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Highlights of the history of the 2HDM

• T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D8, 1226

(1973).

The first motivated 2HDM: an attempt to find a new source of CP-violation.

• S.L. Glashow and S. Weinberg, Natural Conservation Laws For Neutral
Currents, Phys. Rev. D15, 1958 (1977).

To avoid neutral-Higgs-mediated tree-level flavor changing neutral currents

(FCNCs), all fermions of a given electric charge can couple to at most one

Higgs doublet (in a model with multiple scalar doublets).

• N.G. Deshpande and E. Ma, Pattern Of Symmetry Breaking With Two
Higgs Doublets, Phys. Rev. D18, 2574 (1978).

Parameters of the Higgs potential had to lie in an appropriate region of

parameter space to ensure that U(1)EM is not broken.



• J.F. Donoghue and L. F. Li, Properties Of Charged Higgs Bosons, Phys.

Rev. D19, 945 (1979).

The inventors of the 2HDM with Type-II Higgs-fermion interactions: one

Higgs doublet couples to up-type fermions and the other Higgs doublet

couples to down-type fermions.

• H.E. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale And
Possible Effects Of Higgs Bosons On Experimental Observables, Nucl.

Phys. B161, 493 (1979).

The inventors of the 2HDM with Type-I Higgs-fermion interactions: one

Higgs doublet couples to both up-type and down-type fermions, and the

other Higgs doublet does not couple at all to the fermions.

• L.J. Hall and M.B. Wise, Flavor Changing Higgs Boson Couplings, Nucl.

Phys. B187, 397 (1981).

The inventors of the Type-I and Type-II nomenclature.



• T.P. Cheng and M. Sher, Mass Matrix Ansatz and Flavor
Nonconservation in Models with Multiple Higgs Doublets, Phys. Rev.

D35, 3484 (1987).

The first realistic Type-III 2HDM (defined as a 2HDM with all possible

Higgs-fermion couplings allowed).

Other important 2HDM milestones

• the axion as the CP-odd scalar of a 2HDM [the Peccei-Quinn mechanism].

• the requirement of a second Higgs doublet in the minimal supersymmetric

extension of the Standard Model (MSSM).

In a supersymmetric extension of a one-doublet Standard Model, the

corresponding higgsinos are anomalous. Anomalies are canceled if the

higgsino doublets come in pairs with opposite sign hypercharges. Influential

early papers: Fayet; Inoue et al.; Flores and Sher; and Gunion and Haber.



Contributions to 2HDM Physics by A. Barroso and collaborators

• R. Santos and A. Barroso, Renormalization of two-Higgs-doublet models, Phys. Rev.

D56, 5366 (1997).

Renormalization of the CP-conserving, FCNC preserving 2HDM [with Model I and II

Yukawa couplings generalized to allow for different patterns of Higgs couplings to quarks

and leptons].

• J. Velhinho, R. Santos and A. Barroso, Tree level stability in two-Higgs-doublet models,

Phys. Lett. B322, 213 (1994).

• P.M. Ferreira, R. Santos and A. Barroso, Stablility of the tree-level vacuun in two-

Higgs doublet models against charge of CP spontaneous violation, Phys. Lett. B603, 219

(2004) [Erratum: B629, 219 (2004)].

• A. Barroso, P.M. Ferreira and R. Santos, Charge and CP symmetry breaking in

two-Higgs doublet models, Phys. Lett. B632, 684 (2006).

• A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models,

Phys. Lett. B652, 181 (2007).

A series of seminal papers on the vacuum structure of the 2HDM.



Basis-independent techniques for the 2HDM

• L. Lavoura and J.P. Silva, Fundamental CP violating quantities in a SU(2)×U(1)

model with many Higgs doublets, Phys. Rev. D50, 4619 (1994).

• F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and

fermions, Phys. Rev. D51, 3870 (1995).

Invariants that govern whether CP is violated (spontaneously or explicitly) in the 2HDM.

• S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet

model, Phys. Rev. D72, 035004 (2005) [Erratum: D72, 099902 (2005)].

• J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-

doublet model, Phys. Rev. D72, 095002 (2005).

• H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model.

II: The significance of tan β, Phys. Rev. D74, 015018 (2006) [Erratum: D74, 059905

(2006)].

A comprehensive basis-independent treatment of the 2HDM and an identification of the

physical observables. Related work by Ivanov and by Nishi is especially notable.



The MSSM Higgs sector

The Higgs sector of the MSSM (at tree-level) is a constrained Type-II

2HDM. One of the key parameters of the model is:

tanβ ≡ vu/vd ,

where vu [vd] is the vacuum expectation value of the neutral Higgs boson

that couples exclusively to up-type [down-type] fermions.

But, one-loop radiative effects generate corrections to the tree-level structure

of the model due to SUSY-breaking effects that enter in loops. In particular,

for MSSM Higgs couplings to fermions, Yukawa vertex corrections modify

the effective Lagrangian that describes the coupling of the Higgs bosons to

the third generation quarks:

−Leff = εij

[
(hb + δhb)b̄RHi

dQ
j
L + (ht + δht)t̄RQi

LHj
u

]
+Δhbb̄RQk

LHk∗
u + Δhtt̄RQk

LHk∗
d + h.c.

Thus, the MSSM Higgs-sector is actually a type-III model.



For example, in some MSSM parameter regimes (corresponding to large

tanβ and large supersymmetry-breaking scale compared to v), ∗

Δhb � hb

[
2αs

3π
μMg̃ I(M2

b̃1
,M2

b̃2
, M2

g̃ ) +
h2

t

16π2
μAt I(M2

t̃1
, M2

t̃2
, μ2)

]
.

The tree-level relation between mb and hb is modified (first pointed out by

Hempfling and later emphasized strongly by Carena, Olechowski, Pokorski

and Wagner):

hb =
√

2mb

v cosβ(1 + Δb)
,

where Δb ≡ (Δhb/hb) tanβ. That is, Δb is tan β-enhanced, and governs

the leading one-loop correction to the physical Higgs couplings to third

generation quarks. In typical models at large tanβ, Δb can be of order 0.1

or larger and of either sign.

∗I(a, b, c) = [ab ln(a/b) + bc ln(b/c) + ca ln(c/a)]/(a − b)(b − c)(a − c).



The paradox of tan β

If the 2HDM is realized in nature, it is likely that its effective Lagrangian

will consist of all possible dimension-four terms or less, consistent with the

electroweak gauge invariance—that is a general type-III model.

The general 2HDM consists of two identical (hypercharge-one)

scalar doublets Φ1 and Φ2. One can always redefine the basis,

so the parameter tan β ≡ v2/v1 is not meaningful!

Nevertheless, the literature is filled with 2HDM Feynman rules that depend

on tanβ and many phenomenological proposals to measure it! Hence, the

paradox.



The parameter tanβ makes sense only if there is a physical principle that

distinguishes between Φ1 and Φ2. Such a principle is model-dependent.

Any experimental study of 2HDM physics should avoid theoretical bias in

defining their measurements. The theoretical interpretation should be a

consequence of the observations.

To determine the relevant physical quantities for measurements, one must

develop “basis-independent” techniques. Inspired by a beautifully written

chapter on the 2HDM by G. Branco, L. Lavoura and J.P. Silva, in CP
Violation (Oxford University Press, Oxford, UK, 1999), my collaborators

(S. Davidson, J.F. Gunion and D. O’Neil) and I set out to develop the

basis independent formalism of the 2HDM in order to identify the relevant

invariant (basis-independent) quantities.

In particular, O’Neil and I were able to write down a complete set of

Feynman rules that completely avoid the parameter tanβ, while describing

all the CP-violating and flavor-violating phenomena in an elegant form.



The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:

V = m
2
11Φ

†
1Φ1 + m

2
22Φ

†
2Φ2 − [m

2
12Φ

†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}

A basis change consists of a U(2) transformation Φa → Uab̄Φb (and Φ†
ā = Φ†

b̄
U†

bā).

Rewrite V in a U(2)-covariant notation:

V = Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd)

where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies Yab̄ = (Ybā)
∗ and Zab̄cd̄ = (Zbādc̄)

∗. The

barred indices help keep track of which indices transform with U and which transform

with U†. For example, Yab̄ → Uac̄Ycd̄U
†
db̄

and Zab̄cd̄ → UaēU
†
fb̄

UcḡU
†
hd̄

Zef̄gh̄.



The most general U(1)EM-conserving vacuum expectation value (vev) is:

〈Φa〉 =
v√
2

(
0

v̂a

)
, with v̂a ≡ e

iη

(
cβ

sβ eiξ

)
,

where v ≡ 2mW/g = 246 GeV. The overall phase η is arbitrary (and can be removed

with a U(1)Y hypercharge transformation). If we define the hermitian matrix Vab̄ ≡ v̂av̂
∗̄
b ,

then the scalar potential minimum condition is given by the invariant condition:

Tr (V Y ) + 1
2v

2
Zab̄cd̄VbāVdc̄ = 0 .

The orthonormal eigenvectors of Vab̄ are v̂b and ŵb ≡ v̂ ∗
c̄ εcb (with ε12 = −ε21 = 1,

ε11 = ε22 = 0). Note that v̂∗̄
b ŵb = 0. Under a U(2) transformation, v̂a → Uab̄v̂b, but:

ŵa → (det U)
−1

Uab̄ ŵb ,

where det U ≡ eiχ is a pure phase. That is, ŵa is a pseudo-vector with respect to U(2).

One can use ŵa to construct a proper second-rank tensor: Wab̄ ≡ ŵaŵ
∗̄
b ≡ δab̄ − Vab̄.

Remark: U(2)∼= SU(2)×U(1)Y/Z2. The parameters m2
11, m2

22, m2
12, and λ1, . . . , λ7 are

invariant under U(1)Y transformations, but change under a “flavor”-SU(2) transformation;

whereas v̂ transforms under the full U(2) group.



A list of invariant and pseudo-invariant quantities

Y1 ≡ Tr (Y V ) , Y2 ≡ Tr (Y W ) ,

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄ WbāWdc̄ ,

Z3 ≡ Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā

are invariants, whereas the following (potentially complex) pseudo-invariants

Y3 ≡ Yab̄ v̂∗ā ŵb , Z5 ≡ Zab̄cd̄ v̂∗ā ŵb v̂∗c̄ ŵd ,

Z6 ≡ Zab̄cd̄ v̂∗ā v̂b v̂∗c̄ ŵd , Z7 ≡ Zab̄cd̄ v̂∗ā ŵb ŵ∗
c̄ ŵd .

transform as

[Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (det U)−2Z5 .

Physical quantities must be invariants. For example, the charged Higgs

boson mass is m2
H± = Y2 + 1

2Z3v
2. Pseudo-invariants are useful because

one can always combine two such quantities to create an invariant.



The invariants and pseudo-invariants in the generic basis are given by:

Y1 = m2
11c2β + m2

22s2β − Re(m2
12eiξ)s2β ,

Y2 = m2
11s2β + m2

22c2β + Re(m2
12eiξ)s2β ,

Y3 eiξ = 1
2(m2

22 − m2
11)s2β − Re(m2

12eiξ)c2β − i Im(m2
12eiξ) ,

Z1 = λ1c4β + λ2s4β + 1
2λ345s22β + 2s2β

[
c2βRe(λ6eiξ) + s2βRe(λ7eiξ)

]
,

Z2 = λ1s4β + λ2c4β + 1
2λ345s22β − 2s2β

[
s2βRe(λ6eiξ) + c2βRe(λ7eiξ)

]
,

Z3 = 1
4s22β [λ1 + λ2 − 2λ345] + λ3 − s2βc2βRe[(λ6 − λ7)eiξ] ,

Z4 = 1
4s22β [λ1 + λ2 − 2λ345] + λ4 − s2βc2βRe[(λ6 − λ7)eiξ] ,

Z5 e
2iξ

= 1
4s

2
2β [λ1 + λ2 − 2λ345] + Re(λ5e

2iξ
) + ic2βIm(λ5e

2iξ
) ,

−s2βc2βRe[(λ6 − λ7)e
iξ

] − is2βIm[(λ6 − λ7)e
iξ

)] ,

Z6 eiξ = −1
2s2β

[
λ1c2β − λ2s2β − λ345c2β − iIm(λ5e2iξ)

]
+ cβc3βRe(λ6eiξ) ,

+sβs3βRe(λ7e
iξ

) + ic
2
βIm(λ6e

iξ
) + is

2
βIm(λ7e

iξ
) ,

Z7 e
iξ

= −1
2s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β + iIm(λ5e

2iξ
)
]

+ sβs3βRe(λ6e
iξ

)

+cβc3βRe(λ7e
iξ

) + is
2
βIm(λ6e

iξ
) + ic

2
βIm(λ7e

iξ
) .

where λ345 ≡ λ3 + λ4 + Re(λ5 e2iξ).



The Higgs basis and parameter counting

Define new Higgs-doublet fields: H1 ≡ v̂∗
âΦa and H2 ≡ ŵ∗

âΦa Then,

〈H0
1〉 =

v√
2

, 〈H0
2〉 = 0 ,

where v = 246 GeV. Note that H0
1 is an invariant field, where H0

2 is pseudo-invariant

(corresponding to a possible rephasing of H2). The Higgs potential in this basis is:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.]

+1
2Z1(H

†
1H1)

2 + 1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2
+
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H

†
1H2 + h.c.

}
,

where the coefficients of V correspond to the (pseudo-)invariants introduced previously.

The potential minimum conditions are: Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2. Thus,

the independent degrees of freedom of the model comprise nine real parameters, Y1 (or

equivalently v), Y2, Z1, Z2, Z3, and Z4, |Z5|, |Z6| and |Z7|, and two relative phases,

arg(Z∗
5Z2

6) and arg(Z∗
5Z2

7). This yields 11 real parameters that are required to specify

the most general 2HDM.



The Higgs mass-eigenstate basis

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing a 3×3 squared-mass matrix that is defined in a basis in which

only one of the neutral Higgs bosons has a vacuum expectation value (the

so-called “Higgs basis”). The diagonalizing matrix is a 3×3 real orthogonal

matrix that depends on three angles: θ12, θ13 and θ23. Under a U(2)

transformation,

θ12 , θ13 are invariant, and eiθ23 → (det U)−1eiθ23 .

One can express the mass eigenstate neutral Higgs directly in terms of the

original shifted neutral fields, Φ0
a ≡ Φ0

a − vv̂a/
√

2:

hk =
1√
2

[
Φ0 †

ā (qk1v̂a + qk2ŵae
−iθ23) + (q∗k1v̂

∗
ā + q∗k2ŵ

∗
āe

iθ23)Φ0
a

]
,

for k = 1, . . . , 4, where h4 = G0. The invariant quantities qkj are given

by:



k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

Since ŵae
−iθ23 is a proper U(2)-vector, we see that the mass-eigenstate

fields are indeed U(2)-invariant fields. Inverting the previous result yields:

Φa =

⎛⎜⎜⎝
G+v̂a + H+ŵa

v√
2
v̂a +

1√
2

4∑
k=1

(
qk1v̂a + qk2e

−iθ23ŵa

)
hk

⎞⎟⎟⎠ .

If Im (Z∗
5Z2

6) = 0, then the neutral scalar squared-mass matrix can be

transformed into block diagonal form, containing the squared-mass of a

CP-odd neutral Higgs mass-eigenstate and a 2 × 2 sub-matrix that yields

the squared-masses of two CP-even neutral Higgs mass-eigenstates.



If Im (Z∗
5Z2

6) �= 0, we can write Z6 ≡ |Z6|eiθ6. Then the neutral scalar

mass-eigenstates do not possess definite CP quantum numbers, and the

three invariant mixing angles θ12, θ13 and φ6 ≡ θ6 − θ23 are non-trivial.

The angles θ13 and φ6 are determined modulo π from

tan θ13 =
Im(Z5 e−2iθ23)
2 Re(Z6 e−iθ23)

, tan 2θ13 =
2 Im(Z6 e−iθ23)

Z1 − A2/v2
,

where A2 ≡ Y2 + 1
2[Z3 + Z4 − Re(Z5e

−2iθ23)]v2 . These equations exhibit

multiple solutions (modulo π) corresponding to different orderings of the

hk masses. Finally,

tan 2θ12 =
2cos 2θ13 Re(Z6 e−iθ23)

c13 [c2
13(A2/v2 − Z1) + cos 2θ13 Re(Z5 e−2iθ23)]

.

For a given solution of θ13 and φ6, the two solutions for θ12 (modulo π)

correspond to the two possible relative mass orderings of h1 and h2.



The gauge boson–Higgs boson interactions

LV V H =

(
gmW W

+
μ W

μ−
+

g

2cW
mZZμZ

μ
)

Re(qk1)hk + emW A
μ
(W

+
μ G

−
+ W

−
μ G

+
)

−gmZs
2
W Z

μ
(W

+
μ G

−
+ W

−
μ G

+
) ,

LV V HH =

⎡⎣ 1
4g

2
W

+
μ W

μ−
+

g2

8c2
W

ZμZ
μ

⎤⎦ Re(q
∗
j1qk1 + q

∗
j2qk2) hjhk

+

⎡⎣ 1
2g

2
W

+
μ W

μ−
+ e

2
AμA

μ
+

g2

c2
W

(
1
2 − s

2
W

)2
ZμZ

μ
+

2ge

cW

(
1
2 − s

2
W

)
AμZ

μ

⎤⎦ (G
+

G
−

+ H
+

H
−

)

+

{⎛⎝ 1
2egA

μ
W

+
μ − g2s2W

2cW
Z

μ
W

+
μ

⎞⎠ (qk1G
−

+ qk2 e
−iθ23H

−
)hk + h.c.

}
,

LV HH =
g

4cW
Im(qj1q

∗
k1 + qj2q

∗
k2)Z

μ
hj

↔
∂μ hk − 1

2g

{
iW

+
μ

[
qk1G

−↔
∂

μ
hk + qk2e

−iθ23H
−↔

∂
μ

hk

]
+ h.c.

}

+

[
ieAμ +

ig

cW

(
1
2 − s2W

)
Zμ

]
(G+↔

∂μ G− + H+↔
∂μ H−) .



The cubic and quartic Higgs couplings

L3h = −1
2v hjhkh�

[
qj1q

∗
k1Re(q�1)Z1 + qj2q

∗
k2 Re(q�1)(Z3 + Z4) + Re(q

∗
j1qk2q�2Z5 e

−2iθ23)

+Re
(
[2qj1 + q∗j1]q∗k1q�2Z6 e−iθ23

)
+ Re(q∗j2qk2q�2Z7 e−iθ23)

]

−v hkG
+

G
−
[
Re(qk1)Z1 + Re(qk2 e

−iθ23Z6)

]
+ v hkH

+
H

−
[
Re(qk1)Z3 + Re(qk2 e

−iθ23Z7)

]

−1
2v hk

{
G−H+ eiθ23

[
q∗k2Z4 + qk2 e−2iθ23Z5 + 2Re(qk1)Z6 e−iθ23

]
+ h.c.

}
,

L4h = −1
8hjhkhlhm

[
qj1qk1q

∗
�1q

∗
m1Z1 + qj2qk2q

∗
�2q

∗
m2Z2 + 2qj1q

∗
k1q�2q

∗
m2(Z3 + Z4)

+2Re(q∗j1q∗k1q�2qm2Z5 e−2iθ23) + 4Re(qj1q∗k1q∗�1qm2Z6 e−iθ23) + 4Re(q∗j1qk2q�2q∗m2Z7 e−iθ23)

]

−1
2hjhkG

+
G
−
[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2Re(qj1qk2Z6 e

−iθ23)

]

−1
2hjhkH+H−

[
qj2q∗k2Z2 + qj1q∗k1Z3 + 2Re(qj1qk2Z7 e−iθ23)

]

−1
2hjhk

{
G
−

H
+

e
iθ23

[
qj1q

∗
k2Z4 + q

∗
j1qk2Z5 e

−2iθ23 + qj1q
∗
k1Z6 e

−iθ23 + qj2q
∗
k2Z7 e

−iθ23
]

+ h.c.

}

−1
2Z1G

+
G
−

G
+

G
− − 1

2Z2H
+

H
−

H
+

H
− − (Z3 + Z4)G

+
G
−

H
+

H
−

−1
2(Z5H+H+G−G− + Z∗

5H−H−G+G+) − G+G−(Z6H+G− + Z∗
6H−G+) − H+H−(Z7H+G− + Z∗

7H−G+) .



Example: Higgs self-couplings

Lightest neutral Higgs boson cubic self-coupling:

g(h1h1h1) = −3v
{

Z1c
3
12c

3
13 + (Z3 + Z4)c12c13|s123|2 + c12c13 Re(s2

123Z5e
2iθ23)

−3c2
12c

2
13 Re(s123Z6e

iθ23) − |s123|2 Re(s123Z7e
iθ23)

}
Lightest neutral Higgs boson quartic self-coupling:

g(h1h1h1h1) = −3
{

Z1c
4
12c

4
13 + Z2|s123|4 + 2(Z3 + Z4)c

2
12c

2
13|s123|2

+2c2
12c

2
13 Re(s2

123Z5e
2iθ23) − 4c3

12c
3
13 Re(s123Z6e

iθ23)

−4c12c13|s123|2 Re(s123Z7e
iθ23)

}
where s123 ≡ s12 + ic12s13.

Note that these quantities depend on U(2)-invariants. In particular Z5e
−2iθ23, Z6e

−iθ23

and Z7e
−iθ23 are U(2)-invariants!



The Higgs-fermion Yukawa couplings

The Yukawa Lagrangian can be written in terms of the quark mass-eigenstate fields as:

−LY = ULΦ̃
0
āη

U
a UR + DLK

†
Φ̃

−
ā η

U
a UR + ULKΦ

+
a η

D †
ā DR + DLΦ

0
aη

D †
ā DR + h.c. ,

where Φ̃ā ≡ (Φ̃0 , Φ̃−) = iσ2Φ
∗
ā and K is the CKM mixing matrix. The ηU,D are

3 × 3 Yukawa coupling matrices. We can construct invariant and pseudo-invariant matrix

Yukawa couplings:

κQ ≡ v̂∗
āηQ

a , ρQ ≡ ŵ∗
āη

Q
a ,

where Q = U or D. Inverting these equations yields: ηQ
a = κQv̂a + ρQŵa. Under a

U(2) transformation, κQ is invariant, whereas ρQ → (det U)ρQ.

By construction, κU and κD are proportional to the (real non-negative) diagonal quark

mass matrices MU and MD, respectively. In particular,

MU =
v√
2
κ

U
= diag(mu , mc , mt) , MD =

v√
2
κ

D †
= diag(md , ms , mb) .

The matrices ρU and ρD are independent complex 3 × 3 matrices.



The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons and the

Goldstone bosons to the quarks is:

−LY =
1

v
D

{
MD(qk1PR + q∗

k1PL) +
v√
2

[
qk2 [eiθ23ρD]†PR + q∗

k2 eiθ23ρDPL

]}
Dhk

+
1

v
U

{
MU(qk1PL + q

∗
k1PR) +

v√
2

[
q
∗
k2 e

iθ23ρ
U
PR + qk2 [e

iθ23ρ
U
]
†
PL

]}
Uhk

+

{
U
[
K[ρD]†PR − [ρU]†KPL

]
DH+ +

√
2

v
U [KMDPR − MUKPL] DG+ + h.c.

}
.

By writing [ρQ]†H+ = [ρQeiθ23]†[eiθ23H+], we see that the Higgs-fermion Yukawa

couplings depend only on invariant quantities: the diagonal quark mass matrices, ρQeiθ23,

and the invariant angles θ12 and θ13.

The couplings of the neutral Higgs bosons to quark pairs are generically CP-violating as a

result of the complexity of the qk2 and the fact that the matrices eiθ23ρQ are not generally

hermitian or anti-hermitian. LY also exhibits Higgs-mediated flavor-changing neutral

currents (FCNCs) at tree-level by virtue of the fact that the ρQ are not flavor-diagonal.

Thus, for a phenomenologically acceptable theory, the off-diagonal elements of ρQ must

be small.



The significance of tan β

So far, tan β has been completely absent from the Higgs couplings. This must be so,

since tan β is basis-dependent in a general 2HDM. However, a particular 2HDM may

single out a preferred basis, in which case tan β would be promoted to an observable. To

simplify the discussion, we focus on a one-generation model, where the Yukawa coupling

matrices are simply numbers.

As an example, the MSSM Higgs sector is a type-II 2HDM, i.e., ηU
1 = ηD

2 = 0.

A basis-independent condition for type-II is: ηD ∗
ā ηU

a = 0. In the preferred basis,

v̂ = (cos β , sin β eiξ) and ŵ = (− sin βe−iξ , cos β). Evaluating κQ = v̂∗ · ηQ and

ρQ = ŵ∗ · ηQ in the preferred basis, it follows that:

e
−iξ

tan β = −ρD ∗

κD
=

κU

ρU
,

where κQ =
√

2mQ/v. These two definitions are consistent if κDκU + ρD ∗ρU = 0 is

satisfied. But this is equivalent to the type-II condition, ηD ∗
ā ηU

a = 0.



Since ρQ is a pseudo-invariant, we can eliminate ξ by rephasing Φ2. Hence,

tan β =
|ρD|
κD

=
κU

|ρU | ,

with 0 ≤ β ≤ π/2. Indeed, tan β is now a physical parameter, and the |ρQ| are no

longer independent:

|ρD| =

√
2md tan β

v
, |ρU | =

√
2mu cot β

v
.

In the more general (type-III) 2HDM, tan β is not a meaningful parameter. Nevertheless,

one can introduce three tan β-like parameters:†

tan βd ≡ |ρD|
κD

, tan βu ≡ κU

|ρU | , tan βe ≡ |ρE|
κE

,

the last one corresponding to the Higgs-lepton interaction. In a type-III 2HDM, there is

no reason for the three parameters above to coincide.

†
Interpretation: In the Higgs basis, up and down-type quarks interact with both Higgs doublets. But, clearly there exists

some basis (i.e., a rotation by angle βu from the Higgs basis) for which only one of the two up-type quark Yukawa couplings is

non-vanishing. This defines the physical angle βu.



The MSSM Higgs sector is a type-III 2HDM

Recall the effective one-loop Higgs-fermion Yukawa couplings in the MSSM are of the

form:

−Leff = εij

[
(hb + δhb)b̄RHi

dQ
j
L

+ (ht + δht)t̄RQi
LHj

u

]
+Δhbb̄RQk

LHk∗
u +Δhtt̄RQk

LHk∗
d +h.c.

For illustrative purposes, we neglect CP violation in the following simplified discussion.

Keeping only the leading tan β-enhanced terms, Δb ≡ (Δhb/hb) tan β,

tan βb ≡ vρD

√
2 mb

� tan β

1 + Δb

, tan βt ≡
√

2 mt

vρU
� tan β

1 − tan β (Δht/ht)
.

Thus, supersymmetry-breaking loop-effects can yield observable differences between

tan β-like parameters that are defined in terms of basis-independent quantities. In

particular, the leading one-loop tan β-enhanced corrections are automatically incorporated

into:

gAbb̄ =
mb

v
tan βb , gAtt̄ =

mt

v
cot βt .



Conditions for neutral Higgs CP-conservation

• Im (Z∗
5Z2

6) = Im (Z∗
5Z2

7) = Im (Z∗
5(Z6 + Z7)2) = 0.

In this case a real basis exists in which all potentially complex coefficients

of the scalar potential in the Higgs basis are real (as the scalar potential

minimum condition fixes Y3 = −1
2Z6v

2).

• Z5(ρQ)2, Z6ρ
Q and Z7ρ

Q are hermitian (Q = U , D and E).

This guarantees that the couplings of the neutral Higgs boson to fermion

pairs are CP-invariant.

If the two conditions above are satisfied, then the neutral Higgs bosons are

eigenstates of CP, and the only source of CP-violation is the unremovable

phase in the CKM matrix that enters via the charged current interactions

mediated by either W±, H± or G± exchange.



A singular point in the parameter space of CP-conserving 2HDMs:

Y3 = Z6 = Z7 = 0 .

One neutral Higgs boson (call it h0
1) is CP-even, with couplings identical

to the SM Higgs boson. The other two neutral Higgs bosons (h0
2 and h0

3)

have opposite CP quantum numbers, but the Higgs self-interactions and

Higgs boson-vector boson interactions do not determine which of these two

neutral Higgs bosons is the CP-odd state.

To identify the CP-odd state, we must examine the Higgs-fermion Yukawa

couplings. CP-invariance requires that Im(Z5e
−2iθ23) = 0 and Z5(ρQ)2 is

hermitian. It then follows that:

(eiθ23ρQ)† = ± Z5

|Z5|e
−iθ23ρQ = ±eiθ23ρQ .

For one choice of sign, h0
3 is the CP-odd state, whereas for the other choice

of sign, h0
2 is the CP-odd state.



Conditions for custodial symmetry

In the Standard model, the scalar sector exhibits a global SU(2)L×SU(2)R

symmetry that is violated only by hypercharge gauge interactions and the

Higgs-fermion Yukawa couplings. This global symmetry would be exact

in the limit of g′ = 0 and ht = hb. In the custodial symmetric limit the

electroweak ρ-parameter,

ρ ≡ m2
W

m2
Z cos θW

= 1 ,

to all orders in perturbation theory. In models with only Higgs doublets,

with g′ �= 0 and ht �= hb, radiative corrections generate corrections to the

tree-level relation, ρ = 1.

Pomarol and Vega studied the implications of custodial symmetry for the

2HDM. They identified to separate realizations, but failed to realize that

their two cases were actually related by a change of Higgs basis! Clearly,

basis-independent methods can be valuable here!



In the 2HDM, custodial symmetry implies that the Higgs sector is CP-

conserving. In addition, it imposes one extra basis-independent condition:

Z4 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε56|Z5| , if Z6 �= 0 ,

ε57|Z5| , if Z7 �= 0 ,

±|Z5| , if Y3 = Z6 = Z7 = 0 .

where

ε56 ≡ Z5Z
∗ 2
6

|Z5||Z6|2 = +1 or − 1 , ε57 ≡ Z5Z
∗ 2
7

|Z5||Z7|2 = +1 or − 1 ,

for the cases of Z6 �= 0 and Z7 �= 0, respectively. Note that if either Z6

or Z7 is non-zero, then in the real basis, custodial symmetry implies that

Z4 = Z5 (the sign of Z5 is invariant in this case under O(2) transformations

between any two real bases). In contrast, if Y3 = Z6 = Z7 = 0, then one

can transform H2 → iH2 and change the sign of Z5 without leaving the real

Higgs basis. Hence, in this case custodial symmetry implies Z4 = ±|Z5|.



The charged Higgs boson mass is given by

M
2
H± = Y2 + 1

2Z3 .

If A0 is the CP-odd Higgs boson, one finds:

m2
A =

⎧⎨⎩Y2 + 1
2(Z3 + Z4 − ε56|Z5|) , if Z6 
= 0 ,

Y2 + 1
2(Z3 + Z4 − ε57|Z5|) , if Z7 
= 0 .

Hence custodial symmetry implies that

mH± = mA , if Z6 
= 0 or Z7 
= 0 .

If Y3 = Z6 = Z7 = 0, then

m
2
h2,h3

= Y2 + 1
2v

2
(Z3 + Z4 ∓ |Z5|) ,

in which case custodial symmetry implies that H± is mass-degenerate with either h2 or

h3. As previously noted, either h2 or h3 can be CP-even, depending on the sign choice

in the relation (eiθ23ρQ)† = ±eiθ23ρQ. Thus, for the case of Y3 = Z6 = Z7 = 0,

imposing the custodial symmetry can yield m2
H± = m2

H , where H is a CP-even Higgs

boson! This is the twisted scenario of Gerard and Herquet.



If the custodial symmetry is violated, then one-loop radiative corrections

can shift the tree-level result of ρ = 1. Denoting αT ≡ δρ = ρ − 1, we

find that the contribution of a general (possibly CP-violating) Higgs sector

to the T parameter [Haber and O’Neil, in preparation] is given by the basis

independent result:

T =
g2

64π2m2
W

[
3∑

k=1

|qk2|2F (m2
k, m2

H±) − q2
k1F (m2

i , m2
j)

]
+O(g′ 2) , i 
= j 
= k ,

where mk ≡ mhk
and

F (x, y) ≡ 1
2(x + y) − xy

x − y
ln(x/y) , F (x, x) = 0 .

This result is consistent with a recent computation of Grimus, Lavoura,

Ogreid and Osland.

One can check that in the custodial symmetric limit where g′ = 0 and

mH± = mA (or mH± = mH in the special case of Y3 = Z6 = Z7 = 0), the

Higgs contributions to T vanish exactly!



Lessons for future work

• If phenomena consistent with the 2HDM are found, we will not know a

priori the underlying structure that governs the model. In this case, one

needs a model-independent analysis of the data that allows for the most

general CP-violating Model-III.

• Instead of claiming that you have measured tan β (unless you wish to

test a specific theoretical framework), measure the physical parameters of

the model. Examples include the tanβ-like parameters introduced in the

one-generation model. (For three generations, the formalism becomes more

complicated. However, one has good reason to assume that the third

generation quark–Higgs Yukawa couplings dominate.)

• Which tanβ-like parameters will be measured in precision Higgs studies

at the ILC? How can one best treat the full three-generation model at

one-loop order?



• Even in the MSSM where tan β at tree-level is physically well-defined,

the scheme presented here might be useful in achieving a more direct

connection between model parameters and physical observables (when

radiative corrections are incorporated).

• The basis-independent formalism is very powerful in identifying physical

observables. It is also provides a valuable tool for studying additional

underlying symmetries that can constrain the model. For example, it

provides important insights into the nature of custodial symmetry, CP-

symmetry, and other possible discrete symmetries of the 2HDM.

Best wishes, Augusto, on your special day.

May you have a fruitful and Higgsful

retirement!
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