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Abstract

In order to account for the existence of mass for the W± and Z gauge

bosons and the quarks and charged leptons, the gauge symmetry of the
electroweak interactions must be spontaneously broken. However, it is

presently unknown how nature chooses to implement the mechanism of
electroweak symmetry breaking. Although the elementary Higgs boson is

the simplest manifestation of this mechanism, future experimental searches
must be prepared for all eventualities. These lectures describe both the-

oretical and phenomenological aspects of electroweak symmetry breaking

and the attempt to uncover its secrets in the next generation of particle
physics experiments.
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Preface

After one year of running at LEP and roughly half a million Z0 events accu-

mulated, the Standard Model of particle physics continues to provide a remarkably

detailed and complete description of all observed high energy physics phenomena.

Yet, the final chapter of the story of the Standard Model is not yet written. The

top quark remains to be discovered; present limits from the CDF Collaboration

imply mt > 89 GeV. The t-quark is probably just a mundane detail; its discov-

ery simply requires higher luminosity or higher energy from our collider facilities.

(Nevertheless, the existence of such a heavy t-quark is intriguing and will play an

important role at various times in these lectures.) The final piece of the Standard

Model puzzle which remains to be uncovered is the mechanism for electroweak

symmetry breaking. These lectures will address what we know now and what we

hope to learn about the origins of electroweak symmetry breaking. The central

goal of particle physics in the 1990s and beyond is to uncover and elucidate the

mechanism by which the W and Z (and fermions) get their mass. By conducting

experiments that can probe the energy scale between 100 GeV and 1 TeV, there is

an expectation that the secrets of electroweak symmetry breaking can be uncov-

ered. Moreover, there are a number of theoretical arguments that strongly suggest

that this endeavor will also lead to the first hints of deviations from the Standard

Model. Thus, the exploration of the origins of electroweak symmetry breaking may

reveal new phenomena with far reaching implications for future theories of particle

physics.

These lectures are organized into six parts. In the first lecture, I will provide

an introduction to electroweak symmetry breaking (ESB). The discussion here

will be a little more general and formal than the introductory material given in

most particle physics textbooks. However, the insight obtained in Lecture 1 will

serve us well in future lectures. The simplest model incorporating ESB is the

Standard Model with one weak doublet of elementary scalar (Higgs) fields. Lecture

2 will discuss in detail the theoretical properties of the (minimal) Higgs boson—

its coupling to matter and gauge bosons, and expectations for its mass. Based

on the theoretical properties elucidated in Lecture 2, a detailed description of the

phenomenology of the Higgs boson is given in Lecture 3. There, I will summarize

the present experimental limits on the Higgs boson mass, and discuss the prospects

for discovering the Higgs boson at present and future colliders. Lecture 4 goes

beyond the minimal Higgs model. The theory and phenomenology of a two-Higgs-

doublet model is explored in detail, and some aspects of other non-minimal Higgs

sectors are mentioned briefly. The most compelling argument for the two-Higgs-

doublet model may be in the context of a supersymmetric extension of the Standard

Model. The Higgs sector of the minimal supersymmetric model is examined in
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Lecture 5; this provides one example of the possible connection between the origin
of ESB and the necessity for physics beyond the Standard Model. Finally, in

Lecture 6, I discuss an alternative approach to ESB in which the symmetry breaking
is induced by some dynamical mechanism other than the generation of a nonzero

vacuum expectation value for some elementary scalar field. The prospects for a
successful theoretical approach of this kind are considered. The lectures end with

some final thoughts on the implications of the search for the origins of electroweak
symmetry breaking.

Much of the material presented in these lectures is treated in a recently pub-

lished book, The Higgs Hunter’s Guide (Addison-Wesley Publishing Company,
Redwood City, CA, 1990), by John F. Gunion, Howard E. Haber, Gordon Kane

and Sally Dawson. I am grateful to my co-authors for the wisdom that I gained
from them during our collaboration, and I am pleased to be able to share some of

their insights in these lectures. On occasion, I will refer the reader to additional
information contained in this book (henceforth to be called the HHG). The HHG

also contains a comprehensive list of references to the original literature. There-

fore, I will not attempt to provide a complete bibliography here. Instead, at the
end of each lecture, I will simply provide some suggestions for further reading, and

list some of the key sources which treat the subject matter discussed in the lecture.

I would like to thank Paul Langacker for organizing such a stimulating and

enjoyable summer school, and for the hospitality that he and the local TASI or-

ganizing committee provided during my stay in Boulder. I am grateful for helpful
comments on Lecture 5 from Lance Dixon and on Lecture 6 from Tatsu Takeuchi.

Finally, I greatly appreciated the interest and the perceptive questions of the TASI-
90 students, which contributed greatly to my enjoyment in giving these lectures.
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1. Electroweak Symmetry Breaking—An Introduction

1.1 Consistent Quantum Field Theories with Massive Vector Bosons

We begin by reviewing the components of the Standard Model. The elemen-

tary fields of this model (which have been observed to date in nature) are: spin
1/2 matter fields (quarks and leptons) and spin 1 gauge fields (gluons, γ, W± and

Z). The theoretical structure which combines all these elements is renormalizable

quantum field theory (QFT). At this point, I shall quote a theorem [due to Corn-
wall, Levin, and Tiktopoulos] which states that quantum field theories involving

spin 1 gauge bosons are inconsistent (in perturbation theory) unless they belong

to one of the following classes:

(i) massless U(1) gauge theories (e.g., QED)

(ii) massive U(1) vector boson theories

(iii) non-abelian gauge theories.

or some combination of the above. Since the term m2Aa
µA

ua violates gauge in-

variance, (iii) apparently describes a massless theory. Inserting such a mass term
would result in a non-renormalizable, non-unitary theory.

How can I write down a consistent QFT containing theW± and Z? Indeed, the

absence of m2Aa
µA

ua means zero tree-level masses. Perhaps I can generate masses

with quantum mechanical (loop) corrections. Unfortunately, I can (apparently)
prove that vector boson mass generation is impossible. The “proof” goes as follows.

Consider the generic Lagrangian for a non-abelian gauge field theory:

L = −1
4F

a
µvF

µva − 1

2ξ
(∂µA

µ
a)

2 − ηa∗∂µDab
µ η

b . (1.1)

Here, the η and η∗ fields are Faddeev-Popov ghosts, and ξ is the gauge-fixing param-

eter. For simplicity, I have omitted matter (spin 0 and spin-1/2) fields, although

they can be easily included. Although the gauge-fixing term violates the gauge
invariance of the theory, the addition of the Faddeev-Popov term restores a more

general gauge invariance called BRS-invariance. Under the BRS transformation,

the fields of the model transform as follows

δBRSA
a
µ(x) = θDab

µ η
b(x)

δBRSη
a(x) = −1

2θgf
abcηbηc

δBRSη
a∗(x) = −θ

ξ
∂µAa

µ ,

(1.2)
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where θ is an anti-commuting parameter (θ2 = 0), andD is the covariant derivative

Dab
µ = δab∂µ + gfabcAc

µ . (1.3)

In particular, if we define the action to be

S =

∫
d4xL , (1.4)

then the equation of motion for the η∗ field is

δS

δη∗a
= −∂µDab

µ η
b = 0 , (1.5)

which implies that

δBRS(∂µA
µ
a) = −θ ∂S

δη∗a
. (1.6)

Consider the following Green’s function

〈0|T∂µAµ
a(x)η

∗
b (y) |0〉 ≡ N−1

∫
DAµDηDη∗∂µAµ

a(x)η
∗
b (y)e

iS , (1.7)

where

N ≡ 〈0|0〉 =
∫

DAµDηDη∗eiS (1.8)

is a field independent normalization factor. It is important to note that the right
hand side of eq. (1.7) constitutes a definition of the T-product. This definition
differs slightly from the conventional definition in that I am free to move the partial
derivative ∂µ outside the T-product without generating new terms. However, with

this definition one cannot invoke the equations of motion on an operator which
appears inside the T-product. The reason is clear: on the right hand side, we
functionally integrate over all field configurations, and not just those that satisfy
the equations of motion.

Since both the measure and the action S are BRS-invariant, I immediately get

〈0|TδBRS [∂µA
µ
a(x)] η

∗
b (y) |0〉+ 〈0|T∂µAµ

a(x)δBRS η
∗
b (y) |0〉 = 0 . (1.9)

Using eqs. (1.2) and (1.6), it follows that

〈0|T∂µAµ
a(x)∂νA

ν
b (y) |0〉 = −ξ 〈0|T δS

δη∗a(x)
η∗b (y) |0〉

= −iξδabδ4(x− y).

(1.10)

The last line is a consequence of the following result that is obtained by a functional
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summing a geometric series, where the nth term of the series contains the 1PI

bubble n times. The result is

Gµν(p) =
−i
(
gµν − pµpν

p2

)

p2[1 + Π(p2)]
− iξpµpν

p4
. (1.17)

Observe that the pole at p2 = 0 in the tree-level propagator [eq. (1.14)] is not

shifted in the exact two-point function. Hence, the gauge boson remains massless

even in the presence of interactions. This result is the origin of the (incorrect)

statement which is sometimes made which states that the photon is massless due

to gauge invariance.

The loophole in the above argument was first discovered by Schwinger. Con-

sider Π(p2) in the limit of p2 → 0. Suppose

Π(p2) ≃
p2→0

−g2v2
p2

. (1.18)

Then p2[1 +Π(p2)] = p2 − g2v2, and we see that the pole of Gµν(p) is no longer at

p2 = 0; it has been shifted to p2 = g2v2, which is the mass of the gauge boson! Is

the behavior of Π(p2) exhibited in eq. (1.18) possible? Yes! Since iΠµν(p) is the

sum of all 1PI diagrams, the behavior Π(p2) ≃ 1/p2 means that we can “cut” the

1PI diagram and expose a massless scalar excitation in the sum over intermediate

states. This is the massless Goldstone boson! The mass generation mechanism just

exhibited is called the Higgs mechanism. I shall now illustrate it with two simple

examples.

1.2 Vector Boson Mass Generation

Consider first an abelian gauge theory coupled to a complex elementary scalar

field (sometimes called scalar QED). This model is well treated in the standard

textbooks. The Lagrangian for the model is

L = −1
4FµνF

µν + (DµΦ)
∗(DµΦ)− λ

(
|Φ|2 − 1

2v
2
)2 − 1

2ξ
(∂µA

µ)2 , (1.19)

where Dµ ≡ ∂µ + ieAµ and Φ ≡
√

1
2(φ + iχ). Note that the classical potential is

minimized when |Φ| = v/
√
2. For definiteness, assume that the potential minimum

in field space points in the direction of φ. Then, we shift the fields: φ → φ+v, χ→
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