max Which implies m g max =~ 800 GeV. This analysis can be improved by

solving numerically the complete set of coupled RGE’s and studying the behavior

of My max as a function of m; and A, This was first done by Cabibbo, Maiani,

Parisi and Petronzio (under the assumption that A was the grand unification scale)

and has been repeated for other values of A by numerous authors. A typical output
of such a computation is shown in fig. 2.

It must be emphasized that the analysis based on the one-loop RGE’s can at
best provide a qualitative indication for an upper Higgs mass bound. The reason
is simple to understand: for large my, the Higgs self-coupling A is large, and the
one-loop RGE’s are not reliable (having been derived by perturbative methods).
As a result, there has been a heroic effort to provide a non-perturbative version of
the above arguments, primarily via lattice techniques—strong coupling expansions
and lattice monte carlo computations. Remarkably, numerical results based on
lattice computations seem to be in rough agreement with the perturbative results

described above, and various groups have quoted upper bounds for the Higgs mass
of around 650 GeV (for A ~ 2mpg).

The results of these lattice computations provide strong evidence for the “trivi-
ality” of scalar field theories. Triviality is most simply understood in the context of
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Figure 2 The allowed parameter space of my and m, for various emhedding scales A.
Allowed is the area around the origin bounded by the various curves. The horizontal lines
come from avoiding triviality and the vertical lines are determined from A(f) becoming
negative at scales lower than A. This figure is taken from M. Lindner. Z. Phys. C31.
295 {1986).

eq. (2.128). Suppose I try to take the cutofl A — oc. Stability of the potential re-
quires A > 0 at all scales below A. Thus, if A — oc [with A(A) > 0], then Alv) — 0.
That is, at the low-energy scale (v), the scalar field theory is non-interacting—it is
{riviall On the lattice, the inverse lattice spacing plays the role of the cutoff. Thus
triviality in this case means that the coupling X is driven to zero in the continuum
limit. That is, scalar field theory is a {ree field theory.

It is rigorously known that a one-component scalar field theory (in four space-
time dimensions) is trivial. Completely rigorous results are not yet available for
more complicated field theories. Nevertheless, the numerical lattice work and the
strong-coupling expansions of Luscher and Weisz present strong evidence for triv-
iality of the Higgs sector. Operationally, this means that the scalar field theory
cannot exist up to arbitrarily high scales. In fact, triviality is not so trivial. A
priori, the fy-function could have had a zero at a non-zero value of X (outside
the range of validity of perturbation theory), leading to a non-trivial theory! The




conclusion of the lattice computations is that no such non-trivial fixed point exists.

A Lower Bound of the Higgs Mass for my & my

Let us return to the RGE’s for g and X given in egs. (2.125) and (2.126). These
equations can be used to deduce a lower bound for the Higgs mass for my & mw.
(For my S mw, the Linde-Weinberg bound applies.) To see how such a bound
arises, take g; constant and ignore all terms in the RGE proportional to gauge
coupling constants (since these tend to be rather small). Then, eq. (2.126) takes
the following form:

% = AN = A (A= AL), (2.130)
with A_ < 0 < Ay and A > 0. Thus, if 0 < Av) < Ay, then A will be driven
negative at high momentum scales. This would be disastrous, since the sign of the
Ag* term is governed by M), as shown In eq. (2.115). Thus, for large values of
the scalar field ¢, the coefficient of the leading term in V(¢) would be negative,
i.e., the Higgs potential would be unstable.

A very crude estimate for the Higgs mass bound can be obtained by demanding
that A(v) > Ay. This would imply that would imply

m?ﬁr > m%v + %mzZ - m‘t? 4+ 4/ (m¥y + %m% —mi) + 4mf — 2mpy — m% : )
2.131

2 (VB —1)m}.

In addition, for sufficiently large rny, the top quark Yukawa coupling would develop
a Landau pole. Thus, at fixed Higgs mass, the top quark mass is bounded {rom
above. All these features are confirmed by a more complete analysis, which makes
use of the full one-loop RGE’s. Typical results are shown in fig. 2. Note that
A(v) < Ay is allowed so long as AM(v) is not driven negative between the electroweak
scale and the scale A, As A is lowered, there is less room for evolution, and the
condition for the stability of the potential is weakened. Likewise, the upper limits
on my and mpg are also weakened as A is lowered since there is less room for
coupling constant evolution to reach the Landau pole.

2.5 Unitarity Bounds Revisited and the Equivalence Theorem

An Upper Bound for the Higgs Mass?

At the end of Lecture 1, I indicated that by removing the Higgs boson entirely
from the theory, tree-level unitarity was violated, due to bad high energy behavior
of scattering amplitudes involving longitudinal vector bosons. The bad high energy



behavior is removed once the Higgs boson is restored. But if my > G;lﬁ, then

unitarity would still be violated over some range of /5. Thus, demanding tree-level
unitarity for all 1/s would place an upper limit on the value of my.

Consider W’EWE — IfoifVE. For s,m% > m%v, the amplitude was given
previously in eq. (1.42). Let us project out the J = 0 partial wave. (It turns out
that this leads to the strictest limit.)

0
_ 1
M7= = o /dtM(L,L;L,L)
s (2.132)

_ =Gy b (1S
Stv/2 5 — m% s m%{ '
For s > m%,

MI=0 = ~Grm¥y
472

At this point, we could use IMJ=0| < 1 to obtain the desired bound on my.
However, the bound can be strengthened as follows. Partial wave unitarity implies

(2.133)

IMT|? < [T M7 (2.134)
Indecd, this implies that |M7| < 1. However, it also implies that
(Re M7)2 < |Im M| (1 —{Im M‘]\) . (2.135)
The right hand side cannot be larger than 1/4, so we obtain
Re M7| < 1. (2.136)

Since Born amplitudes are real, this will improve the limits on m?_i[ based on tMJ | <
1 by a factor of 2. Hence,

~ (850 GeV)*. (2.137)

qu <

211'\/5
G

F

The most stringent bound is obtained by performing a full coupled channel
analysis for the scattering of longitudinal gauge bosons into T»VEW AR




and HH. The largest eigenvalue of the amplitude matrix results in the most
restrictive bound

) 9
m¥ < 4""(; ~ (700 GeV)". (2.138)
F

Is this really an upper bound? lf my 2 700 GeV, this analysis simply tells us
that perturbation theory is no longer reliable. One-loop corrections show no sign
of ameliorating the situation, as they increase the J = 0 partial wave amplitude.
It is amusing that this bound is roughly the same as the one obtained in the lattice
studies—indicating that our naive conclusions from perturbative analysis may in
fact be reliable!

Conceptually, it is more useful to consider the limit m% € s < m#. Then,
tree-level unitarity breaks down for energies above some critical energy +/5 > /5c.
For example, in this limit, the amplitude for W f W, — 1'VE'H"E

GFrs
167r\/'§

violates unitarity at large s. The most restrictive bound arises form the isospin

M= = (2.139)

zero channel \/%(QI»VB“ Wr+Z Z1), and the critical energy 1s

4 9
se = V2 (1.2 TeV)?. (2.140)
GF

This bound is more meaningful than eq. {2.138) in that it is applicable beyond
perturbation theory. The reason is that the regime mzZ € s <K m?,{ is precisely the
one where rigorous low-energy theorems apply independent of the dynamics of the
electroweak symmetry breaking sector. That 1s,

— GFS
MIPWHWT = WHWL) = ———. 2.141
(WEWp = WiWp) = 7= 7 (2.141)
is rigorous to all orders in Higgs self-coupling (and to leading order in the gauge
coupling ¢%).

This tells us that /s¢ is a meaningful energy. The bad high energy behavior
must be repaired by the dynamics of any proposed mechanism for electroweak
symmetry breaking. Thus, by the time s = s, one of two things must have
happened:

(1) MI=0 is repaired by an elementary scalar Higgs, or

(i) M7= is repaired by some other mechanism for ESB.



That is, the physics of eleciroweak symmelry breaking must be exposed al or below
the 1 TeV energy scale.

The Equivalence Theorem

The Equivalence Theorem of spontaneously broken gauge theories is one man-
ifestation of the rigorous low energy theorems. This theorem states that physical
S-matrix amplitudes involving on-shell longitudinal vector bosons may be evalu-
ated approximately in the Ie-gauge by substituting the corresponding Goldstone
bosons. That is,

7 - my MMz )
MWy, Zg,...) M(w,z,...)R+O(EW,EZ ) (2.142)

Moreover, for m%v & s K m%f, this is true to all orders in A = m%/?v and to
leading order in g°. Thus, the hehavior of longitudinal vector bosons in this energy
regime is well approximated by an effective low energy theory of the Goldstone
bosons

£=-MwTw +izz+ %—HQ + vH)? + kinetic energy terms. (2.143}

Integrating out H (which is formally equivalent to taking A — oc) turns this linear
o-model into a non-linear o-model. One then finds

Grs
1672

MIF(wrw™ —whw™) = (2.144)

which is identical to the result obtained in eq. (2.141). This is an illustration
of the low-energy theorem—it simply depends on the symmetry properties of the
Goldstone bosons and is totally independent of the dynamics of the electroweak
symmetry breaking.

Here is a sketch of the proof of the Equivalence Theorem. In the Rg-gauge, the
following gauge fixing functions are employed:

6"“’;‘* ~ tmpwt
F* = o7, —Emgz (2.145)
ot Ay

The BRS transformations are nearly the same as in Lecture 1. The two equations




we will need are:
éprsn**(z) = -%Fa(ﬂ"-)
68
~bpre(z)
Using the methods of Lecture 1, the following Ward identities can be derived
(A,out| F4(z1)|B,in) = 0 |
(A, out| T[F* (z1)F* (22)] |B,in) = —ifé(x1 — 72)6a,a: {ALB) .

(2.146)

Sprs F () =

(2.147)

Here we use in and out states of physical particles rather than the vacuum states,
but one can easily check that the same manipulations employed in Lecture 1 go
through (as long as these states do not also contain Faddeev-Popov ghosts associ-
ated with 7%*).

The second Ward identity in eq. (2.147) is even simpler for connected Green’s
functions

{A,out] T[F (21)F% (x2)] | Byin) copy = 0 (2.148)
By induction, it is easy to obtain
(A, out| T[F"(z1)F*(x2) . .. Foo(zo) | B,in)conn = 0 (2.149)

which is the basis for the Equivalence theorem. To see this, look at the simplest
case:
(A, out| 9 WiE — Emww™ |B,out) =0, (2.150)
To make things perfectly transparent, set £ = 1 so that T‘Vﬁt and w¥* have the same
mass {my). Converting to S-matrix elements, we obtain
ip* 5
«m—P» h— A+ WE(p,\)] = S[B — A+ w*(p)], (2.151)
W

where the full S-matrix element for B — A+ W % is denoted by

el (p)S[B — A+ W(p,N)]. (2.152)
Finally, by using
i
u _ P mw .
ep(p) ==+ o (Ew> , (2.153)

we end up with
—S{B— A+ WE(p,A=L)]=S[B— A+ wi(p)] + O (%—I—‘—) . (2.154)
W

This is the Equivalence Theorem for processes with one external gauge boson. The



extension of the proof to processes with multiple gauge bosons is very tedious, and
can be found in the literature.

Suggestions for Further Reading
and a Brief Guide to the Literature
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1. D. Bailin and A. Love, Introduction to Gauge Field Theory (Adam Hilger,
Bristol, 1986).
9. Stefan Pokorski, Gauge Field Theories (Cambridge University Press, Cam-
bridge, 1987).

The discussion of charged pion decay in the Standard Model is a modern rewriting
of work that can be found in

3. M. Weinstein, Phys. Rev. D7, 1854 (1973); D8, 2511 (1973).
Radiative symmetry breaking is discussed in

4. S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).
5. M. Sher, Phys. Rep. 179, 273 (1989).

Upper Higgs mass bounds are discussed in
6. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B158, 295
(1979).
7. M. Lindner, Z. Phys. C31, 295 (1986).

Modern treatments of the Equivalence Theorem and their implications can be
found in

8. M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261, 379 (1985).
9. G.J. Gounaris, R. Kogerler, and H. Neufeld, Phys. Rev. D34, 3257 (1986).
10. H. Veltman, Phys. Rev. D41, 2294 {1990).

See also
11. The Higgs Hunter’s Guide, §2.4-2.6.




3. Phenomenology of the Minimal
Higgs Boson of the Standard Model

In this lecture I shall focus on the phenomenology of the Higgs boson of the
Standard Model with minimal Higgs structure. This model predicts the existence
of one neutral CP-even scalar particle (H 0) which I will call the “minimal Higgs
boson”. First, I shall review the properties of the minimal Higgs boson, and survey
the relevant Higgs couplings needed for Higgs searches. In addition to the couplings
of HY to quarks, leptons and gauge bosons, we will need to know the coupling of
H to hadrons (such as protons and pions) in order to obtain limits on light Higgs
bosons. We can obtain information on these couplings with the help of Higgs
boson low energy theorems. At present, the best limits on the existence of the
minimal Higgs boson are obtained from experiments at LEP. These limits will be
summarized, and the prospects for improved limits will be discussed. Finally, I will
survey the proposed Higgs searches at future colliders—the hadron supercolliders
(LHC and SSC) and a possible very high energy ete~ linear collider (sometimes
called the NLC for “next linear collider” or TLC for “TeV linear collider”).

3.1 Properties of the Minimal Higgs Boson

First, let us quickly review the properties of the minimal Higgs boson. The
scale of electroweak interactions is set by the vacuum expectation value of the
neutral member of the Higgs doublet:

v = 2—?-—:246 GeV . (3.1)

Of the four degrees of freedom which make up the complex Higgs doublet, three
(Goldstone bosons) are absorbed by the W# and Z gauge bosons leaving one phys-
ical massive CP-even neutral scalar—the H 0 Although the tree-level couplings of
H® are all fixed by the theory, the Higgs mass is a free parameter, which is un-
constrained (at tree-level). In Lecture 2, I showed that by including higher order
radiative corrections (and imposing “triviality constraints”), one can deduce both
a lower and upper bound for my. The results were summarized in fig. 2. The lower
bound is very sensitive to the mass of the top-quark and the upper bound implies
that mpy < 650-800 GeV. {This appears to rule out the possibility of a minimal
Higgs boson with a 1 TeV mass. Nevertheless, one can imagine scenarios beyond
the Standard Model which could simulate the effects of a 1 TeV Higgs boson. Thus,

one should not ignore this mass region in future Higgs boson searches.)



The (tree-level) Higgs couplings to gauge bosons and fermions, and the Higgs
boson self-couplings are summarized in fig. 1. Of these, the HOW+W—, H'ZZ and
HOff couplings are the most important for phenomenology. However, there are a
number of Higgs couplings which are absent at tree-level but appear at one-loop
which are also phenomenologically relevant.

Consider first the one-loop induced Higgs coupling to two gluons.

g
H° )
i
24
This diagram leads to an effective Lagrangian
ga N, 0 a
Lifogy = 5 MSmIfV HOGS,, G (3.2)

This effective Lagrangian can be summarized by the following Feynman rule

______ L# v L e oV b
%ﬂ)\ 67rmw ( by = by kag™)o
k2

v.b

where one must remember to include an addition factor of 2 because the two gluons
are identical. N, depends on the quark masses that appear in the loop. Explicitly,

2

9 2
=15 . Ti = —a-, (3.3)

ZF}/"J

where F/, results from the calculation of the loop integral. This function is given
in eqs. (2.17-2.19) of the HHG. Two limiting cases are of interest:

Fypalz) — { 43, =21, (3.4)

~2zlnz, z <1 .

That is, N, is roughly equal to the number of quarks which are heavy compared to
HO Ttis part;culauly noteworthy that the effects of heavy quarks do not decouple!
This is a feature of spontaneously broken gauge theories where not all couplings




and masses are independent. The Appelquist-Carrezone theorem states that the
effects of heavy particles decouple in the limit of fixed couplings. However, in this
case, the H%qg coupling is proportional to my and thus cannot be held fixed in the
large quark mass limit.

Using the H%gg vertex above, one finds
L Al B (3.5)

where one must include a factor of 1/2 for identical particles if one integrates over
all of two-body phase space. The H%gg coupling plays a key role in determining
the cross section for Higgs boson production at hadron colliders. The dominant
mechanism involved is the fusion of two gluons into a Higgs boson. The resulting
cross section is easily computed:

o T(HY —
( 3 99) gA(ma)ﬂ?‘%f)gB(Ib?'m%{)v (3.6)
Smy

do
—{ARB IO ) =
dy(A — H" 4+ X)

where g4 and gp are the gluon distribution functions in hadrons A and B respec-
tively, and

myge? mpye Y

Tg = \/g L Ib: \/:S- ]

3.7
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The rapidity v is defined above in terms of the Higgs boson energy and longitudinal
momentum, defined in the laboratory frame.

Next, we turn to the one-loop induced Higgs boson coupling to two photons.
The contributing diagrams in the Standard Model are the ones shown below.

(a)
7

]



The evaluation of these diagrams leads to the following effective interaction ex-
pressed as a Feynman rule

Ky 7
0
o oy U447 1 1™
ko v ¥
where
9 2 : m?
Ny = 6 Z:Nc,'ei Fi(zi) |, T = ?—n—g (3.8)

In the sum over 3, Nej = 3 {or quarks and 1 for color-singlets, e; is the electric charge
in units of e, m; is the mass of particle i, and Fj results from the calculation of the
loop integral and depends on the spin (7) of particle i. The Fj are given In egs.
(2.17-2.19) of the HHG. In the limit where the mass of particle i is large, the Fj
approach a j—dependent constant”

~1/3 j=0
File) = § —4/3 j=1/2 . (3.9)
+7 j=1

Once again, we note that the effects of heavy particles do no decouple in the large
mass limit. The numbers on the right-hand side of eq. (3.9) are not random! In
fact, the same numbers arise when one computes the electromagnetic beta—function
in the Standard Model. If one evaluates the photon two-point function u(q) (say,
using dimensional regularization with e=4—n for n spacetime dimensions}, then

+ Note that although charged scalar loops (J = 0} do not occur in the (unitary gauge of
the) Standard Model, they will occur in extensions to the Standard Model which generally
possess charged Higgs scalars.




one can show that

)1
Uy (g) = (guav — g#ng) [é%)_.)_.é + finite terms] . (3.10)

Summing over charged gauge bosons, fermions [and charged scalars in extended

models], I find

Bla) = -g-; {~—7+% ST Nei€f +3 > Nc,-e?} : (3.11)

fermions scalars

The factor of —7 above (arising from the W * in the loop) is understood as follows.
The contribution of a massless multiplet of SU(N) gauge bosons is equal to —11N/3.
I we evaluate II,,(¢) in the Landau gauge, then the contribution of the W& is
—22/3 (obtained by setting N = 2). But we must also add the contribution of the
massless Goldstone bosons, which contribute an extra 1/3 according to eq. (3.11).
The sum is gauge invariant (since § () is gauge invariant in the minimal subtraction
scheme), and thus must be equal to the contribution of a massive W in the unitary
gauge.

Thus, we recognize the asymptotic form for Fj(z) [eq. (3.9)] to be intimately
related to the coefficients appearing in the divergent part of I,,(¢). The origin of
this connection lies in the Higgs boson low energy theorems.

3.2 Higgs Boson Low Energy Theorems

The Higgs boson low energy theorems relate the amplitudes of two processes
which differ by the insertion of a zero momentum Higgs boson. They are useful in
estimating the properties of very light Higgs bosons in the same way that soft-pion
theorems are used to study low-energy pion interactions. A pedestrian approach
to the Higgs boson low energy theorems begins by noting that the Higgs hoson
interactions in the Standard Model can be written in the following form

i} H\? )
L=— (1 + %) > myf~ (1 + ;-) (mby W, WH+ im3Z,2%) . (3.12)
f

Consider a Higgs field with zero four-momentum: [Py, H] = i0,H = 0. This
implies that H is a constant field. From eq. (3.12), it follows that the effect of a



constant field H is equivalent to redefining all mass parameters of the theory

my — ™my (1 + -vh:) . (3.13)
v

This immediately implies the following low energy theorem

. 0 1 ad 0
Jim M(A— B+H") == Zf:mféa} + j_vjmv% M(A— B), (3.14)
where the sum over V includes both the W and Z bosons. This theorem is rather
trivial when applied to the elementary particles of the model. But its range of
applicability is much wider. As a demonstration, let us derive a low-energy theo-
rem for the H%gg interaction (g = gluon). At one-loop, the transition amplitude
M(g — g), which is just the gluon two-point function, depends on my due to an
intermediate quark loop. One can show that the effect of heavy fermion loops is
to add the following piece to the effective QCD Lagrangian

— A?
5L = 2; G2,G** S In (i—;—) : (3.15)
f f

where %, is the gluon field strength tensor and Ayy is the ultraviolet cutoff. Using
eq. (3.14), we obtain the following effective Lagrangian governing the Higgs-gluon
interaction

Liogg = %HOGLGM, (3.16)
where Ny is the number of heavy quark flavors. Here, “heavy” means the number
of quarks heavier than H and the scale of QCD, A. As expected, eq. (3.16) gives
precisely the same answer as the triangle diagram calculation of H — gg in
one-loop perturbation theory [see eq. (3.2)]; namely, the I %9¢ matrix element is
constant in the limit of my; — oo. This technique can also be used to obtain
the effective Hy~ interaction in the soft Higgs limit.This is the explanation for
why the asymptotic form of eq. (3.9) matches the corresponding coeflicients which
appear in the electromagnetic f-function, as discussed above.

Consider now the application of the low-energy theorems to the study of Higgs
interactions with mesons and baryons at low energy. The mesons and baryons
are complicated bound state systems made up of light quarks and gluons. The
Higgs bosons can interact with these systems in three distinct ways: (i) interaction
with the gluons via eq. (3.16); (ii) direct interactions with the light constituent




quarks; and (iii) via a weak interaction process, where the quarks exchange a W
or Z boson, and the Higgs interacts with the exchanged vector boson. We can
develop low-energy theorems which separate out the interactions via gluons from
the direct interactions with fermions and vector bosons as follows. We divide up
the quarks into “light” (mg < A) and “heavy” (mg > A,my). The heavy quarks
are important in that they are responsible for the H 04g interaction; hence, we
remove the heavy quarks from eq. (3.14). Instead, we derive a new low-energy
theorem as follows, We observe that we can combine eq. (3.16) with the gluon
kinetic energy term to obtain
-1

Npa
_ a a b oacy2 H%s .0
L= :@(aﬂAu — By A% ~ fapcALAT) (1 — = tH ) : (3.17)

where a, = g2/(47), and we have rescaled the gluon field, A} — gs LAY, In the
zero momentum limit where H 0 ;s a constant field, we see that the H 0 interactions
can be reproduced simply by rescaling as. Thus, il we denote the corresponding
change by as — as + Sas, then to first order,

2
Sy = —2H°. (3.18)

The following low-energy theorem is thereby obtained:

.
Nuas 9 pqa- By, (3.19)

3rv  dag

pgl_l}o M(A — B+ HO)\gluons =
where the subscript “gluons” indicates that we are exhibiting the partial contri-
bution to M{A4 — B + HY) due to the H%yg interactions induced by Ng heavy
quark loops. By dimensional analysis, it is often possible to deduce the depen-
dence of M(A — B) on the intrinsic scale of QCD, A. In defining A, we employ
the following normalization in the definition of the QCD F-function

Jog
= & ’ ]
ny = asBlas), (3.20)
with
—bas
Blas) = = + O(a3). (3.21)

where b= 11 — %nf, and ny is the number of quark flavors. Then, A is defined as

A= ,uexp{—/ a-%'-(’-a—} . (3.22)

Note that by using eq. (3.21), dAfdp = 0, which implies that A is a physical



parameter of the theory. It then follows that

OA —A
B = aBl) (3.23)

Thus, in the one-loop approximation, we can replace eq. (3.19) with

2NE \ O \ia By, (324)

_ 0 —
lim M(A— B+ H)|guons = 35, & 3R

PH—

where b should be computed in a theory where the heavy flavors are decoupled,
namely b= 11 — %n 1, with np equal to the number of light flavors.

The remaining contributions due to the interactions with the light constituent
quarks and weak vector bosons are obtained by deleting the heavy quarks from

eq. (3.14)

. 0 . 1 a
lim M(A— B+H Nowiz =2 qu%Jrz‘;mv M(A — B),

PE— dmy

u,d,s
(3.25)
where the sum runs over the light quarks and V' = W and Z.

As an example of this formalism, let us work out the Higgs-nucleon coupling
using the low energy theorems. The gluons and the strange quark content of the
proton determine the magnitude of the H 0NN coupling. (Of course, the effects of
the u and d quarks are negligible due to their small masses.) Using the low energy
theorems quoted above, we obtain

2Ny  Omy Ompy
GHONN = —{);'b—' —“a—A— -+ Mg am . (326)
'8
By dimensional arguments, the nucleon mass can be written as
my = ciA + coms. (3.27)
In addition, since
4, i 2 i
= —1 , 3.28
s Oms p—ms P— s (=ims) p—ms ( )

it follows that m,8/0m, acting on a strange quark line in a Feynman diagram is
equivalent to the insertion (with zero momentum) of the operator m,ss. Thus, we




may conclude that

ompy
m
* Omes

where I have normalized | N) such that (N|y¢n |N) = 1. Thus, we can evaluate
JONN explicitly. The result is

= (N|ms8s|N), (3.29)

¢ 2Ny . 2Ngmy
It is convenient to parametrize the Higgs—nucleon-nucleon coupling by,
gmny
gyonN =51 (3.31)

2mw

where 7 is a parameter which expresses the deviation from point coupling. Using
Ny = 3 and the results of a recent estimate, (p|msds|p) = 334 £ 132 MeV, 1
obtain n ~2 0.5 = 0.1.

A slightly fancier version of the above derivation makes use of the trace of

the energy-momentum tensor, ©4. If we integrate out the heavy quarks from the
theory, eq. (3.16) implies that the effective Higgs interaction Lagrangian is

_‘H - ArHaS ba K
Let = o Z mi i — 197 GﬁyG“ - (3.32)

j==u,d, 8
We can express Lo in terms of ©4 by noting that
—bag

@ﬁ: 87 waGﬂyﬂ"" Z m'i:'fT)i#’iv (3-33)

i=u,d,s

where the first term on the right hand side is due to the conformal anomaly. Thus.
we can write

H 2Ny — 2Ny
Lo = (-@“‘ - 1) Z mipii — 5= Ll - (3.34)

t=u,d,s
Finally, noting that we can define the nucleon mass and HPNN coupling by

(NI O INY | _p=m

, (3.35)
(N| Lo [N} = —(N|Heg IN) = —gnnn

we recover eq. (3.30).



As a second application of the Higgs boson low energy theorems, consider the
Higgs Boson couplings to pions. In this case, it is advantageous to make use of the
chiral Lagrangian which neatly summarizes the low energy properties of pions.

= 1727y 8,505 + LA pME 4 he) o (3.36)

where we have dropped terms with more than two derivatives. (Higher derivative
terms can be neglected as long as typical pion momenta are small compared to
47 fr.) This Lagrangian can be viewed as an effective Lagrangian for QCD consist-
ing of two flavors of quarks (u and d)! The first term of eq. (3.36) describes the
properties of the Goldstone bosons arising from spontaneous syminetry breaking
of the SU(2)x SU(2)g chiral symmetry of the (two flavor) QCD Lagrangian to
the diagonal SU(2) isospin subgroup. This symmetry breaking is a result of the
strong QCD force, and the Coldstone bosons are identified as the pions

2' [ a
T = exp ( ?‘I; h ) (3.37)
k3

with fr = 93 MeV, T* = o® /2 and

e L (TVE
meT ZE( - -wo/\/ﬁ)' (3.38)

The second term in eq.(3.36) explicitly breaks the SU(2)yx SU(2)p symmetry.
where M is the diagonal quark mass matrix. The origin of the nonzero quark
masses lies in the electroweak sector of the theory. By inserting eq. (3.38) into
eq. (3.36) and examining the term quadratic in the 7 field, we can determine the
relation between the parameter g and the mass of the pion

m2 = p(my + ma). (3.39)

We can couple the Higgs bosons to the pions by adding all possible operators
which are consistent with the chiral symmetry and its explicit breaking via the
quark mass matrix. As before, we keep only the terms with the fewest (zero or
two) derivatives. Then, £ — £+ AL with

AL = }ngcl —I;iTr 6#5_}6"“2T + %fgcz—g—'l"r (,ul\f.’{E‘|L +h.c}. (3.40)

The ¢; are strong interaction parameters which cannot be fixed by appealing to chi-
ral symmetry. However, they can be determined by applying the Higgs low energy

x For simplicity, I shall ignore the strange quarks. A more general discussion can be found in
the HHG.




theorems [egs. (3.24) and (3.23)]. To apply these theorems, we must determine the
m, and A dependence of fr, p and M (the quark mass matrix). Eq. (3.24) implies
that all terms in the chiral Lagrangian which behave like AP will be multiplied by

(1 4 e -I;i) . (3.41)

3b

From eq. (3.25), it follows that all terms in the chiral Lagrangian which are propor-
tional to the quark mass matrix will be multiplied by (14 H/v). Using dimensional
arguments, one can deduce that f,u ~ A and M ~ mg. Thus, for Ny = 3,

c 4Ny 4
1= e =T,
3b 9 (3.42)
c —1+2NH-—5—
2 b3

In the above derivation, there is one sleight of hand which needs to be justified.
Namely, there is a factor of f hidden in the definition of L = exp{2:0°T°/ f).
Nevertheless, even though we stated that f ~ A, we neglected this dependence in
T when we applied the low energy theorem [eq. (3.24)]. In fact, one can show that
this is the correct procedure. First we note that the effective low energy theory is
invariant under the combined scaling of dimensionful parameters and the dilatation
transformation of the fields

d

d 2]
B oM — _ E , — § :
Of = Ous ABA + 2 quamq + 4 my g L, (3.43)

where s” is the scale current. However, the field ¥ (and likewise the TI field)
do not scale under a dilatation transformation; i.e., they have scale dimension
equal to zero. It follows that for the leading term of the chiral Lagrangian, L=
ifQTIB“EBpE*, one can derive dys# = —2L. As a result, to he consistent with
eq. (3.43), we must use 9L/IA = 0 in the low energy theorem, which is the
justification for the procedure described above.

With these results in hand, we can evaluate the Hrr coupling. Thus, the
matrix element for H® — n¥7~ is

MH® = 2Fr7) =

2 2
pr— [Cl'mH + 2(62 — )mﬁ]

_ 9 (2 M2

= Sy (mH+ 2m,r) .
Once again, we see an enhancement of the H® coupling (compared to what one
would have obtained based on the direct coupling of HY to the u and d quarks},

(3.44)



due to the HY coupling to gluons via the heavy quark loop. Normalizing to the
decay rate for H® — putu~,

1/2

T(HY - xtr=,7%%) 1 m} ( 11 m?r) (1 = 4m3 fmy) (3.45)

I(H® — ptu~) 27 'm—ﬁ (1 _4m%/m%{)3/2 '

2
QmH

It is important to note that the above results are consequences of the low-energy
theorems. In particular, the H® — 777~ decay rate could deviate substantially
from the result obtained above if the #*7~ invariant mass is near a resonance,
Such information is not contained in the low-energy Lagrangians used above.

Similar techniques can be used to obtain the Higgs boson coupling to Kn. Here,
one would make use of the full SU(3) x SU(8) chiral Lagrangian, and incorporate
the weak AS = 1 transition. See the HHG for further details.

3.3 Search for the Minimal Higgs Boson

Armed with the knowledge of the properties of the Standard Model Higgs
boson, we now proceed to review the various Higgs search strategies which have
been proposed. Unfortunately, the Higgs boson mass is a priori a completely
unknown parameter (apart from the weak set of mass bounds discussed in Lecture
2). Thus, we must devise many strategies which allow us to search the entire
allowed range of masses from 0 up to (roughly) 1 TeV. In addition, one can either
search for the effects of virtual Higgs exchange (indirect Higgs effects) or direct
Higgs production. We now proceed to examine these two possibilities.

Searches for Virtual Effects of Higes Bosons

The Standard Model is now known to be correct at the ZY mass at the one
percent level due to precision electroweak measurements at LEP—a remarkable
achievement. Some of the electroweak observables exhibit a dependence on the
Higgs boson mass, due to virtual Higgs exchange at one-loop. First, consider
the p-parameter. In Lecture 2, I discussed how the custodial SU(2) symmetry
of the Iiggs sector of the Standard Model guarantees that p = 1 at tree-level.
This agrees with electroweak measurements, which imply that any deviation of p
from 1 must be less than 1%. However, the custodial SU(2) symmetry is violated
by hypercharge gauge interactions. This effect can be illustrated by considering
the effect of a very heavy Higgs boson on p. Here, we must be careful to define
p precisely; numerous definitions exist in the literature. One definition is based
on the measurements of charged and neutral current cross sections in low-energy




peutrino-nucleon scattering. Define the following ratio of tree-level cross sections

N — v, X)
R = 2ol el 3.46
Y ap(vyN — p=X) ( )

If R is the corresponding quantity when one-loop radiative corrections are in-
cluded, then py¢ is defined via

R = (pyc)'RY. (3.47)
In the limit of mg > myy, the leading Higgs mass effect 1s

39" i _
PNC o 1 ar ?f)-% ta-l]2 BH’ h'l (M) . (348)

my

Note that ¢ = ¢° tan® fy. Thus, the custodial SU(2) symmetry is indeed broken
by the hypercharge gauge interactions as noted above.

Logarithmic sensitivity to a very large Higgs mass can also be found in the
prediction of the W mass. The prediction for myw is obtained by solving the
equation

me T 1
2 {1- )= 4
77?”/ ( Tnzz) \/E):GF (1 — AT') ] (3 9)

where Ar incorporates the one-loop radiative corrections. The contribution of a
heavy Higgs boson (my > my ) to Ar is

2
Aryg o 11g In <E£> . (3.50)

9672 mw

In the two cases just examined, for my < 1 TeV, the effect of a heavy Higgs
boson on the physical observable is very small, certainly below the level which is
accessible to present day experiment. One would need to improve current precision
electroweak measurements by at least an order of magnitude to obtain interesting
experimental constraints on the Higgs mass. 1t is interesting to compare the above
results with the corresponding effects of a large top quark mass. Both py¢ and Ar
exhibit quadratic sensitivity to my at one-loop. It is for this reason that interesting
bounds on the top quark mass can be obtained from the present LEP data. The
effects of a large Higgs mass proportional to m¥; are also present, but these enter



only at two-loop order. That is, the leading effects of a large Higgs mass take the

my k m2 :

2 2k H

Inl — |+ c ——) , 3.51
g [ ( ) ’? . kg ( 2 jl ( )

where the ¢ are dimensionless numbers. That is, the quadratic sensitivity to a
large Higgs mass is “screened” by an extra factor of ¢g%. This is the screening
theorem, first noted by Veltman.

form

One can conclude that effects of the Higgs boson will almost certainly not
be discovered initially through its virtual effects. Thus, we must look to direct
production and detection of the Higgs boson at present and future colliders.

Higgs Boson Searches Before LEP

Before LEP began collecting data in the fall of 1989, one had to employ a
variety of techniques in order to rule out the existence of a light Higgs boson

(mp £ 5 GeV). A detailed description of the various search techniques can be
found in the HHG. By far the most effective limits were derived {rom the non-
observation of H® in K-decay and B-decay

K — nH®
B— KH° (3.52)
B H +X (viab— sH").

The amplitudes for these processes display a quadratic sensitivity to the mass of
the top-quark! For example, the following two diagrams contribute to b — sH 0

/1
W W’ /,
b N b s
\\
\\\ HO
and yields the following effective Lagrangian

3¢3mIViVe

f 29 My Vi Vis _

ﬁisﬂ_ 2567{'2777,%1/ mb8(1+75)b+h'€’" (3-53)

where V;; denotes elements of the Kobayashi-Maskawa (KM) mixing matrix. An
analogous expression can be obtained for EigH. Since my > 89 GeV, one finds




significant rates for these one-loop decays

BR{K — 7 H®) ~ 1075 x phase space factor

4 2 2
BR(B — H° + X) =~ 0.36 (ﬁt—) (1 _ -”211)
mw

2
my

Vts "Qb

2 (3.54)
Vcb .

The combination of mixing angles which appears in the last formula is of O(1).
Putting in the numbers and comparing with the data, it was possible to conclude
(independent of LEP) that myg R 2mq ~ 3.6 GeV. We now turn our attention to
the LEP data where much stronger Higgs mass limits have since been obtained.

Higgs Bosons Searches at LEP

In 1989-1990, the four LEP detectors collected over hall a million Z’s. In the
Siandard Model, the Z can decay into a Higgs boson and a pair of fermions by the
following diagram

where ff = {vp Lt~ (£ = #,e,7),qq}. The theoretical branching ratio is shown
in fig. 3. The four LEP detector collaborations have presented Higgs mass limits
based on very detailed analyses which examine many different f f final states, and
carefully treat the Jow mass Higgs region wlere many different Higgs decay modes
must be taken into account. At present, the ALEPH collaboration has obtained
the most stringent Higgs mass limit: my > 48 GeV (at 95% confidence level).
Combining the Higgs search results from all four LEP experiments raises the Higgs
mass bound to slightly above 50 GeV.

As LEP proceeds to collect more data, the Higgs mass limits will slowly im-
prove. A high statistics search in Z decays with 107 Z’s should be sensitive to
Tiggs masses in the range my =~ 60—70 GeV. To improve the Higgs mass limit
further, one must push up the LEP center of mass energy. LEP-II is expected to
run during the middle of this decade, with /3 ~ 180—200 GeV. At these energies,
the dominant Higgs production process is ete — HYZ
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with cross section given by

ra? A2 + 12smy)[1 + (1 = dsin” 6w )]
19252 sin? 8y cos? Oy (s — m%)?

olete” = H°Z) = : (3.55)

where A = (s — m¥} — my)? — 4mJ2Hm22. A graph of this cross section for various

values of the Higgs mass as a function of /5 is shown in fig. 4. One can see that
for a fixed value of my, the cross section is maximal for /s ~ mz + V2mpy. Given
1000 pb~! of data, one expects to be able to observe Higgs masses up to mz. Note
that the region my =~ mz is particularly troublesome due to the ete™ — ZZ
background. Both ZZ and H7 lead to four-fermion final states. But in principle,
these can be separated by making use of the fact that BR(H® — bb) =~ 100% as
compared to BR(Z — bb) ~ 20%. Given sufficient energy and luminosity, and a
vertex detector which can tag b-quark jets with high efficiency (say 30-50%), it
should be possible to discover a Higgs boson if it is degenerate in mass with the 2.

So far, the Higgs searches at LEP and LEP-II described above depend on
the ZZHY vertex. It is of interest to probe Higgs production mechanisms with
sensitivity to the Higgs-fermion coupling. Of these, only the H%tf coupling is
appreciable. We have already seen that the amplitudes for K and B decay exhibit
a quadratic sensitivity to the top-quark mass, We now examine whether a similar
behavior can be found in Z decays to the Higgs boson.

Consider first the decay Z° — H O which is a one-loop decay. One of the
contributing diagrams involves a i-quark loop

In addition, we must add the corresponding diagram with a W -loop. The final
result is

9 3
BR(Z — H%y) =23 x107° (1 - Zi‘f ) |[Aw + Af2, (3.56)
Z



where Aw and Ay are the corresponding W-loop and fermion loop contributions

2
Aw ~ — (9.5 + 0.6517—1511)
my
ONue /(T 26 sin Oyw) 0.063 L~ (3.57)
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my—00 3 sin Ow cos fw
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Unfortunately, Ay is completely negligible! There is no quadratic sensitivity to the
quark mass, and in this instance, the W-loop term dominates. Nevertheless, it is
instructive to understand why Ay approaches a constant in the large fermion mass
limit. Gauge invariance implies that the effective ZH%y interaction must be of the
form

A
Lypon, ~ ZLET,F2HHO (3.58)

7—77?1

in the limit of large my. Here, Ay = gy [(2mmyy ) is the HO4T coupling. The factor

1 must arise for dimensional reasons when my — oo, since FJ,,FZ”"HU 18

of my
a dimension-five operator. But Aifmy is independent of my. Thus Ay must be

independent of my in the large fermion mass limit.

Consider next the radiative corrections to Z — H®Z, where either the initial
or final Z is off-shell. Again, the top-quark mass can enter in the loop

This is a radiative correction to the LEP-I process Z — H®Z* and to the LEP-II
process eTe” — Z* — H°Z. In both cases, the amplitude exhibits a quadratic
sensitivity to my. The leading term in the effective ZZ H® interaction (as my — o0)
induced by the above graph is

Lygme = \muZuZVHC. (3.59)

In contrast to the previous case, ZyZ'H is a dimension-3 operator so the factor
of m; must occur in the numerator. Since Aymy ~ m?, we conclude that the one-
loop radiative correction will grow with m?. An explicit calculation shows that
the leading heavy fermion effect is negative, and therefore decreases the width (or
cross section) from the tree-level prediction.




The Equivalence Theorem was used by Sally Dawson and me to obtain the
large my behavior of Mete™ — ZH®). We computed instead M(ete™ — 2H"),
where z is the neutral Goldstone boson. This gives us the correct result up to
terms of O(mz/+/s). But I have already argued that the one-loop correction to
M(ete™ — ZH®) grows as Gpm?. Dimensional analysis implies that the leading
behavior of both amplitudes is the same. Thus, we can match the leading G rpm of
both amplitudes. I shall denote Ry=(o— o0)/ o0, where og is the tree-level cross
section and o includes the one-loop radiative correction. Then, the contribution of
a heavy fermion doublet (U, D) to Ry in the limit s > mzz, m?H is given by

_ 2GpNemjy
Re= 31['2;;2 ’
f= _GFN.:‘I’N%: [1 + 3cos 20w + 3 cos” B (1—4sin® 9@] m
312/2 4sin’ 8w 1+{1—4sin” 8w )? ’

m zm%‘;)s,

e eI
v

mb, 8.

(3.60)
If m%) > m3, s, simply replace my with mp in the above equation. An analogous
calculation gives (for my, mp > myz)

B GpN 3 cos 20wy
0oy ) 2 2 2
Nz -—-H VV)—Fg{l— PN [mU—}—mD-I— o Oy fm¥y,mp)| ¢, (3.61)

where

2 T
flz,y)=z+y— Y 1n (3> , (3.62}
r—y Y

and Tp is the tree-level decay rate for 7 — HOvi.

K we assume that (U, D) above is the (t,b) doublet, then we find a modest
suppression (roughly 5%) of the cross section and the Z partial width into the
Higgs boson. However, we also must include the effects of W boson loops which
enter as a positive contribution to the one-loop corrections. The net effect of the
complete one-loop corrections is rather small for reasonable values of the top quark

mass (my 5 200 GeV).

Finally, let me briefly mention the possibility of discovering the Higgs boson
in quarkonium decay. Based on current Higgs mass bounds from LEP, only a
+7 bound state could provide a source for Higgs bosons via the toponium decay
© — HY%y, Unfortunately, for m; > 89 GeV, it is almost certain that toponium
will not be produced at LEP-IL. At a future higher energy ete™ collider, even if
toponium lived long enough to be considered a bound state, the branching ratio
BR(© — H"y) would be too small to be observed, due to the prominence of the
single quark decays (in which one of the constituent f-quarks decays directly to
bW). Nevertheless, the Higgs boson could play an interesting role in the precise



shape of the ete™ — t cross section near the ti threshold. Precision measurements
could see the effects of a Higgs boson of moderate mass {one that could be detected
directly via ete™ — H®Z), and could provide a determination of the strength of
the H°tl coupling.

Higgs Boson Searches at Hadron Supercolliders

After LEP-II (and before a future high energy ete™ linear collider), attention
will shift to the hadron supercolliders—the LHC at CERN (with a projected Vs =
17 TeV) and the SSC in Texas (with /5 = 40 TeV). The design luminosity of the
3SC is 1032 cm~? sec™!. The LHC Juminosity is not yet fixed, although luminosities
up to 50 times larger have been considered in order to extend the LHC discovery
reach (and to make up for its lower center-of-mass energy as compared to the SSC).

The basic mechanisms for Higgs production at a hadron collider are

(i) gluon-gluon fusion

|

(#1) vector boson fusion
w2

w2

The corresponding cross sections are shown in fig. 5. In discussing Higgs searches
at hadron supercolliders, three mass regions have been distingnished: “interme-
diate” (mw S myg S omz), “heavy” (2mz S my < 800 GeV) and “obese”
(myg R 800 GeV). The boundaries between these regions are not sharp. The
dominant Higgs production mechanisms are gluon-gluon fusion and WW fusion.
Gluon-gluon fusion dominates for the lighter Higgs masses; W W fusion may be-
come dominant for heavier Higgs masses (depending on the value of my which
governs the size of the gluon-gluon fusion contribution), as shown in fig. 3. If the
design luminosity of the SSC is achieved, one would expect an integrated luminos-
ity of 10* pb~! in a one year run. This implies that between 10% and 10* Higgs




bosons will be produced per year at the $SC, i 100 GeV S my 51 TeV. Although
this may seem like a large number of events, the existence of large Standard Model
backgrounds usually will require experimentalists to make substantial cuts on their
data samples in order to expose an unambiguous Higgs signal.

H°® Production
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Figure 5 Cross sections for H® production at the SSC due to the partonic subprocesses
W1V fusion, gg fusion, and gg — {1HO are given as a function of the Higgs mass for two
extreme values of the top quark mass, my = 40 and m; = 200 GeV.

The intermediate mass regime {mw & MH S 2myz) is the most problematical.
Since my 2 mz, the Higgs boson in this mass range cannot decay into if. Thus.
the dominant decay mode of the Higgs boson is into bb pairs. Such a final state
is extremely difficult to observe due to the presence of large Standard Model jet
backgrounds. It will be necessary to consider rarer production or decay modes with
more distinguishing characteristics. Various mechanisms have been studied in the
literature, including (i) gg — H 0 _, ZZ* where both on-shell and off-shell Z’s
decay to ete™ or ptpu™; (i) g9 — HY — ~~, (iii) gg — {THY, where the associated
t production is used to trigger on the H® production; (iv) ¢ — W* — WHY and
(v} gg — H® - 77, Bach of these mechanisms may provide signatures which
allow experimenters to probe part of the intermediate mass regime. Mechanism
(i) provides the cleanest signature and should allow for the discovery of the Higgs
boson if my = 130 GeV. For smaller Higgs masses, BR(H® — Z{Y{") bas de-
creased to the point that too few Higgs events survive in a typical SSC year. It



may be possible to extend the range of observable Higgs masses by searching for
the rare HY — ~4+4 mode. This will require specially designed SSC detectors which
can distinguish effectively between high energy photons and neutral hadronic jets
and can measure the 4 invariant mass with extremely good resolution {to better
than 1%). Recently, there has been a suggestion that the tZH® and WH? final
states where H® — ~v may be the best way to probe the lower masses of the
intermediate mass Higgs region. Clearly, it will require a diligent effort to discover
or rule out an intermediate mass Higgs at a hadron supercollider.

In the heavy Higgs mass regime (2mz < mpy S 800 GeV), the Higgs boson
decays dominantly into gauge bosons. For example, away from threshold (e.g., for
my > 2mz),

Gpm%
872 ’

The m% behavior above is a consequence of the longitudinal polarization states
of the W and Z. As my gets large, so does the coupling of H® to the Goldstone
bosons which have been eaten by the W and Z. The same effect explains growing
importance of the WIW/Z Z fusion mechanism to the Higgs production cross section
as my becomes large. In contrast, the Higgs decay width to a pair of heavy quarks

_ 3Grmim 4m? 32
F(H® = QO) = — @ °# (1__,_.._,2) (3.64)

T(H - WHW ) =2['(H® —» 22) = (3.63)
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grows only linearly in the Higgs mass. As a result, for mg > 2mgz, 2mg,

I'(H - QQ) - [ 2mg 2
Tl —wrw-,22) =\ mg ) b (3.65)

Thus, for Higgs masses sufficiently above 2myz, the total Higgs width is well ap-
proximated by ignoring the Higgs decay to ¢ and including only the two gauge
boson decay modes. One then obtains the following convenient mnemonic

(3.66)

Tioral(H) = 0.48 TeV ( il )3

1 TeV

In order to detect a heavy Higgs boson at the LHC and SSC, one must make
use of the two gauge boson decays. As indicated above, these modes dominate over
the tf final state. In any case, it is very doubtful that the Higgs boson could be
observed in the #f final state due to the much larger background due fo the direct

production of tf (via gg fusion), as well as the misidentification of {-quark jets in
the even larger two-jet Standard Model background.




Among the two gauge boson decays of the heavy Higgs boson, there is one
“gold-plated” signature: H® — ZZ, where both Z’s decay into electron or muon
pairs. This should allow for the discovery of a Higgs boson with mass up to 600
GeV with the canonical 10* pb~? integrated juminosity. If the luminosity can be
increased by a factor of 10 in a high luminosity running mode of the SSC, it may
be possible to detect Higgs bosons with masses as high as 800 GeV. The LHC,
running at a center-of-mass energy which is a factor of 3 to 4 lower that of the
SSC will have a somewhat smaller Higgs discovery reach. A second “silver-plated”
mode is: H® — ZZ where one Z decays into ete~ or utu~ and the other Z
decays into neutrinos. Although this signature has larger backgrounds to contend
with, it should be possible to reject the background with an appropriate set of
cuts. Because of the larger branching ratio of Z into neutrino pairs, this signature
has the potential of reaching higher Higgs masses than the gold-plated signature.
In principle, one would also like to have access to the W +W = modes of the Higgs
boson, which are (about) twice as prolific as ZZ and have larger leptonic branching
fractions. However, the possible signatures (e.g., H® — W*W—, where one W
decays leptonically and the second W decays either leptonically or hadronically)
have very large Standard Model backgrounds which are generally difficult to deal
with. Nevertheless, interesting techniques have been suggested, and the study of
such signatures may eventually be quite fruitful.

Finally, in the “obese” region (myg = 800 GeV), the Higgs boson width is
becoming rather large [see eq. (3.66)], with Ty /my close to O(1). This corresponds
to the regime where the WW and Z7 scattering is becoming strong (at least
in the scalar channel). Such effects may be able to be observed at the S5C in
vector boson production processes which occur via the two gauge boson fusion
mechanism. Experimentalists should be prepared to search for evidence of such
strong interaction phenomena in WW and ZZ scattering if no evidence for the
Higgs boson is found.

Higgs Bosons Searches at future ete™ colliders

In general, the ete™ collider provides a much cleaner environment than the
hadron colliders for discovering and examining the detailed properties of new
physics phenomena. Unfortunately, there are many engineering and accelerator
physics problems to overcome before such a machine can be built. One expects
that progress in the design and construction of a future high energy ete linear
collider would occur in two stages. The next linear collider (NLC) would pre-
sumably possess a center-of-mass energy in the range /s 2 300-500 GeV. In the
second stage, one can imagine a future high energy ete™ linear collider in the TeV
range (TLC) with /s = 1-2 TeV.,



At the NLC, the Higgs search at LEP-II could be extended over the entire
intermediate mass Higgs region via ete™ — ZH. The only real subtlety of the
analysis would be whether a Higgs boson which is degenerate in mass with the Z
could be seen. As discussed earlier, for my =~ mz one would have to remove the
ete— — Z7 background in order to discover the H. Given sufficient luminosity
(expected at these machines), it is generally believed that this would not present
an obstacle to discovering or ruling out a Higgs boson in this mass range. Thus,
the NLC could play a very important role in exploring the intermediate Higgs mass
regime.

At higher center-of-mass energies, a new mechanism for Higgs boson production
begins to enter: ete™ — v H® via WHW ™ fusion. (The rate for ete™ — ete HO
via ZZ and v fusion is significantly smaller.) The rate of the W+W~— fusion
process grows (logarithmically) with energy for fixed Higgs boson mass, and is
therefore the dominant mechanism for Higgs boson production at the TLC. In
contrast to the LHC and SSC, the W* and Z gauge bosons can be detected at
an ete~ linear collider via their hadronic decay modes. The reason for this 1s
that the Standard Model QCD backgrounds, which are so severe at a hadronic
supercollider, are much smaller (relatively speaking) at an eTe” collider. That is,
in ete— annihilation, the production cross-sections for fermion pairs, gauge boson
pairs, and Higgs bosons are all (very roughly) of the same order of magnitude.
As a result, at the TLC, one can make full use of the hadronic decay modes of
the W2 to detect the W*W~ decays of the Higgs boson. Thus, a 2 TeV eTe”
collider (with an integrated luminosity of 104 pb™!) could effectively explore the
entire Higgs mass range up to 1 TeV.

Suggestions for Further Reading
and a Brief Guide to the Literature
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1. The Higgs Hunter’s Guide, §2.1-2.3, Chapter 3.
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A detailed discussion of Higgs phenomenology at LEP and LEP-II can be found in
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Standard Physics, CERN Yellow Report 89-08 (1989).
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(1990); B252, 518 (1990); M. Akrawy ef al. [OPAL Collaboration] Phys.
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Thuile and Moriond conferences (Winter 1991).

The basics of supercollider physics, with some of the early discussions of Higgs
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the Workshop on Physics at Future Accelerators, vols. 1 and 2, CERN 87-07
(1987).



4. Beyond the Minimal Model: Extended Higgs Sectors

In the last lecture, 1 described the phenomenology of the minimal Higgs boson
of the Standard Model. Although this minimal choice is completely arbitrary
(as far as we know), we have seen that it provides an important benchmark for
assessing our ability to detect a Higgs boson at present and future accelerators.
However, given the fact that the present experimental information concerning the
Higgs sector is rather limited, it is clearly prudent to explore the implications of
more complicated Higgs models, both in the context of the Standard Model and
in extended theories.

To go beyond the Standard Model with minimal Higgs content, there are a
number of possible directions. One can expand the Higgs sector by either intro-
ducing multiple copies of the SU(2)1 doublet, Y| = 1 Higgs multiplets, and/or
add additional Higgs singlets, triplets or even more complicated multiplets of Higgs
scalars. One can introduce a larger gauge symmetry beyond SU(2) x U(1) along
with the necessary Higgs structure to generate gauge boson and fermion masses.
Fxamples include left-right symmetric gauge groups such as SU(2)px SU(2)rx
U(1), and models with new U(1)’s such as SU(2) x U(1) x U(1). Finally, one
can extend the Standard Model by introducing “low-energy” supersymmetry. In
this lecture, I will only consider the possibility of an extended Higgs sector in an
SU(2) x U(1) gauge theory. The implication of low-energy supersymmetry for
Higgs boson phenomenology will be discussed in Lecture 5.

4.1 Constraints on Extended Higgs Sectors

Despite the limited experimental information on the Higgs sector, there are
some constraints on extended Higgs models. First, it is an experimental fact that
p = miy /(Mm% cos? By} is very close to 1 (precision clectroweak measurements tell
us that 6p = p— 1 £ 1%). In the Standard Model, the p-parameter at tree-level
is determined by the Higgs structure of the theory. We also noted in Lecture 2
that deviations from p = 1 can be generated by radiative corrections if there is a
source of custodial SU(2) breaking. To distinguish between these potential sources
for p # 1, 1 shall denote the value of p computed at tree level (for a given extended
Higgs sector) by pq-

For an arbitrary Higgs sector, the general formula for p, is

my SryldT(T+1) - Y2 | Vpy P eny
m?% cos? Ow Yry2Y? | Vry |2 ’

Po =

(4.1)

where {¢(T,Y)) = Vpy- defines the vacuum expectation values of each neutral
Higgs field, and T and Y’ specify the total SU(2)f isospin and the hypercharge of




the Higgs representation to which it belongs. Y is normalized such that the electric
charge of the scalar field is @ = T3 +Y/2, and

. (4.2)

1, (7,Y) € complex representation,
Yy =Y 1
79

(T,Y = 0) € real representation.

Here, I have used a rather narrow definition of a real representation as consisting
of a real multiplet of fields with integer weak isospin and Y = 0. The requirement
that py = 1 for arbitrary Vpy values is

(T +1)* —3Y =1 (4.3)

This is a well known type of Diophantine equation called Pell’s equation. It pos-
sesses an infinite number of solutions where (27,Y) is a pairs of integers. (Of
course, T’ must be non-negative.) The smallest nontrivial solution is T = 1/2 and
|| = 1 which corresponds to the minimal Higgs model. The solutions to eq. (4.3)
with larger values of T' and Y are usually discarded since the representations in-
volved are rather complicated (the simplest example is a Higgs representation with
weak isospin 3 and Y} = 4). On the other hand, a Higgs sector with multiple
copies of a multiplet satisfying eq. (4.3) also leads to py = 1. Thus, the simplest
extended Higgs sector with py = 1 consists of two (or more) T'=1/2, [V =1 dou-
blets” Henceforth, I shall refer to such models as “multi-doublet models”, although
I shall always implicitly assume that Y| =1.

There are also other ways to satisfy the py = 1 constraint. First, I can choose
the vacuum expectation values Vi y for fields that do not satisfy (27+1)? ~3Y? =1
1o be small enough so that ép £ 1%. For example, if the deviation of p from 1 is due
entirely to the tree-level VEV’s of precisely one extra Higgs triplet of hypercharge
Y, then an analysis of Amaldi et al. from 1987 found

7
Mol < g.047 “—Lil < 0.081 (4.4)

with v = 246 GeV. Clearly, with precision electroweak data from LEP, better limits
can be obtained.

+ There is a difference between the minimal model and the extended multi-doublet models.
In the minimal model, a custodial SU(2) in the Higgs sector guarantees that p; = 1. In
multi-Higgs-doublet models, the custodial SU(2) symmetry is violated by the Higgs sell
couplings, which account for the mass splitting between charged and neutral Higgs bosons,
Although this violation does not alter p, = 1, it does lead to a (finite) shift in p at one loop
which is quadratically sensitive to Higgs masses (but vanishes if the charged and neutral
Higgs bosons are degenerate in mass).



Second, I could choose a combination of Higgs fields, with Vry chosen precisely
to give p, = 1. Since the minimum of the Higgs potential fixes the V1y, one would
have to fine-tune the parameters of the Higgs potential in general to ensure that
po = L. Nevertheless, there are examples where by clever choice of multiplets, one
can find an appropriate Higgs potential that respects a custodial SU(2) symmetry
which fixes the Vi y such that pg = 1. The simplest example of such a model
(due to Chanowitz and Golden and independently due to Georgi and Machacek)
involves one complex Y = 1 doublet, one complex Y = 2 triplet and one real Y =0
triplet Higgs multiplet, with (¢(3,1)) = a/VZ and {$(1,2)) = (¢(1,0)) = b. One
can construct a Higgs potential with the appropriate custodial SU(2) symmetry
which guarantees this pattern of VEV’s. It is easy to check using eq. (4.1) that
pp = 1. The CGGM model is still rather unnatural in the following sense. Since
the custodial SU(2) symmetry is violated by the hypercharge gauge interactions,
the coefficients of custodial SU(2) symmetry violating terms of the Higgs potential
will be infinitely renormalized, and thus must be “fine-tuned” to zero in order to
preserve p, = 1. Note that this does not happen in the minimal Higgs model,
where the most general Higgs potential permitted by the gauge symmetry also
automatically respects the custodial SU(2) symmetry. Moreover, in multi-doublet
models, custodial SU(2) violating terms in the Higgs potential simply lead to finite
radiative corrections to p. Therefore, for the rest of this lecture, 1 shall focus
primarily on multi-doublet extensions of the minimal Higgs model.

The second major theoretical constraint on the Higgs sector comes {rom the
severe experimental limits on the existence of flavor-changing neutral currents
(FCNC’s). In the minimal Higgs model, tree-level flavor changing neutral cur-
rents are automatically absent. This result is easily understood by examining the
Higgs-fermion Yukawa interactions

Ly = T, e + BT By + e, (45)

where @ is the complex doublet Higgs field, ® = igy®* and 1, j label the quark
generations. After symmetry breaking, 3° — @° + v//2, one sees that quark
masses are generated. A priori, the quark mass matrices are not diagonal in
“generation space”

= v 2
= g 3 \/Q-a \/i :
However, when the quark mass matrices are diagonalized, the Yukawa couplings are
automatically diagonalized at the same time. Thus, there are no Higgs mediated
FCONC’s at tree-level in the minimal model. In general, this ceases to be true in
non-minimal Higgs models. If T now replicate the Higgs doublets by adding an

M MEP =gl (4.6)




index k, and define the corresponding Yukawa couplings as gijk, then in this more
general case I would find

U D
v 9iiEVk D _ 91k Vk .
M,-j = E \/i , M,-j = E —~\/~§— (4.7)
k

k

Clearly, in a basis where Mj; is diagonal, the g;jx (for all k) need not be simulta-
neously diagonal. Hence, in general I expect Higgs mediated FCNC's at tree-level
in models with a non-minimal Higgs sector. One then has two choices. First, by
arranging the parameters of the model so that the Higgs masses are large (typically
of order 1 TeV), tree-level FCNC’s mediated by Higgs exchange can be suppressed
sufficiently so as not to be in conflict with known experimental limits. The second
choice is more elegant, and is based on a theorem of Glashow and Weinberg. The
theorem states that tree-level FCNC’s mediated by Higgs bosons will be absent if
all fermions of a given electric charge couple to no more than one Higgs doublet.
If we require this theorem to be satisfied, the Higgs couplings to fermions are con-
strained, but not unique. For example, there are (at least) two ways to satisly the
(lashow-Weinberg theorem in two-Higgs doublet models. One possibility [Model
1] is a model in which one Higgs doublet does not couple to fermions at all (due to
a discrete symmetry) and the other Higgs doublet couples to fermions in the same
way as in the minimal Higgs model. A second possibility [Model 1] is a model in
which one Higgs doublet couples to down quarks (but not to up quarks) while the
second Higgs doublet couples to up quarks (but not down quarks). Such a coupling
pattern can be arranged by imposing either a discrete symmetry or supersymmetry.
As we shall see in Lecture 5, the Higgs sector of the minimal supersymmetric ex-
tension of the Standard Model is a model of this type. If we also consider the Higgs
couplings to leptons, there are additional possibilities. However, it is simplest to
assumne that the Higgs-lepton couplings follow the same pattern as the Higgs-quark
couplings. The resulting phenomenology of Hi ggs-fermion interactions in Models I
and 1I can differ significantly.

The main conclusion to draw from the above discussion is that there is still
plenty of freedom for the Higgs sector in the Standard Model, although the choice
is not totally arbitrary. It is also clear that models with multiple doublets are the
preferred models for non-minimal Higgs structures, although there is still room for
investigation outside this framework. Finally, the two-Higgs-doublet version of the
Standard Model is particularly attractive because:

1 Tt is an extension of the minimal model which adds new phenomena (e.g.,
physical charged Higgs bosons).

9. Tt is a minimal extension in that it adds the fewest new arbitrary parameters.



3. Tt satisfies theoretical constraints of p =~ 1 and does not introduce tree-level
FCNC’s (if the Higgs-fermion couplings are appropriately chosen).

4. Such a Higgs structure is required in “low-energy” supersymmetric models.
4.2 Two-Higgs-Doublet Models: Theory

Let us investigate the minimal extension of the Higgs sector—the Standard
Model with two complex Higgs doublets. Let ¢ and ¢p denote two complex
Y = 1, SU(2); doublet scalar fields. The Higgs potential which spontaneously
breaks SU(2)x U(1)y down to U(1)gm 1s

Vidr, d2) = M(6] b1 — 02 + Ma(8] 2 — v3)’
1 2 1 'NE
(6] = o) + (8162 — o)

(6l enele) - (elonelon)] (4.8)
+ s [Re(ﬁﬁ;r $2) — Ul‘vz]g
fmigln]

where the \; are all real parameters. This potential is the most general one subject
to the SU(2) x U(1) gauge symmetry and a discrete symmetry, ¢1 — —¢1, which is
only softly violated (by dimension-two terms). The latter constraint is a technical
one which is related to insuring that flavor changing neutral currents are not too
large. For simplicity, I have also assumed that the Higgs sector is CP-invariant. The
above potential guarantees the correct pattern of electroweak symmetry breaking
over a large range of parameters. For example, if all the A; are non-negative, then
the minimum of the potential is manifestly:

0 0
{(¢1) = (m) , b = (U) , (4.9)

which breaks the SU(2)zx U(1)y down to U(1)EM, as desired. In fact, the allowed
range of the ); corresponding to this desired minimum is somewhat larger (and
can be deduced by requiring that all squared Higgs masses are positive).

A key parameter of the mode! is the ratio of the vacuum expectation values
tan f = va/v1. (4.10)

It is straightforward to remove the Coldstone bosons and determine the physical




Higgs states. In the charged sector, the charged Goldstone boson is
Giﬂqﬁfcosﬁ—i-qbgtsinﬂ, o (4.11)
and the physical charged Higgs state is orthogonal to G*:
H* = —¢Fsin f + ¢5 cos B, (4.12)

with mass m%ﬁ = )\4(1}? + v%) Due to the CP-invariance assumed above, the
imaginary parts and the real parts of the neutral scalar fields do not mix. In the
imaginary {CP-odd) sector, the neutral Goldstone boson is:

G = v2 (Im #) cos B+ Im $5sin B) , (4.13}
and the orthogonal neutral physical state is:

A% = V2 (~Im ¢ sin f + Im 3 cos ), (4.14)

with mass m2%, = Ae(v] + vj

Higgs scalars which mix through the following squared mass matrix:

). The real (CP-even) sector contains two physical

_ 41)‘1?()\1 -+ )\3) + ’Ug’}\s (4)\3 + /\5)1)1?..’2 (4.15)
(4hs + Aoz dvg(de + Aa) + vig ) '
The physical mass eigenstates are:
HY =V2 [(Re ¢) —vi)cosa + (Re ¢ — vz)sinal , (4.16)

pY =2 [—(Re ¢% —v1)sina + (Re ¢ — vp) cos al.

The corresponding masses are:

mgﬂo,ho = % [Mu + Mao = \/(7\/[11 — M)+ 4M%2 ] ’ (4.17)

and the mixing angle « is obtained from:

: 2Mia
sin 2o = ,
\ﬂMn — Ma)? +4Mi,
My — Mz (4.18)

cos 2 = .
\KMII — Ma)? +4Mi,

Note that according to eq. (4.17), mpyoe = mpo as suggested by the notation.



To sumimarize, this model possesses five physical Higgs bosons: a charged pair
(H%); two neutral CP-even scalars (H° and R, where, by convention, mygo > mpo);
and a neutral CP-odd scalar (A%}, often called a pseudoscalar. Instead of the one
free parameter of the minimal model, this model has six free parameters: four
Higgs masses, the ratio of vacuum expectation values, tan 3, and a Higgs mixing
angle, . Note that v? 4 v3 is fixed by the W mass: miy = g2 (v + v3)/2.

Higgs Boson Couplings

It is important to examine the couplings of the physical Higgs bosons to vector
bosons and fermion pairs, since these couplings control the production and decay
of the Higgs bosons. First, consider the couplings to vector bosons. To understand
the pattern of couplings, consider the fact that the Standard Model, in the absence
of the quarks and leptons, separately conserves C and P. Thus we can assign unique
JPC guantum numbers to all the bosons of the theory, if the fermions are ignored.
The quantum number assignments are displayed in Table 1. To see how some of the
entries have been derived, note that the existence of a ZHTH™ coupling implies
that 7 is a 17— vector boson, and the HOROKO vertex implies that H® is a 0T
scalar. It then follows from the existence of a ZHYA® coupling that A% is both
C-odd and CP-odd as indicated in Table 1. Similarly, A° is a 0t+ scalar. Thus,
CP-invariance forbids the ZH°A? coupling [the ZHYH® and ZhOh® coupling are
forbidden by Bose symmetry as well], and the Z 7 A® and WHIW— A? couplings are
forbidden by C-invariance.

The C and P assignments for A® and G® may appear surprising. Formally,
they have been obtained by noting that the couplings in the bosonic sector of the
Lagrangian which are missing are consistent with the C, P choices of Table 1.
Moreover, the quanium number assignments of Table 1 are unique. Physically, one
can understand the results as follows. In a one doublet model, the imaginary part
of the neutral Higgs field is the Goldstone boson which is “eaten” and becomes
the longitudinal component of the Z. This field, like all Goldstone boson fields, is
derivatively coupled and is, therefore, (C'P-odd. Since the bosonic sector conserves
C and P separately, the Goldstone boson must in fact have the C = —1 quantum
number of the Z. Its P = +1 quantum number is the same as that of the other
scalar components, and is opposite in sign from the parity of the vector bosons
due to the one unit difference in spin. In a two-doublet model, there are two
neutral Higgs fields with imaginary components. One linear combination of the
imaginary components is the Goldstone boson, and the other linear combination is
A% Both these fields must have the same C and P quantum numbers; hence, the
0+~ assignment for A® given in Table 1.

A second argument can be given for the absence of a tree-level coupling of the
A9 to vector boson pairs. First, let us recall that the coupling of the CP-even




Table 1

Quantum numbers of Higgs and Gauge Bosons

When C and P are separately conserved

JPC JP

- | W+ 1~

Z | H* 0t

HO o+t GE ot

Ko ott

A° 0t—

G° 0+~

When C and P are violated but CP is conserved

JPC JP

~ 1= w* 1-,1°F

Z 17,1t H* 0t,0”

H° 0t+, 07~ G* 0+, 0"

RO O++,0"_

A ot—,0—t

G° ot-, 07t

scalar Higgs boson(s) to a pair of massive vector bosons arises from the covariant
derivative (D, ¢) (D" ) terms in the Lagrangian after replacing one of the ¢’s by
its vacuum expectation value. However, in a CP conserving theory this mechanism
does not generate a coupling for the CP-odd A°. This is because in the convention,
adopted here, where the vacuum expectation value of ¢ is taken to be real, the A°
originates from the imaginary component of ¢. More formally, since the A is CP-
odd, a gauge invariant interaction must take the form: e***fF,, F,5A°. However,

this is a dimension-five term which cannot appear in the fundamental Lagrangian,



and is only generated by loop graphs.

In common parlance, the A? is usually referred to as a pseudoscalar. This is
technically incorrect, since we have seen above that in the absence of fermions,
the A® has P = +1 (and C = —1). Incorporating the fermions into the theory, C
and P are no longer separately conserved, although CP remains a good quantum
number (to a very good approximation}. Thus, it is more precise to refer to A°
as being CP-odd. When C and P are violated (with CP conserved), the Higgs
and vector bosons can be thought of as admixtures of two eigenstates of definite
C and P as indicated in Table 1. (The photon couplings in the Standard Model
still respect C and P separately.) Consider the coupling of the neutral Higgs boson
to a fermion-antifermion pair. It is well known that an ff pair has P = (-—I)L"'l
and ¢ = (~1)L*% for total spin § and orbital angular momentum L, and thus
cannot couple to 0=~ and 07~ Therefore, in the interactions of the neutral Higgs
bosons with fF, the H® and h® behave as pure 0% scalars, whereas AY behaves as
a pure 0T pseudoscalar. In addition, the 77 A% and WHW— A® couplings, which
were previously forbidden by C-invariance in the bosenic sector of the theory, can
now be generated at one-loop due to the triangle diagram with fermions running
around the loop. This diagram generates the effective dimension-five operator
f“”“’ﬂFﬂuFaﬂAO referred to above.

There are a few other couplings forbidden at tree level for other reasons. Cou-
plings involving neutral particles only and one or two photons clearly vanish at tree
level, although they are generated at one-loop. The same is true for the coupling
of all neutral Higgs bosons to a pair of gluons. The radiatively generated Algg.
H%g, and h'gg vertices are important since two-gluon fusion is one of the major
production mechanisms for neutral Higgs bosons at a hadron collider. Two other
vertices, H¥W =y and HT¥W™Z, also vanish at tree level. The HT W™y tree-level
vertex is zero as a consequence of the conservation of the electromagnetic current.
The vanishing of the HTW™Z vertex is more model dependent; it turns out to be
a general feature of multi-doublet models. To prove this, consider a model with
N doublets (with Y = 1). In principle, all neutral fields can acquire a VEV. Let
us redefine the Higgs fields (i.e., perform a rotation) so that only the first doublet
#1 has a nonvanishing VEV, The HVV coupling (where V = W * Z,or ) arises
from the ¢y kinetic energy term (with 8, replaced by the covariant derivative)

[0 - igWaT)8l| (2" +igW " T") 1, (4.19)

% By a similar argument, one can also deduce that there is no tree-level coupling of the
CP-even Higgs bosons to a massless vector boson pair (yy or gg). These couplings are
generated at one-loop, corresponding to a dimension-five interaction of the form F* F, h
(where h = H® or h%).




when ¢1 — ¢1+ (¢1). Since we have redefined the scalar fields so that {¢;) = 0 for
i # 1, it follows that qbli must be the charged Goldstone bosons eaten by the W¥
and Im ¢! is the neutral Goldstone boson eaten by the 79, Hence, the physical H *
must be linear combinations of the qﬁji (= 2,3,...,N) s0 that there cannot be
any HEVV vertices. Again, these vertices are radiatively generated at one-loop,
and lead to interesting rare decays of the charged Higgs boson.

The pattern of the allowed tree-level HVV and HHV couplings can be un-
derstood by examining the cancellation of bad high energy behavior in scattering
processes involving two or more longitudinal vector bosons. This cancellation is
guaranteed by the gauge structure of the theory as described in section 1.3. In
order to make the notation transparent, I shall denote the Higgs boson of the
minimal model by ¢°.

Probably the most important vertices for phenomenology are couplings of the
CP-even scalars to WTW~ and ZZ. The analysis of section 1.3 showed that the
tree-level unitarity of lfif’fIfVE — W fIfVE requires a Higgs exchange diagram with
geowtw- = gmwW- A similar analysis of Z1.Z1 — Z1Z1 yields

gmz
cos O

In multi-doublet models, it is clear that in order to reproduce the unitarity can-
cellation, the sum of Higgs exchange diagrams must reproduce the results of the
minimal model. Thus, it follows that

2 2 2.2
Z g}[?w+w— = g¢,ow+w- = g -myy .,
:
4,21
S Ghozs = 9sz2 = gy 2
,‘ HYZZ PZZ cos? Oyy )

where only the CP-even scalars contribute to the sum over i. In the two-Higgs
doublet model, we have

2 2 2
gyovv t drevy = dgovv (4.22)

which holds separately for V. = W or Z. In terms of the angles o and 8 defined
earlier, we have

Goyy =gymy sin(f — a)

ggoyy =gymy cos(8 — a),

{g, V=W, o
W=\ gfcostw, V=2, (82)

where



Without specific predictions for o and 3, one might be tempted to say that the
scalar Higgs coupling to vector boson pairs should be somewhat suppressed com-
pared to their values in the minimal-Higgs model (perhaps reduced by a factor of
V2 in an “average” model). However, we will see in Lecture 5 that in the super-
symmetric model this expectation is generally false; in particular cos( — a) tends
to be quite small, and sin(f — «) is near 1.

There are many other possible sum rules for Higgs couplings which can be
derived by similar considerations. Here are a few more examples which can be
obtained in a general multi-doublet model. From the cancellation of bad high
energy behavior in A°Z — VV (where VV = WTW ™~ or ZZ), and in ZAY — ZAY,
it follows that

ZQH?AZQH?VV =10,
! ) : (4.25)
ZQH?AOZ = 39ZZA0A%

t

where only the CP-even scalars contribute to the sum over 7. In the two-Higgs
doublet model, we find

2
2 2 -9
ooz T 9Hoa0z = T p (4.26)
In terms of the angles « and 3,
_gcos(8 —a)
Inea*z = 2 cos by
‘ (4.27)
_ —gsin(f - o)
IH°A°Z =7 9 cos fw

which clearly satisfy the suin rules above.

The couplings of Z to a pair of Higgs bosons are also phenomenologically
important. For example, at LEP, in addition to searching for R in Z — hff, one
can also search for Z — h®A°, Although the angle factors can suppress the h°ZZ
and h®A%Z couplings, we note that egs. (4.23) and (4.27) imply

2 2 2 gzmzz
+ 4m = 4.2
Iezz Z9ho A0 Z cos? f ( 8)

which guarantees that both vertices cannot be simultaneously suppressed.




Let us now consider the Higgs-fermion couplings. As discussed above, in the
two-Higgs doublet model, the Higgs-fermion coupling is model dependent. Even
if one imposes the theorem of Clashow and Weinberg to forbid tree-level FCN C's
induced by Higgs exchange, one still has a number of choices for how to couple the
quarks and leptons to the two Higgs doublets. A set of discrete symmetries can
always be concocted to make a particular choice natural (in the technical sense).
In Model I, the quarks and leptons do not couple to the first Higgs doublet (¢1},
but couple to the second Higgs doublet (¢¢) in a manner analogous to the minimal
Higgs model. In Model If, ¢ couples only to down-type quarks and charged leptons
and ¢, couples only to up-type quarks and neutrinos.

Consider a three-generation model with diagonal (positive) quark matrices
My and Mp (for the charge 2/3 and —1/3 quarks respectively) and Kobayashi-
Maskawa mixing matrix K. Then, in Model I, the Higgs-fermion interaction takes
the following form:

— ; A -
DA DU sin o + A cos @) — = B BArpys DA

o=
His 2mw sin 8 2mw
— ] t3 o
9 OMyU(H'sina+ K0 cosa) + o B T Ayl A
2mw sin B 2w
geot B e
4+ (HTU
2/ 2my (
(4.29)
1n this case, tan 8 = va/v1, where vz is the vacuum expectation value of the Higgs

field which couples to both up and down-type quarks (whereas the other Higgs field
is decoupled from the quarks). In contrast, the Model II interaction is:

My K(L—7s) — KMp(1+ 7)) D +he) .

11 g - 0 0 . ig tan §
= — —2— DMpD(H — 1
Lhsy 2mpy cos B MpD(H’ coser — I sin ) 2mw

igcot 3
Q?Tlpp

DMpysDA

UMyU(Hsina + k% cosa) + T MyysUA°

" 2mp sin 8
+ 9 (HVT [cot BMyK (1 — s) + tan BE Mp(1 +75)] D + he) .
2v/2mw
(4.30)

This time, we define tan 8 = vafvy, where vy (v2) i1s the vacuum expectation value
of the Higgs field which couples only to down-type (up-type) quarks. In the two
equations above, U and D are column matrices consisting of three generations of
quark fields. [In both Models I and IL, the Higgs-lepton couplings can be read

x The required discrete symmetry is violated by dimension-two terms of the Higgs potential
given in eq. (4.8). However, this violation is “soft” and only generates FCNC’s at the
loop-level which are not phenomenologically dangerous.



off from the expressions above by replacing (U, D) with the corresponding lepton
fields, replacing quark mass matrices with the corresponding diagonal lepton mass
matrices, and setting K = 1.] Note that as previously advertised, the neutral Higgs
interactions are flavor diagonal, In addition, the structure of the charged Higgs
interactions involving the Kobayashi-Maskawa matrix is analogous to that of the
ordinary charged current mediated by the W.

We will see in Lecture 5 that the Model I choice for the Higgs-fermion couplings
is the required structure for the Higgs sector of the minimal supersymmetric model.
Thus, for later convenience, the couplings of the neutral Higgs bosons in Model 11
[given in eq. (4.30)] relative to the canonical Standard Model values are surnmarized
below (using 3rd family notation):

0,7 . sin & H(]bz . COS ¥
i: :
I sin 3 cos f3
hOtt - C(,)Sa RObb —sma (4.31)
sin 3 cos 3

A% cotf A%b:  tanf,

where we must keep in mind that A® is coupled via a 75 to a gg pair. Note that
the A%ui (A%dd) coupling is suppressed (enhanced) if tan 8 > 1, and vice versa
if tan @ < 1. Similar results hold for H 0 and A9, although these couplings also
involve the mixing angle a which can reduce the size of the couplings somewhat.
The charged Higgs boson of Model I has a coupling to the tb channel given by:

Jp-15 = 2——\/%:”—/ [myq cot (1 + y5) + myp tan B — vs)]- (4.32)
Note that the t-quark-mass piece is suppressed for tan 8 > 1. Finally, we note
that the pattern of suppressed and enhanced couplings of Model 1L is quite distinct
from that of Model 1. In the latter case, the couplings of the pseudoscalar and
charged Higgs bosons to all fermion types are uniformly suppressed (enhanced)
if tan 8 > 1 (tan B < 1). A similar remark can be made concerning the neutral
scalar Higgs-fermion couplings, although one must also take the dependence on the
mixing angle a into account [as indicated in eq. (4.29)].

One can check that the pattern of Higgs-fermion couplings exhibited above
respects the conditions imposed by unitarity of ff — Vi Vi scattering. Clearly,
the cancellation of bad high energy behavior in the minimal model due to the
Higgs exchange graph must be reproduced by summing over the corresponding




Higgs exchange diagrams of the extended Higgs model. It follows that
}: ggovv9ml s = 9¢°vv I (4.33)

where only CP-even scalars contribute to the sum over i. The right hand side of
the above equation can be obtained from fig. 1. Thus, in the two-doublet model,

gow+w- 9o fF T 9powrw- JHYFF T lo*my, (4.34)
which is indeed satisfied by egs. (4.23) and (4.31).

4.3 CP Violation in Multi-Higgs-Doublet Models

Up until now, 1 have arbitrarily imposed CP conservation on the Higgs po-
tential. This is probably a reasonable thing to do if one is interested in direct
observation of Higgs bosons. Presumably, CP-violating effects are small and will
have little effect on Higgs boson phenomenology. However, CP-violating effects can
be induced by virtual Higgs exchange and could arise in processes such as K and
B decay and the electric dipole moment of the neutron. In such cases, the Higgs
sector can play a crucial role in determining the phenomenology of observable CP
violation.

Originally, Weinberg proposed a three-Higgs doublet model in which the only
source of CP-violation in the Standard Model derives from the Higgs sector (i.e.,
the KM matrix is real). Three Higgs doublets were required if one wanted to
avoid Higgs-mediated tree-level FCNC processes at tree level” (That is, a CP-
violating two-Higgs-doublet model must necessarily possess FCN(C's at tree-level.)
Unfortunately, Weinberg’s model is not phenomenologically viable; CP-violation
in the kaon system is not compatible with a real KM matrix. Of course, in models
with an extended Higgs sector (and three generations of quarks), one should expect
both a complex KM matrix and the Higgs sector to contribute to CP-violation.

There is one type of CP-violating observable which is particularly sensitive to
a Higgs source of CP-violation: the electric dipole moment of the neutron (dy) or
the electron (d¢). There has been a great deal of attention recently given to the
computation of dn, so T will briefly consider this case. The computation of dy 1s
a three step process. First, one starts with the standard SU(3) x SU(2} x U(1)
gauge theory at the clectroweak scale. Integrate out the heavy fields (W * 7, the

+ One can also construct a Higgs sector with CP-violation and avoid Higgs mediated tree-level
FCNC’s by using two Higgs doublets and one Higgs singlet.



top-quark, and any heavy Higgs bosons) to derive an effective field theory at ~ 100
GeV:

Leg = Loep + LQED + Z CiOi, (4.35)

where the O; are a set of nonrenormalizable operators. Second, one uses the
renormalization group to evolve the parameters of this effective field theory from
100 GeV down to g = 1 GeV. Finally (and this is the tricky part!), one attempts to
match the resulting 1 GeV theory onto a theory consisting of hadrons and photons.
For example, one approach is to use the chiral Lagrangian to describe the theory
of hadrons and photons, with the matching performed at M = 47 fr 1.2 GeV.
The size of the unknown coefficients of the chiral Lagrangian are determined by a
procedure known as “paive dimensional analysis”. Typically, the result of such a

. eM gs (1) !
d ™ [93(100 Ge\/)] ¢ (4.36)

procedure is

Here, I have assumed that the CP-violating effect is dominantly due to one operator
with anomalous dimension 4 and its associated coefficient C.

In the fall of 1089, Weinberg observed that the dimension-6 three-gluon oper-
ator:

O = ~ fusccaprGa’ Gh,GYL (4.37)
could be the most important operator contributing to the calculation of d,! The

Higgs physics enters in the computation of the coeflicient function of this operator.
Namely, one must evaluate diagrams of the form

where ———3——— isthe CP-violating Higgs propagator which is proportional
to some unknown phase, ImZ, of the model. There are also contributions from
charged Higgs bosons as well. A computation of the neutral Higgs contribution
yields (roughly)

N eV2G M L

w e =g k(mi/mn) Coep(#) ImZ~10"% (Im Z)ecm,  (4.38)




where

e\ _esl) 18/
CQCD(H) = (17) (—-———"——gs(mo GeV)) ~ 1070 (4.39)

The function k results from the evaluation of a two-loop integral corresponding to
the diagram above. For typical values of my/my, h ~ 0.1. The factor Im Z is
unknown and depends on the parameters of the extended Higgs Model. Weinberg
showed that unitarity imposes a bound on this parameter: Im Z <1 /2, and that
it is not hard to construct examples in which this upper bound is saturated. For
the charged Higgs contribution, d,, could even be a factor of 10 larger than the
estimate given in eq. (4.38). These results should be compared with the 1989
experimental measurement from Grenoble: dp, = =3+ 5 X 10~%% e cm. Thus, the
next round of improved experiments will certainly impose interesting constraints
on the CP-violating parameters of the Higgs sector.

4.4 Multi-Scalar Models with a High Energy Scale

In the absence of any definite information regarding the Higgs sector, it ap-
pears necessary o explore arbitrary Higgs sectors which are consistent with the
constraints discussed in section 4.1.. Nevertheless, it may be useful to stop a mo-
ment and contemplate what we expect to be revealed about the Higgs sector in
future experiments. I would like to argue that the most “natural” circumstance
(after imposing the required fine-tuning of parameters to fix the electroweak scale
at its observed value) is a “low-energy” effective electroweak theory with precisely
one Higgs doublet. Moreover, should additional Higgs scalars be discovered, this
would be strongly suggestive of addition symmetries beyond those contained in the
minimal Standard Model.

To exhibit the reasoning behind these vemarks, let me suppose that there is
unspecified new physics at a scale A > v = 26 GeV, For simplicity, I parametrize
the new physics by an SU(2) x U(1) singlet scalar N, with {N) ~ O(A). When N
is coupled to an arbitrary multi-Higgs-doublet model, all dimensionful parameters
become of O(A). I impose the gauge hierarchy v < A, which requires one fine-
tuning, but I demand that no additional fine-tuning be performed. The resulting
theory has the following properties:

1. The low energy scalar sector contains precisely one light neutral Higgs h°
whose couplings differ from those of the minimal Higgs model by terms of

% In low-energy supersymmetric models, similar arguments would imply that the “low-energy”
Higgs sector must correspond precisely to the two-doublet Higgs sector of the minimal
supersymmetric model.



O(v?/A?). All other Higgs bosons of the model are “heavy”, with masses of
O(A).

2. The Higgs bosons can couple arbitrarily to the quarks and leptons (violat-
ing the conditions of the Glashow-Weinberg theorem). The k% couplings to
fermions are approximately flavor conserving, with violations of O(?/A%).

3. If we demand CP-conserving Higgs—fermion Yukawa couplings, but allow
CP-violation to enter via the Higgs sector, the resulting low-energy theory
possesses precisely the usual KM matrix with one non-trivial phase. The
CP-violating h° interactions are suppressed by O(v?/A?).

4. Unitarity constraints on h? interactions are the same as those of the minimal
Higgs model, up to O(v?/A?) corrections; the heavy neutral Higgs boson
couplings to WHW ™ or ZZ are suppressed by O(v/A} terms.

5. The Linde-Weinberg bound for kY is the same as in the minimal model [up
to O(v?/A?) corrections].

I shall briefly illustrate the last two points in the two-Higgs-doublet model.
Using the first point above, it follows that kY remains light, whereas the masses
HY, A" H* are driven up to the O(A) mass scale. This implies that

cos(8 — a) = O@?/A?),

sin(f - a) = O(1). (4.40)

Comparing with eq. (4.23), we see that point 4 is verified.

The Linde-Weinberg bound in the two-Higgs-doublet model is most easily ob-
tained as follows. First, define new scalar fields £ and 5 by rotating the fields
Re ¢9, Re ¢5 by angle 8 (where tan = vzfv1). In this new basis, {n} = 0 and
(€} = (v? + v3)!/2, The radiative corrections are then evaluated in the direction of
field space where 5 = 0; i.c., one computes Ve (§). Only in this direction can the
radiative corrections be significant. The problem is now reduced to one where the
analysis of Lecture 2 applies. One can show that the L-W bound is

m%e cos?(f — @) + mio sin?(8 = a) > miy (4.41)

with v? = 2(v} + v3) and

A2y? 2’ 2 2 4 Av?
2 ! _ i M By '
miw = Str 1672 {1 )\,"02 [1 )\,‘1)2 In ( p? )] } 3 (4.42)

assuming that the tree-level particle spectrum contains particles ¢ of mass squared
M= p?+ Xjv?. I now divide the particle spectrurn into two classes:




type j: particles with M} = Aiv? (ie., pi = 0), whose masses are protected
by the electroweak scale. These particles include Ww#, 29, quarks and
leptons, and one light Higgs boson.

type k: particles with M? = ut+ Mv? such that pi > v [pi = O(A)]. These
particles include all the heavy Higgs bosons.

It then follows from eq. (4.42) that

4 )\3

v k
tr — . 4.4
2471_251‘ pi (4.43)
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The first term on the right hand side is precisely the Linde-Weinberg bound of the
minimal model, and the second term is explicitly of O(v?/A?) times the first term.
In particular, note that the heavy scalars to not appear in Str Mf. Thus, point 5
above is verified.

4.5 Two-Higgs-Doublet Models: Phenomenology

First, let us briefly review the present experimental limits. There are some
weak constraints in the my# vs. tan 3 plane from the consideration of B—B mixing
and rare B-decays. Charged Higgs exchange can contribute to the AB = 2 box
diagram. If we assume that the Higgs contribution can be no larger than the resuit
obtained in the minimal Standard Model, one can derive some constraints on my+
if tan B < 1. Similarly, based on calculations of the decay rates of various rare
B-decays: b — s7,b— 39, and b — suTp~, one can obtain weak limits on my+ if
tan f < %

The best limits come from direct particle searches. The direct limits on m
are the least model-dependent, and depend only on mp= and the ratio of branching
fractions:

BR(H* - tv) m?tan? B
BR(HT —¢3) ~—  3m?

(4.44)

Experiments at LEP search for both 7 and purely hadronic final states, and thus
can present limits on mpy# that are independent of tan 3. All four experiments
quote similar limits on the charged Higgs mass. The most conservative limit is
my+ > 36.5 GeV (at 95% confidence level) if the hadronic decay modes dominate,
The limit improves if some fraction of the charged Higgs bosons decay to 7v,
reaching my+ > 43 GeV if BR(H* — 7tv) = 100%.

The present limits on the neutral Higgs bosons are more model dependent.
Light scalars or pseudoscalars, if they exist, would have been seen (modulo some
experimental and theoretical uncertainty) in (i} K — 7+ nothing, if H? lives long



enough to escape the detector; (ii} X' — rete™, i my < 2my; (iii) K — rptp, if
2my, < g < ME=Mr; (iv)B— KX (X = ptrp ate” KYK™), il my < 2mq;
and (v) T — (h® or A®). At LEP, one can search simultaneously for Z — h°ff
and Z — RYA" and rule out certain areas of Higgs parameter space. In particular,
note that eq. (4.28) relates the 22 KO and ZhO A couplings which govern the two
decay rates. For example, one can deduce limits on myo and m 4o as a function
of sin{8 — «). In the minimal supersymmetric model, sin(8 — «) is determined by
mpo and m 4o, so one can derive stronger limits in this case from the LEP data.
We will briefly mention these limits in Lecture 5.

Note that the Higgs mass limits from LEP are logically independent from the
Higgs mass limits derived from K, B and YT decays. The LEP limits on mpe
depend on the ZZhY coupling, whereas Higgs production in K and B decay [T
decay] depend primarily on the K0T [hObb) coupling. But, we have seen that in
the two-Higgs-doublet model, gz 70 and gyppo are independent couplings. Note
that this last observation is particularly relevant in more general approaches to
electroweak symmetry breaking, where the origin of fermion masses may not even
be related to the origin of the vector boson masses. Thus, it is important to obtain
independent experimental constraints on gpoyy and g, 70, wherever possible.

Let us now briefly consider Higgs searches at LEP, LEP-1I and future ete
supercolliders. I will focus here on the changes in Higgs phenomenology as com-
pared with the minimal Higgs boson of Lecture 3. If one (or more) of the neutral
Higgs bosons is lighter than some quarkonium state, then the decays ofa V(177)
quarkonium state to hO~, HO, or A%y (if allowed) can be either enhanced or sup-
pressed by the square of the relevant coupling given in eq. (4.31). Next, let us
reconsider the Higgs search at a Z factory. For the scalar bosons, the rate for
7 — hité~ (h = kY or HO) will generally be somewhat suppressed. Nonetheless.
both scalar Higgs would probably be detectable in this mode (presuming both are
light enough) unless one Higgs completely saturates the sum rule of eq. (4.22). In
this latter case the other scalar will not be detectable in this mode. The neutral
pseudoscalar has no tree-level couplings to VV. Hence, the rate for 7 — AM(YL
(which occurs only at one-loop) is extremely small. However, new decays of the Z
are possible in the two doublet model:

Z — A%O, Z — A'HY, Z — HYH™, (4.45)

which lead to simultaneous production of a scalar Higgs boson and the pseudoscalar
Higgs boson or of a charged Higgs pair. The decay rates normalized to the partial




width of Z into one generation of neutrinos are:

T(Z — A%h°)
T(Z — vi)
I(Z — HYH™)
[(Z — vi)

= 12'(:082(}3 — a)B?
(4.46)
= %cos2 20WB3

where B = 2|p]/mz and |p] is the magnitude of the three momentum of one of the
final Higgs particles in the Z rest frame. For I'(Z — AYHY), replace cos(S — a)
with sin(8 — &) in the first expression above.

At higher energy ete~ machines, appropriate for discovering more massive
Higgs bosons, the observability of the main neutral Higgs production mechanisms:
ete— —» ZH® and ete” — v H? are dependent upon substantial V'V couplings.
Thus, so long as the two neutral scalars share fairly equally the allowed V'V cou-
plings {see eq. (4.22)), their detection should be quite straightforward at a machine
with adequate energy and luminosity. In contrast, the AV may be particularly
difficult to find at an ete™ machine, since it has no VV couplings. The main
pseudoscalar production mode that is available is Z* — A0 or A°HC. The cross
sections for these processes are easily computed, and we find
8sin? Oy — dsin® 0w + 1) gt cos?(B — o)k’

cos? Ow 19271’\/3[(3 —~m3)? + I‘zzm?z}
(4.47)
where & is the center-of-mass momentum of one of the final state Higgs bosons. For
olete — ACH0), replace cos( — o) with sin{8 — @) in eq. (4.47). The detection
of this process may be possible if m 4o + Mpo (or m 4o + mpgo) is not oo large
compared to the machine energy. For instance, if the ZAPHO coupling saturates
the strength allowed by eq. (4.26), then the cross section for ete™ — Z% — AV HO
can be as large as one-tenth of a unit of R, where one unit of £ = olete™ — 4" —
ptu~) = dwa?/3s. Finally, we consider charged Higgs production at an ete”
supercollider. If my > mpg2, then ete — tf followed by 1 — bHT will provide a
source of charged Higgs bosons. In addition, HYH™ can be directly produced in
¢+e— annihilation via virtual v and Z exchange (irrespective of the value of my).
The asymptotic result for o(ete” — HTYH™) in units of R (for s > m%,4mis)
is given by:

k)

olete” — A%RDY = (

1+ 4sin’ Oy
8sin 20w
(This should be compared with 0.25 units of R if Z-exchange is not included.)

Charged Higgs masses up to about 0.4,/ will be detectable at an ete™ collider
with an integrated luminosity of 103 inverse units of K.

~ 0.308 . (4.48)



Let us now turn to Higgs searches at future hadron colliders. Here, I will
focus my attention on search strategies at the SSC. First, let us consider whether
search techniques that worked for the minimal Standard Model Higgs will also be
appropriate in a two-doublet model.

The CP-even Higgs bosons (H O and A%} can be detected in the same manner
as the minimal Higgs boson of the Standard Model, so long as they share relatively
equally the VV coupling strength. I a Higgs scalar has a mass between about
o9my and 800 GeV and its couplings to WW and 27 are similar to Standard
Model strength, then it should be possible to detect this Higgs boson at the SSC
by observing its decay into a pair of vector bosons (followed by subsequent decay
of the vector bosons into lepton pairs). On the other hand, for masses less than
91z, we are in the regime of the “intermediate mass Higgs”, in which the Higgs
boson mainly decays into bb. Thus, the same techniques discussed in Lecture 3 {or
the minimal intermediate mass Higgs boson, apply here as well.

Consider next the CP-odd Higgs boson (AY). We have already noted that
A% does not couple to vector boson pairs at tree level. The phenomenological
implications of this fact are potentially devastating. First, the important vector
boson fusion mechanism for production of a Higgs boson is absent. Thus, the
primary production mechanism will be via gg fusion. Second, the dominant decay
of A will probably be into the heaviest quark pair available, independent of the
Higgs mass. This decay is a poor signature for Higgs production due to large
Standard Mode! backgrounds, so we must examine other possible decay modes.
The decay branching ratio of A9 — ~v is smaller compared to the v decay of
the Standard Model Higgs boson, due to the absence of W boson loop graphs for
A® — 4. (The absence of V V A® couplings also implies that the ZZ* mode is
absent at tree-level in A? decays.) There are other possible decay modes such as
A® — Zh0, A® - ZH? and A0 — WEHT which may be useful in identifying
an A" signal. If a scalar with the above properties could be found, and were
shown to have a mass larger than 2mw, then the absence of decays into vector
boson pairs would be strong evidence tor the CP-odd nature of this scalar. (An
exception to this conclusion occurs in supersymmetric models, which predict that
the heavy Higgs scalar, H 0 has suppressed couplings to the vector boson channels.
Nevertheless, such an observation would be definitive evidence for a non-minimal
Higgs sector.)

Finally, consider the charged Higgs boson. There is no coupling of the charged
Higgs boson to vector boson pairs (WZ and W) at tree level, so that its decays
are likely to be dominated by the heaviest allowed quark channel. In addition, the
single particle inclusive cross section for production of the charged Higgs boson is
smaller than that typical of a neutral Higgs boson. The gluon-gluon-fusion and




vector-boson-fusion mechanisms are not available in this case, so that inclusive
production of H* must occur by other mechanisms. If the top quark has a mod-
erate mass, but my; > mgz + my, then the rate for gg — i followed by t — H*b
and § — H~b is very large. Relative to the t decay rate to charged W’s we have

I'(t— HTb 2(m? — m?
( - ) — PH+ : 1y (TTI.; m2H+) - Cotz ﬁ’ (449)
Pt = W*b)  pw+ (mf 4+ 2m3, ) (m? — mi,)

where py+ and py+ are the center-of-mass momenta of the HT and W for the
respective decays. This is illustrated in fig. 6, where we also exhibit the various
charged Higgs branching ratios that are relevant for the charged Higgs search.
Thus, the H' channel is fully competitive with the W+ mode. As a result, it
may be possible to discover the charged Higgs boson via {f production followed by
t — bH*. In fact, in this circumstance, the main challenge would be to discover
the top-quark itself. Once the t-quark is found, anomalous ¢ decays might point
in the direction of a charged Higgs boson. This may be the only case where one
could find evidence for Higgs bosons at the Tevatron!

1-00 " l"-lJIFE H J__Ll—lmll-—brmwlu-d—hl—i =TT
L -
- 7 BR(H*-TV)
0.50 i BR(t~H*b)
B BR(H*-cs)
0.20 | ' .
2 /
S 010 ! —
o
= - / ]
%n L ! .
=005 ! 1
3] L ! 4
5 P i Ty
’_‘ —
) / »
0.02 f A ]
/
J’ / BR{H"-+cb)
0.01 ] 1 I.I II!If.l 1 1 lllJlll 1 1 1 E 1 1)1
0.1 0.2 0.5 1 2 & 10 20 50 100
tan g

Figure 6 Branching fractions for the decays { — H+tb and H* — rtv, c5and ¢b as a
function of tan 8, for m; = 250 GeV and mgz = 150 GeV.

If m¢ < mygz 4+ my, then the most important production mechanisms for the
H* derive from the subprocesses gb — H~t and gb — H7%i. The charged Higgs
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Figure 7 The cross section at the SSC for single charged Higgs production (summed
over both charges) coming from gb - H~t and gb — H*{ as a function of mgyz. Two
extreme values of the top quark mass are considered: m; = 40 GeV and m, = 200 GeV.

boson cross-section is comparable in magnitude to the gg fusion cross section of
the Standard Model Higgs at the same Higgs mass, as illustrated in fig. 7.

Even with such a large sample of charged Higgs bosons, it will be extremely
difficult to isolate a signal above Standard Model backgrounds (if my=+ > my+my).
It is clear that QCD backgrounds to observing the HY via its tb decay are very
large. Thus, one must concentrate on the search for the charged Higgs boson via
rarer decay modes. Among the various possibilities are: HE — Wy, H¥ — W4
quarkonium, H¥ — W*R? and H* — r*y. Unfortunately, one would have to
have an anomalously large branching ratio for one of these rare decays in order
to have a feasible method for detecting the charged Higgs boson. By considering
realistic branching ratios and the signatures of the possible rare decays, one comes
to the conclusion that the charged Higgs boson will be very difficult to detect at a
hadron collider if mpg+ > my + my.

4.6 Beyond Multi-Higgs-Doublet Models

As described at the beginning of this lecture, in order to contemplate Higgs
sectors with Higgs triplets (or higher multiplets), one must first confront the prob-
lem of ensuring that py, = 1. Assuming that this task is completed successfully,




some new {eatures arise that were not encountered in our study of multi-Higgs dou-
blet models. First, these extended Higgs models usually contain doubly charged
Higgs bosons. This allows for spectacular decays, HH+ — WHWT, as well as a
new mechanism for Higgs production via WHW™ fusion at hadron colliders, At
ete— colliders, the detection of efe™ — HTTH™~ would be straightforward. Sec-
ond, the Higgs boson sum rules which arise from unitarity constraints are more
complicated. Two examples are:

2 2 2 2 2.2 2 2
g*(4m¥y — 3my cos” Oy ) = g'miy = ZQW+W"H£ - ZgWJ,WJ,H;_,
k

k
2,4 2
gmycos“ by 9 o 2
T xgmz= Zk:gWJfW”HE 9z2zH) — Zk:gW+ZH; '

(4.50)
Thus, if one were to discover that H ¥ possessed Standard Model coupling strengths:
Gww-pge = gmw and gzzpo = gmz/ cos By then there would still be room for
a non-minimal Higgs sector if either gy v po < gyy p? (¢ > 1) or il doubly charged
Higgs bosons and a (tree-level) W EHF 70 vertex exist,

The existence of a tree-level HEWTZ vertex is common in models with ex-
tended Higgs sectors which include triplets (or higher multiplets). Thus, the
HEWFZ vertex is a probe of exotic Higgs sectors. Such models provide a new H +
production mechanism (W Z fusion) and decay signature: HE — W=Z. Consider
the HEWFZ coupling in a general Higgs model. Previously, I showed that there
‘s no HEWT Z tree-level vertex in models with only Higgs doublets {and singlets).
For Higgs bosons in an arbitrary representation, a straightforward calculation gives

Lyswsye = emw(I'V:A”G_ +he)+ gmz{ﬂf’:Z“ (G~ cos® Ow
(4.51)

~ oy 2 (4 P+ (706 +he b

where TF = T1 +iT?, and the Goldstone field is given by

G” = \/'anw {Z [¢1T+’0k - (T—Uk)Tfﬁlc] + Zk:W?T“LU:} : (4.52)

k

In the equations above, I have used the following notation: ¢ denotes complex
scalar fields, with hypercharge Y}, and n; denotes real scalar fields, with integer
weak isospin and zero hypercharge. The Lagrangian in eq. (4.51) has been obtained
after shifting the scalar fields by their VEVs: ¢p — ¢p + vp and 5 — 7 + ui; the



vacuum is assumed to preserve U(1)gm. Note that there is no HEWT+ vertex, as
expected (since the electromagnetic current is conserved). In general, there is a
HEWFZ vertex, which can be written in the following form

Lpyswszg = ~ng£(W:Z”H"’ +h.c), (4.53)

where
L Ty VAUT(T+1)~ Y eyl 1
SryeryBT(T+1) =Y Vryl? g

and cpy is given by eq. (4.2). As a check, it is easy to verify £ = 0 for a multi-
doublet Higgs model. However, one should note that it is possible to have py = 1
and £ # 0. This can be illustrated with the CGGM model which consists of one
complex Y = 1 doublet, one complex Y = 2 triplet and one real Y = 0 triplet Higgs
multiplet, with {#(3,1)) = a/V2 and {$(1,2)} = {¢(1,0)) = b. Al the beginning
of this lecture, I noted that py = 1 in this model. It is easy to check that £ # 0.
Explicitly,

62

(4.54)
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—gmw sinfy ) 8b?
GHYW=2° = T o g O , sinfy = (———--m—az Ty (4.55)

and a?+8b% = (246 GeV)?. For completeness, I note that this model also possesses
a doubly charged Higgs boson with gg++w-w- = V2gmwsinfyg.

Although models with exotic Higgs representations are fun, they seem to me
to be rather contrived. Multi-doublet Higgs models are the most elegant among
the models with extended Higgs sectors. But do we really need an extended Higgs
sector at all? The answer to this question may lie in the supersymmetric extension
of the Standard Model. We now turn our attention in this direction.

Suggestions for Further Reading
and a Brief Guide to the Literature

A detailed discussion of non-minimal Higgs models, with a large collection of Feyn-
man rules can be found in

1. The Higgs Hunter’s Guide, Chapter 4 and Appendices A and B.

A review of recent developments in CP-violation in gauge theory and an up-to-date
bibliography, with emphasis on the calculations of the electric dipole moments of
the neutron and electron can be found in
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P. Abreu et al. [DELPII Collaboration], Phys. Lett. B241, 449 (1990); B.
Adeva et al. [L3 Collaboration] Phys. Lett. B251, 299 (1990); M.Z. Akrawy
et al. [OPAL Collaboration], Phys. Lett. B242, 299 (1990).

A complete enumeration of sum rules for Higgs boson couplings based on unitarity
constraints in arbitrary non-minimal Higgs models is given in

5 J.F. Gunion, H.E. Haber and J. Wudka, Phys. Rev. D43, 904 (1991).



5. The Higgs Sector in Models
of Low-Energy Supersymmetry

Despite the simplicity of the Higgs mechanism, the existence of fundamental
scalars in field theory is problematical. I the electroweak model is embedded in
a more fundamental structure characterized by a much larger energy scale (e.g.,
the Planck scale, which must appear in any theory including gravity), the Higgs
boson would tend to acquire mass of order the large scale due to radiative correc-
tions. Only by adjusting (i.e., “fine-tuning”) the parameters of the Higgs potential
“unnaturally” can one arrange a large hierarchy between the Planck scale and the
scale of electroweak symmetry breaking. Equivalently, one can check that in the
Standard Model, a calculation of the first order correction to the Higgs boson mass
squared yields a quadratically divergent expression arising from Standard Model
particle loop graphs. This implies that it is not “natural” to have a Higgs boson
that is relatively light unless this divergence can be controlled by the structure of
the theory. The Standard Model provides no mechanism for this, Two classes of
solutions of this “hierarchy” problem have been advanced. In one class of models,
the Higgs bosons are replaced by composite bound states of fundamental fermions.
Technicolor models and a variety of composite models fall into this class. This
class of models will be addressed in Lecture 6. In a second class of models, super-
symmetry is invoked to solve the hierarchy problem. In a supersymmetric theory
the quadratic divergence is naturally cancelled by related loop graphs involving
the supersymmetric partners of the Standard Model particles which appear in the
divergent loops. As a result, the tree level mass squared of the Higgs boson re-
ceives corrections that are limited by the extent of supersymmetry breaking. In
order that the naturalness and hierarchy problems be resolved, it is necessary that
the scale of supersymmetry breaking not exceed (1 TeV). Such “low-energy” su-
persymmetric theories are especially interesting in that, to date, they provide the
only theoretical framework in which the problems of naturalness and hierarchy
are resolved while retaining the Higgs bosons as truly elementary spin-0 particles.
In this lecture, I will study the structure and phenomenology of Higgs bosons in
supersymmetric extensions of the Standard Model.

5.1 Higgs Sector of the Minimal Supersymmetric Model (MSSM)

In the minimal supersymmetric extension of the Standard Model (MSSM),
one simply associates a supersymmetric partner to all Standard Model particles.
In addition, one must enlarge the Higgs sector to contain two Higgs doublets:
aY = —1 Higgs doublet (H1) which couples to down-type quarks and charged
leptons, and a Y = +1 Higgs doublet (H>), which couples to up-type quarks and




neutrinos. The Higgs fields are the scalar components of two chiral superfields: Hy
and H,. In supersymmetric models, one introduces a superpotential

W= —pe A B + P BT R + 1 B1QD + Q0] (5.1)

where p is a supersymmetric Higgs mass parameter, @ and I are SU(2);, doublet
quark and lepton superfields, {7 and D are SU(2) singlet quark superfields and
R is an SU{(2), singlet lepton superfield. (The hypercharges are the same as those
of the corresponding fermions in the Standard Model.) Thus the last three terms
on the right hand side of eq. (5.1) are the supersymmetric analogs of the Higgs-
fermion Yukawa couplings. One can now see why two Higgs doublet superfields are
needed in the MSSM. If H, were deleted from the theory, one could not generate
a Yukawa coupling between the Higgs superfield and Qf[? . One may be tempted
to mimic the Standard Model and couple iagﬁf to @'U . However, such a term

would violate supersymmetryf

Thus, in order to be able to generate mass for both
up and down type quarks in a supersymmetric model, one needs both the H 1@@
and H,QU terms in eq. (5.1). The requirement of two Higgs doublet superfields
in the MSSM also follows from another argument. If 1 delete, say, Hy from the
theory, then 1 am deleting the fermionic partners of H, as well. One can check
that such a theory would contain anomalies. In the MSSM, the anomalies due to
the Y = —1 fermionic partners of Hy precisely cancel those due to the ¥ = +1

fermionic partners of H,. Thus the MSSM must be a two-Higgs doublet modeﬁ

We proceed to examine the two-Higgs doublet sector of the MSSM in some
detail. We can use many of the results of Lecture 4. But first, we must relate the

Higgs fields [y and Hz to ihe Y = 1 fields ¢1 and ¢y introduced earlier:
}11 (}50*
iy —¢
H=y )= 40}
H2 ¢2

since Hy = io9¢} has hypercharge Y = —1. Supersymmetry imposes strong con-
straints on the form of the Higgs potential. Even allowing for the most general

(5.2)

+ In supersymmietric models, the superpotential W must be a holomorphic function of chiral
superfields. That is, it cannot be a function of chiral superfields and their complex conju-
gates, For this reason, the sign of the hypercharge of a chiral Higgs superfield is meaningful.

~ One could not have constructed the MSSM with two ¥ = +1 Higgs superfields.

1 By requiring that anomalies cancel, it follows that the supersymmetric extension of the
N-Higgs-doublet model must contain N Higgs doublets with ¥ = —1 and N Higgs doublets
with Y = +1. Hence, such models contain an even number of Higgs doublets.



soft-supersymmetry breaking in the model, the dimension-four terms of the Higgs
potential must respect the supersymmetry. These requirements impose relations
among the ); of eq. (4.8). The resulting Higgs potential in the M5SM is

V= (o 4 (ul?) B H o (o \uf?) HE 1 = oy (g BB 4 e .
5.3
. , . 12 . .

v 1 +g?) [Him - B H| 4 BN

where  is a supersymmetric Higgs mass parameter and m?, m%, m3, are soft-
supersymmetry-breaking masses. It is convenient to reexpress the doublet fields
in terms of the physical Higgs boson degrees of freedom and the Goldstone boson
fields. The relations are:

H) =H% cos p + GFsin B
HY=H sinfi— G cosf

HY =v + n\%(ﬂ" cos a — h¥sin o + 1A sin § — iG® cos 3) (5.4)

H? =va + Jﬁ(ﬂﬂ sin o + b cos a + 1 4% cos 8 + 4G sin §),
where « is the mixing angle that arises in the process of diagonalizing the 2 % 2
neutral scalar Higgs mass matrix [see egs. (4.15) and (4.16)], and tan 8 = va/v1.
It is possible to choose a phase convention in which v; and v are real and posi-
tive. This implies that 0 < 8 < 7/2. In this convention, the Higgs potential is
manifestly CP-conserving. In addition, due to the constraints imposed on the su-
persymmetric model, we find that —n/2 < a < 0. Supersymmetry imposes strong
constraints on an arbitrary two-Higgs doublet model potential. As a result, there
are relations among the six free parameters of the general two-Higgs doublet mode]
(mpg+, Mo, Mpo, M A, O and tan 8 = wvo/v1). The MSSM Higgs sector possesses
two free parameters; if we fix tan and one of the Higgs masses (or a), then all
parameters and couplings of the MSSM Higgs sector are fixed.

One property of eq. (5.3) is particularly noteworthy: all quartic Higgs sell-
couplings are gauge couplings. This should be contrasted with the Standard Model
where the Higgs self coupling is a free parameter. In the MSSM, gauge invariance
forbids a trilinear coupling of Higgs superfields which could have given rise to a
quartic Higgs self-coupling which is independent of the gauge couplings.x As a

1 If one introduces a singlet Higgs superfield N, then the term H,H,N in the superpotential
would produce such a guartic Higgs self-coupling. Such terms do arise in certain extended
(non-minimal) supersymmetric models.




result, the Higgs self-couplings in the MSSM are fixed in size and cannot grow
arbitrarily large. It follows that tree-level unitarity is automatically satisfied inde-
pendent of the Higgs masses in the MSSM. In addition, one CP-even scalar mass
must be bounded (to be less than some number of order my). Again, these results
are in stark contrast to the Standard Model, where tree-level unitarity can be vi-
olated and the tree-level Higgs mass is unbounded if one takes the Higgs quartic
self-coupling to be arbitrarily large.

For pedagogical purposes, 1 will analyze the MSSM Higgs potential in three
casy steps and derive formulae for the tree-level Higgs masses and mixing angles.
Without loss of generality, I will absorb |u|? into the definitions of m# and m3.
First, let us analyze the CP-even scalars. To do this, simply insert Hl = v,
H? = v, and H? = H} =0 into eq. (5.3). Then

V = miv} + mivs — 2mi,vve + %(g2 3 g™ (v} - w32, (5.3)
The minimum conditions are obtained by setting V' /dv; = 0. Thus,

7 V2 2 2
m% = ml?a — i—(v? — vg)(g +4)

2 2 U1 1,02 9ye. 2 2 (5.6)
my = mm;; + 3(vf —v3)(g" + g ).
The scalar mass matrix 1s
*V
MZ =3 5.7
U2 gudvj (5.7)

where the factor of 1/2 is due to the normalization of the quadratic terms in V.
Thus, the CP-even scalar mass matrix is

5 1 miv% + m%v(f ~—(m?4 + 771423)1:11»2
M= 5.2 2 2 2,2 2,2 : (5.8)
v+ 03 \ —(m% + my)uive ML T ME
where
2
2 — My, 2 . .2
My = 2 ('Ul + Ua) )
V102 (5.9)
9 1.2 4 AN 2 4 a2
m% = 1(g* + ¢")(v1 t v2) -
Note that

Te M% = myo + mjo = mia + my . (5.10)

We can easily evaluate the eigenvalues of M,-f"j. These are the squared masses of



the two CP-even Higgs scalars

mo po = : [m%; +my & \/(;31 + m%)? — 4mym cos? 25] : (5.11)

The diagonalizing angle is a, with

7 .2 2 2
cos 20r = —-cosZﬁ( méA Tz ) , sin 2a = — sin 283 (mHO il mgo) . {5.12)

TnHD — TTL%U ml%{o - n?ho

Finally, the following inequalities are easily established:
myo <ma
mye < mlcos2p| < mz, with m = min{mgz, ma) (5.13)
myo Z Mgz .
Second, we analyze the (CP-odd scalars. Write Hi = vy + 11, H? = vy + 12

and set Hio‘ = H% — 0. We now compute the mass matrix M'?j = %BZV/C')&BEJ‘,
using the formulae for m:f and m2 obtained in eq. (5.6). The result is

valUl 1
M =mi, / : (5.14)
1 vi/v2

The zero eigenvalue corresponds to the Goldstone boson. Hence,
7"310 =Tr ﬂ-f?j = m%g (-t-,-l— + ?3) = mﬁ. (5.15)
] 7

That is, we now recognize the parameter ma defined in eq. (5.9) to be the mass of

the CP-odd scalar.

Third, we analyze the charged scalars, Write H }f = v1, Hg = vy, and compute
the H2-H} mass matrix. The result is

2 2 .
ey V5 V1V
ME = (..__12 +1 2) : 5.16
Y v1v2 29 T U2 vi" ( )

which again possesses a zero mass Cloldstone boson eigenstate. Hence,

mi, (v} + v3)

mzﬂi =Tr Mf?j = + %gg(v% + v%)

vUg (5.17)
= mzA + m%y .
It follows that
My: = MW . (5.18)

This completes the analysis of the MSSM Higgs potential.




To summarize, we have computed the tree-level Higgs boson masses (and mix-
ing angle) in the MSSM. The result of our calculation is that two parameters are
sufficient to fix the properties of the Higgs sector. For example, one can adopt
tan 3 and m 40 as the two independent parameters. Once these two quantities are
specified all the tree-level Higgs masses can be computed according to

mys = mho + miy

(5.19)

m%{olhu = %[mio +mb + \/(mio —m%)? 4+ 4m%m’, sin® 23 ] ,

where I rewritten eq. (5.11} in an equivalent form. The spectrum of Higgs boson
masses in the minimal supersymmetric model is illustrated in fig. 8. From this
graph, we note an interesting limiting case of this model when m 40 — 00 (at fixed
tan #). In this limit, A® HY and H?* decouple from the theory and we are left
with a Higgs sector (consisting of a single physical C P-even scalar, h®) which is
identical to the Higgs boson of the minimal Standard Model. Moreover, in this
limit, the interactions of k® with the Standard Model gauge bosons and fermions
are equivalent to those of the minimal Higgs boson of the (nonsupersymmetric)
Standard Model. I will return to this point in section 5.3.

Neutral Higgs Masses as a Function of H' Mass
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Pigure 8 The masses of H°, RO and A° are plotted as functions of mys at fixed
tan 3 = 1.5 for the minimal supersymmetric model.



5.2 Radiative Corrections to Higgs Masses in the MSSM

One of the most important predictions of the MSSM is that mpo < mz. This
prediction is particularly important for future experiments at LEP-11. In principle,
experiments running at LEP-II operating at design luminosity could either discover
the Higgs boson or rule out the MSSM. (Whether this is possible to do in practice
depends on whether these experiments can rule out a Higgs boson with mpo = mz.)
However, it is important to emphasize that the bounds of eq. (5.13) are tree-level
bounds. In particular, mys < mz need not be respected when radiative corrections
are incorporated. In general, one might expect the size of the (electroweak) radia-
tive corrections to the Higgs squared masses to be of order gszr;/ 47, which would
shift the Higgs masses by (at most) a few GeV. However, we encounter a surprise
when we consider the question: what is the upper bound for the mass of the light-
est Higgs scalar h° when one includes the full one-loop radiative corrections of the
MSSM? An important clue can be found in a paper by M. Berger, who consid-
ered the radiative corrections to the Higgs mass sum rule given in eq. (5.10). Ralf
Hempfling and I decided to isolate explicitly the radiative correction to the value
of myo and deduce its maximal value. I will now briefly sketch our computation.

First, consider the model in which the tree-level bound mpo < mz is saturated.
To achieve this, we must take either tan # = 7/2 or tan 8 = 0, w.e., either v1 = 0
or vy = 0 (respectively). Clearly, in a realistic model, neither VEV can be zero,
otherwise, all charge -1/3 (or 2/3) quarks would be massless. Nevertheless, the
approximation v; = 0 in which all charge -1/3 quarks are massless is not too bad
an approximation, considering that the top-quark is so much heavier than all other
quarks and leptons, Thus we start by considering the vy =0 model. This model
is obtained by setting the soft-supersymmetry-breaking mass parameter mj2 in
eq. (5.3) to zero. In this model, the tree-level Higgs mass spectrum consists of
mpo = myz, myo = mao > mz, and mys = (m%v + min)l/z. [Had we chosen
mao < mgz, we would have found myo = mgo, and myo = mz (at tree-level),
which is not relevant for the computation of the upper bound for myo.] Note that
the mass degeneracy of the CP-even and CP-odd scalars holds to all orders in
perturbation theory due to an extra continuous U(1) global symmetry which is
present when mjz = 0. We can now compute corrections to the value of myo and
derive an expression for Am%1 = m;"‘lo —_ mzz.

There are two corrections that I will compute here. The first consists of the
one-loop radiative corrections to the model specified above. This will be denoted by
(Am3)g=r /2> where the subscript emphasizes that we have computed this quantity
in the model where v; = 0 (i.e.,, § = 7/2). The second correction consists of
computing the shift in mye due to the fact that any realistic model must have two
non-vanishing VEVs. We incorporate this correction at iree-level. This 1s easy to




do by employing the exact tree-level formula [eq. (5.19)]. Thus, the final result for
the squared mass shift 1s

A = (o [V = g i 28 = (e )
(5.20)
As long as tan J is not close to 1, the correction due to the second term above will

be small and it is consistent to ignore new one-loop corrections which arise when
B #£rf2

I now turn to the computation of (Am2)g_r/2- The tree-level potential of the
vy = 0 model is

h : h !
v-_—.m?(——w;) + L(g? + g (-—+v) \ 5.21
h 0 NG 0 8(90 90 ) 72 0 ( )
where v = v and the 0 subscripts indicate the bare parameters. We have only

kept the relevant terms involving the light scalar field, h. The Z mass term arises
from

Vz = %mzZOZu AN (5.22)

where m%q = (98 + g Yol

will not be indicated explicitly. Minimizing Vp, it {ollows that mé = —m%,/2. We
now introduce the renormalized parameters by shifting the corresponding bare
parameters: m% = m? — ém?2, vg = v — v, elc. Then, we find

. We do not need to renormalize the fields, so bare fields

Yy = (t — 6t)h + 2(m] — smi)h® + O(h®), (5.23)
Vy = -}H;(mzz —6m%) 7, 2", (5.24)

where m% = %(g2 + ¢'?)v* and
t= (%mzz +m?) /2, (5.25)

mi = 3my +m*. (5.26)

By making use of the tree-level minimum condition, §v drops out, and we obtain

§m; = bm% + 5t (5.27)

2mw

where my = gu/+/2. At this point in the analysis, m) and myz are renormalized
(and finite) parameters, but not yet physical parameters. The physical masses of



0 and Z (indicated below with a subscript P) are identified in the usual way as
the poles in the corresponding propagators. Let the sum of all one-loop Feynman
graphs contributing to the Z-boson and h® two-point functions be denoted by
iAzz(¢%)g" + iBzz(¢*)¢*¢" and —iApn{g?), respectively, where ¢ is the four-
momentum of one of the external legs. The physical masses are then given by

m%p = m} + Re Azz(m3) — 6m3, (5.28)

mip = m} + Re App(m3) — sm3 . (5.29)

We now demand that v is the true vacuum expectation value at one-loop. This
means that ¢ = 0 and 6t = Ax(0), where —iA,(0) is the sum of all one-loop
Feynman graphs contributing to the 2® one-point function (tadpole). That is,
the tadpole counterterm cancels the one-loop tadpole graphs, so the full tadpole
vanishes. This choice is convenient since there will be no tadpole contributions to
the calculation of Az and Ap,. It follows that my, = myz, and we end up with:

(Am%)ﬁ:r/Z =m?lp —mbp = Re [Ap(m3) — Azz(m%)] — Ar(0}. (5.30)

Qmp

Note that each term in eq. (5.30) is separately divergent. The divergences
will cancel only when one sums over a complete supersymmetric multiplet. This
is true because myo is calculable in the supersymmetric model, in contrast to the
Standard Model where the Higgs mass is an infinitely renormalized parameter. The
dominant contribution to the Higgs mass shift comes from the quark and squark
loop contributions, so I will only consider here the effects from this sector of the
model. The parameters of the squark sector include common soft-supersymmetry
breaking masses: M’Q Mg and Mp, corresponding to g = (uL,dL), up and dr
respectively. (Generation labels will be suppressed. For the sleptons, the definitions
are similar, except that there is no ¥g.) In addition, there is a g;—¢r mixing
mass parameter. The exact expressions for the squark/quark and slepton/lepton
contributions to the A% mass shift can be computed in a straightforward manner.
Here I shall simply quote a convenient approximate formula which is valid in the
limit where mz < my < M & and where ¢7—gr mixing is neglected. Summing over
six flavors of quarks/squarks and leptons/sleptons and assuming that the common
soft-supersymmetry breaking squark and slepton masses are all equal to M’ =~ the
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Figure 9 Higgs mass shift due to one-loop radiative corrections. The dashed line
denotes the contribution to Amy = e — Mz due to three generations of quarks,
leptons, and their supersymmetric scalar partners. The squarks and sleptons are taken
to have a common soft-supersymmetry breaking mass of M~ =1 TeV and {1~ g MIXIng
is neglected (i.e., A= ). The dot-dashed line is a plot of eq. (5.31), and provides a good
approximation to the dashed line. The solid line represents a sum of all contributions
to the exact one-loop calculation of Amy for a choice of supersymmetric parameters:
tan 8 = 20 and Ma — A= ma = p=M=1TeV (where M and p determine the

neutralino/chargino spectrum}.

vesulting formula is:

Qe

3g2m4Z

[Qm‘} — m%m% 4

8 .2 32 .4

2 ~
(Amfl)ﬁzﬂ'/Q - Tnz

Rl S

—Z 2 <N
1672 m%;; m

M2
2] 2 32 2
+In = {%‘ (1— 8y + Boly) + 7 (1— 5o + gsir)

2
My
3

1 2 4
+ 3 (1 — QSW + 481'.‘/) }-{-g?—n“:iz—

(5.31)

where sy = sinfw.

The corrections to the tree-level formula increase as the fourth power of mq,
and therefore can be quite large. In fig. 9, we plot the contribution of the quarks



and leptons and their supersymmetric scalar partners to the linear mass shift
2 211/2
Amp =mpo —mz = [Amh + mz] —myz. (5.32)

for M §= 1 TeV. Clearly, the mass shift can be very significant as my becomes large.

It is evident from eq. (5.31) that the dependence of Am3 on Mé is logarithmic.
Thus, even if M’é is significantly smaller than 1 TeV, the Higgs mass shift can
be appreciable if my 1s sufficiently large. For example, if M g = 400 GeV, an
exact numerical computation yields Amy, = 4 GeV for my = 100 GeV and Amy =
30 GeV for my = 200 GeV. Fig. 9 also exhibits the results of a calculation where all
supersymmetric sectors are included (including the possibility of squark mixing),
and eq. (5.20) has been used to allow for a value of 8 # 7 /2. The supersymmetric
parameters chosen are A 5= A=myp=p=M=1TeV (where A parameterizes

17-1g mixing) and M’ ~ M/2. The result is the solid line plotted in fig. 9, and
provides a realistic indication of the true upper bound for the mass of h% in the

MSSM.

5.3 Higgs Boson Couplings in the MSSM

Let us now turn to the couplings of the various Higgs bosons of the minimal
supersymmetric model. A complete summary of all Higgs boson couplings in the
minimal supersymmetric model is given in Appendix A of the HHG. Here 1 shall
discuss only the couplings to Standard Model particles, in particular to quarks,
Ws and Z’s. It is these couplings which are crucial in determining the production
of the Higgs bosons, and in the absence of light supersymmetric particles would
also completely determine their decays.

We have already seen that the A has no VV couplings, The coupling of RY
and H® to VV are given by eq. (4.23}, and to A"Z are given by eq. (4.27). Each
of these couplings are either proportional to sin(f — ) or cos(f# — «) as indicated
below

cos(8 — a) sin(3 — a)
HOW+TW~ MWW -
H°ZZ hZz

Z A% ZAH®
WEHTFRO WEHTH®

In the supersymmetric model these couplings can be computed in terms of two
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Figure 10 cos?( — a) as a function of the charged Higgs mass, mys, at tanf = 1.5
and 10. Note that my+ > mw and cos?(8 — a) = cos? 28 at my+ = mw .

Higgs masses (and mz). For example,

m%_g (mzz — m%o)

cos’(f —a) = (5.33)

(quo — mio)(m%[, + m%o —m%)

A close examination of this formula shows a dramatic suppression over a very large
region of parameter space. It is easily verified that the maximum possible value
for cos?(f — o) at fixed tan § (which occurs in the limit mgs — myy) is cos? 2.
Note that as mpyo decreases, so does the maximum possible value of cos? (3 — a).
In addition, as mpy+ increases, cos?(3 ~ «) decreases further; for instance, once
mpy+ is large enough that mge & 2mw then cos?(f — a) vanishes as 1/m'}],o. This
behavior is illustrated in fig. 10 for the cases of tan # = 1.5 and tan # = 10. For
example, when tan 8 = 1.5, cos?(f —a)is $ 0.15 at mg+ = mw, and is < 0.01 by
the time myge > 2myz. Thus, according to eq. (4.23), one should generally expect
the coupling of WHW™ and ZZ to the heavier Higgs scalar (H®) to be greatly
suppressed. Using eq. (4.22), this also implies that the coupling of WHW™ and
77 to the lighter Higgs scalar (k) should be roughly equal in strength to the
corresponding couplings of the minimal Higgs boson.

To understand the origin of the large cos(f — «) suppression, consider the
MSSM in the limit of mi2 > myz. Since miz is a soft-supersymmetry-breaking



parameter, increasing mjp is equivalent to raising the effective scale of supersym-
metry breaking. This limit is equivalent to taking 40 > mz. It then follows
that

(1) mgo = mpy+ > mpyo 3> Mg, Mpe;
(i) cos(8 — @) = O(m}/m¥);
(¢i1) The couplings of h° to vector bosons and fermions approach the values of
the minimal (one-doublet) Higgs model.

That is, the Higgs sector of the “low-energy” theory (far below mj2) is precisely
that of the minimal Higgs model. This is consistent with observations made in
section 4.4. What we see here is that it does not take a very large value of my
(or T 4) to produce a “low energy” Higgs sector which is nearly identical to that
of the minimal Higgs model.

The couplings of the various Higgs bosons to quarks were given in egs. (4.31)
and (4.32) as a function of @ and 4. A survey of the parameter space reveals that
when tan 8 > 1 the H? and h® couplings to i are somewhat suppressed relative
to the Standard Model H?, while the bb couplings are somewhat enhanced, and
vice versa for tan 8 < 1. In general, supersymmetric model builders favor models
in which tan 8 > 1. This result is obtained from renormalization group analyses
where the low-energy supersymmetric parameters are obtained from an initial set
of Planck scale parameters by RG evolution. The fact that tan § > 1 appears to be
a rather general result in models where the top-quark mass is heavy (as indicated
by the present experimental bounds).

5.4 Higgs Boson Phenomenology in the MSSM

In section 4.5, I treated the phenomenology of two-Higgs-doublet models. Al-
though much of the discussion there is also applicable to the MSSM, the phe-
nomenology of the supersymmetric model is more constrained, since the MSSM
Higgs sector depends on fewer free parameters. We begin by reviewing the present
experimental limits from LEP. From eq. (5.18), the decay Z — H*H™ is not
kinematically allowed. Thus, there are no limits from LEP on the charged Higgs
boson of the MSSM. The four LEP detector coliaborations have made an extensive
search for A? and A® with a simultaneous search for Z — AYff and Z — h%A°.
As discussed in Lecture 4, these decay rates generally depend on three parameters:
the two Higgs masses and sin( — «). In the MSSM, only two of these param-
eters are independent, Thus, it is possible to display the experimental limits in
the myo—m 40 plane. The LEP results which have been presented are based on a
tree-level analysis; thus the region m 40 < mpo is not allowed [see eq. (5.13)]. Tor
example, the L3 collaboration claims to rule out the region of h® and A” masses up




to 41.5 GeV (at 95% confidence level). The results of the other LEP experiments
are similar.

We now turn to issues of MSSM Higgs phenomenology at future colliders. Some
of the salient points are summarized below:

1. Perhaps the most important prediction is that mj < myz|cos2f| £ mz.
Moreover, according to eq. (4.23), gzzp = 922¢° sin(3 — «) (where ¢° is the
minimal Higgs boson), and sin(f — @) is near 1 over a very large region of
supersymmetric parameter space (see fig. 10). These are tree-level predic-
tions of the model which if satisfied imply that h° could be discovered (or
completely ruled out}) at LEP or LEP-1Iin Z — Z*h orete” = 2% — ZhO.
[See the discussion below eq. (3.55).) However, in section 5.2, 1 showed that
large radiative corrections were possible (particularly if m; is substantially
larger than the present experimental bound) which raise the mass of kY sig-
nificantly above its tree-level value. Thus, the maximum value of mye is
above myz as indicated in fig. 9, and one must conclude that LEP-II will
not be able to explore the entire range of the MSSM Higgs sector param-
eter space. (Radiative corrections to gzzpe are less important and do not
appreciably affect this discussion.) If mpo > mgz, then RO is certainly an
intermediate mass Higgs with couplings similar to the minimal Higgs boson
of the Standard Model. One would then need to make use of the hadron (or
etTe™) supercolliders to discover the kO or definitively rule out the MSSM.

9 On the other hand, the other physical Higgs particles, HY, AY and H*, may
be difficult to detect. In the same limit where the properties of hY approach
those of the minimal Higgs boson, the other physical Higgs particles tend
to decouple. [For example, the coupling of HY, A9 and HE to VV or VA"
final states are suppressed by cos(f — a), as indicated above eq. (5.33).] The
pseudoscalar AV can also be light (although there is no particularly favored
value for its mass). However, there is no tree-level coupling of A? to vector
bosons, which makes it impossible to observe using methods which depend on
the W+W— and ZZ couplings to the Higgs boson. As mentioned in Lecture
4, the most promising method for A® detection is via ete™ — Z* — A%
(h = R® or H®) at LEP-IL. The charged Higgs boson H* is predicted to
be heavier than the W. In Lecture 4, I noted that it is very difficult to
detect the HF at a hadron supercollider unless mygs > my, while HYH™
pair production is straightforward to detect at ete™ colliders, as long as
mp+ S 0.44/5. Thus, to discover the charged Higgs boson of the MSSM will

require the services of an ete™ supercollider.

3. As emphasized above, the coupling of the heavier scalar Higgs, H°, to vec-
tor boson pairs is suppressed. Explicitly, gw+w-g° = dw+w—¢° cos(ff — a)



which, according to fig. 10, is very small over a large range of parameter
space. In particular, for mpo > 2mw, the WTW~H? coupling is reduced in
amplitude by at (al least) a factor 10. This rules out the standard techniques
for Higgs detection at LHC or SSC, which depend on the decay of the Higgs
boson to vector boson pairs.

The upshot of the above observations is twofold. In supersymmetric models, it
should be rather straightforward to discover the lightest Higgs scalar of the model.
However, it will be far more difficult to prove the existence of an extended Higgs
sector, which is a necessary consequence of low-energy supersymmetry. It could be
argued that the above observations were very specific to the assumption of a min-
imal supersymmetric structure beyond the Standard Model. There has been some
investigation in the literature of Higgs boson phenomenology in more complicated
(non-minimal) supersymmetric models. Results in these models tend to confirm
the general observations described above. Some interesting counterexamples are
known to exist {e.g., models with a charged Higgs boson which is lighter than the
W). However these models tend to predict a rich structure of new physics at rather
“low” energies (around 100 GeV) which should be rather easy to expose at colliders
in the near future. Thus, the verification of the supersymmetric scenario will re-
quire direct evidence of the supersymmetric particles. The decays of Higgs bosons
into supersymmetric final states may also make up a major percentage of the Higgs
branching ratio. However, in such a scenario, Higgs boson phenomenology would
be simply one part of the general experimental exploration of the supersymmetric
spectrum.

1 will end this lecture with a few additional remarks about going beyond the
minimal supersymmetric model. Many non-minimal supersymmetric models have
been examined in the literature, including superstring inspired models, models with
SU(2) x U(1) singlet superfields, and models with extended gauge groups. All such
models have rather complicated Higgs sectors. In many cases, the models have one
light Higgs boson whose mass is not much larger than O(mz). However, these non-
minimal models can often include new terms in the superpotential which result in
new quartic Higgs self-couplings, A, which are not constrained. The constraints on
)\ are rather similar to those of the minimal Higgs model. Thus, one might expect
Higgs mass upper bounds in such models to be similar to the ones described in
Lecture 2.

The MSSM is clearly the simplest of the “low-energy” supersymmetric models.
The Higgs sector of the M5SM is more constrained than an arbitrary two-Higgs
doublet model, and thus presents an opportunity for experimental confirmation or
rejection in the not too distant future. 1f the MSSM can be ruled out, one should




not rule out the possibility of a somewhat more complicated non-minimal super-
symmetric model. But perhaps we should keep an open mind and look elsewhere
for the resolution of the hierarchy and naturalness problems. This is the subject
of the next lecture, where we explore the major competitor of the supersyminetric
approach.

Suggestions for Further Reading
and a Brief Guide to the Literature

A review of the minimal supersymmetric extension of the Standard Model (MS5M)
is given in

1. H.P. Nilles, Phys. Rep. 110, 1 (1984); H.E. Haber and G.L. Kane, Phys.
Rep. 117, 75 (1985).

A detailed discussion of the Higgs sector of the MSSM and a complete compilation
of the Feynman rules for Higgs bosons of this model can be found in
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6. Is Electroweak Symmetry Breaking Generated
Without Elementary Scalars?

In the last four lectures, I have focused my attention primarily on the explo-
ration of the origin of electroweak symmetry breaking via the search for fundamen-
tal Higgs bosons. An alternative view puts the origin of the symmetry breaking in a
different sector of the theory, one with new fundamental fermions that have gauge
theory interactions. In this latter approach, elementary scalar bosons are com-
pletely absent. However, composite bound state of the new fundamental fermions
can arise (in analogy with the way mesons arise in the QCD theory of quarks),
and may provide an experimental signature of the electroweak symmetry breaking
sector.

Why throw out a simple picture—the Higgs mechanism via the dynamics of
weakly interacting elementary scalar fields—in which calculations are perturbative
and straightforward, and replace it with unknown strong interaction dynamics
which require solving a strongly coupled theory? First, nature might actually
be that way! For example, superconductivity is the most well known example
of the Higgs mechanism in solid state physics in which U(1)Egar is spontaneously
broken. (The Meissner effect in which the magnetic field dies away exponentially
as it penetrates the superconductor can be interpreted as arising from a nonzero
photon mass generated by the Higgs mechanism.) In this case, the mechanism for
spontaneous symmetry breaking does not involve an elementary scalar field, but
rather a condensation of e"e~ Cooper pairs in the vacuum. Second, elementary
fields are “unnatural”, as discussed at the beginning of Lecture 5. In contrast,
large gauge hierarchies are “natural” in asymptotically free gauge theories. For
example, in grand unified theories, a typical value for the grand unification mass
[where the SU(3), SU(2) and U(1) running coupling constants meet] is Mx =~
1015 GeV. Nevertheless, the ratio of the proton mass to My, mp/My =~ 10~18
is perfectly reasonable. Solving the RGE for the evolution of the QCD strong
coupling constant

= —bg® (b=11—3n;>0) (6.1)
(where ny = 6 quark flavors) yields
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Let us define Aqep such that g2(Aqep) = oo, Then it follows that”

-1

racn =135 (g
3

) <« Mx. (6.3)

On the other hand, the mass of the proton is proportional to AQep [ignoring quark
mass effects; see eq. (3.27)]. Writing mp = cAqep with ¢ ~ O(1), it follows that
mpfMx < 1. Such a large hierarchy is regarded as natural, since this conclusion

does not change appreciably with small changes in the initial conditions [i.e., the
value of gs(Mx)].

Let us examine some of the basic concepts associated with dynamical elec-
troweak symmetry breaking. We have seen in Lecture 1 that in the absence of
elementary Higgs scalars, the W and Z would still gain mass by virtue of the
spontaneous symmetry breaking of chiral symmetry by QCD. Although the re-
sulting gauge boson masses were phenomenologically unacceptable, this example
serves as a prototype for more general (and hopefully more realistic) models of
electroweak symmetry breaking by dynamical means. In this lecture, T would like
to explore some of the buzz-words associated with dynamical electroweak sym-
metry breaking: technicolor, extended technicolor, walking technicolor, composite
Higgs bosons, and tF-condensates, and briefly describe the potential for discovery
of these phenomena at future colliders. Some of the ideas we are about to examine
are quite elegant, but my guess ‘s that there are some important missing pieces. For
example, gauge bosons are given mass in a rather attractive way, while fermions
get mass by a brute force approach that is unconvincing and often difficult to rec-
oncile with experimental constraints. By examining these alternative approaches
carefully (and with a little help from experiment), perhaps we will learn how to
construct a compelling model of dynamical electroweak symmetry breaking.

6.1 Dynamical Breaking of Chiral Symmetry

The dynamical breaking of chiral symmetry is assumed to take place in the
theory of QCD; the resulting Coldstone bosons are the pions. By exploiting this
mechanism in a new setting (e.g., technicolor) we can construct a theory in which
the electroweak symmetry is dynamically broken. So, let us take a brief look at
the theory of chiral symmetry and its breaking.

% T could just as well define g2(Aqep) = 4 or any other finite number that would indicate
the onset of strong coupling. The conclusion that Aqep € Mx would remain unchanged.



Consider a QCD-like theory with n-flavors of massless fermions. The La-
grangian is

£ = Bin" (8, +igAST*)p o1
= Prin (B + igAST by + Prin (B + igAST Vg, |
where g 1 = %(1 + v5)ip. Note that there is no connection between L and R, so
L exhibits a global U(n); x U{n)g flavor symmetry. Actually, there is an overall
U(1)axial symmetry which is anomalous, so I shall simply discard it. There is also
an overall U{1)yector symmetry which corresponds to fermion number conservation.
The remaining global symmetry is the chiral SU(n)z % SU(n)g symmetry. If the
following mass term were added to the Lagrangian above

8L = mpp = m(Pppr + P LYR) (6.5)

with a common mass for the N-flavors, then the SU(n)z x SU(n}g chiral symmetry
would be explicitly broken down to the diagonal SU(n)z4.p symmetry (the analog
of isospin symmetry in two-flavor QCD). In QCD, the origin of 6L lies in the
electroweak sector, so let us neglect it for now. (Since electroweak forces are much
weaker than the strong QCD forces, such an approximation is a reasonable one.)
However, even in the absence of explicit mass breaking, the strong QCD forces can
spontaneously break SU(2); x SU(2)r — SU(2)r+r. This would occur if the
following non-zero expectation values develop

(irtir) = (Bipthi) = 6ijA°, (6.6)

where A has dimensions of mass. Note that the first equality above must be
satisfied if QCD is to conserve parity.

To determine whether such expectation values develop requires a nonpertur-
bative QCD computation, Nevertheless, it is easy to understand how such a result
could come about. First, note that one can construct a 3t state with the quantum
numbers of the vacuum if the total angular momentum of the state i1s zero. One
possible state can be pictured as follows

The helicities (the small arrows in the above picture) must both point either parallel
or antiparallel to the corresponding momenta (the larger arrows). For a massless
fermion pair, 1 can only do this with YR (or -L‘Z)”R‘gb_[,). Thus. it is possible to fill
up the vacuum with zero momentum, color singlet pairs, i.e,, condensation! In




this case, (¥R} # 0. Whether this happens when strong QCD forces are turned
on is a dynamical question. An intuitive argument of Nambu and Jona-Lasinio
observed that the Hamiltonian consists of a piece which preserves the number of
ynp pairs and another piece which creates (or destroys) 1 pairs. In such a case,
strong attractive interactions can reduce the former at the expense of the latter.
Thus, above some critical coupling, the vacuum would condense into an indefinite
number of 1 pairs, and dynamical symmetry breaking occurs.

Phenomenological observation strongly suggests that QCD [with two nearly
massless flavors of quarks: u and d] preaks SU(2); x SU(2)r — SU2)L4 R
Coleman and Witten presented a very clever argument that proved that an SU(N)
gauge theory in the large N limit with quarks in the fundamental representation
(and a few other reasonable assumptions) will break an n-flavor chiral SU{n); X
SUMm)g — SUM)i+R There are many other possible groups, representations
and chiral symmetry breaking patterns. However, in this lecture, 1 will be content
to appeal to the behavior of QCD in determining the pattern of chiral symmetry
breaking.

6.2 Technicolor in its Simplest Manifestation

All the necessary formalism needed for the technicolor approach has been set
up in Lecture 1. Let us invent some new fermions (called technifermions).

U .
(D)L, Ux ,Dr (6.7)

which have nontrivial quantum numbers under SU(2)p x U(L). For simplicity, I
will assume that U and D are color singlets. The following choice then will avold
a gauged U(1) anomaly:

Ty Y Q=Ts+Y/2
Us 1/2 0 1/2
Dy 1/2 0 1/2
Ur 0 1 1/2
Dr 0 -1 1/2

% Since the strange quark can also be considered light (compared to Aqcp), one can also
discuss the breaking of SU(3)L X SU(3)r = SUGB)L+r: The latter symmetry is the
well-known SU(3) flavor symmetry of the quark model.



In addition, one invents a new non-abelian gauge theory called “technicolor”. U
and D) are assumed to be technicolor non-singlets. In order to be able to apply our
experience with QCD to a theory of the strong technicolor force, I shall assume
that the technicolor gauge group is SU(N), with U and D transforming under the
fundamental representation.

Recall that in the two-flavor QCD example of Lecture 1, I argued that the
SU(2)z x SU(2)p chiral symmetry was broken down to SU(2)r4+r by quark con-
densates: (G;qgr) = {Gryyr), since QCD conserves parity, and (@t up) = {(d;dg), in
order that a vector SU(2) isospin symmetry remain unbroken. For the technicolor
model above, we simply make the same conjecture. Proceeding as in Lecture 1,
the techniquarks couple to the gauge bosons via vector and axial currents

— T (11— ™ (14
L=0Qy [g‘-Vﬁg( 275>+Q’Bu-5( 275”@ (6.8)

with ¢ = (%) and Pauli matrices 7¢. The coupling of the gauge bosons to the
axial current is obtained by writing

!
L= —%W':' JEC + %—BﬂJga + vector current couplings, (6.9)

where Jjj5 = @7”15%1'“@. When the technicolor breaks the SU{(2)r x SU(2)g chi-
ral symmetry down to SU(2) 14 R, three Goldstone bosons appear which transform
as a triplet under isospin (in complete analogy with the way the pions arise when
QCD breaks ordinary chiral symmetry). Thus,

(01725 (0)|T1°) = i Fpye 8" (6.10)

Using the methods outlined in Lecture 1, it is now straightforward to compute
the vector boson mass matrix. The end result is

miy = m% cos® Oy = 1—ng3. (6.11)

Thus p, = 1 has been automatically implemented due to a custodial SU{2) sym-
metry of the model, which in this case is SU(2)r+r. Moreover, if we identify




Fy = v =246 GeV, we would get the correct masses for the W and z} Continu-
ing in analogy with QCD, I would like to identify the “scale” of {echnicolor, Atc
(analogous to Aqcp). Now, Fr/ATc should be a pure number which is predicted

by the gauge theory. Since the main difference between QCD and QTCDI is the
gauge group, one can use “large N” arguments 0 estimate

Fr N Arc

?-; ~ \/—; _fz_(;&:_]; (6.12)
for an SU(N) technicolor (TC) group. The proof that Fr ~ VN goes as follows.
Start with eq. (6.10), and note that Jjs = Zf\;l Qivus %TGQ,', where ¢ is a TC-
index, so Jyg ~ N. On the other hand, II* is a TC-singlet. When properly
normalized, the wave function of \Hb> scales like 1/+/N. Comparing the large N
behavior of both sides of eq. (6.10) yields Fr ~ VN,

Therefore, eq. (6.12) leads to the following estimate {for Aqcp = 200 MeV)

{3 F /
Atc ~ % “'fiAQCD ~ % (500 GeV). (6.13)
T

Presumably, ATc is the appropriate scale for the masses of technihadrons which
are the analogs of the mesons and baryons of QCD. For example, the mass and
width of the techni-rho (pr) would be

[3 Fx /3
Mpr ™ N—EmpN —A—f(Q TGV),

I 3 3/2
Lpp ~ (%) ;n"%mpr ~ (KF) (500 GeV),

where I have made use of 't Hooft’s large N scaling. The pr would dramatically
affect IfVB'T/VE scattering in the same way that the p dominates xt 7~ scattering

at /5 > mp.

(6.14)

$ To be complete, I should include QCD eflects as well. The calculation is nearly identical to
the one presented in Lecture 2, and 1 find

6) = s (P + 52 19)
e = g (e = 5+ 1)

where |G) is the Goldstone bosons which are caten by the W and Z, and |7 pomys 18 the

physical pion of QCD. Since fr € Fr, I can normally neglect this mixing.
1 Quantum technicolor dynamics,



This is all very elegant. Unfortunately, this theory possesses zero mass quarks
and leptons. Unlike the case of the elementary Higgs boson, we must introduce
additional structure to generate fermion masses. This is where the model begins
to lose its elegance.

6.3 The Problem of Fermion Mass in Technicolor Models

In a model where electroweak symmetry breaking occurs through the dynamics
of elementary Higgs fields, it is easy to generate masses for the quarks and lep-
tons. One introduces an (arbitrary) set of Yukawa interactions between the Higgs
bosons and the fermions. When the Higgs bosons acquire their VEVs, fermion
masses are generated. In contrast, consider the simple technicolor model that was
just introduced. We can attempt a similar construction if the technicolor model
possesses states analogous to the Higgs bosons. Naively, such states would corre-
spond to 0t resonant bound states of technifermions analogous to the infamous
¢ of QCD.” Suppose we try to mimic the Higgs-fermion Yukawa interaction of the
minimal Higgs model. This would require us to connect two fermions with two
technifermions.

To accomplish this, let us introduce an effective four-fermion coupling

Lo =CG(Qrug)( T Q)
= — G [(@)(79) + (QivsQ)(Tivsq) (6.15)
— Y@ Q)@ q) —3( @15 @) (@Y 159)]

where the last equality was obtained by a Fierz transformation. In eq. (6.15), @
denotes a techniquark and g denotes a quark. When the techniquark pairs con-
dense (breaking the techni-chiral symmetry which breaks the electroweak symmetry
group in the desired way),

(@:Q5) = 2% (6.16)

Therefore, when we “shift” to the correct vacuum, we generate a fermion mass

term. That is, in eq. (6.15), ~G(QQ)(gq) — —GA3Gq, and we identify m, = GA3,

Where did this four-fermi coupling come from? Let us introduce a new gauge
theory whose matter multiplets contain both fermions and technifermions. Suppose
the gauge group is broken in the direction corresponding to generators which mix
fermions and technifermions. The corresponding gauge bosons, (generically called

* The s-wave 7r phase shift does go through 90° somewhere near 1 GeV, corresponding to a
resonance called the ¢, but the ¢ “width” is nearly as wide as its “mass”. The € is still a
questionable particle in the Particle Data Group compilations.




XgTc) couple quarks to techniquarks. Thus, if 1 consider the scattering §Q — gQ
via s-channel Xprc-exchange, then in the limit of large gauge boson imass, one
obtains the effective four-fermion operator

Q Q Q Q

9 a q q

given in eq. (6.15). This new gauge theory just described is called extended techni-
color (ETC), and the XgTC (there can be more than one depending on the model)
are the extended technicolor gauge bosons. If gprc is the FRXETC coupling and
Mgprc is the mass of Xgrc, then the strength of the effective four-fermion inter-
action is

G = -Q-ZEZ;T—C—. (6.17)
Mgt

Therefore, one obtains the following estimate for the quark mass

2 3
_ 9grcd

- (6.18)
Mgrc

Diagrammatically, the quark mass arises from

Xere

&

du Qp Qr 9r
Because the (z-(Qp mixing results from the condensation (GQ) # 0, the @ has
effectively acquired a dynamical mass, which must vanish like A k% as k — oo
inside the loop. As a result, the loop is convergent and one reproduces the result

of eq. (6.18).

Thus, in order to generaie fermion masses, We are forced to introduce a new
ETC gauge interaction. In order to see whether such a picture is phenomenolog-
ically viable, we must estimate the parameters MpTC and A. By analogy with
QCD, we first evaluate (gg). Using the well known relation from current algebra



[¢f. eq. (3.39)]
2m2 = H(my + mg){Tu + dd) (6.19)

with (uit) = (dd) (by isospin invariance), one obtains the numerical estimate:
(4q) ~ 17f3. Using large N arguments to scale this result to the technicolor
theory, and identifying Fr = v = 246 GeV as before, one obtains

00y = A% = \/% 1708 (6.20)
Thus, roughly speaking, [up to factors of O(1)],

17v*
5.
METC

Mg ~ (6.21)
We conclude that a 1 GeV quark mass would require Mgre =~ 16 TeV, while a 100
GeV top quark mass would require Mprc =~ 1.6 TeV.

So far, we have discussed the basic building blocks that are required in order
to generate electroweak symmetry breaking and fermion masses. Unfortunately, it
is not an easy matter to construct a specific ETC model which does not possess
some serious phenomenological problems. Perhaps the most serious problem of
such models is the existence of flavor changing neutral currents (FCNCs) which
are larger than what is allowed by current data. The main problem is that we
need to make use of the ETC generated four-fermion ¢gQQ interactions in order to
generate the full (non-diagonal) quark mass matrix. However, having done so, one
finds that the ETC interactions also generate four-fermion ¢g¢g interactions which
are not flavor diagonal. Unless one can construct a techni-GIM mechanism (in
analogy with the GIM mechanism of the Standard Model) to avoid the undesirable
FCN(C’s, one would be forced to raise Mprc to a large enough value to avoid
current experimental bounds. This requires rather large values of Mgrc, perhaps
above 1000 TeV, to avoid the strong FCNC constraints in the K-K system. But,
with such large ETC gauge boson masses, it is not possible (if the above estimates
are valid) to generate heavy quark masses. Perhaps one can arrange for a spectrum
of ETC masses corresponding to the spectrum of observed quark masses. One has
some freedom here since the FCNC constraints involving heavy quark systems are
not as severe as those related to the kaons. However, technicolor models that have
attempted to surmount these problems are extremely baroque. Furthermore, the
top quark mass poses a particular problem for model builders. The top quark
is now known to be much heavier than what was anticipated in the heyday of
technicolor model building. In addition to requiring a rather low ETC scale, a 100
GeV top quark mass generated by the mechanism described above almost certainly
produces too large a radiative correction to the electroweak p parameter,




There is a second problem which plagues the technicolor models described
above. In order to successfully overcome the FCNC problem, one must certainly
go beyond the minimal technicolor mode! described above. However, one then
typically finds that such models will possess techni-chiral symmetries much larger
than SU(2) x SU(2)g which are spontaneously broken by the technicolor forces.
This leads to additional Goldstone bosons (sometimes called technipions) which
are not be eaten by the W, Z. Like the charged pions and kaons of QCD, these
Goldstone bosons are in fact pseudo-Goldstone bosons (PGB’s), since when SU(3)
x SU(2) x U(1) gauge forces are taken into account, the unbroken “isospin” global
symmetry is perturbed, thereby giving mass to the Goldstone bosons. (By the same
mechanism, even in the absence of explicit quark masses, the charged pions in QCD
would not be massless due to the electromagnetic interactions.) Technipion masses
can also be generated from ETC interactions. In general, a catalog of technipions
would include: (i) a colorless, SU(2) X U(1) singlet called P, (ii) a colorless,
electrically neutral, SU(2) X U(1) nonsinglet called PO, (iii) colorless, electrically
charged states, P, (iv) color triplets (P3), and (v) color octets (Fs). Both P; and
Pg types of technipions can have a variety of electroweak quantum numbers.

The lightest technipions are colorless; they can only get mass from electroweak
(and ETC) interactions. Thus, P'%, P and P* are expected to be the lightest
technipions of the model and of immediate interest for phenomenology. Since the
technipions are associated with axial vector global symmetries which are spon-
taneously broken when the technicolor forces become strong, it follows that the
technipions are CP-odd scalars” Thus, the phenomenology of the PE, P? and P'°
is indistinguishable from that of the elementary charged and CP-odd neutral Higgs
bosons of some elementary multi-Higgs model. More precisely, the interactions of
the colorless technipions can always be reproduced as the low-energy limit of some
elementary multi-Higgs model, in which the masses of the CP-even Higgs scalars
are taken to infinity. This means that much of the phenomenology of pPE, P% and
P9 is the same as the phenomenology of H* and A° studied in Lecture 4! Since it
is desirable to have p = mjy/ (m?% cos? fy) = 1, the technicolor models of interest
have technipions which resemble the charged and CP-odd neutral Higgs bosons of

% 1t is possible to construct technicolor models in which some of the pseudo-Goldstone bosons
are CP-even. Consider a model in which technikaons exists. These would be analogous
to technipions in precisely the same way that the K and w mesons are related in ordinary
QCD. Then, if CP is conserved in the technicolor and extended technicolor interactions,
the actual neutral technikaon mass eigenstates would consist of a CP-even techni-Ks and
a CP-odd techni-Kp. Technipions which couple to CP-even final states could also arise in
extended technicolor models with CP-viclation.

t Some differences do arise in the technipion couplings to the fermions, since these depend In
detail on the structure of the ETC sector.



multi-doublet Higgs models.

The major problem with the above picture is the experimental non-ohservation
of any colorless technipions at ete™ colliders. The electroweak contribution to the
technipion masses is theoretically well understood and can be reliably computed
{(with some dependence on the technicolor model). One finds that

Unfortunately, the contributions from the ETC interactions are very model-
dependent, so that it is difficult to make precise predictions for the light tech-
nipion masses, In addition, P® and P'® are not necessarily mass eigenstates; in
general, one would expect them to mix. However, in the above picture, it is diffi-
cult to imagine a mechanism which would yield light (colorless) technipion masses
above about 40 GeV (Various model calculations invariably yield masses somewhat
smaller than this generous upper limit.) However, the LEP limits on the charged
Higgs boson (mpy: S 40 GeV) also apply to the charged technipions, P%. Thus,
if the above estimates of technipion masses are correct, then models with colorless
{charged) technipions are already ruled out.

In summary, the (standard) technicolor models, with their associated ETC
sectors, appear not to be viable models of electroweak symmetry breaking. Nev-
ertheless, many of the ideas behind the technicolor approach are quite appealing.
As a result, there have been a number of attempts to construct variations of the
technicolor idea which might be able to overcome the phenomenological problems
discussed above.

6.4 New Directions in Dynamical Symmetry Breaking

Composite Higgs bosons

An alternative approach to the theory of elementary Higgs bosons is one in
which the Higgs bosons are retained but are taken to be composite states. Such a
theory has been constructed by Kaplan, Georgi and collaborators. Their models
possess a number of features in common with technicolor. Again, one introduces
a new gauge force (“ultracolor”), and a set of new massless ultrafermions. The
resulting global symmetry of the model is broken dynamically to a smaller sub-
group by ultrafermion condensates at an energy scale where the ultracolor force
becomes strong. Once again, there are pseudo-Goldstone bosons corresponding to
the generators of the broken global symmetry. However, the new feature here is
that the electroweak symmetry remains unbroken at this stage. This is in contrast
to technicolor models in which the electroweak gauge symmetry is broken when
condensates of technifermions form. The pseudo-Goldstone bosons include both




COP-even and CP-odd scalars and are composites of the ultrafermions. In this ap-
proach, the electroweak symmetry is broken when a pseudo-Goldstone boson with
the same quantum numbers as those of the Standard Model Higgs boson acquires
a vacuum expectation value. This will occur because a Higgs potential can develop
when electroweak gauge interactions are taken into account. [To build a successful
model, one must expand the low-energy electroweak gauge group beyond SU(2) x
U(1).] Because the Higgs bosons of the model are pseudo-Goldstone bosons, their
masses are calculable, at least in part. In models which have been constructed,
one typically finds myg ~ mw.

As in technicolor, one must introduce additional {extended ultracolor) interac-
tions in order to generate fermion masses. However, these models are more flexible
than the technicolor models discussed in the previous section. In particular, one
can generate quark and lepton masses of an appropriate size, and at the same
time avoid large flavor-changing neutral currents. In addition, colorless pseudo-
Goldstone bosons can also be heavier than in traditional technicolor models, with
masses of order m or less. The phenomenology of these scalars has yet to be
explored in detail.

Walking Technicolor

Recently, the dynamics of technicolor has been reexamined in an approach
known as “walking technicolor”. This name derives from the idea that models can
be constructed in which the technicolor gauge coupling runs much more slowly
(than is typical for an asymptotically free coupling) above the scale of electroweak
interactions. This allows the extended technicolor scale to be much larger than in
standard extended technicolor models, thereby suppressing flavor-changing neutral
currents while not affecting the size of fermion masses which can be generated. At
the same time, it will be possible to generate phenomenologically viable fermion
masses. Said another way, such theories can raise the value of my [computed in
eq. (6.18)] without lowering the value of Mgrc. To do this, one must raise the
value of A in eq. (6.18) without altering the technicolor scale and changing the
value of Fr = v = 246 GeV. It is possible to do this because F5 is generated when
TC becomes strong and thus is sensitive to momentum scales at 1 TeV and below.
On the other hand, A in eq. (6.18) is being evaluated at the ETC scale. If one
could change the nature of the dynamics between the TC and ETC scale, then one
could boost A without affecting Fr.

I shall briefly sketch how these ideas are implemented. Consider the tech-
nifermion propagator

1
Ste) = AP — 5(p7) (6:23)




The generation of a dynamical mass simply means that X(p?) # 0. Roughly
speaking, Z(Arc) = Arc. To obtain an expression for ¥(p?) requires a dynamical
calculation. One can attempt to solve the Schwinger-Dyson equation in some
approximation and extract the behavior of $(p) at large p?. This can be done
in the ladder approximation by solving an integral equation which is represented
diagrammatically as follows:

i) frusard Fowa
%Y e

The results of such a calculation simplify considerably in the Landau gauge since
the wave function renormalization vanishes at one-loop. Hence we can take A(pH) =

1. One then finds
)-—1—\11—(!(}))/05

(), =, S (i.

\ 6.24
A (6.24)

where «, is the critical coupling above which techni-chiral symmetry is sponta-
neously broken and g ~ O{Arc). Finally, A evaluated at the ETC scale can be
estimated very roughly as follows [in the Landau gauge with A(k?) =1]:

A% = () = — lim Te (0] T ()$(0) 10)

[ dik T 1
I O S TR ST ) (6.25)
N 2y ()
= — d o ‘2-—-—-—-———-'
wt ) MRy

where N is the number of techni-colors. The last step is obtained after a Wick
rotation. In the case of interest, A is dominated by momenta at the ETC scale.
Since L(Ap¢) ~ Arc and falls with higher momentum scales, we can approximate

Merc

N / kdkY(E?). (6.26)

T

Ad ~

In typical asymptotically free theories, a{p) runs, so we expect a(p) € o
for most of the momentum range from Arc to Mgrc. Then, B(p) ~ 1 /p* and
A? ~ O(A%C) up to logarithmic corrections. However, in “walking” technicolor,
afp) runs so slowly that a(p) is not very different from a. all the way out to
p ~ Mgrc. In this case L(p) ~ 1/p which enhances A® by a factor of Mprc/Arc,
without affecting the value of Fr.




The dynamics of walking technicolor models are clearly very different from
the original technicolor models which were based on an analogy with QCD. The
walking technicolor approach and various related variations thereof present the
possibility of solving many of the phenomenological problems which plagued the
original technicolor models. By altering the dynamics of the strong technicolor
forces between the TC and ETC scales, it is possible to maintain the good features
of TC (mass generation for the W* and Z), while avoiding problems formerly
attributed to the ETC sector. It is still not clear whether realistic models can be
constructed which can produce a heavy enough top-quark, and is consistent with
all other phenomenological constraints.

Models of ¢ Condensates

The large value of the top-quark mass has led to other speculations. Suppose
there exists a four-fermion interaction t{q7 generated at some very high mass scale
(call it My ). With the ¢t-quark so heavy, one can imagine that there is a condensa-
tion of tf pairs in the vacuum. The low-energy effective theory (at scales far below
Mx) of such a picture looks identical to the Standard Model. This approach makes
one prediction: the masses of the Higgs boson and the top-quark are determined
(as a function of Mx). The predicted values of m; and my are given (roughly)
by the maximum allowed values shown in fig. 2 (for the appropriate value of My).
The reason is that this point in the my—mp plane corresponds to the peoint at which
the Landau poles of the Higgs self-coupling and H%{ Yukawa couplings are both at
My . Thus the predicted value for m; and my is almost completely insensitive to
the details of the physics at the My scale. However, implementing such a picture
requires extreme fine-tuning of the parameters which govern the physics at My,
since the natural value of the electroweak symmetry breaking scale would be at
My . Thus, in these approaches, the naturalness and hierarchy problems are not
addressed.

6.5 Prospects for Phenomenology in the Models Without Elementary
Scalars

The theoretical questions and problems of models of dynamical electroweak
symmetry breaking are difficult and challenging. Presumably, data from experi-
ments in the coming decade will provide some important clues as to whether nature
has chosen this course. The most interesting initial information will be obtained
as the precision electroweak measurements improve. Already, the precise measure-
ments of Z decay properties are beginning to impose interesting constraints on the
structure of technicolor models. At the end of this decade, experiments at the LHC
and 55C will begin to make measurements that will test the TeV energy scale for
the first time. Via the V'V fusion process {where V= W# or Z), one will be able



to test the Standard Model predictions for W W (and ZpZ1) scattering. It is
this channel which is most sensitive to the physics of the electroweak symmetry
breaking sector. For example, many technicolor models contain a pr and other
resonant states which couple to the V'V channel. Such phenomena would appear
as resonant enhancements of the V'V cross section and should be clearly visible at

the SSC.

Unfortunately, not all new physics at the TeV scale would lead to such dra-
matic results. In order to parametrize the most general VV interaction which is
theoretically consistent, one omits the Higgs boson and makes use of the low-energy
theorems for V'V scattering for s < s, where \/S¢ 1s the energy at which unitarity
is violated (as discussed at the end of Lecture 2). Unitarity is then repaired by in-
troducing a model. For example, one can parametrize the unknown physics which
repairs the unitarity with a chiral Lagrangian. Here, the longitudinal vector bosons
play the role analogous to the pions in the chiral Lagrangian of strong interactions.
These analyses suggest that there are parameter choices in the chiral Lagrangian
for which the detection of new physics in V'V scattering at the SSC may be very
difficult. Clearly, further work in this direction is important in order to determine _
how to best utilize the future supercolliders in exploring the origin of electroweak
symnetry breaking.
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Afterword

Particle physics is only now beginning to explore the TeV energy scale. This
energy scale holds the secrets to a number of crucial theoretical questions:

s Is electroweak symmetry breaking dynamical in origin or is the Higgs field
elementary?

Of course, I cannot rule out that an elementary Higgs boson is in reality a composite
state associated with physics at energy scales far above the scale of electroweak
symmetry breaking. If this is the case, we may never be able to distinguish between
these two alternatives. But if you believe in the “naturalness” principle, then
you believe that the elementary Higgs boson, if present, will be accompanied by
supersymmetry (or other new physics at the TeV scale), so that there will be no
ambiguity in the Higgs boson identity.

¢ Are mass generation mechanisms for fermions and vector bosons distinct?

The large value of m; provides very strong constraints on models and raises the
hope that the relevant energy scale controlling my and my is roughly the same.
Of course, if my ~ mw is “expected”, then we have to understand why all other
fermions are so light. It is not clear whether the solution to the fermion mass
spectrum puzzle lies at the TeV scale.

e Does the solution to the gauge hierarchy problem lie at the electroweak scale?

If it turns out that the SSC discovers one elementary Higgs boson as predicted by
the Standard Model and no other new physics, then there will have to be a major
reassessment of our overall picture of particle physics at high energies. Personally,
I find this possibility rather remote. However, this is one crucial question which
must be addressed by the next generation of supercolliders.

o Is there a “low-energy” window to Planck scale physics?

Here, “low-energy” supersymmetry may be the key that allow us to unlock some of
the secrets of the Planck scale. On the other hand, dynamical symmetry breaking
approaches, if correct, could impose a fundamental limit on our ability to look
beyond the next layer of compositeness.

The Standard Model has been a remarkable success story. Yet one crucial
aspect of it—the electroweak symmetry breaking sector—remains to be tested. It
is in this direction that most of the efforts of the particle physics community will be
focused during the coming decade. These are exciting times. Unlike the discovery
of the W* and Z, it is not clear what lies just ahead. Let us anticipate many
surprises in store as we begin to explore the TeV scale.






