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Two-component spinors

First, recall that 4-vectors transform under Lorentz

transformations, Λµν, as p′µ = Λµνpν, where

Λ = exp
(
−i�θ·�s − i�ζ ·�k

)
,

where �ζ ≡ v̂ tanh−1 β and β ≡ |�v|/c. Under the same

Lorentz transformations, a generic field transforms as:

Φ′(x′) = MR(Λ)Φ(x) ,

where MR ≡ exp
(
−i�θ· �J − i�ζ · �K

)
are N × N

representation matrices of the Lorentz group. If we

define �J+ ≡ 1
2( �J + i �K) and �J− ≡ 1

2( �J − i �K), then

[J i± , Jj±] = iεijkJk± , [J i± , Jj∓] = 0 .

Thus, the representations are characterized by (j1, j2),
where the ji are half-integers. (0, 0) is a scalar and

(1
2,

1
2) is a four-vector. Of interest to us are the spinor

representations (1
2, 0) and (0, 1

2).



(1
2, 0): M = exp

(
− i

2
�θ·�σ − 1

2
�ζ ·�σ

)
but also (M−1)T = iσ2M(iσ2)−1

(0, 1
2): [M−1]† = exp

(
− i

2
�θ·�σ + 1

2
�ζ ·�σ

)
but also M∗ = iσ2[M−1]†(iσ2)−1

since (iσ2)�σ(iσ2)−1 = −�σ∗ = −�σT

Transformation laws of 2-component fields

ξ′α = Mα
β ξβ ,

ξ′α = [(M−1)T ]αβ ξβ ,

ξ̄′ α̇ = [(M−1)†]α̇β̇ ξ̄β̇ ,

ξ̄′α̇ = [M∗]α̇β̇ξ̄β̇ .

Consequently, one uses iσ2 =
(

0 1
−1 0

)
= εαβ = εα̇β̇

and (iσ2)−1 = −iσ2 = εαβ = εα̇β̇ to raise and

lower spinor indices: ξα = εαβ ξβ ; ξ̄α̇ = εα̇β̇ ξ̄β̇ , etc.
Dotted and undotted indices are related by hermitian

conjugation: ξ̄α̇ = (ξα)†.



Finally, we introduce the σ-matrices:

σµ
αβ̇

= (I2 ; �σ) , σµ α̇β = (I2 ; −�σ) ,

where I2 is the 2× 2 identity matrix. The spinor index

structure derives from the relations:

M †σµM = Λµνσν , M−1σµ(M−1)† = Λµνσν .

For example, (M †)α̇β̇σ
β̇γMγ

δ = Λµνσν α̇δ. Note

that matrices and their inverses have the same index

structure. Some useful identities:

σµαα̇ = εαβεα̇β̇σ
µ β̇β , σµ α̇α = εαβεα̇β̇σµ

ββ̇
.

The utility of σµ is that Lorentz 4-vectors can be built

from spinor bilinears:

χ′α(x′)σµ
αβ̇

ξ̄′ β̇(x′) = χα(x)[M−1σµ(M−1)†]αβ̇ξ̄
β̇(x)

= Λµν χ(x)ασν
αβ̇

ξ̄β̇(x) .



By now, you may have noticed that the spinor indices

can be suppressed as long as one adopts a summation

convention where we contract indices as follows:

α
α and α̇

α̇ .

For example,
ξη ≡ ξ

α
ηα,

ξ̄η̄ ≡ ξ̄α̇η̄
α̇,

ξ̄σµη ≡ ξ̄α̇σ
µα̇βηβ,

ξσ
µ
η̄ ≡ ξ

α
σ
µ

αβ̇
η̄
β̇
.

Note that for anticommuting spinors, e.g.,

ηξ ≡ ηαξα = −ξαη
α = +ξαηα = ξη .

It is also useful to note the behavior of spinor
products under hermitian conjugation:

(ξΣη)† = η̄Σrξ̄ , (ξΣη̄)† = ηΣrξ̄ ,

where in each case Σ stands for any sequence of

alternating σ and σ matrices, and Σr is obtained from

Σ by reversing the order of all of the σ and σ matrices.



From the sigma matrices, one can construct the

antisymmetrized products:

(σµν)αβ ≡ i

4
(
σµαγ̇σ

νγ̇β − σναγ̇σ
µγ̇β
)

,

(σµν)α̇β̇ ≡ i

4

(
σµα̇γσνγβ̇ − σνα̇γσµγβ̇

)
.

We may write the (1
2, 0) and (0, 1

2) transformation

matrices, respectively, as:

M = exp
(− i

2θ
µνσµν

)
,

(M−1)† = exp
(− i

2θ
µνσµν

)
,

where θµν is antisymmetric, with θij = εijkθk and

θi0 = ζi. Consider a pure boost of an on-shell spinor

from its rest frame to the frame where pµ = (Ep , �p),
with Ep = (|�p|2 + m2)1/2. Setting θij = 0,

M = exp
�
−1

2
�ζ ·�σ

�
=

�
p·σ
m

=
Ep +m− �σ·�p�

2m(Ep +m)
,

(M
−1

)
†
= exp

�
+1

2
�ζ ·�σ

�
=

�
p·σ
m

=
Ep +m+ �σ·�p�

2m(Ep +m)
.



Useful identities and Fierz relations

εαβε
γδ

= −δγαδδβ + δ
δ
αδ

γ
β, εα̇β̇ε

γ̇δ̇
= −δγ̇α̇δδ̇β̇ + δ

δ̇
α̇δ

γ̇

β̇
,

σµαα̇σ
β̇β
µ = 2δβαδ

β̇
α̇ ,

σ
µ
αα̇σµββ̇ = 2εαβεα̇β̇ , σ

µα̇α
σ
β̇β
µ = 2ε

αβ
ε
α̇β̇
,

[σ
µ
σ
ν
+ σ

ν
σ
µ
]α
β

= 2g
µν
δ
β
α ,

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇β̇ ,

σ
µ
σ
ν
σ
ρ
= g

µν
σ
ρ − g

µρ
σ
ν
+ g

νρ
σ
µ

+ iε
µνρκ

σκ ,

σ
µ
σ
ν
σ
ρ
= g

µν
σ
ρ − g

µρ
σ
ν
+ g

νρ
σ
µ − iε

µνρκ
σκ .

Computations of cross sections and decay rates generally require

traces of alternating products of σ and σ matrices:

Tr[σ
µ
σ
ν
] = Tr[σ

µ
σ
ν
] = 2g

µν
,

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ) ,

Tr[σ
µ
σ
ν
σ
ρ
σ
κ
] = 2 (g

µν
g
ρκ − g

µρ
g
νκ

+ g
µκ
g
νρ − iε

µνρκ
) .

Traces involving an odd number of σ and σ matrices cannot arise,

since there is no way to connect the spinor indices consistently.



We shall deal with both commuting and anticommuting spinors,

which we shall denote generically by zi. Then, the following

identities hold

z1z2 = −(−1)Az2z1

z̄1z̄2 = −(−1)
A
z̄2z̄1

z1σ
µz̄2 = (−1)Az̄2σ

µz1

z1σ
µσνz2 = −(−1)Az2σ

νσµz1

z̄1σ
µ
σ
ν
z̄2 = −(−1)

A
z̄2σ

ν
σ
µ
z̄1

z̄1σ
µσρσνz2 = (−1)Az2σ

νσρσµz̄1 ,

where

(−1)A ≡
��� +1 , commuting spinors,

−1 , anticommuting spinors.

Finally, the Fierz identities are given by:

(z1z2)(z3z4) = −(z1z3)(z4z2) − (z1z4)(z2z3) ,

(z̄1z̄2)(z̄3z̄4) = −(z̄1z̄3)(z̄4z̄2) − (z̄1z̄4)(z̄2z̄3) ,

(z1σ
µz̄2)(z̄3σµz4) = −2(z1z4)(z̄2z̄3) ,

(z̄1σ
µ
z2)(z̄3σµz4) = 2(z̄1z̄3)(z4z2) ,

(z1σ
µz̄2)(z3σµz̄4) = 2(z1z3)(z̄4z̄2) .



Properties of fermion fields

The (1
2, 0) spinor field ξα(x) describes a neutral

fermion. The free-field Lagrangian is:

L = iξ̄σµ∂µξ − 1
2m(ξξ + ξ̄ξ̄) .

On-shell, ξ satisfies the free-field Dirac equation,

iσµα̇β∂µξβ = mξ̄α̇. The solution is:

ξα(x) =
∑
s

∫
d3�p

(2π)3/2(2Ep)1/2
[
xα(�p, s)a(�p, s)e−ip·x

+yα(�p, s)a†(�p, s)eip·x
]

,

and ξ̄α̇ = (ξα)†. The two-component fermion wave

functions, x and y are commuting spinors that satisfy

the momentum-space Dirac equation:

(p·σ)α̇βxβ = mȳα̇ , (p·σ)αβ̇ȳ
β̇ = mxα ,

(p·σ)αβ̇x̄
β̇ = −myα , (p·σ)α̇βyβ = −mx̄α̇ .



The spin or helicity is labeled by s = ±1
2. For spin,

we quantize in the rest frame along a fixed axis ŝ ≡
(sin θ cos φ , sin θ sinφ , cos θ). Eigenstates of 1

2�σ ·ŝ
are denoted by χs, i.e., 1

2�σ·ŝχs = sχs,. Explicitly,

χ1/2(ŝ) =

⎛⎜⎝ cos
θ

2
eiφ sin

θ

2

⎞⎟⎠ , χ−1/2(ŝ) =

⎛⎜⎝−e−iφ sin
θ

2
cos

θ

2

⎞⎟⎠ .

Introduce the spin 4-vector for massive fermions. For

fixed-axis spin states, Sµ ≡ (0 ; ŝ) in the rest frame,

boosting to the frame where p = (Ep ; �p),

Sµ =
(

�p·ŝ
m

; ŝ +
(�p·ŝ) �p

m(E + m)

)
.

Helicity states are defined to be eigenstates of 1
2�σ·p̂,

i.e., 1
2�σ ·p̂χλ = λχλ (λ = ±1

2). The explicit forms for

χλ are the same as above, with θ and φ the polar and

azimuthal angles of p̂. The spin 4-vector is defined by

taking ŝ = p̂. Thus, Sµ = 1
m (|�p| ; Ep̂). In the high

energy limit, Sµ = pµ/m + O(m/E).



Explicit construction of the x and y wave functions

The Dirac equation implies that in the rest frame

x1 = y1 and x2 = y2. That is, xα(�p = 0) = yα̇(�p = 0)
are linear combinations of the χs (s = ±1

2).

Choose xα(�p = 0, s) = yα̇(�p = 0, s) =
√

mχs.

Boosting to an arbitrary frame yields:

xα(�p, s) =
√

p·σ χs , yα(�p, s) = 2s
√

p·σ χ−s ,

x̄α̇(�p, s) = −2s
√

p·σ χ−s , ȳα̇(�p, s) =
√

p·σ χs .

For helicity spinors, replace s with λ. For massless

fermions, we must use helicity spinors. Putting E = |�p|
and m = 0,

xα(�p, λ) =
√

E/2 (1 − 2λ) χλ ,

yα(�p, λ) =
√

E/2 (1 + 2λ) χ−λ ,

x̄α̇(�p, λ) =
√

E/2 (1 − 2λ) χ−λ ,

ȳα̇(�p, λ) =
√

E/2 (1 + 2λ) χλ .

For a given λ, only one helicity component of x and y

survives.



Projection operators

xα(�p, s)x̄β̇(�p, s) = 1
2(pµ − 2smSµ)σ

µ

αβ̇
,

ȳα̇(�p, s)yβ(�p, s) = 1
2(p

µ + 2smSµ)σα̇βµ ,

xα(�p, s)y
β
(�p, s) = 1

2

�
mδα

β − 2s[S ·σ p·σ]α
β
�
,

ȳ
α̇
(�p, s)x̄β̇(�p, s) = 1

2

�
mδ

α̇
β̇ + 2s[S ·σ p·σ]

α̇
β̇

�
.

For massless spinors, the helicity projection operators are:

xα(�p, λ)x̄β̇(�p, λ) = (1
2 − λ)p·σαβ̇ ,

ȳα̇(�p, λ)yβ(�p, λ) = (1
2 + λ)p·σα̇β ,

xα(�p, λ)y
β
(�p, λ) = 0 ,

ȳ
α̇
(�p, λ)x̄β̇(�p, λ) = 0 .

Summing over s (or λ) yields:�
s

xα(�p, s)x̄β̇(�p, s) = p·σαβ̇ ,�
s

ȳα̇(�p, s)yβ(�p, s) = p·σα̇β ,
�
s

xα(�p, s)y
β(�p, s) = mδα

β ,

�
s

ȳα̇(�p, s)x̄β̇(�p, s) = mδα̇β̇ .



Fermion mass diagonalization

The Lagrangian of a collection of free anti-commuting spin-1/2

“interaction-eigenstate”fields ξ̂αi(x), labeled by flavor index i:

L = i
¯̂
ξ iσµ∂µξ̂i − 1

2M
ijξ̂iξ̂j − 1

2Mij
¯̂
ξ i

¯̂
ξ j ,

where Mij ≡ (Mij)∗ is a complex symmetric matrix. We shall

rewrite this in terms of mass-eigenstate fields ξ(x) = Ω−1ξ̂(x),

where Ω is unitary and chosen such that

ΩTM Ω = m = diag(m1,m2, . . .).

The Takagi factorization of linear algebra states that for an

arbitrary complex symmetric matrix M , one can always find such

a (complex) unitary matrix Ω. To compute the values of the

diagonal elements of m, one may simply note that

ΩTMM†Ω∗ = m2.

MM† is hermitian, and thus it can be diagonalized by a unitary

matrix. Thus, the mi of the Takagi factorization are the non-

negative square-roots of the eigenvalues of MM†

In terms of the mass eigenstates,

L = iξ̄
i
σ
µ
∂µξi − 1

2mi(ξiξi + ξ̄
i
ξ̄
i
) .



The Dirac fermion

A charged fermion has twice the number of degrees of freedom

as the neutral fermion. If χ and η are oppositely charged and

degenerate in mass, then the corresponding free-field Lagrangian

is:

L = iχ̄σµ∂µχ+ iη̄σµ∂µη −m(χη + χ̄η̄) .

Together, χ and η̄ constitute a single Dirac fermion. The

corresponding mass matrix is ( 0 m
m 0 ). One could diagonalize this

a la Takagi, although the corresponding mass eigenstates would

not be eigenstates of charge.

The solutions to the corresponding Dirac field equations are:

χα(x) =
�
s

�
d3�p

(2π)3/2(2Ep)1/2

	
xα(�p, s)a(�p, s)e

−ip·x

+yα(�p, s)b
†
(�p, s)e

ip·x

,

ηα(x) =
�
s

�
d3�p

(2π)3/2(2Ep)1/2

	
xα(�p, s)b(�p, s)e

−ip·x

+yα(�p, s)a
†
(�p, s)e

ip·x

,



More generally, for a collection of interaction-eigenstate charged

fermion pairs χ̂αi(x), η̂
i
α(x), the free-field Lagrangian is:

L = i ¯̂χiσµ∂µχ̂i + i ¯̂η iσ
µ∂µη̂

i −Mi
jχ̂iη̂

j −Mi
j ¯̂χi ¯̂η j ,

where Mi
j is an arbitrary complex matrix, and Mi

j ≡ (Mi
j)

∗.

We diagonalize the mass matrix by introducing mass-eigenstates

χ(x) = L−1χ̂(x) and η(x) = R−1η̂(x) where L and R are

unitary matrices that are chosen such that:

L
T
MR = m = diag(m1,m2, . . .),

with the mi real and non-negative. This is the singular-value

decomposition of linear algebra, which states that for any complex

matrix M , the unitary matrices L and R above exist. Due to

LT (MM†)L∗ = R†(M†M)R = m2 ,

the mi are the non-negative square roots of the eigenvalues of

MM† (or equivalently,M†M). In terms of the mass eigenstates,

L = iχ̄iσµ∂µχi + iη̄iσ
µ∂µη

i −mi(χiη
i + χ̄iη̄i) .

The mass matrix now consists of 2 × 2 blocks
� 0 mi
mi 0

�
along

the diagonal.



Feynman rules for 2-component fermions

The rules for assigning two-component external state spinors are

then as follows.

• For an initial-state left-handed (1
2, 0) fermion: x.

• For an initial-state right-handed (0, 1
2) fermion: ȳ.

• For a final-state left-handed (1
2, 0) fermion: x̄.

• For a final-state right-handed (0, 1
2) fermion: y.

Note that, in general, the two-component external state

fermion wave functions are distinguished by their Lorentz

group transformation properties, rather than by their particle

or antiparticle status as in four-component Feynman rules.

These rules are summarized in the mnemonic diagram below:

x x̄

ȳ y

L (1
2, 0) fermion

R (0, 1
2) fermion

Initial State Final State



Propagators

〈0|Tξα(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

�
s

xα(�p, s)x̄β̇(�p, s)

〈0|T ξ̄α̇(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

�
s

ȳ
α̇
(�p, s)y

β
(�p, s)

〈0|T ξ̄α̇(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

�
s

ȳα̇(�p, s)x̄β̇(�p, s)

〈0|Tξα(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

�
s

xα(�p, s)y
β
(�p, s)

where FT indicates the Fourier transform from position to

momentum space. These results have an obvious diagrammatic

representation:

(a) (b)

p

αβ̇

p

β α̇

ip·σαβ̇
p2 −m2

ip·σα̇β
p2 −m2

(c) (d)
β̇ α̇ αβ

im

p2 −m2
δ
α̇
β̇

im

p2 −m2
δα

β

Arrows on fermion lines always run away from dotted indices at a

vertex and toward undotted indices at a vertex.



The arrow-preserving propagators can be described by one

diagram:

β̇ α

p ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

Here the choice of the σ or the σ version of the rule is uniquely

determined by the height of the indices on the vertex to which

the propagator is connected.

For the case of charged fermions, we write down the rules for

propagators involving the charged pair χ and η:

χ χ ηη

p

αβ̇ β̇ α

p

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

χ η ηχ
α̇ β̇ βα

im

p2 −m2
δ
α̇
β̇

im

p2 −m2
δα

β



Fermion–scalar interactions

The most general set of interactions with the scalars of the theory

φ̂I are then given by:

Lint = −1
2Ŷ

Ijk
φ̂Iψ̂jψ̂k − 1

2ŶIjkφ̂
I ¯̂
ψ
j ¯̂
ψ
k
,

where ŶIjk = (Ŷ Ijk)∗ and φ̂I = (φ̂I)
∗. The flavor index I

runs over a collection of real scalar fields ϕ̂i and pairs of complex

scalar fields Φ̂j and Φ̂j ≡ (Φ̂j)
∗ [where a complex field and its

conjugate are counted separately]. The Yukawa couplings Ŷ Ijk

are symmetric under interchange of j and k.

The mass-eigenstate basis ψ is related to the interaction-

eigenstate basis ψ̂ by a unitary rotation:

ψ̂ ≡


���
ξ̂

χ̂

η̂

���� = Uψ ≡


���
Ω 0 0

0 L 0

0 0 R

����

���
ξ

χ

η

���� ,

where Ω, L, and R are constructed as described previously.

Likewise for the scalars: φ̂ = V φ. Thus, in terms of mass-

eigenstate fields:

Lint = −1
2Y

Ijk
φIψjψk − 1

2YIjkφ
I
ψ̄
j
ψ̄
k
,

where Y Ijk = VL
IUm

jUn
kŶ Lmn.



Fermion–gauge boson interactions

In the gauge-interaction basis for the left-handed two-component

fermions the corresponding interaction Lagrangian is given by

Lint = −gaAµ
a
¯̂
ψ
i
σµ(T

a
)i
j
ψ̂j ,

where the index a labels the (real or complex) vector bosons Aµ
a

and is summed over. If the gauge symmetry is unbroken, then

the index a runs over the adjoint representation of the gauge

group, and the (T a)i
j are hermitian representation matrices∗ of

the gauge group acting on the left-handed fermions. There is a

separate coupling ga for each simple group or U(1) factor of the

gauge group G.

In the case of spontaneously broken gauge theories, one must

diagonalize the vector boson squared mass matrix. The above

form still applies where Aa
µ are gauge boson fields of definite

mass, although in this case for a fixed value of a, gaT
a is some

linear combination of the original gaT
a of the unbroken theory.

Henceforth, we assume that that the Aa
µ are the gauge boson

mass-eigenstate fields.

∗For a U(1) gauge group, the T a are replaced by real numbers

corresponding to the U(1) charges of the left-handed (1
2, 0) fermions.



In terms of mass-eigenstate fermion fields,

Lint = −Aµ
aψ̄

i σµ(G
a
)i
j
ψj ,

where Ga = gaU
†T aU (no sum over a).

The above is general. However, it is useful to consider separately

the case of gauge interactions of charged Dirac fermions. Consider

pairs of left-handed (1
2, 0) interaction-eigenstate fermions χ̂i and

η̂i that transform as conjugate representations of the gauge

group (hence the difference in the flavor index heights). The

Lagrangian for the gauge interactions of Dirac fermions can be

written in the form:

Lint = −gaAµ
a
¯̂χi σµ(T

a)i
jχ̂j + gaA

µ
a
¯̂η i σµ(T

a)j
iη̂j ,

where the Aa
µ are gauge boson mass-eigenstate fields. Here we

have used the fact that if (T a)i
j are the representation matrices

for the χ̂i, then the η̂i transform in the complex conjugate

representation with generator matrices −(T a)∗ = −(T a)T . In

terms of mass-eigenstate fermion fields,

Lint = −Aµ
aχ̄

i σµ(G
a
L)i

jχj + Aµ
aη̄ i σµ(G

a
R)j

iηj ,

whereGa
L = gaL

†T aL andGa
R = gaR

†T aR (no sum over a).



Feynman rules for fermion interactions

I
k, β

j, α

−iY Ijkδα
β or − iY Ijkδβ

α

I

k, β̇

j, α̇

−iYIjkδα̇β̇ or − iYIjkδ
β̇
α̇

Fermion–scalar interactions

a, µ
j, β

i, α̇

−i(Ga)i
j σα̇βµ or i(Ga)i

j σµβα̇

a, µ
β

α̇

−i(Ga
L)i

j σα̇βµ or ig(Ga
L)i

j σµβα̇

χi

χj

a, µ
β

α̇

i(Ga
R)j

i σα̇βµ or −ig(Ga
R)j

i σµβα̇

ηi

ηj

Fermion–gauge boson interactions



Rules for invariant amplitudes

• When computing an amplitude for a given process, all possible

diagrams should be drawn that conform with the rules for

external wave functions, propagators, and interactions.

• Starting from any external wave function spinor, or from

any vertex on a fermion loop, factors corresponding to each

propagator and vertex should be written down from left to

right, following the line until it ends at another external state

wave function or at the original point on the fermion loop.

• If one starts a fermion line at an x or y external state spinor,

it should have a raised undotted index in accord with our

summation conventions. Or, if one starts with an x̄ or ȳ,

it should have a lowered dotted spinor index. If one ends

with an x or y external state spinor, it will have a lowered

undotted index, while if one ends with an x̄ or ȳ spinor, it

will have a raised dotted index. The preceding determines

whether a σ or σ rule should be used.

• A relative minus sign is imposed between terms contributing

to a given amplitude whenever the ordering of external state

spinors (written left-to-right) differs by an odd permutation.

• Each closed fermion loop gets a factor of −1.



With only a little practice, one can write down amplitudes

immediately with all spinor indices suppressed. Amplitudes

generated according to these rules will contain objects of the

form:

M = z1Σz2

where z1 and z2 are each commuting external spinor wave

functions x, x̄, y, or ȳ, and Σ is a sequence of alternating σ and

σ matrices. The complex conjugate of this quantity is given by

M∗ = z̄2Σrz̄1

where Σr is obtained from Σ by reversing the order of all the σ

and σ matrices, and using the same summation convention for

suppressed spinor indices. We reiterate that:

α
α and α̇

α̇

governs the summation of undotted and dotted indices.

Note that different graphs contributing to the same process

will often have different external state wave function spinors,

with different arrow directions, for the same external fermion.

Furthermore, there are no arbitrary choices to be made for arrow

directions. Instead, one must add together all Feynman graphs

that obey the rules.



Self-energy functions and pole masses

Consider a theory with N left-handed (1
2, 0) fermion degrees of

freedom (and the associated right-handed (0, 1
2) fermions). After

diagonalization of the fermion mass matrix, the mass-eigenstates

consist of neutral Majorana fermions ξk (k = 1, . . . N − 2n)

and Dirac fermion pairs χ� and η� (� = 1, . . . , n). With respect

to this basis, the symmetric N × N tree-level fermion mass

matrix, mij, is made up of diagonal elements mk and 2 × 2

blocks
� 0 m�
m� 0

�
along the diagonal, where the mk and m� are

real and non-negative. It is useful to define mij ≡ mij in order

to maintain the convention that two repeated flavor indices are

summed when one index is raised and the other is lowered. Note

that mikm
kj = mikmkj = m2

i δ
j
i is a diagonal matrix.

The full, loop-corrected Feynman propagators are defined by

〈0|Tψαi(x)ψ̄jβ̇(y) |0〉FT = ip·σαβ̇ Ci
j(p2) ,

〈0|Tψ̄α̇i(x)ψβj (y) |0〉FT = ip·σα̇β (CT)
i

j(p
2) ,

〈0|Tψ̄α̇i(x)ψ̄j
β̇
(y) |0〉FT = δ

α̇
β̇ D

ij
(p

2
) ,

〈0|Tψαi(x)ψβj (y) |0〉FT = δα
β Dij(p

2) .



β̇α

ji

p

ip·σαβ̇ Ci
j

α̇ β

i j

p

ip·σα̇β (CT )ij

α̇ β̇

i j

iδα̇β̇ Dij

α β

i j

δα
β Dij

Starting at tree-level the full propagator functions are given by:

Ci
j = δi

j/(p2 −m2
i ) + . . .

D
ij

= m
ij
/(p

2 −m
2
i ) + . . .

Dij = mij/(p
2 −m

2
i ) + . . . ,

with no sum on i in each case. They are functions of the external

momentum invariant p2 and of the masses and couplings of the

theory. In general, Dij is a complex symmetric matrix, and Dij

can be obtained from it by taking the complex conjugate of all

Lagrangian parameters appearing in its calculation, but not taking

the complex conjugates of Euclideanized loop integral functions,

whose imaginary (absorptive) parts correspond to fermion decay

widths to multi-particle intermediate states.

We organize the computation of the full propagators in terms

of one-particle irreducible (1PI) self-energy functions, which

are given by the sum of all Feynman diagrams (excluding the

tree-level) that contribute to the 1PI two-point Green functions.



p

βα̇

i j

ip·σα̇β(AT)ij

p

β̇α

i j

ip·σαβ̇Ai
j

α β

i j

−iδαβBij

α̇ β̇

i j

−iδα̇β̇Bij

A first diagrammatic identity (with momentum p flowing from

right to left):

β̇α

ji
= β̇α

ji

γ̇α

ki

δ

�

β̇

j

γ̇α

ki

δ̇

�

β̇

j

γα

ki

δ

�

β̇

j

γα

ki

δ̇



β̇

j

=

+ +

+ +

Similar diagrammatic identities can be constructed for the three

other full loop-corrected propagators. The resulting four equations

can be neatly summarized by the following matrix diagrammatic

identity:( )
=

( )[(
1 0

0 1

)

+

( )( )]



The corresponding algebraic representation can be written as

F = T + TSF , where F is the matrix of full loop-corrected

propagators, T is the matrix of tree-level propagators and S is

the matrix of self-energy functions. Multiplying on the left by

T−1 and on the right by F−1 yields T−1 = F−1 + S. Thus,

F = [T−1 − S]−1. In pictures:


� �� =

���

� ��−1

−

� ��

���
−1

Explicitly, T and T−1 are given by:
� �� =
1

p2 −m2
i


�ip·σαβ̇ δji imij δα
β

imij δα̇β̇ ip·σα̇β δij

�� ,


� ��−1

=


�−ip·σα̇β δji imij δ
α̇
β̇

imij δα
β −ip·σαβ̇ δij

�� .

Thus, one obtains a 4N × 4N matrix equation for the full

propagator functions:
�ip·σC iD

iD ip·σCT

�� =


�−ip·σ �1 + AT
�

i(m + B)

i(m + B) −ip·σ (1 + A)

��−1

where 1 is the N ×N identity matrix.



The pole mass

To determine the pole mass, go to rest frame of the fermion. The

spinor-index dependence is now trivial. Setting pµ = (
√
s ; 0),

we search for values of s where the inverse of the full propagator

has a zero eigenvalue. This is equivalent to setting the

determinant of the inverse of the full propagator to zero. Using

the well-known formula for the determinant of a block-partitioned

matrix:

det


�P Q

R S

�� = det P det (S −RP−1Q) ,

one finds that the (in general complex) poles of the full

propagator, spole,j = M2
j − iΓjMj, are the solutions to the

non-linear equation:

det
�
s1− (1 + A)

−1
(m + B)(1 + A

T
)
−1

(m + B)
�

= 0 ,

with s ≡ p2. This can be solved iteratively by first expanding

the self-energy function matrices A, B and B in Taylor series in

p2 about either m2
j or M2

j . The complex pole mass quantities

spole,j are renormalization-group and gauge invariant physical

observables.



Conventions for fermion names and fields

There is a one-to-one correspondence between the

Majorana fermion particle names and the left-handed

(1
2, 0) fields, but for Dirac fermions there are always

two distinct two-component fields that correspond to

each particle name. We shall always label fermion lines

with the two-component fields, rather than the particle

names, with the following conventions:

• Initial-state external fermion lines (which always

have physical four-momenta going into the

vertex) in Feynman diagrams are labeled by the

corresponding unbarred (left-handed) field if the

arrow is into the vertex, and by the barred (right-

handed) field if the arrow is away from the vertex.

Initial-state e−: e ec

Initial-state e+: ec e

Initial-state Ñi:
χ0
i χ0

i



• Final-state external fermion lines in complete

Feynman diagrams (which always have physical

four-momenta going out of the vertex) are labeled

by the corresponding barred (right-handed) field if

the arrow is into the vertex, and by the unbarred

(left-handed) field if the arrow is away from the

vertex.

Final-state e−:
e ec

Final-state e+:
ec e

Final-state Ñi:
χ0
i χ0

i

• Internal fermion lines in Feynman diagrams are also

always labeled by the unbarred, left-handed field(s).

Internal lines containing a propagator with opposing

arrows can carry two labels.



• In the Feynman rules for interaction vertices, the

external lines are always labeled by the unbarred

left-handed field, regardless of its arrow direction.

Two-component fermion lines with arrows going

away from the vertex correspond to dotted indices,

and two-component fermion lines with arrows going

toward the vertex always correspond to undotted

indices. This applies also to complete Feynman

diagrams (e.g., self-energies) where the initial state

and the final state roles are ambiguous.

γ

α̇

β

ieσα̇βµ or −ieσµβα̇

e

e

γ β

α̇

−ieσα̇βµ or ieσµβα̇

ec

ec

The two-component Feynman rules for the QED vertex



Fermion name Two-component fields

�− (lepton) � , �c

�+ (anti-lepton) �c , �

ν (neutrino) ν , νc

ν̄ (antineutrino) νc , ν

q (quark) q , qc

q̄ (anti-quark) qc , q

f (quark or lepton) f , fc

f̄ (anti-quark or anti-lepton) fc , f

�Ni (neutralino) χ0
i , χ

0
i

�C+
i (chargino) χ+

i , χ
−
i

�C−
i (anti-chargino) χ−

i , χ
+
i

�g (gluino) �g , �g
Fermion and anti-fermion names and two-component fields in the Standard

Model and the MSSM (for massive neutrinos, add νc and νc).



Examples from the MSSM

We focus on some processes involving the Majorana

neutralino states. The mass matrix for these states in

the B̃–W̃ 0–H̃d–H̃u basis is given by:

Mχ0 =

⎛⎜⎜⎜⎜⎜⎝
M1 0 −1

2g
′vd 1

2g
′vu

0 M2
1
2gvd −1

2gvu

−1
2g

′vd 1
2gvd 0 −µ

1
2g

′vu −1
2gvu −µ 0

⎞⎟⎟⎟⎟⎟⎠ ,

where v2
u + v2

d = (246 GeV)2 and tan β ≡ vu/vd. The

Takagi factorization yields:

[N−1]TMχ0N−1 = diag(m
�N1

, m
�N2

,m
�N3

,m
�N4

) ,

where N is unitary. The Feynman rules for neutralino

interactions with electrons and selectrons are given by:



ẽL e

χ0
i

i√
2
[gN∗

i2 + g′N∗
i1] δα

β

α

β

ẽR ec

χ0
i

−ig′
√

2 N∗
i1 δα

β

α

β

ẽL ec

χ0
i

−i
√

2(me/vd)N∗
i3 δα

β

α

β

ẽR e

χ0
i

−i
√

2(me/vd)N∗
i3 δα

β

α

β

Feynman rules for the interactions of neutralinos with electron/selectron pairs

in the MSSM. For each rule, there is a corresponding one with all arrows

reversed, undotted indices changed to dotted indices with the opposite height,

and the coupling (without the explicit i) replaced by its complex conjugate.

Note that g′ = g tan θW .



e−e− → ẽ−L ẽ−R

Here there are two Feynman graphs (neglecting the

electron mass):

e (p1,λ1)

ec (p2,λ2)

�e−L (k1)

�e−
R

(k2)
χ0
i

e (p2,λ2)

ec p1,λ1) �e−L (k1)

�e−
R

(k2)
χ0
i

The matrix element for the first graph, for each neutralino �Ni

exchanged in the t channel, is:

iMt =

�
i
g√
2

�
N∗
i2 +N∗

i1 tan θW
�� 	−ig√2Ni1 tan θW




×x1

�� i(k1 − p1)·σ
(k1 − p1)2 −m2

Ñi

�� ȳ2 .

The external wave functions are denoted by xi = (�pi, λi),

i = 1, 2 and analogously for yi, x̄i, ȳi. The matrix element for

the second (u-channel) graph is related to the t-channel graph

by the interchange of the two incoming electrons, e1 ↔ e2:



iMu = (−1)

�
i
g√
2

�
N

∗
i2 +N

∗
i1 tan θW

�� 	−ig√2Ni1 tan θW



×x2

�� i(k1 − p2)·σ
(k1 − p2)2 −m2

Ñi

�� ȳ1 .

Note that since we have written the fermion wave function

spinors in the opposite order in M2 compared to M1, there is

a factor (−1) for Fermi-Dirac statistics. Alternatively, starting

at the electron with momentum p1 and using the σ rule for the

propagator,

iMu =

�
i
g√
2

�
N∗
i2 +N∗

i1 tan θW
�� 	−ig√2Ni1 tan θW




×ȳ1

�� −i(k1 − p2)·σ
(k1 − p2)2 −m2

Ñi

��x2 .

Using y1σx2 = x2σy1 (which holds for commuting spinors), we

see that the two expressions for Mu coincide.



Thus, the total amplitude is given by:

M = Mt + Mu = x1a·σȳ2 + ȳ1b·σx2 ,

where

aµ ≡ g2sW

cW
(kµ1 − pµ1)

4�
i=1

Ni1(N
∗
i2 +N∗

i1 tan θW)
1

t−m2
Ñi

,

b
µ ≡ −g

2sW

cW
(k

µ
1 − p

µ
2)

4�
i=1

Ni1(N
∗
i2 +N

∗
i1 tan θW)

1

u−m2
Ñi

,

where sW ≡ sin θW , cW ≡ cos θW , t = (p1 − k1)
2 and

u = (p1 − k2)
2. Squaring the amplitude yields

|M|2 = (x1a·σȳ2)
�
y2a

∗·σx̄1

�
+ (ȳ1b·σx2)

�
x̄2b

∗·σy1

�
+ (x1a·σȳ2)

�
x̄2b

∗·σy1

�
+ (ȳ1b·σx2)

�
y2a

∗·σx̄1

�
.

Averaging over the initial state electron spins, the a, b∗ and a∗, b

cross terms are proportional to me and can thus be neglected in

our approximation. We get:

1
4

�
λ1,λ2

|M|2 = 1
4 Tr[a·σ p2·σ a∗·σ p1·σ]

+1
4 Tr[b·σ p2·σ b∗·σ p1·σ] .



These terms can be simplified using the identities:

Tr[(k1 − p1)·σ p2·σ (k1 − p1)·σ p1·σ]

= Tr[(k1 − p2)·σ p2·σ (k1 − p2)·σ p1·σ]

= tu−m2
ẽL
m2
ẽR
,

resulting in:

1
4

�
λ1,λ2

|M|2 = 1
4g

4 tan2 θW (tu−m2
ẽL
m2
ẽR

)

×
4�

i,j=1

Nj1N
∗
i1(N

∗
j2 +N∗

j1 tan θW)(Ni2 +Ni1 tan θW)

×
�� 1

(t −m2
Ñi

)(t −m2
Ñj

)
+

1

(u−m2
Ñi

)(u−m2
Ñj

)

�� .

Thus, for s = (p1 + p2)
2, the differential cross-section is:

dσ

dt
=

πα2

4s2
Wc

2
W

�
tu−m2

�eL
m2

�eR

s2

�

×
4�

i,j=1

Nj1N
∗
i1(N

∗
j2 +N

∗
j1 tan θW)(Ni2 +Ni1 tan θW)

×
�� 1

(t −m2
Ñi

)(t −m2
Ñj

)
+

1

(u−m2
Ñi

)(u−m2
Ñj

)

�� .



e−e− → ẽ−Rẽ−R

Again, in the limit of vanishing electron mass, there are two

Feynman graphs, which are related by the exchange of identical

electrons in the initial state or equivalently by exchange of the

identical selectrons in the final state.

ec (p1,λ1)

ec (p2,λ2)

�e−
R

(k1)

�e−
R

(k2)

χ0
i

ec (p2,λ2)

ec (p1,λ1) �e−
R

(k1)

�e−
R

(k2)

χ0
i

The amplitude for the first graph is:

iMt =
�
−ig

√
2Ni1 tan θW

�2

�� im
�Ni

(k1 − p1)2 −m2
�Ni

�� ȳ1ȳ2

for each exchanged neutralino. The amplitude for the second

graph is:

iMu =
�
−ig

√
2Ni1 tan θW

�2

�� im
�Ni

(k1 − p2)2 −m2
�Ni

�� ȳ1ȳ2 .

Since we have chosen to write the external state wave function

spinors in the same order in Mt and Mu, there is no factor of

(−1) for Fermi-Dirac statistics.



The total amplitude squared is:

|M|2 = 4g
4
tan

4
θW(ȳ1ȳ2)(y2y1)

4�
i,j=1

(Ni1)
2
(N

∗
j1)

2
m

�Ni
m

�Nj

×

� 1

t−m2
�Ni

+
1

u−m2
�Ni

��
� 1

t−m2
�Nj

+
1

u−m2
�Nj

��
The sum over the electron spins is obtained from�

λ1,λ2

(ȳ1ȳ2)(y2y1) = Tr[p2·σp1·σ] = 2p2·p1 = s .

Hence, the spin-averaged differential cross-section is:

dσ

dt
=
πα2

c4W

4�
i,j=1

(Ni1)
2(N∗

j1)
2
m

�Ni
m

�Nj

s

×

� 1

t−m2
�Ni

+
1

u−m2
�Ni

��
� 1

t−m2
�Nj

+
1

u−m2
�Nj

��
Note that when integrating over the 4π solid angle to obtain the

total cross-section, one must multiply by a factor of 1/2 due to

the identical sleptons in the final state.



e−e− → ẽ−L ẽ−L

Again, in the limit of vanishing electron mass, there

are two Feynman graphs, which are related by the

exchange of identical electrons in the initial state or

equivalently by exchange of the identical selectrons in

the final state. The contributing graphs are exactly

like the previous example, but with all arrows reversed.

e (p1,λ1)

e (p2,λ2)

�e−
L

(k1)

�e−L (k2)
χ0
i

e (p2,λ2)

e (p1,λ1) �e−
L

(k1)

�e−L (k2)
χ0
i

The computation of the invariant amplitude and cross-

section is very similar to the previous example, so the

details will be omitted here.



Four-component spinor notation

The correspondence between the 2-component and 4-component

spinor language is most easily exhibited in the basis in which γ5 is

diagonal (this is called the chiral representation). In 2×2 blocks,

the gamma matrices are given by:

γ
µ

=


� 0 σµ
αβ̇

σµα̇β 0

�� , γ5 ≡ iγ
0
γ

1
γ

2
γ

3
=

�
−δαβ 0

0 δα̇β̇

�
.

In addition, we introduce:†

1
2Σ

µν ≡ i

4
[γ
µ
, γ

ν
] =

�
σµνα

β 0

0 σµνα̇β̇

�
.

A four component Dirac spinor field, Ψ(x), is made up of two

mass-degenerate two-component spinor fields, χα(x) and ηα(x)

as follows:

Ψ(x) ≡

�χα(x)
η̄α̇(x)

�� .

The chiral projections operators are: PL ≡ 1
2(1 − γ5) and

PR ≡ 1
2(1 + γ5).

†In most textbooks, Σµν is called σµν . Here, we use the former symbol

so that there is no confusion with the two-component definition of σµν .



Explicitly,

ΨL(x) ≡ PLΨ(x) =


�χα(x)
0

�� ,

ΨR(x) ≡ PRΨ(x) =


� 0

η̄α̇(x)

�� .

The field Ψ and the charge conjugate field Ψc are given by

Ψ(x) ≡ Ψ
†
A = (η

α
(x), χ̄α̇) ,

Ψ
c
(x) ≡ CΨ

T
(x) =


�ηα(x)
χ̄α̇(x)

�� ,

where the Dirac conjugation matrix A and the charge conjugation

matrix C satisfy

Aγ
µ
A

−1
= γ

µ†
, C

−1
γ
µ
C = −γµT .

In the chiral representation, A and C are explicitly given by

A =

�
0 δα̇β̇

δα
β 0

�
, C = −γ5B

−1 =

�
εαβ 0

0 εα̇β̇

�
.

Note the numerical equalities, A = γ0, B = γ1γ3 and

C = iγ0γ2, although these identifications do not respect the

structure of the undotted and dotted indices specified above.



Translation table relating bilinear covariants in

two-component and four-component notation

Ψ1(x) ≡
(

ξ1(x)

η̄1(x)

)
, Ψ2(x) ≡

(
ξ2(x)

η̄2(x)

)
.

Ψ1PLΨ2 = η1ξ2 Ψc
1PLΨc

2 = ξ1η2

Ψ1PRΨ2 = ξ̄1η̄2 Ψc
1PRΨc

2 = η̄1ξ̄2

Ψc
1PLΨ2 = ξ1ξ2 Ψ1PLΨc

2 = η1η2

Ψ1PRΨc
2 = ξ̄1ξ̄2 Ψc

1PRΨ2 = η̄1η̄2

Ψ1γ
µPLΨ2 = ξ̄1σ

µξ2 Ψc
1γ
µPLΨc

2 = η̄1σ
µη2

Ψc
1γ
µPRΨc

2 = ξ1σ
µξ̄2 Ψ1γ

µPRΨ2 = η1σ
µη̄2

Ψ1ΣµνPLΨ2 = 2 η1σ
µνξ2 Ψc

1Σ
µνPLΨc

2 = 2 ξ1σ
µνη2

Ψ1ΣµνPRΨ2 = 2 ξ̄1σ
µνη̄2 Ψc

1Σ
µνPRΨc

2 = 2 η̄1σ
µν ξ̄2

where by definition, Σµν ≡ i
2[γ

µ, γν]. Note that we may also

write: Ψ1γ
µPRΨ2 = −η2σ

µη̄1, etc. It then follows that:



Ψ1Ψ2 = η1ξ2 + ξ̄1η̄2

Ψ1γ5Ψ2 = −η1ξ2 + ξ̄1η̄2

Ψ1γ
µ
Ψ2 = ξ1σ

µ
ξ2 − η̄2σ

µ
η1

Ψ1γ
µγ5Ψ2 = −ξ̄1σµξ2 − η̄2σ

µη1

Ψ1Σ
µν

Ψ2 = 2(η1σ
µν
ξ2 + ξ̄1σ

µν
η̄2)

Ψ1Σ
µνγ5Ψ2 = −2(η1σ

µνξ2 − ξ̄1σ
µνη̄2) .

For Majorana fermions defined by ΨM = Ψc
M = CΨ

T

M , the
following additional conditions are satisfied:

ΨM1ΨM2 = ΨM2ΨM1 ,

ΨM1γ5ΨM2 = ΨM2γ5ΨM1 ,

ΨM1γ
µΨM2 = −ΨM2γ

µΨM1 ,

ΨM1γ
µγ5ΨM2 = ΨM2γ

µγ5ΨM1 ,

ΨM1Σ
µν

ΨM2 = −ΨM2Σ
µν

ΨM1 ,

ΨM1Σ
µνγ5ΨM2 = −ΨM2Σ

µνγ5ΨM1 .

In particular, if ΨM1 = ΨM2 ≡ ΨM , then

ΨMγ
µ
ΨM = ΨMΣ

µν
ΨM = ΨMΣ

µν
γ5ΨM = 0 .



4-component spinor wave functions

The two-component spinor wave functions are related to the

traditional four-component spinors according to:

u(�p, s) =


�xα(�p, s)
ȳα̇(�p, s)

�� , ū(�p, s) = (yα(�p, s), x̄α̇(�p, s)) ,

v(�p, s) =


�yα(�p, s)
x̄α̇(�p, s)

�� , v̄(�p, s) = (x
α
(�p, s), ȳα̇(�p, s)) ,

where v(�p, s) = Cū(�p, s)T , and s = ±1
2. One can check that

u and v satisfy the Dirac equation

(/p−m)u(�p, s) = (/p +m) v(�p, s) = 0 .

where /p ≡ γµp
µ. For massive fermions, we also have:

(2sγ5 /S − 1)u(�p, s) = (2sγ5 /S − 1) v(�p, s) = 0 .

For massless fermions, the helicity spinors are eigenstates of γ5

γ5u(�p, λ) = 2λu(�p, λ) , γ5v(�p, λ) = −2λv(�p, λ) .

The latter result can be derived from the former by putting

Sµ = pµ/m+O(m/E) and applying the Dirac equation before

taking the m → 0 limit.



The spin projection operators for massive fermions read:

u(�p, s)ū(�p, s) = 1
2(1 + 2sγ5 /S) (/p +m) ,

v(�p, s)v̄(�p, s) = 1
2(1 + 2sγ5 /S) (/p−m) .

For massless fermions, using the same m → 0 limiting procedure

as above,

u(�p, λ)ū(�p, λ) = 1
2(1 + 2λγ5) /p ,

v(�p, λ)v̄(�p, λ) = 1
2(1 − 2λγ5) /p .

Finally, the spin-sum identities are given by:�
s

u(�p, s)ū(�p, s) = /p+m,

�
s

v(�p, s)v̄(�p, s) = /p−m,

�
s

u(�p, s)v
T
(�p, s) = (/p +m)C

T
,

�
s

ūT (�p, s)v̄(�p, s) = C−1(/p−m) ,

�
s

v̄
T
(�p, s)ū(�p, s) = C

−1
(/p +m) ,

�
s

v(�p, s)uT (�p, s) = (/p−m)CT .



Rules for 4-component Majorana fermions

Consider a set of neutral and charged fermions interacting with

a neutral scalar or vector boson. The interaction Lagrangian in

terms of two-component fermions is:

Lint = −1
2(λ

ijξiξj + λijξ̄
iξ̄j)φ− (κijχiηj + κijχ̄

iη̄j)φ

−Gi
j ξ̄iσµξjAµ − [(GL)i

jχ̄iσµχj + (GR)i
jη̄iσµηj]Aµ ,

where λ is a complex symmetric matrix, κ is an arbitrary

complex matrix and G, GL and GR are hermitian matrices. By

assumption, χ and η have the opposite U(1) charges, while all

other fields are neutral.

φ
ΨMj

ΨMi

−i(λijPL + λijPR)

φ
Ψj

Ψi

−i(κjiPL + κijPR)

Aµ ΨMj

ΨMi

−iγµ[Gi
jPL −Gj

iPR]

Aµ Ψj

Ψi

−iγµ[(GL)i
jPL − (GR)j

iPR]



The arrows on the Dirac fermion lines depict the flow of the

conserved charge. A Majorana fermion is self-conjugate, so its

arrow simply reflects the structure of Lint; i.e., ΨM [ΨM ] is

represented by an arrow pointing out of [into] the vertex. The

arrow directions determine the placement of the u and v spinors

in an invariant amplitude.

Next, consider the interaction of fermions with charged bosons,

where the charges of Φ, W and χ are assumed to be equal. The

corresponding interaction Lagrangian is given by:

Lint = −1
2Φ

∗[κij1 χiξj + (κ2)ijη̄
iξ̄j] − 1

2Φ[κij2 ηiξj + (κ1)ijχ̄
iξ̄j]

−1
2Wµ[(G1)i

jχ̄iσµξj + (G2)i
jξ̄iσ

µηj]

−1
2W

∗
µ [(G1)j

i
ξ̄
j
σ
µ
χi + (G2)j

i
η̄
j
σ
µ
ξi] ,

where κ1 and κ2 are complex symmetric matrices and G1 and G2

are hermitian matrices. Converting to four-component spinors,

and noting that CT = −C and Ψ is an anti-commuting field,

Ψ
c

iΓΨc
j = −ΨT

i C
−1ΓCΨ

T

j = ΨjCΓTC−1Ψi = ηΓΨjΓΨi ,

where the sign ηΓ = +1 for Γ = 1, γ5, γ
µγ5 and ηΓ = −1

for Γ = γµ,Σµν, Σµνγ5. Hence, the Feynman rules for the

interactions of neutral and charged fermions with charged bosons

can take two possible forms:



Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψci

−i(κ2ijPL + κ1ijPR)

Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψci

−i(κ1ijPL + κ2ijPR)

W
ΨMj

Ψi

−iγµ(G1i
jPL −G2j

iPR)

W
ΨMj

Ψci

iγµ(G1i
jPR −G2j

iPL)

W
ΨMj

Ψi

−iγµ(G1j
iPL −G2i

jPR)

W
ΨMj

Ψci

iγµ(G1i
jPR −G2j

iPL)

One is free to choose either a Ψ or Ψc line to represent a Dirac

fermion at any place in a given Feynman graph. The direction

of the arrow on the Ψ or Ψc line indicates the corresponding

direction of charge flow.‡ Moreover, the structure of Lint implies
‡Since the charge of Ψc is opposite to that of Ψ, the corresponding arrow

direction of the two lines point in opposite directions.



that the arrow directions on fermion lines flow continuously

through the diagram. This requirement then determines the

direction of the arrows on Majorana fermion lines. In the

computation of a given process, one may employ either Ψ or Ψc

when representing the propagation of a (virtual) Dirac fermion.

Because free Dirac fields satisfy:

〈0|T (Ψα(x)Ψβ(y))|0〉 = 〈0|T (Ψ
c
α(x)Ψ

c

β(y))|0〉 ,

the Feynman rules for the propagator of a Ψ and Ψc line are

identical.

Construction of invariant amplitudes involving Majorana fermions

When computing an invariant amplitude, one first writes down

the relevant Feynman diagrams with no arrows on any Majorana

fermion line. The number of distinct graphs contributing to the

process is then determined. Finally, one makes some choice for

how to distribute the arrows on the Majorana fermion lines and

how to label Dirac fermion lines (either Ψ or Ψc) in a manner

consistent with the Feynman rules for the interaction vertices.

The end result for the invariant amplitude (apart from an overall

unobservable phase) does not depend on the choices made for

the direction of the fermion arrows.



Using the above procedure, the Feynman rules for the external

fermion wave functions are the same for Dirac and Majorana

fermions:

• u(�p, s): incoming Ψ [or Ψc] with momentum �p parallel to

the arrow direction,

• ū(�p, s): outgoing Ψ [or Ψc] with momentum �p parallel to

the arrow direction,

• v(�p, s): outgoing Ψ [or Ψc] with momentum �p anti-parallel

to the arrow direction,

• v̄(�p, s): incoming Ψ [or Ψc] with momentum �p anti-parallel

to the arrow direction.

Example: Ψ(p1)Ψ(p2) → Φ(k1)Φ(k2) via ΨM -exchange

The contributing Feynman graphs are:

Ψ

Ψc

Ψ

Ψc



Following the arrows in reverse, the resulting invariant amplitude:

iM = (−i)2
v̄(�p2, s2)(κ1PL + κ

∗
2PR)

�
i( /p1 − /k1 +m)

t−m2

+
i( /k1 − /p2 +m)

u−m2

�
(κ1PL + κ

∗
2PR)u(�p1, s1) ,

where t ≡ (p1 − k1)
2, u ≡ (p2 − k1)

2 and m is the Majorana

fermion mass. The sign of each diagram is determined simply

by the relative permutation of spinor factors appearing in the

amplitude (the overall sign of the amplitude is unphysical).

Exercise: Check that iM is antisymmetric under interchange of

the two initial electrons. HINT: Taking the transpose and using

v ≡ uc ≡ CūT (the u and v spinors are commuting objects),

one easily verifies that:

v̄(�p2, s2)Γu(�p1, s1) = −ηΓv̄(�p1, s1)Γu(�p2, s2) ,

where as before ηΓ = +1 for Γ = 1, γ5, γ
µγ5 and ηΓ = −1

for Γ = γµ,Σµν, Σµνγ5.

Example: Ψ(p1)Ψ
c(p2) → ΨM(p3)ΨM(p4) via charged Φ-

exchange

Neglecting a possible s-channel annihilation graph, the

contributing Feynman graphs can be represented either by

diagram set (i):



ΨM

ΨM

Ψ

Ψc

ΨM

ΨM

Ψ

Ψc

or by diagram set (ii):

ΨM

ΨM

Ψ

Ψ

ΨM

ΨM

Ψ

Ψ

The amplitude is evaluated by following the arrows in reverse.

Using:

v̄(�p2, s2)Γv(�p4, s4) = −ηΓū(�p4, s4)Γu(�p2, s2) ,

one can check that the invariant amplitudes resulting from

diagram sets (i) and (ii) differ by an overall minus sign, as

expected due to the fact that the corresponding order of the

spinor wave functions differs by an odd permutation [e.g., for

the t-channel graphs, compare 3142 and 3124 for (i) and (ii)

respectively]. For the same reason, there is a relative minus sign

between the t-channel and u-channel graphs for either diagram

set [e.g., compare 3142 and 4132 in diagram set(i)].



If s-channel annihilation contributes, its calculation is

straightforward.

ΨM

ΨM

Ψ

Ψ

Relative to the t-channel graph of diagram set (ii), this diagram

comes with an extra minus sign [since 2134 is odd with respect

to 3124].

In the computation of the unpolarized cross-section, non-standard

spin projection operators can arise in the evaluation of the

interference terms. One may encounter spin sums such as:§�
s

u(�p, s)vT (�p, s) = (/p +m)CT ,

�
s

ū
T
(�p, s)v̄(�p, s) = C

−1
(/p−m) ,

which requires additional manipulation of the charge conjugation

matrix C. However, these non-standard spin projection operators

can be avoided by judicious use of spinor wave function product

relations of the kind displayed on the previous two pages.

§see Appendix D of G.L. Kane and H.E. Haber, Phys. Rep. 117 (1985) 75.


